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Abstract

We say that a finite subset E of the Euclidean plane R2 has the discrete Pompeiu

property with respect to isometries (similarities), if, whenever f : R2 → C is such

that the sum of the values of f on any congruent (similar) copy of E is zero, then

f is identically zero. We show that every parallelogram and every quadrangle with

rational coordinates has the discrete Pompeiu property with respect to isometries.

We also present a family of quadrangles depending on a continuous parameter having

the same property. We investigate the weighted version of the discrete Pompeiu

property as well, and show that every finite linear set with commensurable distances

has the weighted discrete Pompeiu property with respect to isometries, and every

finite set has the weighted discrete Pompeiu property with respect to similarities.

1 Introduction

Let K be a compact subset of the plane having positive Lebesgue measure. The set K is

said to have the Pompeiu property if the following condition is satisfied: whenever f is a

continuous function defined on the plane, and the integral of f over every congruent copy

of K is zero, then f ≡ 0. It is known that the closed disc does not have the Pompeiu

property, while all polygons have. (As for the history of the problem, see [10] and the

bibliographical survey [12].)
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Replacing the Lebesgue measure by the counting measure, and the isometry group by

an arbitrary family G of bijections mapping a set X onto itself, we obtain the following

notion. Let K be a nonempty finite subset of X. We say that K has the discrete Pom-

peiu property with respect to the family G if the following condition is satisfied: whenever

f : X → C is such that
∑

x∈K f(φ(x)) = 0 for every φ ∈ G, then f ≡ 0.

We also introduce the weighted version of the discrete Pompeiu property. We say that

the n-tuple K = (x1, . . . , xn) has the weighted discrete Pompeiu property with respect to the

family G if the following condition is satisfied: whenever α1, . . . , αn are complex numbers

with
∑n

i=1 αi 6= 0 and f : X → C is such that
∑n

j=1 αjf(φ(xj)) = 0 for every φ ∈ G, then

f ≡ 0. (The condition
∑n

i=1 αi 6= 0 is necessary: if
∑n

i=1 αi = 0 was allowed then every

constant function would be a solution.)

Apparently, the first results concerning the discrete Pompeiu property appeared in

[13], where the author considers the Pompeiu problem for finite subsets of Zn with respect

to translations. The interest in the topic revived shortly after the 70th William Lowell

Putnam Mathematical Competition (2009), where the following problem was posed: Let

f be a real-valued function on the plane such that for every square ABCD in the plane,

f(A) + f(B) + f(C) + f(D) = 0. Does it follow that f ≡ 0? This is nothing but asking

whether the set of vertices of a square has the discrete Pompeiu property with respect

to the similarities of the plane. This problem motivated the paper [3] by C. De Groote

and M. Duerinckx. They proved that every finite and nonempty subset of R2 has the

discrete Pompeiu property with respect to direct similarities. Another generalization of

the Putnam problem appeared in [4], where it is proved that the set of vertices of the

unit square has the discrete Pompeiu property with respect to the group of isometries.

Recently, M. J. Puls [9] considered the discrete Pompeiu problem in groups.

In this paper we improve the results of [3] and [4]. Our main results are the following.

Every finite and nonempty subset of R2 has the weighted discrete Pompeiu property with

respect to direct similarities (Theorem 3.3). This solves a problem posed by De Groote

and M. Duerinckx in the case of complex valued functions. The set of vertices of every

parallelogram has the discrete Pompeiu property with respect to the group of rigid motions

(Theorem 5.1). All quadrangles with rational coordinates have the weighted discrete Pom-

peiu property with respect to isometries (Theorem 5.2). We also construct a family of

quadrangles depending on a continuous parameter having the discrete Pompeiu property

with respect to isometries (Theorem 5.3). All finite sets of collinear points in R2 with

commensurable distances have the discrete Pompeiu property with respect to rigid motions

(Theorem 4.5).
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The table below summarizes these results together with some other observations con-

cerning finite subsets of the plane. In the first line of the table P stands for discrete

Pompeiu property, and WP stands for weighted discrete Pompeiu property.

Group acting on R2 Set P WP

Translations finite sets with at least 2 elements No No (Prop. 1.1)

Rigid motions

sets with at most 3 elements Yes ? (Prop. 4.1)

parallelograms Yes ? (Thm. 5.1)

finite sets of collinear points Yes Yes (Thm. 4.5)

with commensurable distances

Isometries

(non-collinear) sets Yes Yes (Rem. 4.2)

with at most 3 elements

rational 4-point sets Yes Yes (Thm. 5.2)

Pompeiu quadrangles Yes ? (Thm. 5.3)

Direct similarities all finite sets Yes Yes (Thm. 3.3)

It is obvious that if a set K has the (weighted) discrete Pompeiu property with respect

to a family G, then K also has the (weighted) discrete Pompeiu property with respect to

any family containing G. In particular, if a finite set K ⊂ R2 has the (weighted) discrete

Pompeiu property with respect to rigid motions then it also has this property with respect

to isometries. It is not clear whether or not the converse is true.

