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Abstract

We present a theory of flagellar synchronization in the green alga Chlamydomonas, using full

treatment of flagellar hydrodynamics and measured beat patterns. We find that two recently pro-

posed synchronization mechanisms, flagellar waveform compliance and basal coupling, stabilize

anti-phase synchronization if operative in isolation. Their nonlinear superposition, however, can

stabilize in-phase synchronization for suitable parameter choices, matching experimental observa-

tions. Our theory is based on a description of the flagellar beat as a limit-cycle oscillator, which

was introduced and calibrated by experimental data in a recent letter (Klindt et al., Phys. Rev.

Lett. 2016). Using a minimal model of basal coupling, we identify regimes of in-phase, anti-phase

and even out-of-phase synchronization with spontaneous symmetry-breaking in this system of two

identical coupled oscillators as a function of an effective strength of basal coupling. From our the-

ory, we quantitatively predict different synchronization dynamics in fluids of increased viscosity or

external flow, suggesting a non-invasive way to control synchronization by hydrodynamic coupling.
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I. INTRODUCTION

Pairs of coupled oscillators can synchronize with a fixed phase difference, a phenomenon

first observed by Huygens for a pair of pendulum clocks [1]. Since then, synchronization

has been described for many physical systems, including beating flagella [2], pairs of heart

muscle cells [3], or light-driven microrotors [4].

In each of these different systems, the dynamics towards a synchronized state is well

approximated by the classic Adler equation for the phase difference δ between two weakly

coupled oscillators [5], which reads (for the simplest case of identical intrinsic frequencies

ω0 = 2π/T )

δ̇ = −λ
T

sin δ, δ∗IP = 0, δ∗AP = π. (1)

The two steady states of Eq. (1), δ∗IP and δ∗AP, characterize in-phase synchronization (IP)

and anti-phase synchronization (AP), respectively, see Fig. 1. The sign of the effective

synchronization strength λ selects which state is stable. Unless the oscillator coupling pos-

sesses special symmetries, λ is generically non-zero [6, 7]. Its sign, however, depends on

non-generic features of the system. For example, for a system of two beating metronomes

on a moving tray – a modern day analogue of Huygens’ pendulum clocks – both IP and

AP synchronization were observed, depending on subtle features like friction with the floor

[8]. Eq. (1) can be generalized in a straight-forward manner to account for noise [9]. In the

presence of noise, the phase difference δ will fluctuate around the stable steady state δ∗ of

the noise-free equation (with occasional phase-slips). The fluctuation amplitude is set by a

competition between the strength of noise and the synchronization strength λ, which is thus

the key parameter to be predicted by theory.

At the microscopic scale of biological cells, cilia and flagella represent a prime example of

a chemo-mechanical oscillator. Molecular motors inside the flagellum drive regular bending

waves of these slender cell appendages [11], rendering the flagellar beat a stable limit-cycle

oscillator [12–14]. Single flagella can phase-lock to external oscillatory flows [15]. Pairs of

flagella can synchronize their beat, e.g. in the green alga Chlamydomonas that swims with

n = 2 flagella like a breast-stroke swimmer [16–18]. IP synchrony of its two flagella is a

prerequisite for swimming straight and fast. The basal bodies of the two flagella are con-

nected by a so-called distal striated fiber [19]. More complex flagellar gaits were observed

in species with n = 2k flagella, with matching patterns of basal coupling [10]. On epithelial
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FIG. 1: In-phase and anti-phase synchronization. (a) The generic Adler equation, Eq. (1), predicts

stable in-phase synchronization for a pair of coupled oscillators with phase difference δ = 0 for

synchronization strength λ > 0, corresponding to “breast-stroke swimming” Chlamydomonas. (b)

For λ < 0, anti-phase synchronization is stable, corresponding to a “free-style gait” [10].

surfaces, n� 102 flagella phase-lock their beat, thus forming metachronal waves [20], which

facilitates efficient fluid transport [21–23]. Flagellar synchronization has been studied inten-

sively in the model organism Chlamydomonas, reporting both IP and AP beating. While

wild-type Chlamydomonas cells usually display IP synchrony, stochastic switching between

regimes of stable IP and AP beating has been observed in a flagellar mutant (ptx1) [24].

Another mutant (vfl) with impaired basal coupling displayed lack of coordinated flagellar

beating altogether [10, 15].

A long-standing hypothesis states that flagellar synchronization arises from a hydrody-

namic coupling between flagella [25], as demonstrated for pairs of flagellated cells held at

a distance [26]. A popular minimal model of this phenomenon abstracts from the specific

shape of flagellar bending waves and represents each flagellum by a sphere moving along a

circular orbit [27–34]. The motion of the left and the right sphere with respective phase

angles ϕL and ϕR is described by a balance of forces between active driving forces Qj and

hydrodynamic friction forces

Qj = ΓjLϕ̇L + ΓjRϕ̇R, j ∈ {L,R}. (2)

Specifically, ΓLLϕ̇L is the hydrodynamic friction force acting on the left sphere due to its own

motion, and ΓLRϕ̇R represents direct hydrodynamic interactions exerted by the right sphere

on the left one. This minimal model highlights the role of symmetry-breaking for synchro-

nization [6, 7, 35]. The minimal model possesses parity-time symmetry (PT), characterized

by ΓLR(ϕL, ϕR) = ΓRL(−ϕR,−ϕL), i.e. a spatial parity transformation (ϕL ↔ −ϕR) gives

rise to an equivalent dynamics, but with time-arrow reversed [6, 7, 35]. A time-reversal
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changes the stability of dynamic steady states, while a spatial transformation does not.

