Associative and quasitrivial operations on finite sets

Jean-Luc Marichal

University of Luxembourg Luxembourg

in collaboraton with Miguel Couceiro and Jimmy Devillet

Part I: Single-peaked orderings

Motivating example (Romero, 1978)

Suppose you are asked to order the following six objects in decreasing preference:

 a_1 : 0 sandwich a_2 : 1 sandwich a_3 : 2 sandwiches a_4 : 3 sandwiches a_5 : 4 sandwiches

a₆: more than 4 sandwiches

We write $a_i \prec a_j$ if a_i is preferred to a_j

 a_1 : 0 sandwich a_2 : 1 sandwich a_3 : 2 sandwiches a_4 : 3 sandwiches a_5 : 4 sandwiches

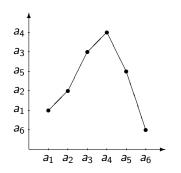
a₆: more than 4 sandwiches

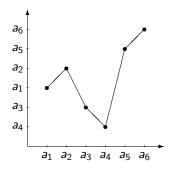
- after a good lunch: $a_1 \prec a_2 \prec a_3 \prec a_4 \prec a_5 \prec a_6$
- if you are starving: $a_6 \prec a_5 \prec a_4 \prec a_3 \prec a_2 \prec a_1$
- a possible intermediate situation: $a_4 \prec a_3 \prec a_5 \prec a_2 \prec a_1 \prec a_6$
- a quite unlikely preference: $a_6 \prec a_5 \prec a_2 \prec a_1 \prec a_3 \prec a_4$

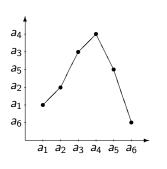
Let us represent graphically the latter two preferences with respect to the reference ordering $a_1 < a_2 < a_3 < a_4 < a_5 < a_6$

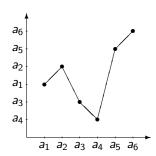
$$a_4 \prec a_3 \prec a_5 \prec a_2 \prec a_1 \prec a_6$$

$$a_6 \prec a_5 \prec a_2 \prec a_1 \prec a_3 \prec a_4$$









Single-peakedness

$$a_i < a_j < a_k \implies a_j \prec a_i \text{ or } a_j \prec a_k$$

Forbidden patterns

Definition (Black, 1948)

Let \leq and \leq be total orderings on $X_n = \{a_1, \dots, a_n\}$. Then \prec is said to be single-neaked wrt \leq if for any a_1, a_2, a_3

Then \leq is said to be *single-peaked w.r.t.* \leq if for any $a_i, a_j, a_k \in X_n$ such that $a_i < a_j < a_k$ we have $a_j \prec a_i$ or $a_j \prec a_k$.

Let us assume that $X_n = \{a_1, \dots, a_n\}$ is endowed with the ordering $a_1 < \dots < a_n$

For
$$n = 4$$

$$a_1 \prec a_2 \prec a_3 \prec a_4$$
 $a_4 \prec a_3 \prec a_2 \prec a_1$ $a_2 \prec a_1 \prec a_3 \prec a_4$ $a_3 \prec a_2 \prec a_1 \prec a_4$ $a_2 \prec a_3 \prec a_1 \prec a_4$ $a_3 \prec a_2 \prec a_4 \prec a_1$ $a_2 \prec a_3 \prec a_4 \prec a_1$ $a_3 \prec a_4 \prec a_2 \prec a_1$

There are 2^{n-1} total orderings \leq on X_n that are single-peaked w.r.t. \leq

Recall that a *weak ordering* (or *total preordering*) on X_n is a binary relation \lesssim on X_n that is total and transitive.

