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Abstract

The dissertation is devoted to the comparison and development of techniques for

model order reduction (MOR) of geometrically nonlinear elastic structures in the

static limit.

The MOR procedure works in the following way: the structure is first discretized

into finite elements and a discretized system of algebraic equations is obtained, in

which the stiffness matrix depends on the unknown vector. The system is then

projected to a lower order space. The choice of the basis of the projection space is

made according to the methods developed in the thesis. To this end, three techniques

are developed here based on different choices of the basis functions.

Comparative analysis of the suggested methods is carried out in the case of

two-dimensional structures (Euler-Bernoulli beam, multi-span beam and frame). In

order to be able to compare the results with those obtained by the MOR techniques

which are developed, the benchmark problems which are examined are first solved

analytically.

Results of computations carried out in Python and are then discussed.
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Chapter 1

Introduction

There are various important reasons why predictive modelling and analysis of engi-

neering structures is necessary before they are constructed and put to use: stable

performance of the structure, lifetime estimation, wear prognosis and so on.

Choice of the model for a structure under consideration depends on what type

of loading it will be subjected to (compression, stretching, bending, torsion, etc.)

and how it is linked to neighbouring elements. In general, mathematical models of

static structures under loading are boundary value problems. Ideally, for complete

structural analysis, the model equations are solved analytically, which is sometimes

too complicated. This difficulty provides the motivation to develop efficient and

accurate numerical methods for computational approximation of such problems.

Currently, there exist various numerical methods for approximating boundary value

problems for differential equations, providing different accuracies and requiring dif-

ferent computational costs. Depending on the problem under consideration, in order

to reduce complexity, an approximate solution with relatively less accuracy might

be sufficient. In structural analysis, however, where the accuracy of the calculations

is very important, other ways of reducing complexity have been developed.

One of the most efficient and preferred techniques for reducing the computational

costs without significantly affecting accuracy is model order reduction (MOR), which
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involves approximating the original model by reducing the dimension of its discrete

state space (or degrees of freedom). As a result, the reduced order model can often

be evaluated in significantly less time, but with lower accuracy compared to the

original high-fidelity model.
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1.1 Motivation

Closed-form solutions for boundary value problems arising in Structural Mechanics

are difficult and sometimes impossible to obtain. This is not only because of non-

linear terms present in the equilibrium equations, but also because of the geometrical

complexity of the problem domain. To obtain approximate solutions, discretization

methods are generally used and the governing system is transformed into a system

of algebraic equations. With such approaches, the accuracy of the approximation

depends on the discretization: the finer the discretization, the more accurate the

approximation and the higher the dimension of the discrete system.

Depending on the complexity of the problem or the required accuracy of the ap-

proximation, many degrees of freedom may be necessary. Eventually, the number of

unknowns may range between hundreds to several millions. Therefore, the solution

will require huge computational effort. The most significant motivation for model

order reduction methods is to reduce the computational costs associated with the

solution for obtaining higher dimensional systems.
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1.2 State of the Art

Depending on complexity of the problem, numerical simulations might be very time-

consuming. Therefore, applied scientists and engineers clearly need to develop ap-

proaches which somehow enable them to reduce the complexity of computations,

while preserving the desired characteristics of the model (e.g. stability, continuous

dependence on crucial parameters, etc.), and avoiding altering the accuracy. MOR

methods play an indispensable role in such cases.

The general idea of MOR is to approximate a discrete system of higher dimension

n by a reduced system of lower dimension k, so that k � n, which ideally has the

same behaviour as the original (see, for instance, [6]). The original system can be

linear or non-linear, stationary or non-stationary [56].

A typical model reduction process involves creating a suitable reduced basis

depending on the objective of the problem and the actual reduction algorithm itself.

There are some requirements which have to be met while constructing the basis

and performing the reduction algorithm, such as preserving the main characteristics

of the system, the approximation error associated with the reduced model should

be small, and the reduction techniques should not be computationally expensive to

perform, etc. [28].

For linear systems the reduction is usually a one-step procedure, since the matri-

ces and vectors describing the behaviour of the system do not depend on the vector

of unknowns [34]. Conversely, in the case of non-linear systems, the coefficient ma-

trix definitely depends on the vector of unknowns. MOR then becomes part of an

iterative procedure, and at each step of this procedure the coefficient matrix will be

different but constant [43]. Therefore, by applying a particular MOR method for

a linear system at each step of the iteration, a non-linear system can be approxi-

mated. Thus, the whole iteration procedure can be viewed as a sequence of linear

problems [42]. The latter approach will remain computationally expensive because
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of the need to generate a basis at each step.

The main classes of model order reduction techniques for linear systems are

based on the Krylov subspace method [63], Hankel norm approximants [29, 30] and

Karhunen-Loeve expansion, which is also called proper orthogonal decomposition

(POD) [53].

The methods dealing with non-linear systems include the empirical methods [51],

linearisation methods [19], trajectory approximation methods [25] and parametriza-

tion approach [27].

1.2.1 Model-Order Reduction for Linear Systems

In this subsection, several MOR methods used for approximation of linear non-

stationary systems are summarized. The main definitions and formula representa-

tions of all the main terms used in this subsection are presented and fully explained

in [6, 37,56].

1.2.1.1 MOR Algorithms Based on Krylov Subspace Method

The first MOR method based on Krylov subspace is so-called Asymptotic Waveform

Evaluation (AWE). This method involves Padé approximation to approximate the

transfer function of the system. This method consists of two steps. First, the

moments of the transfer function expansion are computed in terms of its poles and

then the coefficients of the approximating polynomials are determined via moment

matching.

However, AWE has some disadvantages. In particular, its unstable numerical

behaviour due to round-off errors, moment computations are explicit [61].

To overcome these difficulties, a modification of AWE is proposed in [59], using

in Padé approximation the two-sided Lanczos procedure [10] instead of moment

matching, which is too costly. This method, called the Padé-via-Lanczos (PVL)
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method, is more robust and generates more poles, although it still requires the

same computational effort as AWE [44]. It overcomes the loss of accuracy as k

increases, it avoids the singularities in Padé tables and improves the quality of

approximation of the frequency response away from the Padé expansion frequency

[58]. Nevertheless, since PVL is based on two-sided Lanczos algorithm and non-

orthogonal projections, it does not always preserve the stability of the system. To

overcome this disadvantage To overcome this disadvantage, it is suggested that

Ruth tables are used instead of Padé‘s. This method involves no eigenvalue analysis

(see [45] and the references therein).

All these methods involve rewriting the higher-order system in the form of an

equivalent larger first-order system and applying reduction algorithms. Even al-

though a good approximation can be obtained, it does not preserve the form of

the higher-order systems. A new approach based on Krylov subspace projection

techniques that preserves the form of the original higher-order system is presented

in [61].

Consider a non-stationary linear discretized system of the form

Bẋ(t) + Ax(t) = b(t),

where x, b ∈ Rn, A ∈ Rn×n, t represents the time. The matrix

Kr (A;v) := span
(
v,Av, . . . ,Ak−1v

)
∈ Rn×k,

generated by some starting vector v ∈ Rn is called the Krylov matrix. The Krylov

subspace is spanned by the columns of Kr. Later, in this thesis the column vectors

of this matrix are orthonormalized and used as a projection basis.

For stability purposes, the matrix A must be symmetric. In the case of non-

symmetric matrices A, it is suggested in [23] that the Lanczos algorithm be used on

the so-called left Krylov subspace, which, unlike Kr, is spanned on AT instead of

A. As is shown in [25], with the same aim it is also possible to shift and invert the

Lanczos algorithm and apply it efficiently.
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Another approach that works well for non-symmetric matrices is Arnoldi‘s me-

thod. In this case the basis is generated in such a way, that the vectors remain

orthogonal, even though this method does not always preserve the passivity of the

system [21]. Some other approaches dealing with non-symmetric matrices are re-

viewed in [32].

All the advantages of Arnoldi’s method were used to develop the Passive Reduced-

Order Interconnect Macromodeling Algorithm (PRIMA) method. To generate an

orthonormal basis, PRIMA uses Arnoldi’s method; the corresponding Krylov space

is therefore the same as in the Arnoldi method and PVL. However, unlike these

methods, the projection of the matrices is explicit in PRIMA. This is a minor dis-

advantage in the sense that explicit projections are more expensive. Nevertheless,

it makes PRIMA more accurate compared with Arnoldi’s method and, moreover, it

preserves the stability and passivity of the system. On the other hand, even though

unlike PVL it preserves only one moment at each iteration, it operates with A only,

while PVL has to operate also with AT .

A modification of PRIMA, Structure Preserving Reduced order Interconnect

Macromodeling (SPRIM) is suggested in [62]. The paper reviews both methods and

shows the advantages of the latter.

Several other algorithms using the Krylov subspace method for solving initial

value problems and providing a priori error estimates can be found in [15] and [63], as

well as references therein. These methods are applied efficiently in the simulation of

linear [60] and non-linear [36] circuits, turbulent flows [24], structural dynamics [23],

and the numerical integration of large systems of differential equations [20], etc.

More details on Krylov subspace techniques and practical projection algorithms

can be found in Chapter 4 of this thesis.
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1.2.1.2 Methods Based on Hankel Norm Approximants and Truncated

Balancing Realization (TBR)

The controllability and observability Gramians associated with the linear time-

invariant system (A,B,C,D) are defined as follows:

P =

∫ ∞
0

exp [At] BBT exp
[
AT t

]
dt,

Q =

∫ ∞
0

exp [At] CTC exp
[
AT t

]
dt,

which are the unique solutions of the following Lyapunov equations [56]:

AP + PAT + BBT = 0,

ATQ + QA + CTC = 0,

arising from stability assumptions on A. Stability in the matrix A implies that the

defined improper integrals are bounded.

After determining the matrices P and Q, a state space transformation balancing

the system, i.e. providing P = Q = diag (σi), where σi are the so-called Hankel

singular values, must be determined. If starting from some i, σi < σi+1, then the

axis corresponding to σi+1 is more easily controllable and observable. Therefore, by

neglecting values starting from k + 1, a k-dimensional reduced order model can be

derived. However, one of the disadvantages of this method is, that the solution of

the Lyapunov equations is computationally expensive [50], although it does give the

best approximation when the whole frequency range is considered [5]. See also the

survey [54].

