
Graph-based Software Knowledge: Storage and Semantic Querying of
Domain Models for Run-Time Adaptation

Nico Hochgeschwender, Sven Schneider, Holger Voos, Herman Bruyninckx and Gerhard K. Kraetzschmar

Abstract— Software development for robots is a knowledge-
intensive exercise. To capture this knowledge explicitly and
formally in the form of various domain models, roboticists
have recently employed model-driven engineering (MDE) ap-
proaches. However, these models are merely seen as a way to
support humans during the robot’s software design process. We
argue that the robots themselves should be first-class consumers
of this knowledge to autonomously adapt their software to
the various and changing run-time requirements induced, for
instance, by the robot’s tasks or environment.

Motivated by knowledge-enabled approaches, we address this
problem by employing a graph-based knowledge representation
that allows us not only to persistently store domain models,
but also to formulate powerful queries for the sake of run time
adaptation. We have evaluated our approach in an integrated,
real-world system using the neo4j graph database and we
report some lessons learned. Further, we show that the graph
database imposes only little overhead on the system’s overall
performance.

I. INTRODUCTION

The realization of modern robotic systems is a knowledge-
intensive process that reflects, involves and builds upon
decisions from complex, heterogeneous fields of research
and engineering – reaching from hardware design over
domains such as control, perception or planning to software
engineering. Especially in robotic’s software engineering, the
challenging and interdisciplinary integration of these fields
is all too often solved in an ad-hoc manner for very spe-
cific problems. Consequently, knowledge and assumptions
about the robot’s software frequently remain implicit, as
discussed in [1]. Formal methods and explicit representations
of software knowledge are promising approaches to cope
with implicit knowledge representations. However, these
approaches are usually regarded as a tool for human robot
designers – the robots themselves are denied access to this
knowledge.

Recently, the robotics community has developed a growing
interest in MDE [2] as a means to capture domain knowledge
of the various robotics fields explicitly in the form of domain
models [3]. Such domain models are described by domain-
specific languages (DSL). In contrast to general purpose

Nico Hochgeschwender, Sven Schneider and Gerhard Kraet-
zschmar are with the Department of Computer Science, Bonn-
Rhein-Sieg University of Applied Sciences, Germany. Email:
forename.surname@h-brs.de Nico Hochgeschwender and
Holger Voos are with the Research Unit in Engineering Sciences, University
of Luxembourg, Luxembourg. Email: holger.voos@uni.lu
Sven Schneider and Herman Bruyninckx are with the Department
of Mechanical Engineering, KU Leuven, Belgium. Email:
Herman.Bruyninckx@mech.kuleuven.be

programming language, DSLs allow domain experts to spec-
ify their knowledge in familiar terminology and representa-
tions such as textual, graphical or mathematical notations.
DSLs and their associated domain models fulfill varying
requirements such as documentation of taken approaches,
visualization of concepts or the generation of code. The latter
point, i.e. code generation, is most frequently associated
with MDE and a major focus in nowadays robotics software
engineering [3]. In such an approach a part of or a complete
robot system is modeled at design time, then the software is
generated and often the modeling effort is forgotten.

We argue that the consequent next step is to provide robots
with these explicit knowledge representations and let them
reason about their software at run time. This is one of many
key ingredients for autonomous and intelligent robots that are
able to adapt to their tasks and dynamic environments [4].
Thus, the core problem investigated in this paper is: How to
grant robots access to the software-related models at run
time? This involves a) persistently storing the different
notations and formats of DSLs; b) composing the various
domain models; and c) querying over multiple domains at
run time.

Fig. 1. The quadrocopter in an indoor environment with time-varying
illumination conditions.

The AI community has already realized this require-
ment, as evidenced by knowledge-enabled approaches like
KnowRob [5], RoboBrain [6] or the OpenRobot Ontology
(ORO) [7]. At the core of these approaches, graph-based
knowledge representations such as ontologies provide com-
mon representations and query interfaces to the robot’s run-
time environment. In this connection, we make the following
contributions for software-related knowledge:

• We employ labeled property graphs as simple, yet pow-
erful means to persistently store and compose domain
models originating from different functional domains
and software development phases.

Proceedings of the 2016 IEEE International Conference on
Simulation, Modeling, and Programming for Autonomous Robots
San Francisco, USA, Dec 13-16, 2016

978-1-5090-4616-4/16/$31.00 ©2016 IEEE 83

• We demonstrate how semantic querying can be applied
at run time to derive implicitly defined information
based on composed domain models.

