UMIVERSITE DU
LUXEMBOURG

PhD-FSTC-2017-54
The Faculty of Sciences, Technology and Communication

DISSERTATION

Defence held on 29/09/2017 in Luxembourg

to obtain the degree of

DOCTEUR DE L'UNIVERSITE DU
LUXEMBOURG

by
Nico HOCHGESCHWENDER

Born on 17 June 1984 in Tubingen, (Germany)

MODEL-BASED SPECIFICATION, DEPLOYMENT
AND ADAPTATION OF
ROBOT PERCEPTION SYSTEMS

Dissertation defence committee

Dr Holger Voos, dissertation supervisor
Professor, Université du Luxembourg

Dr Gerhard Kraetzschmar
Professor, Bonn-Rhein-Sieg University of Applied Sciences

Dr Nicolas Navet, Chairman
Professor, Université du Luxembourg

Dr Herman Bruyninckx
Professor, KU Leuven

Dr Pierre Kelsen, Vice Chairman
Professor, Université du Luxembourg



Model-Based Specification,
Deployment and Adaptation of
Robot Perception Systems

Nico Hochgeschwender
of University of Luxembourg



o

(=%



iii

Abstract

As robots are becoming ubiquitous and more capable, the need for intro-
ducing solid robot software development methods is pressing to increase
robots’ task spectrum. This thesis is concerned with improving software
engineering of robot perception systems. The presented research employs a
model-based approach to provide the means to represent knowledge about
robotics software. The thesis is devided into three parts, namely research on

the specification, deployment and adaptation of robot perception systems.

The first part contributes the design and development of two domain-specific
languages, namely RPSL and DepSL. Those languages provide suitable no-
tations and abstractions to enable domain experts to express, compose and
explore functional, architectural and deployment design decisions of robot
perception systems. The resulting models are interpretable, thus they can be
used not only to communicate design decisions to stakeholders, but also to

verify them in an early development stage.

The second part contributes means for deploying perception systems on real
robot systems even in the presence of varying resource conditions. To this
end, functional, architectural and deployment models are composed in a
graph-structure. Such a graph enables not only humans, but also robots to
derive implicitly defined information about their software both at design
time and run time. The second part also contributes a reference architecture
for deploying robot perception systems. The architecture provides a template
solution for integrating not only the models required for deployment, but

also all the other means required to carry out deployment.

The third part utilizes both RPSL, DepSL and the reference architecture to
specify, implement and evaluate three different robot perception systems.
Those are capable to satisfy changing requirements induced, for example, by
the robot’s tasks or environment. This is achieved by proposing algorithms

which derive adaptation actions based on models and varying requirements.
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Chapter 1.

Introduction

“ If you believe too much you'll never notice the flaws; if you doubt too much you
won't get started. It requires a lovely balance.”
— Richard Hamming, 1915 — 1998

1.1. Motivation

With the advent of mobile, general-purpose and versatile robot platforms the development of
increasingly complex applications in dynamic, unstructured environments will become a reality.
Robots are being exploited to ever-expanding application domains such as service robots in
households performing human-scale manipulation activities [1]] [2] [3], robots in warehouses
transporting goods [4] [5] [6] or robots supporting search and rescue operations [7] [8]. In those
scenarios, robots are expected to robustly perform a wide variety of tasks over a long period of
time even in the presence of changing requirements caused by varying environmental, task

and resource conditions.

In order to realize such sophisticated applications, domain experts need to perform a knowledge-
intensive process that reflects, involves and builds upon decisions from complex, heterogenous
tields of research and engineering — reaching from hardware design, domains such as control,

perception or planning to software engineering.

Although the latest advancements in those fields contributed significantly to the development
of sophisticated applications, robots” task spectrum remains limited to carefully engineered

applications.