The results above motivate the following questions: is it true that every four element

subset of the plane has the (weighted) discrete Pompeiu property with respect to the group

of isometries? Is it true that every nonempty and finite subset of the plane has the same

property? We do not know the answer.

We conclude the introduction with a remark concerning the family of translations in

an Abelian group. As the following proposition shows, this family is ‘too small’: finite

sets, in general, cannot have the discrete Pompeiu property with respect to this group.

Proposition 1.1. Let G be a torsion free Abelian group. If E is a finite subset of G

containing at least 2 elements, then E does not have the discrete Pompeiu property with

respect to the family of all translations of G.

Proof. Note that if the torsion free rank of G is less than continuum, then this is a special

case of [9, Theorem 3.1]. In the general case let H be the subgroup of G generated by E.

Then H is a finitely generated torsion free Abelian group, and thus H is isomorphic to

Zn for some finite n. By Zeilberger’s theorem [13], E does not have the discrete Pompeiu
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property in H with respect to the family of translations; that is, there is a nonzero function

f : H → C such that the sum of the values of f taken on any translate of E is zero. It is

clear that we can find such a function on every coset of H. The union of these functions

has the same property on G, showing that E does not have the discrete Pompeiu property

in G with respect to the family of translations on G. �

In the proposition above we cannot omit the requirement that G be torsion free. E.g.,

if G is a finite group having n ≥ 3 elements and E is a subset of G having n− 1 elements,

then E has the discrete Pompeiu property with respect to translations. Indeed, if the sum

of the values of f is zero on each translate of E then f must be constant, and the constant

must be zero.

2 Preliminaries: generalized polynomials and expo-

nential functions on Abelian groups

LetG be an Abelian group. If f : G→ C and h ∈ G, then ∆hf denotes the function defined

by ∆hf(x) = f(x+ h)− f(x) (x ∈ G). The function f : G→ C is said to be a generalized

polynomial if there is an n such that ∆h1 . . .∆hn+1f ≡ 0 for every h1, . . . , hn+1 ∈ G. The

degree of f is the smallest such n. Thus the generalized polynomials of degree zero are the

nonzero constant functions. The degree of the identically zero function is −1 by definition.

The function g : G→ C is an exponential, if g 6= 0 and g(x+ y) = g(x) · g(y) for every

x, y ∈ G. By a monom we mean a function of the form p · g, where p is a generalized poly-

nomial, and g is an exponential. Finite sums of monoms are called polynomial-exponential

functions.

Let CG denote the linear space of all complex valued functions defined on G equipped

with the product topology. By a variety on G we mean a translation invariant, closed,

linear subspace of CG. We say that spectral analysis holds in G, if every nonzero variety

contains an exponential function.

We shall need the fact that spectral analysis holds in every finitely generated and

torsion free Abelian group. In fact, this is true in every Abelian group whose torsion

free rank is less than continuum [6]. However, for finitely generated and torsion free

Abelian groups this also follows from Lefranc’s theorem. Lefranc proved in [7] that if

n is finite then spectral synthesis holds in Zn; that is, every variety on Zn is spanned

by polynomial-exponential functions. Therefore, if a variety V on Zn contains nonzero

functions, then it has to contain nonzero polynomial-exponential functions. It is easy to

see that if a polynomial-exponential function
∑n

i=1 pi ·gi is contained in a variety V , where
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p1, . . . , pn are nonzero generalized polynomials and g1, . . . , gn are distinct exponentials,

then necessarily gi ∈ V holds for every i = 1, . . . , n. Since every finitely generated and

torsion free Abelian group is isomorphic to Zn for some finite n, it follows that spectral

analysis (and, in fact, spectral synthesis) holds in such groups. We shall need the following

special case.

Lemma 2.1. Let G be a finitely generated subgroup of the additive group of C, let αj,k, bj,k

(j = 1, . . . , n, k = 1, . . . ,m) be complex numbers, and let Y be a subset of C. Let V denote

the set of functions f : G→ C such that

n∑
j=1

αj,kf(x+ bj,ky) = 0

for every k = 1, . . . ,m, x ∈ G and y ∈ Y satisfying bj,ky ∈ G for every j = 1, . . . , n and

k = 1, . . . ,m. Then V is a variety on G. Consequently, if V contains a non-identically

zero function, then V contains an exponential function defined on G.

Proof. It is clear that V is a translation invariant linear subspace of CG. Since G

is countable, the topology of CG is the topology determined by pointwise convergence.

Obviously, if fi ∈ V and fi → f pointwise on G, then f ∈ V . Thus V is closed. �

3 Similarities

It was shown by C. De Groote and M. Duerinckx in [3] that every finite and nonempty

subset of R2 has the discrete Pompeiu property with respect to direct similarities. By a

direct similarity we mean a transformation that is a composition of translations, rotations

and homothetic transformations. The authors also discuss the possible generalizations

when R2 is replaced by Kp where K is a field, and the transformation group is a subgroup

of AGL(p,K). We note that the argument given by C. De Groote and M. Duerinckx also

proves the following generalization.