• We evaluate our approach in an integrated, real-world
system based on the neo4j graph database by creating,
updating and querying domain models for the sake of
run-time adaptation.

II. MOTIVATION: MODEL-BASED DEVELOPMENT

We exemplify the structured, model-based development
of a real-world robotic application based on the BRICS
Robot Application Development Process (BRICS RAP or
short RAP) [8]. The RAP is a holistic, tailorable, iterative
process model for developing robotic applications both in
academic and industrial settings. The process model forsees
eight different phases, therefrom four will be employed in the
following as those are sufficient to motivate the scenario.

Application Scenario

The application (system) under study constitutes a quadro-
copter instructed to fly in a GPS-denied indoor environment
with time-varying illumination conditions (see Fig. 1). The
environment is equipped with fiducial markers [9] used by
the quadrocopter to localize itself. As we experimentally
analyzed in [10], the recognition performance in the presence
of time-varying illumination conditions significantly depends
on adapting the modifiable parameters of the marker recog-
nition algorithm at run time. Therefore, the quadrocopter
needs to continously monitor the illumination condition and
eventually adapt its software architecture to continue to prop-
erly estimate its own pose. However, as the computational
hardware of the quadrocopter is limited it is not possible
to execute all functionalities (e.g. marker detection, flight
control etc.) on the same platform. In that case a remote
computer with time-varying memory resources is available
to where functionalities can be swapped out.

Model-based Development

To apply the RAP or any other process model in combina-
tion with a model-based development approach, one applies
textual and graphical DSLs in certain development phases
to represent domain models. Those models make domain
knowledge explicit, which is on the one hand relevant for a
certain functional or architectural concern of the application
under study, and on the other hand is important to be repre-
sented during a particular development phase. An example
of a domain model is shown in Fig. 3. Those domain models
are either created by humans supported by development
tools (e.g. language workbenches and editors) or by run-
time environments in an (semi-)automated manner. In both
cases, domain models can be of various nature such as source
code, configuration files, drawings or technical documenta-
tion to name a few, all of which are usually represented in
heterogenous formats. Therefore, it remains challenging to
compose those domain models technically and conceptually
in order to infer answers about the system as a whole. Such
a situation is exemplified in Fig. 2. Here, in the platform

rpsl.sensor_component do
name "camera"
add_port :out, "out_port", "rgb_image"

end

rpsl.processing_component do
name "aruco"
add_port :in, "in_port", "rgb_image"
add_port :out, "out_port", "marker"

end

rpsl.perception_graph do
name "marker_detection"
connect "camera", "out_port", "aruco", "in_port"

end

Fig. 3. A domain model of a marker detection system created by the DSL
proposed in [19].

building phase the quadrocopter’s computational hardware
is modeled with AADL [11] yielding a textual model which
makes connections and properties such as the number and
size of physical memory explicit. However, some models
can only be partially instantiated or not instantiated at all at
design time as binding information is not (yet) available. For
example, the concrete memory usage of an application is not
known before deployment time and depends on the execution
context. Therefore, several authors [12] [13] [14] argue that
domain models need to be created, modified and eventually
executed at run time. Subsequently, in the functional design
and capability building phase top-level functionalities are
identified, decomposed and modeled in terms of feature dia-
grams [15], basic and composite components. For example,
the quadrocopter’s perceptual ability to recognize fiducial
markers could be modeled with a plethora of component
models developed in robotics [3]. During the system deploy-
ment phase the mapping of components to computational
units is modeled with DSLs such as [16] [17] [18]. Further,
domain models do not necessarily remain isolated. In fact,
as shown in Fig. 2 domain models do have implicit links
refining some information, e.g. the link from the capability
building phase to the functional design phase refines the
information how a certain feature is resolved in terms of
software components. However, all too often those links are
not made explicit which prevents the systematic composition
of domain models during design time and run time.

In summary, applying a model-based development ap-
proach throughout a complete development process is seldom
done and it remains challenging

• to persistently store and compose heterogenous domain
models in a unified, systematic manner,

• to query composed domain models originating from
different functional domains and development phases,
and

• to systematically modify and employ domain models
also at run time.

84

Fig. 2. A schematic representation of a labeled property graph containing heterogenous domain models, originating from different functional domains and
development phases. Some domain models are semantically connected through links (e.g. realizes which denotes that the perception graphs realizes a
feature). Human developers or run-time environments either insert new elements into the graph or update existing ones.