One of the reasons is that in robotics software engineering in particular, the challenging and
interdisciplinary integration of those fields is all too often solved in an ad-hoc manner for
very specific problems, where knowledge and assumptions about the robot’s software remains
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Figure 1.1. Two general-purpose, mobile and versatile robot platforms considered in this thesis. On the
left-hand side a Care-O-bot 3 [9] service robot deployed in a household environment. On the
right-hand side a KUKA youBot service robot deployed in an industrial environment.

implicit. Such a development approach is not sustainable and will not scale for more advanced,

complex robotic applications deployed in real-world environments.

This thesis aims to contribute to improving robotics software engineering by providing the
means to explicitly represent knowledge about robotics software. Such knowledge will be
used both by humans and robots to analyze and reflect on robots’ software both at design and
run time.

1.2. Problem Statement

In order to perform purposeful tasks, robots need to extract knowledge about the world from
the data perceived through their sensors. To do so, robot perception systems need to be
equipped with a broad set of sophisticated perception capabilities interpreting the sensory
data.

Consider, for example, a service robot preparing a mug of coffee (see Figure[1.T). To perform
this task, perception capabilities have to provide vital information for answering questions such
as a) where to grasp the coffee pad?, b) is the mug’s handle within reach?, c) when to take out
the mug? and so forth. Developing a single set of perception capabilities answering all these
perception-related questions simultaneously and efficiently would result in unmanageable
complexity. Hence, remarkable methods and algorithms for solving some perceptual issues in
isolation have already been developed.

In order to provide those solutions, robot perception systems developers — or just domain
experts — perform a creative, experimental process which yields one or more perception
architectures. Such an architecture implements not only a perception capability, but also
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implicitly encodes a set of design decisions made by the expert at design time. Examples are
the robot platform and its sensing equipment, assumptions about the environment in which the
robot will operate, the tasks the robot should perform and structural, functional, non-functional
and behavioral aspects of perception capabilities, architectures and their deployment on robot
platforms.

However, all too often design decisions remain implicit, which limits not only the developers
ability to extend, modify and reuse perception capabilities and architectures, but also the robots
ability to satisfy changing requirements. In real-world scenarios those changing requirements
are a given. Here, robots are confronted at run time with varying context conditions such as
environmental changes (e.g. different lighting), varying resources such as memory and energy

and exceptional situations such as sensor failures.

Ignoring those varying context conditions will usually degrade the performance of perception
capabilities and thus the robot’s ability to successfully execute tasks. Therefore, the robot
itself should be able to autonomously adapt its perception capabilities, architectures and
deployments to a wide range of situations.

Implementing such an adaptive approach to robot perception remains challenging. Firstly,
means to explicitly represent design decisions need to be developed. To do so, one needs to
identify and formalize those concepts and their relations among them which are elementary
for stating design decisions. Secondly, adaptation methods need to be developed which derive
adaptation actions based on stated design decisions and observed context conditions. Those
methods need to efficiently and effectively master the search space of potential solutions
such that changing requirements are met and the impact of adaptation upon the system is
minimized. Thirdly, both aspects need to be integrated in a fully functioning robot system
such that it remains open to extensions and modifications of its constituent parts.

1.3. Thesis Objectives

The goal of this thesis is to establish a method and corresponding means to enable domain
experts to systematically construct robot perception systems so that robots can satisfy changing

requirements by themselves.
In this context, the concrete research objectives of this thesis are:

1. To formally define the constituents of robot perception systems, namely perception
capabilities, perception architectures and their deployments on robot platforms.

2. To develop means to enable domain experts to declaratively specify robot perception

systems.
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3. To study how to grant robots access to those specifications so that information required
for the task at hand can be automatically derived.

4. To study how to autonomously adapt robot perception systems in response to changes
in the environment, in the tasks or in the available resources.

1.4. Solution Approach

There are two main ideas to achieve the thesis objectives. Firstly, means are required to
enable domain experts to represent their knowledge and design decisions in an explicit,
yet machine-readable manner. Secondly, robots are endowed with those representations in
order to autonomously reflect on and modify their perception systems in response to varying

requirements induced by their tasks, environment and resources.