Proposition 3.1. Let G be a transitive and locally commutative transformation group

acting on X such that for every x, y, z ∈ X with y 6= x 6= z there exists a map f ∈ G such

that f(x) = x and f(y) = z. Then every finite and nonempty proper subset of X has the

discrete Pompeiu property with respect to G.

We say that a transformation g : R→ R is an order preserving similarity, if g(x) = a+cx

for every x ∈ R, where a ∈ R and c > 0.

Proposition 3.2. Every finite and nonempty subset of R has the discrete Pompeiu prop-

erty with respect to the group of order preserving similarities.

5



Proof. Although Proposition 3.1 cannot be applied directly, a variant of the argument

given by C. De Groote and M. Duerinckx in [3] works. Let E = {x1, . . . , xn}. Suppose that

f : R→ R is such that
∑n

i=1 f(a+ cxi) = 0 for every a ∈ R and c > 0. Replacing E by a

translated copy we may assume that 0 = x1 < x2 < . . . < xn. We put Ai = {xi+xixj : j =

2, . . . , n} and Bj = {xi + xixj : i = 2, . . . , n}. Then Ai ∪ {xi} is the image of E under

an order preserving similarity for every i ≥ 2, and thus
∑n

j=2 f(xi + xixj) = −f(xi)

(i = 2, . . . , n). Similarly, Bj ∪ {0} is the image of E under an order preserving similarity

for every j ≥ 2, and thus
∑n

i=2 f(xi + xixj) = −f(0) (j = 2, . . . , n). Therefore,

f(0) =−
n∑
i=2

f(xi) =
n∑
i=2

n∑
j=2

f(xi + xixj) =
n∑
j=2

n∑
i=2

f(xi + xixj) =

=
n∑
j=2

(−f(0)) = −(n− 1)f(0).

Thus we have f(0) = 0. For every b ∈ R, the function Tbf defined by Tbf(x) = f(x + b)

also satisfies the condition
∑n

i=1 Tbf(a + cxi) = 0 for every a ∈ R and c > 0. Therefore,

Tbf(0) = f(b) = 0 for every b ∈ R. �

De Groote and M. Duerinckx asked in [3] if the finite subsets of the plane have the

weighted discrete Pompeiu property with respect to direct similarities. In the next theorem

we show that the answer is affirmative.

Theorem 3.3. Every n-tuple of distinct points of R2 has the weighted discrete Pompeiu

property with respect to direct similarities.

Proof. We identify R2 with the complex plane C. We put C∗ = C \ {0}.
Let (b1, . . . , bn) be an n-tuple of distinct complex numbers. Let α1, . . . , αn be complex

numbers such that
∑n

i=1 αi 6= 0, and let f : C→ C be such that

n∑
i=1

αif(x+ biy) = 0 (1)

for every x ∈ C and y ∈ C∗. We have to prove that f ≡ 0.

Suppose first that (1) holds for every x, y ∈ C. Then, by [5, Theorem 2.4], if f is not

constant, then we have
∑n

i=1 αi = 0, which contradicts the assumption. If, however, f is

constant, then (1) and
∑n

i=1 αi 6= 0 imply that f ≡ 0. Therefore, it is enough to show that

if (1) holds for every x ∈ C and y ∈ C∗, then it holds for every x, y ∈ C. In the following

theorem we shall prove more.

We say that a family I of subsets of C is a proper and translation invariant ideal, if

A,B ∈ I implies A ∪ B ∈ I, A ∈ I and B ⊂ A implies B ∈ I, C /∈ I, and if A ∈ I then

A+ c = {x+ c : x ∈ A} ∈ I for every c ∈ C. It is clear that the family of finite subsets of

6



C is a proper and translation invariant ideal. Applying the following theorem to the ideal

of finite subsets of C will also complete the proof of Theorem 3.3.

Theorem 3.4. Let I be a proper and translation invariant ideal of subsets of C. Let

b1, . . . , bn be distinct complex numbers, and suppose that the functions f1, . . . , fn : C → C
satisfy

n∑
i=1

fi(x+ biy) = 0 (2)

for every x ∈ C and y ∈ C \ A, where A ∈ I. Then each fi is a generalized polynomial of

degree ≤ n− 2, and (2) holds for every x, y ∈ C.

Proof. First we prove that each fi is a generalized polynomial of degree ≤ n − 2. We

prove by induction on n. The case of n = 1 is obvious.

Now let n ≥ 2, and suppose that the statement is true for n− 1. Let f1, . . . , fn satisfy

(2) for every x ∈ C and y ∈ C \ A, where A ∈ I. Since the role of the functions fi is

symmetric, it is enough to prove that f1 is a generalized polynomial of degree ≤ n − 2.

