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PREAMBLE 

After my work as a scientific assistant at the Trier University of Applied Sciences, site 

Birkenfeld, in the field of automation technology and robotics, I was given the opportunity to 

undertake a research project at the University of Luxembourg (UL) as a PhD candidate. The 

subject was the detection of damages on civil engineering structures, especially bridges, 

based on experimentally determined dynamic properties as well as results from static tests. 

The research group at the UL that I joined has been working on the topic since several years. 

Therefore, I continued the work of my three predecessors as PhD candidate who all dealt with 

different aspects of the topic. They appear as my first references: Waltering (2009) [1], 

Bungard (2011) [2] and Mahowald (2013) [3]. 

Here the basic idea for the damage detection is: changes in a structure due to damage must be 

reflected in the stiffness distribution. In a process called system identification, it may be 

experimentally determined as structural matrix based on dynamic measurements or static 

loading tests. Some useful dynamic features can be cited as eigenfrequencies, mode shapes, 

damping and modal masses. From static tests, deflection lines or influence lines appear also 

appropriate. 

Therefore, the above-cited parameters can be used to calculate a wide range of so-called 

damage indicators. Generally, data for a reference state must be available which enables the 

determination of changes for another examined state. Depending on the nature of the specific 

damage indicator, it is either only possible to determine whether a damage is present or not or 

even better to locate it and to assess the severity of the damage. The highest level is an 

estimate of the remaining life time of the structure. These levels of damage assessment were 

already defined by Rytter (1993) [4]. 

At first view, this topic, which arose from civil engineering, seemed not to fit into my 

previous activity, which had dealt extensively with control engineering and robotics. On a 

closer look however, there are considerable parallels to methods customary in control 

engineering. 

For instance, in a so-called experimental modal analysis, structures are excited to vibrations, 

whereby the forces are also measured. The resulting vibration of the structure is captured for 

instance by accelerometers or optically with laser vibrometers. Based on the recorded data, it 
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is possible to calculate the dynamic properties and the so-called transfer function or transfer 

function matrix of the system, which is typical for Multiple Degree Of Freedom systems 

(MDOF). With the latter, the vibration response of a system can be predicted to an arbitrary 

excitation. The methodology thus differs in no way from the already mentioned system 

identification customary in control engineering on the basis of measured input and output 

signals, actually it is part of it. 

For a mechanical engineer, it is indeed interesting that the subject matter thus relates various 

fields of interest, system theory and modal analysis, which are generally used in mechanical 

engineering, to structural engineering, in which usually static analyses are common. This 

gave me the opportunity to contribute my knowledge and experience so far, to deepen it and 

to gain insight into civil engineering methods. 

While the theoretical fundamentals of this topic, such as the modal analysis, have been 

already well developed, the research work in this area in the UL concentrates on carrying out 

experiments on real structures and thus under realistic ambient conditions such as variable 

temperatures. These environmental conditions show obviously considerable influence on the 

system properties and must be separated from the influence of damage in order to 

successfully carry out a damage assessment. 

Therefore, during my four-years work, some very costly, time consuming and laborious 

experiments were performed, which would not have been possible without the help and 

experience of many people. 

First I would like to thank Prof. Dr.-Ing. Stefan Maas for giving me, as a graduate of a 

university of applied sciences, the opportunity to work on a dissertation and for supervising 

the thesis. The same applies to the other two members of the dissertation supervisory 

committee (CET) Ass. Prof. Dr.-Ing. Danièle Waldmann and Prof. Dr.-Ing. Arno Zürbes. 

Furthermore, I thank Prof. Dr.-Ing. Markus Schäfer, Assoc. Prof. Dr. Alfred Strauss and Prof. 

Dr.-Ing. Michael Link for taking the time to participate in the jury for the defence of my 

doctoral thesis. 

My colleague Dr. Viet Ha Nguyen helped me a lot in performing measurements and 

evaluating the results as well as in writing publications. Furthermore, the help of Prof. Dr. i.r. 

Guido De Roeck with corrections of publications was highly appreciated. In addition, I want 

to thank my predecessor Dr. Jean Mahowald above all for his explanations at the beginning 

of my research project. 
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A great thank-you goes to the technical support staff at the University of Luxembourg, 

namely Gilbert Klein, Ed Weyer, Marc Seil, Vicente Reis Adonis, Claude Colle, Ken Adam, 

Cédric Bruyère, Ralph Reiter, and Raphael Hinger. Without their hard work, knowledge and 

experience it would not have been possible to realise the experiments, which were necessary 

for the completion of the present thesis. This does not only include their support for the large 

test series at the Grevenmacher bridge and in the port of Mertert, but also their help at smaller 

issues, like for instance material tests, measurements of prestress in tendons, measurements at 

a traffic road bridge in Mersch before its demolition or also license management for software 

used in the thesis. Furthermore, the help of Felix Norman Teferle with optical measurements 

at a test setup, is not to forget. I also would like to thank the members of the SIU support unit 

Kirchberg, especially Marco de Cillia and Ulrich Siegel for their support when it comes to 

computer issues like software installation or hardware upgrades. Additionally, the help of the 

secretaries of the RUES unit, Simone Drees and Annabella Simon, in administrative issues 

shall not be forgotten here. 

Furthermore, I would like to thank the students, who dealt with individual problems within 

their final theses and thus provided important impetus for this doctoral thesis. These were 

namely Jan Even, who helped with the design of experiments in his travail de candidature as 

well as Patrick Pereira Dias, Maximilien Garroi and Cedric Martin, who developed different 

varieties of Finite Element (FE) models of bridges for their bachelor theses. 

I would also like to thank l’Administration des Ponts et Chaussées Grand-Duché de 

Luxembourg (P&C) for their help on many occasions. At first these are Didier Gilles and 

Fernandes Gilberto of Division des Ouvrages d'Art for giving occasions to perform in situ 

tests at real structures, for providing much information about the considered bridges and the 

way how bridge inspections are currently carried out in Luxembourg as well as for taking 

time for discussions about the topic. Furthermore, Philippe Goedert of Service Régional 

Mersch and René Goergen of Division des Travaux Neufs helped us a lot to organise 

measurements at an old bridge in Mersch (Luxembourg) before its demolition in 2016 and the 

transport of a concrete beam of this bridge to the new UL campus in Belval, which will be 

used for future experiments. Finally, Michel Maas of Division des Géomètres et de la 

Photogrammétrie provided useful information about the usage of photogrammetry by P&C 

for carrying out measurements by aerial survey. It is an idea to test the usability of such 

measurements for the damage assessment of bridges at future projects. 
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ABSTRACT 

English 

Bridges are an essential part of nowadays infrastructure to cross natural and artificial 

obstacles like rivers, valleys or other roads and railways. Many concrete bridges were built in 

the last 70 years. The traffic density has increased immensely over the last decades and the 

bridges are suffering from corrosion and wear. Nevertheless, the safety of the infrastructure 

has to be guaranteed and therefore it is very important to find efficient methods for structural 

health monitoring. 

For this purpose, visual inspections are the most widely adopted in reality today. Considering 

the size of most bridge structures, it is understandable that these tests are generally very time-

consuming and many personnel are needed, so they are cost-intensive. However, it is not 

always guaranteed that all damage can be found as only the surface is accessible. For 

instance, internal damage, such as corrosion of passive reinforcements or prestressed tendons, 

is difficult to detect. In addition, small cracks can remain undetected when covered by paints 

or dirt. 

Therefore, it is important to complement the standard methods with advanced alternatives. 

The aim is therefore not necessarily to replace visual inspections, but rather to find efficient 

methods for amendment. 

An idea being vigorously discussed in the scientific community is based on vibration 

measurements of a structure to assess its dynamic behaviour. The occurrence of damage will 

change the system properties, as it changes above all the stiffness distribution. So the system 

identification process in principle allows detection of changes of eigenfrequencies and hence 

stiffness. 

The main problem in practice on real bridges is that the robustness of a method is often 

insufficient, as the measured parameters are often also influenced by temperature changes. It 

will be shown that the impact of temperature change, e.g. between night and day, on the 

system properties is much higher than the influence of small damage. Furthermore, changes 

in soil and bearing conditions between different seasons can play a role. These environmental 

effects have to be taken into account while performing measurements for damage assessment. 

For this purpose, strategies are proposed to compensate environmental effects. 
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Therefore, this thesis focuses on measurements under real environmental conditions, outside 

a laboratory. Different methods for damage assessment or stiffness tracking based on 

measured static and on dynamic properties of structures are deployed. Finally, the measured 

and analysed physical properties of the bridges in this thesis are: eigenfrequencies, mode 

shapes, sagging under own weight and the deflection line under a static test-loading. These 

quantities are tracked and artificial damage is introduced stepwise to a test-beam of a real 

bridge. Damage assessment and localisation is tried directly with the measured quantities but 

also by model-updating of a finite element model. This solid model is divided in a special 

way in different slices. It is possible to change the stiffness distribution along the axis of the 

simulated beam by varying the Young’s moduli of these slices. Furthermore, to reduce the 

number of free parameters for the subsequent up-dating process, an exponential damage 

function is introduced that describes the stiffness distribution. At first, the model was 

designed to fit a healthy reference state. Now measurement data from the artificially damaged 

test-beam are introduced and the model is updated by changing the Young’s moduli of the 

slices to minimise a special objective function containing the measured and simulated 

physical quantities. The comparison of initial and updated model allows a quantification and 

localisation of damage. Finally, the slice width is reduced around the identified damage 

region to improve the process. 

Keywords: structural health monitoring, damage detection, damage indicators, dynamic 

properties, model updating 
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Deutsch 

Brücken sind ein wesentlicher Bestandteil der heutigen Infrastruktur, um natürliche und 

künstliche Hindernisse zu überqueren, wie Flüsse, Täler oder andere Straßen und 

Eisenbahnen. Viele Betonbrücken wurden in den letzten 70 Jahren gebaut. Die 

Verkehrsdichte hat sich immens gesteigert über die letzten Jahrzehnte und Brücken leiden 

unter Korrosion und Abnutzung. Nichtsdestotrotz muss die Sicherheit der Infrastruktur 

garantiert werden und daher ist es sehr wichtig, effiziente Methoden zur Überwachung 

struktureller Schäden zu finden. 

Zu diesem Zweck sind visuelle Inspektionen heute am weitesten verbreitet. In Anbetracht der 

Größe der meisten Brückenstrukturen ist es verständlich, dass diese Prüfungen im 

Allgemeinen sehr zeit- und personalaufwändig sind und daher kostenintensiv. Es ist jedoch 

nicht immer gewährleistet, dass alle Schäden gefunden werden können, da nur die Oberfläche 

zugänglich ist. Zum Beispiel sind innere Beschädigungen, wie Korrosion an passiven 

Verstärkungen oder vorgespannten Kabeln, schwer zu entdecken. Auch kleine Risse können 

unentdeckt bleiben, wenn sie von Anstrichen oder Schmutz bedeckt sind. 

Daher ist es wichtig, die Standardmethoden durch fortgeschrittene Alternativen zu ergänzen. 

Ziel ist es dabei nicht notwendigerweise, visuelle Inspektionen zu ersetzen, sondern vielmehr 

effiziente zusätzliche Methoden zu finden. 

Eine Idee, die von Wissenschaftlern ausgiebig diskutiert wird, beruht auf 

Schwingungsmessungen einer Struktur, um ihr dynamisches Verhalten zu beurteilen. Das 

Auftreten von Schäden ändert die Systemeigenschaften, da es vor allem die 

Steifigkeitsverteilung ändert. So erlaubt der Systemidentifizierungsprozess grundsätzlich die 

Erkennung von Änderungen der Eigenfrequenzen und damit der Steifigkeit. 

Das Hauptproblem in der Praxis auf realen Brücken ist, dass die Robustheit eines Verfahrens 

oft unzureichend ist, da die gemessenen Eigenschaften oft auch durch Temperaturänderungen 

beeinflusst werden. Es wird gezeigt, dass der Einfluss der Temperaturänderung, z.B. 

zwischen Nacht und Tag, auf die Systemeigenschaften viel höher ist, als der Einfluss von 

kleinen Schäden. Darüber hinaus können Veränderungen der Boden- und Lagerbedingungen 

zwischen verschiedenen Jahreszeiten eine Rolle spielen. Diese Umweltauswirkungen sind bei 

der Durchführung von Messungen zur Schadensbeurteilung zu berücksichtigen. Zu diesem 

Zweck werden Strategien vorgeschlagen, um Umweltauswirkungen zu kompensieren. 
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Daher konzentriert sich diese Arbeit auf Messungen unter realen Umgebungsbedingungen, 

außerhalb eines Labors. 

Es werden verschiedene Methoden zur Schadensbeurteilung oder Steifigkeitsverfolgung 

basierend auf gemessenen statischen und dynamischen Eigenschaften von Strukturen 

eingesetzt. Schlussendlich sind die gemessenen und analysierten physikalischen 

Eigenschaften der Brücken in dieser Arbeit: Eigenfrequenzen, Schwingungsformen, 

Absacken unter Eigengewicht und die Biegelinie unter statischer Testbelastung. Diese 

Größen werden verfolgt und künstliche Schädigungen werden schrittweise an einem 

Testträger von einer echten Brücke verursacht. Schadensbeurteilung und Lokalisierung 

erfolgt direkt auf Grundlage der gemessenen Größen, und zusätzlich durch Updating eines 

Finite-Elemente-Modells. Dieses Solid Modell ist in einer speziellen Weise in verschiedene 

Scheiben unterteilt. Es ist möglich, die Steifigkeitsverteilung entlang der Achse des 

simulierten Trägers durch Variieren der Elastizitätsmoduln dieser Scheiben zu ändern. Des 

Weiteren wird zur Verringerung der Anzahl der freien Parameter für den nachfolgenden 

Updating-Prozess eine exponentielle Schadensfunktion eingeführt, welche die Steifigkeits-

verteilung beschreibt. Zuerst wurde das Modell so entworfen, dass es zum ungeschädigten 

Referenzzustand passt. Nun werden Messdaten aus dem künstlich beschädigten Testträger 

eingeführt und das Modell wird durch Ändern der Elastizitätsmodule der Scheiben 

aktualisiert, mit dem Ziel eine spezielle Zielfunktion zu minimieren, die die gemessenen und 

simulierten physikalischen Größen enthält. Der Vergleich des ursprünglichen und des 

aktualisierten Modells ermöglicht eine Quantifizierung und Lokalisierung von Schäden. 

Schließlich wird die Scheibenbreite um den identifizierten Schadensbereich reduziert, um den 

Prozess zu verbessern. 

Stichwörter: Überwachung struktureller Schäden, Schadensdetektion, Schadensindikatoren, 

Schwingungseigenschaften, Model Updating 
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Français 

Actuellement des ponts occupent une grande partie de l'infrastructure pour franchir des 

obstacles naturels ainsi que artificiels comme rivières, vallées ou d'autres routes et chemins 

de fer. De nombreux ponts en béton ont été construits au cours des 70 dernières années. La 

densité de trafic a augmenté énormément au cours des dernières décennies alors que les ponts 

souffrent de corrosion et d'usure. Néanmoins, la sécurité de l'infrastructure doit être garantie 

et il est donc très important de trouver des méthodes efficaces pour la détection 

d’endommagement des structures. 

Dans ce but, les inspections visuelles sont aujourd'hui les plus largement adoptées. Compte 

tenu de la taille de la plupart des structures de ponts, il est compréhensible que ces tests 

demandent du temps ainsi que d’importants moyens humains, ce qui implique des coûts 

élevés. Cependant, il n'est pas toujours garanti que tout endommagement puisse être trouvé 

car seule la surface est accessible. Par exemple, des dommages internes, tels que la corrosion 

des renforts passifs ou des tendons précontraints, sont difficiles à détecter. En outre, de 

petites fissures peuvent rester inaperçues lorsqu'elles sont recouvertes de peintures ou de 

saleté. 

Par conséquent, il est important de complémenter des méthodes standardisées par des 

alternatives avancées. L'objectif n'est donc pas nécessairement de remplacer les inspections 

visuelles, mais plutôt de les améliorer avec des méthodes efficaces. 

Une idée qui fait l'objet d'une discussion approfondie dans la communauté scientifique repose 

sur des mesures de vibration d'une structure pour évaluer ses caractéristiques dynamiques. La 

présence d’un endommagement modifierait des propriétés du système, parce qu’il change la 

distribution de la rigidité. Ainsi, le processus d'identification du système en principe permet 

de détecter des changements de fréquences propre et donc de rigidité. 

En pratique, un grand problème sur des ponts réels est l’efficacité d'une méthode, parce que 

des mesures sont largement influencées par des changements de température. Il est montré 

que l'impact de ce changement, par exemple entre nuit et jour, sur les propriétés du système 

est beaucoup plus élevé que l'influence de petits endommagements. En outre, des 

changements dans le sol et les conditions d’appuis entre de différentes saisons peuvent jouer 

un rôle. Ces effets environnementaux doivent être pris en compte lors de la réalisation de 

mesures. A ce sujet, des stratégies sont proposées pour compenser les effets 

environnementaux. 
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C’est ainsi que cette thèse se concentre sur des mesures dans des conditions 

environnementales réelles, en dehors d'un laboratoire. 

De différentes méthodes d'évaluation d’endommagements ou de monitoring de la rigidité 

basées sur certaines propriétés statiques et dynamiques sont développées. En effet, les 

propriétés physiques mesurées et analysées des ponts dans cette thèse comprennent: 

fréquences propres, formes modales, fléchissement sous le poids propre et flexion sous un 

test de chargement statique. Une campagne de mesure a été réalisé sur une partie d’un pont 

réel où quelques endommagements artificiels ont été introduits étape par étape. L'évaluation 

et la localisation d’endommagement sont testées directement avec les quantités mesurées, 

mais aussi par model updating d’un modèle en éléments finis. Ce modèle de solide est 

construit d’un maillage spécial. Il permet de modifier la répartition de la rigidité le long de 

l'axe longitudinal de la structure en variant les modules de Young des tranches définies. En 

outre, pour réduire le nombre de paramètres libres du processus de model updating, une 

fonction d’endommagement en exponentielle est introduite pour décrire la distribution de la 

rigidité. Au début, le modèle a été construit pour un état de référence sans endommagement. 

Ensuite, les données de mesure d’un état endommagé sont introduites et le modèle est mis à 

jour en modifiant les modules de Young des tranches. Il s’agit de minimiser une fonction 

d'objectif spéciale qui contient les quantités physiques mesurées et simulées. La comparaison 

entre le modèle initial et actualisé permettrait une quantification et une localisation 

d’endommagement. En plus, l’épaisseur d’une tranche est raffinée autour de la région 

d’endommagement identifiée pour améliorer le processus. 

Mots-clés: détection d’endommagement, indicateurs d’endommagement, propriétés 

dynamiques, model updating 
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NOMENCLATURE 

Symbols 

The symbols are listed according to their first appearance. 

𝐹(𝑡)  [𝑁] Input Force over time 

𝑥(𝑡)  [𝑚] Displacement over time 

[𝐆(𝐬)]   Transfer function matrix 

𝑠   Laplace variable 

𝜔  [
𝑟𝑎𝑑

𝑠
] Angular frequency 

𝜉  [−] Damping ratio related to the critical damping 

[𝐌]  [𝑘𝑔] Mass matrix 

[𝐂]  [
𝑁𝑠

𝑚
] Damping matrix 

[𝐊]  [
𝑁

𝑚
] Stiffness matrix 

{𝑥(𝑡)}  [𝑚] Output vector (displacements over time) 

{𝑓(𝑡)}  [𝑁] Input vector (force over time) 

{𝑥}𝑛×1   Vector of dimension 𝑛 × 1 

[𝐗]𝑛×𝑚   Matrix of dimension 𝑛 × 𝑚 

{𝑦(𝑡)}   State vector 

[𝐀], [𝐁]  
Matrices derived from the structural matrices of a 

MDOF system (state space formulation) 

{𝟎}, [𝟎]   Zero vector, matrix 

𝑑𝑒𝑡([𝐌])   Determinant of a matrix [𝐌] 

[𝚿]   Eigenvector matrix 

{ψ}𝑟  [𝑚] Mode shape vector for mode 𝑟 
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𝜆𝑟 = 𝜔𝑟 (−𝜉𝑟 ± 𝑖√1 − 𝜉𝑟
2) 

= 𝛿𝑟 ± 𝑖𝜔𝑑𝑟 
[
𝑟𝑎𝑑

𝑠
] Eigenvalue for mode 𝑟 with low damping 

𝜔𝑟  [𝑟𝑎𝑑] Angular eigenfrequency for mode 𝑟 

𝜔𝑑𝑟  [𝑟𝑎𝑑] 
Angular eigenfrequency of a damped system for 

mode 𝑟 

𝛿𝑟 = −𝜔𝑟𝜉𝑟  [𝑟𝑎𝑑] Damping coefficient for mode 𝑟 

𝑥(𝑠)   Laplace transform of 𝑥(𝑡) 

[𝐑]𝑟  [
𝑠

𝑘𝑔
] Residua matrix of mode 𝑟 

*  Complex conjugated 

{… }𝐻, [… ]𝐻   
So-called hermitian conjugated, conjugated 

transposed of a vector or matrix 

𝑎𝑟  [
𝑘𝑔𝑚2

𝑠
] Scaling factor Modal A for mode 𝑟 

𝑏𝑟  [
𝑘𝑔𝑚2

𝑠2
] Scaling factor Modal B for mode 𝑟 

𝜓𝑟 𝑖  [𝑚] Component 𝑖 of mode shape 𝑟 

Ω  [𝑟𝑎𝑑] Angular frequency of an input signal 

[𝐅] = [𝐊]−1  [
𝑚

𝑁
] Flexibility matrix 

𝑚𝑟  [𝑘𝑔𝑚2] Modal mass for mode 𝑟 

𝑘𝑟  [
𝑘𝑔𝑚2

𝑠2
]  Generalised stiffness for mode 𝑟 

𝑐𝑟  [
𝑘𝑔𝑚2

𝑠
] Generalised damping for mode 𝑟 

{𝜑}𝑟  [
1

√𝑘𝑔
] 

Mode shape vector normalised to unit modal mass 

(UMM) 
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[𝚽]  [
1

√𝑘𝑔
] Matrix containing the UMM mode shapes 

[𝛀]  [
𝑟𝑎𝑑2

𝑠2
] 

diagonal matrix containing squared angular 

eigenfrequencies 

𝑄̅𝑟  [−] Modal participation factor for mode 𝑟 

{𝑝}   Vector with model updating parameters 

[𝑾]   Diagonal weighting matrix 

{𝑥𝑚𝑒𝑎𝑠}   Experimentally obtained, i.e. measured values 

{𝑥𝑠𝑖𝑚}   Values predicted by a simulation 

‖{𝑥}‖1  L1 norm of vector {𝑥} 

‖{𝑥}‖2   L2 (Euclidian) norm of vector {𝑥} 

‖[𝐀]‖𝐹   Frobenius norm of matrix [𝐀] 

 

Abbreviations 

The abbreviations are listed in alphabetical order. 

APDL Ansys Parametric Design Language 

ASH Angle-between-String-and-Horizon 

CMP Correlated Mode shape Pair 

COMAC Coordinate Modal Assurance Criterion 

DAQ Data Acquisition 

DLV Damage Locating Vectors 

DOF Degree Of Freedom 

DS Damage Scenario 

DP Driving Point 

EMA Experimental Modal Analysis 

FE(A) Finite Element (Analysis) 
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FFT Fast Fourier Transformation 

FRF Frequency Response Function 

ICA Imperialist Competitive Algorithm 

MAC Modal Assurance Criterion 

MDOF Multiple Degree Of Freedom 

MSF Modal Scale Factor 

NCO Normalised Cross Orthogonality 

N-DOF System with N degrees of freedom 

NI Novelty Index 

NLPQL Non Linear Programming by Quadratic Lagrangian 

NMD Normalised Modal Difference 

NULS Normalised Uniform Load Surface 

P&C L’administration des Ponts et Chaussées 

Grand-Duché de Luxembourg 

PCA Principal Component Analysis 

PFM Proportional Flexibility Matrix 

SCBFI Strain Change Based on Flexibility Index 

SHM Structural Health Monitoring 

SSI Stochastic Subspace Identification (SSI) 

SVD Singular Value Decomposition 

UL Université du Luxembourg 

ULS Uniform Load Surface 

UMM Unit Modal Mass 
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1 INTRODUCTION AND MOTIVATION OF THE THESIS 

Civil engineering structures such as tunnels and bridges are essential components of the 

infrastructure, which help to overcome obstacles to avoid detours and often to relieve areas of 

heavy traffic. If such a structure must be blocked, this leads immediately to considerable 

costs. Traffic flows have to be diverted, usually done via less suitable routes, for example 

through localities or country roads. Freight transport and commuters also need a lot more 

time to travel, due to delays and traffic congestion. Even worse than this economic damage is 

if human lives are endangered by damage to buildings. 

Numerous reinforced concrete bridges were built after the Second World War, but these were 

not designed for today's steadily increasing traffic and therefore reach limits of their 

resilience. In addition, weather influences as wind, frost and temperature fluctuations show a 

negative effect on the service life and the monitoring of buildings. 

For these reasons, it is of particular importance to carry out regular inspections of buildings 

with the aim of finding and documenting damage. The information obtained is of use for 

decision-making about how the structure can be preserved while guaranteeing its security. 

Any new damage should be detected to prevent further widening of damage. 

For regular investigations, most countries have developed their directives and standards. In 

Germany, DIN 1076 “Ingenieurbauwerke im Zuge von Straßen und Wegen. Überwachung 

und Prüfung“ (“Civil engineering structures in the course of roads and paths. Monitoring and 

testing”) is used. As a standard, it is not legally binding, but is considered as a "universally 

recognised rule of technology" and was introduced by the German federal states as binding 

for the roads, which they administer. The documentation „Bauwerksprüfung nach DIN 1076. 

Bedeutung, Organisation, Kosten“ (“Test of civil engineering structures according to DIN 

1076. Importance, organisation, costs”) [5], which was issued by the Federal Ministry of 

Transport, Building and Urban Development in 2013, describes the monitoring of civil 

engineering structures in Germany on the basis of DIN 1076 in detail. It gives an impression 

of the considerable effort required for this. 

One of the first statements of the document is that a large number of civil engineering 

structures, which are present today in the so-called Old Federal States, were built between 
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1965 and 1985. According to the current state of the art, they have constructive weaknesses 

and must therefore be monitored in particular. 

The number of bridges to be inspected is considerable. According to the document, as of 

31/12/2012 the government of the Federal Republic of Germany administered 39231 bridge 

structures with a bridge area of 30 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑚2 and this area quadrupled since 1970. An 

interesting fact is that 88% of the total area of all bridges of the federal roadways is 

accounted for by reinforced concrete and prestressed concrete bridges and only 6% by steel 

and steel composite bridges. In Germany, apart from roads administered by the Federal 

Republic, regional provincial roads exist that are administered and maintained by the federal 

states. These last add up again 26780 bridge structures with a total area of 5.5 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑚2. 

This document also gives information about the load on the bridges in Germany and about 

their condition. According to that, an important fact is that the rate of heavy-load traffic has 

increased disproportionately and the permissible total weight for trucks in combined traffic 

has nearly doubled since 1956 from 24 𝑡 to 44 𝑡, which has an enormous influence on fatigue 

of the bridges. In the discussion about the admission of even heavier trucks with excess 

length, so-called "road trains", the question must be taken into account, whether these will 

exacerbate the problem. Moreover, the proportion of road freight traffic is very high in the 

overall freight transport performance. In 2004 it amounted to 367 ∙ 109 𝑡𝑘𝑚, compared to 

92 ∙ 109 𝑡𝑘𝑚 for rail transport and to 63 ∙ 109 𝑡𝑘𝑚 for inland waterway transport with. By 

2025, it is expected that the difference will even increase. 

By reason of this considerable load on the existing bridges, it is therefore understandable that 

inspections have to be carried out regularly. According to DIN 1076, a main test (termed H) 

needs to be carried out every six years, and a simpler secondary test (termed E) three years 

after this. Furthermore, examinations from special occasions (S) and tests according to 

special technical regulations (V) may be supplemented. In addition, there are annual 

inspections without special aids. Various test methods are listed in [5], for instance measuring 

cracks and comparing them to former states, tapping for finding cavities or measuring 

deformations to determine reduced load bearing capacity. Such well-tried tests are 

increasingly supplemented or supported by newer methods. These are, for example, laser or 

radar measurements, which are performed using special measuring vehicles or even drones. 

Despite such tools, the effort is considerable and in inspections of the surface, damage 

covered by dirt or paintwork still may be missed. Moreover, visual tests show some 
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disadvantages for internal damage, for example corrosion in steel reinforcements or tendons 

inside the concrete, due to ingress of moisture through cracks, cannot be detected. 

It is therefore important to explore further possibilities for the examination of structures that 

can supplement or improve existing methods. Considering the enormous number of structures 

to be tested, robust methods are needed that result in quick operation with little effort in terms 

of personnel and costs. The basic approach is to compare measured structural properties to a 

previous state to determine changes in the structure that may be caused by some damage. 

Such properties can be the deformation of a bridge due to a certain load as obtained from 

conventional static loading tests. Additionally, the influence of damage on the sagging of 

bridges is examined in the present thesis. This sagging is a constant downward movement of 

bridges over time due to their own weight and settlement effects. Damages, which reduce the 

stiffness of a bridge, will intensify the sagging. The idea is that the sagging provides better 

information than static load tests, because the own weight of a bridge is by far higher as its 

maximum service load that could be used for non-destructive static tests. Nowadays, the 

sagging is seldom measured, since absolute measurements with respect to fixed reference 

points are necessary for this purpose. They are difficult to realise, because it is difficult to 

define reference points, which are fix over several years. In future, improvements in GPS 

measurements or photogrammetry may lead to easy methods to measure the sagging. 

Another idea that is examined in this thesis is to measure the modal parameters (for example 

the eigenfrequencies) of bridges and to use them for the detection or even localisation of 

damage. Methods exist to estimate these parameters based on measured vibrations of the 

structure. The main distinguishing feature of the methods is if only the output data, i.e. the 

vibrations, are used for the parameter estimation or if the force, which causes the vibrations, 

is also measured. For automatic monitoring systems mostly output-only methods are 

preferred, because for that no artificial excitation is necessary, but unmeasurable excitations 

like for instance by wind or traffic can be used. In contrast, a measured artificial excitation is 

used in the so-called experimental modal analysis (EMA). Because the excitation is known, 

clearer results are often obtained. The necessary measurements for modal parameter 

estimation can be carried out with little effort compared to most conventional testing 

methods. 

Although the idea has already been pursued by many scientists, it remains a challenge for in-

situ measurements on real buildings to separate the impact of environmental factors, such as 

temperature fluctuations, from the influence of damage. A method that delivers perfect results 
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in theory or under laboratory conditions may lose its robustness under real environmental 

conditions. Therefore, this thesis focuses on the experimental determination of dynamic as 

well as static properties under real conditions outside a laboratory environment. 
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2 OUTLINE OF THE THESIS 

3 Literature review 

At the beginning an overview is given of publications, which are representative for the state 

of the art. It is divided into different sections that describe topics, which are also important 

for the present thesis. 

4 Theoretical background 

Chapter 4 describes the physical and mathematical background, which was used in this thesis 

and hence is necessary to understand it. This theory is part of the state of the art as well, so 

this chapter can be seen as an extension of the literature review. The used nomenclature is 

listed above. 

5 In-situ tests at a prestressed bridge beam 

Here, the experimental tests are explained, which were performed and whose results were 

evaluated in the following chapters. Especially, Chapter 5.1 is very important. Here a test 

setup in the port of Mertert (Luxembourg) is described, where a prestressed concrete beam 

was examined that was part of a real bridge. Artificial damage was introduced at this beam 

and measurements were carried out in several pre-defined damage scenarios. The intention 

was to test different ways to detect damage based on measured static and dynamic properties. 

The test setup was exposed to real environmental conditions, such as temperature fluctuations 

and solar radiation, so that during the evaluation of the test results, the same challenges arose 

as for tests at a bridge still in operation. 

6 Temperature compensation 

One way to deal with the environmental influences on the measured properties of a bridge, is 

to compensate them. Here a method is proposed to perform such a compensation for the 

temperature influence on static deflections. It is described by using the test setup in the port 

of Mertert as an example. Furthermore, the obtained temperature-compensated data is used in 

the following chapters. 
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7 Evaluation of damage indicators 

In this chapter, several methods to calculate damage indicators from measured data, which 

are know from literature and described in the theoretical background, are tested with the data, 

which was obtained during the tests in the port of Mertert. 

8 Model updating 

The methods to detect damage based on measured static and dynamic properties, which are 

described in Chapter 7, are not based on a mathematical model of the structure. This can be 

seen as an advantage, because such a model must be created in the first place, which can 

mean a lot of effort. Nevertheless, a model based approach is tested here for damage 

assessment. For this purpose, a finite element model of the test setup in the port of Mertert 

was created in the software ANSYS. This model was parametrised, thus it was possible to 

adjust these parameters with the aim of reconciling the simulated results with measurements 

on the real beam at various points in time during the different damage scenarios. The idea for 

the detection of damage is here, to evaluate the updated parameter values and to compare the 

updated models with a model, which matches the healthy state. 

7 Evaluation of 

damage indicators
8 Model updating

Validation of different 

damage indicators with 

data from in-situ 

measurements

Damage localisation 

based on model 

updating

DAMAGE DETECTION IN PRESTRESSED CONCRETE BRIDGES BASED ON STATIC LOAD 

TESTING, SAGGING AND MODAL PARAMETERS, USING MEASUREMENTS AND MODEL 

UPDATING

3 Literature review

4 Theoretical background

5 In-situ tests at a prestressed bridge beam

6 Temperature compensation

9 Summary and discussion

10 Main conclusions and outlook

State of the art

Methods for damage assessment

Measured static and dynamic 

properties for different damage 

scenarios

Temperature compensation for 

static deflections
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3 LITERATURE REVIEW 

3.1 Damage detection based on static and modal properties 

A crack in a beam reduces evidently the supporting cross-section, i.e. the area as well as the 

area moment of inertia are reduced, which causes a local loss of rigidity. Therefore, it is often 

stated that the search for damages means searching for stiffness reductions. It is obvious that 

decreasing stiffness is reflected in deflection due to a certain static load. Additionally, the 

changes in the stiffness matrix are reflected in the dynamic response of a structure and thus in 

its modal parameters. The simplest effect is that the eigenfrequencies decrease with 

decreasing stiffness. Therefore, the idea to realise structural health monitoring (SHM) is to 

monitor the modal parameters, either by an automatic system or by repeated measurements in 

certain time intervals. This idea is vigorously discussed in the scientific community since 

several years. 