III. GRAPH-BASED STORAGE OF ROBOT DOMAIN
MODELS

To store and compose heterogenous domain models we
need to define some sort of common representation or lingua
franca that describes those models. From a DSL developer’s
perspective this appears to be a somehow paradoxal situa-
tion as DSL developers usually aim to define very specific
abstractions and representations. Nevertheless, we argue that
such a lingua franca is crucial in order to persistently
store and eventually compose domain models. Therefore,
we propose to employ labeled property graphs. On the one
hand graphs are well-studied, naturally preserve structure and
on the other hand can be easily implemented. We define a
labeled property graph G formally as a quadruple

G = (V, E ,P,L) (1)

where V are the nodes and E are the edges E ⊆ V × V
of the graph. Additionally, the graph contains properties
represented as key-value pairs (P) and labels (L). Arbitrary
many properties p ∈ P can be attached to either nodes or
edges. Similarly, arbitrary many labels can be attached to
nodes (lv ∈ L) and edges (le ∈ L).

This generic graph structure is not sufficient to enable
semantic queries (see Sec. IV) or to enrich the graph with
meaning. Therefore, we impose further constraints on the
aforementioned labeled property graph. There must be one
or more le ∈ L attached to any edge in order to give meaning
to relations among nodes. Here the meaning is expressed
by domain-specific labels which are either pre-specified (X)
or coming from the domain expert (D), please note that
(X ∪ D) = L.

To demonstrate the formal description we provide some
examples based on Fig. 2 and Sec. II. For instance, in the
capability building phase software components are modeled

which we represent as nodes in the graph. As they represent
components we further label them as Component. Similarly,
atomic features, represented in the functional design phase,
are labeled as Feature. Further, to link the Aruco component
node with the Marker detection feature node one introduces
two edges. The first one from PerceptionGraph to Aruco is
labeled contains and encodes that a particular component
is part of a larger architecture (here perception graph). The
second one from the PerceptionGraph to the Marker detec-
tion feature with the label realizes encodes that a particular
Perception Graph realizes a higher-level description of a
functionality. In addition, properties of the nodes could be at-
tached in the form of key-value pairs such as names of nodes,
e.g. 〈Name,Aruco〉. The labeled-property graph model also
supports the late binding of domain information in the form
of blanked properties and uninitialized nodes. For example,
in the deployment phase a description of the location and
name of some executable is provided which we represent as
a node in the graph. Depending on the deployment infras-
tructure or robot software framework this node is labeled
as DeploymentFile, RosLaunch or SystemDServiceFile with
a link to some ProcessProfile node which encodes execution
properties of the deployed process. As the properties of the
latter are not known before deployment, the values of the
key-value pairs remain blank, e.g. 〈MemoryUsage,−〉 and
〈StartT ime,−〉.

From Domain Models to Graph DB Models

To store the domain models in a graph database we need
to both assess the domain models and translate them to the
graph concepts discussed above. The assessment involves the
question of which entities of the domain models should be
represented as nodes and which should be represented as
edges (relationships). For software-related domain models in
robotics, such as component models, coordination models

85

(e.g. state-charts) or deployment descriptions the translation
step is obvious. The core entities of interest should be
represented as nodes, whereas edges are used to represent
connections between entities. For example, states in a state-
chart are represented as nodes and transitions between states
are represented as edges. Following such an approach also
paves the way for (semi-)automatic translations of domain
models to graph database representations. Depending on the
application scenario a developer also needs to decide which
and how much information is translated from a domain
model to a graph database model. Fortunately, the labeled
property graph model does not impose any constraints here.
Developers can either decide to completely translate domain
models to graph concepts or to partially translate them,
where a node simply contains a property which points to the
location of the more detailed domain model, for example, on
the disk.

Features of the Neo4j Graph Database

To implement the concepts described above we uti-
lize the open-source graph database management system
neo4j [20]. The neo4j graph database exposes the prop-
erty graph data model with nodes and relationships as
first-class citizens. By composing nodes and relationships
into arbitrarily connected structures we do not depend on
join operations (relational databases) or other customized
operations (document-oriented databases) to infer connec-
tions between entitites. This allows us, both, to preserve
the structure of domain models and to compose domain
models through labeled edges. Similarly to other professional
database management systems, neo4j supports full ACID
(Atomicity, Consistency, Isolation, Durability) transaction
rules. Further, database drivers for several programming
languages (e.g. Java, Python, Ruby) are available which eases
the integration on a robot system. A core feature of neo4j
is the Cypher graph query language. Having Cypher at their
disposal developers can declaratively query and update the
graph database. More details are provided in the following
section.