Thus, there can be neither stable nor unstable synchronized states, unless PT-symmetry is

broken.

A number of different PT-symmetry breaking effects have been proposed in the past,

including interaction with boundary walls [27], phase-dependent driving forces Qj(ϕ) [29],

and amplitude compliance with a variable radius A(t) of each circular orbit, constrained by

an elastic spring [28, 36]. In addition to direct hydrodynamic interactions between the two

flagella, synchronization independent of hydrodynamic interactions can occur by a coupling

between flagellar beating and the resultant motion of the cell [30]. Importantly, two recent

experimental studies suggest that in Chlamydomonas, an elastic basal coupling connecting

the proximal ends of both flagella could play a key role for flagellar synchronization [10, 15].

While each of these proposed mechanisms could in principle account for synchronization, it is

not known, which symmetry breaking mechanism dominates in the real biological system. A

priori, we do not even know if a specific mechanism will stabilize the IP or AP synchronized

state.

FIG. 2: Theory of flagellar dynamics. (a,b) In our theory, we characterize each flagellum as a limit-

cycle oscillator. Each value of oscillator phase ϕ and amplitude A uniquely determines a flagellar

shape [14]. (c) We consider a generic elastic coupling between flagella bases with stiffness kb, see

Eq. (6). (d) Computed hydrodynamic flow field for a change in ϕR (ϕ̇R = 2π/T with T = 20 ms).
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Here, we theoretically study flagellar synchronization in the model organism Chlamy-

domonas to predict conditions for IP and AP synchrony, and present a first experiment to

test predictions from our theory. We build on a previously developed description of the

beating flagellum as a limit-cycle oscillator, which was calibrated and tested against exper-

imental data [14]. There, we retain the picture of a point moving along a circular orbit.

Yet, in our description the point moves in a space of shapes [12, 37]. Each position of the

point represents a full shape of the flagellar centerline, see Fig. 2(a,b). Any motion of this

point with polar coordinates (ϕ,A) corresponds to an active shape change of the flagellum,

for which we numerically compute hydrodynamic friction forces acting on the cell and its

two flagella. All parameters in our theoretical description of flagellar beating are estimated

from published experimental data [14]. Additionally, two free parameters are introduced in

our generic description of basal coupling. We assume identical parameters of both flagella,

aiming at a theory that is both simple and quantitative.

We use this theory to elucidate two PT-symmetry breaking effects: flagellar waveform

compliance, and basal coupling between both flagella. We find that both PT-symmetry

breaking mechanisms have a strong impact on synchronization, but only their combination

yields IP synchrony with a synchronization strength sufficient to overcome noise [12, 17].

To the best of our knowledge, this is the first study that systematically addresses the role

of flagellar waveform compliance for flagellar synchronization that uses full hydrodynamics

and realistic beat patterns, as opposed to minimal models of orbiting spheres [28], as well

as a minimal description of basal coupling.

II. THEORY OF FLAGELLAR SWIMMING AND SYNCHRONIZATION

Recently, we introduced an effective theory of flagellar swimming [14]. This theory was

formulated for the case of synchronized beating only, and is now extended to the case of

asynchronous beating. For technical details, we refer to [14]. The main idea of the theory is

to represent the flagellar beat as a limit-cycle oscillator, see Fig. 2(a). This limit-cycle de-

scription is independent of the microscopic details of motor control within the flagellum and

only comprises parameters that can be directly inferred from experiments. The limit-cycle

oscillator is parametrized by a 2π-periodic phase variable ϕ and a normalized amplitude A,

allowing us to account for waveform compliance with a single degree of freedom. The limit-
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cycle oscillator description is calibrated by experimental data for an experimental reference

condition. Here, the reference condition corresponds to a clamped cell that is immersed in

a quiescent fluid of dynamic viscosity µ0 = 1.0 mPa s and exhibits IP-synchronized flagellar

beating. Measured beat patterns can be projected on the complex plane using a nonlinear

variant of principal component analysis, and parameterized by an instantaneous phase ϕ(t)

and amplitude A(t) [14]. This parameterization can always be chosen such that for the

reference condition, the phase ϕ obeys ϕ̇ = ω0, where ω0 denotes the angular frequency of

the flagellar beat, while the amplitude A equals a constant steady-state value A0, if fluc-

tuations are averaged out. We have thus a unique mapping between flagellar shapes and

values (ϕ,A), see also Fig. 2(b). The theory outlined below allows to predict changes in

phase speed ϕ̇ and amplitude A for any deviation from the reference condition, e.g. for

asynchronous beating, external flow, or altered viscosity of the surrounding fluid.

We use this limit-cycle parametrization of the flagellar beat for both the left and right

flagellum of a Chlamydomonas cell, and describe the motion of this cell in a plane by a state

vector q with seven degrees of freedom, see Fig. 2(c)

q = (ϕL, AL, ϕR, AR, α, x, y)T . (3)

Here, ϕj, Aj with j ∈ {L,R} denote phase and amplitude of the left and right flagellum,

respectively, while α, x, y, denote orientation angle and center position of the cell body.