Before the International Modal Analysis Conference (IMAC) in 2001, data resulting from 

vibration measurements at the Z24 highway bridge in Switzerland was made available to the 

research community. Three different types of excitation were used for the measurements: 

ambient sources, drop weight and shakers. Authors of conference papers for IMAC 2001 

choose their preferred type of excitation and performed a modal analysis of the data with the 

methods, which they are used to. In a comparative study Peeters and Ventura (2003) [6] 

summarise and compare the results. 

Parloo et al. 2003 [7] used mode shape sensitivities to changes in mass or stiffness of 

structures to obtain damage information through location and amount of changes in the mass 

and stiffness matrices. Mode shapes were experimentally obtained, so there was no prior FE-

model necessary. The method was validated by data taken from a test setup under laboratory 

conditions as well as from experiments on the I-40 highway bridge in Albuquerque, New 

Mexico. 

Nguyen and Golinval (2010) [8] used measurement data of the same bridge to validate an 

approach for damage localisation and quantification in beam-like structures. This approach is 

based on the dynamic response of the structure and does not require a modal analysis. The 

sensitivity of the dynamic response to predefined parameters is evaluated by calculating the 

partial derivatives of the response. In this study, the frequency response functions (FRFs) 
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measured at different locations, are taken as an example. A singular value decomposition 

(SVD) is performed on the partial derivatives and it is shown that the sensitivity of the 

dynamic response depends on the sensitivity of each SVD term. Furthermore, it is stated that 

the sensitivities of the left singular vectors are appropriate for damage localisation in beam-

like structures. Therefore, the difference of the sensitivity of the first left singular vector 

compared to the healthy state is plotted vs. the considered degrees of freedom (DOF). The 

method is applied for three examples, at first for a numerical model of a cantilever beam then 

for a mass–spring system in laboratory and finally for the I-40 bridge. It is shown that the 

location of damage can be derived from the plotted curves even if damage is present at 

several positions, although the effectiveness of the method depends on the level of damage. 

Furthermore, it is stated that the method should be appropriate for online monitoring. 

The conference paper for EVACES’15 by Maas et al. (2015) [9] is a summary of the 

experiences and results obtained by the research group at the University of Luxembourg in 

the field of structural health monitoring of real bridges. It provides an overview of different 

influences on modal-analysis that have been investigated in the work so far. These are 

environmental influences like temperature variations as well as nonlinear behaviour and 

aging of bridge structures and the repeatability of the measurements. 

Nguyen et al. (2016) [10] contributed to COST ACTION TU1406 QUALITY 

SPECIFICATIONS FOR ROADWAY BRIDGES, STANDARDIZATION AT A 

EUROPEAN LEVEL. The paper was written for a meeting in Belgrad and dealt with the idea 

of using dynamic as well as static measurements for damage detection in a procedure that 

joints the advantages of both measurement modes in order to improve the success rate. While 

both measurement modes are treated separately here, the conclusion is proposed to combine 

them in a model updating procedure. A second contribution to a further meeting in Delft was 

Nguyen et al. (2016) [11], where the use of temperature compensated deflection lines for 

damage detection is described. 

Before a standardisation can be defined, information about the state of the art must be 

collected. Therefore, in the course of the above mentioned COST ACTION TU1406, a 

performance indicator database was created based on a screening process of 36 countries. 

This process and the database itself are described in Strauss et al. [12]. 



 Chapter 3: Literature review 

9 

3.2 Health monitoring based on modal flexibility matrix 

In Chapter 4.1 and 4.2, the mathematical background will be explained to determine the 

inverse of the stiffness matrix, the so-called flexibility matrix, based on measured modal 

parameters. The so obtained matrix is often referred to as modal flexibility. In order to find 

cracks based on detection of stiffness reduction, the stiffness matrix would be more 

appropriate. However, in most practical cases, an experimentally obtained flexibility matrix is 

singular and so cannot be inverted to obtain the stiffness matrix. This comes from the fact 

that mostly the number of accurately identified modes (i.e. associated sets of modal 

properties including eigenfrequencies, eigenvectors or mode shapes, damping and modal 

mass) is smaller than the number of considered degrees of freedom and will be also explained 

in more detail in Chapter 4.2. Many examples of how a dynamically measured flexibility 

matrix can be obtained and afterwards used for damage localisation, can be found in 

literature. 

An early example is the article of Pandey and Biswas (1994) [13] and a similar publication of 

the same authors in 1995 [14], where the authors already stated that a damage in a structure 

alters its dynamic parameters and therefore also the structural matrices change. These are the 

mass, damping, stiffness and flexibility matrices, from which especially the latter one was 

examined for damage localisation. They used FE-models of a cantilever beam, a simple 

supported beam as well as a free-free beam for a theoretical validation. Furthermore, data 

collected from a test setup under laboratory conditions were evaluated. Once flexibility 

matrices were determined based on modal parameters, the matrices in different damage states 

were compared to the ones in the intact state. The damage localisation was performed by 

evaluating the maximum of a column of the difference matrix for each degree of freedom. 

For instance, it was found that the maximum of the change occurred in the position of 

damage for the simple supported beam, whereas changes were visible for the cantilever beam 

only from the location of damage and rose up to the free end of the beam. 

Yan and Golinval (2005) [15] applied a covariance-driven subspace identification technique 

to identify modal parameters, which are then used to calculate a flexibility matrix. 

Furthermore, a stiffness matrix is obtained from the flexibility matrix, which is in most 

practical cases singular, by a pseudo inversion. Damage may be localised from the 

comparison of these matrices between a damaged and a reference state. The relevance and the 
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limitations of the technique are illustrated by the numerical models of a cantilever beam and a 

three span bridge as well as experiments in laboratory conditions with an aircraft mock-up. 

Duan et al. (2005) [16] performed output-only measurements and obtained arbitrary scaled 

mode shapes. But as it will be explained in Chapter 4.1, this is necessary to calculate the 

correct flexibility matrix. Instead of this, they estimated a “proportional flexibility matrix” 

(PFM), which is qualitatively the same but differs by an undetermined scalar factor from the 

real flexibility matrix. The PFM was integrated in the Damage Locating Vectors (DLV) 

method developed by Bernal (2002) [17]. In a subsequent publication [18], Duan et al. (2007) 

detect damage at a simulated planar truss structure, where only 23 out of simulated 53 DOFs 

were used to calculate the PFM. 

Shih et al. (2009) [19] suggest a multi-criteria approach for damage assessment of beam and 

plate structures. Besides the flexibility matrix, changes in eigenfrequencies and a modal strain 

energy based damage index are evaluated. Furthermore, a method for damage identification 

was introduced by Nobahari and Seyedpoor (2013) [20], which as well based on flexibility 

and strain energy calculations. In 2014 Montazer and Seyedpoor [21] proposed a damage 

indicator called “Strain Change Based on Flexibility Index” (SCBFI). As the name implies, 

this index is based on strain changes in structural elements. Based on the flexibility matrix 

derived from modal analysis data, nodal displacements necessary to obtain the strain are 

separately calculated. In both publications, the proposed damage indicator was only tested by 

numerical results, whereby the mode shapes were perturbed with a random error to simulate 

measurement noise. 

Reynders and De Roeck (2010) [22] propose a local flexibility method, which is capable of 

detecting local stiffness variations based on measured modal parameters. If the mass of the 

structure is equally distributed, this would be even possible if a mass-normalisation of the 

mode shapes is not possible, e.g. if they were determined by output-only measurements. 

For damage detection in beam structures Yan et al. (2010) [23] propose a so-called angle-

between-string-and-horizon (ASH) flexibility matrix, whose components are associated with 

elements instead of DOFs. According to their article damage indicators based on the ASH 

matrix are capable of identifying damaged elements without being affected by boundary 

conditions. For damage indicators based on the “conventional” flexibility matrix this is not 

the case. It is shown by numerical examples and experimental tests, that by using the ASH 
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matrix it is possible to identify multiple damage locations and to determine relative damage 

severity. 

For large-scale structures Weng et al. (2013) [24] propose a substructuring method for 

damage assessment. In such structures local damage has usually only small impact on the 

global modal data. Therefore, the flexibility matrices of the substructures were decomposed 

into local eigenparameters, which would be more sensitive to local damage as the global 

parameters. 

Chen et al. (2014) [25] present a mathematical approach to derive the free-free flexibility 

matrix from a singular stiffness matrix of the free-free system and vice versa. 

Feng et al. (2014) [26] used the modal flexibility matrix for a Bayesian model updating for 

structural health monitoring. Their approach is demonstrated by a numerical example, where 

a model reduction technique is used to reduce the computing effort. 

Sung et al. (2013) [27] propose the normalised uniform load surface (NULS) curvature 

derived from the modal flexibility for damage detection in beam-like structures. The method 

was tested numerically with a cantilever as well as a single supported beam. The results were 

compared to the uniform load surface (ULS) curvature method and the mode shape curvature 

method. In a later publication, Sung et al. (2014) [28] deals with damage detection based on 

the modal flexibility for cantilever beam-type structures such as high-rise buildings without 

requiring an FE-model. 

Masoumi et al. (2015) [29] created FE models of a 2D-frame structure and of a Howe-truss. 

Then they calculated a generalised flexibility matrix as proposed by Li et al. (2010) [30] for 

these models. Cracks were modelled by stiffness reductions using an equation defined by 

Perera et al. (2009) [31]. They applied the “Imperialist Competitive Algorithm” (ICA) as 

described by Atashpaz-Gargari et al. (2007) [32] to identify these simulated damages. 

For the purpose of model updating, Stutz et al. (2015) [33] calculated the difference between 

an experimentally measured flexibility matrix and the corresponding one predicted by an FE 

model. The Frobenius norm of the difference matrix was defined as objective value, which 

had to be minimised. As updating parameters dimensionless nodal cohesion factors were 

introduced. Through a simply supported Euler-Bernoulli beam, the influence of damage 

location and of noise in measurements was investigated. Furthermore, different stochastic 

optimisation methods were compared. 
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3.3 Model updating techniques 

In model updating, parameters of a mathematical model, often an FE model, are adjusted 

until the deviation between the predictions of the model and real measurements is minimised. 

This approach is often used for the purpose of damage detection and localisation. A 

prerequisite is the validation of the model based on a set of reference measurements. At a 

later stage, this reference model can be updated according to new measurements, which may 

allow finding any change. If the parameters are appropriately chosen so that they correctly 

describe the location and impact of damage, it can be assumed that the optimal parameter 

values reflect the damage pattern in the real structure. 

For a successful damage assessment, it is essential that the reference model reflects as 

accurately as possible the real structure. Nevertheless, there are always unavoidable 

modelling errors due to idealisation and assumptions. Additionally, the measurements of the 

physical properties of the real structure are never perfectly accurate, since there are 

systematic as well as stochastic measurement uncertainties. For instance, eigenfrequencies 

depend on the temperature of the structure, since change in temperature causes changes in the 

Young’s moduli of materials. Therefore, measurements taken at different points in time under 

different environmental conditions will lead to changed responses that do not relate to 

damage. In order to take into account of the unavoidable modelling errors, Link (1998) [34] 

proposes, to separate the uncertain parameters, which are to be determined, into two groups. 

The first one includes local physical parameters, which relate to areas of the structure where 

model uncertainties can be expected. The second group comprises global generalised 

parameters that cover the effects of non-parametric model errors occurring in the remaining 

areas. Furthermore, he proposes to smooth measured mode shapes in order to minimise 

measurement errors. 

An extensive review on numerical procedures and application aspects for model updating is 

presented in Link (1999) [35]. All necessary steps are mathematically described for a 

complete model updating procedure, including the choice of updating parameters and the 

definition of residuals, which compare physical measurements and analytical results. A 

weighted least squares technique is proposed in this reference, where the weighted sum of the 

residual vector including the differences between measured and simulated physical quantities, 

is the kernel of the objective function. This function assigns a single value to a set of 
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parameters, which measures the difference between simulation and measurement. It has to be 

minimised in order to find the optimal parameter set. 

Teughels et al. (2002) [36] propose a model updating procedure for damage localisation for a 

beam, including so-called damage functions, which allows reducing the number of 

parameters to adjust. It should not be confused with the above mentioned objective function. 

The idea for damage detection was to search for local reductions of the bending stiffness of 

the beam. The objective is to find local reductions of the beam’s bending stiffness. A general 

sensitivity based model updating procedure is firstly described, in which uncertain modal 

properties need to be adjusted. These properties can be the Young’s modulus of every 

element in the FE-mesh. For a more complex structure or a fine FE-mesh this approach may 

lead to a vast number of parameters, yielding an underdetermined optimisation problem. In 

order to reduce the number of parameters Teughels et al. propose to define damage elements 

consisting of several neighbouring elements and then a damage function can be defined that 

describes a smooth progress of the bending stiffness over the length of a damage element. 

This damage function can be described by only a few parameters. In [36], the damage 

function is a sum of Legendre polynomials where the parameters are weighting factors used 

for the contributions of the individual polynomials. These factors are adjusted according to a 

least squares objective function containing residuals of modal properties frequencies and 

mode shapes through the Trust Region Newton algorithm. Then correction factors for 

Young’s modulus of each element were calculated according to the damage functions. 

Damage can be localised by searching out high reductions of the bending stiffness. The 

approach was validated by laboratory tests. 

In a subsequent publication Teughels and De Roeck (2004) [37] applied the method proposed 

in [36] to identify damage in the highway bridge Z24 in Switzerland. In addition, Unger, 

Teughels and De Roeck (2006) [38] performed damage detection by model updating for a 

prestressed concrete beam. In laboratory static load tests with increasing force magnitude 

were carried out and the modal properties were determined after each load step. These 

dynamic properties were used in the model updating procedure to detect the damage caused 

by the static loading. Since the cracks close again due to the pretension after removal of the 

load, it was difficult to detect damage of low severity. While the authors state, that for the 

tested beam the damage could be localised for a load level of 80% of the failure load, they 

expected for real structure that this should be possible on lower levels of the live load due to 

higher ratio of dead load to live load. 
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In two related papers, Titurus et al. (2003) [39,40] describes a model updating procedure for 

damage detection using so-called generic elements especially designed for model updating. 

The first paper presents the creation of the model of the reference state called the baseline 

model and its validation using model updating. This model is used for damage detection in 

the second paper. 

The flexibility matrix was also calculated from modal parameters in Jaishi and Ren (2006) 

[41] to define the objective function for a sensitivity based model updating approach. The 

obtained flexibility matrix can be seen as a summary of all determined modal parameters, as 

they are all included in the calculation of the matrix. Therefore their objective function 

compared the dynamic parameters of the real structure with those of the FE-model, by 

calculating the difference between the measured and analytical flexibility matrices. The 

objective value is calculated as the Frobenius norm of the difference matrix. The effect of 

noise on the updating algorithm was also studied. The method was validated by tests on a 

reinforced concrete beam in laboratory and later on a real concrete-filled steel tubular arch 

bridge in Jaishi et al. (2007) [42]. 

Perera et al. (2007) [43] intended to improve the damage localisation capability by using 

modal flexibility in model updating. In addition to the first objective function dependent on 

the flexibility, a second one was introduced, which makes the localisation possible. An 

optimal damage distribution was determined in a Pareto optimisation that simultaneously 

minimises the two objective functions. Experimental and analytical flexibility matrices were 

compared based on the Modal Assurance Criterion (MAC) correlating the diagonals of the 

flexibility matrices. The approach is illustrated initially by simulated scenarios, then by 

experimental tests within an aluminium beam of 6m length. In a subsequent work, Perera et 

al. (2009) [31] compare multi-objective genetic algorithms for Pareto optimisations. 

Mordini et al. (2007) [44] used a Scilab code named VCUPDATE for optimisation in 

conjunction with FE code for OpenSees or ANSYS to realise the FE-Analysis to establish a 

model updating procedure. The Scilab code can use two types of convergence criteria or 

objective functions. For the first option the relative differences between experimentally 

measured and simulated eigenfrequencies are summed up and then divided by the number of 

considered frequencies. In the second option the mode shapes are additionally compared. For 

this purpose, besides MAC, Normalised Modal Difference (NMD) is also suggested, which 

would be more sensitive when mode shapes are highly correlated. Therefore, for the second 

convergence criterion, they added the MAC values to the first criterion. Furthermore, the 
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measurement accuracy was taken into account through a weighting matrix while a sensitivity-

based approach was used for the optimisation algorithm. It stops when the convergence 

criterion falls below a threshold value. The resulting damage distribution can be reported in 

terms of ratio between the element’s Young’s moduli before and after the updating process. 

The procedure was validated by a prestressed reinforced beam that was artificially damaged 

in laboratory and by real cables of the Lanaye bridge in Belgium. 

Furthermore, Schlune et al. (2009) [45] aimed to improve FE model updating techniques for 

damage assessment which, according to them, often provide inaccurate results due to 

inaccurate modelling assumptions and too few measurements. For this purpose, they suggest 

to first carry out manual model refinements. Further, multi-response objective functions were 

introduced that allow combining different types of measurements such as static and dynamic 

features. The proposed method was tested on the Svinesund bridge (Sweden). 

However, model updating usually requires a very high number of simulation runs, leading to 

very expensive computational cost even on advanced computers, especially in large models 

with abundant degrees of freedom. The number of updating parameters to be determined also 

strongly influences the computational effort. In order to reduce this effort, Weng et al. (2012) 

[46] decomposed their FE-models of large structures, for instance the 600 𝑚 tall Guangzhou 

New TV Tower, in substructures. The measured modal data of the whole structure is 

disassembled into the substructure level and then the model updating is only performed for 

the substructures. This approach is called the inverse substructuring model updating method, 

in opposite to the forward method, where the numerically calculated dynamic properties of 

the whole structure are assembled from those of substructures while the model updating 

process is still performed on global level. 

As mentioned before, damage assessment by model updating techniques can be complicated 

by systematic or stochastic measurement uncertainties as well as modelling errors. Link et al. 

(2014) [47] suggest two methods to consider these uncertainties in a model updating 

procedure. They monitored for several years the dynamic properties, i.e. eigenfrequencies 

and mode shapes, of the Gaertnerplatz Bridge over the Fulda River in Kassel, Germany. In 

the first method, measured eigenfrequencies were not used directly for the model updating 

but a regression line is evaluated to reflect the systematic dependence of eigenfrequencies on 

temperature. From this line, points at different temperatures are taken for the further process. 

Subsequently, the FE-model of the bridge was updated based on these points, analytically 

determined frequencies are supplemented by the measured random frequency distribution. In 
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this method, the updated model parameters reflect only the systematic changes in 

eigenfrequencies due to temperature. In the second method, in order to determine the 

parameter’s uncertainty due to variations of the measured data, the authors updated the model 

with a large number of measured data sets. The results are validated by comparing the data 

clouds obtained by simulations with the updated model parameters to the measured ones. 

3.4 Compensation of environmental effects 

It is obvious for real structures, e.g. bridges, that the influence of environmental conditions, 

e.g. fluctuations of the ambient temperature, on physical properties is considerable. For 

instance, the Young’s modulus of asphalt highly depends on temperature. Gutermann (2003) 

[48] provided the following table with Young’s moduli of asphalt according to different 

temperatures. 

Table 3.1: Young’s modulus of asphalt as a function of temperature [48] 

Temperature [°C] -10 0 10 20 30 40

Young's modulus [N/mm2] 25000 18000 10500 4500 1300 400  

Therefore, eigenfrequencies of a bridge vary with temperature due to the stiffness change of 

traffic lanes, especially with a thick asphalt layer. This effect is observed in a small bridge in 

Useldange (Luxembourg), which is described in the thesis of J. Mahowald (2013) [3] and in 

Nguyen et al. (2017) [49]. The eigenfrequencies of this bridge show a huge variation with 

temperature, i.e. of 0.7 % 𝐾⁄  for the first eigenfrequency. This high value is explained by the 

very thick asphalt layer of 25 𝑐𝑚 as well as by the special hyperstatic bearing conditions of 

the bridge. Other environmental influences can be additionally cited as irregular temperature 

distribution due to solar irradiation as well as different soil conditions in winter and summer. 

Although the high temperature dependency of the Useldange bridge is an exception, 

variations of eigenfrequencies due to these influences may reach the order of magnitude 

caused by a possible damage, like small cracks. Therefore, it is crucial to compensate the 

environmental influences prior to any comparison of measured physical quantities for a 

successful damage assessment. The influences can be minimised by measuring always at the 

same time every year, with similar soil conditions and at cloudy days, when there is only 

diffuse solar irradiation. However, variations of the ambient temperature are the most 

difficult ones to avoid, because the necessary measurements often take longer time periods or 

have to be repeated a view times for statistical evaluations. Above all, static tests can take 

several hours, while the ambient temperature changes in the course of the day. Therefore, an 
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objective of the present thesis is to deal with the influence of temperature changes on the 

measurements. 

In literature, different approaches were proposed to compensate environmental influences. 

Peeters and De Roeck (2001) [50] examined data that was collected in a one year monitoring 

of the Z24-Bridge in Switzerland in the course of the European project SIMCES. After this 

period, the bridge was artificially damaged. For the vibration monitoring an automatic modal 

analysis was realised to estimate modal parameters based on output-only data of vibrations 

caused by unmeasurable excitations like wind and traffic. The stochastic subspace 

identification (SSI) algorithm, which was developed in 1991 by Van Overschee and De Moor 

[51], was used for this estimation. In [50] the authors deal with the fact, that for a proper 

damage detection the influence of damage on the modal parameters must be distinguished 

from natural fluctuations due to environmental factors like for instance temperature. From 

data, which was gathered in the healthy state of the bridge, so-called black-box models were 

derived for the eigenfrequencies as function of temperature. Data from measurements at a 

later point in time were compared to the models. The idea of the authors is that as long as the 

eigenfrequencies stay within certain confidence intervals, the fluctuations must mainly be 

caused by the temperature. Only when these intervals are exceeded, there must be another 

cause for the fluctuations, such as damage. 

A multi-variate statistical method is proposed by Yan et al. (2005) [52,53], where it is not 

necessary to measure environmental quantities like temperature, air humidity or soil stiffness. 

These variables are considered as embedded in the variations of the determined properties of 

the structure, for instance eigenfrequencies. It is assumed that the fluctuations of these 

vibrational quantities mainly are caused by environmental changes and/or damage. The basic 

idea is to separate the influence of damage by statistical means and to quantify it by a so-

called Novelty Index (NI) e.g. based on the Mahalanobis norm. An outlier limit is defined by 

the mean value and the standard deviation of NI in the reference state. The method was 

illustrated for linear and non-linear cases. Nguyen et al. (2014) [54] tested the approach at 

two real bridges in Luxembourg. For the purpose of testing damage detection methods, these 

bridges were artificially damaged in a predefined manner shortly before their demolition. 

Dynamic measurements were carried out with different measured excitations, such as 

hammer impacts and swept sine excitation. Among other evaluations, the eigenfrequencies 

were determined by wavelet transformation of the response data. These sometimes show an 

increase after the introduction of damage, which is not theoretically expected and was 



Chapter 3: Literature review   

18 

explained by environmental influences. It is stated that the evaluation according to the 

method described above showed significant improvements compared to earlier evaluations 

[55–59]. 

In two associated publications, Zong et al. (2015) [60] and Lin et al. (2015) [61], a 

temperature updating model, which was based on modal analysis of 276 in-situ 

measurements, taken from one year’s monitoring of Xiabaishi bridge (China), was used to 

exclude frequency variation due to temperature. The temperature compensated frequencies 

were used in a model updating approach for damage assessment using a response surface 

method. 
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4 THEORETICAL BACKGROUND 

4.1 System identification based on modal parameters 

In this chapter the mathematical formulation of a Multiple Degree of Freedom (MDOF) 

system is explained to lead over to the method of system identification based on measured 

modal parameters. It is a brief summary of the known theory of modal analysis to explain the 

physical quantities that are used in this thesis. 
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Figure 4.1: Lumped mass model of a MDOF system 

In Figure 4.1 an example for a multiple degree of freedom system is shown, which consists of 

several lumped mass oscillators.  

For such a mechanical multiple degree of freedom system the relation between outputs and 

inputs is described by the following differential equation. 

[𝐌] ∙ {𝑥̈(𝑡)} + [𝐂] ∙ {𝑥̇(𝑡)} + [𝐊] ∙ {𝑥(𝑡)} = {𝑓(𝑡)} (4-1) 

For a system with N degrees of freedom [M], [C] and [K] are 𝑁 × 𝑁 matrices, which are 

called the mass-, damping- and stiffness-matrix, respectively. {𝑥(𝑡)}𝑁×1 and {𝑓(𝑡)}𝑁×1 are 

the input and the output vector. So the MDOF system is described by 𝑁 coupled differential 

equations of the 2
nd

 order. In Figure 4.1b the corresponding block diagram is also shown 

a) schematic view b) block diagram 
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together with the transfer function matrix [𝐆(𝒔)], which describes the system in the Laplace 

domain and so is equivalent to equation (4-1). The aim of system identification is to find this 

transfer function. 

In order to find the homogenous solution for equation (4-1), the right side is set to {0}. 

[𝐌] ∙ {𝑥̈(𝑡)} + [𝐂] ∙ {𝑥̇(𝑡)} + [𝐊] ∙ {𝑥(𝑡)} = {0} (4-2) 

A differential equation of this kind has solutions of the form of an exponential function. 

In this function {𝑋̅} is a vector of complex amplitudes that includes the phase shift 𝜑. 

Substituting it into equation (4-2) yields: 

([𝐌]𝜆2 + [𝐂]𝜆 + [𝐊]){𝑋̅}𝑒𝜆𝑡 = {0} (4-4) 

It is possible to transform the 𝑁 differential equations of the 2
nd

 order into 2𝑁 of the first 

order to facilitate the solution of equation (4-6). For this purpose, a so-called state space 

model can be defined. 

All possible states of the system are defined by the amount of energy in each of the energy 

storages of the system. Every single lumped mass oscillator in a MDOF systems stores 

kinetic and potential energy, so a N-DOF system has 2𝑁 energy storages. The amount of 

energy in every storage is given by the displacement x and the velocity 𝑥̇ of every oscillator. 

So the state variable can be defined as 

Where {𝑥(𝑡)} is a vector, which contains all displacements for every DOF as function of 

time. Now a system of differential equations of the 1
st
 order can be defined: 

This transformation of a set of N differential equations of the second order to a set of 2𝑁 

differential equations of the first order is not unique. In literature different definitions for the 

matrices [𝑨] and [𝑩] can be found, which than are called ‘similar’. Here the one proposed in 

[63] shall be used. 

{𝑥(𝑡)} = {𝑋}𝑒𝜆𝑡+𝑖𝜑 = {𝑋}𝑒𝑖𝜑𝑒𝜆𝑡 = {𝑋̅}𝑒𝜆𝑡 (4-3) 

{𝑦(𝑡)} = {
{𝑥̇(𝑡)}

{𝑥(𝑡)}
} (4-5) 

[𝐀] ∙ {𝑦̇(𝑡)} + [𝐁] ∙ {𝑦(𝑡)} = {0} (4-6) 
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Apart from in Heylen et al. [63] further details can also be found in Maia et al. [64], where a 

similar but not the same definition of the matrices [𝐀] and [𝐁] is proposed. 

Inserting the matrices defined in (4-7) and the state variable into equation (4-6) yields the 

system of 2𝑁 differential equations: 

 

Now the solutions of (4-6) are of the form: 

Again this equation is substituted into (4-6): 

Since 𝑒𝜆𝑡 is non-zero for all points in time, this equation can be divided by this term. This 

yields the following general eigenvalue problem, whose solutions are the eigenvalues and the 

corresponding eigenvectors of the system. 

The trivial but not very interesting solution is that {
𝜆{𝑋̅}

{𝑋̅}
} equals {

0
0
}. This would mean that 

the system stores no energy, which is only the case for the initial conditions 𝑥(0) = 0 and 

𝑥̇(0) = 0, so consequently no movement can occur. For the case that the determinant of the 

matrix ([𝐀] ∙ 𝜆 + [𝐁]) is not equal to zero, there exists an inverse of this matrix. Then both 

sides of equation (4-11) can be multiplied by this invers, which yields the trivial solution that 

is unable to fulfil initial conditions not equal to zero. So a non-trivial solution can only be 

found for 

[𝐀] = [
[𝟎] [𝐌]

[𝐌] [𝐂]
] , [𝐁] = [

−[𝐌] [𝟎]

[𝟎] [𝐊]
] (4-7) 

[𝐌]{𝑥̇(𝑡)} − [𝐌]{𝑥̇(𝑡)} = {0} 

[𝐌]{𝑥̈(𝑡)} + [𝐂]{𝑥̇(𝑡)} + [𝐊]{𝑥(𝑡)} = {0} 
(4-8) 

{𝑦(𝑡)} = {
𝜆{𝑋̅}𝑒𝜆𝑡

{𝑋̅}𝑒𝜆𝑡
} = {

𝜆{𝑋̅}

{𝑋̅}
} 𝑒𝜆𝑡 (4-9) 

([𝐀] ∙ 𝜆 + [𝐁]) {
𝜆{𝑋̅}𝑒𝜆𝑡

{𝑋̅}𝑒𝜆𝑡
} = {

0
0
}  (4-10) 

([𝐀] ∙ 𝜆 + [𝐁]) {
𝜆{𝑋̅}

{𝑋̅}
} = {

0
0
} (4-11) 
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This is the characteristic equation of a MDOF system, whose solutions for 𝜆 are the 

eigenvalues of the system. For an oscillatory system with 𝑁 degrees of freedom there are 2𝑁 

eigenvalues appearing in complex conjugate pairs. Substituting them into equation (4-11) and 

solving it for {
𝜆{𝑋̅}

{𝑋̅}
} will yield a corresponding eigenvector of dimension 2𝑁 × 1 for each 

eigenvalue 𝜆. In case of multiple eigenvalues there may be problems to identify 2𝑁 linear 

independent eigenvectors, e.g. in case of rigid body modes. This case does not occur in 

Structural Health Monitoring (SHM). 

The eigenvectors are collected in the so-called eigenvector or modal matrix.  

Each column of this matrix is an eigenvector whose upper part [𝚿𝐮] also contains the 

corresponding eigenvalue. The vectors {𝜓}𝑟 ∈ ℂ𝑁×1  are called the mode shape vectors or 

simply mode shapes corresponding to mode r with the eigenvalue 𝜆𝑟.  

As known for eigenvectors, they are not unique but can be scaled arbitrarily and will still 

fulfil equation (4-11). So in order to compare mode shapes, it is necessary to normalise them 

in a specific way. 

It is possible to obtain the modal parameters of a real structure by experimental approaches 

like for instance a classic experimental modal analysis (EMA), where the response of the 

structure is measured while exciting it with a force measured as well. Further approaches for 

output only measurements exist, where advantage is taken from natural excitations like wind, 

waves or traffic. Here the input forces are not known, but assumed to be of a certain 

characteristics like e.g. white noise. 

It is a common approach to identify a system, i.e. to find the relationship between input and 

output quantities, by calculating the transfer functions based on experimentally obtained 

modal parameters. 

In a MDOF system the relation between an excitation at DOF 𝑖 and the corresponding 

response at DOF 𝑗 can be formulated as a transfer function 𝐺𝑖𝑗(𝑠). For N degrees of freedom 

this results in a transfer function matrix [𝐆(𝒔)] of the dimension N×N. 

𝑑𝑒𝑡([𝐀] ∙ 𝜆 + [𝐁]) = 0 (4-12) 

[𝚿] = [
𝜆1{𝜓}1 𝜆2{𝜓}2 ⋯ 𝜆𝑁{𝜓}𝑁 𝜆1

∗  {𝜓}1
∗ 𝜆2

∗ {𝜓}2
∗ ⋯ 𝜆𝑁

∗ {𝜓}𝑁
∗

{𝜓}1 {𝜓}2 ⋯ {𝜓}𝑁 {𝜓}1
∗ {𝜓}2

∗ ⋯ {𝜓}𝑁
∗ ] = [

𝚿𝐮

𝚿𝐦
] (4-13) 
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Based on differential equation (4-1) it can be found as follows. After the equation is 

transformed into Laplace domain, it can be written as: 

([𝐌] ∙ 𝑠2 + [𝐂] ∙ 𝑠 + [𝐊]) ∙ {𝑥(𝑠)} = {𝑓(𝑠)} ⟺ [𝐊𝐝𝐲𝐧(𝒔)] ∙ {𝑥(𝑠)} = {𝑓(𝑠)} (4-14) 

Where s is a complex quantity. The matrix [𝐊𝐝𝐲𝐧(𝒔)] is called the dynamic stiffness matrix 

(cf. [63]). Inverting equation (4-14) yields the transfer function matrix as the inverse of the 

dynamic stiffness matrix. 

The partial fraction decomposition of this transfer function matrix can be formulated as 

follows (cf. [63]). 

[𝐆(𝒔)] = [[𝐌] ∙ 𝑠2 + [𝐂] ∙ 𝑠 + [𝐊]]
−1

= ∑
[𝐑]𝑟

𝑠 − 𝜆𝑟
+

[𝐑]𝑟
∗

𝑠 − 𝜆𝑟
∗

𝑁

𝑟=1

 (4-16) 

It is possible to use the eigenvalues 𝜆𝑟 and the corresponding residua [𝐑]𝑟 𝜖 ℂ
𝑁×𝑁 to 

calculate the transfer function matrix. Furthermore, it is possible to decompose it into its 

modal contributions. The residua can be obtained by calculating the dyadic products of the 

mode shape vectors. 

Where the superposed H means conjugated and transposed, also called Hermitian conjugated 

or adjoint. Like explained above the mode shapes are not unique but can be scaled arbitrary. 