IV. SEMANTIC QUERYING OF ROBOT DOMAIN MODELS

Up to now we showed how to store and compose domain
models in a graph database. To retrieve and eventually update
those models we need to employ some means to query the
database. We propose to use the Cypher query language
provided by neo4j. Although, Cypher is well integrated
with neo4j other means to query the graph database exist
(e.g. SPARQL [21]).

The general principle of a Cypher query on the graph
is that of matching a graph pattern of the following form:
(A)→ [R]→ (B). Here A and B are nodes whereas R is an
edge. By using such a statement in a MATCH clause the graph
database retrieves those nodes and edges where there is an
outgoing relationship (edge) between A and B of type R.
This pattern is the general principle of querys which can be
arbitrarily extended and combined with directed, undirected,
optional and multi-step relationships among nodes and more

MATCH (f:Feature)-[*]-(c:Component)
WHERE f.name = ’MarkerDetect’
MATCH (p:Platform)<-[:EXECUTABLE_ON]-(d:Deployment)
WHERE p.name = ’Remote’
RETURN d;

Fig. 4. A query where several domain models are involved.

advanced clauses such as RETURN for node/edge retrieval
and CREATE for node/edge creation to name a few.

In Fig. 4 a simple, yet realistic example is given. Here,
we query the domain model of Fig. 2 where features,
components, platforms and deployment descriptions are rep-
resented (stored) as nodes and connected through labeled
edges encoding the relations among these nodes. The query
then retrieves deployment descriptions for those components
having a relation to the marker detection feature and are
executable on the remote platform. As in the context of
semantic web technologies those queries are called semantic
queries as they derive implicitly defined information based
on the structural information expressed by the graph. This
is achieved by making relations between domain models
explicit. It is important to note that the executable on relation
links the platform domain with the deployment domain
which subsequently allows to filter the results in both do-
mains through additional WHERE clauses.

V. CASE STUDY

As the core contribution of this work is not a single,
monolithic system, but a general approach to store and
query domain models, it is hard to quantitatively assess
the contribution. Therefore, we report and discuss in the
following some lessons learned which we gained by applying
our approach in realizing a real system. We followed a
model-based development approach to realize the application
described in Sec. II and [10]. More precisely, we employed
two DSLs [16], [19] to create domain models representing
a) different marker detection configurations suitable for vary-
ing illumination conditions (see Fig. 3); b) their associated
deployment descriptions encoding name and location of
the executable; and c) the computational hardware of the
quadrocoptor and remote platform used in the application.
Those domain models are then stored in a graph database
and queryied for the sake of adapting the system at run time.

Storage of Domain Models

To store the domain models in the graph database one
needs to define a conceptual and technical transformation
from domain model elements (e.g. sensor component
in Fig. 3) to elements of the labeled property graph. This
requires an assessment of which domain model elements
shall be represented as nodes, edges or properties. In order
to perform such an assessment knowledge about both the
domain models and the potential graph database appli-
cation is required. In the context of this case study we
translated the core first-class citizens of the DSLs (e.g.

86

MATCH(f:Feature {name: ’Marker’})<-[*]->(c:Component)
WITH DISTINCT c
WITH SUM(c.memory_demand) as MEM
MATCH (p:Platform)<-[:EXECUTABLE_ON]-(d:Deployment)
WHERE p.memory_available >= MEM
RETURN p;

Fig. 5. A query retrieving the platforms meeting the memory requirements.

processing component in Fig. 3) to nodes and em-
ployed edges whenever we intended to describe relations
between them (e.g. the contains relation in Fig. 2). Simulta-
neously, we investigated which queries are required for the
case study and tested whether they are realizable and feasible
with the proposed transformation. As the names of edges
and nodes appear directly in the queries they need to be
meaningful and consistent. For example, naming the relation
executable on (see Fig. 2) makes only sense when the edge
is directed from the deployment description to a platform
description and not vice versa. The technical transformation
is achieved by using a templating approach which yields
an automatic transformation from domain models to graph
database operations such as node creation and others.