Defining a weak ordering on X_n amounts to defining an ordered partition of X_n

$$C_1 \prec \cdots \prec C_k$$

where C_1,\ldots,C_k are the equivalence classes defined by \sim

For n = 3, we have 13 weak orderings

Definition

Let \leq be a total ordering on X_n and let \precsim be a weak ordering on X_n . We say that \precsim is *weakly single-peaked w.r.t.* \leq if for any $a_i, a_j, a_k \in X_n$ such that $a_i < a_j < a_k$ we have $a_j \prec a_i$ or $a_j \prec a_k$ or $a_i \sim a_j \sim a_k$.

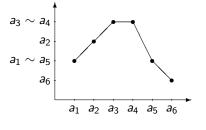
Let us assume that X_n is endowed with the ordering $a_1 < \cdots < a_n$

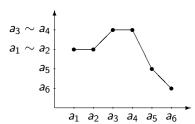
For n = 3

Examples

$$a_3 \sim a_4 \prec a_2 \prec a_1 \sim a_5 \prec a_6$$

$$a_3 \sim a_4 \prec \frac{a_2}{a_2} \sim \frac{a_1}{a_1} \prec \frac{a_5}{a_5} \prec a_6$$





Forbidden patterns

Part II: Associative and quasitrivial operations

Let $F: X_n^2 \to X_n$ be an operation on $X_n = \{1, \dots, n\}$

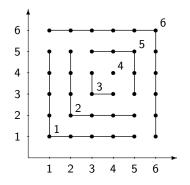
Definition

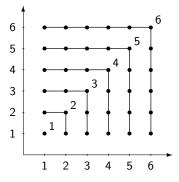
• The points (u, v) and (x, y) of X_n^2 are said to be *F-connected* if

$$F(u, v) = F(x, y)$$

• The point (x, y) of X_n^2 is said to be *F-isolated* if it is not *F*-connected to another point

Examples



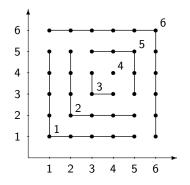


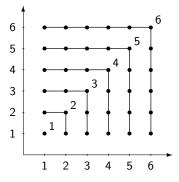
Definition

For any $x \in X_n$, the *F*-degree of x, denoted $\deg_F(x)$, is the number of points $(u, v) \neq (x, x)$ such that F(u, v) = F(x, x)

Remark. The point (x,x) is *F*-isolated iff $\deg_F(x)=0$

Examples





Quasitriviality

Definition

 $F: X_n^2 \to X_n$ is said to be

• quasitrivial (or conservative) if

$$F(x,y) \in \{x,y\} \quad (x,y \in X_n)$$

• idempotent if

$$F(x,x) = x \qquad (x \in X_n)$$

Fact. If *F* is quasitrivial, then it is idempotent

Fact. If F is idempotent and if (x, y) is F-isolated, then x = y

$$F(x,y) = F(F(x,y),F(x,y))$$

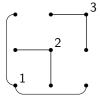
Quasitriviality

Let
$$\Delta_{X_n} = \{(x,x) \mid x \in X_n\}$$

Fact

 $F: X_n^2 \to X_n$ is quasitrivial iff

- it is idempotent
- every point $(x, y) \notin \Delta_{X_n}$ is *F*-connected to either (x, x) or (y, y)



Corollary. If F is quasitrivial, then it has at most one F-isolated point

Neutral and annihilator elements

Definition

• $e \in X_n$ is said to be a *neutral element* of $F: X_n^2 \to X_n$ if

$$F(x,e) = F(e,x) = x, \quad x \in X_n$$

• $a \in X_n$ is said to be an *annihilator element* of $F: X_n^2 \to X_n$ if

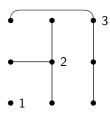
$$F(x,a) = F(a,x) = a, \quad x \in X_n$$

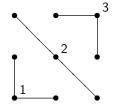
Neutral and annihilator elements

Proposition

Assume that $F: X_n^2 \to X_n$ is quasitrivial.

- $e \in X_n$ is a neutral element of F iff $\deg_F(e) = 0$
- $a \in X_n$ is an annihilator element of F iff $\deg_F(a) = 2n 2$.