Each change of a degree of freedom will set the surrounding fluid in motion and induce

hydrodynamic dissipation, in addition to friction inside the flagella. The hydrodynamic

dissipation rate R(h) can be computed as the surface integral R(h) =
∫
S
d2x f · v, where S

denotes the surface of the cell including its flagella, v(x) is the surface velocity corresponding

to a change q̇ in the degrees of freedom, and f(x) the resultant hydrodynamic friction force

density acting on the surface S. We can express the hydrodynamic dissipation rate R(h) in

terms of generalized velocities q̇j and conjugate generalized forces P
(h)
j

R(h) = P (h)
ϕL
ϕ̇L + P

(h)
AL
ȦL + P (h)

ϕR
ϕ̇R + P

(h)
AR
ȦR + P (h)

α α̇ + P (h)
x ẋ+ P (h)

y ẏ. (4)

The definition of the generalized hydrodynamic friction forces P
(h)
j follows the framework of

Lagrangian mechanics for dissipative systems, using R(h) as Rayleigh dissipation function

[32, 38]. In the limit of zero Reynolds number, applicable to cellular self-propulsion where

inertia is negligible [39], hydrodynamic friction forces are linear in the generalized velocities
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q̇j, P
(h)
i = Γ

(h)
ij q̇j (Einstein summation convention) due to the linearity of the Stokes equation.

Explicitly, we have Γ
(h)
ij =

∫
S
d2x f (i) · v(j), where f (i) = ∂f/∂q̇i and v(j) = ∂v/∂q̇j for any

friction force density f(x). Note that the off-diagonal friction coefficients Γ
(h)
ij for i 6= j are

generally non-zero, which implies a coupling between the different degrees of freedom.

In addition to hydrodynamic friction, also intraflagellar friction must be considered. The

total friction forces Pj conjugate to a degree of freedom qj can be written as a sum of

hydrodynamic friction forces P
(h)
j and intraflagellar friction forces P

(i)
j that account for

dissipative processes inside the flagellum. The total rate of energy dissipation R is then

expressed in terms of generalized velocities q̇j and the generalized friction forces Pj = P
(h)
j +

P
(i)
j , now using R as Rayleigh dissipation function. Analogously to Eq. (4), we have R =

PϕL
ϕ̇L + PAL

ȦL + PϕR
ϕ̇R + PAR

ȦR + Pαα̇ + Pxẋ + Pyẏ. Energy balance requires that an

internal energy reservoir of the cell is depleted at a rate −R.

We now discuss the intraflagellar friction forces. In a first-order approximation, the

intraflagellar friction forces are linear in the generalized velocities, P
(i)
i = Γ

(i)
ij q̇j. We expect

that the intraflagellar friction forces are of a similar magnitude as the hydrodynamic friction

forces. For simplicity, we assume that the intraflagellar friction coefficients are proportional

to the respective hydrodynamic friction coefficients, i.e. Γ
(i)
ij = (1 − η)/η Γ

(h)
ij for either

i, j ∈ {ϕL, AL} or i, j ∈ {ϕR, AR} and Γ
(i)
ij = 0 else. One can show that in this simple, one-

parameter approximation, the parameter η is equal to the energy efficiency of the flagellar

beat for the reference condition, i.e. equals the ratio between the rate R(h) of mechanical

work exerted on the surrounding fluid, and the total rate of energy dissipation R required

to sustain the flagellar beat [14].

The active motion of each flagellum is generated by the collective dynamics of molecular

motors inside the flagellar axoneme. We coarse-grain the activity of the molecular motors by

active flagellar driving forces Qϕj
(ϕj) and amplitude restoring forces QAj

(ϕj), j ∈ {L,R}.

The active forces Qj balance the hydrodynamic and intraflagellar friction forces Pj. Thus,

we have 7 force balance equations that must hold at each instance in time

Qj = Pj, j ∈ {ϕL, AL, ϕR, AR, α, x, y}. (5)

Here, the generalized forces Qx, Qy, and Qα represent constraining forces that ensure con-

straints of motion imposed on the cell. For a freely-swimming cell, force and torque balance

imply Qx = Qy = 0, Qα = 0. For a fully clamped cell, one would impose ẋ = 0, ẏ = 0, α̇ = 0,
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and determine the constraining forces Qx, Qy, Qα such that the constraints are satisfied.

With this calibration, Eq. (5) fully specify equations of motions of flagellar swimming and

synchronization. In section VI, we will also consider the case of a clamped cell exposed to

external flow parallel to the long axis of the cell, for which we impose ẋ = 0, ẏ = u, α̇ = 0.

Hydrodynamic computations allow us to determine all hydrodynamic friction coefficients

Γ
(h)
ij for a given flagellar beat pattern. Here, we employ a triangulated representation of the

cell surface and its flagella and use the fast multipole boundary element method fastBEM

[40] to compute hydrodynamic friction forces as described in [41]. We use a flagellar beat

pattern recorded for the reference condition of a clamped cell with IP-synchronized beat

and dynamic viscosity of µ0 = 1.0 mPa s [14]. There, the efficiency parameter has been

estimated as η = 0.21 ± 0.06 [14]. Additionally, the flagellar driving forces were uniquely

calibrated from the requirement ϕ̇L = ϕ̇R = ω0 and AL = AR = A0 for the reference case.