Integration of the Graph Database

We integrated the graph database containing the domain
models in our adaptive marker detection architecture pro-
posed in [10]. The architecture (see Fig. 6) follows the
MAPE-K (Monitor, Analyse, Plan, Execute and Knowledge)
reference architecture [22] known from the self-adaptive soft-
ware engineering domain and constitutes the building blocks
described in the following. The context monitor observes
both the memory which is available on the platforms and the
current illumination condition. The marker detector selector
decides which marker detector shall be executed on which
platform. The decision is driven by the available memory on
the platforms ({p1, .., pn}) and by the current illumination
condition. First, the selector employs the query shown in
Fig. 5 to derive the platforms where all the components
required for the marker detector feature can be deployed
without violating the memory demands. Second, the selector
employs the algorithm described in [10] to further find out
which of the marker detectors ({m1, ..,mn}) is suitable for
the current illumination condition. Once a marker detector
mi and a platform pi is selected the deployer stops the
current marker detector and starts the new one if it is
not already being executed. Further, to also enable some
retrospective analysis of the executed marker detectors we
are interested in storing some process meta information
about the deployed marker detector. Similarly, as described in
Sec. III we aim to store information about the memory usage,
the process start time, and the process ID. This information
is inserted and linked to the corresponding marker detector in
the graph database by the deployer. In summary, two graph
database operations are performed: insertion and querying.

Semantic Querying of Domain Models

The case study demonstrated the need to query domain
models originating from different functional domains and
development phases. By employing relatively simple queries
(see Fig. 4) a developer can incrementally extend them (see
Fig. 5) in order to derive the information required for the
task at hand. In the same way a developer can cope with
growing graph databases by concatenating several MATCH
clauses. Also additional constraints can be easily included
through more and advanced WHERE clauses. In the context
of the case study we also developed queries

• to retrieve those components required to realize the
marker detector feature, but which are deployable also
on the remote computer,

• to check whether the marker detector feature can be
deployed with different camera resolutions. That is,
whether or not camera components (see Fig. 2) with
different resolution properties are part of a perception
graph realizing the marker detector feature,

• to retrieve those components required to realize the
marker detector feature, but which have been deployed
in the past and their average memory usage was below
a certain treshold, and

• to check whether the CPU workload would exceed an
application-defined limit when the marker detector and
the flight control were both deployed on the same plat-
form. CPU workload profiles of software components
are either acquired at run time or have been annotated
at design time.

Fig. 6. The architecture integrating the graph database and realizing the
adaptive marker detection application.

Run-time Overhead

One might argue that the application of a graph database
system introduces a significant run-time overhead on the
overall system. For this reason we designed the following
experiment to investigate this overhead. We populated the
graph database with N domain models (see Table I) of

87

potential marker detectors, all of them varying in different
configuration properties. Please note, N does not denote
the number of nodes in the graph. In fact, the number of
nodes is approximately three times N as additional nodes are
integrated e.g. encoding the deployment and platform. On a
computer1 with Linux Ubuntu 14.04 with Version 2.2.5 of
the neo4j graph database we replayed different illumination
scenarios described in [10], selected and deployed different
marker detectors based on the domain models stored in the
graph database. By doing so, we measured the time of the
graph database operations (query and insert) and related
them to the timing of the adaptation operations, namely
starting and stopping an executable. Here, the executable is
a C program implementing the marker detector. For each
N , we repeated the experiment 100 times and report mean
(µ) and standard deviation (σ) of those timings. As seen in
Table I, the insertion operation seems to be independent of
N . This can be explained with the fact that no graph traversal
is required as the exact location of insertion is known, namely
next to the selected marker detector. Interestingly, the impact
of N on the timing of the query operation is rather limited
as there is only one major increase from N = 10 with 4ms
to N = 100 with 7ms. To which extend the queries can
be optimized through caching or other mechanism remains
to be investigated and also depends on application-specific
graph structures. In summary, the graph operations are more
costly than the adaptation operations. However, this depends
also on how the adaptation operations are implemented. For
example, not preserving the state of a component as done in
our experiments is faster than saving the state before stopping
the component.

VI. RELATED WORK AND DISCUSSION

The application of databases in robotics is not a new con-
cept. In fact, Niemueller et al. [23] have shown that it is fea-
sible to apply a document-oriented database like MongoDB,
even for logging raw sensor data and analyzing robots’ be-
havior in retrospect. Also knowledge-enabled and ontology-
based approaches such as KnowRob [5], Robo Brain [6] or
the OpenRobot Ontology (ORO) [7] rely on knowledge bases
to store and query specifications of robots, their capabilities,
tasks and environments. For the matter, this is comple-
mentary to the graph databases which we propose in this
paper. Our efforts bridge the gap between a) the knowledge
descriptions about robot’s capabilities, tasks etc.; and b) the
knowledge specifications about the implementation of the
software that solves the tasks.