But the residua are specific values, which depends on the system parameters. So the mode 

shapes have to be scaled in an appropriate way. For this purpose the scaling factor 𝑎𝑟, the so 

called Modal A, has been introduced. It can be obtained from the state space model with [𝐀] 

and [𝐁] according to equation (4-7) of the system by the following orthogonality condition 

(cf. [65]). 

{𝑥(𝑠)} = [𝐊𝐝𝐲𝐧(𝒔)]
−1

∙ {𝑓(𝑠)} = [𝐆(𝒔)] ∙ {𝑓(𝑠)} (4-15) 

[𝐆(𝐬)] = ∑
{𝜓}𝑟{𝜓}𝑟

𝑇

𝑎𝑟(𝑠 − 𝜆𝑟)
+

{𝜓}𝑟
∗{𝜓}𝑟

𝐻

𝑎𝑟
∗(𝑠 − 𝜆𝑟

∗)

𝑁

𝑟=1

 (4-17) 

[𝚿]𝑇[𝐀][𝚿] =

[
 
 
 
 
 
 
𝑎1

⋱ 0
𝑎𝑁

𝑎1
∗

0 ⋱
𝑎𝑁

∗ ]
 
 
 
 
 
 

= [𝐚] (4-18) 
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The unit of Modal A is [
𝑘𝑔𝑚2

𝑠
]. 

Analogously, another factor can be calculated based on matrix [𝐁]. 

This factor is called Modal B and its unit is [
𝑘𝑔𝑚2

𝑠2 ]. The relationship between these two 

factors and the eigenvalue is given for mode 𝑟 by: 

Every single transfer function can now be calculated according to the following formula. 

For pure imaginary 𝑠 = 𝑗Ω these functions turn into the Frequency Response Functions 

(FRF), which describe the amplitude and the phase response of the system in the steady state. 

4.2 Inverse stiffness matrix 

For the static case, that means if the frequency Ω of the excitation force is zero, the complex 

frequency 𝑠 becomes 𝑠 = 0. Substituding this value in equation (4-16) yields: 

[𝐆(𝒔 = 𝟎)] = [𝐊]−1 = ∑
[𝐑]𝑟
−𝜆𝑟

+
[𝐑]𝑟

∗

−𝜆𝑟
∗

= ∑
{𝜓}𝑟{𝜓}𝑟

𝑇

−𝑎𝑟𝜆𝑟
+

{𝜓}𝑟
∗{𝜓}𝑟

𝐻

−𝑎𝑟
∗𝜆𝑟

∗

𝑁

𝑟=1

𝑁

𝑟=1

 (4-22) 

Obviously, by using this formula the inverse stiffness matrix of the system can be calculated 

based on measured modal parameters. This matrix is often referred to as flexibility matrix [𝐅] 

or even as modal flexibility matrix.  

If no damping is present, i.e. [𝐂] = [𝟎], the residua 𝑅𝑖𝑗𝑟 = 𝜓𝑖
∗

𝑟 𝑎𝑟
−1 𝜓𝑗

∗
𝑟   become purely 

imaginary values (cf. for instance [63]). Furthermore, for this case the eigenvalue are 

𝜆𝑟 = ±𝑖𝜔𝑟 and the eigenvectors are real. Now equation (4-22) can be rewritten as: 

[𝚿]𝑇[𝐁][𝚿] =

[
 
 
 
 
 
 
𝑏1

⋱ 0
𝑏𝑁

𝑏1
∗

0 ⋱
𝑏𝑁

∗ ]
 
 
 
 
 
 

= [𝐛] (4-19) 

𝜆𝑟 = −
𝑏𝑟

𝑎𝑟
 (4-20) 

𝐺𝑖𝑗(𝑠) = ∑
𝑅𝑖𝑗𝑟

𝑠 − 𝜆𝑟
+

𝑅𝑖𝑗
∗

𝑟

𝑠 − 𝜆𝑟
∗

𝑁

𝑟=1

= ∑
𝜓𝑖𝑟 𝜓𝑗𝑟

𝑎𝑟(𝑠 − 𝜆𝑟)
+

𝜓𝑖
∗

𝑟 𝜓𝑗
∗

𝑟

𝑎𝑟
∗(𝑠 − 𝜆𝑟

∗)

𝑁

𝑟=1

 (4-21) 
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[𝐅] = [𝐊]−1 = ∑
[𝐑]𝑟
−𝑖𝜔𝑟

+
−[𝐑]𝑟
𝑖𝜔𝑟

𝑁

𝑟=1

 (4-23) 

After inserting the residuum [𝐑]𝑟 =
{𝜓}𝑟{𝜓}𝑟

𝑇

𝑎𝑟
 and expanding the two fractions in equation 

(4-23) by the conjugate denominator one obtains: 

The quantity 𝑚𝑟 is the so-called modal mass [𝑘𝑔𝑚2] corresponding to mode 𝑟. By using the 

modal mass as scaling factor, the mode shapes can be normalised to unit modal mass 

(UMM). 

Herewith, equation (4-24) can be reformulated as follows. 

Where [𝚽] is a matrix containing the UMM mode shapes {𝜑𝑟} as column vectors and [𝛀] is a 

diagonal matrix containing the corresponding squared angular eigenfrequencies. 

If the modal parameters were identified experimentally, the number of identified modes M is 

often smaller than the number of measured DOFs 𝑁, as higher modes are more difficult to 

excite and to measure with precision. Hence, the sum in equation (4-27) is truncated after 

𝑟 = 𝑀 ≤ 𝑁. Due to the square of angular eigenfrequency in the denominator, the 

contribution of higher modes to the flexibility is small compared to lower modes. Therefore, 

adequate results for [𝐅] may be obtained even with 𝑀 < 𝑁. 

Theoretically, the stiffness matrix can be obtained by just inverting the flexibility matrix. But 

since the flexibility matrix is calculated from the dyadic products of 𝑀 mode shape vectors, a 

N×N flexibility matrix has the rank 𝑀. If 𝑀 < 𝑁, the resulting flexibility matrix is singular 

and hence cannot be inverted. 

[𝐅] = [𝐊]−1 = ∑
{𝜓}𝑟

2𝑖𝜔𝑟

𝑎𝑟
{𝜓}𝑟

𝑇

𝜔𝑟
2

𝑁

𝑟=1

= ∑
{𝜓}𝑟{𝜓}𝑟

𝑇

𝑚𝑟𝜔𝑟
2

𝑁

𝑟=1

 (4-24) 

𝑚𝑟 =
𝑎𝑟

2𝑖𝜔𝑟
 (4-25) 

{𝜓𝑟}
𝑇[𝐌]{𝜓𝑟}

𝑚𝑟
= 1 = {𝜑𝑟}

𝑇[𝐌]{𝜑𝑟} (4-26) 

[𝐅] = ∑
{𝜑}𝑟{𝜑}𝑟

𝑇

𝜔𝑟
2

= [𝚽][𝛀]−1[𝚽]𝑇
𝑁

𝑟=1

  (4-27) 
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4.3 Physical meaning of the modal parameters 

In this chapter a brief explanation is given about how the modal parameters of a structure 

have to be interpreted physically. As explained in Chapter 4.1, the eigenvalues and the 

corresponding eigenvectors are the solutions of the general eigenvalue problem in equation 

(4-11) and are specific for each mode 𝑟. The eigenvalues 𝜆𝑟 that appear in complex 

conjugated pairs are of the form (cf. [64]): 

𝜆𝑟 = 𝜔𝑟 (−𝜉𝑟 ± 𝑖√1 − 𝜉𝑟
2) (4-28) 

Where 𝜔𝑟 is the angular eigenfrequency of the undamped system and 𝜉𝑟 is the damping ratio 

related to the critical damping. If 𝜉𝑟 < 1 the system is underdamped and a harmonic 

oscillation, whose energy will be dissipated over time, can take place. This is the interesting 

case for this thesis. More information about this physical quantity and the behaviour of single 

degree of freedom oscillators can be taken from many sources, for instance the first chapter 

of [64]. 

As can be seen from equation (4-28) the eigenvalue is a complex number that includes two 

pieces of information, the frequency and the damping of the oscillation of the structure in 

mode 𝑟. The imaginary part 𝜔𝑟√1 − 𝜉𝑟
2 is the angular eigenfrequency of the damped system 

𝜔𝑑𝑟 and the angular eigenfrequency of the undamped system 𝜔𝑟 itself is the absolute value of 

the eigenvalue. Therefore, the quantities eigenvalue and eigenfrequency must not be 

confused. The argument of this complex number is only defined by the damping. 

As explained in Chapter 4.1, in state space formulation the eigenvectors of a structure are of 

the form {
𝜆𝑟{𝜓}𝑟
{𝜓}𝑟

} = {
𝜆𝑟{𝑋̅}𝑟
{𝑋̅}𝑟

}, i.e. the components 𝜓𝑖𝑟  of the mode shapes are the complex 

amplitudes 𝑋̅𝑖𝑟  for the oscillations of each DOF 𝑖 in mode 𝑟. The absolute values of these 

amplitudes are the maximum displacements of a DOF relative to each other DOF, while their 

arguments are the phase shifts between the oscillations of the DOFs. Since the eigenvectors 

are arbitrarily scalable, these amplitudes are only relative values. The complete free vibration 

response of a structure can now be formulated as (cf. [64]): 

{𝑥(𝑡)} = ∑{𝜓}𝑟′𝑄̅𝑟′𝑒
𝜆𝑟′𝑡 = ∑{𝜓}𝑟𝑄̅𝑟𝑒

𝜆𝑟𝑡 + {𝜓}𝑟
∗𝑄̅𝑟

∗𝑒𝜆𝑟
∗𝑡 

𝑁

𝑟=1

 

2𝑁

𝑟′=1

  (4-29) 
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Where 𝑟′ is the number of a column in the modal matrix as defined in equation (4-13), while 

𝑟 is the mode number. 𝑄̅𝑟 are the so-called modal participation factors, which are weighting 

factors for each mode that depend on the initial conditions. For instance, if the structure is 

excited by a hammer impact in general all 𝑁 modes participate to the response, while if all 

DOFs are deflected according to a certain mode shape and then let free without initial 

velocity, the resulting response is exactly the corresponding mode. 

If the arguments of the components in the mode shape vectors differ only by 0° or 180°, they 

are so-called normal modes. It means that during the oscillation in the corresponding mode, 

all DOFs reach the maximal displacement at the same time, the oscillations are in phase. If 

other relative phase shifts occur, one talks of complex modes. Normal modes are in general 

only obtained in the case of small or no damping or in the rather hypothetical case of 

proportional damping. For instance, an FE-simulation, where no attenuation was taken into 

account, provides normal modes. Since these mode shapes are displayed as purely real 

vectors, they are often called real modes, but this is not accurate because by scaling them by a 

complex factor the components can become complex values again and it is still the same 

mode shape. 

In reality, damping is always present and additionally measurement errors occur, so the mode 

shapes are always complex ones. But for low damped systems the relative phase shifts differ 

only slightly from 0° or 180°. However, in order to compare measured mode shapes to 

simulated normal ones, a method for the extraction of real mode shapes from measured 

complex ones must be established. One possibility for this is suggested by Wang et al. in 

[65]. But in the case of weakly damped systems, the simplest possibility is to consider only 

the imaginary part, the real part, or the magnitude of the individual components of the 

measured mode shapes. However, it must be checked for each individual case which one of 

these approaches is appropriate, which is difficult to automate. But such automation is 

necessary if an optimisation algorithm will be used. 

As stated in equation (4-26), except for eigenfrequencies, mode shapes and damping ratio 

there is another modal parameter, the so-called generalised or modal mass 𝑚𝑟, replacing or 

expressing the scaling factor of the mode shapes. 

{𝜓𝑟}
𝐻[𝐌]{𝜓𝑟} = 𝑚𝑟 (4-30) 
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Analogously, the generalised stiffness and damping can be calculated by the following 

formulas (4-31) and (4-32), respectively. 

Finally, with these values the angular eigenfrequency for mode 𝑟 can be calculated by the 

same formula as used for SDOF systems. 

4.4 Experimental determination of modal parameters by EMA 

The modal parameters can be determined analytically by solving the general eigenvalue 

problem in equation (4-11), if the structural matrices [𝐌], [𝐊] and [𝐂] are known. But in 

Chapter 4.1 it is shown, that the other way around is also possible. That means the transfer 

function matrix [𝐆(𝒔)], which is defined by the structural matrices according to equations 

(4-14)-(4-16) can be calculated from modal parameters (equation (4-17)). Therefore, an 

experimentally system identification is possible based on measured modal parameters. 

In a process called experimental modal analysis (EMA), the modal parameters of a structure 

can be estimated based on measurements. For this purpose, the structure is excited by a force, 

which is measured as input signal. Different forms of excitations are used. An impulse can be 

generated by a hammer impact, whose spectrum includes frequencies in a certain range that 

depends on the stiffness of the hammer head. By using a soft hammer head vibrations at 

lower frequencies will be excited than with a stiffer hammer head. Alternatively, the impulse 

can be generated by a dropped weight. Furthermore, an electromagnetic shaker or an 

unbalanced mass exciter can be used to generate a defined force signal, for instance white 

noise or a harmonic excitation with varying frequencies. In the present thesis a so-called 

swept sine excitation is used were the frequency of a harmonic input signal is steadily 

increased with a certain sweep rate. 

The response of the structure, i.e. the vibrations that are caused by the excitation, is measured 

for different degrees of freedom (DOFs), for instance by means of accelerometers or laser 

vibrometers. The measured DOFs are defined by the positions of the sensors and the 

{𝜓𝑟}
𝐻[𝐊]{𝜓𝑟} = 𝑘𝑟 (4-31) 

{𝜓𝑟}
𝐻[𝐂]{𝜓𝑟} = 𝑐𝑟  (4-32) 

𝜔𝑟 = √
𝑘𝑟

𝑚𝑟
 (4-33) 
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measurement directions. Alternatively, the response can be measured only for one degree of 

freedom but the position of the exciter is altered. 

After the measurements the data is transformed from time to frequency domain by an FFT 

(Fast Fourier Transformation) and the spectra of the output signals are divided by the spectra 

of the input signals to determine the frequency response functions (FRFs) for discrete 

frequencies. Different formulas can be found in literature for this purpose (e.g [63,64,66]) 

and often not the FFT spectra directly but cross- and autopower spectra are used. 

Now the modal parameters can be estimated based on the obtained FRFs. Different methods 

can be used for this step like for instance algorithms which calculates a best fit of an assumed 

analytical FRF with the modal parameters as fitting variables. 

4.5 Mode shape correlation methods 

How previously described, the eigenvectors {
𝜆𝑟{𝜓}𝑟
{𝜓}𝑟

} of a MDOF systems consists of the 

mode shapes {𝜓}𝑟 and the corresponding eigenvalues 𝜆𝑟, where 𝑟 is the number of the mode. 

For a system with 𝑁 degrees of freedom, 𝑁 modes exist, which are summarised together with 

their complex conjugates in the so-called modal matrix given in (4-13). Since eigenvectors 

are still valid if they are scaled arbitrarily, it is mostly necessary to normalise the mode 

shapes before they can be compared. Several possibilities for this normalisation can be found 

in literature, like the previously described scaling to unit modal mass (UMM) or the scaling 

to the highest magnitude of the components. 

Mode shapes obtained by means of an FE-simulation are often purely real, as often no 

damping is taken into account in the FE model. In this case, a comparison with measured 

complex mode shapes, e.g. in a model updating procedure, can be facilitated by extracting 

real mode shapes from the complex ones. One way to do this is described in [65]. Depending 

on the mode shapes it can be sufficient to just consider the imaginary or the real part. 

Furthermore, if mode shapes obtained by a simulation shall be compared to measured ones 

and the simulation already uses the same kind of normalisation as the one used for the 

measurements, it still can happen that a simulated mode shape is turned by 180° compared to 

the corresponding measured one. Although it still remains the same shape, the Euclidian 

difference between the simulated and the measured vectors will be huge. If the parameters of 

the model are changed it can even happen that in one simulation run the mode shapes are 
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rotated by 180° and in another one they are not. That means it is difficult to compare mode 

shape vectors by just calculating the Euclidian norm of the difference vector. 

As an alternative in literature (cf. for instance [64,66]) several so-called correlation criterions 

are described. Some of them are used in this thesis and therefore are briefly described here. 

All criterions used here have the advantage that no information about the structural matrices 

[𝐊], [𝐌] and [𝐂] are necessary for the evaluation. But it shall be mentioned that some 

variations exists, which include the structural matrices e.g. for the purpose of weighting. 

The first one is the so-called Modal Assurance Criterion (MAC), which is widely used in the 

research community for the correlation of mode shapes. It is defined by the following 

formula. 

Here the compared vectors {ψmeas} and {ψsim} are the measured and the simulated mode 

shape, respectively. But the MAC can be used for the comparison of arbitrary vectors. [𝐖] is 

a weighing matrix. If the mass- or the stiffness-matrix is used to define the weighting, this 

criterion is called Normalised MAC or Normalised Cross Orthogonality (NCO). Since in an 

experimental modal analysis these matrices are typically unknown or difficult to determine 

with sufficient accuracy, in the following the unity matrix is used for [𝐖]. This is the 

approach often used in the research community. 

The scalar product in the numerator {ψmeas}
𝑇{ψ𝑠𝑖𝑚

∗ } yields in general a complex number 

𝑎̅  ∈ ℂ, while the products in the denominator yield real values 𝑏, 𝑐 ∈ ℝ, since they are the 

squared absolute values of the mode shape vectors. With that equation (4-34) can be 

simplified as: 

Let us assume that the mode shapes are scaled by arbitrarily complex scaling factors 𝑐1̅ and 

𝑐2̅. Then equation (4-34) becomes: 

𝑀𝐴𝐶({ψmeas}, {ψsim}) =
|{ψmeas}

𝑇[𝐖]{ψ𝑠𝑖𝑚
∗ }|2

({ψmeas}𝑇[𝐖]{ψ𝑚𝑒𝑎𝑠
∗ })({ψsim}𝑇[𝐖]{ψ𝑠𝑖𝑚

∗ })
 (4-34) 

𝑀𝐴𝐶𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑 =
|𝑎̅|2

𝑏 ∙ 𝑐
 (4-35) 

𝑀𝐴𝐶𝑠𝑐𝑎𝑙𝑒𝑑({ψmeas}, {ψsim}) =
|𝑐1̅{ψmeas}

𝑇𝑐2̅
∗{ψ𝑠𝑖𝑚

∗ }|2

(𝑐1̅{ψmeas}𝑇𝑐1̅
∗{ψ𝑚𝑒𝑎𝑠

∗ })(𝑐2̅{ψsim}𝑇𝑐2̅
∗{ψ𝑠𝑖𝑚

∗ })
 (4-36) 
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With the same approach as for 𝑀𝐴𝐶𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑 this equation can be simplified: 

That means this criterion works for complex as well as for real vectors, since it has the great 

advantage that it is independent of the scaling of the mode shapes, which is why {ψ𝑚𝑒𝑎𝑠} and 

{ψ𝑠𝑖𝑚} can be arbitrarily scaled mode shapes. That also means that a phase lag between the 

mode shapes, like for instance a rotation in the complex plane by 180°, does not influence 

results. For real modes as well as complex modes the MAC provides a real value between 0 

and 1, where 1 means perfect matching of both vectors and 0 means orthogonality, i.e. no 

match. 

Because of these properties, the modal assurance criterion is highly appropriate for the 

realisation of an automatic correlation of mode shape pairs from measured and simulated 

modes. A decrease of the MAC value for these correlated pairs over time can be an indicator 

for changings at a structure like for instance damage. 

Another criterion that is related to the MAC, is the Normalised Modal Difference (NMD), 

which was proposed by Mordini et al. in [44] for the comparison of quite similar mode 

shapes. According to the authors, it is much more sensitive than that MAC to the difference 

of similar vectors but less useful for uncorrelated ones. It is described in more detail in [64]. 

The physical meaning of the NMD is explained there as the average fraction of difference of 

all DOFs between the two compared modes. So if the NMD-value is zero, the modes match 

perfectly. The NMD can be calculated based on the MAC as follows. 

𝑁𝑀𝐷 = √
1 − 𝑀𝐴𝐶

𝑀𝐴𝐶
 (4-38) 

A third correlation criterion that can be found in [63], [64], as well as [66] is the Modal Scale 

Factor (MSF). It can be defined in two different ways, depending on which mode shapes are 

used as reference. 

𝑀𝐴𝐶𝑠𝑐𝑎𝑙𝑒𝑑 =
|𝑐1̅𝑐2̅

∗𝑎̅|2

(|𝑐1̅|2𝑏)(|𝑐2̅|2𝑐)
=

|𝑐1̅|
2|𝑐2̅|

2|𝑎̅|2

|𝑐1̅|2|𝑐2̅|2𝑏 ∙ 𝑐
= 𝑀𝐴𝐶𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑    𝑞. 𝑒. 𝑑. (4-37) 

𝑀𝑆𝐹({ψmeas}, {ψsim}) =
|{ψmeas}

𝑇{ψ𝑠𝑖𝑚
∗ }|

{ψsim}𝑇{ψ𝑠𝑖𝑚
∗ }

 (4-39) 
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If the measured and the simulated mode shape vectors only differs by an arbitrary scalar 

factor 𝑐̅  ∈ ℂ ({ψsim} = 𝑐̅{ψmeas}), the resulting MSF values are: 

In literature the physical meaning of MSF and MAC is described as follows. In order to 

compare two vectors, like for instance mode shapes, the components of one vector can be 

plotted vs. the components of the second vector. Afterwards a linear regression line can be 

calculated. The MSF is the slope of this line, while the MAC provides the degree of 

correlation. If the MAC value is equal to zero, the MSF value has no meaning because there 

is no linear relationship. If the mode shapes to be compared are normalised in the same way, 

e.g. to unit model mass, a MSF-value near 1 means a good correlation. 

MAC, NMD and MSF are global correlation criterions, i.e. they do not provide any 

information about the location of the differences between compared mode shapes. Hence, if 

they are used as damage indicators, the damage can be detected but not localised. For this 

purpose, other criterions exists, like for instance the Coordinate Modal Assurance Criterion 

(COMAC) that is also described in [64] and [66]. Instead of providing global information 

about differences between two mode shapes, it compares the shapes at the individual DOFs, 

averaged over several correlated mode shape pairs (CMP). Based on a set of 𝑛𝐶𝑀𝑃 mode 

shape pairs, the COMAC value for every DOF 𝑖 can be calculated by the following formula. 

This correlation technique is also described in [63], where the authors state that, in opposition 

to the MAC, the COMAC is very sensitive to the scaling of the mode shapes. That means, for 

the calculation of the COMAC, the same normalisation must be used for all mode shapes.  

𝑀𝑆𝐹({ψsim}, {ψmeas}) =
|{ψsim}𝑇{ψ𝑚𝑒𝑎𝑠

∗ }|

{ψmeas}𝑇{ψ𝑚𝑒𝑎𝑠
∗ }

 (4-40) 

𝑀𝑆𝐹({ψmeas}, {ψsim}) =
|{ψmeas}

𝑇𝑐̅∗{ψ𝑚𝑒𝑎𝑠
∗ }|

𝑐̅{ψmeas}𝑇𝑐̅∗{ψ𝑚𝑒𝑎𝑠
∗ }

=
1

|𝑐̅|
 (4-41) 

𝑀𝑆𝐹({ψsim}, {ψmeas}) =
|𝑐̅{ψmeas}

𝑇{ψ𝑚𝑒𝑎𝑠
∗ }|

{ψmeas}𝑇{ψ𝑚𝑒𝑎𝑠
∗ }

= |𝑐̅| (4-42) 

𝐶𝑂𝑀𝐴𝐶(𝑖) =
(∑ |𝜓𝑠𝑖𝑚(𝑖, 𝑗)𝜓𝑚𝑒𝑎𝑠

∗ (𝑖, 𝑗)|
𝑛𝐶𝑀𝑃
𝑗=1 )

2

∑ |𝜓𝑠𝑖𝑚(𝑖, 𝑗)|2 ∑ |𝜓𝑚𝑒𝑎𝑠(𝑖, 𝑗)|2
𝑛𝐶𝑀𝑃

𝑗=1
𝑛𝐶𝑀𝑃

𝑗=1

 (4-43) 
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4.6 Optimisation and model updating 

The basic idea of model updating is to minimise the deviation between simulated results and 

measured values. For this purpose, a mathematical model, usually a numerical finite element 

model, is updated by varying a set of predefined parameters. In order to measure the 

deviation between model and reality, a so called objective function depending on the chosen 

updating parameters is defined, which yields an objective value that has to be minimised. The 

simulated values depend on the updating parameters, while the measurements can be carried 

out at different points in time and thus reflect different states of the structure, so the model 

can be adapted to these different states. 

In model updating, an optimisation problem is solved, which can be formulated 

mathematically (for detailed information cf. Nocedal et al. (2006) [67]). 

Min
{𝑝}∈ℝ𝑛

𝑓({𝑝})    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     
𝑐𝑖({𝑝}) = 0

𝑐𝑗({𝑝}) ≥ 0
 (4-44) 

The function 𝑓({𝑝}) with {𝑝}  ∈  ℝ𝑛 is the objective function depending on a set of n 

unknown or uncertain parameters p. The vector {𝑝} must satisfy the equality conditions 𝑐𝑖 as 

well as the inequality conditions 𝑐𝑗.  

For the purpose of damage detection the idea is that changes of the structure, especially local 

stiffness reductions, are a hint to damage. Therefore, here the aim of the model updating is to 

localise and quantify stiffness reduction. 

In the first step it must be decided, which parameters will be used in the model to simulate 

damage. For instance to model a local reduction of the bending stiffness 𝐸𝐽, where E is the 

Young’s modulus of the material and J is the area moment of inertia of the cross-section, 

either E or J can be reduced. That means either material properties of certain elements or 

geometrical properties at a certain position can be used as parameter {𝑝}. 

After the used parameters are defined, an appropriate FE-model must be created. Not only the 

model must be parametrised, it must also be possible to determine with sufficient accuracy 

the quantities, which have been measured in reality, too. For instance, these can be static 

displacements of nodes at the positions, where displacement sensors were located in reality or 

the measured and the simulated eigenfrequencies. 

In the next step, the objective function must be defined that shall be used to compare the 

measured physical quantities and the simulated ones. In the following, three possibilities are 
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proposed to compare scalar variables (e.g. displacements or eigenfrequencies), vector 

quantities (e.g. mode shapes) or matrices (e.g. modal flexibility matrices). Since the measured 

values can be obtained by different measuring methods, the objective function for model 

updating is a good possibility to combine the results of static and dynamic measurements. 

If the quantities to be compared are scalar quantities, a method similar to the weighted least 

squares technique, as suggested by Link 1999 [35], may be used.  

𝑓𝑠𝑐𝑎𝑙𝑎𝑟({𝑝})     = ‖[𝑾]({𝑥𝑚𝑒𝑎𝑠} − {𝑥𝑠𝑖𝑚({𝑝})})‖2 

= √∑(𝑊𝑖𝑖| 𝑥𝑚𝑒𝑎𝑠𝑖 − 𝑥𝑠𝑖𝑚𝑖 {𝑝}|)
2

𝑘

𝑖=1

 
(4-45) 

Where k is the number of measured values and [𝑾] is a diagonal weighting matrix. 

At first, the difference between the measured value and the result of the FE simulation is 

calculated for any scalar value. This difference is weighted by the factor 𝑊𝑖𝑖 and 

subsequently squared. The weighted error squares are summed. The objective value results as 

the square root of this sum. In other words, the measured and simulated values are combined 

in the vectors {𝑥𝑚𝑒𝑎𝑠} and {𝑥𝑠𝑖𝑚}, respectively, and then the Euclidean norm of the weighted 

difference vector is determined (cf. Appendix A.1 for an explanation of the used norms). The 

simulated values depend on the selected parameters {𝑝}, while the measurements can be 

carried out at different points in time, thus reflecting different states of the structure. As long 

as all the measured and simulated quantities are not complex but real numbers, the absolute 

values in equation (4-45) can be omitted. 

The weighting factors 𝑊𝑖𝑖 can be defined as follows. Since measurements are always subject 

to errors, measured values, which can be determined with lower accuracy, should have a 

smaller influence on the objective value than more accurate measurements. In order to 

achieve this, it is proposed here to divide this difference between measurement and 

simulation by the accuracy of the respective measurement. In the ideal case, a statistical value 

such as the standard deviation should be used, as for instance proposed by Schlune et al. 2009 

[45]. Since the accuracy also has the same unit as the measured value, one now also obtains a 

unified value. Only in this way it is possible to add deviations of different physical quantities, 

such as eigenfrequencies and displacements. The value of the objective function is then also 

unified. Furthermore, it is proposed here that the differences should be divided by the total 

number of measurements k in order to avoid the objective value being increased only because 
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more measurements have been included in its calculation. This is especially important if 

objective functions containing different physical quantities, are added in a complete objective 

function, e.g. the deviation of the static deflection to the deviation of the mode shapes. The 

differences of the static deflection and the differences of the mode shapes must be divided by 

the number of distance sensors and considered degrees of freedom, respectively. Otherwise, 

the contribution to the complete objective function, for which more measured values were 

used, prevails. 

Instead of the L2-norm (Euclidian norm), as in equation (4-45), it is also proposed to use 

other norms for the definition of the objective function, e.g. the L1-norm, which is in fact the 

sum of the absolute values of the components of a vector. In Chapter 8.3 the objective 

functions actually used are explained in more detail and in Chapter 8.6 the results when using 

the L1-norm are compared to the ones obtained with the L2-norm.  

An objective function based on the L1-norm will be defined as follows. 

𝑓𝑠𝑐𝑎𝑙𝑎𝑟({𝑝}) = ‖[𝑾]({𝑥𝑚𝑒𝑎𝑠} − {𝑥𝑠𝑖𝑚({𝑝})})‖1 = ∑𝑊𝑖𝑖| 𝑥𝑚𝑒𝑎𝑠𝑖 − 𝑥𝑠𝑖𝑚𝑖 {𝑝}|

𝑘

𝑖=1

 (4-46) 

Thus the objective value will be the weighted sum of the absolute values of the difference 

vector’s components. In general, the objective values determined with this equation are 

greater than the target values according to equation (4-45), since here is no square root. 

Therefore, the objective function according to equation (4-46) is more sensitive to changes in 

the parameters. 

Like already mentioned the measured values can be obtained by static or dynamic 

measurements. However, if vibration parameters are used, some challenges arise which are 

not important for static measurements. For the comparison of dynamic properties, first the 

measured modes and the simulated ones must be correlated. The particular challenge is here, 

that when changing the model by modifying the updating parameters, the number and order 

of the simulated modes in the considered frequency range can change. Therefore, the 

correlation made for the reference state of the model, i.e. when no damage is simulated, need 

not to be valid for the following simulations with different parameters. Therefore, it is 

advantageous to implement an automatic mode correlation. Therefore, correlation techniques 

like the ones described in Chapter 4.5 may be used. Especially, the Modal Assurance 

Criterion (MAC) as given in equation (4-34) is highly appropriate for this task. 
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This criterion can be used to identify automatically the matching mode pairs. The approach 

calculates the MAC-value between all measured and simulated modes and the results are 

saved as a matrix. Then the highest MAC-values are searched in order to define the correlated 

mode pairs. 

  

Figure 4.2: Example for a correlation of measured modes with simulated ones by means of MAC 

Figure 4.2 shows an example for this correlation technique. Here 5 modes were identified by 

an experimental modal analysis (EMA) and 8 modes were simulated by an FE-model of the 

structure. The second simulated mode shape can be correlated with the first as well as the 

second mode that were identified from measured data. This is because both measured modes 

have a similar shape. The same applies to the third measured mode, where 2 matching 

simulated modes can be found. In such cases it must be defined in the automatic correlation, 

which possibilities shall be chosen. In this example only simulated mode 5 can be 

unambiguously correlated with the fifth measured mode. Here, measured mode 4 was omitted 

from the further evaluations, because it was not well identified and so no similar mode shape 

was found by the simulation, meaning that all mode pairs with this mode have rather low 

MAC values. The simulated modes 1, 6, 7 and 8 were not identified by the EMA. That can 

happen, if they were not well excited or if the sensors did not measure the DOFs that were 

oscillating in these modes. Apart from this, it can also indicate modelling errors. The example 

shows that although it is theoretically simple to implement an automatic correlation algorithm 

based on the MAC, but some issues have to be considered. 

After the correlated mode shape pairs are defined, the dynamic properties can be compared, 

i.e. objective functions must be defined. Since the eigenfrequencies are scalar values the 

procedures described above can be used. Actually, for vector quantities, such as mode shapes, 

the same methods could be used. But it was already discussed in Chapter 4.5, why this is 
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difficult for mode shape vectors. Alternatively, it is more appropriate to use again the Modal 

Assurance Criterion (MAC) to define the objective function. The MAC-value is calculated 

according to equation (4-34) and the deviation of the mode shapes can be defined as 1-MAC. 

Now the objective function can be formulated as: 

𝑓𝑠ℎ𝑎𝑝𝑒𝑠({𝑝}) = ‖[𝑾]{1 − 𝑀𝐴𝐶({𝑝})}‖2 = √∑(𝑊𝑖𝑖(1 − 𝑀𝐴𝐶𝑖({𝑝})))
2

𝑘

𝑖=1

 (4-47) 

Where k is the number of measured modes. Of course, here also exists the possibility to use 

the L1-norm. 

  

If the correlation between the measured and the simulated modes is quite good, i.e. the MAC-

values are near 1, an alternative objective function can be defined based on the NMD values 

(cf. equation (4-38)) as: 

𝑓𝑠ℎ𝑎𝑝𝑒𝑠({𝑝}) = ‖[𝑾]{𝑁𝑀𝐷({𝑝})}‖2 = √∑(𝑊𝑖𝑖(𝑁𝑀𝐷𝑖({𝑝})))
2

𝑘

𝑖=1

 (4-48) 

Instead of considering the eigenfrequencies as scalar values and the mode shapes 

individually, the modal parameters can also be summarised by calculating the flexibility 

matrix according to equation (4-24). It applies to undamped or proportionally damped 

systems, whereby proportional attenuation can be assumed for weakly damped systems such 

as the bridges considered here. 