Note that b1 6= bn by assumption. Let h ∈ C be fixed. Then we have

n∑
i=1

fi(x+ h+ biy) = 0 (3)

for every x and y ∈ C \ A, and

n∑
i=1

fi(u+ biv) = 0 (4)

for every u and v /∈ A. Substituting u = x − b1h/(bn − b1) and v = y + h/(bn − b1) into

(4) and subtracting from (3) we obtain

∆hf1(x+ b1y) +
n−1∑
i=2

[
fi(x+ h+ biy)− fi

(
x+

bi − b1
bn − b1

h+ biy

)]
= 0

for every y such that y /∈ A and v = y + h/(bn − b1) /∈ A. (If n = 2 then the sum on the

left hand side is empty.) Putting gi(z) = fi(z + h) − fi
(
z + bi−b1

bn−b1h
)

(z ∈ C), we obtain

that

∆hf1(x+ b1y) +
n−1∑
i=2

gi(x+ biy) = 0

for every x and for every y /∈ A ∪ (A − h/(bn − b1)). Since A ∪ (A − h/(bn − b1)) ∈ I,

it follows from the induction hypothesis that ∆hf1 is a generalized polynomial of degree

≤ n−3. As this is true for every h, we obtain that f1 is a generalized polynomial of degree

≤ n− 2.
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We still have to prove that (2) holds for every x, y ∈ C. Let x ∈ C be fixed, and put

G(y) =
∑n

i=1 fi(x+ biy) for every y ∈ C. We have to prove that G(y) = 0 for every y ∈ C.

It is easy to see that if f is a generalized polynomial, then so is y 7→ f(x+ by) = g(y).

This can be proved by induction on the degree of f , using ∆hg(y) = ∆bhf(x+ by). Since

each fi is a generalized polynomial, it follows that so is gi(y) = fi(x+ biy) for every i, and

thus so is G = g1 + . . .+ gn.

We know that G(y) = 0 for every y /∈ A. Therefore, in order to prove G ≡ 0, it is

enough to show that if f : C → C is a generalized polynomial and f(x) = 0 for every

x ∈ C \ A where A ∈ I, then f ≡ 0. We prove by induction on the degree of f . The

statement is obvious if the degree is ≤ 0. Indeed, in this case f is constant, and has a

value equal to zero, since I is a proper ideal. Suppose the degree of f is n > 0, and

the statement is true for generalized polynomials of degree < n. For every h, we have

∆hf(x) = 0 for every x ∈ C \ (A ∪ (A − h)). Since A ∪ (A − h) ∈ I, it follows from the

induction hypothesis that ∆hf(x) = 0 for every x. This is true for every h, which shows

that f is constant. As we saw above, the constant must be zero. This completes the proof.

�

4 Isometries and rigid motions: some general remarks

By a rigid motion we mean an isometry that preserves orientation. (Rigid motions some-

times are called direct isometries.) An isometry of R2 is a rigid motion if it is a translation

or a rotation.

Proposition 4.1. Every subset of the plane containing 1, 2 or 3 points has the discrete

Pompeiu property with respect to rigid motions.

Proof. The case of the singletons is obvious. Let E = {a, b} and r = |a− b| > 0. Suppose

that f : R2 → C is such that f(σ(a)) + f(σ(b)) = 0 for every rigid motion σ. Then f

has the same value at every pair of points a1, a2 with distance ≤ 2r. Indeed, there is a

point b such that |b − ai| = r (i = 1, 2), and thus f(a1) = −f(b) = f(a2). Now, any

two points a, b ∈ R2 can be joined by a sequence of points a = a0, . . . , an = b such that

|ai − ai−1| ≤ 2r, and thus f(a) = f(b). Therefore, f must be constant, and the value of

the constant must be zero.

Let H = {a, b, c}, where a, b, c are distinct, and let f : R2 → C be such that f(σ(a)) +

f(σ(b))+f(σ(c)) = 0 for every rigid motion σ. By changing the notation of the points a, b, c

if necessary, we may assume that c 6= (a+ b)/2. Let c′ = a+ b− c. Then c′ is the reflection

of c about the midpoint of the segment [a, b], and thus f(σ(b))+f(σ(a))+f(σ(c′)) = 0 for
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every rigid motion σ. Thus f(σ(c′)) = f(σ(c)) for every rigid motion σ, which implies that

f(x) = f(y) whenever |x − y| = |c′ − c|. The argument above shows that f is constant,

and, in fact, f ≡ 0. �

Remark 4.2. It is easy to see that if n ≤ 2, then every n-tuple has the weighted discrete

Pompeiu property with respect to isometries. The same is true for those triplets (a, b, c)

whose points are not collinear. In this case we have to modify the proof above by choosing

the point c′ to be the reflection of c about the line going through a and b instead of the

point a+ b− c in order to avoid changing the weights of a and b.

Proposition 4.3. Let E be a finite set in the plane. If there exists an isometry σ such that

|E ∩σ(E)| = |E|−1, then E has the discrete Pompeiu property with respect to isometries.