1.2.1.3 Optimal Hankel Norm Reduction

The truncated system obtained using the TBR method is not necessarily an optimal

approximation. Optimal Hankel norm reduction method proposes an optimality
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criterion in the form of the so-called Hankel norm. For the Hankel operator [56]

y := H [u] =

∫ 0

−∞
H(t− τ)u (τ) dτ,

where H(t) := C exp [At] when t ≥ 0, the Hankel norm is defined by

||Σ||H = sup
u∈L2(−∞,0)

||y||2
||u||2

.

Since the characteristics of these methods are functions of time, it is used for dy-

namical systems only.

1.2.1.4 Techniques Using Karhunen-Loeve Expansion (POD)

Karhunen-Loeve expansion, also known as Proper Orthogonal Decomposition (POD)

is based on Singular Value Decomposition (SVD), which involves approximating

matrices by matrices of lower rank. The first step when using this method is to

construct a matrix containing column vectors describing the state of the system at

certain given instants, often referred to as snapshots. The snapshots are solutions

to the large problem and are considered to be close to the nature of the problem to

be reduced. They are mostly already available (e.g. extracted from experiments),

which reduces the POD methods mostly posterior . Once the snapshot matrix has

been constructed, its singular value decomposition provides the vectors correspond-

ing to the largest singular values. These vectors can be used as the basis for POD

method.

Studies show that POD can be successfully combined with other model order

reduction techniques, for example, with balanced reduction method to minimize

computation costs by approximating the Gramians by snapshot method instead of

computing the exact ones [26,57]. This approach is computationally more efficient,

but applicable only if a small number of outputs are considered. The effect of

perturbations in the snapshots is discussed and the sensitivity of the system to

these perturbations is studied in [26]. It was shown that the method is not efficient
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if the database is being updated, similar to POD applied to nonlinear problems [47].

To avoid this disadvantage, an algorithm is suggested in [4] which constructs the

basis functions incrementally.

The POD method is therefore a very convenient method for linear systems, but

for non-linear systems the snapshots should be recalculated to update the stiffness

matrix. It can be overcome by the so-called proper generalized decomposition (PGD)

method introduced in [41]. This is an a priori approximation, which does not rely on

knowledge of the solution for the whole problem. It makes it possible to enrich the

reduced approximation basis in order to improve the accuracy. To avoid using this

stiffness matrix updating procedure, a combined POD-ANM (Asymptotic Numerical

Methods) procedure is proposed [40].

The so-called goal oriented optimization approach, developed in [55], has sev-

eral advantages over the POD method. One of these advantages is that it targets

the projection basis to output functionals of interest by treating the reduced order

governing equations as constraints for determination of the basis and it provides a

framework to deal with multiple parameter instances.

1.2.2 Model Order Reduction of Non-linear Systems

Some of the methods developed for linear problems can be adapted and used for

non-linear problems. In this subsection, some MOR methods for non-linear systems

are discussed.

1.2.2.1 Empirical Methods

A method based on empirical Gramians is introduced in [16]. It uses empirical

Gramians, which define the non-linear behaviour of the system near an operating

point. Then, the less important states are reduced using a Galerkin projection. One

of the advantages of this technique is that it can be applied to non-linear systems,
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while requiring only linear matrix computations. As shown in [51,52], the TBR can

be combined with Karhunen-Loeve techniques for reduction of nonlinear systems. It

should be noted that if the system is linear, this method coincides with the ordinary

TBR.

Gappy POD is another combined non-linear reduction method. It was origi-

nally developed for face recognition and evaluates only a small subset of nonlinear

functions. The other entries are reconstructed by an interpolator or a least squares

strategy using a pre-computed reduced-order basis [7].

Another MOR method for non-linear systems is the Gauss–Newton with ap-

proximated tensors (GNAT). The dimension reduction is achieved using the Petrov-

Galerkin projection and gappy POD technique [11]. The right reducing basis is con-

structed by POD. The left one is chosen to minimize the residual of the linearized

system at each step of the Newton iteration. To decrease the computational cost,

the non-linear residual and jacobian on the right reduction basis are approximated

by gappy POD. In [7] the method is applied to a non-linear structural dynamical

system. It is further developed in [11] for turbulent viscous flows. The finite volume

method is chosen to discretize the system.

Another empirical MOR method applied directly on the non-linear term is the

Discrete Empirical Interpolation Method (DEIM) developed in [49]. It is another

POD combined method. The DEIM is interpolating the reduction subspace obtained

by POD, which approximates the space of nonlinearities (see also [53]). This is often

referred to as direct approach. An unassembled variation of this method is applied

directly to the non-linear term before the discrete operator is assembled. Both

approaches have their advantages and disadvantages. In particular, the possibility

of selecting the collocation points automatically from the full set of DOF is an

advantage. If many elements share the same DOF, then an unassembled approach

is chosen, because the direct approach leads to selection of a high number of finite

elements. Therefore, the subspace of unassembled non-linear internal forces is of a
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higher dimension. On the other hand, some of the reduced responses are unstable

for unknown reasons.

1.2.2.2 Linearization Methods

As mentioned above, non-linear terms can be expanded into a sequence of linear

ones and a MOR method for linear system can be applied to each term in the

sequence. Common methods of linearization techniques are the Volterra method [46],

incremental linearization method, trajectory approximation method [25], Newton-

Raphson linearization [39] (see also paragraph 3.2.2.2 for details), etc.

1.2.2.3 Reduced Basis Methods

RReduced basis decouples the generation and projection stages of reduced basis ap-

proximation and eventually leads to computational savings. Using the reduced basis

technique, the discretized structure response is defined through a non-linear system

of finite element equations and a Rayleigh-Ritz technique is used to replace these

equations by a reduced system with significantly fewer unknowns [31,32,62].

This is accomplished by approximating the n-dimensional solution vector by a

linear combination of m linearly independent vectors. This set of global vectors is

used as the basis in the order reducing projection algorithm.

An ideal set of basis vectors is defined as one which maximizes the quality of the

results and minimizes the total effort spent on obtaining them. These basis vectors

must be

• linearly independent,

• involve low computational costs in their generation,

• allow automatic selection of their number,

• provide a good characterization of the nonlinear response.
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The basis vectors will be functions of derivatives of a path parameter. As the

number of path derivatives increases, the basis vectors tend to become less linearly

independent and their contribution to the solution accuracy diminishes.

The reduced basis computational procedure consists of i) determination of basis

vectors and generation of the reduced system [3]; ii) characterization of non-linear

response; iii) automatic selection of load step size and evaluation of corresponding

nodal displacements and forces; iv) sensing and controlling the error in the reduced

system; v) tracing post buckling and post-limit-point paths.
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1.3 Purpose of the Study

In many structural engineering problems, having knowledge of selected eigenvalues

corresponding to the governing system will suffice for basic dynamic analysis. In

most cases, the smallest eigenvalues are of primary interest, as the smallest eigen-

value corresponds to the lowest oscillation frequency. The corresponding eigenvector

defines the shape of the structure in the lowest mode. Often, the contribution of

proceeding modes can be ignored method. Therefore, the solution of such problems

may be described by an approximation of lowest eigenvalues and corresponding

eigenvectors [33].

From this fact a number of developments arise as a consequence , such as power

iteration (and other related) numerical methods. It is, in particular, used in vibra-

tion reduction for dynamical systems.

The main requirement of model order reduction for dynamic problems is to

preserve dynamic stability properties [1]. The stability of dynamical systems is

determined by the poles of the transfer function. Therefore, the main objective of

MOR for dynamical systems is to approximate the transfer function of the original

problem. Meanwhile, dynamic stability does not play any role for static systems,

since the stability is completely different in terms of statics and dynamics. Stability

in terms of statics is associated with the characteristics of the equilibrium path of

the system, whereas in terms of dynamics it means that the system’s output signal

remains limited. Any static loading applied to structural systems will not change

the dynamic stability in the system during a particular period of time. Therefore, it

makes no sense to approximate the largest eigenvalues of the matrix representing a

static system. Anyone wishing to adapt the MOR available for dynamical systems

to static systems should follow this logic: the construction of the Krylov space

is nothing other than power iteration method, which approximates the dominant

eigenvalues of the discretization matrix; the corresponding eigenvectors, the so-
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called Ritz vectors, can be a very good choice for a basis for dynamical systems.

So, it is possible that using the inverse power iteration method while constructing

the Krylov subspace can provide a good approximation.

Indeed, Antoulas in [6] suggests constructing an “inverse” Krylov subspace using

(A− sI)−1 instead of A in its definition, where s is some guess of an eigenvalue for

the matrix A. Using the “inverse” subspace the lowest eigenvalues of matrix A is

approximated and the eigenvectors corresponding to those eigenvalues are indeed a

good choice of basis for static problems. But first of all, the computation of A−1 is

very costly, and secondly- once we have the inverse of the discretization matrix, we

will have the solution for the problem.

Therefore, the question can be put – is there any possibility of using MOR

methods (at least some of them) for static problems? Can MOR offer an advan-

tage for such problems? Computationally this might not be the case for static

non-parametrized problems. However, the evaluation might be different for large

parametrized and non-linear static problems. Is there a proper choice of a basis

which makes it possible to cut computational costs while giving a good approxima-

tion for the static problem?

As has already been mentioned, statics and dynamics have different aims. How-

ever, there are also similarities. In the context of ROM of (non-linear) equilibrium

paths of static structures, approaches previously developed for reduced order mod-

elling of dynamic problems could be helpful if time is seen as the parameter evolving

the system response along the equilibrium path. Such a parameter, for instance, can

be the magnitude of an external force, its localization, the characteristics of the ma-

terial, geometry, etc. By solving the parametrized problem for different values of

the parameter, we eventually obtain a set of vectors representing the state of the

system for different values of the parameter. A similar set is obtained for dynamical

systems, containing the state of the system at different moments in time. It is the

set of so-called snapshots, which is used in POD-based MOR methods.
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For dynamical systems, snapshots are usually the result of experiments or other

observations, and therefore are often given in advance. For static systems, they

should be calculated first, it might not make any sense to solve the problem for

different values of parameters in order to create a basis for MOR for static systems.