To this end, architectural views (see Figure are introduced not only to support domain
experts in analyzing and representing robot perception systems from different perspectives,
but also to utilize a Model-Driven Engineering (MDE) approach where models express specific
properties of a view.

In order to create those models, this thesis develops a set of Domain-specific Languages (DSL).
Those DSLs are tailored to express the concepts of a particular view, thus enabling domain
experts to make their design decisions explicit. The DSL concepts as well as their rules for
composing them are rigorously formalized. Such a formalization paves the way not only to
construct robot perception systems in an incremental and correct manner, but also to assess —
if necessary — all the possible robot perception systems that can be gained from composing
different models.

In order to endow robots with those models as part of their knowledge base, this thesis utilizes
labeled property graphs. The graph is used as a compact representation to compose models
and to derive implicitly defined information which is revealed by the labels, properties and
edges of the graph.

In order to enable robots to autonomously adapt their perception systems in the presence of
varying requirements, this research introduces a reference architecture for deploying and adapt-
ing robot perception systems. The reference architecture serves as a blueprint for implementing
adaptive robot perception systems and includes several reuseable and application-specific

components.

The effectiveness of the above mentioned means has been evaluated in the context of three
applications.
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Figure 1.2. The architectural views employed for the design and development of robot perception
systems. The figure is based on the architectural views introduced in the BRICS project [11].

1.5. Contributions

This thesis integrates methods from the fields of Software Engineering, Artificial Intelligence
and Robotics in order to develop means to enhance the specification, deployment and adap-
tation of robot perception systems and to advance the state-of-the-art in the corresponding

scientific fields.
In summary, the main contributions of this thesis are as follows:

e The assessment of MDE approaches in robotics based on well-defined criteria providing
an in-depth overview of the state-of-the-art (Chapter 2).

e The design and implementation of two specification languages, namely the Robot Percep-
tion Specification Language (RPSL) and the Deployment Specification Language (DepSL).
Both languages enable domain experts to declaratively specify robot perception sys-
tems with concepts which have been rigorously formalized, thus paving the way for
correct-by-construction robot perception systems (Chapter 3).

e The definition and implementation of a framework which enables domain experts to
efficiently and effectively perform Design Space Exploration (DSE) of given RPSL and
DepSL specifications. Having such a framework supports domain experts to compare and
evaluate competing design alternatives for the same problem and is a powerful ingredient
to master the complexity of robot perception systems (Chapter [4).

e The definition and implementation of labeled property graphs as simple, yet powerful
means to store, compose and query models specified by possibly heterogenous languages
originating from different functional domains and development phases (Chapter [5).
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e The specification, application-specific implementation and experimental evaluation of
a reference architecture for adaptive robot perception systems integrating the above
mentioned means (Chapters [p|and [7).

1.6. Outline

This thesis should be read in a linear fashion.

In order to provide some guidance to the reader the following paragraphs offer a brief summary
of each chapter.

Chapter [2] reviews the basic principles and terminology of Model-driven Engineering and
associated technology. It presents the core constituents of a robotic-specific process model,
namely the BRICS RAP (BRICS Robot Application Development Process) [11]. Both
the BRICS RAP and core robotic functionalities described in [[12]] serve as evaluation

dimensions to review and discuss the adoption of MDE in robotics.

Chapter [3] proposes two domain-specific languages, namely the RPSL and DepSL. Both lan-
guages enable domain experts to declaratively specify robot perception systems. The
core concepts and abstractions of RPSL and DepSL are based on a domain analysis which
is also discussed. In addition, the rigorous formalization of the language concepts and

constraints by employing the formal specification language Alloy is presented.

Chapter [4] introduces a design space exploration approach. Having RPSL and DepSL at their
disposal means domain experts can define the design space of robot perception systems as
a combination of functional and architectural variability expressing the set of all possible
implementations. In order to explore such a design space a framework which allows the

automatisation of the exploration task is proposed.

Chapter [5 employs labeled property graphs as simple, yet powerful means to persistently
store and compose domain models orginating from different functional domains and
software development phases. A corresponding implementation of labeled property
graphs using latest graph database technology is presented as well. Using such technology
allows both humans and robots to raise semantic queries in order to derive implicitly
defined information.