Proof. Let E\σ(E) = {a} and σ(E)\E = {b}. If f : X → C is such that
∑

x∈φ(E) f(x) = 0

for every isometry φ, then taking the difference of the equations
∑

x∈(φσ)(E) f(x) = 0 and∑
x∈φ(E) f(x) = 0, we obtain f(φ(a)) = f(φ(b)) for every isometry φ. Thus f(x) = f(y)

whenever |x− y| = |a− b|. As we saw before, this implies that f is identically zero. �

Remark 4.4. Concerning the discrete Pompeiu property in higher dimensions, we note

that Proposition 4.3 holds without any essential modification in Rn for every n ≥ 2. As

for Proposition 4.1, it is easy to see that every subset of Rn (n ≥ 2) containing affinely

independent points has the discrete Pompeiu property with respect to isometries. Using

an inductive argument it is enough to consider the case of n+ 1 points in general position.

Such a set satisfies the condition of Proposition 4.3: let σ be the reflection about a facet.

By Proposition 4.3, if a set E consists of consecutive vertices of a regular n-gon R, and

E 6= R, then E has the discrete Pompeiu property with respect to isometries. Also, if E is

a finite set of collinear points forming an arithmetic progression, then E has the discrete

Pompeiu property with respect to isometries. The following theorem is the generalization

of this fact.

Theorem 4.5. Let E be an n-tuple of collinear points in R2 with pairwise commensurable

distances. Then E has the weighted discrete Pompeiu property with respect to rigid motions

of the plane.

Lemma 4.6. Let x1, . . . , xn, y1, . . . , yk ∈ R2 and α1, . . . , αn, β1, . . . , βk ∈ C be such that

(i) y1, . . . , yk are collinear with commensurable distances,

(ii)
∑n

i=1 αi 6= 0, and
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(iii) at least one of the numbers β1, . . . , βk is nonzero.

If f : R2 → C is such that

n∑
i=1

αif(σ(xi)) =
k∑
j=1

βjf(σ(yj)) = 0 (5)

for every rigid motion σ, then f is identically zero.

Proof. We identify R2 with the complex plane C. We put C∗ = C \ {0} and S1 = {x ∈
C : |x| = 1}. Then every rigid motion is of the form x 7→ a + ux (x ∈ C), where a ∈ C
and u ∈ S1.

Let a, c ∈ C and c 6= 0. If we replace xi by a+ cxi, yj by a+ cyj for every i and j, and

replace f by f1(x) = f(x/c), then (5) remains valid for every rigid motion σ. Indeed, for

every σ, the map x 7→ σ(a + cx)/c is a rigid motion if and only if σ is. Note that if f1 is

identically zero, then so is f .

Therefore, replacing xi by a+ cxi, yj by a+ cyj for every i = 1, . . . , n and j = 1, . . . , k

with a suitable a ∈ C and c ∈ C∗, we may assume that y1, . . . , yk are positive integers. By

supplementing the system if necessary, we may assume that yj = j (j = 1, . . . ,m). We

put βj = 0 for every added j. Then we have

n∑
i=1

αif(x+ uxi) =
m∑
j=1

βjf(x+ ju) = 0 (6)

for every x ∈ C and u ∈ S1. We show that this implies f ≡ 0. Suppose that f is not

identically zero, and let z0 ∈ C be such that f(z0) 6= 0.

Let K be an integer greater than max1≤i≤n |xi|. It is clear that every z ∈ C with

|z| < K is the sum of K elements of S1. Let U be a finite subset of S1 such that 1 ∈ U ,

and xi/ν is the sum of K elements of U for every i = 1, . . . , n and ν = 1, . . . , N , where

N = mK·mK
.

Let G denote the additive subgroup of C generated by the elements z0, u ∈ U and uxi

(u ∈ U, i = 1, . . . , n). Then G is a finitely generated subgroup of C. Let V denote the

set of functions defined on G and satisfying (6) for every x ∈ G and u ∈ U . The set of

functions V contains the restriction of f to G which is not identically zero, as z0 ∈ G.

Therefore, by Lemma 2.1, V contains an exponential function g : G→ C.

If u ∈ U , then (6) gives
∑m

j=1 βjg(u)j = 0. Therefore, g(u) is a root of the polynomial

p(x) =
∑m

j=1 βjx
j−1. Let Λ denote the set of the nonzero roots of p. Then Λ has at most

m − 1 elements, and g(u) ∈ Λ for every u ∈ U . For every i = 1, . . . , n and ν = 1, . . . , N ,

xi/ν is the sum of K elements of U . Thus g(xi/ν) is the product of K elements of
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g(U) ⊂ Λ. Therefore, the set F = {g(xi/ν) : i = 1, . . . , n, ν = 1, . . . , N} has less than mK

elements.

Let 1 ≤ i ≤ n be fixed, and put g(xi) = c. We prove c = 1. Since g(xi/ν) ∈ F for

every ν = 1, . . . ,mK , there are integers 1 ≤ ν < µ ≤ mK such that g(xi/ν) = g(xi/µ).