Theorem

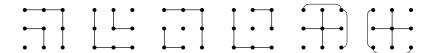
Let $F: X_n^2 \to X_n$. The following assertions are equivalent.

- (i) F is associative, quasitrivial, and commutative
- (ii) $F = \max_{\leq} for some total ordering \leq on X_n$

The total ordering \leq is uniquely determined as follows:

$$x \leq y \iff \deg_F(x) \leq \deg_F(y)$$

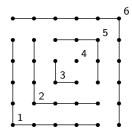
Fact. There are exactly n! such operations



Theorem

Let $F: X_n^2 \to X_n$. The following assertions are equivalent.

- (i) F is associative, quasitrivial, and commutative
- (ii) $F = \max_{\leq} \text{ for some total ordering } \leq \text{ on } X_n$
- (iii) F is quasitrivial and $\{deg_F(x) \mid x \in X_n\} = \{0, 2, 4, \dots, 2n-2\}$



Definition.

 $F: X_n^2 \to X_n$ is said to be \leq -preserving for some total ordering \leq on X_n if for any $x, y, x', y' \in X_n$ such that $x \leq x'$ and $y \leq y'$, we have $F(x, y) \leq F(x', y')$

Theorem

Let $F: X_n^2 \to X_n$. The following assertions are equivalent.

- (i) F is associative, quasitrivial, and commutative
- (ii) $F = \max_{\leq} for some total ordering \leq on X_n$
- (iii) F is quasitrivial and $\{deg_F(x) \mid x \in X_n\} = \{0, 2, 4, \dots, 2n-2\}$
- (iv) F is quasitrivial, commutative, and \leq -preserving for some total ordering \leq on X_n

Definition.

A uninorm on X_n is an operation $F: X_n^2 \to X_n$ that

• has a neutral element $e \in X_n$

and is

- associative
- commutative
- \leq -preserving for some total ordering \leq on X_n

Theorem

Let $F: X_n^2 \to X_n$. The following assertions are equivalent.

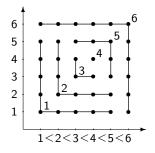
- (i) F is associative, quasitrivial, and commutative
- (ii) $F = \max_{\prec}$ for some total ordering \leq on X_n
- (iii) F is quasitrivial and $\{deg_F(x) \mid x \in X_n\} = \{0, 2, 4, \dots, 2n-2\}$
- (iv) F is quasitrivial, commutative, and \leq -preserving for some total ordering \leq on X_n
- (v) F is an idempotent uninorm on X_n

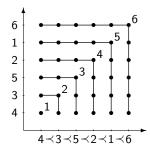
Assume that $X_n=\{1,\ldots,n\}$ is endowed with the usual total ordering \leq_n defined by $1<_n\cdots<_n n$

Theorem

Let $F: X_n^2 \to X_n$. The following assertions are equivalent.

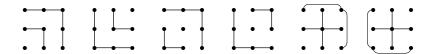
- (i) F is quasitrivial, commutative, and \leq_n -preserving (\Rightarrow associative)
- (ii) $F = \max_{\leq}$ for some total ordering \leq on X_n that is single-peaked w.r.t. \leq_n



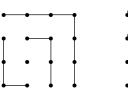


Remark.

- There are n! operations $F: X_n^2 \to X_n$ that are associative, quasitrivial, and commutative.
- There are 2^{n-1} of them that are \leq_n -preserving



Examples of noncommutative operations



Definition.