Nevertheless, when the process is repeated many times it does become useful. For

instance, many experiments are performed repeatedly during design verification and

the required data can be obtained by means of sensors without any significant diffi-

culties. In such cases, MOR becomes meaningful for static analysis. For example, it

can be extremely helpful for static analysis of large systems such as plane wings or

fuselage, because depending on the size of the construction it can take up to several

days to do the calculations for it during non-linear static analysis.

Recent developments of MOR techniques show that POD can be applied to

parametrized static systems. An improved POD method – so-called goal oriented

compact POD – was suggested in [9]. This method uses sensitivity derivatives

instead of state snapshots, and computation for this is less costly. In the paper

some examples of optimization application are considered.

Parametrized MOR is studied for static analysis and control in [27]. As an

example of static analysis a large reflector model and its shape control is considered

to optimize the input control. Reduction uses the Krylov subspace technique. The

projection basis is constructed using the initial loading as a starting vector. The

accuracy of such approximation greatly depends on choice of starting vector.

An adaptive POD-Krylov reduced-order model is suggested in [8] for structural

optimization problems. Approximate solutions of the state and sensitivity equa-

tions of the structure are evaluated at each step of the optimization loop via a

POD-augmented conjugate gradient method. First, the solution component is com-

puted in the POD subspace. By means of well conditioned reduced equations, fast

convergence is ensured. In the final stage, the solution is refined in an adaptively

computed Krylov subspace using an augmented preconditioned conjugate gradient
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method. In order to achieve the prescribed accuracy level, the dimension of the

Krylov subspace is increased.

This research is dedicated to a comparative study of reduced order methods for

statics of geometrically non-linear structures. The aim is to identify reliable MOR

algorithms, allowing for reduced order accurate approximation in static analysis of

parametric problems. To be applicable to more general structures such as multi-span

beams and frame structures, the algorithms must also be flexible.
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1.4 Outline of the Thesis

Chapter 2 of the thesis is an introduction to the statics of structures. A general the-

ory is considered and Euler-Bernoulli beam theory is derived for later consideration.

Governing equations for linear and non-linear theories are presented.

Weak formulation for the governing equations of the Euler Bernoulli beam theory

is derived in Chapter 3. To approximate the solution, the finite element method

(FEM) is chosen. All the aspects of this method which serve the purpose of the

thesis are described.

Chapter 4 considers a parametrized static system by introducing the so-called

offline and online phases. Different techniques of projection method are discussed.

Three reliable and flexible MOR methods for Statics valid for different types of beam

structures are developed.

Some exemplary problems are considered, and rigorous solutions for these are

obtained in order to verify the results obtained by approximation methods. These

results are included in Chapter 5. Comparison between FEM approximation and

MOR approximation, error estimation, as well as error sensitivity analysis is carried

out for each method developed.

Finally, all the main findings of this work are summarized and conclusions are

provided in the Summary and Conclusion.
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Chapter 2

Statics of Structures

Statics of structures is a branch of structural mechanics which analyzes equilibrium

states of a structure subjected to external loading. Static structural analysis is

applicable in cases when a structure is subjected to a dead load, i.e. a load which is

relatively constant in its magnitude and direction over an extended period of time.

Alternatively, if the action of the loading varies in time and happens with negligible

slowness, methods of static structural analysis [17] can still be used.

If a structure subjected to external loading is in static equilibrium, the sum of

external and internal forces must be equal to zero. This equality provides constraints

on unknowns, such as internal forces, moments, reactions, etc. Those constraints

are called static equilibrium equations. For convenience, static equilibrium equations

are usually written in differential form with respect to stress tensor components and

are therefore often referred to as differential equations of static equilibrium.

Considering also material laws and kinematic relations in the framework of a

particular structural theory, the full system of differential equations of equilibrium

are obtained with respect to characteristic quantities of the stress-strain state of the

structure as a coupled system of PDEs or ODEs (depending on the dimension of

the structure). Uniqueness of solution for the full system of differential equations of

equilibrium will require appropriate boundary conditions in addition.
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2.1 Governing Equations of Solid Mechanics

In this section we derive differential relations obtained from equilibrium conditions

with respect to stress tensor components acting in a point of elastic structure.

2.1.1 Kinematic Relations

Since the main assumptions of structural theories for beams, plates and shells are

usually expressed in terms of the displacement field, for the derivation of govern-

ing differential equations, the relation between stress/strain tensor components and

displacements is needed. The relations between strains and displacements are often

referred to as kinematic relations

Kinematic relations describing large deformations of a structure are formulated

by the Lagrangian finite strain tensor, also called the Green-Lagrange strain tensor.

It is usually defined in terms of deformation gradient F = ∇ϕ [18]

ε =
1

2

(
FTF− Id

)
,

or, equivalently, in terms of displacements [18],

ε =
1

2

[
∇u+ (∇u)T +∇u · (∇u)T

]
. (2.1)

In Cartesian coordinate system (2.1) can be written component-wise as follows

εij =
1

2

[
∂ui
∂xj

+
∂uj
∂xi

+
∂uk
∂xi

∂uk
∂xj

]
(2.2)

(summation concept over k is accepted). In expanded form we obtain

ε11 =
∂u1

∂x1

+
1

2

[(
∂u1

∂x1

)2

+

(
∂u2

∂x1

)2

+

(
∂u3

∂x1

)2
]
,

ε22 =
∂u2

∂x2

+
1

2

[(
∂u1

∂x2

)2

+

(
∂u2

∂x2

)2

+

(
∂u3

∂x2

)2
]
,
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ε33 =
∂u3

∂x3

+
1

2

[(
∂u1

∂x3

)2

+

(
∂u2

∂x3

)2

+

(
∂u3

∂x3

)2
]
,

ε12 =
1

2

[
∂u1

∂x2

+
∂u2

∂x1

+
∂u1

∂x1

∂u1

∂x2

+
∂u2

∂x1

∂u2

∂x2

+
∂u3

∂x1

∂u3

∂x2

]
,

ε13 =
1

2

[
∂u1

∂x3

+
∂u3

∂x1

+
∂u1

∂x1

∂u1

∂x3

+
∂u2

∂x1

∂u2

∂x3

+
∂u3

∂x1

∂u3

∂x3

]
,

ε23 =
1

2

[
∂u2

∂x3

+
∂u3

∂x2

+
∂u1

∂x2

∂u1

∂x3

+
∂u2

∂x2

∂u2

∂x3

+
∂u3

∂x2

∂u3

∂x3

]
.

Obviously, ε is symmetric, i.e. εij = εji.

In geometrically linear structural theories, the last term on the right hand side

of (2.2) is neglected due to:
∂uk
∂xi

∂uk
∂xj
� 1,

and the following linear kinematic relations follow

εlin11 =
∂u1

∂x1

, εlin22 =
∂u2

∂x2

, εlin33 =
∂u3

∂x3

,

εlin12 =
1

2

[
∂u1

∂x2

+
∂u2

∂x1

]
, εlin13 =

1

2

[
∂u1

∂x3

+
∂u3

∂x1

]
, εlin23 =

1

2

[
∂u2

∂x3

+
∂u3

∂x2

]
.

(2.3)

2.1.2 Balance of Linear Momentum

Let a body force F = (F1, F2, F3) be acting on the differential volume element dx =

dx1dx2dx3 of a continuous body Ω, which is described in the Cartesian coordinate

system in reference (or undeformed) configuration. Then equilibrium of forces in

that element provides [17, 18]

∂t1
∂x

dx+
∂t2
∂y

dx+
∂t3
∂z

dx+ F dx = 0.

Here

t1 = σ11i+ σ12j + σ13k,

t2 = σ21i+ σ22j + σ23k,

t3 = σ31i+ σ32j + σ33k,
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are the traction vectors, expressed in terms of the components of the first Piola-

Kirchhoff stress tensor σ.

Since the equality holds for arbitrary differential volume element dx of the con-

tinuum, and the unit vectors i, j and k are orthogonal, in the direction of each

coordinate axis we derive [17,18]

∂σ11

∂x1

+
∂σ12

∂x2

+
∂σ13

∂x3

+ F1 = 0,

∂σ21

∂x1

+
∂σ22

∂x2

+
∂σ23

∂x3

+ F2 = 0,

∂σ31

∂x1

+
∂σ32

∂x2

+
∂σ33

∂x3

+ F3 = 0

(2.4)

as the differential equations of equilibrium.

Sometimes it is necessary to use equilibrium equations (2.4) in the deformed

configuration. Allthough in the reference configuration the body is referred to the

Cartesian coordinate system, in the deformed configuration it is transformed into a

curvilinear coordinate system, which is supposed to be orthogonal [17,18]. Then, if

the coordinate transformation is due to
i′

j ′

k′

 =


T11 T12 T13

T21 T22 T23

T31 T32 T33



i

j

k

 ,

then from (2.4) we derive the equilibrium nonlinear equations in the deformed con-
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figuration Ωϕ [17, 18]

∂

∂x1

(σ11T11 + σ12T21 + σ13T31) +
∂

∂x2

(σ12T11 + σ22T21 + σ23T31) +

+
∂

∂x3

(σ13T11 + σ23T21 + σ33T31) + F1 = 0,

∂

∂x1

(σ11T12 + σ12T22 + σ13T32) +
∂

∂x2

(σ12T12 + σ22T22 + σ23T32) +

+
∂

∂x3

(σ13T12 + σ23T22 + σ33T32) + F2 = 0,

∂

∂x1

(σ11T13 + σ12T23 + σ13T33) +
∂

∂x2

(σ12T13 + σ22T23 + σ23T33) +

+
∂

∂x3

(σ13T13 + σ23T23 + σ33T33) + F3 = 0.

(2.5)

In order to establish a connection between the area element in the deformed

and reference configurations, some relations between stress characteristic measures

in both configurations are needed. Such a relation provides the so called Piola

transform [18]. Let the deformation ϕ : R3 → R3 from reference into deformed

configuration be injective, i.e. the deformation gradient F = ∇ϕ is invertible every-

where in Ω. Then, for any tensor T defined in the reference configuration, Piola‘s

transform puts the tensor Tϕ in correspondence , such that

T (x) = Tϕ (xϕ) cof∇ϕ (x) ,

where cof A is the cofactor matrix of A: cof A = A−T det A.

If Tϕ denotes the Cauchy stress tensor in the deformed configuration, then T

will denote the so called first Piola-Kirchhoff stress in the reference configuration.