The amplitude restoring forces QAj
determine how fast amplitude perturbations A − A0

decay. Here, we assume exponential relaxation with a single relaxation time-scale τA for

the reference condition, which uniquely determines QAj
[14]. For ω0τA � 1, perturbations

cannot change the amplitude, while for ω0τA � 1 the limit cycle may become unstable. An

analysis of amplitude fluctuations of the flagellar beat provided an estimate τA ≈ 6 ms [12].

We now use this theoretical description to predict dynamics after a perturbation of perfect

synchrony for different PT-symmetry breaking scenarios.

III. FLAGELLAR WAVEFORM COMPLIANCE

Elastic degrees of freedom such as a flagellar waveform compliance can break PT sym-

metry in minimal models of hydrodynamically coupled oscillators, and thus allow for syn-

chronization [28]. We tested this general proposition for the specific case of flagellar syn-

chronization in Chlamydomonas, using our theoretical description with amplitude degrees

of freedom AL and AR. We quantify the stability of the IP-synchronized state in terms of

an effective synchronization strength λ, generalizing the parameter λ in Eq. (1), such that

−λ/T equals the cycle-average Ljapunov exponent for the phase difference δ = ϕL − ϕR.

The sign of λ indicates whether IP synchrony is stable (λ > 0) or not (λ < 0).

We computed λ for both the case of free-swimming and of clamped cells, see Fig. 3 for

kb = 0 (no basal coupling). Details on the numerical computation of λ can be found in
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Appendix C. Whether a cell can swim freely, or is restrained from moving, can make

a substantial difference for flagellar synchronization [18]. The different synchronization

dynamics results from a coupling between flagellar beating and a rotation of the whole cell

that is possible only for a free-swimming cell. In the absence of flagellar waveform compliance

(τA = 0) and basal coupling (kb = 0), we find λ ≈ 0.06 for a free-swimming cell, and λ ≈ 0 for

a clamped cell, similar to a previous study [18] [51]. Amplitude compliance (τA > 0) changes

the synchronization strength, yet, surprisingly, destabilizes IP synchrony for free-swimming

cells. Next, we study how an elastic basal coupling affects flagellar synchronization.

IV. BASAL BODY COUPLING

In Chlamydomonas, the proximal ends of both flagella are connected by a distal stri-

ated fiber, comprising an elastic basal coupling [19], see also inset in Fig. 2(c). Previous

experimental studies indicate the importance of this basal link for flagellar synchronization

[10, 15]. In the following, we account for a finite elastic stiffness of this basal link, for which

we assume a Hookian elastic energy

Ub =
kb
2b21

[b(ϕL, AL, ϕR, AR)− b0]2. (6)

Here, b represent the elongation of the basal link, which is a function of the flagellar phases

and amplitudes. Tracking the basal link, or even the basal portion of the flagella, which

extend into the interior of the cell body, is challenging and has not been achieved in ex-

periments to the best knowledge of the authors. We thus lack detailed information on the

elongation of the basal link, except that it must be a periodic function of the flagellar phases.

Therefore, we make a generic ansatz that comprises a free parameter, a phase shift ϕ0, to

test different couplings

b(ϕL, AL, ϕR, AR) = b0 + b1AL sin(ϕL − ϕ0) + b1AR sin(ϕR − ϕ0). (7)

Fig. 9 in Appendix A compares Eq. (7) for the elongation of the distal striated fiber to a

phase-dependent distance between two reference points on tracked flagellar shapes outside

the cell body. For these reference points, b0 ≈ 1µm and b1 ≈ 100 nm; values for the distal

striated fiber will be smaller.

9
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FIG. 3: Waveform compliance and basal coupling jointly determine synchronization dynamics in

Chlamydomonas. (a) Computed synchronization strength λ (color code) as function of amplitude

relaxation time τA and basal coupling stiffness kb for a clamped cell. (b) Same for a free-swimming

cell. (c) λ becomes maximal at ϕ0 ≈ π/10 for both clamped (black) and free-swimming cells

(white). (d) Spontaneous symmetry breaking of synchronization: Cycle-averaged phase difference

δ∗ at steady state as function of basal stiffness kb computed for a free-swimming cell (black).

For selected steady states, we computed synchronization strengths λ∗ characterizing Ljapunov

exponents −λ∗/T of convergence towards δ∗. Blue lines indicate maximum and minimum values

of small-amplitude oscillations around δ∗ at steady state, see also panel (e), which corresponds to

the case kb = 0. Parameters: T = 20 ms, τA = 6 ms, kb = 4.25 pNµm, η = 0.2, µ0 = 1.0 mPa s,

ϕ0 = π/10, unless stated otherwise.
10
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The elastic energy of the basal link results in an additional term in the active flagellar

driving force

QϕL
→ QϕL

− ∂Ub
∂ϕL |ϕL,AL,ϕR,AR

+
∂Ub
∂ϕL |ϕL,AL,ϕL,AL

, (8)

and similarly for AL, ϕR, AR. Here, the last term merely reflects the fact that the elastic

basal coupling must be incorporated in the calibration of the flagellar driving forces to yield

ϕ̇L = ϕ̇R = ω0 in the reference case of IP-synchronized beating. Note that kb represents an

effective basal coupling strength in Eq. (8). The synchronization dynamics is independent

of both b0 and b1, yet depends on the unknown phase shift ϕ0, see Fig. 3(c).