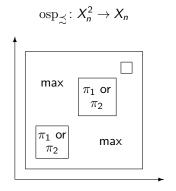
The projection operations $\pi_1\colon X_n^2\to X_n$ and $\pi_2\colon X_n^2\to X_n$ are respectively defined by

$$\pi_1(x, y) = x, \quad x, y \in X_n$$

 $\pi_2(x, y) = y, \quad x, y \in X_n$

Assume that $X_n = \{1, \ldots, n\}$ is endowed with a weak ordering \lesssim

Ordinal sum of projections



Permuting the elements related to a box does not change the graph of F

Theorem (Länger 1980, Kepka 1981)

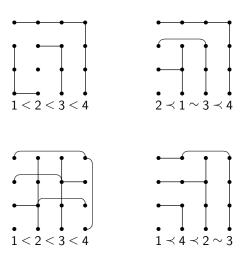
Let $F: X_n^2 \to X_n$. The following assertions are equivalent.

- (i) F is associative and quasitrivial
- (ii) $F = \operatorname{osp}_{\preceq}$ for some weak ordering \preceq on X_n

The weak ordering \lesssim is uniquely determined as follows:

$$x \lesssim y \iff \deg_F(x) \leq \deg_F(y)$$

Examples



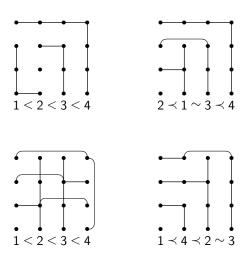
How to check whether a quasitrivial operation $F: X_n^2 \to X_n$ is associative?

1. Order the elements of X_n according to the weak ordering \lesssim defined by

$$x \lesssim y \iff \deg_F(x) \leq \deg_F(y)$$

Check whether the resulting operation is one of the corresponding ordinal sums

Which ones are \leq -preserving?

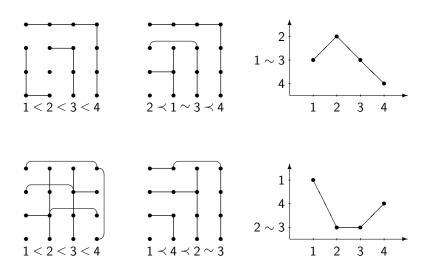


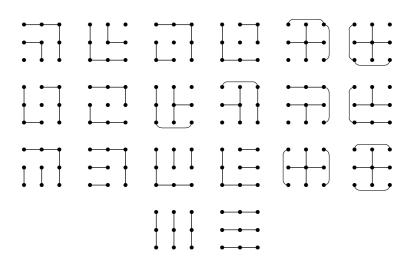
Assume that $X_n=\{1,\ldots,n\}$ is endowed with the usual total ordering \leq_n defined by $1<_n\cdots<_n n$

Theorem

Let $F: X_n^2 \to X_n$. The following assertions are equivalent.

- (i) F is associative, quasitrivial, and \leq_n -preserving
- (ii) $F = \operatorname{osp}_{\preceq}$ for some weak ordering \preceq on X_n that is weakly single-peaked w.r.t. \leq_n





Final remarks

- We have introduced and identified a number of integer sequences in http://oeis.org
 - Number of associative and quasitrivial operations: A292932
 - Number of associative, quasitrivial, and \leq_n -preserving operations: A293005
 - Number of weak orderings on X_n that are weakly single-peaked w.r.t. \leq_n : A048739
 - . . .
- 2. Most of our characterization results still hold on arbitrary sets *X* (not necessarily finite)

Some references

N. L. Ackerman.

A characterization of quasitrivial *n*-semigroups.

To appear in Algebra Universalis.

S. Berg and T. Perlinger.

Single-peaked compatible preference profiles: some combinatorial results. *Social Choice and Welfare* 27(1):89–102, 2006.

D. Black.

On the rationale of group decision-making.

J Polit Economy, 56(1):23-34, 1948

T. Kepka.

Quasitrivial groupoids and balanced identities.

Acta Univ. Carolin. - Math. Phys., 22(2):49-64, 1981.

H. Länger.

The free algebra in the variety generated by quasi-trivial semigroups. Semigroup forum, 20:151–156, 1980.

N. J. A. Sloane (editor).

The On-Line Encyclopedia of Integer Sequences.

http://oeis.org/