Evidently, it is non-symmetric. However, since the constitutive equations take sim-

pler forms for symmetric stress tensors, the second Piola-Kirchhoff stress tensor is

usually introduced according to

P (x) = (∇ϕ (x))−1 Tϕ (xϕ) .
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2.1.3 Constitutive Relations

In order to express the stress tensor components in terms of displacements, we also

need relations between stress and strain tensor components. Such relations are often

referred to as constitutive relations. In general, the constitutive relations for non-

linear elastic materials are derived from the strain energy density by differentiating

it with respect to strains (or equivalently stresses) [18]:

P (ε) =
∂W

∂ε
, (2.6)

or component-wise

P ij (ε) =
∂W

∂εij
, (2.7)

where W = W (ε) is the strain energy density. Since ε is symmetric, then (2.6)

shows that, P is also symmetric.

Substituting (2.2) into (2.7), and resulting expressions into (2.5), differential

equations in terms of displacements in the most general case are derived. By mak-

ing assumptions of a particular structural theory, certain components of the above

governing equations are simplified.

In particular, for linear elastic material [18]

W (ε) =
1

2
Cijklεijεkl,

where Cijkl are the material parameters, a direct stress therefore produces a propor-

tional strain:

Pij (ε) = Cijklεkl. (2.8)

(2.8) is often referred to as the generalized Hooke‘s law [17,18].

2.1.4 Geometric and Material Nonlinearity, Linearization

Depending on the material, geometry, loading conditions, and so on, material and/or

geometric nonlinear structural theories may be considered. Structural theories,
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based on the general relations (2.1), are usually used to describe large displacements

of structural elements and are often referred to as being geometrically non-linear.

Structural theories, based on the general relations (2.6), are involved in studying

structural elements of non-linear elastic materials, and are often referred to as phys-

ically non-linear.

Both material and geometric nonlinearities result in the presence of non-linear

terms in governing equations, obtained from (2.5) which is extremely difficult, and

at times even impossible, to solve analytically. Even though it makes the theoretical

study of a model more realistic, it significantly complicates the structural analysis.

Nevertheless, in some specific cases, simplified structural theories may be consid-

ered which are less difficult to solve analytically or numerically. For example, if the

amplitude of the resultant of external forces applied to the structure is small, then

the term
∂uk
∂xi

∂uk
∂xj

in (2.1) is very small and can therefore be neglected. Further-

more, if the stress-strain relation for the material of a particular structure is close to

linear, then as constitutive relations (2.8) can be considered. Structural mechanics

completely based on linear relations (2.3) and (2.8) is often called linear theory of

structural mechanics.
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2.2 Euler-Bernoulli Beam Structure

Beams are one of the simplest structural elements. Beams are structures where

two of the dimensions are considerably smaller than the third one. In general,

beams are subjected to lateral loads. Several beam theories have been developed

based on various assumptions, and have therefore led to different levels of model

accuracy. Evidently, depending on the problem under consideration, different groups

of assumptions may be considered to construct a proper structural theory. One of

the main structural theories for beams is the Euler-Bernoulli theory, which is based

on the assumptions [14,18,22]:

i) the cross-section of the beam is infinitely rigid (undeformable) in its own plane,

ii) the cross-section of the beam remains plane after deformation,

iii) the cross-section remains normal to the deformed axis of the beam.

Based on those assumptions, the in-plane displacement field of the beam is repre-

sented by two rigid body translations and one rigid body rotation [22]. In terms

of the displacements, for a straight plane beam, positioned on x-axis, the Euler-

Bernoulli assumptions simply mean [38]

u1 = u(x)− zφ (x) , u2 = 0, u3 = w(x). (2.9)

Experimental measurements show that these assumptions are valid for long, slen-

der beams made of isotropic materials with solid cross-sections [22]. When one or

more of these conditions are not met, Euler-Bernoulli beam theory predictions can

become inaccurate.

In Figure 2.1 the differential element dx of a beam subject to some arbitrary

loadings p and q is shown.

In this case, the kinematic relations are

ε = λ− 1, φ = arctan
w′

1 + u′
, κ = φ′, (2.10)
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Figure 2.1: Equilibrium of the beam in the deformed configuration

where λ =
√

(1 + u′)2 + (w′)2, to which the equilibrium equations

(N · cosφ−Q · sinφ)′ + p = 0, (N · sinφ+Q · cosφ)′ + q = 0,

M ′ − λ ·Q = 0,
(2.11)

and the material laws

N = EA · ε, M = −EJ · κ, (2.12)

must be added to obtain a full system. Using Taylor series expansion for nonlinear

terms in (2.10)–(2.12), three theories are derived, referred to as first, second and

third order theories [12,13,35,48].

Considering the Taylor series expansions

cosφ
∣∣
φ=0
≈ 1 +O(2),

sinφ
∣∣
φ=0
≈ φ+O(2),

arctan
w′

1 + u′

∣∣∣∣
w′=0,u′=0

≈ w′(1− u′) +O(3),

[λ− 1]
∣∣
w′=0,u′=0

≈ u′ +
1

2
(w′)

2
[
1− u′ + (u′)

2
]

+O(3),
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1

λ

∣∣∣∣
w′=0,u′=0

≈ 1− u′ +O(2),

where O(k), k = 2, 3, stands for kth order terms, in the first order theory from (2.10),

(2.11), it is obtained respectively:

ε = u′, φ = w′, κ = φ′, (2.13)

N + p = 0, Q′ + q = 0, Q−M ′ = 0. (2.14)

Consequently, we arrive at the following system of two uncoupled ODE’s:

(EAu′)
′
= −p(x),

(EIw′′)
′′

= q(x), 0 < x < l.
(2.15)

This means, that both equations can be solved for u and w separately. If the beam

is homogeneous, and its cross-section is of constant axial stiffness EA and bending

stiffness EJ , then from (2.15) we derive

EAu′′ = −p(x),

EIw′′′′ = q(x), 0 < x < l.
(2.16)

The second–order theory is based on the same kinematic relations as the first–

order theory, whereas the second equilibrium equation of (2.11) is substituted by

(Nw′)′ +Q′ + q = 0,

and the consequent system of equations is of the form

(EAu′)
′
= −p(x),

(EIw′′)
′′ − (EAu′w′)

′
= q(x),

0 < x < l. (2.17)

Evidently, u′ can be determined independently from the first equation and substi-

tuted into the second one, which can then be merely expressed in terms of w.
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The third order theory is based on nonlinear kinematic relations

ε = u′ +
1

2
(w′)

2
, φ = w′ (1− u′) ,

and equilibrium equations

N + p = 0, (Nw′)
′
+Q′ + q = 0, Q− (1− u′)M ′ = 0.

The consequent system of equations is of the form[
EA

(
u′ +

1

2
(w′)

2

)]′
−
[(
EI
[
(u′w′)

′ − w′′
])′

w′
]′

= p(x),(
EI
[
(u′w′)

′ − w′′
])′′

+
(
EI
[
(u′w′)

′ − w′′
])′

u′−

−
[
EA

(
u′ +

1

2
(w′)

2

)
w′
]′

= q(x),

(2.18)

0 < x < l.

System (2.18) is a fully coupled system of nonlinear ODE’s.
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Chapter 3

Finite Element Method

Finite element methods divide the reference configuration of the structure under

analysis into smaller parts of basic geometry called elements. They derive equilib-

rium equations for typical elements and then use appropriate variational methods to

find the approximate solution for the problem by minimizing some error functional

. Division into smaller elements overcomes difficulties such as complex geometry,

local effects or material non-homogeneity.

In this chapter we summarize the main concepts for finite element technique

which aims to find approximate solutions for boundary value problems expressed by

differential equations in ordinary derivatives. After a short introduction to FEM,

some known weighted residual methods are described.

Finite element discretization is demonstrated for geometrically linear and non-

linear structural theories for beams. The discretized linear systems of algebraic

equations are derived in both linear and non-linear theories.

The material is mainly based on [14,38].
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3.1 Introduction

Analysis of structural elements (rods, beams, frames, plates, shells, etc.) is equiva-

lent to the solution of differential equations under appropriate loading and bound-

ary conditions. FE consists of two main steps – discretization and approximation.

Discretization is a procedure whereby the domain of the reference configuration is

divided into small sub-domains of simple geometry, called finite elements. Approx-

imation mainly includes two steps:

i) the unknown field quantities are expanded into a finite sum of specific poly-

nomials or basis functions, weighted by expansion coefficients which are to be

determined for each sub-domain,

ii) algebraic relations or element equations derived for the expansion coefficients

are gathered using continuity conditions for neighbouring elements.

The expansion coefficients are often associated with the solution value at the

nodes.

The approximate solution of static problem for a beam is represented as follows

[14,38]

wN (x) =
N∑
n=1

αnψn (x) , x ∈ [0, l], (3.1)

in which ψn are the linearly independent basis functions and αn ∈ R are the expan-

sion coefficients (the values of wN at discretization nodes), N is the DOF of the FE

model.

FEM has several advantages, among which are much freedom in the choice of

discretization, i.e. the type and number of elements used to discretize the domain,

choice of order of continuity of the basis functions and efficiency for problems defined

with complicated geometry, etc.
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3.2 Weighted Residual Method

There are several approaches to determine the expansion coefficients αn, n = 1, . . . , N

in (3.1). Suppose that, the governing equation has the general form

D[w] = f in Ω, (3.2)

where Ω ⊂ R3 is an open domain, subject to the boundary conditions

B[w] = wb on ∂Ω. (3.3)

Above D[·] is a differential operator, B[·] is the operator of boundary conditions.

Assume, that the basis functions ψn in (3.1) satisfy boundary conditions (3.3).

Then, in general, (3.1) does not satisfy (3.2) exactly, in the sense that, in general,

the residual

RN := D[wN ]− f 6≡ 0 a.e. in Ω. (3.4)

If apparently for some choice of αn and ψn, RN ≡ 0 throughout the domain, then

wN is the solution of (3.2).

Weighted residual methods [14,38] provide exactly N equations expressed as∫
Ω

RN (x) ρn (x) dx = 0, n = 1, . . . , N, (3.5)

in which ρn are so-called weight functions, supposed to be non-zero and linearly

independent. Evidently, a different choice of weight functions will result in different

discrete equations.