In the context of software models, we can build on the
various model-enabled approaches and DSLs that already
support software designers and domain experts. Some ex-
amples of MDE in robotics are the work of Schlegel et
al. [24] for the specification of component-based software
architectures, the work of Gherardi and Brugali [15] for
the definition of functional reference architectures, the co-
ordination of robot behaviors by state charts [25] [26] or

1Intel Core i7-3632QM CPU 2.2GHz x 8 with 8GB RAM

building of system models via SysML [27]. In [18] the
RobotML language is introduced which enables a domain
expert to specify robot system architectures, communication
mechanisms and the behavior of components. Interestingly,
the development of RobotML was based on an ontology
supporting the DSL designer by providing concepts specific
to the robotic domain. The process of defining an ontology
is somehow related to our process of defining a labeled
property graph. However, in RobotML the ontology solely
supports the DSL domain analysis, whereas in our approach
the domain models carry their meaning into the robot’s
runtime.

Working with labeled property graphs revealed some
analogy with the four-layered metamodeling hierarchy as
described by the Object Management Group’s (OMG) Meta-
Object Facility (MOF) [28] which we would like to discuss.
In the MOF the M0 layer are real-world instances which
are represented by models on the M1 layer. The M1 layer
conforms to a metamodel on the M2 layer which in turn
conforms to a meta-metamodel on layer M3. We argue that
a graph such as the one depicted in Fig. 2 is just a different
representation of one or more M1 models. Therefore, we
derive the set of available properties P and labels L from
our metamodels on the M2 layer. Consequently, the graph in
Equation 1 aligns with the meta-metamodel of the M3 layer.
Obviously the graph structure itself does not constrain the
attachment of properties and labels to the nodes and edges.
Thus, we first check the well-formedness and validity of
specifications by relying on modelling tools and frameworks.
Only then the valid models are transformed into the graph
representation. To which extend M1, M2 and M3 models
shall be stored in the graph database remains to be investi-
gated and depends also on application requirements.

In robotics [12] [29] and software engineering [30] authors
already investigated the application of software-related mod-
els for robots at run time. They demonstrated how software-
related models can be employed to resolve dynamic variabil-
ity faced at run time such as changing environment condi-
tions and decreasing resources. To derive adaptation actions
different adaptation principles are employed e.g constraint
optimization methods [29]. Irrespective of the underlying
adaptation principle, all run-time adaptation approaches in
robotics need to access and query software-models originat-
ing from different domains and process phases. Therefore,
we argue that our approach is a complementary building
block for developing adaptive robot software architectures.
More precisely, our work relates to the knowledge building
block where domain models are placed in the well-known
MAPE-K (Monitor, Analyze, Plan, Execute and Knowl-
edge) [22] reference architecture.

By storing such models in a graph database we can on the
one hand let the domain experts use their familiar, domain-
specific tools and notations, while on the other hand provid-
ing a common interface to these models via semantic queries.
Due to the inherent graph-based nature of most models, the
storage in a graph database provides an integration point
for further model-based approaches, for instance, semantic

88

Graph DB Operations Adaptation Operations
insert query start stop

N µ σ µ σ µ σ µ σ

10 26.861ms 5.936ms 4.083ms 1.274ms 1.491ms 2.299ms 0.066ms 0.023ms
100 27.766ms 6.385ms 7.323ms 3.198ms 1.602ms 1.906ms 0.072ms 0.025ms
1000 26.599ms 5.942ms 8.443ms 2.937ms 1.670ms 2.731ms 0.065ms 0.021ms
10000 26.308ms 6.208ms 7.901ms 2.476ms 1.651ms 3.345ms 0.074ms 0.082ms

TABLE I
TIMING RESULTS OF THE GRAPH DATABASE OPERATIONS VERSUS ADAPTATION OPERATIONS.

annotations to robot kinematics by Kunze et al. [31].
The growing interest in software engineering for robotics

has already resulted in models and DSLs like the ones
above. Thus, a consistent next step is to apply these models
at run time. We have demonstrated that graph databases
are a powerful ingredient to achieve this step. However,
they are not the only one. Additionally, we need a better
understanding of the implications of models on the run-time
architectures as seen in our application. For example, which
aspects of the run-time system should be represented and
how to implement the required monitoring facilities such as
probes for performance measurements.