How suggested by Jaishi und Ren (2006) [41], the Frobenius norm can be used to calculate 

the deviations between measurement and simulation. This norm is defined for a matrix of 

dimension 𝑁 × 𝑀 as: 

This allows calculating the Frobenius norm of a matrix, which contains the differences 

between the components of the measured and the simulated flexibility matrix. 

‖[𝐀]‖𝐹 = ∑∑|𝑎𝑖𝑗|
2

𝑀

𝑗=1

𝑁

𝑖=1

 (4-49) 
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where 𝑊 is a weighting factor. It is proposed here to define the weighting by considering the 

number of measured degrees of freedom 𝑁 and the accuracy of the calculated flexibility Δ.  

For the algorithm that minimises the objective function, there are many possibilities. For 

example, the trust region Newton method, also used by Teughels (2002) [36], as described in 

[67]. Promising as well is the NLPQL algorithm (Non Linear Programming by Quadratic 

Lagrangian) published by Schittkowski (1986) [68]. 

After the model is finished it has to be validated. That means the simulated results of the 

model without damage must fit to the measurements taken from a reference state of the 

structure. Later measurements are compared to this reference state in order to find changes, 

which can be caused by damage. Hence, the measurements must be repeatable and therefore 

well documented. Ideally, the reference measurements were taken from the newly build 

bridge. The model updating procedure can already be used for this validation (like for 

instance in [39]). But the validation can also mean to use engineering knowledge to change 

properties of the model independent from the updating parameters with the aim to improve 

the consistency between measurement and simulation. 

With a parametrised and validated model of the reference state, damage assessment can be 

performed in distinct time intervals. First measurements must be performed in the same way 

as the reference measurements. Now the model can be updated by searching for an optimal 

parameter set that minimises the objective function or the deviation between simulation and 

measurement. Afterwards, the updated model is compared to the reference model in order to 

detect, localise and quantify damage. For instance the stiffness matrices of the two models 

can be compared. If damage is present at the real bridge, it can be expected that the 

simulation results fit best to the new measurements, if the stiffness of the model was reduced 

at the correct locations of damage. 

𝑓𝑓𝑙𝑒𝑥({𝑝}) = 𝑊 ∙ ‖[𝐅𝐦𝐞𝐚𝐬] − [𝐅𝐬𝐢𝐦]‖𝐹 =
1

𝑁2
∙
1

Δ
∙ ∑∑|( 𝑓𝑚𝑒𝑎𝑠𝑖𝑗 − 𝑓𝑠𝑖𝑚({𝑝})𝑖𝑗 )|

2
𝑁

𝑗=1

𝑁

𝑖=1

 (4-50) 
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5 IN-SITU TESTS AT A PRESTRESSED BRIDGE BEAM 

5.1 Initial situation and test setup 

In autumn 2013 a new steel bridge was inaugurated, which crosses the river Mosel between 

Grevenmacher (Luxembourg) and Wellen (Germany). It replaces a bridge built in the years 

1953 to 1955 that was made of prestressed concrete. This former bridge was demolished due 

to safety concerns. 

The old bridge consisted of 5 spans, where each span was composed of 5 adjoining concrete 

beams, which carried the driving lane. These beams were prestressed by internal steel 

tendons in longitudinal direction. Furthermore, the individual beams were connected to each 

other by transverse tendons in a distance of 7.5 𝑚, also imbedded in concrete. These 

connections are here referred to as transverse beams. Further transverse tendons were 

imbedded in the top flange. 

Two of these beams, with a length of 46 𝑚 and a mass of approximately 120 𝑡 each, were 

shipped to the nearby port of Mertert. Their 19 tendons in longitudinal direction were intact, 

while the transverse tendons had lost their prestress, because they were cut during the 

demolition of the bridge. These beams were used to test different methods for damage 

detection and localisation. 

During the demolition of the bridge and the subsequent transport, both beams were a little bit 

damaged, especially on the top flange. The centre bar, in which the longitudinal tendons were 

located, remained visibly intact. Figure 5.1 gives an impression of the condition of the beams 

at the beginning of the experiments. One can also see the seven transverse beams and some of 

the transverse tendons. 

The two beams were still connected by some of the transverse beams, but these were finally 

cut. One of the beams was then used for the further experiments, while the other one was cut 

into parts and used to load the structure. 
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Figure 5.1: Condition of the concrete beams at 21st of August 2013 after their transport to the port of Mertert 

Specimens have been taken from the beams in order to determine the material properties of 

the concrete. In Table 5.1 the measured properties are summarised. 

     

 

 

Figure 5.2: Concrete specimens  
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b) After testing of 
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Table 5.1: Material properties of tested concrete specimens 

Specimen 

No.

Length                           

l [mm]

Diameter           

d [mm]

Mass                       

m [kg]

Density                       

r [kg/m
3
]

Young's 

Modulus                     

E [MPa]

Poisson's 

ratio               

n

compression  

strength        

fd [MPa]

 splitting 

tensile 

strength  

fsz [MPa]

1 200 104.0 4.14 2439 42670 0.12 91 --

2 203 104.0 4.18 2426 -- -- -- 5.9

3 204 104.1 4.17 2408 37130 0.14 67 --

4 202 103.9 4.16 2431 39180 -- 69 --

5 203 104.0 4.29 2483 -- -- -- 4.0

6 203 104.1 4.27 2474 43290 0.13 75 --

7 204 104.1 4.16 2399 -- -- -- 5.8

mean value 2437 40568 0.13 76 5.2

standard deviation 31 2920 0.01 11 1.0  

The actual prestress in the steel tendons was measured using strain gauges. For this purpose 

some of the tendons were laid bare and subsequently the gauges were glued onto one of the 

12 fibres of a tendon. Then this single fibre was cut, while the rest of the tendon remained 

undamaged. The strain was measured during the cutting and the resulting data is shown in 

Figure 5.4. In addition the length of gap was callipered manually. This procedure was 

performed on two fibres of two different tendons. 

 

Figure 5.3: resistance strain gauges on the tendons 
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Figure 5.4: Strain measurements at two different fibres during cutting 

Table 5.2: Results of strain measurements – decrease in length and in strain 

M1 M2 M3 M4 Average

Dl [mm] -2.00 -2.40 -2.10 -2.50 -2.25

De [‰] -3.00 -3.50 -3.25  

In average a strain of 𝜀 = 3.25‰  and a decrease in length of Δ𝑙 = 2.25𝑚𝑚 were 

determined. Taking into account a Young’s modulus of 𝐸 = 2 ∙ 105𝑀𝑃𝑎 a prestress of 

𝜎𝑝𝑠 = 650𝑀𝑃𝑎 can be calculated. 

𝜎𝑝𝑠 = 𝐸 ∙ 𝜀 (5-1) 

        = 2 ∙ 105𝑀𝑃𝑎 ∙ 3.25 ∙ 10−3 = 650𝑀𝑃𝑎  

The back anchoring length 𝑙0 can also be calculated as follows: 

       𝜀 =
Δ𝑙

𝑙0
  

⇔ 𝑙0 =
Δ𝑙

𝜀
 (5-2) 

           =
2.25𝑚𝑚

3.25 ∙ 10−3
= 0.69𝑚 

 

The latter means that approximately 0.7 𝑚 of the tendon was stress relieved before it was 

anchored again by friction. Hence, approximately 35 𝑐𝑚 from the cutting line the tendons 

may be considered intact. 



 Chapter 5: In-situ tests at a prestressed bridge beam 

43 

A test setup was mounted in the port of Mertert for a few months. The basic idea was to 

simulate aging of the beam by inducing artificial damage of increasing severity. 5 different 

damage scenarios (DS) were realised from DS#0 – healthy state to DS#4 – heavily damaged. 

In each damage scenario, static and dynamic measurements were performed and the collected 

data were examined in order to test different approaches of damage detection and 

localisation. 

These types of tests are often performed in laboratory by using small models. There are two 

problems arising from this approach. First, it is not guaranteed that the behaviour of a scaled 

model is the same as of the real structure. But even if the results of the laboratory tests can be 

applied to reality, the second problem is that a laboratory is mostly a controlled environment 

without significant changes in temperature, air humidity, solar radiation and soil condition. 

But real structures are always exposed to such environmental changes, so their physical 

properties change over time. These changes due to environmental influences are superposed 

to the changes due to damage. Therefore, it is more difficult to detect damage based on 

measured physical properties of real structures than in the laboratory. This is the main reason 

why here a part of a real bridge was used and a test setup was built up outdoor. An additional 

objective was to examine the influence of environmental factors, especially temperature, and 

to find possibilities to compensate these influences. 

The behaviour of a separated bridge beam without asphalt layer is not the same as it was at 

the original bridge, but the intention was to reproduce the conditions during the lifetime of 

the bridge as far as possible in the test setup. First of all, the beam was supported by a fixed 

and a sliding bearing at its ends. The sliding bearing was realised with two steel plates, where 

grease was applied between them. Afterwards, the tested beam was loaded with a 

supplemental mass to simulate the additional dead load, which the beam had to sustain during 

the lifetime of the bridge. For this purpose a part of the second beam was separated with a 

length of 12 𝑚 and a mass of about 30 𝑡. This piece was mounted on the top flange of the 

tested beam.  
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Figure 5.5: Realisation of the bearings for the test beam in the port of Mertert 

a) Sliding bearing, realised 

with two steel plates 

b) Positioning of the beam 

onto the bearings 

c) Finished fixed bearing d) Finished sliding bearing 

Grease
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Figure 5.6: Test setup at the port of Mertert 

Afterwards, the test setup was equipped with sensors for temperature and displacement as 

well as with accelerometers. 
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Figure 5.7: Sensors at the test setup in the port of Mertert 
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Figure 5.8: Test setup with sensors; red: accelerometers; green: displacement sensors; blue: temperature sensors; 

In the following the upper view is referred to as “south side”, while the opposite side is called “north side”  

(unit of dimensions: [m]). 
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c) Displacement sensors 
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d) Vertical displacement 

sensor 

e) Horizontal displacement 

sensor SV7 
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In the following Chapters 5.2 and 5.3 the damage scenarios and the performed static and 

dynamic tests are explained in detail. Chapters 6, 7 and 8 also relate to the test setup, which 

was described here. At first, in Chapter 6 an approach to compensate the influence of 

temperature fluctuations on the measured displacements is described. Then in Chapter 7 

different commonly known damage indicators are evaluated in order to test if the artificially 

introduced damage could be detected by them. Finally, in Chapter 8 a model updating 

approach for damage localisation based on an FE-model of the test setup is explained. 

5.2 Static tests 

During the whole test period the deflection of the beam and the temperature at different 

locations were permanently monitored with a sampling rate of one per minute. These 

measurements were synchronised, so for every measured deflection, a corresponding 

temperature distribution can be defined. 

The vertical deflection was measured by seven inductive displacement sensors, labelled 

SV1…SV6 and SV8, which measured the vertical movement of the lower side of the beam 

against the soil that was assumed to be fixed. This was verified by measurements with an 

independent optical system, which revealed that the vertical displacement of the bearings 

during the performed static loading tests was less than 0.29 𝑚𝑚. A description of these 

measurements can be found in [69]. An additional sensor (SH7) was mounted to check 

horizontal displacement of the sliding bearing. Sensors SV1 and SV8 were mounted at the 

same position along the axis of the beam, but on opposite sides of the bottom flange, so it is 

possible to notice a rotation of the beam along its axis. The temperature sensors T1-T7 were 

embedded at least 5 𝑐𝑚 inside the concrete, while Tamb measured the ambient air temperature 

in the shadow. 

Artificial damage was introduced by cutting tendons at the damage location 5 𝑚 off the 

centre, as marked in Figure 5.8. Figure 5.9 shows the lower part of the cross-section at this 

location with the positions of the tendons. Fully cut cables are marked by a cross, while 

partially cut ones are marked by a half-filled circle. The damage was always introduced 

symmetrically on both sides of the beam. In DS#4, additionally 6 tendons were only partly 

cut. Figure 5.10 shows a photographic picture of the cut tendons during the last scenario 

DS#4. The tendons are numbered in the same order as in the official plans of the former 

bridge. 
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Figure 5.9: Damage scenarios 

   

Figure 5.10: Cut tendons in DS#4, marked by red circles, photographed from one side of the beam 

One effect of the prestress is that it compensates tensile stresses while the beam is bended due 

to a loading. The effect is illustrated in Figure 5.11, which shows the composite stress for this 

case. This is advantageous since the tensile strength of concrete is far less than its 

compressive strength. Thus, the cutting of the tendons leads to higher tensile stresses in the 

beam than in the healthy state while it is loaded. If these exceed the tensile strength, there 

will be vertical cracks. 
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Figure 5.11: Composite stress in a prestressed beam while loaded by a bending moment 
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Static load tests were performed by loading the beam with additional loads of about 2 ∙ 13 =

26 𝑡 to simulate live load due to traffic (cf. Figure 5.12). Each loading lasted at least 24 

hours.  

 

Figure 5.12: Loading of the prestressed concrete beam for static test 

During these static tests, cracks occurred around the damage location. The formation of the 

cracks on both sides of the beam is shown in Figure 5.13. During the first 2 damage 

scenarios, i.e. DS#1 and DS#2, only horizontal cracks appeared due to the back-anchoring of 

the severed tendons. Such cracks have only a small impact on the bending stiffness of the 

beam, because the supporting cross-section is not considerably reduced. Vertical cracks 

appeared from DS#3. 

Live load 
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Figure 5.13: Formation of cracks during the test period [dimensions in meter] 
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Figure 5.14: Crack pattern in DS#4 

  

a) South side 

b) North side 
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In order to have an idea of the reaction forces on the bearings of the test setup, they were 

calculated manually. For this purpose, an equivalent static system was defined and drawn in 

Figure 5.15. 
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Figure 5.15: Test setup with forces due to gravity and bearing reactions (dimensions in [m]) 

𝐹1 and 𝐹2 are forces, which came from the 30 𝑡 additional dead load that permanently stayed 

on top of the tested beam and was supported by wooden beams at the locations stated in 

Figure 5.15. They were calculated firstly as 𝐹1 = 115 𝑘𝑁 and 𝐹2 = 185 𝑘𝑁. 

𝐹3 = 10 𝑘𝑁 is the weight of the electro-magnetic shaker that was used for experimental 

modal analysis. It stayed on the beam for the whole test period. 

𝐹4 to 𝐹7 are forces resulting from the two additional live loads of each 13 𝑡 for static loading 

tests, transmitted to the beam by 4 wood supports. These forces all had the same magnitude 

of 65 𝑘𝑁. 

At last for the calculation of reaction forces, a single force 𝐺 = 1200 𝑘𝑁 in the middle of the 

span presents the weight of the tested beam. 

Since all external forces took effect in vertical direction, the horizontal reaction force 𝐵ℎ is 

equal to zero. The vertical bearing reactions were calculated as  𝐴 = 960,42 𝑘𝑁 and 𝐵 =

809,58 𝑘𝑁 while the application of every external force. When the live loads were removed, 

the bearing reactions resulted to 𝐴 = 850,50 𝑘𝑁 and  𝐵 = 659,50 𝑘𝑁. 

Furthermore, the downward displacement of the tested beam in the middle of the span 

between the two bearings due to the additional live loads, can be calculated manually and be 
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compared to results from FE-simulations. Again, the loads were assumed as single forces as 

shown in Figure 5.15 (𝐹4 to 𝐹7). The cross-section of the beam in the middle of the span is 

shown in Figure 5.16 together with its physical properties. The centre bar of the beam 

became wider near its ends, but for this calculation the cross-section is assumed to be 

constant, because the intention is just to estimate the displacement. 
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Figure 5.16: Cross-section of the beam in Mertert, shown in the middle of the span (dimensions in [mm]) 

A linear behaviour was assumed, so the deflections due to each of the four forces can be 

calculated separately and summed afterwards. For the present loading case shown 

schematically in Figure 5.17, the deflection along the beam’s axis due to a single force can be 

calculated according to [70] by the following equations (5-3) and (5-4). 
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Figure 5.17: Deflection of a simple beam due to a single force 

𝑤1(𝑥1) =
𝐹𝐿3
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𝑏
−

𝑥1
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𝑎𝑏
)      , 𝑥1 ≤ 𝑎     (5-3) 

where 𝐸𝐼 is the bending stiffness of the beam. For the Young’s modulus 𝐸, the mean value 

was used, which was determined by the material tests whose results are shown in Table 5.1, 

i.e. 40568 𝑀𝑃𝑎. For the axial area moment of inertia, the value of 𝐼𝑦 shown in Figure 5.16 

was used. 

A vertical displacement of 22.34 𝑚𝑚 is then calculated in the middle of the span, i.e. at the 

position of displacement sensors SV1 and SV8, due to the additional live loads in the healthy 

state DS#0. 

Figures 5.18 and 5.19 show the measured displacement of all sensors from 23/01/2014 until 

the end of the measurements on 19/02/2014 including all different damage scenarios DS#0 

(undamaged) to DS#4, separated by vertical red lines. Furthermore, the static tests as well as 

the periods between them are denominated after the following abbreviations. 

#x-L: Loading in damage state x 

#x-UL: Unloading in damage state x 

While “loading” means the test loads were placed on top of the beam, “unloading” means, 

that they were not present.  

𝑤2(𝑥2) =
𝐹𝐿3

6𝐸𝐼

𝑏

𝐿
(
𝑎

𝐿
)
2 𝑥2

𝐿
(1 +

𝐿

𝑎
−

𝑥2
2

𝑎𝑏
)      , 𝑥2 ≤ 𝑏     (5-4) 
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Figure 5.18: Signals of displacement sensors 

 

Figure 5.19: Signals of temperature sensors 
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An increase measured by a vertical displacement sensor means downward movement. The 

red signal with mostly negative values SH7 shows the horizontal movement of the beam at 

the sliding bearing. If this signal increases, the end of the beam moves away from the sliding 

bearing in direction of the fixed bearing, i.e. to the left in the view shown in Figure 5.8. If the 

beam is loaded with the test live loads, it inclines over the sliding bearing. As a result of this 

inclination, the lower part of the beam, where the sensor is located, moves towards the 

bearing, so the signal decreases as it can be seen in Figure 5.18. 

Furthermore, it can be observed that after the removal of the load the signals did not always 

return to the values before the loading test, i.e. the beam did not return to its former state. 

Before this effect is explained, some terms used in this thesis must be defined. 
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Figure 5.20: Qualitative stress-strain diagram determined in tensile test according to [71] 

Figure 5.20 shows a qualitative stress-strain diagram determined in tensile test according to 

Issler et al. (2003) [71]. As long as the yield stress 𝜎𝑦 is not exceeded (point B), the part will 

return to its former state after the removal of the load, i.e. only elastic deformation occurs. 

Further loading, e.g. up to point C, leads to additional plastic strain 𝜀𝑝𝑙 and the material 

behaviour becomes non-linear. Now after the removal of the load (point D) the strain is 

reduced by the elastic contribution 𝜀𝑒𝑙 and there will be a remaining strain 𝜀𝑟. Accordingly, 

these terms can be defined for concrete under uniaxial compressive load as follows. 
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Figure 5.21: Qualitative stress-strain diagram for pure concrete under uniaxial load (cf. [2]) 

Bungard stated in his doctoral thesis [2] that the material behaviour of concrete under 

uniaxial compression can be assumed as linear elastic up to 40% of the compressive strength 

𝑓𝑐 as well as under uniaxial tension up to 70% of the tensile strength 𝑓𝑐𝑡. Figure 5.21 shows a 

qualitative stress-strain diagram for concrete. The Young’s modulus of concrete in the linear-

elastic range can be defined as the slope of a secant through the origin (point A) and point B 

and is then referred to as secant Young’s modulus 𝐸𝑐𝑚. 

As long as the stress is in the range between 0.7𝑓𝑐𝑡 and 0.4𝑓𝑐, the strain decreases to zero 

after the load has been removed, i.e. it returns to point A. If the stress exceeds the linear 

elastic range, the stress-strain relationship of concrete becomes nonlinear, so plastic strain 𝜀𝑝𝑙 

occur and when the load is removed, a permanent strain 𝜀𝑟 remains.  

It can be summarized that if the relationship between stress and resulting strain is non-linear, 

plastic deformation occurs, which leads to remaining deformations after the removal of the 

load. 

Waltering performed for his doctoral thesis [1] static loading tests of a reinforced concrete 

beam in laboratory. The beam with a length of 6 𝑚 was supported by a hinge and roller 

bearing as shown in Figure 5.22.  
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Figure 5.22: Experimental setup with reinforced concrete beam (cf. [1]) 

A hydraulic jack was used to apply static loads. Several load steps were performed with 

increasing magnitude of the applied force and between the load steps the load was relieved. 

Figure 5.23 shows a force-displacement diagram for load steps #2-#6, where the applied 

force is plotted over the deformation in the middle of the span. 

 

Figure 5.23: Force-displacement diagram for gradually damaged reinforced concrete beam [1] 

Four main effects can be observed. When loading the beam, the relationship between force 

and displacement is quite linear up to a certain load. But then the slope of the curve 

decreased, while the load was further increased. This non-linearity is explained in [1] by the 

formation of cracks. Secondly, after the removal of the load, the beam did not return to its 

initial state i.e. a deformation remained. The third effect is that the slopes of the curves 
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decreased in every load step compared to the former steps, since the stiffness of the beam was 

reduced due to the cracks. Finally, in the last load step #6 a yielding of the beam can be 

clearly observed, i.e. the displacement increased while the force stayed on the same level. 

Similar effects can be observed in the courses of the measured displacements in Figure 5.18. 

Already before the 23
rd

 of January 2014, when the graph in Figure 5.18 begins, the beam was 

loaded for several times. Therefore, in the undamaged state DS#0 only small or nearly no 

remaining deformations can be seen in Figure 5.18. The beam already reached a steady state, 

i.e. it occurred almost no further cracks when the beam was loaded. Since the first artificial 

damage was introduced in scenario DS#1, the vertical deflection increased over time while 

the static tests, i.e. while the beam was loaded with the additional live loads, although the 

load stayed the same. The effect is still weak in DS#1 but can be clearly seen in the following 

damage scenarios and can be explained by the formation of cracks. After the removal of the 

load the beam did not return to the deflection before the test but a residual  deformation 

remained. In DS#4 2 consecutive static load tests were performed without introducing 

damage between them. While plastic strain occurred during the first loading #4-L1, which led 

to remaining deformations, the deformations after the second loading #4-L2 were nearly the 

same as before this loading, so the beam reached again a steady state. The increasing 

remaining deformation of the beam is referred to in the following as “sagging”. 

Especially, as revealed by data from 30/01/14 18:00 to 31/01/14 12:00, a stick-slip effect 

occurred caused by the friction between the steel plates of the sliding bearing. The specified 

period is shown in detail in Figure 5.24. 
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Figure 5.24: Displacements with stick-slip effect 

After the removal of the live loads earlier on 30/01, the deflection of the beam had a tendency 

upwards and involved the end on sliding bearing get closer to the fixed bearing due to the 

decrease of the inclination. Therefore, as shown in Figure 5.18, the signal of SH7 rose 

abruptly at the moment of unloading and the signals of the vertical displacement sensors fell 

at the same time. However, some time after the removal of the loads, signal SH7 further 

increased and steps can be seen in the course of this signal (cf. Figure 5.24b). For an 

explanation of this behaviour, the course of the measured concrete temperatures T1-T7 in the 

same time period is considered (cf. Figure 5.24c), which shows an overall decrease of the 

concrete temperatures. This would result in a contraction of the beam but it was constrained 

by the static friction between the steel plates of the sliding bearing. Therefore, an increasing 

axial force is caused in the beam until it exceeds the static friction. Then the beam moved on 

the sliding bearing until the axial force was again lower than the sliding friction and this 

procedure repeated while the temperature further decreased. 

a) Vertical displacements b) horizontal displacements 

c) Temperatures d) Concrete temperature 

measured by T4 
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The magnitude of the axial force, which was necessary to exceed the static friction, can be 

estimated by considering the temperature differences between two successive movements on 

the sliding bearing. The axial force, which is created by constrained heat expansion or 

contraction due to a certain change in concrete temperature Δ𝑇 can be calculated by the 

following equation [70]: 

Where 𝐸𝐴 is the axial rigidity of the beam and 𝛼𝑇 is the coefficient of thermal expansion. For 

the Young’s modulus 𝐸 again the value from Table 5.1, i.e. 40568 𝑀𝑃𝑎, was used, 

furthermore cross-sectional area 𝐴 = 0.951𝑚2 and 𝛼𝑇 = 10−5𝐾−1. The difference of the 

temperatures, at the moment when the horizontal movement stops and where it start again 

was determined from the signal of sensor T4 and averaged for 20 steps in Figure 5.24b. The 

result is Δ𝑇 =
1

20
(0.56°𝐶 − 3.65°𝐶)  = −0.15 °𝐶. The used values are illustrated in Figure 

5.25. 

 

Figure 5.25: Determination of temperature difference 𝚫𝑻 

𝐹 = 𝐸𝐴 ∙ 𝛼𝑇 ∙ Δ𝑇 (5-5) 
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By substituting these values in equation (5-5), an axial force due to heat contraction of 

𝐹𝑎𝑥 = 59500 𝑁 can be estimated. This is the difference between the static and the sliding 

friction. 

Furthermore, a serrated course of the signals of the vertical displacement sensors can be seen 

in Figure 5.24a. This is caused by an increasing downward deflection of the beam while the 

axial force calculated above built up, followed by an abrupt upwards movement at the 

moment when the sliding bearing started to move. The axial force caused a bending moment, 

because it occurred at the bottom flange of the beam and its line of action did not go through 

the centre of gravity of the cross-section. This bending moment is equal to the product of the 

force and the distance of the centre of gravity from the bottom of the beam 𝑒𝑧 = 1.39 𝑚 that 

can be seen in Figure 5.16. According to [70] the displacement in the middle of the span due 

to this moment can be calculated by the following formula. 

𝑤 (
𝐿

2
) =

𝑀𝑏𝐿
2

16𝐸𝐼
=

𝐹𝑎𝑥 ∙ 𝑒𝑧 ∙ 𝐿2

16𝐸𝐼
 (5-6) 

For the bending stiffness 𝐸𝐼 and the length 𝐿 again the same values must be used as in the 

above calculation of the deflection of the beam due to a single force. This yields a 

displacement of 𝑤 (
𝐿

2
) = 0.52 𝑚𝑚. This should be the height of the “saw teeth” that can be 

seen in the course of the signal SV1 in Figure 5.24a. They are slightly smaller, but the order 

of magnitude fits and the above calculation must be considered as estimation. 

At the end of the considered time period the temperature rose relatively swift and the beam is 

again bended upwards. In Figure 5.18, this movement can often be observed in the middle of 

the days, when the temperatures rose. The effect occurred as well in periods when the beam 

was loaded, as can be seen in Figure 5.26. Since always an upwards movement of the beam 

was observed at points in time when the beam was artificially damaged by cutting tendons, 

the question arose, if this movement was introduced by the damaging. But the damaging 

always took place around noon, so it is more logical to assume that the movement occurred 

due the above explained temperature effect. 

Until this point, the bending of the beam due to changes in its overall temperature was 

discussed, which can be explained by the stick-slip effect that occurred because the sliding 

bearing was not ideal. But even if the sliding is not blocked, a bending can still occur caused 

by a temperature gradient between the upper and lower parts of the beam. In order to explain 



 Chapter 5: In-situ tests at a prestressed bridge beam 

63 

this effect, the behaviour of the beam during the course of the day 25/01/14 is discussed in 

the following. During this day, the beam was loaded with the additional live loads. 

A detailed diagram for this day is presented in Figure 5.26, where the measured temperatures 

are shown in comparison to the displacement of the beam in the centre of the span, i.e. at 

sensor position SV1. 

  

Figure 5.26: Effect of temperature on the deformation of the beam during the day 

1h 
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First of all, as expected, the heating of the concrete shows low-pass behaviour, caused by its 

heat capacity. Therefore, the variations of the temperatures measured inside the concrete  

(T1-T7) are smoother than the change of the ambient temperature. Additionally, between 

noon and 18o’clock a phase shift of about 1 hour can be determined. If the change in ambient 

temperature is slower, the phase shift is less.  

From midnight until noon, the displacement at the position of SV1 rises, i.e. the beam bends 

downwards. But afterwards, a movement in the opposite direction may occur. The reversal of 

movement cannot be explained by the loading, since it did not change over the whole day. 

Instead, the hypothesis is that this movement was caused by temperature fluctuations. While 

no considerable stick-slip effect was observed, it can be assumed that the sliding bearing was 

not blocked. It is believed that the temperature difference between the upper and lower parts 

of the beam caused the deflection. In order to test the hypothesis and to explain the effect, a 

demonstration is performed below. 

Let us consider a simple beam supported by a fixed and a sliding bearing. As long as the 

temperature changes uniformly over the whole beam, it will expand or contract unhindered 

thanks to the sliding bearing. No stresses or deflections occur due to the temperature change 

but only the length of the beam changes to the value 𝐿0 at temperature 𝑇0. Now let us assume, 

that the temperature of the upper part 𝑇1 becomes higher than the temperature of the lower 

part, which remains 𝑇0. As a result, the upper region of the beam expands further by the 

length Δ𝐿. The cross-section inclines by the angle 𝛽 and the beam bends upwards. 
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Figure 5.27: Deflection caused by temperature gradient 
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Considering Figure 5.27, two equations for 𝛽 can be formulated. 

Furthermore, with Δ𝑇 = 𝑇1 − 𝑇0 the strain due to heat expansion can be formulated as 

follows and Δ𝐿 can be determined. 

where 𝛼𝑇 is the coefficient of thermal expansion. Equating the two formulas for 𝛽 and 

substituting the expression for Δ𝐿 yields the following equation for the radius 𝑟 of curvature. 

The curvature is the inverse of the radius 𝑟 and considered as constant. By integration, an 

expression for the displacement 𝑧 can be deduced as a function of coordinate 𝑥, which is 

measured in the direction of the beam’s axis. 

The constants in equation (5-13) can be determined by the boundary conditions. 

This yields the following equation for 𝑧(𝑥). 

𝛽 =
180° ∙

𝐿0

2
𝜋𝑟

 
(5-7) 

𝛽 =
180° ∙

Δ𝐿
2

𝜋ℎ
 

(5-8) 

𝜀 =
Δ𝐿

𝐿0
= 𝛼𝑇 ∙ Δ𝑇 ⟺  Δ𝐿 = 𝐿0 ∙ 𝛼𝑇 ∙ Δ𝑇 (5-9) 

𝑟 =
𝐿0ℎ

Δ𝐿
=

ℎ

𝛼𝑇 ∙ Δ𝑇
 (5-10) 

𝑧′′(𝑥) =
1

𝑟
=

𝛼𝑇 ∙ Δ𝑇

ℎ
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (5-11) 

𝑧′(𝑥) =
𝛼𝑇 ∙ Δ𝑇

ℎ
∙ 𝑥 + 𝐶1 (5-12) 

𝑧(𝑥) =
𝛼𝑇 ∙ Δ𝑇

2ℎ
∙ 𝑥2 + 𝐶1𝑥 + 𝐶2 (5-13) 

𝑧(𝑥 = 0) = 0 ⟹ 𝐶2 = 0 (5-14) 

𝑧(𝑥 = 𝐿0) = 0 ⟹ 𝐶1 = −
𝐿0 ∙ 𝛼𝑇 ∙ Δ𝑇

2ℎ
 (5-15) 

𝑧(𝑥) =
𝛼𝑇 ∙ Δ𝑇

2ℎ
∙ 𝑥2 −

𝐿0 ∙ 𝛼𝑇 ∙ Δ𝑇

2ℎ
𝑥 (5-16) 
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Inserting for the position 𝑥 =
𝐿0

2
 yields: 

Hence, the displacement of the beam in the middle of the span is proportional to the 

temperature difference Δ𝑇. 

Now the following values for 𝛼𝑇, ℎ and 𝐿0, will be used, for reflecting the test setup in the 

port of Mertert described in Chapter 5.1.  

𝛼𝑇 = 10−5 𝐾−1 

ℎ = 2100 𝑚𝑚 

𝐿0 = 46000 𝑚𝑚 

The maximum value of displacement 𝑧 was determined in the middle of the beam, i.e. at 

𝑥 =
𝐿0

2
. With the above values one obtains: 

Table 5.3 shows the deformation for different values of Δ𝑇. 

Table 5.3: Deformation of a beam due to temperature difference 𝚫𝑻 between the top and the bottom 

DT [K] 1 2 3 4 5

z(L0/2) [mm] -1.26 -2.52 -3.78 -5.04 -6.30

r [mm] 2.10E+08 1.05E+08 7.00E+07 5.25E+07 4.20E+07

b 6.28E-03 1.26E-02 1.88E-02 2.51E-02 3.14E-02

L0-L0' [mm] 9.20E-05 3.68E-04 8.28E-04 1.47E-03 2.30E-03  

As shown in Figure 5.8, the temperature T4 was measured near the bottom of the beam, while 

all other concrete temperatures were measured in the top flange or in the middle of the centre 

bar (T7). During the morning of the 25
th

 of January 2014 (cf. Figure 5.26), T4 is higher than 

the other concrete temperatures, except T3. The differences varied between 0 to 1°𝐶. 

According to the above example, this should yield a displacement of about 1.25 𝑚𝑚. This 

fits the displacement in Figure 5.26 due to temperature fluctuations during the morning. The 

beam bended downwards, since the top flange was colder than the lower part of the centre 

bar. On the afternoon the temperature T4 fell below most other concrete temperatures, so the 

beam bended in the opposite direction. Furthermore, T4 rose again over the other 

𝑧 (
𝐿0

2
) = −

𝐿0
2 ∙ 𝛼𝑇

8ℎ
∙ Δ𝑇 (5-17) 

𝑧 (
𝐿0

2
) = −1.26

𝑚𝑚

𝐾
∙ Δ𝑇 (5-18) 
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temperatures during the afternoon and the evening, thus the beam trended again to bend 

downwards. 