One of the usual weighted residual methods is the least square approach, i.e. αn,

n = 1, . . . , N , are chosen to minimize the functional [14]

Φ [αN ] =

∫
Ω

R2
N (x) dx. (3.6)

A system of equations for the coefficients αn is obtained via

∂Φ

∂αn
= 0, n = 1, . . . , N. (3.7)
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Another approach is the Galerkin (known also as Bubnov–Galerkin) method,

which is used to determine the expansion coefficients from the following set of equa-

tions [14, 38]: ∫
Ω

RN (x)ψn (x) dx = 0, n = 1, . . . , N, (3.8)

i.e. ρn = ψn.

Weighted residuals methods differ from each other in the choice of weight function

ρ. Ultimately, weighted residual methods reduce the original problem to a system

of the form [14,38]

K (α)α = f , (3.9)

for unknowns α = (α1 α2 . . . αN)T and determined K ∈ RN×N and f ∈ RN .

Different methods lead to different K and f . If the differential operator D is linear,

then K does not depend on α.

3.2.1 Weak Formulation

Direct or differential formulation of the problem in the form of (3.2), (3.3) imposes

certain smoothness requirements on the right hand side for its traditional solution to

exist. Consideration of the so-called weak or variational formulation of the problem

makes it possible to lower such requirements.

It is usually formed by multiplying the governing system (3.2) by some, appro-

priately chosen test function and integrating over the whole domain [14]:∫
Ω

D [w]ϕ (x) dx−
∫

Ω

f (x)ϕ (x) dx = 0. (3.10)

Eq. (3.10) is called the integral formulation of (3.2). Integrating the first term of

(3.10) by parts, the boundary conditions are included in it, leading to the weak

formulation of the problem.
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3.2.2 Treatment of Non-Linearities in the Weak Form

All types of non-linearities, i.e. physical (material), geometric, force, etc., can be

included in the weak form of static problem formulation by directly using the strong

form equilibrium equations:

∂σij
∂xj

+ fi = 0 in Ω, (3.11)

subjected to boundary conditions

σijnj = bi on ∂Ω.

Multiplying both sides of (3.11) by some smooth function ϕ ∈ C∞0 (Ω), and integrat-

ing by parts, we will arrive at the weak formulation of the problem in stress tensor

components ∫
Ω

σij
∂ϕi
∂xj

dx =

∫
∂Ω

biϕids+

∫
Ω

fiϕidx. (3.12)

If it is assumed that material non-linearity is in the form of (2.6), then (3.12) will

become [39] ∫
Ω

σij (ε)
∂ϕi
∂xj

dx =

∫
∂Ω

biϕids+

∫
Ω

fiϕidx. (3.13)

Thus, even in the case of infinitesimal strains (2.3), (3.13) is a nonlinear constraint

with respect to displacement vector u:∫
Ω

σij

(
∇u+ (∇u)T

) ∂ϕi
∂xj

dx =

∫
∂Ω

biϕids+

∫
Ω

fiϕidx. (3.14)

Furthermore, if it is assumed that the body is isotropic, i.e. the stress tensor

depends on strain tensor linearly or (2.8) holds, but the strain tensor is given in the

form (2.1), then (3.12) yields [2, 39]

1

2

∫
Ω

Cijkl

[
∂uk
∂xl

+
∂ul
∂xk

+
∂um
∂xk

∂um
∂xk

]
∂ϕi
∂xj

dx =

∫
∂Ω

biϕids+

∫
Ω

fiϕidx. (3.15)

Eq. (3.15) is nonlinear with respect to the displacement vector components ui.
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3.2.2.1 Linearization

Accounting for non-linearities, like material or geometrical, as shown above, reduces

(3.14) and (3.15) to (3.9) with K = K(α). Depending on the form of K = K(α),

the determination of α can be significantly complicated. The linearization of K

is one way for overcoming this. For instance, in (3.14), the material non-linearity

functions ςij are usually expanded into Taylor series and the first, linear term is

considered. As a result instead of (3.9) we obtain a simpler system

Klinα = b, (3.16)

which can be solved using efficient numerical methods for linear systems.

3.2.2.2 Newton-Raphson Method

An iterative method of determining α from (3.9) is the Newton-Raphson method

of finding the roots of non-linear algebraic equations [39]. The iterative algorithm

is based on Taylor series expansion of (3.9) near prescribed state αi.

For (3.9) at i-th iteration step, i = 0, 1, . . . , we have

K(αi + dαi) (αi + dαi)− b = K(αi)αi − b+ J (αi) · dαi + O
(
dα2

i

)
, (3.17)

in which dαi is usually called solution increment, J (αi) = ∇K (αi) is the Jacobian

matrix. In each single step the residual

ri = b−K(αi)αi,

and the solution increment must be computed

dαi = J−1(αi)ri.

Eventually, the updated solution will be

αi+1 = αi + dα.
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The iterative procedure stops when dαi and ri have reached a required tolerance.

The convergence rate of the algorithm is expressed via

||αi+1 −α|| ≤ C ||αi −α||2 ,

where C is some constant, independent on α.
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3.3 Finite Element Method for Structures

In this section the main FEM characteristics for Euler-Bernoulli (one-dimensional)

theory are represented.

3.3.1 FEM for Euler-Bernoulli Beam: Geometrically Linear

Theory

Euler-Bernoulli beam theories are introduced in Section 2.2. Using the expressions

for stresses and strains within first-, second- and third-order theories, weak formula-

tions for the corresponding theories are introduced in this section. Multiplying (2.14)

by virtual displacements in axial and normal directions, the following is obtained:∫
[N ′ + px]δudx+

∫
[M ′′ + pz]δwdx = 0.

Integrating by parts, the following is obtained

−
∫
Nδu′dx+

∫
Mδw′′dx+

∫
pxδudx+

∫
pzδwdx = 0.

Here and in what follows, the boundary terms, resulting from integration by parts,

are neglected.

Taking into account, that within first order theory

δε = δu′, δκ = δw′′,

the last equality reads as∫
Nδεdx−

∫
Mδκdx =

∫
pxδudx+

∫
pzδwdx.

On the other hand,

N = EAεlin, M = −EJκ,

therefore, finally,∫
EAεlinδεdx+

∫
EJκδκdx =

∫
pxδudx+

∫
pzδwdx. (3.18)
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Here εlin is the linearized strain.

Applying the Newton-Raphson procedure to the left hand side of (3.18):∫
EAεlinδεdx+

∫
EJκδκdx =

∫
EA∆εlinδεdx+

∫
EAεlin∆δεdx+

+

∫
EJ∆κδκdx+

∫
EJκ∆δκdx,

which can be simplified further taking into account, that in the first order theory

∆εlin = ∆u′, ∆κ = ∆w′′, ∆δε = ∆δκ = 0.

Finally, for tangent and current stiffnesses, the following is obtained

J(x) =

∫
EA∆u′δu′dx+

∫
EJ∆w′′δw′′dx

and

A(x) =

∫
EAu′δu′dx+

∫
EJw′′δw′′dx.

3.3.2 FEM for Euler-Bernoulli Beam: Geometrically Non-

linear Theory

The second order theory is now considered, where it is assumed, that the geometric

relation between strain and displacements is nonlinear:

ε = u′ +
1

2
w′.

Then, similar to (3.18), in this case∫
EAεlinδεdx+

∫
EJκδκdx =

∫
pxδudx+

∫
pzδwdx,

where

δε = δu′ + w′δw′.

In this case the Newton-Raphson procedure leads to∫
EAεlinδεdx+

∫
EJκδκdx =

∫
EA∆εlinδεdx+
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+

∫
EAεlin∆δεdx+

∫
EJ∆κδκdx+

∫
EJκ∆δκdx

with

∆εlin = ∆u′, ∆κ = ∆w′′, ∆δε = δw′ ·∆w′, ∆δκ = 0.

Therefore, the tangent and current stiffnesses are as follows:

J(x) =

∫
EA∆u′ (δu′ + w′δw′) dx+

∫
EAu′δw′ ·∆w′dx+

∫
EJ∆w′′δw′′dx,

and

A(x) =

∫
EAu′ (δu′ + w′δw′) dx+

∫
EJw′′δw′′dx.

Based on the assumptions of the third order theory, the following is derived:∫
EAεδεdx+

∫
EJκδκdx =

∫
pxδudx+

∫
pzδwdx.

In this case, the Newton-Raphson procedure provides∫
EAεδεdx+

∫
EJκδκdx =

∫
EA∆εδεdx+

+

∫
EAε∆δεdx+

∫
EJ∆κδκdx+

∫
EJκ∆δκdx

with

∆ε = ∆u′ + w′ ·∆w′, ∆κ = ∆w′′, ∆δε = δw′ ·∆w′, ∆δκ = 0.

Therefore, the tangent and current stiffnesses are defined through:

J(x) =

∫
EA (∆u′ + w′ ·∆w′) (δu′ + w′δw′) dx+

+

∫
EA

(
u′ +

1

2
(w′)

2

)
δw′ ·∆w′ +

∫
EJ∆w′′δw′′dx

and

A(x) =

∫
EA

(
u′ +

1

2
(w′)

2

)
(δu′ + w′ · δw′) dx+

∫
EJw′′δw′′dx.
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3.4 Error Measures

In general, the approximate solution obtained with FEM may contain three types

of errors:

1. domain approximation or division into finite elements,

2. numerical (mainly due to intermediate computations and integral evaluations),

3. solution approximation (cf. (3.1)).

The first type makes sense in the discretization of domains with complex and

irregular geometry and can therefore be improved by refining the mesh. The second

type of errors depends mainly on the total degrees of freedom, and therefore makes

sense when greater accuracy is required. The third type of errors always exists and

can be improved by increasing N or the polynomial order of the ansatz functions.