Up to now, only very few systems (see Biggs et al. [27] for
an example) have been realized by following a completely
model-based development process. One reason for this could
be the DSL cacophony, meaning that a vast number of
(very relevant) DSLs exists, but their integration into an
overall system remains challenging. We argue that not only
harmonized meta-models, advanced language workbenches
and tooling is required, but also a common interface of graph
databases could offer a means of supporting this integration
effort.

VII. CONCLUSION

In this paper we tackled the problem of granting robots
access to software-related domain models at run time. We
employed property graphs as a means of storing, composing
and querying domain models. We demonstrated and dis-
cussed the feasibility of the overall approach in a real-world
application and showed that the graph database imposes little
overhead on the system’s overall performance. In future work
we aim to investigate to which extend graph databases can be
also employed to share software knowledge among robots.

ACKNOWLEDGEMENT

Nico Hochgeschwender and Sven Schneider received a PhD
scholarship from the Graduate Institute of the Bonn-Rhein-Sieg
University which is gratefully acknowledged. Furthermore, the
authors gratefully acknowledge the on-going support of the Bonn-
Aachen International Center for Information Technology.

REFERENCES

[1] D. Brugali, “Model-driven software engineering in robotics: Models
are designed to use the relevant things, thereby reducing the complex-
ity and cost in the field of robotics,” Robotics Automation Magazine,
IEEE, vol. 22, no. 3, pp. 155–166, Sept 2015.

[2] A. R. da Silva, “Model-driven engineering: A survey supported by
the unified conceptual model,” Computer Languages, Systems &
Structures, vol. 43, pp. 139 – 155, 2015.

[3] A. Nordmann, N. Hochgeschwender, D. Wigand, and S. Wrede,
“A survey on domain-specific modeling and languages in robotics,”
Journal of Software Engineering for Robotics (JOSER), vol. 7, no. 1,
pp. 75–99, 2016.

[4] “Robotics 2020: Multi-annual roadmap for robotics in
europe,” http://sparc-robotics.eu/wp-content/uploads/2014/05/
H2020-Robotics-Multi-Annual-Roadmap-ICT-2016.pdf, 2015,
accessed: 2016-08-25.

[5] M. Tenorth and M. Beetz, “KnowRob – A Knowledge Processing
Infrastructure for Cognition-enabled Robots,” International Journal of
Robotics Research (IJRR), vol. 32, pp. 566–590, 2013.

[6] A. Saxena, A. Jain, O. Sener, A. Jami, D. K. Misra, and H. S.
Koppula, “Robo Brain: Large-Scale Knowledge Engine for Robots,”
International Symposium on Robotics Research (ISRR), 2015.

[7] S. Lemaignan and R. Alam, “Explicit knowledge and the deliberative
layer: Lessons learned,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2013.

[8] G. K. Kraetzschmar, A. Shakhimardanov, J. Paulus, N. Hochgeschwen-
der, and M. Reckhaus, “Specifications of architectures, modules,
modularity, and interfaces for the brocre software platform and robot
control architecture workbench,” 2010, BRICS Project Deliverable
D2.2.

[9] S. Garrido-Jurado, R. Muñoz Salinas, F. J. Madrid-Cuevas, and M. J.
Marı́n-Jiménez, “Automatic generation and detection of highly reliable
fiducial markers under occlusion,” Pattern Recogn., vol. 47, no. 6, pp.
2280–2292, June 2014.

[10] N. Hochgeschwender, M. Olivares-Mendez, H. Voos, and G. Kraet-
zschmar, “Context-based Selection and Execution of Robot Perception
Graphs,” in Emerging Technologies Factory Automation (ETFA), 2015
IEEE 20th Conference on, 2015.

[11] P. H. Feiler and D. P. Gluch, Model-Based Engineering with AADL:
An Introduction to the SAE Architecture Analysis & Design Language,
1st ed. Addison-Wesley Professional, 2012.

[12] A. Steck, A. Lotz, and C. Schlegel, “Model-driven Engineering and
Run-time Model-usage in Service Robotics,” in Proceedings of the
10th ACM International Conference on Generative Programming and
Component Engineering. New York, NY, USA: ACM, 2011, pp.
73–82.