Chapter [6] proposes a reference architecture integrating all the means required for deploying
robot perception systems. Such a reference architecture enables robots’ not only to plan,
but also to autonomously execute deployments even in the presence of changing resources

conditions.

Chapter [7] presents three different applications of robot perception systems. Those appli-
cations need to deal with varying requirements induced by changing task, platform
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and environmental context. Each application employs not only the reference architec-
ture proposed in Chapter [6] but also integrates the knowledge required to carry out the
adaptation.

Chapter [8] concludes this thesis with main contributions, limitations of the approach and
directions of future work.

Chapters 6| and [7] contain the core contributions. Therefore, a detailed discussion
of the contributions in context with the state-of-the-art is made within each aforementioned
chapters.

1.7. Publications

Parts of this thesis have been published in journal and conference proceedings. The publi-
cations are provided in chronological order. For each publication the main corresponding
chapter is given.

e Davide Brugali and Nico Hochgeschwender. Managing the Functional Variability of

Robotic Perception Systems. In Proceedings of the IEEE International Conference on Robotic
Computing. 2017. Taichung, Taiwan. Chapter 3}

e Nico Hochgeschwender, Sven Schneider, Holger Voos, Herman Bruyninckx and Gerhard

Kraetzschmar. Graph-based Software Knowledge: Storage and Semantic Querying
of Domain Models for Run Time Adaptation. In Proceedings of the IEEE International
Conference on Simulation, Modeling and Programming for Autonomous Robots (SIMPAR). 2016.
San Francisco, USA. Chapter

e Loic Gammaitoni and Nico Hochgeschwender. RPSL meets Lightning: A Model-based

Approach to Design Space Exploration of Robot Perception Systems. In Proceedings of
the IEEE International Conference on Simulation, Modeling and Programming for Autonomous
Robots (SIMPAR). 2016. San Francisco, USA. Chapter@

e Arne Nordmann, Nico Hochgeschwender, Dennis Wigand and Sebastian Wrede. A

Survey on Domain-Specific Modeling and Languages in Robotics. In Journal of Software
Engineering for Robotics (JOSER). Vol. 7. Nr. 1. 2016. Chapter 2|

e Jose M. S. Loza, Sven Schneider, Nico Hochgeschwender, Gerhard Kraetzschmar and

Paul Ploger. Context-Based Adaptation of In-Hand Slip Detection for Service Robots.
In Proceedings of the 9th IFAC Symposium on Intelligent Autonomous Vehicles (IAV). Leipzig,
Germany. 2016. Chapter 3|

e Nico Hochgeschwender, Miguel A. Olivares-Mendez, Holger Voos and Gerhard K. Kraet-

zschmar. Context-based Selection and Execution of Robot Perception Graphs. In Pro-
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ceedings of the 20th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA). Luxembourg, Luxembourg. 2015. Chapter [7}

Luca Gherardi and Nico Hochgeschwender. RRA: Models and Tools for Robotics Run-
time Adaptation. In Proceedings of the 28th IEEE/RS] International Conference on Intelligent
Robots and Systems (IROS). Hamburg, Germany. 2015. Chapter [6]

Sebastian Blumenthal, Nico Hochgeschwender, Erwin Prassler, Holger Voos and Herman
Bruyninckx. An Approach for a Distributed World Model with QoS-based Perception
Algorithm Adaptation. In Proceedings of the 28th IEEE/RS] International Conference on
Intelligent Robots and Systems (IROS). Hamburg, Germany. 2015. Chapter [/}

Luca Gherardi and Nico Hochgeschwender. Poster: Model-based Run-time Variabil-

ity Resolution for Robotic Applications. In Poster Proceedings of the 37th International
Conference on Software Engineering (ICSE). Florence, Italy. 2015. Chapter 7}

Arne Nordmann, Nico Hochgeschwender and Sebastian Wrede. A Survey on Domain-

specific Languages in Robotics. In Proceeding of the 4th International Conference on Simula-
tion, Modeling and Programming for Autonomous Robots (SIMPAR). Springer Lecture Notes in
Computer Science (LNCS). Vol. 8810. Bergamo, Italy. 2014. Chapter 2}

Nico Hochgeschwender, Sven Schneider, Holger Voos and Gerhard K. Kraetzschmar.