The efficiency of the FE solution is measured by the error between analytical

and approximate solutions. There are several ways to measure this error. Examples

include C norm

||w − wN ||C = max
x∈Ω
|w(x)− wN(x)| ,

L2 norm

||w − wN ||L2 =

[∫
Ω

|w − wN |2 dx
]1/2

,

W 1,2 norm

||w − wN ||W 1,2 =

[∫
Ω

|w′ − w′N |
2
dx+

∫
Ω

|w − wN |2 dx
]1/2

,

etc. The approximate solution (3.1) converges to the analytical solution, if [14]

||w − wN || ≤ chp,

for some positive constant c independent of both solutions and convergence rate

p > 0, h is the characteristic length of the element.
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Chapter 4

Model Order Reduction

It is relatively recent that model order reduction or MOR methods have been ap-

plied to statics of structures. The need to develop reliable reduction techniques for

structural analysis of static systems was overlooked, the reasoning being that high

computational efforts were not required to solve such problems and that reduction

techniques can reduce the order of the problem, but not necessarily computational

time and costs. As already mentioned in the Introduction, model order reduction for

the analysis of statics of structures becomes meaningful only when used for repetitive

calclations, which are part of design verification analysis.

In this Chapter we will take a closer look at the general principles of the model

order reduction method. The projection procedure is explained; and methods to

construct suitable projection bases are also developed. Assuming that as a result of

discretization, the following parametrized system is obtained:

K (µ,α)α (µ) = b (µ) , (4.1)

in which µ ∈ Rn is the vector of parameters. It involves n degrees of freedom. The

aim is to approximate this system by a much smaller system using only k � n

degrees of freedom. To this end, a new k dimensional subspace is built, into which

the original system is projected. The projection means that the residue of the
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original system must be orthogonal to the basis W ∈ Rn×k of the new subspace.

The vector of unknowns α ∈ Rn is substituted by a new vector α ∈ Rk defined

through WT. After this, using the matrix multiplication rule, the following reduced

order system is derived

K (µ,α)α (µ) = b (µ) , (4.2)

which involves less degrees of freedom in α ∈ Rk.

By solving (4.1) with respect to α for different values of µ, we eventually obtain

the set of vectors A = {α (µ1) , . . . ,α (µk)} := {α1, . . . ,αk}. It is this set of so-

called snapshots which is used in POD based MOR methods (see Chapter 1). The

required data can also be obtained without any significant difficulty by means of

sensors and transducers through experiments that are performed repeatedly during

design verification.

The process of obtaining these snapshots by varying the value of the parameter is

called the offline phase. The snapshots may be used to construct various subspaces,

into which the initial system may be projected. This step of the reduction is called

the online phase.

The reduction is in the choice of a proper k− dimensional subspace with an

orthonormal basis W = {w1, . . . ,wk} and the solution of the problem in it. Now,

the aim is to find an appropriate w ∈ W, which approximates α in some sense.

The most common ways include:

1. The Ritz-Galerkin approach, which requires that the residual b −Kw is or-

thogonal to W.

2. The minimum norm residual approach, which requires that the Euclidean norm

||b−Kw||2 is minimal over W.

3. The Petrov-Galerkin approach, which requires that the residual b − Kw is

orthogonal to some other suitable k−dimensional subspace.
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4. The minimum norm error approach, which requires that the Euclidean norm

||w −α||2 is minimal.

The Ritz-Galerkin projection approach is used here according to which the new

subspace should be orthogonal to the residual:

WT [K (µ,α)α (µ)− b (µ)] = 0. (4.3)

Its solution α can be represented in the new subspace as α = Wα:

WTK (µ,α) Wα (µ)−WTb (µ) = 0, (4.4)

or

WTK (µ,α) Wα (µ) = WTb (µ) , (4.5)

After some denotations the reduced system (4.2) will be obtained. From now

on, the most important aspect is the proper choice of the basis W.
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4.1 MOR for Linear Systems

In this section some methods used to construct suitable projection bases to perform

order reduction for linear systems are reviewed.

4.1.1 Krylov Subspace

Krylov subspaces are constructed in the usual way, and are described in the corre-

sponding subsection in the Introduction (cf. (1.2.1.1)). In dynamic problems, the

starting vector v, spanning the Krylov subspace, is just a vector with ||v|| = 1, and

more often it is chosen to be v = b/ ||b||.

To span a Krylov subspace providing reduced solution for structural analysis of

static systems one (any) of the snapshots is chosen. The vectors generated based on

that snapshot are then QR-factorized to be orthonormalized:

{
α1,Kα1,K

2α1, . . . ,K
kα1

}
= QR. (4.6)

This basis is used to project the matrix K into the constructed subspace.

Solving the reduced system and then projecting the solution vector back to the

large space, the solution obtained of the large system is α.

The disadvantage of this method is costly computation of powers of discretization

matrix K. On the other hand, it only uses one snapshot to construct the projection

subspace, which is a clear advantage when, for example, previously performed ex-

periments fail to provide much information for the new area of interest and analysis.

In this case, the computation of powers of K is more efficient, than performing a

new experiment.
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4.1.2 Inexact Krylov Subspace

Inexact Krylov is a new type of a subspace, which is constructed using several/a few

snapshots. The subspace is defined by (cf. (1.2.1.1))

Kr (K;α) = span {α1,Kα1, . . . ,αk,Kαk} , k < n.

The further algorithm is the same as in Subsection 4.1.1. The advantage of the

inexact Krylov subspace method, compared with the previous one, is that here

there is no need to compute any power of the stiffness matrix K.

4.1.3 Full Basis Subspace

The full set of snapshots is used as the basis to construct a new type of projecting

subspace. They are first orthonormalized:

{α1, . . . ,αk} = QR. (4.7)

And then the procedure that follows is the same as above. Computationally, this is

the most efficient method. However, it requires more snapshots than the previous

methods and sometimes they can be impossible to obtain, for example, for analysis

of areas where sensors cannot be installed.
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4.2 MOR for Nonlinear Systems

In non-linear problems the stiffness matrix is not constant and changes along the

equilibrium path. To overcome this difficulty, Newton-Raphson iteration is used

(see Paragraph 3.2.2.2), In Figure 4.1 the scheme of Newton-Raphson iteration on

the equilibrium path is illustrated, where ∆F and ∆U are the force and displace-

ment increments at each iteration step, respectively. At each iteration step K is

constant, which means it is possible to consider a non-linear problem as a set of

linear problems. Therefore, by using one of the aforementioned MOR methods (see

Section 4.1), a linear problem is reduced instead of solving the higher fidelity prob-

lem. A smaller system is solved and that solution is used as an increment for the

next iteration step. This procedure ends when the solution converges.

Figure 4.1: Newton-Raphson iteration diagram

The offline procedure seems costly, but in industry non-linear analysis is very

often carried out as “real life” Newton-Raphson iteration. For each load step, sensors

can provide the data to construct projection bases and reduce subspaces.
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Chapter 5

Application to Model Problems

and Evaluation

To verify the efficiency of each of the MOR techniques discussed in Chapter 4, several

model problems are considered and corresponding error estimations are carried out.

To prove the flexibility of these methods, different types of structures are considered:

a simple cantilever beam; a beam structure consisting of 2 beams connected to each

other with a joint; and a simple frame structure. The analytical solution for these

systems for first- and second-order theories are also calculated to show the difference

in the system’s behaviour when using linear and non-linear theories. All exemplary

problems are parametrized by localization of the external loading. The approximate

FE solution for different values of the parameter is computed and the so-called

snapshots are collected. In the MOR application step, different locations are chosen

for the external loading and previously obtained snapshots are used to construct the

projection subspaces using the three different techniques described in Chapter 4.

Discretization of the differential equations is carried out using linear or non-linear

FEM depending on the theory involved. (The calculations are carried out in Python

solver.)
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5.1 Exemplary Problems

Rigorous solutions are obtained only in the framework of the first- and second-order

theories, since in these cases the governing systems are linear (see Section 2.2 for

details). Approximate solutions for all exemplary problems in terms of the third-

order theory are obtained using FEM.

5.1.1 First Exemplary Problem

Consider a simple horizontal cantilever beam subjected to longitudinal H and trans-

verse P constant forces at x = l1 end of the beam (see Figure 5.1).

Figure 5.1: Simple cantilever beam: First exemplary problem

5.1.1.1 Exact solution

The input parameters are chosen to be P = 0.1 N, H = 1 N, A = 10−4 m2, Iy = 10−9

m4, E = 2 · 108 N/m2.

i) First order theory:

In the geometrically linear case the equilibrium is stated using the undeformed

configuration of the beam. Longitudinal force H shows only compression effect.

The displacements of the beam are given by

u(x) =
Hx

EA
,

w(x) =
Px2(x− 3l1)

6EI
,

0 ≤ x ≤ l1. (5.1)
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ii) Second order theory:

In the geometrically non-linear case, the equilibrium is stated using the deformed

configuration of the beam. For the particular exemplary problem this results in

bending moment. Normal force H is assumed to remain constant along the beam

and contributes an additional moment which depends on the actual deformation w

of the beam in the current configuration.

The displacement of the beam is given by

u(x) =
H

EA
x,

w(x) = − P

Hk
[kx− sin(kx)− tan(kl)[cos(kx)− 1]] ,

0 ≤ x ≤ l1, (5.2)

where

k2 =
H

EI
.

In order to study the dependence of the value of the horizontal force H the first-

and second-order theories, the critical value of the horizontal buckling load has first

to be determined. For chosen parameters it is computed to be H ≈ 1.97192. In

order to visualise the difference between the first- and second-order theories in this

particular example, depending on the value of the horizontal force, the transverse

displacement of the beam, w(x), from (5.1) and (5.2) is plotted at x = l1 when H

is in the range of the precritical buckling load, i.e. [0.5, 1.9]. The result is presented

in Figure 5.2.

The horizontal deflection of the beam, u(x), for particular values of parameters,

given above, is plotted in Figure 5.3.
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Figure 5.2: Transverse displacements within first- and second-order theories

Figure 5.3: Deflection of the beam: First exemplary problem, first order theory
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5.1.1.2 ROM solution

The model order reduction techniques described in Chapter 4 will now be applied.

The FE model of this problem has 10 nodes and 30 DOFs. The results shown below

are obtained for external loading localized on the 7th node. All input parameters

are left the same as for the analytical solution, the precritical value of horizontal

force H = 1.9 is considered to perform the MOR techniques. It is to be noted, that

all computations below are done for 4 modes only: sensitivity analysis reveals, that

independently from the order of the theory, when the number of modes increases,

the approximation error decreases very rapipdly.

i) Krylov subspace method

The solution of the realisation of the force-location-parametrized problem with

µ = 0.9m taken as snapshot. Computations showed that the closer the snapshot

under consideration is to the actual position of the loading, the more accurate are

the results which should be expected. There are several techniques for a more

sophisticated choice of snapshots used, for example, in the compact POD algorithms

described in Chapter 4. These algorithms can be combined with any of the three

techniques considered in this Chapter.