Fig. 3(a,b) shows numerical results for the synchronization strength λ as a function of

basal stiffness kb for a particular value of ϕ0 (such that λ is maximal) for both clamped and

free-swimming cells. Remarkably, basal coupling destabilizes IP synchrony in the absence

of amplitude compliance, but stabilizes it for realistic values of the amplitude relaxation

time τA and suitable choice of ϕ0. Thus, the combined effect of two PT-symmetry breaking

mechanisms is opposite to the sum of their individual effects. A basal stiffness of kb =

4.25 pNµm reproduces a previously measured value of λ ≈ 0.3 for clamped cells [17]. With

the length 300 nm and cross-sectional area 2 · 104 nm2 of the distal striated fiber [19], and

assuming b1 = 50 nm, our estimate for kb corresponds to a Young’s modulus of approximately

25 kPa, well in the range of biological materials.

V. OUT-OF-PHASE SYNCHRONIZATION

Flagellar synchronization by basal coupling exhibits dynamics that is more complex then

the Adler equation. Fig. 3(d) displays the cycle-averaged phase difference δ∗ between both

flagella at steady state as a function of basal stiffness kb. While we find stable AP and

IP synchronization for sufficiently weak and strong basal coupling, respectively, consistent

with Eq. (1), we find a regime of out-of-phase (OP) synchronization with 0 < δ∗ < π for

intermediate coupling strengths, emerging from the IP-synchronized state by a pitchfork

bifurcation. This OP synchronization represents an instance of spontaneous symmetry-

breaking with two stable solutions ±δ∗.

A similar transition from a regime of stable AP synchrony to a regime of stable IP syn-

chrony passing through an intermediate regime of bistable OP synchronization was recently

reported in a theoretical study of flagellar synchronization in a pair of short flagella attached
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to a surface, when their mutual distance was varied [42]. This suggests that bistable syn-

chronization could be a common feature of flagellar synchronization in intermediate regimes

between AP and IP synchronization.

VI. SUGGESTIONS FOR EXPERIMENTS

Previous experiments exposed clamped Chlamydomonas cells to external flow, reporting a

consistent change in phase speed and amplitude of the flagellar beat [14]. This suggests also

an altered synchronization dynamics in the presence of external flow. Our theory predicts

that for external flow parallel to the long axis of a Chlamydomonas cell, the synchronization

strength λ is reduced, see Fig. 4(a). This points towards a non-invasive way to control

flagellar synchronization.

To probe these predictions, we performed experiments as in [14], exposing Chlamy-

domonas cells held in micropipettes to external flow. Details on experimental methods

and data analysis are presented in Appendix A. In short, the Adler equation in the presence

of noise, Eq. (A1), predicts a statistical distribution p(δ) of the phase-difference δ between

the two flagella that depends on ratio between the synchronization strength λ and an ef-

fective noise strength D. By analyzing the distribution of phase-differences in experiments,

we determined the dimensionless ratio λ/(DT ) as a function of flow rate, see Fig. 4(b). We

observe a significant reduction in normalized synchronization strength in 3 out of 6 cells an-

alyzed. Previous independent measurements reported DT ≈ 0.1 − 0.2 [12, 43], allowing us

to compare theoretical predictions and measurements. At the same time, the frequency dif-

ference between both flagella stayed approximately constant as a function of flow rate u, see

Fig. 4(c). While these experiments are not yet conclusive to prove the role of basal coupling

for flagellar synchronization, they provide an intriguing first link between our quantitative

theory and experiments.

As a second way to perturb flagellar dynamics, classical experiments demonstrated that an

increase in the viscosity of the surrounding fluid slows down the flagellar beat and decreases

its amplitude [44]. This suggests also a change of synchronization dynamics. Indeed, our

theory predicts a reduction of the synchronization strength upon an increase in fluid viscosity.

Fig. 5 shows a computed synchronization strength λ as a function of the dynamic viscosity

µ of the surrounding fluid. These theory predictions could be tested in future experiments.
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FIG. 4: Control of flagellar synchronization by external flow. (a) Theory: computed synchroniza-

tion strength λ as function of external fluid flow with velocity u parallel to the long axis of the

cell. (b,c) Experiment: measured synchronization strength λ/(DT ), normalized by effective noise

strength D, and normalized difference ∆ω/D of intrinsic beat frequencies of both flagella. (blue:

mean±s.e.m., n = 6 cells; gray: mean±s.e. for individual cells). Parameters for theory, see Fig. 3.

Conceptually, imposing an external flow is equivalent to changing the phase-dependence

of the flagellar driving forces. Specifically, an external flow parallel to the long axis of the

cell body will accelerate the effective stroke of the beat cycle (when flagella move in the

direction of flow), and decelerate the recovery stroke (during which flagella move opposite

to the direction of flow). An analogous effect can be achieved by increasing the flagellar

driving force Qϕ during the effective stroke and reducing Qϕ during the recovery stroke.