Declarative Specification of Robot Perception Architectures. In Proceeding of the 4th
International Conference on Simulation, Modeling and Programming for Autonomous Robots
(SIMPAR). Springer Lecture Notes in Computer Science (LNCS). Vol. 8810. Bergamo, Italy.
2014. Chapter 3|

Sven Schneider, Nico Hochgeschwender and Gerhard K. Kraetzschmar. Structured De-

sign and Development of Domain-specific Languages in Robotics. In Proceeding of the
4th International Conference on Simulation, Modeling and Programming for Autonomous Robots
(SIMPAR). Springer Lecture Notes in Computer Science (LNCS). Vol. 8810. Bergamo, Italy.
2014. Chapter 3|

Markus Klotzbuecher, Nico Hochgeschwender, Luca Gherardi, Herman Bruyninckx,

Gerhard Kraetzschmar, Davide Brugali, Azamat Shakhimardanov, Jan Paulus, Michael
Reckhaus, Hugo Garcia, Davide Faconti and Peter Soetens. The BRICS Component
Model: A Model-Based Development Paradigm For Complex Robotics Software Sys-
tems. In Proceedings of the 28th ACM Symposium on Applied Computing (SAC). Track on
Software Architecture: Theory, Technology, and Applications (SA-TTA). Coimbra, Portugal.
2013. Chapter 3|

Nico Hochgeschwender, Luca Gherardi, Azamat Shakhimardanov, Gerhard K. Kraet-

zschmar, Davide Brugali and Herman Bruyninckx. A Model-based Approach to Soft-
ware Deployment in Robotics. In Proceedings of the 26th IEEE/RS] International Conference
on Intelligent Robots and Systems (IROS). Tokyo, Japan. 2013. Chapter|[6]
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e Azamat Shakhimardanov, Nico Hochgeschwender and Gerhard K. Kraetzschmar. Com-

ponent Models in Robotics Software. In Proceedings of the 10th Performance Metrics for
Intelligent Systems Workshop (PERMIS). Baltimore, USA. 2010. Chapter 3}

The following publications are not covered in this thesis and have been written during my
time as research assistant.

e Sebastian Zug, Tim Niemueller, Nico Hochgeschwender, Kai Seidensticker, Martin Seidel,

Tim Friedrich, Tobias Neumann, Ulrich Karras, Gerhard Kraetzschmar and Alexander Fer-
rein. An Integration Challenge to Bridge the Gap among Industry-inspired RoboCup
Leagues. In Proceedings of the 20th annual RoboCup International Symposium. Leipzig,
Germany. 2016

e Francesco Amigoni, Emanuele Bastianelli, Jakob Berghofer, Andrea Bonarini, Giulio

Fontana, Nico Hochgeschwender, Luca Iocchi, Gerhard Kraetzschmar, Pedro Lima, Mat-

teo Matteucci, Pedro Miraldo, Daniele Nardi and Viola Schiaffonati. Competitions for
Benchmarking: Task and Functionality Scoring Complete Performance Assessment.
In IEEE Robotics & Automation Magazine. Vol. 22. Issue 3. 2015.

e Sven Schneider, Frederik Hegger, Nico Hochgeschwender, Rhama Dwiputra, Alexander

Moriarty, Jakob Berghofer and Gerhard Kraetzschmar. Design and Development of a
Benchmarking Testbed for the Factory of the Future. In Proceedings of the 20th IEEE Inter-
national Conference on Emerging Technologies and Factory Automation (ETFA). Luxembourg,
Luxembourg. 2015.