The values, which were calculated for 𝑧 at 
𝐿0

2
, match approximately the deformation due to 

temperature fluctuations, which were observed during the tests in the port of Mertert. This 

shows that the change in deflection due to temperature came mainly from the temperature 

difference between the lower and upper parts of the beam. More exactly, it can be concluded 

that the deformations of the beam that occurred due to the temperature difference between top 

and bottom flange were one order of magnitude higher as the deformation due to fluctuations 

of the bottom temperature T4 itself. 

During the deformation due to Δ𝑇 the horizontal distance between the bearings changes from 

𝐿0 to 𝐿0′. But for a beam with a length of 46 𝑚 the difference between 𝐿0 and 𝐿0′ is 

negligible, so deformation due to Δ𝑇 can also take place, while the sliding bearing is fixed, 

that means at the same time when deformation due to fluctuations of T4 occurred. Therefore, 

it has to be expected that both effects are superposed in the measurement data. 

5.3 Dynamic tests 

In the dynamic tests the modal parameters of the test setup (eigenfrequencies, damping, mode 

shapes and modal mass) were detected by Experimental Modal Analysis (EMA). The 

structure was excited with an electromagnetic shaker type “Tira” positioned on the top of the 

beam (cf. Figures 5.6 and 5.8). A detailed description of this shaker can be found in [58]. A 

swept sine excitation was used with a sweep rate of 0.02
𝐻𝑧

𝑠
. The force amplitude of this 

shaker is adjustable and tests with different force amplitudes were performed but for the most 

tests the amplitude 2000 𝑁 was used. Here, the intention was not to examine the dependency 

of the dynamic parameters on the amplitude of the excitation but to perform the same 

measurement several times in the different damage scenarios DS#0 to DS#4. During the tests 

the excitation force was measured by 3 force transducers that were positioned between the 

shaker and the beam. As input signal the sum of the three force signals was calculated. The 

response of the structure was measured by 26 accelerometers type PCB393B04, whose 

positions can be seen in Figure 5.8. One of the accelerometers was positioned under the 

shaker as driving point (DP). The signals were recorded by a data acquisition system (DAQ) 

at a sampling rate of 2500 𝐻𝑧. After the conclusion of the tests the gathered data was 

examined with modal analysis software to obtain the modal parameters. Figures 5.28 and 
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5.29 show the input signal and the response of the system, which were measured at the 

driving point for a measurement at 31/01/14 11:28:18. 

 

Figure 5.28: Excitation force as sum of the signals measured by three force transducers 

  

Figure 5.29: Acceleration measured during a dynamic test at the driving point 

resonances 
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The considered frequency range started at 2.5 𝐻𝑧, because the shaker wasn’t capable of 

generating the necessary force amplitude at lower frequencies. In the evaluation described in 

the following, a frequency range from 2.5 𝐻𝑧 to 10 𝐻𝑧 is considered. For practical reasons it 

was difficult to handle the large data files, which result from the measurements with sampling 

rate 2500 𝐻𝑧, and here this high sampling rate was not necessary, because the highest 

considered frequency is only 10 𝐻𝑧. Hence, the data was reduced before the further 

evaluation. Before the reduction in order to avoid the aliasing, the frequencies over 125 𝐻𝑧 

were filtered from the data. For this purpose a digital low pass filter was created and the 

Matlab function ‘filtfilt’ was used that filters the data without causing a phase shift. The input 

data pass through the filter in forward and reverse direction, whereby the phase shift is 

compensated. In Figure 5.30 the resulting output of the filter is drawn in comparison to the 

original raw signal for one accelerometer. It can be seen that the course of the filtered signal 

is smoother, since the high frequencies were removed and that no phase shift occurred. After 

the filtering the sampling rate was reduced by factor 10 to 250 𝐻𝑧 by using only every tenth 

sample of the filtered signal for the further evaluation. 

  

Figure 5.30: Raw and filtered signal of accelerometer 26 (driving point) 
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The data, which was filtered and reduced as described above, were now imported to the 

software ME’scope, which was used to calculate discrete values of the frequency response 

functions (FRFs) for every DOF with regard to the input force that took effect at the driving 

point. For this purpose first the Fourier spectra of the input and response signals are 

calculated by performing a Fast Fourier Transformation (FFT). Then the crosspower spectra 

of the input and the outputs are divided by the autopower spectra of the input. 

Where {𝑋𝑟𝑒𝑠(𝑓)} and {𝑋𝐹(𝑓)} are the Fourier transform of the response and the input force 

signals, respectively, given as discrete values for certain frequencies. The superposed 𝐻 

denotes the conjugate transposed. The operation yields a matrix with discrete values of the 

FRFs. At first, the FRFs were calculated for several parts of the signals with duration 100s. 

This yielded a frequency resolution of the resulting FRFs of 0.01 Hz. The used individual 

signal parts overlapped by 66% and were multiplied with a Hanning window in order to 

avoid the leakage effect due to a non-periodic signal. This effect is well-known in the field of 

signal analysis and means that the energy contribution at a signal that belongs to a certain 

frequency is spread over a frequency range, which distorts the spectra. It occurs if the input of 

a FFT is non-periodic. The Hanning window forces the signal to become zero at the 

beginning and the end, whereby a periodic signal is created artificially. The disadvantage is 

that a damping is added to the signal. 

However, in order to obtain one FRF for every DOF, it was averaged over all the separate 

signal parts. By doing this, noise is reduced, if all FRFs used for the averaging are the same. 

The procedure so far yielded discrete values of the FRFs, whose magnitude is plotted in 

Figures 5.31 and 5.32 for one measurement in the healthy state of the beam. Four resonance 

frequencies can clearly be identified by peaks in the FRFs. 

[𝐹𝑅𝐹] = [{𝑋𝑟𝑒𝑠(𝑓)}{𝑋𝐹(𝑓)}𝐻][{𝑋𝐹(𝑓)}{𝑋𝐹(𝑓)}𝐻]−1  (5-19) 
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Figure 5.31: FRFs measured for the bridge beam in Mertert in DS#0 

 

Figure 5.32: FRFs measured for the bridge beam in Mertert in DS#0 

Now the FRFs were exported to OROS, where estimates of the modal parameters were 

obtained by the method ‘EMA Broadband’, which uses the Polyreference Least Squares 

Complex Frequency (p-LSCF) algorithm, which is described in Guillaume et al. (2003) [72]. 

In the following the results are shown for the measurement in the healthy state of the beam 

that was also used for the plots of the FRFs. 

B1a 
B1b 

T1 

B2 

(T2) 
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Table 5.4: Modes identified in the measurement at 31/01/14 11:28:18 

Mode

Eigenfrequency 

[Hz]

Damping 

[%]

Modal A                

[kgm2/s]

Modal B         

[kgm2/s2]

B1a 2,88 0,786 -1.81e+05 - 6.55e+05i -1.19e+07 +3.18e+06i

B1b 3,03 1,939 6.57e+04 - 2.69e+05i -5.10e+06 - 1.35e+06i

T1 4,48 1,540 1.32e+05 - 4.84e+06i -1.36e+08 - 5.82e+06i

T2 7,29 0,580 3.21e+06 - 8.38e+06i 3.85e+08 - 1.45e+08i

B2 7,54 0,684 -4.61e+04 - 6.74e+05i -3.20e+07 + 1.96e+06i  

 

Figure 5.33: Not normalised mode shape components as calculated by OROS plotted in the Gaussian plane as 

compass plots 
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Figure 5.34: Mode shape components scaled to unit modal mass plotted in the Gaussian plane as compass plots 

As it can be seen in Figure 5.34, the mode shapes normalised to unit modal mass are nearly 

purely imaginary. An exception is torsional mode T2, which is a hint, that for this mode the 

modal mass was not well identified. Furthermore, this mode was not very distinct in the FRFs 

(cf. Figure 5.32). For these reasons, this mode was omitted in the further evaluations. 
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Figure 5.35: Identified mode shapes scaled to unit modal mass (UMM); The imaginary part of the components was 

used for these plots. The x- and y-axis are the coordinates of the accelerometers at the beam (red: north side, blue: 

south side). 

At first, these dynamic tests were performed on the undamaged beam, i.e. on the beam as it 

was after the bridge had been demolished and the transport had been carried out. This state 

was defined as the reference state (DS#0). Subsequently, defined damages were introduced 

by cutting some of the tendons to realise damage scenario DS#1 to DS#4 as specified in 

Chapter 5.2. These artificial damages simulated an aging process with increasing damage. 

The tests were repeated in every damage scenario. The gathered data was used in several 

evaluations, which are described in the following chapters. The aim was to test, if the 
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measured modal parameters can be used for the detection of the damage introduced in DS#1 

to DS#4. Finally, some of the measurements were chosen to be used in a model updating 

procedure that is described in Chapter 8. 

5.4 Conclusion 

During the entire test period, and especially after artificially damage was introduced, the 

prestressed concrete showed an increasing permanent deformation. After a loss of prestress, it 

takes some time until the beam has reached a new steady state. This is because, the 

application of a load leads to the formation of cracks, which still grow for some time. In 

contrast to the damage scenarios DS#1 to DS#3, 2 static load tests were performed in the last 

scenario. Here it was found that the permanent deformation of the beam after the second test 

was significantly lower than after the first one.  

Furthermore, the deflection was strongly influenced by temperature fluctuations. In order to 

separate this influence from the effects of damage on the deformations, a method for 

temperature compensation is proposed in the next chapter. 

By experimental modal analysis, 3 bending modes and 1 torsional mode in the frequency 

range 2.5 − 10 𝐻𝑧 were clearly identified. Some of the FRFs showed an additional peak 

(marked in Figure 5.31 as T2), which was identified by the modal analysis software as a 

further torsional mode. But the quality of the identification for this mode was quite bad, so it 

was omitted in the further evaluation. The frequencies of the first two modes were similar, as 

they are highly coupled modes. The torsional mode shape T1 was very discontinuous, which 

indicated that it was not well identified. This was most likely due to the fact that most of the 

acceleration sensors were placed too close to the centre bar of the beam in order to detect the 

torsion well. Originally, this positioning had been chosen because of the damage that was 

present on the top flange from the beginning. Only four of the 26 accelerometers in total were 

mounted near the edges of the top flange. 
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6 TEMPERATURE COMPENSATION 

As discussed in Chapter 5.2, the courses of the static displacements are overlaid by 

deformations caused by temperature fluctuations as can be seen in Figure 5.26. This up-down 

movement caused by temperature fluctuation during the course of a day is unavoidable, 

although the measurements were performed in winter with mostly cloudy sky. It is evident 

that the temperature gradients within a structure strongly increase in summer as a result of 

higher solar irradiation. Hence, the effect of temperature fluctuations on the deformations 

also increases. However, it is useful to compensate it, as it has nothing to do with the 

artificially introduced damage during the tests. 

In [69], a compensation procedure was described and illustrated by data measured in the port 

of Mertert. It is briefly explained here. 

In Chapter 5.2 it was shown that fluctuations of the overall temperature of the concrete beam 

can cause deflection, if the sliding bearing is blocked. Therefore, in Figures 6.1 and 6.2, the 

displacements measured by SV1 and SH7, respectively, during all loadings (L) are plotted vs. 

the bottom flange temperature T4.  

In Figure 5.18, the sensors were set to zero at the starting of reference state DS#0, following 

an offset of sensors. The data considered here are taken before the offset. However, this does 

not affect the procedure for temperature compensation. 

Like elucidated in Chapter 5.2, the horizontal movements of the beam at the sliding bearing 

are rather small or even zero, if the deformations are only caused by temperature fluctuations. 

Therefore, only data, which was taken during such periods, provide information that is useful 

for temperature compensation. 

Magenta points present the full data set, from which a selection is performed for each period 

when only small or no horizontal movement at the sliding bearing occurred, which can be 

clearly observed in Figure 6.2. These selected data are marked by dark blue lines and used for 

temperature compensation. Since the sliding bearing was not ideal, a stick-slip effect exists, 

i.e. there are several distinct periods separated by slips of this bearing even during the same 

loading. For instance, there are three periods with only small horizontal movement during 

loading #4-L1. 
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Figure 6.1: Vertical displacement in the middle of the beam (SV1) vs. temperature T4 [69] 

 

Figure 6.2: Horizontal displacement at the sliding bearing (SH7) vs. temperature T4 [69] 

Only for the selected data, a linear regression line was assessed and presented in green for 

each period. Figure 6.3 facilitates the observation by separating each loading. 



 Chapter 6: Temperature compensation 

79 

 

Figure 6.3: Detailed plots of vertical displacement SV1 vs. T4 for each loading [69] 

 

Figure 6.4: Detailed plots of vertical displacement SH7 vs. T4 for each loading [69] 
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The above figures show that the regression lines match quite well with the selected data, i.e. 

the variance is low. The assumption of a linear relationship between vertical displacement 

SV1 and concrete temperature T4 is obviously appropriate. Additionally, most of the 

regression lines are quite parallel. Especially for the vertical displacement, the trend is clear: 

a higher temperature T4 corresponds to a less displacement, i.e. the beam moved upwards 

and vice versa. 

Furthermore, it was shown in Chapter 5.2 that even with an ideal sliding bearing, deflection 

can be produced by temperature fluctuations. In this case they are caused by temperature 

gradients in the beam, like for instance a difference between the temperature in the top and 

the bottom surface. Therefore, similar plots as in Figure 6.3 were created for SV1 and 

Δ𝑇 = 𝑇6 − 𝑇4, where T4 and T6 present the temperature of the bottom flange and the top 

flange accordingly. 

 

Figure 6.5: Detailed plots of deformation SV1 vs. 𝜟𝑻 = 𝑻𝟔 − 𝑻𝟒 for each loading [69] 

The temperature difference Δ𝑇 is mostly negative, which means that the top temperature T6 

is less than the bottom temperature T4. As analysed in Chapter 5.2, a negative Δ𝑇 leads to a 

downward deflection, while a positive Δ𝑇 results in an upward bending. So it can be resumed 

that an increase of Δ𝑇 accompanies a decrease of deflection of the beam. In comparison to 
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SV1 vs. T4, the linear relationship in SV1 vs. Δ𝑇 is less pronounced with more varied slopes 

of the regression lines. That means the correlation between SV1 and T4 is stronger and so it 

is more appropriate as basis for temperature compensation. 

The compensation consists in performing a projection of data following a pre-defined 

direction and a reference temperature. Since the regression lines are quite parallel, a common 

slope can be chosen as a representative direction. Since the measurements were taken in 

winter when the ambient temperature was quite low, a reference temperature of 5°C was 

chosen. Figure 6.6 gives an example that two data points X1 and X2 measured at different 

temperatures are mapped onto the reference temperature and result in two derived points Y1 

and Y2. 

 

 

Figure 6.6: Example of temperature compensation: 2 points X1 and X2 are projected through the slope of the 

regression line to the reference temperature, which yields two new points Y1 and Y2 [69] 

This mapping was performed for selected data points with inconsiderable movement at the 

sliding bearing (that Figure 6.3 shows for loading cases) and presented in Figure 6.7. 

a) SV1 over T4 b) SV1 over time 
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Figure 6.7: Measured signal SV1 (blue) and compensated values for selected data (red) [69] 

The compensated data show less variation and should be more appropriate than the raw data 

for model updating and damage detection in the following steps. 

It is possible to use the described procedure for temperature compensation for other 

quantities, like for instance the eigenfrequencies, too. Changes of the Young’s moduli due to 

temperature fluctuation cause stiffness changes and hence changes of the eigenfrequencies of 

a structure. For most bridges changes in the asphalt temperature have a high impact on the 

eigenfrequencies, since the Young’s modulus of asphalt shows a high dependency on 

temperature. In the test setup, which was examined in the present thesis, the asphalt layer was 

already removed from the top of the prestressed concrete beam, hence a temperature 

compensation of the eigenfrequencies was omitted. 
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7 EVALUATION OF DAMAGE INDICATORS 

7.1 Static deflection 

Already from the raw data shown in Figures 5.18 and 5.19, increasing damages are 

detectable. In DS#0, the maximum displacement occurs in the middle of the span between the 

two bearings at the positions of sensors SV1 and SV8. With increasing damages, the 

displacement at point SV3 approaches the value in the middle and even exceeds this value 

from DS#3 on. It allows localising the damage, since SV3 was the nearest sensor to the 

damage location. The point of maximal displacement shifted towards the damage. 

Furthermore, as already mentioned in Chapter 5.2 a sagging, i.e. a steady downwards 

movement of the beam due to increasing permanent deformation, of the beam is observed in 

Figures 5.18 and 5.19. Especially from #2-UL to #4-UL1, it shows clearly, that the beam did 

not return to its former state after removal of the load. To a smaller extent, these remaining 

deformations already occurred in the healthy state as well as DS#1. They can be explained by 

the formation of cracks in the concrete and small plastic deformations of the reinforcements 

during the loading of the beam. Furthermore, while the deflection in #0-L1 and #0-L2, i.e. 

without the presence of damage, stays more or less at the same level, it increases in #1-L to 

#4-L1, while the beam is loaded. The effect of plastic deformations increased after the cutting 

of tendons and led to progressive irreversible deformations. In the last static loading test #4-

L2 the irreversible deformation already occurred in the previous loading and so the beam had 

reached a new steady state. 

In the following, the displacements which occurred during the load tests (stages designated 

with “L”) and between them (stages designated with “U”), are examined more in detail. As it 

is observed in Figure 5.18, these displacements were not constant over time. Besides the 

above mentioned effects, the displacements were also dependent on temperature fluctuations 

as elucidated in Chapter 5.2. In order to show the deflection along the longitudinal axis of the 

beam, a ‘representative’ value was determined for each of these stages and each sensor. Then 

these values were used as nodes for a cubic spline interpolation. Afterwards, the first and 

second derivatives of the splines were also calculated. At first, it will be described here, how 

the representative values were chosen. 
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Since the up and down movements of the beam due to temperature fluctuations are not 

related to damage, only temperature compensated displacements are evaluated. They were 

determined by means of the procedure that has been described in Chapter 6. For the 

temperature compensation, the full data set of measured displacements was subdivided into 

parts, which were serially numbered. Only for some manually selected parts, the temperature 

compensation was performed. The main selection criterion was that there were only small 

movement at the sliding bearing like elucidated in Chapter 6. As an example, Figure 7.1 

shows temperature compensated displacements for unloading #0-UL2 and sensor SV3. Due 

to the mentioned selection process the parts 3 and 8 are missing in Figure 7.1. 

 

Figure 7.1: Detailed view of the temperature-compensated displacements in unloading #0-UL2 

It can be seen in Figure 7.1 that in spite of the temperature compensation, there are still 

important variations. Especially, the values in part 10 are much smaller as in the previous 

parts. This is a decrease of the deflection, which occurred when the temperatures rose around 

noon as it was explained in Chapter 5.2. Hence, in order to determine one representative 

value, it was firstly necessary to choose manually parts for which the temperature-

compensated values were quite consistent. If several parts corresponded to this criterion, 

preference was given to the ones that were measured later, because for these parts, the beam 

had more time to settle down. For instance, here parts 6 and 7 were selected. Finally, as 
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representative value for the temperature-compensated displacement, the mean value of the 

selected data was calculated. This procedure was repeated for all displacement sensors and 

every loading and unloading. 

At first, the absolute displacements against a base line were considered. Already before the 

temperature compensation, the signals of all sensors were set to zero at a certain point in time 

(22/01/2014 11:59:00). Therefore, the representative displacement values for stage #0-UL1, 

which were determined as described above, were very close to zero. For the following 

representations, these displacements have been used as a reference, i.e. by subtracting from 

all determined displacements for all sensors the corresponding values in stage #0-UL1, the 

deflection in #0-UL1 was defined as the base line. The result is shown in Figure 7.2. The 

solid lines represent the loadings and the dashed lines the unloadings. For comparability, the 

plot of the sensors signals in Figure 5.18 uses the same baseline. In the following plots, the 

damage location is shown by grey shading. 

 

Figure 7.2: Interpolated absolute deformations of the beam derived from temperature compensated measurements; 

The markers show the actually measured values and the damage location is shown by grey shading. 

As expected, the deflection during load tests was increasing with increasing damage. In the 

undamaged state #0-L1 and #0-L2, the deformations were still approximately equal. 

However, after cutting 2 tendons, it already increased in #1-L. This trend was kept with 
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increasing damage until stage #4-L2, where the deflection is again lower than in #4-L1. It is 

necessary to reveal that DS#4 is the only damage scenario except the reference state DS#0, in 

which two load tests were performed. Between these two static loadings no further tendons 

were cut. Therefore, the plastic deformations after introducing the artificial damage in DS#4 

occurred mainly during the first loading. So, it was expected that the absolute deflection in 

the second loading test would be approximately the same as it was at the end of the previous 

test.  

The same applies to the deflection after the load tests, i.e. in #4-UL1 and #4-UL2. Since how 

mentioned above, the plastic deformations were largely completed before the start of the 

second loading test, mainly elastic deformations took place here, which would have to go 

back completely after the unloading. The curve for #4-UL2 in Figure 7.2 seems to contradict 

this, because it looks as if new significant permanent deformations had occurred since it is far 

lower than the curve for #4-UL1. Actually, there is not much time left between the unloading 

after #4-L2 and the shutdown of the data acquisition system. Too few data were collected to 

perform good temperature compensation in #4-UL2. In Figure 6.7 it can be seen that the 

temperature compensated displacements for the last unloading #4-UL2 are much higher than 

the measured values, so they have to be considered as not accurate or as outliers. However, in 

the raw data in Figure 5.18, it can be seen that the measured deformations after the last 

removal of the load actually return approximately to the values before #4-L2. 

The analysis of the raw data showed already that the maximum of deflection shifts towards 

the damage location with increasing damage. Correspondingly, Figure 7.2 shows the same 

effect. Before #2-L, the displacement at SV3 is less than at SV1. The maximum of the 

deformation is therefore still close to the middle of the span. In #2-L, the displacements at the 

two positions are approximately equal and from DS#3 the value in SV3 exceeds SV1. 

Consequently, the course of the deflection curve also changes considerably. So, it is expected 

that its derivatives should be useful for the detection. 

The derivatives can be calculated directly from the cubic splines interpolated in the last step. 

The first derivative is the slope of the deflection curve and the second derivative is 

proportional to the bending moment 𝑀𝑦. 

𝑤′ = tan (−𝜑𝑦) (7-1) 
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where 𝜑𝑦 is the angle of inclination and 𝐸𝐼𝑦 is the bending stiffness. 

 

 

Figure 7.3: Derivatives of the interpolated absolute displacements in the case of loadings 

 

 

Figure 7.4: Derivatives of the interpolated absolute displacements in the case of unloadings 

Figures 7.3 and 7.4 show that the derivatives allow to detect and localise clearly the damage. 

The first derivative, i.e. the slope of a deflection line, shows an S-shaped curve in the vicinity 

of the damage, which becomes more significant with increasing damage. The curves for #4-

L1 and #4-L2 are quite similar, because no additional damage was introduced between the 

two static tests. However, the damage could still be clearly localised by considering this 

curve. The curvature of the curves, i.e. the second derivative, even shows a significant peak at 

the damage position. An assessment of the severity of the damage is possible, considering the 

height of the peak. 

𝑤′′ = −
My

𝐸𝐼𝑦
 (7-2) 

a) First derivative b) Second derivative 

a) First derivative b) Second derivative 
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Now, the deflections, which result purely from the load with the additional live loads of 

2 × 13 𝑡, will be considered. For this purpose, the difference between the deformations 

directly before and during a loading was calculated. The curves also include plastic 

deformations, which occurred during the load tests. As before for the absolute deflections, the 

first and second derivatives were calculated based on a cubic spline interpolation. Again the 

location of artificial damage is shown by grey shading in the following plots. 

 

Figure 7.5: Cubic spline interpolated displacements due to live loads derived from temperature compensated 

measurements; The damage location is shown by grey shading. 
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Figure 7.6: First derivative of the interpolated displacements due to live loads 

 

Figure 7.7: Second derivative of the interpolated displacements due to live loads 



Chapter 7: Evaluation of damage indicators   

90 

The deformations in the first load test #0-L1 are somewhat larger than in the second test, 

which can be explained by the fact that micro cracks occurred due to the load and that it 

might also lead to settlement effects in the bearings. Therefore, remaining deformations 

occurred here, which were already present before #0-L2. However, even before the series of 

measurements presented here, loads of the test setup with the additional live loads had taken 

place several times to minimise this effect. Nevertheless, the deflection in #1-L is again at 

similar level as in #0-L2. The damage introduced in DS#1 was still too small to be 

recognised. Moreover, as at the beginning, the maximum of the deflection is still in the 

middle of the beam at SV1. However, for #2-L, the damage can be detected clearly by the 

increase in the deformations and the approximation of the value for SV3 to that for SV1. 

From #3-L, i.e. DS#3, the maximum of the curves is actually at SV3, i.e. closer to the damage 

location. For #4-L2, a considerable reduction of deformations is observed with respect to #4-

L1, which can be explained by the fact that permanent deformations due to loading had 

remained from #4-L1 and did no longer occur in #4-L2. However, the maximum value 

remains at SV3. 

As for the absolute displacements, the damage can be easily detected by means of the 

derivatives of the interpolated displacements due to the additional loads. As in case of dead 

load only, the first derivative shows an S-shaped curve in the vicinity of the damage, which 

becomes more significant with increasing damage. Only at #4-L2, the effect decreases due to 

the reason mentioned in the last paragraph. The second derivative also shows a peak at the 

damage position. 

7.2 Eigenfrequencies 

Eigenfrequencies are the absolute values of the eigenvalues determined by solving equation 

(4-12). The matrices [𝐀] and [𝐁] of this equation contain the structural matrices of the 

MDOF system, including the stiffness matrix. If components of this matrix decrease, the 

magnitudes of the eigenvalues reduce generally, too. Furthermore, the angular 

eigenfrequencies can be calculated from the generalised stiffness and the modal mass 

according to equation (4-33), where if the mass is constant then 𝜔𝑟~√𝑘𝑟. Therefore, a 

decrease in the stiffness, e.g. due to damage, leads to a decrease in eigenfrequencies. 

Furthermore, the loss of prestress due to damaged tendons also reduces eigenfrequencies. 

This results from the following equation for the calculation of the eigenfrequencies of a 

pretensioned, simply supported beam (cf. [73]). 
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𝜔𝑛 = √
𝐸𝐽(𝑛𝜋)4

𝜇𝑙4
+

𝑁(𝑛𝜋)2

𝜇𝑙2
 (7-3) 

𝜔𝑛: 𝑛-th angular eigenfrequency 

𝐸𝐽: flexural rigidity 

𝑙: span length (distance of the bearings) 

𝜇: mass distribution 

𝑁: normal force (e.g. due to prestress) 

This equation states, inter alia, when the pretension force N decreases, the angular 

eigenfrequencies decrease as well. 

The simplest way to use dynamic parameters for damage detection is therefore to monitor the 

eigenfrequencies. Since these are properties of the whole system and are not linked to a 

certain degree of freedom, the reduction in eigenfrequencies is a global damage indicator. 

That means it provides only the possibility to detect the presence of stiffness losses, but not to 

localise them. In Figure 7.8, the eigenfrequencies of the beam in Mertert are shown for 4 

modes during the test period. A clear decrease of all eigenfrequencies is observed, as the 

stiffness of the beam decreases more and more due to the damages from DS#1 to DS#4. But 

at the transition between DS#1 to DS#2 a small increase can be seen, which has to be 

considered as measurement error or environmental effect. 
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Figure 7.8: Eigenfrequencies vs. time during the tests in the port of Mertert; Measurements used for model updating 

(cf. Chapter 8) are marked with a red circle 

7.3 Mode shapes 

7.3.1 Visual comparison of mode shapes 

For the beam tested in Mertert, four modes were well identified in the frequency range 

2.5 − 15 𝐻𝑧. For the evaluation in this chapter, one dynamic measurement was selected for 

any of the 5 damage scenarios DS#0 to DS#4 as listed in Table 7.1. The resulting modes for 

the reference state DS#0 are listed in Table 7.2. 

a) Bending mode B1a b) Bending mode B1b 

c) Torsional mode T1 d) Bending mode B2 
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Table 7.1: Dynamic measurements selected for evaluation 

DS# Date

Time       

(local UTC+1)

0 31/01/2014 11:28:18

1 04/02/2014 11:00:26

2 06/02/2014 11:10:09

3 11/02/2014 10:56:52

4 17/02/2014 12:03:24  

Table 7.2: Modes identified in DS#0 (Measurement at 31/01/2014 11:28:18) 

Eigenfrequ. [Hz] Abbreviation Description

2.88 B1a Bending mode

3.03 B1b Bending mode

4.48 T1 Torsional mode

7.54 B2 Bending mode  

After scaling the mode shapes to unit modal mass (UMM), their components became nearly 

pure imaginary, as it shown in Figure 7.9. Here the complex components of the mode shape 

vectors were plotted as pointers in polar coordinates, whose length is the magnitude of the 

complex numbers and whose angle to the horizontal axis is the argument. The different 

modes are marked by different colours. One can see that for all components the real part is 

small compared to the imaginary part. Therefore, for the following drawings of the mode 

shapes and their derivatives, only the imaginary part was considered, in order to avoid 

travelling phase pattern. 
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Figure 7.9: Complex components of UMM-mode shapes in DS#0, plotted as pointers in the Gaussian plane 
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Figure 7.10: Cubic spline interpolated UMM-mode shapes separated in the north and the south side of the beam for 

each damage scenario; The markers show the actually measured values, which are the imaginary parts of the mode 

shape components. The damage location is marked by grey shading. 

First of all, it is necessary to mention that B1a and B1b were coupled modes, because their 

frequencies and shapes are quite similar. Furthermore, it can be deduced from Figure 7.10 

that the shapes for mode T1 were not well identified. A reason for this bad identification 

could be that most of the accelerometers were located too near to the web of the beam that 

did not facilitate a clear identification of torsional modes. For DS#0-DS#2, all mode shapes 

show very small differences, so it is difficult to recognise the damage until DS#2. Actually, 

the shapes of B2 show no visible changes for different damage scenarios. Only from DS#3 

onwards really significant differences in the shapes can be seen. In this damage scenario 

vertical cracks occurred for the first time during the static loading. The severity of the 

damage can be assessed qualitatively from the magnitude of the changes but a localisation of 

the damage is not possible. 

In the next step, the first and second derivatives of the mode shapes were determined by the 

procedure used in Chapter 7.1 for the static deflections. First a cubic spline interpolation was 
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performed using the measured values as anchor points and subsequently the slopes and 

curvatures of these splines were calculated. 

 

Figure 7.11: First numerical derivative (slope) of the UMM-mode shapes separated in the north and the south side of 

the beam for each damage scenario; The damage location is marked by grey shading. 

The result of damage detection using the slopes is quite similar as for the mode shapes 

themselves. From DS#3 on, when first vertical cracks appeared, significant changes can be 

seen in the first derivatives. The changes are larger for DS#4 than for DS#3, which shows the 

more severe damage in DS#4. Since the mode shapes of B2 are already quite similar for all 

damage scenarios, of course the slopes show no changes, too. 

The curvature does not give more interesting information on behalf of damage detection. A 

real significant change can only be seen for DS#4 and the differences do not occur at damage 

location. 
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Figure 7.12: Second numerical derivative (curvature) of the UMM-mode shapes separated in the north and the south 

side of the beam for each damage scenario; The damage location is marked by grey shading. 

7.3.2 Comparison of mode shapes by correlation methods 

Correlation methods for comparing mode shapes as described in Chapter 4.5 are also 

considered. While the explanations in Chapter 4.5 refer to the comparison of measured to 

simulated mode shapes, measured mode shapes are compared with a reference measurement 

in the following. 

First the Modal Assurance Criterion (MAC) and the Normalised Modal Difference (NMD) 

according to equation and (4-34) and (4-38), respectively, will be used.  

When comparing mode shapes, the MAC provides values between 0 and 1 where 1 means 

perfect matching, while for the NMD lower values shows better match. In opposition to the 

MAC, the NMD is not limited by 1. 

20 dynamic tests covering the entire time period, in which the test setup was built up, were 

chosen from all performed tests. The changing in the measured mode shapes over time is 

monitored by calculating the MAC and the NMD values between all later measurements and 

the first one that was taken in the undamaged state DS#0, i.e. 19 out of 20 measurements 
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were compared to the first one. The modes listed in Table 7.2 were evaluated for this 

comparison. 

Figure 7.13 shows the development of the MAC- and the NMD-value, while the test beam 

was stepwise artificially damaged in the scenarios DS#1 to DS#4. Since the properties, 

especially stiffness, of the structure change, it can be assumed that there are also changes in 

the mode shapes, so the MAC values should decrease, while the NMD-values should 

increase. The calculated correlation values are shown in a scatter diagram, i.e. as individual 

points. Linear regression lines were added for every mode, for a better visibility of the trend. 

  

Figure 7.13: MAC- and NMD-values of 4 measured modes 

As expected, it can be noticed that the MAC values decrease over time. The regression line 

for the torsional mode T1 shows the highest slope, but the variance of the determined values 

is very high for this mode. The bending mode B2 shows the lowest change in the MAC-

values. This fits the result in Chapter 7.3.1, where this mode shape does not show any 

changes in the different damage states. As already revealed, it resides in the fact that the 

damage was located too near to a node of the mode shape B2 to be reflected in the shape. 

Similar conclusions can be drawn for the NMD-values. Here even the values for mode B2 

show a clear increasing trend similar to the other modes. This supports the assertion of 

Mordini et al. in [44] that the NMD-value is more sensitive than the MAC-value for changes 

in highly correlated mode shapes, i.e. quite similar ones. 

As mentioned in Chapter 4.5, the MAC together with the Modal Scale Factor (MSF) describe 

a linear relationship between the compared mode shapes. Hence, in order to complete the 

comparison the MSF should be considered, too. Therefore, the same evaluation as described 

for MAC and NMD was performed for the MSF. Beforehand, all mode shapes were 
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normalised to unit modal mass, so a MSF-value of 1 means a good correlation. Therefore, in 

the following diagrams the difference MSF-1 is plotted. 

 

Figure 7.14: MSF values for 20 measurements using the first one as reference 

For the bending modes B1a and B1b the differences of the MSF values to 1 clearly increase 

while the beam is more and more damaged. With these results it would have been possible to 

detect the change of the structure due to the damage. Only the torsional mode T1 does not 

show distinct trend. But this was expected, since the shapes for mode T1 were not well 

identified (cf. Figure 7.10). For the higher bending mode B2 a clear change in the mode 

shapes can be detected from DS#2 on, but a quantification of the damage is not possible. 