Similarly, increasing the viscosity of the surrounding fluid reduces the magnitude of elastic

coupling relative to viscous coupling. Thus, increasing the viscosity is formally equivalent

to a reduction of the elastic constants.

VII. MINIMAL MODEL OF SYNCHRONIZATION BY BASAL COUPLING

To gain insight into basic mechanisms of IP and AP synchronization, we revisit a popular

minimal model of hydrodynamic synchronization [27–29]. Our aim is to show analytically

that the superposition of two synchronization mechanisms that stabilize AP-synchrony if

operative in isolation can result in stable IP synchrony as a result of nonlinear effects.

In the minimal model, two spheres of equal radius r move inside a viscous fluid of viscosity

µ along circular orbits rj of respective radii Aj, with centers separated by a distance d,

rL = ALnL(ϕL)− dex/2, rR = ARnR(ϕR) + dex/2, (9)
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FIG. 5: Flagellar synchronization in fluids of increased viscosity. Computed synchronization

strength λ as function of the dynamic viscosity µ of the surrounding fluid for clamped (black)

and free-swimming cell (white). All parameters except µ as in Fig. 3. The value µ0 = 1.0 mPa s

used in Fig. 3 is indicated (dashed line).

see Fig. 6. Here, nj(ϕj) = cosϕj ex + σj sinϕj ey denote radial vectors for j ∈ {L,R} with

σL = −1, σR = 1. Each sphere is driven by a constant tangential driving force Qj = q0

with q0 = A2
0γω0, friction coefficient γ = 6πµr and reference amplitude A0. Hydrodynamic

interactions couple the motion of both spheres. In the limit r�d with A0/r of order unity,

ΓLRϕ̇R = −ALγ2 tL ·G(rL−rR) · ṙR, and vice versa. Here, tj = ∂nj/∂ϕj is the tangent vector

and G(r) = (8πµ)−1[|r|−1 + r ⊗ r/|r|3] denotes the Oseen tensor. For constant amplitude,

Ai = A0, the system possesses PT-symmetry and no net synchronization occurs [6, 7, 27].

Introducing amplitude compliance, γȦL = −kA(AL − A0) − γ2nL · G(rR − rL) · ṙR with

amplitude stiffness kA for the left sphere and similarly for the right sphere, breaks PT-

symmetry and results in

λa = −3π τAω0r/(4d) +O(r/d)2, (10)

where τA = γ/kA denotes an amplitude relaxation time, see Appendix B for details. Note

that we consider counter-rotating spheres, mimicking a clamped Chlamydomonas cell [30,

31], while the originally studied case of co-rotating spheres yields λa = 9π τAω0r/(2d) +

O(r/d)2 [28]. Analogous to Eq. (8), we can introduce ‘basal coupling’ in this two-sphere

model as a second PT-symmetry breaking mechanism. Specifically, we assume an elastic

energy Ub = kb|rR − rL|2/(2A2
0). This yields a synchronization strength

λb = −π kb/q0 +O(r/d) (11)

in the absence of amplitude compliance with τA = 0. Thus, both mechanism imply λ < 0
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FIG. 6: Minimal model of hydrodynamic synchronization, accounting for both IP and AP syn-

chrony. We consider a minimal, analytically tractable model of hydrodynamic synchronization

by basal coupling, which abstracts from the detailed model presented in Fig. 2. In the minimal

model, two spheres of radius r move along circular orbits of variable radius A inside a viscous fluid

of viscosity µ. Each sphere is subject to a tangential driving force Qϕ. An elastic link, mimicking

basal coupling, couples the motion of both spheres in addition to hydrodynamic interactions. For

the case of counter-rotating spheres, we find that the IP-synchronized state is unstable both in the

absence of basal coupling and in the absence of amplitude compliance, but that IP synchrony is

stable for the combination of both synchronization mechanisms.

for r, A0 � d if operative in isolation. Their nonlinear superposition, however, results in a

positive cross-coupling term

λ = λa + λb +
π

2
(kb/q0)

2 τaω0 +O(r/d). (12)

Thus, λ > 0 for sufficiently large values of the basal spring stiffness kb and amplitude

relaxation time τA. We conclude that the IP-synchronized state is stable in the minimal two-

sphere model with counter-rotating spheres for the combination of amplitude compliance

and basal coupling, despite the fact that IP synchrony will be unstable for each of these

two synchronization mechanisms, if they were operative in isolation. The minimal model

thus highlights a key qualitative feature of our detailed theoretical description, and provides

analytical insight into the nonlinear superposition of two synchronization mechanisms. Note,

however, that the minimal model considers a strongly idealized geometry and is not suitable

to make quantitative predictions.
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VIII. DISCUSSION

Here, we presented a theory of flagellar swimming and synchronization for the model

organism Chlamydomonas, to dissect the role of two proposed synchronization mechanisms,

flagellar waveform compliance [28] and elastic basal coupling [10, 15]. We find that each

mechanism separately stabilized anti-phase synchronization in free-swimming cells, but their

combination results in in-phase synchronization, as observed in experiments [16, 17].