Figures 5.4–5.6 express the comparison of the FE approximate solution and that

obtained using the Krylov subspace method based MOR within the first-, second-

and third-order theories, respectively. Within the first-order theory, the two solu-

tions are close to each other. Within the second-order theory, the two solutions

differ slightly close to the x = l end-point of the beam (see Figure 5.5). Figure 5.6

shows a significant mismatch between the two solutions. However, this mismatch

can be reduced by increasing the number of modes.

It turns out, that for this problem 4 modes (see Figure 5.7) provide satisfactory

results. Sensitivity analysis shows, that the error is a fast decreasing function of

modes in the first-, second- and third-order theories (see Figure 5.8). It also follows
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Figure 5.4: First exemplary problem: first order theory

from Figure 5.8, that within the first- and second-order theories the mismatch is

almost the same for up to 20 modes and decreases significantly after 20 modes.

Nevertheless, within the 3rd order theory the mismatch decreases significantly up

to 10 modes and remains almost the same until 25 modes and then decreases again.

In Figure 5.8 the relative error sensitivity plots are introduced for Krylov sub-

space based MOR method within the first- and second-order theories, respectively.

The upper plot shows, that the error between FEM and MOR solutions within the

first order theory is about 3.2% for 4 modes and does not change dramatically for

up to 20 modes. After that, the error starts to decrease and, for instance, for 30

modes it is about 0.1%. On the other hand, it is apparent from the lower plot, that

for 4 modes the relative error for the second order theory is about 2.9%, which is

almost the same for up to 25 modes, and then it decreases dramatically
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Figure 5.5: First exemplary problem: second order theory
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Figure 5.6: First exemplary problem: third order theory
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Figure 5.7: Basis of projection space for Krylov subspace method: first exemplary

problem
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Figure 5.8: Error vs modes in Krylov subspace based MOR: first exemplary problem

64



0.0 0.2 0.4 0.6 0.8 1.0
x, u [m]

0.3

0.2

0.1

0.0

0.1

0.2

0.3

z, 
w 

[m
]

deformation

Figure 5.9: First exemplary problem: first order theory

ii) Inexact Krylov subspace method

The solution of the realisation of the force-location-parametrized problem with

µ = 0.8 m and µ = 0.9 m taken as snapshots.

Figures 5.9–5.11 express the comparison of the FE solution and that obtained

using the inexact Krylov subspace method based MOR within the first-, second-

and third-order theories, respectively. The two solutions are sufficiently close within

the first order theory. Within the second- and third-order theories the mismatch of

the two solutions becomes significant when approaching the x = l end of the beam.

The mismatch within the second- and third order theories can be reduced by

increasing the number of modes. As above, once again only 4 modes are used here

to perform the reduction (see 5.12). Sensitivity analysis reveals a rapid decrease in

error with an increase in modes (see Figure 5.13). Moreover, within the first- and

second order theories, up to 20 modes produce the same error, meanwhile within

the third-order theory, using between 10 and 20 modes produces the same accuracy.
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Figure 5.10: First exemplary problem: second order theory
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Figure 5.11: First exemplary problem: third order theory

66



0.0 0.2 0.4 0.6 0.8 1.0
x, u [m]

0.3

0.2

0.1

0.0

0.1

0.2

0.3

z, 
w 

[m
]

basis vectors
basis 0
basis 1
basis 2
basis 3

Figure 5.12: Basis of projection space for inexact Krylov subspace method: first

exemplary problem

Figure 5.13 represents the relative error sensitivity plots for the inexact Krylov

subspace based MOR method for the first-, second- and third-order theories, respec-

tively. It is evident, that the error between the FEM and MOR solutions within

the first- and second-order theories starts at 0.6% and 8%, respectively and then

is almost the same for up to 20 modes, after which decreases dramatically. The

relative error within the third order theory decreases from 8.2% (at the 4th mode,

which is used in the examples above), approaches 0.1% at 30 modes.
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Figure 5.13: Error vs modes in inexact Krylov subspace based MOR: first exemplary

problem
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Figure 5.14: First exemplary problem: first order theory

iii) Snapshots based method

The solution of the realisation of the force-location-parametrized problem with

µ = 0.6 m, µ = 0.7 m, µ = 0.8 m and µ = 0.9 m taken as snapshots.

Figures 5.14–5.16 express the comparison of the FE approximate solution and

that obtained using snapshots based MOR within the first-, second- and third-order

theories, respectively. This method provides a good approximation within all order

theories.

It is to be noted, that also in this case only 4 modes are used (see Figure 5.17).

Moreover, according to Figure 5.18 the error of approximation can be reduced by

increasing the number of modes.

In Figure 5.18 relative error sensitivity is plotted for the full basis based MOR

method for the first- and second-order theories, respectively. The error between the

FEM and MOR solutions within the first-order theory starts at 0.1% (at the 4th
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Figure 5.15: First exemplary problem: second order theory
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Figure 5.16: First exemplary problem: third order theory
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Figure 5.17: Basis of projection space for snapshots based method: first exemplary

problem
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Figure 5.18: Error vs modes in snapshots based MOR: first exemplary problem
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mode) and decreases very fast, approaching 0.02% at the 30th mode. On the other

hand, the error within the second order theory starts from 1.5% at the 4th mode,

remains almost the same up to the 10th mode and then it decreases dramatically.
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Theory Krylov Inexact Krylov Snapshots

First order 0.031 0.0061 0.0011

Second order 0.0284 0.0808 0.0149

Third order 0.9914 0.0811 0.0084

Table 5.1: L2 norm error estimates: first exemplary problem

In Table 5.1 L2 norm error estimates are presented for all the aforementioned

cases.

5.1.2 Second Exemplary Problem

Consider a horizontal beam of length l, clamped at x = 0 end, on the shiftable

bearing at the other end and with an inner pin on distance l1 from the clamped

end. It is assumed, that longitudinal force H is applied at x = l1 + l2 = l, and that

normal force P is applied at x = l1 to the pin (see Figure 5.19).

Figure 5.19: Compound Euler-Bernoulli beam: second exemplary problem

5.1.2.1 Exact solution

Input parameters are chosen to be P = 0.1 N, H = 1 N, A = 10−4 m2, Iy = 10−9

m4, E = 2 · 108 N/m2.

i) First order theory:
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To solve the problem, we divide it into two domains: 0 ≤ x1 ≤ l1 and l1 ≤

x2 ≤ l1 + l2. Both governing equations are of 4th order, 4 integration constants for

each equation will be obtained. To determine them, 8 conditions are needed. The

boundary conditions for the first part are

w1(0) = 0, w′1(0) = 0, w′′1(l1) = 0, u1(0) = 0, (5.3)

and for the second part–

w′′2(l) = 0, w2(l) = 0, u′2(l) = − H

EA
. (5.4)

In order to derive continuous solution for all 0 ≤ x ≤ l, compatibility conditions

between w1 and w2 at x = l1 must be satisfied:

w1(l1) = w2(l1), w′′1(l1) = w′′2(l1), EIw′′′1 (l1) = P + EIw′′′2 (l1),

u1(l1) = u2(l1).
(5.5)

Therefore, the displacements are expressed as follows:

w1(x1) = − P

EI

x2
1 (3l1 − x1)

6
, 0 ≤ x1 ≤ l1, (5.6)

w2(x2) = − P

EI

l31 (l2 − x2)

3(l2 − l1)
, l1 ≤ x2 ≤ l. (5.7)

The deflection of the beam, w(x), for particular values of parameters is plotted

in Figure 5.20.

ii) Second order theory

The boundary and compatibility conditions read as

w1(0) = 0, w′1(0) = 0, w′′′1 (l1) =
P

EI
+

H

EI
w′1(l1), w′′1(l1) = 0,

w′′1(l1) = w′′2(l1), w2(l) = 0, w′′2(l) = 0, w1(l1) = w2(l1), w′′2(l1) = 0.

(5.8)
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Figure 5.20: Deflection of the beam: second exemplary problem, first order theory

Figure 5.21: Deflection of the beam: second exemplary problem, second order theory

The displacements are determined as follows:

w1(x1) =
P (kx1 cos [kl1] + (sin [k (l1 − x1)]− sin [kl1]))

Hk (2− cos [kl1])
, 0 ≤ x1 ≤ l1, (5.9)

w2(x2) =
P (l − x2) (kl1 cos [kl1]− sin [kl1])

Hkl2 (1− cos [kl1])
, l1 ≤ x2 ≤ l. (5.10)

The deflection of the beam, w(x), for particular values of parameters is plotted

in Figure 5.21.

For the values of input parameters the critical H is computed to be H ≈ 1.0093.
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Figure 5.22: Difference between normal displacements within first and second order

theories: Second example

In order to identify the difference between the first- and second-order theories, the

transverse displacement, w(x), from (5.6) and (5.10) is plotted at x = l1 for H in

the range [0.25, 0.95]. The result is presented in Figure 5.22.

5.1.2.2 ROM solution

The model order reduction techniques described in Chapter 4 are carried out on this

exemplary problem. The FE model of this problem has 19 nodes and 57 DOF’s.

The results shown below are obtained for external loading localized on the 7th node.

For the first- and second-order theories the value of the precritical horizontal force

used is H = 1 N to perform the MOR techniques, while for the third order theory

H = 0.4 is taken to run no more than 10 Newton-Raphson iterations.

i) Krylov subspace method

The solution of the realisation of the force-location-parametrized problem with

µ = 0.9 m taken as a snapshot.

Figures 5.23–5.25 express the comparison of the FE approximate solution and

that obtained using Krylov subspace method based MOR within the first-, second-
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Figure 5.23: Second exemplary problem: first order theory

and third-order theories, respectively. Within the first-order theory the method

provides a good approximation, whereas within the second- and third-order theories,

mismatch is detected near the hinge.

The mismatch can be reduced by increasing the number of modes, which is

chosen to be 4 (see Figure 5.26). For corresponding estimates of error dependence

on the modes number within the first-, second- and third-order theories see Figure

5.27.