Furthermore, the absolute values of MSF-1 for B2 are one order of magnitude smaller as the 

ones for B1a and B1b. This corresponds to Figure 7.10, where no visible difference can be 

seen in the B2 mode shapes in the different damage scenarios. 

Although the authors in [64] state, that the method shall be used in a free-free setup, the 

Coordinate Modal Assurance Criterion (COMAC) according to equation (4-43) is here 

evaluated, for the purpose of damage localisation. For the sake of clarity, not all 20 

measurements were considered here as in the evaluation of MAC, NMD and MSF, but one 
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measurement was selected for each damage scenario. The same measurements were used as 

already in Chapter 7.3.1 for the visual comparison, which are listed in Table 7.1. The 

measurement chosen for DS#0 was used as reference. Beforehand, all mode shapes were 

normalised by scaling to unit modal mass, since the COMAC is sensitive to the 

normalisation. 

 

Figure 7.15: COMAC for damage scenarios DS#1-DS#4 based on modes B1a, B1b, T1 and B2 

The result in Figure 7.15 shows the highest decrease in the COMAC value from DS#1 to 

DS#4 in DOF 10, while the damage was located between DOFs 8 and 9. Based on only the 

information from the COMAC, the damage can be located between DOF 8 to DOF 12, which 

is a range of about 8 𝑚. The damage can be localised from DS#3 on, in which first vertical 

cracks appeared. 

7.4 Flexibility 

As it was described in Chapter 4.2, it is possible to calculate the inverse stiffness matrix, also 

called flexibility matrix, based on the dynamic properties of the system. These properties can 

be obtained by an experimental modal analysis explained in Chapter 4.4. If 𝑁 DOF were 

measured, a 𝑁 × 𝑁 flexibility matrix [𝐅] will be obtained. Each component 𝐹𝑖𝑗 of this matrix 
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is the displacement at DOF 𝑖 if a unit force is applied to DOF 𝑗 and vice versa. A complete 

modal model of a N-DOF system consists of N modes, but as elucidated in Chapter 4.2 it is 

possible to obtain adequate results for [𝐅] even with a lower number of modes. But in this 

case the resulting matrix will be singular and hence the stiffness matrix cannot be calculated 

by an inversion. In most cases it is not possible to obtain all necessary modes by experimental 

measurements. Since damage detection can be performed by searching for stiffness 

reductions, the stiffness matrix would be highly appropriate for this purpose. Theoretically, it 

would be possible to obtain a stiffness matrix by including fewer DOFs in the calculation. 

But this would reduce the local resolution for the damage localisation.  

Alternatively, the article by Schommer, Mahowald et al. (2017) [74] investigates the 

applicability of a dynamically measured flexibility matrix for the localisation of damage in 

concrete bridges. The method is there initially tested theoretically using FE models. 

Subsequently, measurements on real bridges, carried out by Jean Mahowald in the course of 

his dissertation (2013) [3], are used. The approach thus corresponds to the approach of 

Pandey and Biswas in [13] and [14], with the difference that here the method was validated 

with in-situ measured data at real bridges under real environmental conditions. It was shown 

in [74] that, depending on for instance the bearing conditions and the location of the damage, 

it is possible to directly use the flexibility matrix for damage detection. 

Here it was tested, if this approach also works based on the measurements at the beam in the 

port of Mertert. The beam’s flexibility was calculated for the different damage scenarios. As 

for the previously described evaluations, the measurements, which are listed in Table 7.1, are 

considered again. The flexibility was calculated based on the identified modes given in Table 

7.2. The performed modal analysis yielded the mode shapes together with the appropriate 

scaling factors Modal A and Modal B. Hence, for the calculation of the flexibility matrix the 

general formula given as equation (4-22) was used. Here, the eigenvalues were not provided 

directly as results of the modal analysis, but could be calculated according to equation (4-20) 

based on Modal A and B. 

At first in Figure 7.16, the flexibility matrix calculated for the first considered measurement 

in DS#0 is plotted. During the calculation, the order of the DOFs was altered in way that the 

sensors, which were located at the north side, are separated from the ones at the south side. 

Therefore, the DOF-axes show first the uneven DOF numbers and the even ones. Figure 

7.16a shows the matrix as 3D surface plot, while Figure 7.16b shows the diagonal elements 

as well as the contributions by the different considered modes. As magnitude of the 
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eigenvalue, the eigenfrequency appears in the denominator in equation (4-22). Hence, as 

higher the eigenfrequency as lower is the contribution of the corresponding mode to the 

flexibility matrix. Here the contribution of B2 and T1 is already lower as the contribution of 

B1a and B1b. 

 

 

Figure 7.16: Flexibility matrix for DS#0 

 

Figure 7.17: Diagonals of flexibility matrices for the damage scenarios DS#0 to DS#4 

a) Surface plot of the flexibility matrix b) Diagonal of the flexibility matrix 
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Now, in order to compare the flexibility in the damaged states DS#1 to DS#4 to the flexibility 

in the healthy state DS#0, the absolute as well as the relative differences of the individual 

matrix components 𝐹𝑖𝑗 were calculated according to the following equations (7-4) and (7-5). 

𝑎𝑏𝑠𝛥𝑖𝑗 = 𝐹𝑑𝑎𝑚𝑎𝑔𝑒𝑑 − 𝐹𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑𝑖𝑗𝑖𝑗  (7-4) 

𝑟𝑒𝑙𝛥𝑖𝑗 =
𝐹𝑑𝑎𝑚𝑎𝑔𝑒𝑑 − 𝐹𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑𝑖𝑗𝑖𝑗

𝐹𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑𝑖𝑗

∙ 100% (7-5) 

The flexibility for DOFs near the bearings is very low compared to the other DOFs. The 

relative difference for these DOFs becomes very high due to the division by a small value. 

During the calculation of the relative differences, these high values were filtered out by 

omitting components of the flexibility matrices, which absolute values were lower than 5% of 

the highest occurring flexibility in the matrix. 

In order to visualise the results, the diagonal elements of the difference matrices were plotted 

in Figure 7.18. As can be seen in Figure 5.8, the artificial damage was located between DOFs 

8 and 9. This position is marked in the following diagrams by grey shading. 

 

 

Figure 7.18: relative and absolute differences of the diagonal elements of the flexibility matrices in the different 

damage scenarios 

The idea is now to locate the damage by searching for high differences in the flexibility. At 

the north side this works for DS#1 and DS#2 with the relative as well as the absolute 

differences. At the south side it works only for DS#1. For the other cases the maxima of the 

curves appear at different locations. Furthermore, the calculated differences in DS#1 and 

DS#2 are already as high or even higher as the ones in DS#3. Hence, the severity of the 

a) absolute differences b) relative differences 
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damage cannot be assessed. Unfortunately, the conclusion is here, that the approach does not 

really work for the case at hand. 

7.5 Conclusion 

During the usual static load testing on bridges the deflection of a bridge is measured before, 

during and after the load, typically with optical measuring methods (levelling). The test 

weight and its distribution on the bridge are known. The deflection due to the load can then 

be determined from the difference between the measurements in the loaded and the unloaded 

state. The absolute deformations which also occur over longer periods compared to a fixed 

reference point are usually not determined nowadays. This is mainly because it is difficult to 

define such a fixed reference point, especially for bridges, which cross waters. 

In the present test setup, the static displacements were measured with respect to the soil, 

which was assumed as rigid. Therefore, it was not only possible to detect the deflection due 

to the test loads, but also the absolute deformations. These deformations became larger 

during the test period. The increasing downward movement of the beam caused purely by its 

own weight, the additional dead load and the weight of the shaker, so when the tests loads 

were removed, are referred in the present thesis as the sagging of the beam. The deformation 

due the test load in loading #4-L2 is much lower than in the preceding loading #4-L1. This is 

because the deformations, in #4-L1 includes plastic deformations, which are no longer 

present in the following loading in the same damage scenario. The plots of the deformation 

curves as well as their slopes and curvatures indicate clearly the location of the damage. Even 

an assessment of the severity of the damage is possible to a certain extent. 

Furthermore, the decrease of the eigenfrequencies with increasing damage was clearly 

evident, although some measurements show a small increase. The latter was explained by the 

standard deviation of the measurements. 

All dynamic measurements were carried out in the unloaded state, when the test load of 26 t 

was removed. That’s why any cracks that occurred during the static tests had been partially or 

completely closed by the prestress. Only from DS#3 onward, where already 6 tendons had 

been cut, visible vertical cracks appeared which remained open even after the unloading. 

Accordingly, only from this point in time, significant differences in the mode shapes and their 

derivatives can be observed. The visually detected differences for the lower damage levels 

must be attributed to measurement inaccuracies. The shape of bending mode B2 seems not to 

be influenced by the damage. A possible explanation is that the damage was located too close 
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to the node of this mode shape to be detected. Peaks or steps in the course of the derivatives 

in the vicinity of the damage location cannot be determined. Obviously, a localisation of the 

damage is here not possible. One conclusion is that the accuracy of the measured mode 

shapes was insufficient for the purpose of damage detection. 

When evaluating the MAC and NMD values, a clear change over time can be observed 

allowing damage detection. If considering B1a and B1b the same can be said for the MSF 

values, while this criterion worked not well for T1 and B2. Since these criterions provide 

only global information, i.e. only one number over all DOFs, a localisation is not possible. 

In opposition, by the COMAC that provides information for individual DOFs, the damage 

can be localised within a range of 8 m, but only after the appearance of visible vertical 

cracks. 

Although the evaluation of the modal flexibility allows damage detection for some other 

bridges (cf. for instance [74]), here the results were inconclusive. This is explained by the 

insufficient accuracy of the identified mode shapes. 
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8 MODEL UPDATING 

8.1 Objective 

In a real bridge, tendons can fail in the course of time for example due to corrosion or fatigue, 

resulting in a loss of prestress. In Chapter 5.1, a test setup for performing measurements on a 

prestressed concrete beam is described. This beam was artificially damaged with pre-defined 

scenarios in order to simulate an aging process with the failure of several tendons. Actually, 5 

damage scenarios DS#0 to DS#4 were realised, all including static load tests as well as 

dynamic measurements. DS#0 represents the undamaged reference state. The reduction of 

prestress due to damaged tendons leads to higher tensile stresses in the cross-section during 

loading, as it was explained in Chapter 5.2. Starting at the excess of the tensile strength of the 

concrete, vertical cracks occurred in the beam. First visible vertical cracks appeared in DS#3 

during the static tests, in which 6 tendons had been cut. The application for the considered 

prestressed concrete beam is resumed below. 

In the present chapter, a model updating procedure based on a parameterised FE model of the 

test setup is described, with the aim of detecting the damage based on the collected 

measurement data. The approach corresponds to the procedure described in Chapter 4.6. 

At first, it is necessary to define what parameters should be used and then to implement them 

in an FE model, in order to simulate the damage. Ideally, these parameters have physical 

meaning that can be interpreted accordingly. Based on these, a correspondingly 

parameterised FE model can be created. This model must match as far as possible to the test 

setup in the undamaged state. This means that it must be validated by the data measured in 

the initial state DS#0, i.e. the simulation results must match the real measurements as much 

as possible. 

Secondly, at least one objective function is defined, which provides a value that stands for the 

deviation between measurement and simulation. This function depends on the selected 

parameters. The smaller the objective value, the better the correlation. In the subsequent 

model updating, the parameters are set in a way that the simulation results match the 

measurements in every damage scenarios. This setting can be carried out by an optimisation 

algorithm or less automatically, e.g. by means of a parameter study. 



Chapter 8: Model updating   

108 

Afterwards, the updated models are compared to the reference model to identify structural 

change. Either the parameters’ values themselves or properties of the model, which have been 

influenced by them, can be compared. For instance the stiffness matrices of the models can 

be compared as damage in a bridge usually relates to a local stiffness decrease. Theoretically, 

after the model updating, simulated results should be in good agreement with measured 

results, if the stiffness in the model was reduced at the same degrees of freedom and to the 

same extent. A decrease in individual components of the stiffness matrix for the updated 

model can thus be an indication of damage in the real structure. 

8.2 FE-model and parametrisation 

The idea pursued here is to use model updating to search for local stiffness reductions in the 

investigated beam. Therefore, the parameters should simulate such stiffness reductions in the 

model. 

The vertical cracks, which appeared during a static loading, reduced the bending stiffness EJ 

of the beam because the supporting cross-section was reduced, i.e. in reality the area moment 

of inertia of the cross-section J decreased. In an FE model, it is usually more convenient to 

locally reduce bending stiffness by simply reducing the Young’s modulus E of individual 

elements, i.e. the material properties are modified instead the properties of the cross-section. 

The approach that first comes to mind would be to parameterise the Young’s modulus of each 

individual element. Except for very simple models, this leads to a vast number of parameters, 

to be optimised, so that a model updating can no longer be reasonably performed. Regardless 

of whether a parameter study or an optimisation algorithm is used to solve this task, the 

computing effort would be far too high and a practical use of the method would be 

unthinkable. 

Two approaches were used to reduce the number of parameters. Firstly, elements were 

combined into groups whose Young’s modulus was uniformly changed. In order to allow a 

meaningful definition of these groups, a mapped mesh was created for the FE model. 

An approach proposed by Teughels et al. [36] was applied to further reduce the number of 

parameters. “Damage elements” can be created by combining several of the aforementioned 

element groups. Young’s modulus of these damage elements along the longitudinal axis of 

the beam is defined and is called “damage function”. This function is defined by only a few 

parameters which are then used for model updating, based on an FE-model of the test setup. 

This approach is better understood with the actual model, which hence will first be described. 



 Chapter 8: Model updating 

109 

The model was created within the software ANSYS (ANalysis SYStem 17.0). The possibility 

to use scripts in APDL (Ansys Parametric Design Language) to control the system was 

extensively taken advantage of. As the name of this programming language indicates, its 

main purpose is to create parametric models corresponding to the task. Furthermore, these 

scripts allow to extract and to store certain results after a simulation run, as well as to 

implement batch processing in order to carry out automatically a large number of simulations. 

Therefore, a variant of the system often referred to as ANSYS Classic, which can be 

controlled completely via APDL, was used. This approach provides the possibility to control 

the model design very precisely, for instance on the type of elements used for the meshing of 

the geometry and on their properties. 

Of course in reality, there are always nonlinearities which were investigated, for example in 

prestressed concrete bridges by Waltering [1]. The intention here is to use an FE model that is 

purely linear for an approximation, i.e. whose stiffness matrix does not depend on 

deformation or other variables, such as temperature. This was mainly due to the fact that the 

computation time for a simulation should be kept as low as possible, because the optimisation 

was believed to require an important number of simulation runs. Hence only linear-elastic 

material models were used in this study. Furthermore, when using contact conditions their 

properties were defined in a way that no nonlinearities were caused in the model. For 

instance, if contact elements were used, the option “always bonded” was set, i.e. the elements 

are fixed to each other so linearity is maintained. 

A volume model of the test setup was created, with mainly so-called solid elements. Table 

8.1 lists all types of elements used in the model. Column ‘Type’ corresponds to the 

designation in ANSYS and ‘Type No.’ is the numbering assigned in the model. 
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Table 8.1: Types of elements used for the FE-model in ANSYS 

Type 

No. Type Description

Number 

nodes Usage important Options

1 SHELL281

Structural 

Shell 8

2D Elements for mapped 

meshing of areas and 

subsequent extrusion to a 

3D mesh

2 SOLID186

Structural 

Solid 20

Hexahedral elements for 

mapped meshing

Sometimes used as 

tetrahedral- or as 

pyramid-shaped 

elements

3 BEAM188 Beam 2

Beam elements for the 

tendons

Timoshenko beam 

theory

4 CONTA174

Surface-to-

Surface 

Contact 8 Contact definitions

MPC algorithm, Bonded 

(always)

5 TARGE170

Target 

Segment up to 8

used as target segments for 

CONTA174 elements

6 BEAM188 Beam 2

Dummy-Beams to connect 

the tendons to the concrete

Timoshenko beam 

theory

8 MASS21

Structural 

Mass 1 point mass for shaker

9 SOLID285

Tetrahedral 

Structural 

Solid 4

Solid elements without 

midside nodes; Originally 

intended for free meshes in 

less important areas, but in 

later versions replaced by 

tetrahedral form of type 2

10 CONTA174

Surface-to-

Surface 

Contact 8

Contact definitions (to be 

able to set different contact 

definitions in different 

areas) 

MPC algorithm, Bonded 

(always)

11 SOLID185

Structural 

Solid 8

same as Type No. 2 but 

lower order element for less 

important areas

12 SHELL181

Structural 

Shell 4

2D Elements for mapped 

meshing of areas without 

midside nodes

14 LINK11

Linear 

Actuator 2

intended for springs at the 

bearings but not used in the 

final version

15

MPC184-

Revolute

Multipoint 

Constraint 

Element, 

Revolute 

Joint 2

to model a revolute joint at 

the sliding bearing

16

MPC184-

Planar

Multipoint 

Constraint 

Element, 

Planar Joint 2

to model a planar joint at 

the sliding bearing  
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Local stiffness losses due to cracks can be stimulated by reducing the bending stiffness along 

the length of the beam. Therefore, the Young’s modulus of groups of adjacent elements can 

be updated. The idea was to dismantle the beam into narrow “slices”, whose stiffness is then 

reduced uniformly. This can be considerably facilitated by using a mapped mesh. Some 

geometric conditions must be met that allow creating a mapped mesh successfully. Therefore, 

a considerable effort was put to make this type of meshing possible, inter alia the definition 

of geometry directly in ANSYS, rather than using a CAD model. 

    

 

Figure 8.1: Comparison between free mesh and mapped mesh 

By using hexahedral “brick” elements for the meshing of the beam, it became possible to 

define slices of the beam that consists of one layer of elements. For any slice, a material was 

defined and assigned to the corresponding slice. At the beginning, the properties of these 

materials were all the same, but during the model updating the Young’s moduli were 

modified. A further advantage of the mapped mesh is that it also reduces the number of 

elements compared to a free mesh and avoids distorted elements, i.e. the quality of the mesh 

increases. 

Figure 8.2 shows the meshing of the model with solid elements, detailed for the end with the 

sliding bearing. In this illustration, different materials are presented by different colours, i.e. 

areas for which the material properties could be set individually. Thus, in this model, the test 

beam was divided into 227 individual “slices”. Although the colours repeat all 11 slices, each 

slice actually has its own material. 

a) Free mesh of tetrahedral 

elements (SOLID187) 

b) Mapped mesh of hexahedral elements 

(SOLID186) 
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Figure 8.2: FE-model of the test setup with mapped mesh; The colours show different materials 

Figure 8.3 shows the meshed cross-sections of two characteristic slices. In the middle of the 

beam, the centre bar is slimmer than at the ends. Despite this change in the cross-section, the 

number of divisions along the edges remains the same. The used coordinate system can also 

be seen on the lower edge. The x-direction points in the direction of the axis of the beam 

from the fixed to the sliding bearing and the z-direction upwards. The origin is located in the 

middle of the span between the bearings. 

       

 

Figure 8.3: Meshed cross-section of the test beam at two different locations 

Material properties used for the FE-model are summarised in Table 8.2. As in Table 8.1, the 

first column shows the numbers given to the materials in ANSYS. Some of the Young’s 

a) Cross-section at the end with the 

sliding bearing 

b) Cross-section near the middle of 

the span between the bearings 
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moduli were set by variables, to be able to change them easily for test purposes as well as 

parametrisation.  

Table 8.2: Material properties used for the FE-model in ANSYS 

Mat. 

No.

Young's 

modulus 

[MPa]

Poisson 

ratio

Density 

[kg/m
3
] Material Description

1 30000 0.13 2500 Concrete

Concrete for parts of the model, where 

the Young's model will not be changed 

during model updating

2 200000 0.3 7850 Steel Tendons

3 10000 0.2 470 Wood Wood beams under the loads

4 200000 0.3 0 Dummy

Beams to connect the tendons to the 

concrete

5 to 

nsec+4

30000 

initially 0.13 2500 Concrete

Concrete for elements, whose Young's 

modulus will be changed to simulate 

local stiffness losses; The variable 

"nsec" is the number of element groups 

to be modified.

234 20000 0.13 2500

"Fresh" 

concrete

Material properties used for the newly 

created bearings and fundations of the 

test setup

235 30000 0.13 2500 Concrete

Concrete used for the additional dead 

load on the top of the beam to be able 

to modify it independently

236 3000 0.13 2500 Soil

Material used for simulated parts of the 

soil under the test setup  

As it can be seen in the previous table, the used Young’s modulus for concrete is lower as the 

one determined by material tests, where 40568 𝑀𝑃𝑎 was measured (cf. Table 5.1). During 

the development of the model, it was found that the simulated deflections fit better to the 

experimentally determined ones, if the Young’s modulus in the model is lowered to 

30000 𝑀𝑃𝑎. This was explained by the fact that the performed static tests were bending tests 

at a reinforced and prestressed concrete beam, which induced bending stress with tension on 

one side and compression on the other side of the beam’s cross-section. Since the tensile 

strength of concrete is very low, this led to micro cracks at the tension side, which reduced its 

stiffness compared to a specimen in a pure compression test. This effect can be simulated by 

using a reduced Young’s modulus. 

The inner tendons were also simulated, which were meshed with beam elements. In reality, 

each tendon consists of 12 individual round bars with a diameter of 7 mm. They are arranged 

in a circle and are loosely held in position by a spiral spring. The cables are surrounded by a 

thin metal sleeve. After the cables were pre-tensioned, they were injected with mortar to 
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create a stiff and complete contact with the surrounding concrete and to prevent the ingress of 

water and thus corrosion. 

12xØ7

12 separate 

round bars

Spiral 

spring

Metal 

sleeve

30°

y

z
Ø27

   

 

 

Figure 8.4: Cross-section of the tendons 

The question arose in which way the cross-section of the tendons should be modelled. In 

order to keep the number of individual elements small, the actual cable, which consisted of 

12 individual round bars (cf. Figure 8.4), can be approximated by a thin walled substitute 

pipe. The inner and outer diameters of the annular cross-section may be chosen such that it 

has the same area and axial area moment of inertia as the cross-section of the ensemble of 

round bars. It was assumed here that the round bars do not move relatively to each other due 

to the injected mortar. The Steiner ratios of moments of inertia were calculated accordingly. 

In the following the dimensions of the annular cross-section are calculated. 

The dimensions of the real tendons as indicated in the above Figure 8.4 were: 

𝑑 = 7𝑚𝑚 = 0.007𝑚  Diameter of an individual round bar 

𝑑𝑚 = 27𝑚𝑚 = 0.027𝑚 Mean diameter of a tendon 

Total cross-sectional area of the 12 round bars: 

𝐴 = 12 ∙
𝑑2

4
𝜋 = 12 ∙

0.0072𝑚2

4
𝜋 = 4.618 ∙ 10−4𝑚2  

Axial area moment of inertia of the round bars’ cross-section: 

𝐼𝑦 = 𝐼𝑧 = 12 ∙
𝜋𝑑4

64
+

𝑑2

4
𝜋 ∙ (4 ∙ (

𝑑𝑚

2
∙ 𝑠𝑖𝑛(30°))

2

+ 4 ∙ (
𝑑𝑚

2
∙ 𝑠𝑖𝑛(60°))

2

+ 2 ∙ (
𝑑𝑚

2
)
2

)  

      =
1

8
𝜋𝑑2 ∙ (

3

2
𝑑2 + 3𝑑𝑚

2 ) = 4.35 ∙ 10−8𝑚4  

a) drawing with dimensions b) photo of a real tendon of a cut 

beam, filled with mortar 
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The axial area moment of inertia 𝐼𝑦𝑝 and the area of the cross-section 𝐴𝑝 of the thin walled 

substitute pipe are: 

𝐼𝑦𝑝 =
𝜋

64
∙ (𝑑𝑎

4 − 𝑑𝑖
4) = 𝐼𝑦 (8-1) 

Solving (8-1) for 𝑑𝑎: 

Substituting equation (8-3) in (8-2) yields: 

𝑑𝑖 = √
8𝐼𝑦

𝐴
−

2𝐴

𝜋
= 0.02144𝑚 = 21.4𝑚𝑚 

Substituting this value in (8-3) yields: 

𝑑𝑎 = 0.03236𝑚 = 32.4𝑚𝑚  

Thus, an annular cross-section with the inner diameter 𝑑𝑖 and the outer diameter 𝑑𝑎, as 

calculated above, was chosen for the tendons in the FE model. 

In the next step the interconnection between the tendons and the surrounding concrete was 

modelled in a simple and linear manner. Several different possibilities were extensively 

tested in ANSYS Classic as well as in the newer version ANSYS Workbench. Attempts were 

carried out to find a compromise between computing effort and realistic representation. 

Finally, node-to-node connections were created by inserting additional dummy beam 

elements in order to connect the tendons to the surrounding concrete elements. These 

additional elements had the material properties of steel like the tendons, but a density of zero, 

so that they add no mass to the system. Since the used solid elements had only 3 translational 

degrees of freedom at each node, the rotational degrees of freedom of the beam elements 

remain free in such a connection. This was resolved here by connecting each node of the 

tendons to the 3 nearest neighbouring nodes of the concrete elements. By this multiple 

connection, moments can be transmitted between the connected elements. 

𝐴𝑝 =
𝜋

4
∙ (𝑑𝑎

2 − 𝑑𝑖
2) = 𝐴 (8-2) 

𝑑𝑎 = √
64𝐼𝑦

𝜋
+ 𝑑𝑖

4
4

 (8-3) 
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Figure 8.5: Part of a tendon (red) with additional dummy beam elements (green) connecting it to the concrete  

 

    

Figure 8.6: Internal tendons inside the test beam 

After completion of the FE mesh for the test beam, the permanent additional dead load was 

also modelled. This was at site cut from the second beam in the port of Mertert and then 

placed on top of the test beam. Basically, the same procedure was used in ANSYS. The FE 

mesh of the test beam with its underlying geometry was first replicated and then parts that 

were not necessary for the additional load were deleted. After some further modifications, the 

resulting mesh was positioned over the top flange of the main beam, as presented in Figure 

8.7. 
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Figure 8.7: Types of used solid elements marked by different colours 

For centre bar as well as top and bottom flange of the test beam, elements with intermediate 

nodes were used (SOLID186). Although the use of elements without intermediate nodes 

would significantly reduce the computing effort, the accuracy of the calculation suffers too 

much from the reduction of the node number, which has been thoroughly tested before. As a 

compromise, elements without intermediate nodes (SOLID185) were used only for less 

important parts. They include the transverse beams, the permanent additional load and the 

foundations. 

In reality, the additional load was supported by wooden beams, which were also modelled 

here. The connection between the concrete beams and the wooden beams was realised by 

surface contact elements (CONTA174 and TARGE170). However, in order to avoid 

nonlinearities due to contact conditions, the condition “always bonded” was set here so that 

no relative displacement between the connected bodies was possible. This was sufficiently 

accurate, because during the real measurements no relative movement took place between the 

wood and the concrete beams due to the high friction forces. In addition, the beams could not 

lift, since the accelerations that were captured during the dynamic measurements were always 

by far smaller than 1𝑔 with typical peak values of about ±0.05𝑔. 

Since the wooden beams were only a small part of the overall model, the wood was not 

defined as an orthotropic material but as isotropic. The connection between wooden beams 

and concrete beams can be seen in Figure 8.8, where the different element types are 

differently coloured. 
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Figure 8.8: Connection between additional dead load and test beam by surface contact elements 

Finally, the bearings of the beam had to be modelled. Defining the boundary conditions, they 

naturally have very strong influence on eigenfrequencies and mode shapes. Therefore, a lot of 

time was invested here to find a modelling that exactly reflects the real situation. It had 

proved to be insufficient to block only certain degrees of freedom of some nodes. 

The test setup was equipped with a fixed and a sliding bearing, which however had not the 

behaviour of ideal bearings. On the fixed bearing, the beam was surrounded by concrete for a 

length of about half a meter. Hence, it is not only supported at one point, but at a certain area. 

Since the concrete of the bearings is not completely rigid, a rotation around the transverse 

axis was possible but not completely free. The sliding bearing was realised by two steel plates 

between the concrete with grease to reduce the friction. Despite the grease, there was a stick-

slip effect as described in Chapter 5.2. Horizontal movement of the sliding bearing was only 

possible when the normal forces occurred in the axial direction exceeded the static friction 

between the steel plates and until the normal forces had been reduced by the expansion of the 

beam to a level below the sliding friction (cf. Figure 5.24b). In the static and dynamic tests, 

the loadings were applied only in the vertical direction, i.e. no normal forces occurred due to 

the loading. A horizontal displacement at the sliding bearing resulted only from a rotation of 

the cross-section around its centre of gravity, as simulated in the FE model (see Figure 8.9) or 

from thermal expansion. 
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Figure 8.9: Postprocessor view with vector sum of deformation due to own weight with undeformed model 

Normal forces due to thermal restricted expansion by friction in the sliding bearing were 

described in Chapter 5.2. The time required for a dynamic measurement of about 12-15 

minutes was too short to change temperatures. Furthermore, the deformations caused by the 

vibrations were small compared to the deformations during a static load test. As a result, the 

sliding bearing behaved like a fixed bearing during dynamic measurements. This can be 

demonstrated by comparison of the modal analysis of the FE model to the measurements. 

Those fit better to the results of the modal analysis of an FE model with two blocked 

bearings. 

To improve the model of the bearings, the cast concrete including the foundations and a part 

of the soil were also modelled as volumes. These were subsequently meshed, i.e. they were 

not rigid. In this way, the elasticity of the bearings and the soil could be incorporated into the 

simulation. 

Now, the contact between these volume bodies had to be defined as well as the contact 

between the bearings and the beam. In order to simulate fixed connections, the APDL 

command VGLUE was executed before the meshing in ANSYS. As a result, on their 
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common surface, two bodies will be connected after the meshing by common nodes. Between 

the bearings and the main beam, this kind of connection was not possible or at least very time 

consuming to realise, since the already created mapped mesh of the test beam would need to 

be adapted again. Therefore, surface contact elements with the “always bonded” option were 

used here instead of the VGLUE command. This method was used for both bearings and at 

this point the model of the fixed bearing was finished, while for the sliding bearing additional 

movement possibilities had still to be modelled. These were simulated by two joints, which 

were created by using elements of type MPC184 revolute and planar joint, respectively. By 

this way of modelling, nonlinearities were avoided but only if the possibility of the MPC184 

elements to alter the underlying constraint equations in the case of large deformations was 

switched off. 

At the end the movements of 3 surfaces of the two cubes, representing the soil, were blocked 

in the direction perpendicular to the surfaces, thus fixing the soil. 

In order to block the horizontal displacement of the sliding bearing for the modal analysis due 

to friction, the element type MPC184-planar was changed in MPC184-rigid beam by 

adapting the properties of the elements. 

    

 

Figure 8.10: FE models of the bearings  

Furthermore, a point mass was added to simulate the mass of the shaker. The additional loads 

(2 × 13𝑡) for the static tests were supported by wooden beams, so in order to simulate the 

deflection due to these loads, their weight was added as pressure on the contact area between 

the wooden beams and the tested concrete beam. During the performed dynamic tests, they 

were always removed, so it was not necessary to take them into account for modal analysis. 

a) Sliding bearing b) Fixed bearing 

Soil Soil 

Revolute joint Planar joint 

Baseplates made 

of casted concrete 
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The model was validated by comparing simulated results to measurements taken in the 

healthy state. The following Figures 8.11 to 8.16 show results from simulations using the 

finished model, as it was described above, in comparison to measured values. At first, in 

Figure 8.11 the deflection due to the additional loads is considered. Temperature 

compensated values of the displacements in loading #0-L2 were used. It can be seen that the 

measured and the simulated results match well. 

 

Figure 8.11: Comparison of the measured deflection in loading #0-L2 (healthy state) due to test weights to simulated 

vertical displacements at nodes closest to the sensor positions 

In order to compare the results of the modal analysis, correlated mode shape pairs were 

formed by means of MAC after every simulation run as explained in Chapter 4.6. In the 

following the first 5 simulated modes are shown. They were correlated with the 5 measured 

modes as listed in Table 5.4. 

The first simulated mode is a bending mode in the horizontal plane, i.e. x-y plane in Figure 

8.12, which was not identified by the EMA, as only vertical DOFs were measured. The 

second simulated mode shown in Figure 8.13 is a vertical bending mode, which could be 

correlated either to measured mode B1a or B1b, since both mode shapes were rather similar. 

Here mode B1a was chosen and is shown as a diagram in Figure 8.13 for comparison. 
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Figure 8.12: Mode 1 at 1.37 Hz – bending in y-direction 

 

Figure 8.13: Simulated mode at 3.00 Hz – bending in z-direction; right: correlated measured mode B1a at 2.88 Hz 

(MAC=0.982) 
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The next two simulated modes were torsional ones, where mode 4 was correlated with 

simulated mode T1. The torsional modes were not well identified in the EMA, so the MAC 

values for correlated mode shape pairs with torsional modes were always rather small. This is 

also the reason, why measured mode T2 was omitted here. 

 

Figure 8.14: Mode 3 at 3.78 Hz - torsional 
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Figure 8.15: Simulated mode at 5.21 Hz - torsional; right: correlated measured mode T1 at 4.48 Hz (MAC=0.632) 

 

Figure 8.16: Simulated mode at 7.58 Hz – bending in z-direction; right: correlated measured mode B2 at 7.54 Hz 

(MAC=0.970) 
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At last measured bending mode B2 was correlated with the fifth simulated mode as shown 

above. As already stated in Chapter 4.6, these found correlated mode shape pairs might not be 

valid anymore when the model is changed in a model updating procedure. Therefore, this 

correlation must be performed after every simulation run. An automatic correlation based on 

MAC values was realised and worked quite stable with the 3 mode shape pairs, which were 

defined here. 

After the validation of the reference model, it was now possible to modify the bending 

stiffness along the longitudinal axis of the beam for simulating the effect of damage. 

Therefore, Young’s moduli were modified for the regions defined as slices of the beam. 