Our theory makes specific predictions that can be tested in future experiments. This in-

cludes altered synchronization dynamics in the presence of external flow or fluids of increased

viscosity. Further, experimental disruption of the distal striated fiber that link the basal

bodies of the two flagella, e.g. by laser ablation, could validate the role of basal coupling

for synchronization proposed here. While we employed the most simple description of basal

coupling, comprising two unknown parameters, future work will have to clarify the elastic

properties of the distal striated fiber, and its effect on flagellar synchronization. Intriguingly,

previous theories of flagellar beating suggested a crucial role of the boundary conditions at

the flagellar base for flagellar dynamics [45, 46].

Our theory is based on a dimensionality-reduced description of the flagellar beat as a

limit-cycle oscillator. The parameters of this description were previously estimated from ex-

perimental data [14]. This description allows to quantitatively predict responses to external

perturbation such as changes in hydrodynamic friction in a generic manner, which is largely

independent of modeling assumptions, provided perturbations are sufficiently small. In the

future, it will be interesting to incorporate more refined models of flagellar beating, which,

however, comprise larger number of parameters and require assumptions regarding the de-

tailed mechanism of motor control [45–49]. Ultimately, we aim to understand conditions for

the selection of different synchronized states, such as in flagellar mutants [24, 50].

In conclusion, we have shown that synchronization strengths measured in experiments

[17] cannot be explained without basal coupling in the framework of our theory, yet are

reproduced for plausible parameter choices assuming such coupling. This suggests an avenue

for future experimental and theoretical research.
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“Microswimmers” Priority Program 1726 (Grant No. FR 3429/1-1), and the Excellence

Initiative by the German Federal and State Governments (cluster of excellence cfaed).
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APPENDIX A: EXPERIMENTAL PROTOCOL AND DATA ANALYSIS

We present details for the experiments reported in Fig. 4(b). Chlamydomonas cells were

held in a micropipette inside a microfluidic device and exposed to controlled microfluidic

flow, as described previously [14]. Flow rates were monotonically increased starting from u =

0 mm/s. We used only those cells for subsequent analysis, which displayed synchronization

in the absence of flow (u = 0) and where neither stalling of flagellar oscillations nor a

transition to alternate modes of beating occurred for flow speeds up to u = 3 mm/s. The

proximal segments of both flagella were tracked up to an arc-length position of 2µm, and

automatically corrected for tracking errors. The polar angle of a reference point (located

at fixed radial distance from the cell body center) defines a stable sinusoidal signal for each

flagellum, see Fig. 7. The Hilbert transform of the mean-corrected sinusoidal signals defines

a flagellar phase ϕL and ϕR for the left and right flagellum, respectively. Here, we use the

convention that the left flagellum always corresponds to the cis-flagellum, as determined

from the position of the eye spot of the cell. From the resultant time series, we computed

histograms for the distribution of the phase difference δ = ϕL − ϕR, see Fig. 8(a).

We analyzed this histogram data, using the Adler equation for two weakly coupled os-

cillators in the presence of both frequency mismatch ∆ω = ωL − ωR between the intrinsic

frequencies of the two oscillators and noise, as represented by a noise term ξ(t)

δ̇ = ∆ω − λ

T
sin δ + ξ. (A1)

Here, ξ(t) denotes a Gaussian white noise term satisfying 〈ξ(t)ξ(t′)〉 = 2D δ(t − t′) with

effective noise strength D that sums the noise contribution of both flagella, D = DL +DR.

The steady-state distribution of the phase difference δ according to Eq. (A1) is known as [9]

p(δ) ∼ exp

(
λ

DT
cos(δ) +

∆ω

D
δ

)
. (A2)

We fitted Eq. (A2) to experimental histograms, see Fig. 8(a,b). This provided estimates for

the normalized synchronization strength λ/(DT ) and the normalized frequency mismatch

∆ω/D, see Fig. 8(c,d).
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FIG. 7: Flagellar tracking and determination of flagellar phase (a,b) For Chlamydomonas cells held

in a micropipette, reference points were automatically tracked on the proximal segment of both left

and right flagellum, and their polar angles ϑL(t) and ϑR(t) with respect to the cell body center at a

reference position were computed. Tracking results are shown for effective stroke (a) and recovery

stroke (b). (c) The time-dependent polar angles ϑL(t) and ϑR(t) define a stable sinusoidal signal

for each flagellum, from which we extracted a flagellar phase for subsequent analysis, see text for

details.

APPENDIX B: DERIVATION OF EQUATION (12)

We illustrate the derivation of Eq. (12) for the special case kb = 0 first, which yields λa;

the general case is treated afterwards.

In the limit of weak coupling between the two spheres, we can separate their dynamics

into a fast dynamics of the mean phase ϕ = (ϕL + ϕR)/2 and a slow dynamics of the

phase difference δ = ϕL − ϕR. We further introduce the normalized amplitude difference

a = (AL − AR)/A0.

We perform a systematic expansion in r/d to derive a coupled system of equations for δ
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FIG. 8: Experiments on flagellar synchronization in external flow (a) Typical histograms of mea-

sured phase shifts δ = ϕL − ϕR between the left and the right flagellum for Chlamydomonas cells

exposed to external fluid flow parallel to the long axis of the cell. Fits of the steady-state proba-

bility distribution p(δ) predicted by the Adler equation are shown as solid lines, using Eq. (A2).