e Gerhard K. Kraetzschmar, Nico Hochgeschwender, Sven Schneider, Walter Nowak, Rainer
Bischoff, Rhama Dwiputra, Jakob Berghofer and Frederik Hegger. RoboCup@Work:
Competing for the Factory of the Future. In Proceedings of the 18th annual RoboCup Inter-

national Symposium. Joao Pessoa, Brazil. 2014.

e Sven Schneider, Nico Hochgeschwender and Gerhard K. Kraetzschmar Declarative Spec-

ification of Task-based Grasping with Constraint Validation. In Proceedings of the 27th
IEEE/RS] International Conference on Intelligent Robots and Systems (IROS). Chicago, USA.
2014.

1.8. Collaborations

Parts of this thesis have been developed in collaboration with others.

Chapter [2] is partially based on a joint effort with Arne Nordmann (Robert Bosch GmbH),
Dennis Wiegand and Sebastian Wrede (both University of Bielefeld). The main goal of this
effort is to structure, consolidate and harmonize MDE approaches in robotics. This effort
resulted not only in two publications (see [13] and [14]), but also in an online accessible
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annotated bibliographyﬂ of MDE approaches in the domain of robotics and automation.
The goal of the bibliography is to foster exchange between developers of MDE approaches

and potential users interested in applying MDE in robotics.

Chapter [3] adapts a DSL development process model initially proposed by Sven Schneider
and me (see Schneider et al. [15]). The process model is based on the master thesis of
Sven Schneider which I was supervising. In order to motivate some concepts proposed in
Chapter 3|a perception system developed by Jose M. S. Loza (Bonn-Rhein-Sieg University)
has been employed. I discussed this system in detail and proposed some extensions

which have been reported in [16].

Chapter [4] is based on a collaboration between Loic Gammaitoni (University of Luxembourg)
and myself. The main goal of the collaboration was the conceptual and technical inte-
gration of RPSL and Lightning — a Language Workbench — for the sake of model-based

design space exploration of robot perception systems.

Chapter [7] presents three applications of some methods and tools proposed in this thesis. In
order to realize and discuss those applications I collaborated with several colleagues.
The first application deals with the task-based adaptation of robot perception systems
and is inspired by a collaboration with Luca Gherardi (ETH Zurich). This collaboration
lead to an initial implementation of some concepts and ideas described in this chapter
(see also Gherardi and Hochgeschwender [17]). The second application deals with the
platform-based adaptation of robot perception systems and reports the integration of RPSL
with approaches for distributed world modeling as proposed by Sebastian Blumenthal
(KU Leuven). The third application deals with the environment-based adaptation of robot
perception system and is based on a use case specified by Miguel Angel Olivares-Mendez

(University of Luxembourg) and myself.

Thttp://corlab.github.io/dslzoo/
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Chapter 2.

Model-driven Engineering in Robotics

“Essentially, all models are wrong, but some are useful.”
— George Box, 1919-2013

2.1. Introduction

Modeling denotes the process of defining, creating and modifying models. Thereby a model
can be defined as an abstraction of a real system or phenomenon [18] [19]. Depending on the
modeling domain and goal, models may vary in their “level of formality, explicitness, richness
in detail, and relevance" [19]. Modeling and models are crucial constituents of every practice
in science, technology, engineering and mathematics where models are used to understand,
verify, simulate and visualize systems or phenomenons. Without modeling and models it
would be unimaginable to build bridges, to launch satellites into space and to control robots.

In order to create models, modeling languages are required to make knowledge about a
system or phenomenon explicit. Depending on the domain, modeling languages might range
from geometry, topology, statistics and fluid mechanics to engineering languages describing
digital [20] and analog [21] circuits.

In the context of software engineering, modeling and models are fundamental ingredients of
the [22] [23] methodology. In MDE modeling languages — also known as Domain-specific
Languages (DSLs) — are used by domain experts to specify concerns, aspects and views of
software-intensive systems. Having purposeful models fosters not only the mastering of the
intrinsic complexity of real-world systems — as those considered in this thesis — but also to
structure the overall development process. In such a process, models are not only employed to
facilitate automation (e.g. through code generation), but also used to verify and to analyze, for
example, non-functional properties [23] of software systems.