Then

cµ = g(xi/ν)νµ = g(xi/µ)νµ = cν ,

and thus cµ−ν = 1. Let µ− ν = s, then s < mK and cs = 1. If s = 1, then c = 1 is proved.

If s > 1, then, by g(xi/s
t) ∈ F for every t = 1, . . . ,mK , there are integers 1 ≤ r < t ≤ mK

and there is an element b ∈ F such that g(xi/s
r) = g(xi/s

t) = b. Then

c = g(xi) = bs
t

= bs
r·st−r

= cs
t−r

= 1,

since cs = 1. This proves g(xi) = 1 for every i = 1, . . . , n.

Then, applying (6) with x = 0, u = 1 and f = g, we obtain
∑n

i=1 αi = 0 which is

impossible. This contradiction completes the proof. �

Proof of Theorem 4.5. Let E = (x1, . . . , xn), where x1, . . . , xn are collinear with com-

mensurable distances. Let α1, . . . , αn be complex numbers with
∑n

i=1 αi 6= 0, and let

f : C → C satisfy
∑n

i=1 αif(σ(xi)) = 0 for every rigid motion σ. Applying Lemma 4.6

with k = n, yi = xi and βi = αi (i = 1, . . . , n), we obtain that f is identically zero. �

Remark 4.7. The isometry group of R consists of translations and reflections. Since

no finite subset of R has the discrete Pompeiu property with respect to translations by

Proposition 1.1, and every reflected copy of the set {1, . . . , n} is also a translated copy, it

follows that the set {1, . . . , n} does not have the discrete Pompeiu property with respect

to isometries of R. (This is why we had to step out from R into the plane in the proof of

Theorem 4.5.) Note, however, that there are subsets of Z which have the discrete Pompeiu

property with respect to isometries of R. The set of integers 0 = z0 < z1 < . . . < zk has this

property if and only if the polynomials p(x) =
∑k

i=0 x
zi and q(x) =

∑k
i=0 x

zk−zi have no

common roots. (This follows immediately from Zeilberger’s theorem [13].) This condition

is clearly satisfied if the set {z0, z1, . . . , zk} is not symmetric about the point (z0 + zk)/2,

and if p is irreducible in Z[x].

Since each coefficient of p is 0 or 1, it is easy to decide whether p is irreducible or

not. If there is an n ≥ 3 such that p(n) is prime, then p is irreducible (see [8]). By the

Buniakowski-Schinzel conjecture, this condition is also necessary for the irreducibility of

p.
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5 Quadrangles under isometries

Theorem 5.1. The set of vertices of any parallelogram has the discrete Pompeiu property

with respect to rigid motions of the plane.

Proof. We identify R2 with the complex plane C. We put C∗ = C \ {0} and S1 = {u ∈
C : |u| = 1}. Let E be a set of vertices of a parallelogram. Without loss of generality we

may assume that 0 ∈ E. Then E = {0, a, b, a+ b}, where 0 6= a, b ∈ C and a 6= b. Clearly,

it is enough to prove that if f : C→ C is such that

f(x) + f(x+ ay) + f(x+ by) + f(x+ (a+ b)y) = 0 (7)

for every x ∈ C and y ∈ S1, then f ≡ 0. Suppose that there exists a nonzero f satisfying

(7), and let z0 ∈ C be such that f(z0) 6= 0.

Let F be a finite subset of C, and let G denote the additive subgroup of C generated

by F ∪ {z0}. Let V denote the set of functions f : G → C satisfying (7) for every x ∈ G
and y ∈ S1

G = {y ∈ S1 : ay, by ∈ G}. Since f |G ∈ V and z0 ∈ G, it follows that V 6= 0.

By Lemma 2.1, there exists an exponential function g in V . Since g satisfies (7)

and g(x + ay) = g(x)g(ay) and g(x + (a + b)y) = g(x)g(ay)g(by), we obtain g(x)(1 +

g(ay) + g(by) + g(ay)g(by)) = 0 whenever x ∈ G and y ∈ S1
G. Since g(x) 6= 0, we get

(1 + g(ay))(1 + g(by)) = 0 for every y ∈ S1
G . That is, we have either g(ay) = −1 or

g(by) = −1 for every y ∈ S1
G.

Let P be an arbitrary parallelogram obtained from E by a rigid motion and having

vertices in G. Then the vertices of P are c = x, d = x+ ay, e = x+ (a+ b)y, f = x+ by

with a suitable x ∈ G and y ∈ S1
G. Then we have either g(d)/g(c) = g(e)/g(f) = −1 or

g(f)/g(c) = g(e)/g(d) = −1. In other words, the values of g at the points c, d, e, f are

either g(c),−g(c), g(e),−g(e) or g(c), g(d),−g(d),−g(c). Therefore, the vertex set of the

parallelogram can be decomposed into two pairs with g-values of the form (x,−x) in each

pair.