(b) Shown are resultant fit functions for different flow strengths u (color code) for a single cell. (c)

Fits of p(δ) as shown in (b) provide estimates for λ/(DT ) and ∆ω/D, normalized by an effective

noise strength D (black). To indicate trends, a linear regression is shown (red).

and a, assuming that δ is small

δ̇ = −ω0a+O
(r
d
a,
r2

d2
δ
)
, (B1)

γȧ = −kaa−
3

8

r

d
γω0 δ +O

(r
d
a,
r2

d2
δ
)
. (B2)

Eq. (B1) characterizes the non-isochrony of the oscillators, while Eq. (B2) reflects how a

non-zero phase shift gives rise to asymmetric amplitude dynamics. Since δ changes slowly

with δ̇ = O(r/d), we obtain from Eq. (B2)

a = −3

8

r

d
τAω0 δ +O(r/d)2, (B3)
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FIG. 9: Phase-dependent change in basal distance. From the tracked flagellar beat patterns, we

can determine the distance between two reference points on the two flagella at arc-length position

s = 1µm close to their fixed basal end point. This phase-dependent distance serves as a proxy for

the elongation of the distal striated fiber during in-phase synchronized beating. For comparison,

the distance function b(ϕ,AL = 1, ϕ,AR = 1) used in our minimal description of basal coupling

is shown for comparison (with ϕ0 = π/10; b0 and b1 do not affect the computation of λ and were

obtained by a fit).

where τA = γ/ka. The synchronization strength λ can be computed as

λ = −T
∮

δ̇

δ(0)
dϕ, (B4)

provided |δ| � 1. Inserting Eq. (B3) into Eq. (B1) and integrating over one oscillation cycle

yields for the case kb = 0

λa = −3π

4
τAω0

r

d
+O(r/d)2. (B5)

We consider a basal coupling with elastic energy

Ub =
kb
2b21

(b− b0)2, (B6)

and distance function

b = b0 + b1 [AL sin(ϕL + ϕ0) + AR sin(ϕR + ϕ0)] /A0, (B7)

The choice ϕ0 = π/2 corresponds to Ub = kb|rR − rL|2/(2A0)
2 to leading order in r/d. For
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the case with basal coupling, the dynamic equations for δ and b read

δ̇ = −[ω0 +
kb

2γA2
0

sin(2ϕ− 2ϕ0)] a

+
kb

2γA2
0

[1 + cos(2ϕ− 2ϕ0)] δ +O(r/d), (B8)

γȧ = −kaa+
kb
A2

0

sin(2ϕ− 2ϕ0) δ +O(r/d). (B9)

Our assumption of weak coupling between the two spheres corresponds to kb � A2
0γω0. We

obtain from Eq. (B9)

a = Im
1

1 + 2i τAω0

exp(2iϕ− 2iϕ0)
kb
kaA2

0

δ. (B10)

For a stiff amplitude spring with τAω0 � 1, we have a ≈ sin(2ϕ − 2ϕ0) (kb/kaA
2
0) δ. With

Eq. (B4) and Eq. (B8), we conclude

λ = −πkb
q0

+
π

2

k2b τaω0

q20
+O(r/d), (B11)

where q0 = A2
0γω0. Higher-order terms depend on ϕ0.

APPENDIX C: COMPUTATION OF SYNCHRONIZATION STRENGTH

We quantify the stability of the IP-synchronized state in terms of a synchronization

strength λ

λ = − ln
|δn+1|
|δn|

, (C1)

where δn = δ(tn) denotes the phase difference δ = ϕL − ϕR at discrete times tn for which

ϕL = 2πn+ ϕ with initial phase ϕ. In computations, we use δ0 = 10−2 and n large enough

such that transient dynamics has decayed, while |δ| � 1. Computed values for λ occasionally

exhibited a weak dependence on ϕ. Therefore, an average over ϕ was performed. Applying

this definition Eq. (C1) to the Adler equation, Eq. (1), recovers the parameter λ. Generally,

the sign of λ indicates whether IP synchrony is stable (λ > 0) or not (λ < 0).

For the synchronization strengths λ∗ reported in Fig. 2(d), a computed time series δ(t)

was first smoothed using sliding windows of span T and then the function δ∗+∆ exp(−λ∗t/T )

was fitted (after discarding initial relaxation dynamics), to determine both a cycle-averaged

phase difference δ∗ and a Ljapunov exponent −λ∗/T .
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FIG. 10: Synchronization strength as function of flagellar energy efficiency parameter. Computed

synchronization strength λ increases as function of flagellar energy efficiency parameter η for both

clamped (black) and free-swimming cells (white). The value η = 0.2 used in the main text is

highlighted. All other parameters as in Fig. 2 in the main text.

APPENDIX D: DEPENDENCE OF FLAGELLAR SYNCHRONIZATION ON

FLAGELLAR ENERGY EFFICIENCY PARAMETER

The synchronization strength λ computed with our theory depends on the flagellar energy

efficiency parameter η, see Fig. 10. There, the value η = 0.2 used in the main text, which was

previously determined by a fit of the response of the flagellar beat to uniform external flow

[14], is indicated. We find an increase of the synchronization strength λ as a function of η.

Similarly, λ converges to zero, as η goes to zero, i.e. if intraflagellar friction becomes much

larger than hydrodynamic friction forces. A similar observation was made in a previous

study, where phase-locking of the flagellar beat to external oscillatory flows was investigated

[14].
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