In Figure 5.27 relative error sensitivity is plotted for the Krylov subspace based

MOR method for the first-order theory. The error between FEM and MOR solutions

first decreases from 1.9% up to the 20th mode, it then remains approximately the

same up to the 30th mode and then it decreases again.
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Figure 5.24: Second exemplary problem: second order theory
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Figure 5.25: Second exemplary problem: third order theory
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Figure 5.26: Basis of projection space for Krylov subspace method: second exem-

plary problem
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Figure 5.27: Error vs modes in Krylov subspace based MOR: second exemplary

problem
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Figure 5.28: Second exemplary problem: first order theory

ii) Inexact Krylov subspace method

The solution of the realisation of the force-location-parametrized problem with

µ = 0.8 m and µ = 0.9 m taken as snapshots.

Figures 5.28–5.30 express the comparison of the FE approximate solution and

that obtained using the inexact Krylov subspace method based MOR. This method

provides good approximation within the first- and third-order theories, while within

the second-order theory a mismatch occurs near the hinge. It can be reduced by

increasing the number of modes (4 are used here). The sensitivity analysis is intro-

duced on Figure 5.32.

On Figure 5.31 the orthonormalized basis functions are plotted on which the

projection subspace is spanned.

Figure 5.27 illustrates the relative error sensitivity on the number of modes for

the inexact Krylov subspace based MOR method within the third-order theory. The
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Figure 5.29: Second exemplary problem: second order theory
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Figure 5.30: Second exemplary problem: third order theory
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Figure 5.31: Basis of projection space for inexact Krylov subspace method: second

exemplary problem
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Figure 5.32: Error vs modes in inexact Krylov subspace based MOR: second exem-

plary problem

error between the FEM and MOR solutions decreases from 1.2% by about 5 times

up to the 20th mode, it then maintains almost the same value of 0.25% up to the

50th mode and then it decreases dramatically.
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Figure 5.33: Second exemplary problem: first order theory

iii) Full basis based method

The solution of the realisation of the force-location-parametrized problem with

µ = 0.6 m, µ = 0.7 m, µ = 0.8 m and µ = 0.9 m taken as snapshots.

Figures 5.33–5.35 express the comparison of the FE approximate solution and

that obtained using snapshots based MOR within the first-, second- and third-

order theories, respectively. Using only 4 modes, efficient approximation is obtained

within the first- and third-order theories. A mismatch occurs between the two solu-

tions, which is smaller than the corresponding mismatch with the previous method.

The sensitivity analysis reveals very small approximation error. The corresponding

modes are plotted on Figure 5.36.

86



0.0 0.2 0.4 0.6 0.8 1.0
x, u [m]

0.3

0.2

0.1

0.0

0.1

0.2

0.3

z, 
w 

[m
]

deformation

Figure 5.34: Second exemplary problem: second order theory
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Figure 5.35: Second exemplary problem: third order theory
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Figure 5.36: Basis of projection space for snapshot based method: second exemplary

problem
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Theory Krylov Inexact Krylov Snapshots

First order 0.0267 0.0026 0.0011

Second order 0.7411 0.5733 0.3243

Third order 0.9905 0.0155 0.0103

Table 5.2: L2 norm error estimates: second exemplary problem

In Table 5.2 L2 norm error estimates are presented for all the aforementioned

cases.

5.1.3 Third Exemplary Problem

In both of the problems above, the deflection w(x) is almost the same within the

second- and third-order theories. Nevertheless, it makes sense to consider them

separately, especially when considering frame-shape structures. In analyzing such

structures, the beams are separated from each other and the equilibrium of each one

is considered separately. Eventually, the governing equations are coupled; the effect

of the third order theory therefore becomes significant.

Consider a U-frame structure, loaded with a vertical and horizontal force in the

middle (see Figure 5.37).

This example is considered only numerically, since its exact solution being straight-

forward, is lengthy. Input parameters are chosen P = 0.1 N, H = 2 N, A = 10−4

m2, Iy = 10−9 m4, E = 2 · 108 N/m2.

The model order reduction techniques described in Chapter 4 are performed

on this exemplary problem. The FE model of this problem has 37 nodes and 111

DOF’s. The results shown below are obtained for external loading localized on the

7th node.
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Figure 5.37: U-shape frame: Third exemplary problem

i) Krylov subspace method

The solution of the realisation of the force-location-parametrized problem with

µ = 0.9m taken as snapshot

Figures 5.38–5.40 express the comparison of the FEM solution and that ob-

tained using the Krylov subspace method based MOR within the first-, second-

and third-order theories, respectively. Restricting consideration to 4 modes only,

approximation with a small relative error is derived within all three theories. The

corresponding modes are plotted on Figure 5.41.
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Figure 5.38: Third exemplary problem: first order theory
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Figure 5.39: Third exemplary problem: second order theory
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Figure 5.40: Third exemplary problem: third order theory
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Figure 5.41: Basis of projection space for Krylov subspace based method: third

exemplary problem
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Figure 5.42: Third exemplary problem: first order theory

ii) Inexact Krylov subspace method

The solution of the realisation of the force-location-parametrized problem with

µ = 0.8 m and µ = 0.9 m taken as snapshots.

Figures 5.42–5.44 express the comparison of the FE approximate solution and

that obtained using the inexact Krylov subspace method based MOR within the

first-, second- and third-order theories, respectively. Only 4 modes are considered,

and approximation with a small relative error is derived within all three theories.

The modes are plotted on Figure 5.45.
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Figure 5.43: Third exemplary problem: second order theory
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Figure 5.44: Third exemplary problem: third order theory
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Figure 5.45: Basis of projection space for inexact Krylov subspace based method:

third exemplary problem
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Figure 5.46: Third exemplary problem: first order theory

iii) Full basis based method

The solution of the realisation of the force-location-parametrized problem with

µ = 0.6 m, µ = 0.7 m, µ = 0.8 m and µ = 0.9 m taken as snapshots.

Figures 5.46–5.48 express the comparison of the FE approximate solution and

that obtained using snapshots based MOR within the first-, second- and third-order

theories, respectively. Considering only 4 modes, approximation with a small relative

error is derived within all three theories. See Figure 5.49 for corresponding modes.
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Figure 5.47: Third exemplary problem: second order theory
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Figure 5.48: Third exemplary problem: third order theory

98



0.0 0.5 1.0 1.5 2.0
x, u [m]

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

z, 
w 

[m
]

basis vectors

basis 0
basis 1
basis 2
basis 3

Figure 5.49: Basis of projection space for snapshots based method: third exemplary

problem
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Theory Krylov Inexact Krylov Snapshots

First order 0.0729 0.0018 0.0018

Second order 0.0084 0.0019 0.0019

Third order 0.0084 0.0019 0.0018

Table 5.3: L2 norm error estimates: Third exemplary problem

In Table 5.3 L2 norm error estimates are presented for all the aforementioned

cases.
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Summary and Conclusions

This thesis is devoted to the comparison of model order reduction techniques to

reduce the order of high-dimensional models which arise in non-linear static struc-

tural mechanics. The solution procedure to deal with a certain problem when a

structure subjected to static loading is involved is usually the following. Using the

finite element method, the governing structural equations are discretized and the

corresponding system of algebraic equations is derived in terms of a tangent matrix.

Usually, the dimension of the discretized system is fairly high. Therefore, the eval-

uation of the solution will be time-consuming. Model order reduction techniques

make it possible to reduce the dimension of the discretized system and consequently

to decrease computational costs.

Taking into account the features of static problems, modifications into an exist-

ing MOR method are carried out. Formally, the resulting methods are referred to

as Krylov subspace, inexact Krylov subspace and full basis subspace-based MOR

methods. The difference between these methods lies in the way the subspace is

selected into which the discretized system has to be projected. In the case of the

Krylov subspace-based MOR method, the set of orthonormal basis is achieved using

the same snapshot, multiplied by increasing the powers of the tangent matrix. In

the case of the inexact Krylov subspace-based MOR method, the set of orthonor-

mal basis is enriched using increasing snapshots, multiplied by the tangent matrix.

Finally, the full basis subspace-based MOR method uses increasing snapshots only

(see Chapter 4).
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The structures considered in this thesis are geometrically non-linear. This leads

to a non-linear system of algebraic equations. The main contribution of this thesis

is to build a MOR method to deal with non-linear systems. The main idea is to

use Newton-Raphson iteration, which makes it possible to obtain a linear system

at each iteration. Then any of the MOR methods described above can be used to

reduce the order of the discretized linear system at each iteration.

Applications of this proposed MOR method are applied to particular non-linear

systems:

i) a simple cantilever Euler-Bernoulli beam,

ii) two Euler-Bernoulli beams connected to each other by a joint,

iii) a frame structure.

Each problem is studied within the framework of three beam theories, formally

mentioned as the first-, second- and third-order theories.

The problems are parametrized by the point of localization of the vertical loading.

Then, computing the FE approximate solutions, snapshots for different values of

the parameter are evaluated. In the final step, the computed snapshots are used to

construct the corresponding projection subspaces in the Krylov subspace, inexact

Krylov subspace and full basis subspace-based MOR methods. Observations showed

that the closer the snapshot being considered is to the actual position of the loading,

the more accurate are the results.

Each of the developed methods has its own advantages and disadvantages. There-

fore, before applying one of them in order to analyse a particular structure, the

following points must be taken into account.

• The disadvantage of the Krylov subspace-based MOR method is that it re-

quires significant expenditure for the computation of the powers of the stiffness

matrix. One of its advantages is that it uses only one snapshot to construct

the projection subspace.
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• The advantage of the inexact Krylov subspace-based MOR method (compared

with the previous one) is that it is not necessary to compute any power of

generally high-dimensional stiffness matrix. The disadvantage of this method

is that more than 1 snapshot is required.

• The full basis subspace-based MOR method is computationally the most effi-

cient method since it does not involve the stiffness matrix of the actual prob-

lem. However, it does require more snapshots than the previous two methods,

which sometimes is impossible, for example, for the analysis of areas where

sensors cannot be installed.

• In the sense of L2-norm, the Krylov subspace-based method has the largest

error, next comes the inexact Krylov subspace-based method and finally the

full basis subspace-based method has the least error.

• Local effects (see the second exemplary problem) can also affect the accuracy of

approximation with the Krylov and inexact Krylov subspace-based methods.
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