Let C∗ = X1 ∪ X2 be a decomposition of C∗ such that X1 = −X2. Let h(x) = 1 if

g(x) ∈ X1, and h(x) = −1 if g(x) ∈ X2. Then h : G→ {1,−1} has the following property:

if σ is a rigid motion and if σ(E) ⊂ G, then there are two elements of σ(E) where the

function h takes the value 1, and at the other two elements of σ(E) the function h takes

the value −1.

Since this is true for every group generated by any finite subset of R2, we may apply

Rado’s selection principle [2]. We find that there exists a function h : R2 → {1,−1} such

that whenever σ is a rigid motion, then there are two elements of σ(E) where the function

h takes the value 1, and at the other two elements of σ(E) the function h takes the value

−1.
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The existence of such a function, however, contradicts a known fact of Euclidean Ram-

sey theory. By a theorem of Shader [11, Theorem 3], for every 2-coloring of the plane,

and for every parallelogram E, there is a congruent copy P of E such that at least three

vertices of P has the same color. It is clear from the proof that P can be obtained from

E by a rigid motion. (See the Remark on p. 563 in [1].) This contradicts the existence of

the function h with the properties described, proving that f must be identically zero. �

Our next aim is to prove the following.

Theorem 5.2. Every set E ⊂ R2 of four points having rational coordinates has the

weighted discrete Pompeiu property with respect to the group of isometries of R2.

Proof. If the points of E are collinear, then the statement is a consequence of Theorem

4.5. If there are three collinear points of E, then the statement follows from Proposition

4.3. Therefore, we may assume that the points of E are in general position. Let E =

(x1, . . . , x4). By changing the order of the indices we may assume that x1 and x2 are

vertices of the convex hull of E.

Let α1, . . . , α4 be complex numbers such that
∑4

j=1 αj 6= 0, and let f : C→ C be such

that
4∑
j=1

αjf(σ(xj)) = 0 (8)

for every isometry σ. We have to show that f is identically zero. If any of the numbers

α1, . . . , α4 is zero then f ≡ 0 follows from Remark 4.2. Therefore, we may assume that

α4 6= 0.

Let σ1 be the reflection about the line `1 going through the points x1, x2. Let y1 =

σ1(x4) and x5 = σ1(x3), then y1 and x5 have rational coordinates. We have, for every σ,

(σ ◦ σ1)(xi) = σ(xi) for i = 1, 2 , (σ ◦ σ1)(x3) = σ(x5) and (σ ◦ σ1)(x4) = σ(y1). Therefore

α1f(σ(x1)) + α2f(σ(x2)) + α3f(σ(x5)) + α4f(σ(y1)) = 0

for every isometry σ. Subtracting (8) we obtain

α3f(σ(x5)) + α4f(σ(y1))− α3f(σ(x3))− α4f(σ(x4)) = 0 (9)

for every isometry σ. Suppose that the line going through the points x3 and x4 is perpen-

dicular to `1. Then the points x5, y1, x3, x4 are collinear. They have rational coordinates,

so the distances between them are commensurable. Now f satisfies both (8) and (9) for

every isometry σ, and thus, by Lemma 4.6, f ≡ 0.

Therefore, we may assume that the line going through the points x3 and x4 is not

perpendicular to `1. Let σ2 be the reflection about the line `2 going through the points
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x3, x5. Note that the lines `1 and `2 are perpendicular. We put y2 = σ2(y1), y3 = σ2(x4)

and y4 = x4. Then y1, y2, y3, y4 are the vertices of a rectangle R listed either clockwise or

counter-clockwise. It is clear that y1, y2, y3, y4 have rational coordinates. We claim that

f(σ(y1))− f(σ(y2)) + f(σ(y3))− f(σ(y4)) = 0 (10)

holds for every isometry σ. Indeed, (σ◦σ2)(x5) = σ(x5), (σ◦σ2)(x3) = σ(x3), (σ◦σ2)(y1) =

σ(y2) and (σ ◦ σ2)(x4) = σ(y3) and thus, by (9) we obtain

α3f(σ(x5)) + α4f(σ(y2))− α3f(σ(x3))− α4f(σ(y3)) = 0.

Subtracting (9) and dividing by −α4 we obtain (10) for every isometry σ.

Since the coordinates of y1, . . . , y4 are rational, it follows that the side lengths of R

are commensurable. (The side lengths themselves can be irrational.) Thus, there exists

a square Q with vertices z1, . . . , z4 such that Q can be decomposed into finitely many

translated copies of R. If we add the equations (10) for those translations σ that map R

into these translated copies, then we get

f(z1)− f(z2) + f(z3)− f(z4) = 0, (11)

since all other terms cancel out. By rescaling the set E and also the function f if necessary,

we may assume that the side length of Q is 1. Clearly, (11) must hold whenever z1, . . . , z4

are the vertices of a square of unit side length. That is, we have

f(x)− f(x+ u)− f(x+ u · i) + f(x+ u+ u · i) = 0

for every x ∈ C and u ∈ S1.