[13] G. Blair, N. Bencomo, and R. B. France, “Models@ run.time,”
Computer, vol. 42, pp. 22–27, 2009.

[14] L. Gherardi and N. Hochgeschwender, “RRA: Models and Tools for
Robotics Run-time Adaptation,” in Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on, Sept 2015, pp.
1777–1784.

[15] L. Gherardi and D. Brugali, “Modeling and reusing robotic software
architectures: The hyperflex toolchain,” in Robotics and Automation
(ICRA), 2014 IEEE International Conference on, May 2014, pp. 6414–
6420.

[16] N. Hochgeschwender, L. Gherardi, A. Shakhimardanov, G. Kraet-
zschmar, D. Brugali, and H. Bruyninckx, “A Model-Based Approach
to Software Deployment in Robotics,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).,
2013.

[17] D. Alonso, C. Vicente-Chicote, F. Ortiz, J. Pastor, and B. Alvarez,
“V3cmm: a 3-view component meta-model for model-driven robotic
software development,” Journal of Software Engineering for Robotics,
vol. 1, no. 1, pp. 3–17, 2010.

[18] S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, and M. Ziane, “Robotml,
a domain-specific language to design, simulate and deploy robotic
applications,” in Proceedings of the Third International Conference
on Simulation, Modeling, and Programming for Autonomous Robots,
ser. SIMPAR’12. Springer, 2012, pp. 149–160.

89

[19] N. Hochgeschwender, S. Schneider, H. Voos, and G. K. Kraetzschmar,
“Declarative Specification of Robot Perception Architectures,” in Pro-
ceedings of the 4th International Conference on Simulation, Modeling
and Programming for Autonomous Robots, D. Brugali, J. F. Broenink,
T. Kroeger, and B. A. MacDonald, Eds. Springer International
Publishing, 2014, pp. 291–302.

[20] “neo4j,” http://neo4j.com/, accessed: 2016-02-25.
[21] “SPARQL,” https://www.w3.org/TR/rdf-sparql-query/, accessed:

2016-02-25.
[22] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”

Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003.
[23] T. Niemueller, G. Lakemeyer, and S. Srinivasa, “A generic robot

database and its application in fault analysis and performance eval-
uation,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on, Oct 2012, pp. 364–369.

[24] C. Schlegel, A. Steck, D. Brugali, and A. Knoll, “Design Ab-
straction and Processes in Robotics: From Code-Driven to Model-
Driven Engineering,” in Proceedings of the International Conference
on Simulation, Modeling, and Programming for Autonomous Robots
(SIMPAR), 2010.

[25] U. Thomas, G. Hirzinger, B. Rumpe, C. Schulze, and A. Wortmann,
“A new skill based robot programming language using uml/p state-
charts,” in Robotics and Automation (ICRA), 2013 IEEE International
Conference on, May 2013, pp. 461–466.

[26] T. J. de Haas, T. Laue, and T. Röfer, “A scripting-based approach to
robot behavior engineering using hierarchical generators,” in Robotics
and Automation (ICRA), 2012 IEEE International Conference on, May
2012, pp. 4736–4741.

[27] G. Biggs, T. Sakamoto, K. Fujiwara, and K. Anada, “Experiences with
model-centred design methods and tools in safe robotics,” in Intelligent
Robots and Systems (IROS), 2013 IEEE/RSJ International Conference
on, Nov 2013, pp. 3915–3922.

[28] omg, Meta Object Facility (MOF) Core Specification Version 2.0,
2006, accessed: 2016-02-25. [Online]. Available: http://www.omg.
org/cgi-bin/doc?formal/2006-01-01

[29] J. F. Inglés-Romero, A. Lotz, C. Vicente-Chicote, and C. Schlegel,
“Dealing with run-time variability in service robotics: Towards a
DSL for non-functional properties,” CoRR, vol. abs/1303.4296, 2013.
[Online]. Available: http://arxiv.org/abs/1303.4296

[30] F. Fleurey and A. Solberg, “A domain specific modeling language
supporting specification, simulation and execution of dynamic adaptive
systems,” in Proceedings of the 12th International Conference on
Model Driven Engineering Languages and Systems, ser. MODELS
’09. Springer, 2009, pp. 606–621.

[31] L. Kunze, T. Roehm, and M. Beetz, “Towards semantic robot de-
scription languages,” in IEEE International Conference on Robotics
and Automation (ICRA), Shanghai, China, May, 9–13 2011, pp. 5589–
5595.

90