In literature it is often proposed (e.g. Teughels et al. (2002) [36], Jaishi et al. (2006) [41]) not 

to use directly the physical properties, like for instance the Young’s moduli, as model 

updating parameters. Instead of that, dimensionless parameters should be defined, which 

describe the relative change of the physical properties compared to their initial values. Hence, 

the following was used here: 

Where 𝐸𝑖0 and 𝐸𝑖 are the initial and the adapted Young’s modulus for slice  𝑖, respectively 

and 𝑎𝑖 is the dimensionless parameter. For the static analysis, i.e. for the simulation of the 

static deflection due to own weight (gravity) and due to loading with test weights of 26 𝑡, the 

used initial Young’s modulus 𝐸𝑖0 was 30 𝐺𝑃𝑎, while for the modal analysis it was set to 

36 𝐺𝑃𝑎. With these values the simulation results from the static as well as dynamic analysis 

matched well the measurements at the real beam in the healthy state. The difference can be 

explained by the fact, that the static deformations of the real test beam were higher than the 

ones caused by vibration during the dynamic tests. Therefore, cracks that were present at the 

beam opened wider due to the static deformations than due to the vibrations. Therefore, it is 

reasonable to assume that the stiffness of the beam was higher during the dynamic tests than 

during the static ones, which was simulated by the higher “dynamic” Young’s modulus. 

In the current problem, 227 parameters 𝑎 would be necessary to modify the material 

properties of all slices. As already mentioned at the beginning of Chapter 8.2, the computing 

effort was too high for a model updating procedure. 

𝑎𝑖 =
𝐸𝑖0 − 𝐸𝑖

𝐸𝑖0
 

𝐸𝑖 = 𝐸𝑖0(1 − 𝑎𝑖) 

(8-4) 
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Hence, the approach proposed by Teughels et. al. (2002) [36] was used here in a modified 

form. Teughels et al. described the procedure for an FE-model of a beam consisting of beam 

elements arranged along its axis. They proposed to group together a certain number of 

adjacent elements to form a so-called “damage element” and to define the reduction of the 

Young’s modulus (i.e. the parameter 𝑎) along the beams axis by means of a “damage 

function”. It is here possible to define several damage elements, each with its own damage 

function, but also to consider merely a specific part of the entire beam within a single damage 

element. Now the parameters 𝑎 are no longer used directly, but they are calculated through 

the damage function. For the model updating parameters are used, which describe the damage 

function itself. In general, this procedure can reduce enormously the number of parameters. 

The damage function provides a mathematical model reflecting the impact of an expected 

damage to the bending stiffness, like for instance of a crack. It thus provides additional 

information for the optimisation, which ensures that a physically meaningful result is 

achieved. Teughels et al. used Legendre polynomials to define the damage function. 

Here, instead of a simple model consisting of beam elements, the volume model described 

before was used, which represents the reality more precisely. Furthermore, another damage 

function was introduced, namely a Gaussian bell curve with the function (8-5). As proposed 

by Teughels et al., the position on the beam’s axis within the damage element was indicated 

by a normalised variable 𝑥𝑛𝑜𝑟𝑚. The 𝑥𝑛𝑜𝑟𝑚-axis starts with the value -1 at one end of the 

damage element and concludes with 1 at the other end. Thus, the value 𝑥𝑛𝑜𝑟𝑚 = 0 stands for 

the centre of the damage element. Three parameters 𝑝, 𝜇 and 𝜎, were used to describe the 

damage function, which hence represent the model updating parameters. 

𝑎: Ratio between updated and initial Young’s modulus 

𝑝: Maximal reduction, 𝑝 ∈ [0; 1] 

𝜇: Expected position of the damage inside the damage element 

𝜎: Parameter that describes the widening of the Gaussian Curve 

𝑥𝑛𝑜𝑟𝑚: Normalised position inside the damage element: 𝑥𝑛𝑜𝑟𝑚 =
2𝑥−𝑥𝑠−𝑥𝑒

𝑥𝑒−𝑥𝑠
  ,  𝑥 ∈ [𝑥𝑠; 𝑥𝑒] 

𝑥: real axial position between 0 𝑚 and 𝑙 = 46 𝑚 

𝑎(𝑥𝑛𝑜𝑟𝑚, 𝑝, 𝜇, 𝜎) = 𝑝 ∙ 𝑒−0.5(
𝑥𝑛𝑜𝑟𝑚−𝜇

𝜎
)
2

 (8-5) 
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𝑥𝑠, 𝑥𝑒: start and end of the damage element measured along the beams axis 

Figure 8.17 shows for example a damage of 80% peak (i.e. 20% of initial Young’s modulus) 

at 𝜇 = 0.2 = 𝑥𝑛𝑜𝑟𝑚 with Gaussian bell form. For instance, if the limits 𝑥𝑠 and 𝑥𝑒 of the 

considered damage element are the beginning (𝑥𝑠 = 0) and the end of a beam with length 𝑙 

(𝑥𝑒 = 𝑙), then the maximum of the damage function would be located at position 𝑥 =

1

2
(𝑥𝑛𝑜𝑟𝑚 ∙ (𝑥𝑒 − 𝑥𝑠) + 𝑥𝑠 + 𝑥𝑒) =

𝑙

2
(𝑥𝑛𝑜𝑟𝑚 + 1) =

𝑙

2
(0.2 + 1) = 0.6𝑙. Young’s modulus of 

all slices between 𝑥𝑛𝑜𝑟𝑚  ∈ [0; 0.4] would be reduced according to the form of the curve and 

its value at the mid of the slice. 

 

Figure 8.17: Graph of the damage function for the specified parameters 𝒑, 𝝁 and 𝝈 

So far, the slices were about 20 𝑐𝑚 wide in axial direction. In best case, this will allow a 

quite coarse localisation of damage. In order to improve the definition of the damage 

localisation, the axial width of the slices must be reduced. Furthermore, since the width of a 

crack is only in the order of magnitude of millimetres or even less, it reduces the bending 

stiffness only in a small region of the beam. Directly at the location of a crack a large 

stiffness reduction occurs, because the supporting part of the cross-section is reduced by the 

crack. But already in a small distance from the crack, the cross-section is not affected, so it is 

logical to expect, that the stiffness loss decreases very fast with increasing distance from the 

crack. That means, the best way to accurately model the impact of a crack on the bending 
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stiffness would be to define the damage function as a narrow but high peak at the location of 

the crack. 

But how far the width of the damage function, which is defined by the parameter 𝜎, can be 

effectively reduced, depends on the axial width of the elements. In order to explain this, the 

two following figures shall be considered. 

 

 

Figure 8.18: Used values of the damage function, if its maximum is located on the border between two slices 

As stated above the reduction of the Young’s modulus is defined by the parameter 𝑎, which is 

determined by calculating the value of the damage function at certain positions. In the model 

updating procedure, which was realised for this thesis, the Young’s modulus was reduced 

uniformly for any of the previously defined slices of the beam. In order to ascertain the 

magnitude of the reduction, the normalised positions 𝑥𝑛𝑜𝑟𝑚 on the beams axis of the centre of 

gravity of each slice was substituted into the damage function. In Figure 8.18a the effectively 

used values of the damage function are marked by red dots while the axial width of the slices 

is marked by vertical dashed lines. It can be seen, that the maximum value of the damage 

function is not used, because it is located directly on the border between two slices. In this 

case, the maximum reduction of the Young’s modulus will be only 87%, although the 

intended reduction, as defined by the parameter 𝑝, is 99%. The effect increases, if 𝜎 is further 

reduced, as can be seen in Figure 8.18b. Here, the stiffness of the beam would actually not be 

affected by the updating parameters. In order to avoid the described problem, it is proposed 

here that the parameter 𝜎 is not set lower as the axial width of the widest slice in a damage 

element. 

However, if smaller 𝜎 shall be used, it is necessary to define the parameter 𝜇 in a way that it 

matches the centre of gravity of a slice, in order to reach the intended maximum stiffness 

a) 𝝈  is equal to the axial width 

of the slices 

b) 𝝈  reduced by factor 10 

compared to a) 
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reduction without reducing the axial width of the slices. This situation is shown in Figure 

8.19. 

 

Figure 8.19: Used values of the damage function, if its maximum is located on the centre of gravity of a slice 

Now at least the maximum value of the peak is used. But by additionally reducing the width 

of the slices, more points of the damage function would be used. Therefore, with a finer FE 

mesh, the influence of a crack can be modelled more realistic. The disadvantage of the 

reduction of the element size is of course that the computing effort becomes very high, 

especially if the axial width of the elements for a beam of length 46 𝑚 is reduced to a few 

millimetres. Normally, one aim of damage assessment is to localise the damage, which means 

it is not previously known. Here the idea is, that a model like the one described so far with a 

coarse element size can be used to identify damaged areas with a coarse accuracy. 

Afterwards, if necessary, the mesh in the identified areas is refined to improve the damage 

localisation. For the tests in the port of Mertert, the advantage is that the damage location is 

known, because the damage was artificially introduced. Therefore, the proposed approach can 

be tested, by first evaluating results, which were obtained with a coarse mesh, and afterwards 

refining the mesh in the vicinity of the damage and repeating the evaluation. 

Therefore, a second model was created with refined mesh in a region 1 𝑚 left and right of the 

position, where the tendons were cut during the tests. In the middle of this region, were the 

largest vertical crack appeared in the tests, the axial width was reduced to 10 𝑚𝑚. The width 

was steadily increased with increasing distance from the crack location. To avoid warped 

elements with a large ratio between its height and width, the element size in vertical direction 

was reduced, too. Now a transition had still to be created between the refined and the coarse 

mesh. For this purpose a transition mesh was created, which consisted of elements of the 
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same type as the remaining concrete beam (BEAM186) but degenerated into tetrahedral or 

pyramid shape. The resulting mesh in the vicinity of the damage is shown below. 

          

 

Figure 8.20: Mesh refinement in the vicinity of the damage location 

8.3 Definition of objective functions 

Four objective functions are defined based on the considerations in Chapter 4.6. Different 

physical quantities, which were predicted by the FE-simulation and measured in reality, are 

considered in any of them. By evaluating these individual objective functions, the usability of 

any considered physical quantity for the purpose of damage detection by model updating is 

checked separately. 

At first, the progressive downward movement of the beam due to gravity, i.e. the sagging by 

own weight, is considered. The vertical displacements measured by the displacement sensors 

SV6, SV4, SV1, SV3, SV2 and SV5 (cf. sensor positions in Figure 5.8) are evaluated. The 

data measured by these sensors were temperature-compensated as described in Chapter 6. 

Then from these temperature-compensated data, a value representative for each “unloading” 

(cf. Figure 5.18) and for each sensor was chosen as it was described in Chapter 7.1. These 

were the same values, which were already used for the plots in Figure 7.2. As for this figure, 

the values determined for the first unloading #0-UL1 were defined as baseline. The increase 

in deflection during the unloadings was analysed. The concrete values are listed in Table 8.3. 

a) Refined mesh b) Transition mesh shown with 

shrinked elements 
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Table 8.3: Temperature compensated values of absolute displacements during the “unloadings” referred to as 

“sagging” (used values for model updating marked by green shading) 

Sensor 

position x 

[m]

#0-UL1 

[mm]

#0-UL2 

[mm]

#0-UL3 

[mm]

#1-UL 

[mm]

#2-UL 

[mm]

#3-UL 

[mm]

#4-UL1 

[mm]

#4-UL2 

[mm]

fixed bearing -23.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SV6 -21.15 0.00 -0.35 -0.82 -0.34 -1.45 -1.83 -2.76 -4.11

SV4 -7.55 0.00 -1.33 -3.88 -0.75 -8.33 -11.63 -18.91 -26.58

SV1 0.00 0.00 -1.71 -4.31 -1.43 -9.75 -15.04 -24.81 -33.87

SV3 3.75 0.00 -1.64 -4.09 -1.79 -10.38 -17.66 -28.83 -38.63

SV2 7.55 0.00 -1.48 -3.59 -1.55 -8.41 -13.62 -22.33 -30.17

SV5 21.15 0.00 -0.35 -0.65 -0.46 -1.39 -2.26 -3.57 -5.02

sliding bearing 23.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reference DS#1 DS#2 DS#3Damage state #0 DS#4  

During the FE-simulation, the nodes closest to the real sensor positions were selected and 

their displacements in vertical direction due to gravity were taken from the simulation results. 

First the healthy beam was simulated and the results were saved as a vector {𝑧ℎ𝑒𝑎𝑙𝑡ℎ𝑦}. In the 

following simulations, the sagging of the model was defined as the difference from the 

calculated vertical displacements due to gravity to the values in the healthy state. 

{𝑠𝑖𝑚𝑠𝑎𝑔𝑔𝑖𝑛𝑔({𝑝})}   = {𝑧𝑑𝑎𝑚𝑎𝑔𝑒𝑑({𝑝})} − {𝑧ℎ𝑒𝑎𝑙𝑡ℎ𝑦} (8-6) 

Where {𝑠𝑖𝑚𝑠𝑎𝑔𝑔𝑖𝑛𝑔({𝑝})} is the simulated sagging, which depends on the used updating 

parameter {𝑝}, and 𝑧𝑑𝑎𝑚𝑎𝑔𝑒𝑑({𝑝}) is the simulated deflection due to gravity with parameter 

set {𝑝}. 

This procedure resulted in vectors containing the sagging of the beam at the 6 sensor 

locations. From real measurements a vector {𝑒𝑥𝑝𝑠𝑎𝑔𝑔𝑖𝑛𝑔} was defined for any unloading, 

which actually were the values listed in Table 8.3. The measured vectors were compared to 

the simulated vectors 𝑠𝑖𝑚𝑠𝑎𝑔𝑔𝑖𝑛𝑔({𝑝}) by means of an objective function. Thus, it is possible 

to determine from each simulation several objective values, one for each unloading. 

Furthermore, by selecting one unloading for each damage scenario DS#0-DS#4, an objective 

value from the function for each scenario was obtained. 

In order to compare the vectors and to define the objective function depending on a set of 

updating parameters {𝑝}, the Euclidian difference was calculated as defined in equation 

(4-45). By using a diagonal weighting matrix it would be possible to use different weighting 

factors for each component of the difference vector, e.g. to take into account different 

measurement accuracies. But here the weighting factors for each vector component are set the 

same in this study, so the weighting matrix [𝐖] can be replaced by a single factor 𝑤. 
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𝑜𝑏𝑗𝑠𝑎𝑔𝑔𝑖𝑛𝑔({𝑝})   = 𝑤‖({𝑒𝑥𝑝𝑠𝑎𝑔𝑔𝑖𝑛𝑔} − {𝑠𝑖𝑚𝑠𝑎𝑔𝑔𝑖𝑛𝑔({𝑝})})‖
2
 

=
1

𝑁
∙
1

Δ
∙ √∑| 𝑒𝑥𝑝𝑠𝑎𝑔𝑔𝑖𝑛𝑔𝑖 − 𝑠𝑖𝑚𝑠𝑎𝑔𝑔𝑖𝑛𝑔𝑖 {𝑝}|

2
𝑁

𝑖=1

 

(8-7) 

The number of components of the compared vectors 𝑁 and the measurement accuracy Δ are 

taken into account for the weighting. The Euclidian norm in equation (8-7) is multiplied by 

the reciprocals of 𝑁 and Δ. Consequently, the objective function in equation (8-7) yields 

dimensionless values. In this problem, 𝑁 is the number of sensors, i.e. equal to 6, and Δ is 

assumed as 0.1 𝑚𝑚 for the used displacement sensors. In the evaluation of the objective 

functions, the measured and simulated values were rounded to the number of decimal places, 

which corresponds to the accuracy Δ. The name of this function “𝑜𝑏𝑗𝑠𝑎𝑔𝑔𝑖𝑛𝑔” means 

“objective function based on sagging due to gravity”. 

The second considered physical quantity is the deflection of the beam due to the additional 

test load, which was used in the static tests. The approach is similar to the one for the 

deflection due to gravity. As for the unloadings, also for the loadings temperature–

compensated displacements were determined as described in Chapter 7.1. Instead of 

calculating the difference of these displacements to a baseline, the differences to the 

displacements during the unloading just before a loading were determined and summarised in 

a vector {𝑒𝑥𝑝𝑎𝑑𝑑}.  

{𝑒𝑥𝑝𝑎𝑑𝑑}   = {𝑥𝑙𝑜𝑎𝑑𝑒𝑑} − {𝑥𝑢𝑛𝑙𝑜𝑎𝑑𝑒𝑑} (8-8) 

Where {𝑥𝑙𝑜𝑎𝑑𝑒𝑑} and {𝑥𝑢𝑛𝑙𝑜𝑎𝑑𝑒𝑑} are vectors containing the measured displacements when 

the beam was loaded and just before the loading, respectively (cf. Figure 5.18). This yields 

the values used in Figure 7.5 and listed in Table 8.4. 
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Table 8.4: Temperature compensated displacements due to loading with test weights (26t) (used values for model 

updating marked by green shading) 

x [m]

#0-L1 

[mm]

#0-L2 

[mm]

#1-L 

[mm]

#2-L 

[mm]

#3-L 

[mm]

#4-L1 

[mm]

#4-L2 

[mm]

fixed bearing -23.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SV6 -21.15 -2.63 -2.27 -2.16 -3.16 -3.09 -3.96 -2.53

SV4 -7.55 -17.72 -16.10 -15.58 -22.80 -22.98 -30.55 -19.41

SV1 0.00 -20.02 -18.09 -18.04 -25.74 -27.67 -37.51 -23.15

SV3 3.75 -18.75 -17.00 -17.35 -25.13 -30.49 -39.41 -23.48

SV2 7.55 -15.97 -14.50 -14.62 -20.93 -23.46 -32.27 -19.65

SV5 21.15 -2.35 -2.15 -2.10 -3.02 -3.46 -4.58 -2.86

sliding bearing 23.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DS#1 DS#2 DS#3 DS#4Damage state #0

 

In the simulation, the additional loads were not defined as solids with a mass, but their weight 

was defined as surface loading on the top flange of the test beam. The vertical displacements 

at the sensor locations due to these loads were taken from the simulation results as it was 

done for the displacements due to own weight. Again a result vector for any simulation 

{𝑠𝑖𝑚𝑎𝑑𝑑} as well as a vector for each damage scenario including the measured values 

{𝑒𝑥𝑝𝑎𝑑𝑑} (cf. Table 8.4), were defined. 

The vectors were compared by an objective function similar to 𝑜𝑏𝑗𝑔𝑟𝑎𝑣, with the same values 

for 𝑁 and Δ. 

𝑜𝑏𝑗𝑎𝑑𝑑({𝑝})   = 𝑤‖({𝑒𝑥𝑝𝑎𝑑𝑑} − {𝑠𝑖𝑚𝑎𝑑𝑑({𝑝})})‖2 

=
1

𝑁
∙
1

Δ
∙ √∑| 𝑒𝑥𝑝𝑎𝑑𝑑𝑖 − 𝑠𝑖𝑚𝑎𝑑𝑑𝑖 {𝑝}|

2
𝑁

𝑖=1

 
(8-9) 

Furthermore, two objective functions based on the dynamic properties were defined. In the 

experimental modal analyses for the different damage scenarios, 5 modes were identified in 

the frequency range 2.5 − 15 𝐻𝑧. One measurement was selected for every damage scenario 

and the eigenfrequencies of the identified modes are listed in Table 8.5. 
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Table 8.5: Eigenfrequencies identified in damage scenarios DS#0 - DS#4 (used modes for model updating marked by 

green shading) 

31/01/14 04/02/14 06/02/14 11/02/14 17/02/14

11:28:18 11:00:26 11:10:09 10:56:52 12:03:24

Abbr. Description f [Hz] DS#0 f [Hz] DS#1 f [Hz] DS#2 f [Hz] DS#3 f [Hz] DS#4

B1a Bending mode 2,88 2,88 2,85 2,84 2,78

B1b Bending mode 3,03 3,04 3,01 2,99 2,99

T1 Torsional mode 4,48 4,49 4,46 4,46 4,45

T2 Torsional mode 7,29 7,32 7,27 7,26 7,24

B2 Bending mode 7,54 7,55 7,51 7,51 7,45

Start time of 

measurement 

 

Before the evaluation of the objective functions for a simulation run, these 5 modes were 

automatically correlated to the simulated modes by means of the Modal Assurance Criterion 

(MAC according to equation (4-34)) as it is explained in Chapter 4.6, but finally only 3 of 

them could clearly be correlated. Above all, the identification of mode T2 was not very clear, 

so it did not match a simulated mode. Furthermore, the measured modes B1a and B1b are 

quite similar and recognised as highly coupled modes while the FE-simulation results in only 

one mode about 3 𝐻𝑧 whose shape is similar to both B1a and B1b. In the following 

evaluations only measured mode B1a was considered. 

In the first place, the eigenfrequencies of the correlated modes are compared by the following 

objective function 𝑜𝑏𝑗𝑒𝑓: 

𝑜𝑏𝑗𝑒𝑓({𝑝})  = 𝑤‖({𝑒𝑥𝑝𝑒𝑓} − {𝑠𝑖𝑚𝑒𝑓({𝑝})})‖
2
 

=
1

𝑁
∙
1

Δ
∙ √∑| 𝑒𝑥𝑝𝑒𝑓𝑖 − 𝑠𝑖𝑚𝑒𝑓𝑖 {𝑝}|

2
𝑁

𝑖=1

 

(8-10) 

where vectors {𝑒𝑥𝑝𝑒𝑓} and {𝑠𝑖𝑚𝑒𝑓} contain the measured and simulated eigenfrequencies for 

the correlated mode pairs, respectively. Here 𝑁 = 3 and Δ = 0.01 𝐻𝑧 were used. 

Finally, the unit modal mass (UMM) normalised mode shapes of the correlated mode pairs 

are compared by means of MAC according to equation (4-34). 

𝑜𝑏𝑗𝑀𝐴𝐶({𝑝})   =
1

𝑁
√∑|1 − 𝑀𝐴𝐶( 𝜑𝑚𝑒𝑎𝑠,𝑖 𝜑𝑠𝑖𝑚({𝑝})𝑖 )|

2
𝑁

𝑖=1

 (8-11) 
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8.4 Results of model updating with coarse FE mesh 

Several FE simulations using different parameter sets were performed, to carry out a 

parameter study. At first, the model with the coarse mesh was used. The resulting objective 

values are plotted and evaluated graphically. The intention was to examine if the model, the 

updating parameters and the used objective functions are appropriate for a detection and 

localisation of the artificially introduced damage. 

Since the defined objective functions depend on the 3 model updating parameter 𝑝, 𝜇 and 𝜎, 

the functional graphs are 4-dimensional, and hence cannot be plotted completely in a single 

3-dimensional plot. Therefore, the functions are plotted as curves by always fixing 2 

parameters. 

The whole test beam can be considered as one damage element, so the normalised x-axis 

according to Figure 8.17 starts at the beginning of the beam at the location of the fixed 

bearing and ends at the sliding bearing. By this setting the location of the artificially 

introduced damage corresponds to 𝑥𝑛𝑜𝑟𝑚 = 0.2. Therefore, the parameter 𝜇 was fixed 

initially to this value and simulations were performed, where 𝑝 and 𝜎 were varied (𝑝: 0.1 to 

0.99 and 𝜎: 0.01 to 0.1). As elucidated in Chapter 8.2, it can happen that the intended 

maximum reduction of the stiffness, as defined by 𝑝, is not reached, if 𝜎 is chosen too small 

compared to the axial width of the slices. Therefore, the smallest used value for 𝜎 was here 

0.01. This value corresponds approximately to the width of the slices if it is converted to the 

normalised x-axis of the damage element. 

As an example the objective values are plotted, which were calculated by using the objective 

function based on the sagging of the test beam, i.e. 𝑜𝑏𝑗𝑠𝑎𝑔𝑔𝑖𝑛𝑔. 
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Figure 8.21: 3D scatter plot of objective function based on the sagging of the test beam for fixed 𝝁 

From the points plotted in the above diagram the parameter set with the lowest objective 

value was chosen, here 𝑝 = 0.9, 𝜇 = 0.2  and 𝜎 = 0.07. This was repeated for every damage 

scenario as well as all 4 damage functions. Table 8.6 lists the obtained optimal parameter 

sets. 

Table 8.6: Parameter sets with minimal objective values for 𝝁 = 𝟎. 𝟐 

DS# p m s p m s

1 0.25 0.20 0.04 0.10 0.20 0.01

2 0.50 0.20 0.10 0.88 0.20 0.09

3 0.73 0.20 0.08 0.98 0.20 0.06

4 0.90 0.20 0.07 0.95 0.20 0.04

DS# p m s p m s

1 0.99 0.20 0.01 0.70 0.20 0.10

2 0.99 0.20 0.01 0.73 0.20 0.09

3 0.99 0.20 0.01 0.73 0.20 0.09

4 0.98 0.20 0.02 0.70 0.20 0.10
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Plots of the objective functions according to these parameter sets are summarised in Figures 

8.22 to 8.25. Each curve is determined by fixing 2 parameters while the third parameter 

varies. The curves reveal clearly that the positions of the minima of the objective functions on 

the abscissa are actually the parameters listed in Table 8.6. 

 

 

Figure 8.22: Objective function based on the sagging of the test beam 

In Figure 8.22a shows that while using the damage function  𝑜𝑏𝑗𝑠𝑎𝑔𝑔𝑖𝑛𝑔, optimal values for 

parameter 𝑝 increase steadily with increasing damage, so it may properly indicate the severity 

of damage. 

 

 

Figure 8.23: Objective function based on deflection due to additional test loading 

a) 𝝁 and 𝝈 fixed b) 𝝁 and 𝒑 fixed 

a) 𝝁 and 𝝈 fixed b) 𝝁 and 𝒑 fixed 
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Figure 8.24: Objective function based on eigenfrequencies 

 

 

Figure 8.25: Objective function based on mode shape comparison by means of MAC 

In order to plot the objective functions vs. parameter 𝜇, i.e. the normalised x-position, 𝜇 was 

varied in the simulations. Figure 8.26 shows discrete values of 𝑜𝑏𝑗𝑠𝑎𝑔𝑔𝑖𝑛𝑔, if for the different 

damage scenarios the parameters 𝑝 and 𝜎 are fixed to the values from Table 8.6. The damage 

localisation becomes clearer with increasing damage, because the damage function increases 

faster from the minimum. However, it shows that the minima are not exactly at the real 

damage location 𝜇 = 0.2, as assumed in Table 8.6 for the calculations. The observation is 

detailed by a zoom shown in In Figure 8.26b where the resulted minima are marked 

accompanied by X- and Y-coordinates, i.e. values for 𝜇 and 𝑜𝑏𝑗𝑠𝑎𝑔𝑔𝑖𝑛𝑔 respectively.  

a) 𝝁 and 𝝈 fixed 
b) 𝝁 and 𝒑 fixed 

a) 𝝁 and 𝝈 fixed b) 𝝁 and 𝒑 fixed 
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Figure 8.26: Objective values vs. 𝝁 using 𝒐𝒃𝒋𝒔𝒂𝒈𝒈𝒊𝒏𝒈 for DS#1-DS#4 

Figure 8.27 shows the objective values for 𝑜𝑏𝑗𝑠𝑎𝑔𝑔𝑖𝑛𝑔 while fixing 𝜎 = 0.07 and varying 𝑝 

and 𝜇 for DS#4.  

 

Figure 8.27: Values for 𝒐𝒃𝒋𝒔𝒂𝒈𝒈𝒊𝒏𝒈 vs. 𝝁 in DS#4 with fixed 𝝈 = 𝟎. 𝟎𝟕 

For the most values of 𝑝, the minimal objective value can indeed be found at 𝜇 = 0.2, the 

real damage location. But from 𝑝 = 0.88 upwards, the localisation appears less accurate. For 

example, with 𝑝 = 0.91, the smallest objective value can be found at 𝜇 = 0.11. If 𝑝 exceeds 

a) Overall view b) Zoom with 

marked minima 
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this value, the behaviour of the objective function changes completely. In this case, around 

𝜇 = 0.2 a maximum appears instead of a minimum. This behaviour can be explained as 

follows. In DS#4 severe damage was already present, so the simulated displacements are too 

small with low values of 𝑝. If the parameter 𝑝 increases, at first the deviation between 

simulation and measurement gets smaller. For an optimal 𝑝, they nearly match, but if 𝑝 is 

moreover increased, the simulated displacements become higher than the measured ones. 

Therefore, simulation and reality veer away from each other. 

Furthermore, for 𝑝 > 0.91 two new local minima appear to the left and right of the damage 

location. This means the solution of the optimisation problem is not unique, because all 

minima represent a solution. If the objective function is not evaluated visually, as in this 

experiment, but an automatic optimisation algorithm is used, it can happen, depending on the 

algorithm, that not the minimum is found, which corresponds with the correct damage 

location. The global minimum is the smallest point of the whole objective function. It can be 

assumed, that this must be the “correct” minimum that indicates the damage, but in fact this is 

not guaranteed. 

In Figure 8.28 the objective values are plotted for all four objective functions with the 

parameter 𝑝 and 𝜎 fixed on the values from Table 8.6. 
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Figure 8.28: Objective functions vs. 𝝁 with optimal values from Table 8.6 

Every function shows a minimum not far from the damage location, but additional minima 

may appear. In some cases they are even lower than the minimum near the damage location 

(e.g. for 𝑜𝑏𝑗𝑒𝑓 in Figure 8.28c). The damage function based on the mode shapes 𝑜𝑏𝑗𝑀𝐴𝐶 

(Figure 8.28d) shows a curious behaviour near the damage location, where the function 

seems to be unsteady as two steps appear. Caused by these steps, a local minimum appear left 

from the damage location but it is still higher as the value of the damage function directly at 

the damage location. 

From the above plots the location of the minima, which are located nearest to the real damage 

position, were determined and Table 8.6 was updated as follows. 

a) 𝒐𝒃𝒋𝒔𝒂𝒈𝒈𝒊𝒏𝒈 b) 𝒐𝒃𝒋𝒂𝒅𝒅 

c) 𝒐𝒃𝒋𝒆𝒇 d) 𝒐𝒃𝒋𝑴𝑨𝑪 
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Table 8.7: Parameter sets with minimal objective values 

DS# p m s p m s

1 0.25 0.20 0.04 0.10 0.50 0.01

2 0.50 0.09 0.10 0.88 -0.15 0.09

3 0.73 0.13 0.08 0.98 0.18 0.06

4 0.90 0.13 0.07 0.95 0.16 0.04

DS# p m s p m s

1 0.99 0.29 0.01 0.70 0.50 0.10

2 0.99 0.29 0.01 0.73 0.50 0.09

3 0.99 0.29 0.01 0.73 0.50 0.09

4 0.98 0.26 0.02 0.70 0.50 0.10
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Figure 8.29: Comparison of measured to simulated deflections, if the found optimal parameter sets are used. 

Table 8.8: Comparison of measured to simulated eigenfrequencies, if the found optimal parameter sets are used. 

meas. sim. meas. sim. meas. sim. meas. sim.

B1a 2,88 2,76 2,85 2,76 2,84 2,76 2,78 2,67

T1 4,49 5,05 4,46 5,05 4,46 5,05 4,45 5,03

B2 7,55 7,32 7,51 7,32 7,51 7,32 7,45 7,28

DS#1 DS#2 DS#3 DS#4
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For the found parameter sets, the reduction of the Young’s modulus along the beam’s axis 

compared to the initial value, is shown in the below figure for all damage scenarios. 

 

 

Figure 8.30: Reduction of Young’s modulus along the axis of the beam in the FE-model based on the found optimal 

parameter sets 

Finally, a plot is shown for 𝑜𝑏𝑗𝑠𝑎𝑔𝑔𝑖𝑛𝑔, which shows the reduction of the Young’s modulus 

over the axis of the beam according to the found optimal parameter sets for all damage 

scenarios. 
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Figure 8.31: Reduction of Young’s modulus along the axis of the beam in the FE-model based on the found optimal 

parameter sets for 𝒐𝒃𝒋𝒔𝒂𝒈𝒈𝒊𝒏𝒈 

As a conclusion it can be said, that the objective function, which based on the sagging of the 

beam, worked best in this evaluation. Figure 8.31 shows that, in spite of the coarse FE mesh, 

the location of the crack is well indicated by the peak of the damage function that depends on 

parameter 𝜇. As a result, the maximum of the reduction of the Young’s modulus in the model 

is located near the real damage location for all damage scenarios. Even the increasing 

severity of the damage from DS#1 to DS#4 can be seen by the magnitude of the reduction 

that is defined by parameter 𝑝. A less accurate parameter for the level of damage is parameter 

𝜎, i.e. the width of the damage function. 

From the plots in Figure 8.30, it can be seen that also the other evaluated objective functions 

indicated the damage quite well. The objective function based on the comparison of the mode 

shapes by means of MAC (𝑜𝑏𝑗𝑀𝐴𝐶), shows less appropriate for damage detection. This was 

explained here by the fact that it was not possible to identify the mode shapes with sufficient 

accuracy in the experimental modal analysis, which was performed at the test beam. 
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8.5 Results of model updating with refined FE mesh 

In Chapter 8.2 an FE-model was described with a finer mesh in the vicinity of the damage 

location. As elucidated there, the finer mesh allows modelling the impact of a crack on the 

stiffness more realistic. This can be done by defining the damage function as a narrow peak, 

i.e. by using small values for the updating parameter 𝜎. By doing this, Young’s modulus of 

the beam is affected only over a small region. Generally, this region of influence is smaller 

than in Chapter 8.4 for the coarse mesh. This also means that the impact on the simulated 

displacements are smaller, if the same values for 𝑝 would further be used. Therefore, it was 

expected that higher values for 𝑝 above 0.99 will here result as optimal parameter. The value 

𝑝 = 1 would mean a reduction by 100%, which would be the same as supressing the 

concerned elements before the simulation run, so it is the maximum. Although between 0.99 

and 1 is not a far range, it has to be considered that 𝑝 = 0.999 means a ten times higher 

reduction of the Young’s moduli as it is achieved for 𝑝 = 0.99. Therefore, by considering 

more decimal places for parameter 𝑝, the range of the stiffness reduction can be greatly 

expanded. The considered parameter range was here 𝑝: 0.6 to 0.9999 and 𝜎: 0.005 to 

0.3804. 