Now we turn to the proof of f ≡ 0. Suppose this is not true, and fix a z0 ∈ C such

that f(z0) 6= 0. Let a1, . . . , aN be vectors of length 12 such that each of the numbers

x1, . . . , x4 is the sum of some of the aj’s. Let uj = aj/12 and vj = (3uj + 4uj · i)/5 for

every j = 1, . . . , N . Then uj, vj are unit vectors for every j. Let U denote the set of

vectors

uj, uj · i, vj, vj · i (j = 1, . . . , N),

and let G denote the additive group generated by the set U ∪ {xju : j = 1, . . . , 4, u ∈
U} ∪ {z0}. Then G is a finitely generated group. Let V be the set of functions g : G→ C
satisfying the following condition:

4∑
j=1

αjg(x+ xj · u) = 0
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and

g(x)− g(x+ u)− g(x+ u · i) + g(x+ u+ u · i) = 0 (12)

for every x ∈ G and u ∈ U .

The set V contains a non-identically zero function (namely the restriction of f to G),

so by Lemma 2.1, V contains an exponential function g. Then (12) implies (1 − g(u)) ·
(1− g(u · i)) = 0, and thus we have either g(u) = 1 or g(u · i) = 1 for every u ∈ U .

Now we show that g(aj) = 1 for every j = 1, . . . , N . If g(uj) = 1, then this follows

from g(aj) = g(12uj) = g(uj)
12. Therefore we may assume that g(uj · i) = 1. Since

5vj = 3uj + 4uj · i and 5vj · i = −4uj + 3 ·uj · i, we have g(vj)
5 = g(uj)

3 · g(uj · i)4 = g(uj)
3

and g(vj · i)5 = g(uj)
−4 · g(uj · i)3 = g(uj)

−4. Now we have either g(vj) = 1 or g(vj · i) = 1.

Thus at least one of g(uj)
3 = 1 and g(uj)

−4 = 1 must hold. Thus g(uj)
12 = 1 in both

cases, which gives g(aj) = g(12uj) = g(uj)
12 = 1.

Since each xj is the sum of some of the numbers a1, . . . , aN , it follows that g(xj) is the

product of some of the numbers g(a1), . . . , g(aN). Thus g(xj) = 1 for every j = 1, . . . , 4.

However, by
∑4

j=1 αjg(xj) = 0 this implies
∑4

j=1 αj = 0, which contradicts the assumption∑4
j=1 αj 6= 0. This contradiction proves that f ≡ 0. �

Finally, we present a family of quadrangles depending on a continuous parameter such

that each member of the family has the discrete Pompeiu property with respect to the

isometry group.

Let a non-regular triangle ABC4 be given in the plane. The steps of the construction

are summarized as follows:

Figure 1: A Pompeiu quadrangle belonging to α = 23◦.

• since ABC4 is non-regular we can suppose that the point C is not on the perpen-

dicular bisector of AB; in particular C and B are supposed to be on the same side

of the perpendicular bisector of AB.
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• let 0 < α < 45◦ be a given angle and choose a point P on the line AB such that A

and P are separated by the point B and the angle enclosed by the lines PB and PC

is of measure α (see Figure 1).

• E is the point of the perpendicular bisector of AB such that the line CE intersects

the bisector under an angle of measure α (see Figure 1).

• G is the point on the line PC such that the triangle EGC4 has a right angle at G.

Then, necessarily, the perpendicular bisector of AB is the bisector of the angle of

EGC4 at the vertex E.

• Dα is the reflection of C about the point G.

Theorem 5.3. The set Hα = {A,B,C,Dα} has the Pompeiu property with respect to the

isometry group.

Proof. Suppose that the angle α is given, and let D := Dα for the sake of simplicity.

For any point P let P ′ be the image of P under the reflection about the perpendicular

bisector of AB. Then A′ = B, B′ = A and the points C, C ′, D and D′ form a symmetric

trapezium such that D′C = CC ′ = C ′D; see Figure 2. Using that

f(A) + f(B) + f(C) + f(D) = 0 and f(A′) + f(B′) + f(C ′) + f(D′) = 0

it follows that the alternating sum of the values of f at the vertices of the trapezium

CC ′DD′ vanishes, i.e.

f(C)− f(C ′) + f(D)− f(D′) = 0. (13)

Since equation (13) holds for any congruent copy of the trapezium CC ′DD′ we have

f(C)− f(C ′) + f(D)− f(D′) = 0 and f(C ′)− f(D) + f(H ′)− f(C) = 0 (14)

as Figure 2 shows: the trapezium CC ′DH ′ comes by a translation C 7→ C ′ and a rotation

about the point C ′. Therefore

f(D′) = f(H ′) (15)

and equation (15) holds on any congruent copy of the segment D′H ′ of measure r. This

means that f takes the same values at any pair of points having distance r. Since any

pair of points can be joined by a (finite) chain of circles with radius r it follows that f is

a constant function. Thus, the constant must be zero. �
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Figure 2: The proof of Theorem 5.3.
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