While in Chapter 8.4 the complete beam was considered, here the region of interest is 

reduced to the part with the refined mesh, i.e. 1 𝑚 left and right of the damage. For this 

purpose, the limits of the damage element were set to the beginning and the end of the refined 

mesh. When comparing the parameter values used in Chapter 8.4 to the ones used here, it has 

to be considered that since the damage element is now smaller, the values of 𝜎 cannot be 

directly compared, i.e. the same value for 𝜎 will now lead to a reduction of the Young’s 

modulus in a smaller region than in the previous evaluation. 

Since the damage is now located exactly in the middle of the damage element, the expected 

optimal value for 𝜇 is now zero. Furthermore, in Chapter 8.2, it was stated that depending on 

the parameter 𝜇, it can happen that the intended reduction of the stiffness will not be reached, 

especially if small values for 𝜎 are used. In spite of the finer mesh this could happen in this 

evaluation, above all for the border areas of the damage element (𝜇 near 1 or −1), because 

here the mesh becomes coarser. In order to guarantee here, that the maximum of the damage 

function is always used, the parameter 𝜇 is always set to match the centres of gravity of the 

slices. 
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At first, as for the coarse mesh, an example of the calculated objective values for the function 

𝑜𝑏𝑗𝑠𝑎𝑔𝑔𝑖𝑛𝑔 in damage scenario DS#4 is shown. In the first step the parameter 𝜇 was fixed to 

0.0053, which is the nearest value to 0, beside −0.0053, that was evaluated. 

 

Figure 8.32: 3D scatter plot of objective function based on the sagging of the test beam for fixed 𝝁 

Here it can be seen that the minimum of the function can be found for values of 𝑝 that are 

very near to 1, but also that the function rises again for even higher values. The parameter 

sets, which minimises the objective functions for a fixed 𝜇 = 0.0053 were searched for all 

damaged scenarios. The results are listed in Table 8.9. 
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Table 8.9: Parameter sets with minimal objective values for 𝝁 = 𝟎. 𝟎𝟎𝟓𝟑 

DS# p m s p m s

1 0.9700 0.0053 0.0377 0.8000 0.0053 0.0050

2 0.9950 0.0053 0.1357 0.9991 0.0053 0.2500

3 0.9992 0.0053 0.0703 0.9996 0.0053 0.2500

4 0.9992 0.0053 0.1847 0.9994 0.0053 0.1030

DS# p m s p m s

1 0.9990 0.0053 0.0213 0.6000 0.0053 0.0050

2 0.9991 0.0053 0.0540 0.6000 0.0053 0.0050

3 0.9991 0.0053 0.0540 0.9000 0.0053 0.0050

4 0.9992 0.0053 0.0540 0.6500 0.0053 0.3804
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Again, the courses of the objective functions for the resulting optimal parameter sets are 

plotted in Figures 8.33 to 8.36. The minima of the objective functions for the different 

damage scenarios can be identified for the parameter sets listed in Table 8.9. 

 

 

Figure 8.33: Objective function based on the sagging of the test beam 

a) 𝝁 and 𝝈 fixed b) 𝝁 and 𝒑 fixed 
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Figure 8.34: Objective function based on deflection due to additional loads 

 

 

Figure 8.35: Objective function based on eigenfrequencies 

a) 𝝁 and 𝝈 fixed b) 𝝁 and 𝒑 fixed 

a) 𝝁 and 𝝈 fixed 
b) 𝝁 and 𝒑 fixed 
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Figure 8.36: Objective function based on mode shape comparison by means of MAC 

Now the objective functions vs. parameter 𝜇, i.e. the normalised x-position are plotted, using 

for 𝑝 and 𝜎 the values from Table 8.9. By doing this, it can be checked if the damage is 

properly localised. 

a) 𝒐𝒃𝒋𝑴𝑨𝑪 vs. 𝒑 for fixed 𝝁 and 𝝈 b) 𝒐𝒃𝒋𝑴𝑨𝑪 vs. 𝝈 for fixed 𝝁 and 𝒑 
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Figure 8.37: Objective functions vs. 𝝁 with optimal values from Table 8.9 

The above plots show that the minima of the objective functions 𝑜𝑏𝑗𝑠𝑎𝑔𝑔𝑖𝑛𝑔, 𝑜𝑏𝑗𝑎𝑑𝑑 and 

𝑜𝑏𝑗𝑒𝑓 appear very near to the damage location. Only for the objective function based on the 

mode shapes 𝑜𝑏𝑗𝑀𝐴𝐶, this did not work so well. For 𝑜𝑏𝑗𝑠𝑎𝑔𝑔𝑖𝑛𝑔 and 𝑜𝑏𝑗𝑎𝑑𝑑, the damage 

localisation become clearer with increasing damage, as it was the case when using the coarse 

a) 𝒐𝒃𝒋𝒔𝒂𝒈𝒈𝒊𝒏𝒈 b) 𝒐𝒃𝒋𝒂𝒅𝒅 

c) 𝒐𝒃𝒋𝒆𝒇 d) 𝒐𝒃𝒋𝑴𝑨𝑪 
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mesh. Table 8.10 is again an update of Table 8.9 with the optimal values for 𝜇 that were 

found in Figure 8.37. 

Table 8.10: Parameter sets with minimal objective values 

DS# p m s p m s

1 0.9700 0.0053 0.0377 0.8000 0.0053 0.0050

2 0.9950 -0.1833 0.1357 0.9991 0.0053 0.2500

3 0.9992 0.0053 0.0703 0.9996 -0.0164 0.2500

4 0.9992 0.0053 0.1847 0.9994 0.0053 0.1030

DS# p m s p m s

1 0.9990 0.0053 0.0213 0.6000 0.0164 0.0050

2 0.9991 0.0053 0.0540 0.6000 -0.8989 0.0050

3 0.9991 0.0053 0.0540 0.9000 -0.0733 0.0050

4 0.9992 0.0053 0.0540 0.6500 -0.5789 0.3804

objadd

objef objMAC

objsagging

 

 

Figure 8.38: Comparison of measured to simulated deflections, if the found optimal parameter sets are used. 

Table 8.11: Comparison of measured to simulated eigenfrequencies, if the found optimal parameter sets are used. 

meas. sim. meas. sim. meas. sim. meas. sim.

B1a 2,88 2,71 2,85 2,66 2,84 2,66 2,78 2,63

T1 4,49 5,07 4,46 5,05 4,46 5,05 4,45 5,04

B2 7,55 7,44 7,51 7,40 7,51 7,40 7,45 7,39

DS#1 DS#2 DS#3 DS#4

 

Now the reduction of the Young’s modulus along the length of the beam is plotted according 

to the optimal parameter sets from Table 8.10. When comparing the following plots to 

Figures 8.30 and 8.31, it must be considered that here the range of the abscissa does not cover 

the entire beam, but extends only from 4 to 6 𝑚, i.e. the region with the refined FE mesh.  
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Figure 8.39: Reduction of Young’s modulus along the axis of the beam in the FE-model based on the found optimal 

parameter sets 

As in the previous evaluation for the coarse mesh, here a plot is shown for 𝑜𝑏𝑗𝑠𝑎𝑔𝑔𝑖𝑛𝑔, which 

shows the reduction of the Young’s modulus over the axis of the beam according to the found 

optimal parameter sets for all damage scenarios. 
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Figure 8.40: Reduction of Young’s modulus along the axis of the beam in the FE-model based on the found optimal 

parameter sets for 𝒐𝒃𝒋𝒔𝒂𝒈𝒈𝒊𝒏𝒈 

The FE-mesh for the simulated test setup was refined for two reasons. The first one was to 

achieve a higher accuracy for the damage localisation. The second one was to be able to 

model the damage more realistic by defining the damage function as a narrow peak. For this 

reason, the parameter range for the search of minima of the objective function was changed 

compared to the evaluation with the coarse mesh. That means the width of the bell curve that 

was defined by the damage function was reduced by using smaller values for parameter 𝜎. In 

order to compensate this, higher values for 𝑝 must be used. 

If in the model with the refined mesh the Young’s modulus along the length of the beam is 

reduced according to the optimal parameter sets, which were found with the coarse mesh, 

quite similar simulation results and objective values can be expected. This is because the only 

difference between the models is the refined mesh. Therefore, using the same parameter 

range for both models makes no sense. 

The result of the new evaluation with the refined mesh was that by using the previously 

defined objective functions based on the static properties sagging of the beam and bending 

due to a test load, the damage localisation worked very well. The same can be said, if the 

eigenfrequencies are considered. With these objective functions it is even possible to estimate 
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the severity of the damage by looking at the increase of parameter 𝑝 with increasing damage. 

As it was the case for the coarse mesh, the objective function based on the comparison of the 

mode shapes by means of MAC was not appropriate. This is again due to the insufficient 

accuracy of the experimentally determined mode shapes. 

8.6 Results of model updating with refined FE mesh using the L1-norm 

In this chapter, the used norm for the calculation of the objective function will be changed 

from L2 to L1. Hence the four evaluated functions changes according to the following 

equations. 

𝑜𝑏𝑗𝑠𝑎𝑔𝑔𝑖𝑛𝑔({𝑝})   = 𝑤‖({𝑒𝑥𝑝𝑠𝑎𝑔𝑔𝑖𝑛𝑔} − {𝑠𝑖𝑚𝑠𝑎𝑔𝑔𝑖𝑛𝑔({𝑝})})‖
1
 

=
1

𝑁
∙
1

Δ
∙ ∑| 𝑒𝑥𝑝𝑠𝑎𝑔𝑔𝑖𝑛𝑔𝑖 − 𝑠𝑖𝑚𝑠𝑎𝑔𝑔𝑖𝑛𝑔𝑖 {𝑝}|

𝑁

𝑖=1

 
(8-12) 

 

𝑜𝑏𝑗𝑎𝑑𝑑({𝑝})   = 𝑤‖({𝑒𝑥𝑝𝑎𝑑𝑑} − {𝑠𝑖𝑚𝑎𝑑𝑑({𝑝})})‖1 

=
1

𝑁
∙
1

Δ
∙ ∑| 𝑒𝑥𝑝𝑎𝑑𝑑𝑖 − 𝑠𝑖𝑚𝑎𝑑𝑑𝑖 {𝑝}|

𝑁

𝑖=1

 
(8-13) 

 

𝑜𝑏𝑗𝑒𝑓({𝑝})  = 𝑤‖({𝑒𝑥𝑝𝑒𝑓} − {𝑠𝑖𝑚𝑒𝑓({𝑝})})‖
1
 

=
1

𝑁
∙
1

Δ
∙ ∑| 𝑒𝑥𝑝𝑒𝑓𝑖 − 𝑠𝑖𝑚𝑒𝑓𝑖 {𝑝}|

𝑁

𝑖=1

 
(8-14) 

 

𝑜𝑏𝑗𝑀𝐴𝐶({𝑝})   =
1

𝑁
∙ ∑|1 − 𝑀𝐴𝐶( 𝜓𝑚𝑒𝑎𝑠,𝑖 𝜓𝑠𝑖𝑚({𝑝})𝑖 )|

𝑁

𝑖=1

 (8-15) 

Since the square root is missing in these definitions, the objective values obtained are in 

general higher as the ones obtained if the L2-norm is used. This effect can be seen when 

comparing the below Figure 8.41 to Figure 8.32, where the values of function 𝑜𝑏𝑗𝑠𝑎𝑔𝑔𝑖𝑛𝑔 are 

plotted if L1- or L2-norm is used, respectively. Therefore, the range of values of the objective 

functions is larger with the L1-norm. 

Here, the same parameter range was considered as in the evaluation using the L2-norm. 
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Figure 8.41: 3D scatter plot of objective function based on the sagging of the test beam for fixed 𝝁 (L1-norm) 

At first, it was expected that the minima of the objective functions with L1-norm are the same 

as the ones if L2-norm is used, but they slightly differ. The new values for fixed 𝜇 = 0.0053 

are listed in Table 8.12. 

Table 8.12: Parameter sets with minimal objective values for 𝝁 = 𝟎. 𝟎𝟎𝟓𝟑 

DS# p m s p m s

1 0.9700 0.0053 0.0377 0.8000 0.0053 0.0050

2 0.9900 0.0053 0.1847 0.9990 0.0053 0.2337

3 0.9992 0.0053 0.0703 0.9993 0.0053 0.3478

4 0.9993 0.0053 0.1683 0.9960 0.0053 0.3315

DS# p m s p m s

1 0.9970 0.0053 0.0213 0.6000 0.0053 0.0050

2 0.9980 0.0053 0.0050 0.7000 0.0053 0.0050

3 0.9980 0.0053 0.0213 0.6500 0.0053 0.0213

4 0.9980 0.0053 0.0703 0.7500 0.0053 0.3804

objsagging objadd

objef objMAC

 

The plots of the objective functions vs. updating parameter 𝑝 and 𝜇 based on these parameter 

sets can be found in Appendix A.3. 
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In the next step, like in the previous evaluations, simulations were performed, where the 

values of 𝑝 and 𝜎 were fixed to the ones listed in Table 8.12 and 𝜇 was varied. By evaluating 

the results from these simulations the optimal value for 𝜇 that corresponds to the found 

parameter sets, was determined and Table 8.12 was updated as follows. 

Table 8.13: Parameter sets with minimal objective values 

DS# p m s p m s

1 0.9700 0.0053 0.0377 0.8000 0.0053 0.0050

2 0.9900 -0.4078 0.1847 0.9990 -0.0164 0.2337

3 0.9992 0.0053 0.0703 0.9993 0.0053 0.3478

4 0.9993 0.0053 0.1683 0.9960 -0.1833 0.3315

DS# p m s p m s

1 0.9970 0.0053 0.0213 0.6000 0.0164 0.0050

2 0.9980 0.0053 0.0050 0.7000 -0.0053 0.0050

3 0.9980 0.0053 0.0213 0.6500 -0.8070 0.0213

4 0.9980 0.0053 0.0703 0.7500 -0.3608 0.3804

objadd

objef objMAC

objsagging

 

 

Figure 8.42: Comparison of measured to simulated deflections, if the found optimal parameter sets are used. 

Table 8.14: Comparison of measured to simulated eigenfrequencies, if the found optimal parameter sets are used. 

meas. sim. meas. sim. meas. sim. meas. sim.

B1a 2,88 2,88 2,85 2,85 2,84 2,84 2,78 2,77

T1 4,49 5,15 4,46 5,13 4,46 5,12 4,45 5,10

B2 7,55 7,51 7,51 7,50 7,51 7,48 7,45 7,45

DS#1 DS#2 DS#3 DS#4

 

 

Here not all plots are shown as in the previous chapters, but they can be found in Appendix 

A.3. Instead an interesting change that has been observed in the course of objective function 
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𝑜𝑏𝑗𝑒𝑓 will be discussed. Therefore, the following figure shows a comparison of 𝑜𝑏𝑗𝑒𝑓 using 

L2 and L1-norm. For all simulations the model with the refined mesh was used. 

 

 

Figure 8.43: Objective functions based on eigenfrequencies vs. 𝝁 

When changing the norm from L2 to L1 the shape of the considered objective function in the 

vicinity of the damage changes from u-shaped to v-shaped. This has the effect that the 

position of the minimum is clearer with the L1-norm. Furthermore, since the slope of the 

objective function with L1-norm near the minimum is higher than with L2-norm, it can be 

assumed that an automatic optimisation algorithm will converge faster. But this was not 

tested here. 

Finally, the reduction of the Young’s modulus along the beam’s axis is shown for 𝑜𝑏𝑗𝑠𝑎𝑔𝑔𝑖𝑛𝑔 

with L1-norm. Further plots for all objective functions can be found again in Appendix A3. 

a) 𝒐𝒃𝒋𝒆𝒇 with L2-norm b) 𝒐𝒃𝒋𝒆𝒇 with L1-norm 
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Figure 8.44: Reduction of Young’s modulus along the axis of the beam in the FE-model based on the found optimal 

parameter sets for 𝒐𝒃𝒋𝒔𝒂𝒈𝒈𝒊𝒏𝒈 with L1-norm 

8.7 Conclusion 

In this chapter three evaluations were performed using a model updating procedure for FE-

models of the test setup described in Chapter 5. In this optimisation procedure four objective 

functions were evaluated. Two of them were based on static properties, which were the 

sagging of the beam and the deflections due to the test loads. Two additional objective 

functions were based on the dynamic properties eigenfrequencies and mode shapes. At first a 

model with a relative coarse FE mesh was used and the considered damage element was the 

whole beam. That means the location of the damage was searched over the complete length 

of the beam. It was shown by a parameter study, that the created parametrised FE-model, the 

chosen model updating parameters and the defined objective functions can be efficient to 

localise damage and to assess the severity of the damage to a certain extent. But because of 

the coarse FE-mesh the localisation was still quite inaccurate. 

Afterwards, the mesh was refined in the vicinity of the found damage location. Furthermore, 

the damage was searched only in the region with the refined mesh, which means the length of 

the damage element was reduced. Additionally, the range of the model updating parameters 
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was changed in comparison to the previous evaluation. Now it was possible to locate the 

damage with high accuracy. 

As a conclusion, it can be said that the objective function based on the sagging was the most 

effective one. It provided even better results as the objective function based on the deflections 

due to the test loads, which was most likely due to the fact that the sagging is caused by the 

whole own weight of the beam. Furthermore, the objective function based on the 

eigenfrequencies provided good results as well. But since variations in the measured 

eigenfrequencies with increasing damage were very small, the found optimal parameter sets 

using this objective function for the different damage scenarios were always nearly the same. 

Therefore, the possibility exists that these results are highly influenced by model 

uncertainties. The last objective function based on the mode shapes was less useful, which is 

most properly due to the insufficient accuracy of the identified mode shapes. 

Finally, the evaluation with the refined FE-mesh was repeated but with the difference that in 

the definitions of the used objective functions the L1-norm was used instead of the L2 

(Euclidian) norm. Since the L1-norm of a vector is in general higher as the L2-norm, the 

value range of the new objective functions increased. Therefore, they became more sensitive 

for changes in the model updating parameters. Furthermore, if the L1-norm is used instead of 

the L2-norm, the shape of the objective in the vicinity of the minima can change from u-

shaped to v-shaped. This may lead to some advantages, if an automatic optimisation 

algorithm is used for the model updating, which were elucidated in Chapter 8.6. 
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9 SUMMARY AND DISCUSSION 

This work focuses on the testing of various methods for detecting damage on bridges under 

realistic ambient conditions. The demolition of a prestressed concrete bridge provided the 

possibility of using one of its concrete beams for a test setup described in Chapter 5.1. The 

deflection of the beam as well as temperatures of the concrete at different positions and the 

ambient temperature were recorded permanently. Static loading tests were carried out by 

mounting two test weights (each 13 𝑡) and removing them after at least 24 hours. In addition, 

an experimental modal analysis (EMA) was performed multiple times to determine the modal 

properties (eigenfrequencies, mode shapes, damping and modal masses) of the beam. For this 

purpose, a swept-sine excitation was applied using an electro-magnetic shaker. The resulting 

vibrations of the structure were detected by means of accelerometers. First, these static and 

dynamic tests were performed several times in the healthy state to define a reference state. 

Then in four predefined damage scenarios, artificial damage was stepwise introduced by 

cutting more and more of the tendons inside the concrete. This resulted in a local drop of 

prestress, which caused a loss of stiffness. Finally, visible vertical cracks occurred in the 

concrete, which reduced the supporting cross-section. In the subsequent evaluations of the 

measured data, it was tested whether these damages could be detected on the basis of the 

data. The performed tests were described in detail in Chapters 5.2 and 5.3, including an 

analysis of the influence of temperature fluctuations on the static displacements. 

In Chapter 6, a method for compensating this temperature influence was proposed. It relies on 

the linear dependence of deflection on temperature. Then data measured by the displacement 

sensors were converted to a fixed reference temperature. As a result of the compensation, the 

fluctuations in the measured data caused by changes in temperature were reduced. Since these 

fluctuations are not related to damage, the temperature-compensated values were more 

suitable for damage detection than the raw data and were used in the following evaluations. 

Several damage indicators were evaluated based on experimental measurements and 

presented in Chapter 7. At first, the static displacements were discussed. The permanently 

measured data were subdivided into different periods, in which the beam was loaded by the 

test weights (so-called "loadings") or when they were removed (so-called "unloadings"). For 

each period as well as for each sensor, a "representative" value for the displacement was 

derived from the temperature-compensated data. This allowed to plot the deflection of the 
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beam along its axis for every loading and unloading. Plots were created with the absolute 

values corresponding to a defined baseline as well as with the deflections due to the test 

loadings. Furthermore, a cubic spline interpolation was performed for values between the 

sensor positions. The first and the second derivations of these splines, which present the 

slopes and curvatures of the deflection lines, were also evaluated. The damage and its 

position are clearly detectable from these plots. The steady increase of the absolute 

displacements was denominated in this thesis as "sagging". 

Subsequently, the dynamic parameters were also analysed. First, the measured 

eigenfrequencies were plotted vs. time. They clearly show a drop with increasing damage due 

to the loss of stiffness of the beam. It is necessary to recall that the settings of swept-sine 

excitation were always constant and the same algorithm was used for the modal analysis. 

Secondly, mode shapes were compared, initially visually and afterwards by means of 

correlation methods. For the visual comparison, one measurement was selected for each 

damage scenario and the corresponding mode shapes were drawn. The damage detection 

from these plots was not successful due to the insufficient quality of the measured mode 

shapes. In addition, the damage was located near a node of the second bending mode B2 and 

therefore had little effect on this shape. The mode shapes were also compared by means of 

usual correlation methods (MAC, NMD, MSF and COMAC). For the first three methods, the 

mode shapes from 19 measurements were compared to the shapes derived from a 

measurement in the healthy state, so it was expected that the deviation would increase with 

increasing damage. It was possible to detect the damage. Afterwards, the same measurements 

that were used in the visual comparison were considered again. The mode shapes identified in 

the damaged states (DS#1-DS#4) were compared to the mode shapes in the healthy state by 

means of COMAC. Although the first visual comparison was not evident, it was now possible 

to approximately localise the damage in DS#3 and DS#4. 

Finally, the modal parameters were summarised by using them for the calculation of a modal 

flexibility matrix. As explained in [74], this matrix can be used for damage detection, but the 

robustness of this method strongly depends on the bearing conditions and the damage 

location. 

The most substantial contribution of the present work is in Chapter 8, relating to a model 

updating procedure. The first step was the creation of a complex FE model for the test setup. 

It was a 3D model, which consisted mainly of solid elements and the inner tendons modelled 
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with beam elements. A well designed mapped mesh was created for the meshing of the 

concrete beam. The aim is enabling the possibility to assemble several elements into a "slice" 

with determined position along the beam’s axis, whose Young’s modulus could be changed 

separately to simulate stiffness losses due to damage. Directly parameterising them would 

have led to a huge number of parameters for the model updating process. Therefore, the 

reduction of the Young’s modulus along the beam axis was defined by a so-called damage 

function. This function included only 3 parameters, which now represented the model 

updating parameters. The simulation outputs were compared with the measurement results by 

means of 4 objective functions. The latter were defined based on different physical 

properties, sagging, deflection due to test loads, eigenfrequencies and mode shapes. 

A parameter study was carried out, in which the simulation has been calculated many times 

with different parameter sets. The simulation results were then compared to measurements 

from every damage scenario. This means that values of all 4 objective functions for any 

damage scenario were derived from the results of each individual simulation. Now parameter 

sets had to be found which minimised the objective functions, i.e. which led to the best match 

between simulation and measurement. According to the damage function, these optimal 

parameter sets led to a certain reduction of the Young's modulus along the axis of the beam. 

As a final result, this reduction was shown graphically, where the damage location was 

indicated. The procedure was carried out with two models. At first a relative coarse mesh was 

used and the damage was searched over the whole length. After the damage location was 

approximately identified, the evaluation was repeated with a refined mesh in the vicinity of 

the damage, resulting in a changed parameter set. Now it was clearly possible to locate 

damage with high precision. The effectiveness of the method depends strongly on the 

considered physical quantities. 

Finally, the second model with a refined mesh was evaluated again. This time, in the 

definition of objective functions, the L1 norm was used instead of the previously used L2 

(Euclidian) norm. This increased the value range of the objective functions, i.e. equal changes 

in the measured characteristics lead to higher changes to the objective function values. This 

makes the objective function more sensitive to changes to the input data. In addition, the 

evaluation revealed that if the L1-norm is used, the objective functions can become v-shaped 

in the vicinity of the minima instead u-shaped as with the L2-norm. This leads to the fact that 

the minima can be localised more precisely. It can be assumed that the mentioned changes 
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due to the L1-norm is advantageous for an automatic optimisation algorithm. However, this 

has not been tested within this thesis. 
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10 MAIN CONCLUSIONS AND OUTLOOK 

The static loading tests of the prestressed concrete beam in this thesis showed after loading 

with test weights increased deformation over time due to the formation of cracks.  After the 

load was removed, deformations remained, i.e. the beam did not return to the initial position. 

In the present thesis the continuous downwards movement of the beam due to plastic effects 

is here referred to as “sagging”. The plastic deformations were large in the first static tests 

directly after the beam was damaged, which led to large permanent deformations. However, 

the effects also occurred in the healthy state, but less. In a second static test in damage 

scenario DS#4, nearly no permanent deformations were observed, in opposite to the first test 

in the same scenario. This leads to the conclusion, that after changes at the structure, like for 

instance damage, it takes some time until a new steady state is reached. Therefore, it is 

recommended for future tests to always carry out at least 2 static loadings in each state and to 

evaluate only the results from the second loading. 

The direct observation of the sagging together with model updating appeared to be very 

useful for damage detection. It is clear because stiffness losses are directly reflected in the 

sagging. It reveals that for damage assessment, measuring of sagging is even more efficient 

than measuring the deflection due to a test load, like it was also done in this thesis with a load 

of 26t. This can be explained by the fact that the sagging is caused by the own weight of the 

bridge, which is by far higher as its service load, i.e. the maximal test load. 

But in order to monitor the sagging it is necessary to measure absolute deformations of the 

structure with respect to a fixed reference line. This is seldom realised, as it is difficult to 

define reference points, which remain fixed during the whole life of the bridge. It is believed 

that in the future, the sagging of bridges could be practically monitored by means of accurate 

GPS measurements or photogrammetry. 

Furthermore, the measured static deformations revealed an unavoidable influence of 

temperature fluctuations. This temperature effect should be separated from the influence of 

damage. For this purpose a compensation method was proposed and it showed good results. 

Above all temperature gradients in the structure have a high influence on the deformations, as 

it was shown theoretically for a temperature difference between the upper and the lower 

region of a simple beam. In future tests the temperature gradients should be monitored more 

in detail to further examine the effect and to obtain a large data base for temperature 
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compensation. For instance, the temperature distribution along the cross-section of the beam 

at different positions along the axis should be of interest. Furthermore, a temperature 

compensation for the measured eigenfrequencies should be realised as well, though the 

asphalt layer was already removed on the test beam. 

Of the measured modal parameters, eigenfrequencies appeared as a reliable damage indicator, 

although no localisation is possible from their direct observations. Damage detection also 

succeeded to a certain extent with mode shapes. But the mode shapes were not measured with 

sufficient accuracy. This was probably the reason, why the modal flexibility matrix was here 

not effective for damage detection. Above all, the torsional modes could not be well 

identified. This was the case, because only a few accelerometers were mounted near the 

edges of the top flange. In future tests these should be improved. Furthermore, the dynamic 

test should be carried out also during periods when the beam is loaded with test weights. This 

is because cracks will open due to the loading and so they can be detected easier. At real 

bridges dynamic tests while the bridge is loaded are costly and not appropriate to be realised 

with a monitoring system. But for the development of testing methods, a direct comparison 

between damage assessment results based on dynamic measurements in loaded and unloaded 

state maybe of interest. 

Within the model updating, four objective functions were evaluated based on sagging, 

deflection due to test loads, eigenfrequencies and mode shapes, respectively. The objective 

functions, which were based on the static deformations (𝑜𝑏𝑗𝑠𝑎𝑔𝑔𝑖𝑛𝑔 and 𝑜𝑏𝑗𝑎𝑑𝑑), appeared 

most effective for damage detection. But also the eigenfrequencies were useful. The mode 

shapes were not beneficial by the fact that they had not been identified well. 

The objective functions were defined by using the L2-norm (Euclidian norm) as well as the 

L1-norm. Both evaluations were successful, but the evaluation using the L1-norm revealed 

some potential advantages, especially for an automatic optimisation algorithm. This argument 

should be tested in future evaluations. Additionally, it is proposed to test further norms, like 

other Lp-norms (cf. Appendix A1) or the Frobenius norm in case of comparison between 

matrices. 

For the reason of efficiency and for practical application, the FE-model used in the present 

thesis is linear, in spite of the fact that nonlinearities are always present in bridges. Therefore, 

the model could be improved by considering these nonlinearities. For instance the Young’s 

modulus could be defined according to a complete stress-strain diagram. As the inclusion of 
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nonlinearities in the model will cause a huge computing effort when performing simulations, 

the number of degrees of freedom should be reduced, e.g. by carrying out a static model 

condensation, like explained for instance in [73]. The possibilities of substructuring in 

ANSYS can be used for this purpose. 

Furthermore, in the next step, objective functions based on different physical properties 

should be defined or a multi objective Pareto optimisation could be performed minimising 

several objective functions at the same time. Moreover, different optimisation algorithms can 

be tested, for instance the NLPQL algorithm developed by Schittkowsky [68]. 

In order to apply the results of research in the practical field of damage assessment of civil 

engineering structures, a highly automated expert system with different methods for damage 

assessment should be developed. 
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APPENDIX 

A.1 Definition of vector and matrix norms 

A norm is a function that assigns a positive value to a vector or matrix, in order to define its 

magnitude. Different possibilities exist for this purpose. Here the ones used in the present 

thesis are described. 

p-norm 

The p-norm, also called Lp-norm, of a vector {𝑥} = {𝑥1 𝑥2 …𝑥𝑖 …𝑥𝑛} with 𝑥𝑖 ∈ ℂ is defined 

as: 

Where p is a positive integer, i.e. 𝑝 ∈ [0, 1, 2, … ,∞]. 

For 𝑝 = 2 one obtains the Euclidean or L2-norm, which is most commonly used to define the 

magnitude or length of a vector.  

Here for real vectors, i.e. 𝑥𝑖 ∈ ℝ the absolute value bars in equation (A-2) can be omitted. 

For 𝑝 = 1 equation (A-1) gives the L1-norm, which is in fact the sum of the absolute values 

of the components 𝑥𝑖. 

For a complete definition of the p-norms, two special cases 𝑝 = 0 and 𝑝 = ∞, must be 

considered. The L0-norm is commonly defined as the total number of non-zero elements of a 

vector, while the L∞-norm is the magnitude of the maximum component of vector {𝑥}. 

 

‖{𝑥}‖𝑝: = (∑|𝑥𝑖|
𝑝

𝑛

𝑖=1

)

1
𝑝

  (A-1) 

‖{𝑥}‖2: = √∑|𝑥𝑖|2
𝑛

𝑖=1

  (A-2) 

‖{𝑥}‖1: = ∑|𝑥𝑖|

𝑛

𝑖=1

  (A-3) 
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Frobenius norm 

For matrices the so-called Frobenius norm can be calculated, which is defined for a matrix of 

dimension 𝑁 × 𝑀 as: 

Thus, it is the sum of the squared components of the matrix. 

A.2 FEM results for the healthy state of the test setup in the port of Mertert 

 

Figure A.1: FE-model 

‖[𝐀]‖𝐹 = ∑∑|𝑎𝑖𝑗|
2

𝑀

𝑗=1

𝑁

𝑖=1

 (A-4) 
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Figure A.2: Deflection due to gravity 

 

Figure A.3: Deflection due to loading with 2 weights of each 13t 
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Figure A.4: Mode 1 at 1.37 Hz – bending in y-direction 

 

Figure A.5: Mode 2 at 3.00 Hz – bending in z-direction; right: correlated measured mode 
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Figure A.6: Mode 3 at 3.78 Hz - torsional 

 

Figure A.7: Mode 4 at 5.21 Hz - torsional; right: correlated measured mode 
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Figure A.8: Mode 5 at 7.58 Hz – bending in z-direction; right: correlated measured mode 

 

Figure A.9: Mode 6 at 8.15 Hz - torsional 
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Figure A.10: Mode 7 at 9.41 Hz - torsional 

 

Figure A.11: Mode 8 at 12.80 Hz - torsional  
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A.3 Additional results for the evaluation in Chapter 8.6 

Plots of the objective functions, if the parameter sets from Table 8.12 are used: 

 

 

Figure A.12: Objective function based on the sagging of the test beam (L1-norm) 

 

 

Figure A.13: Objective function based on deflection due to additional loads (L1-norm) 

a) 𝝁 and 𝝈 fixed b) 𝝁 and 𝒑 fixed 

a) 𝝁 and 𝝈 fixed b) 𝝁 and 𝒑 fixed 
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Figure A.14: Objective function based on eigenfrequencies (L1-norm) 

 

 

Figure A.15: Objective function based on mode shape comparison by means of MAC (L1-norm) 

a) 𝝁 and 𝝈 fixed 
b) 𝝁 and 𝒑 fixed 

a) 𝒐𝒃𝒋𝑴𝑨𝑪 vs. 𝒑 for fixed 𝝁 and 𝝈 b) 𝒐𝒃𝒋𝑴𝑨𝑪 vs. 𝝈 for fixed 𝝁 and 𝒑 
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Figure A.16: Objective functions vs. 𝝁 with optimal values from Table 8.12 

 

  

a) 𝒐𝒃𝒋𝒔𝒂𝒈𝒈𝒊𝒏𝒈 b) 𝒐𝒃𝒋𝒂𝒅𝒅 

c) 𝒐𝒃𝒋𝒆𝒇 d) 𝒐𝒃𝒋𝑴𝑨𝑪 
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Reduction of Young’s modulus, if objective functions with L1-norm are used: 

  

  

Figure A.17: Reduction of Young’s modulus along the axis of the beam in the FE-model based on the found optimal 

parameter sets if objective functions with L1-norm are used 
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