11
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Figure 2.1. The core ingredients of a modeling language visualized in a UML class diagram style. The
figure is based on [23].

The remainder of this chapter is structured as follows. In Section 2.2| and Section 2.3 the
core concepts are briefly reviewed and corresponding implementation approaches are
discussed. In Section [2.4 the adoption of in the robotics domain is assessed. To this
end, two evaluation dimensions are defined. Firstly, the process dimension defines which
phases of a typical robotics system development process is facilitated and enhanced by the
DSL. Secondly, the functional dimension is defined by the functional aspects that are covered
by a DSL. For example, which kinds of robot system aspects such as a perception or control
algorithm can be modeled using a DSL from the robotics domain. Those dimensions are then
used to assess and discuss the state-of-the-art of [MDElin robotics. Section 2.5 summarizes the
core findings of the state-of-the-art assessment.

2.2. Model-driven Engineering

[MDE] denotes a software methodology where domain models, or just models, are considered
to be the central artefacts of a software engineering process. In MDE a model is defined as “an
abstraction of a system, which may already exist or is intended to exist in the future” [23].

In order to specify models, a modeling language is required which enables domain experts
to specify domain knowledge with concepts and notations closer to the respective problem
domain. This raises the level of abstraction and results not only in models that are easier to
understand, but also in models which can be automatically translated (e.g. for the sake of
generating code), verified and possibly executed.
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The constituent parts of modeling languages and their underlying principles have been de-
scribed with somehow varying terminology by approaches such as Model-based Engineer-
ing (MBE) [24], Model-driven Development (MDD) [25], Model-based Software Develop-
ment (MDSD) [26] and the Model-driven Architecture (MDA) [27] standardized by the Object
Management Group (OMG) [28].

In [23] Silva consolidates and summarizes those approaches by harmonizing the core in-
gredients of MDE as shown in Figure 2.1|and which are briefly explained in the following
paragraphs.

Abstract Syntax. The definition of a modeling language is captured in a metamodel, also
known as abstract syntax. The metamodel represents all the concepts and relations
among them which are necessary to describe a certain aspect, concern or problem of a
system. It is important to note that the core concepts of a modeling language represent the
stable parts of a domain whereas domain models themselves can differ a lot. Depending
on which approach is employed to implement modeling languages the abstract syntax
is represented by different means. In the context of MDA, for example, metamodels
are specified within the Meta Object Facility (MOEF) [28] language ECore whereas other
approaches use context free grammars like Backus-Naur Form (BNE).

Domain Model. Having a modeling language allows domain experts to create many differ-
ent models which all conform to the same metamodel. Such an approach also allows
developers to create models by reusing and for reuse.

Concrete Syntax. Once a metamodel is defined, a modeling language might have several
notations also known as concrete syntax, such as textual or graphical representations

used by the user or the computer to read and write models.

Structural Constraints. Solely defining an abstract syntax is usually not sufficient to imple-
ment a modeling language as the abstract syntax does not “prevent users from creating
models that violate the rules of liaison and the orchestration of its elements” [23]. In order to
prevent users from creating domain models which are prone to errors, the structural con-
straints of a modeling language needs to be defined. Those constraints declare invariants
which should hold for certain model elements, their properties as well as their relations
among each other. In order to specify the constraints there are different approaches on dif-
ferent levels of formality, ranging from natural language specifications to constraint and
specification languages such as Object Constraint Language (OCL) [29], Z Specification
Language (Z) [30] and Alloy [31].

Semantics. Another ingredient of modeling languages is their semantics, which can be differ-
entiated between executable and non-executable semantics. The former reveals meaning
to the order of execution-related models (e.g. state machines) whereas the latter deals
with ”...concepts not directly related to software execution...” [23]] such as those found in
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requirements and use case models. In order to describe the executable semantics of mod-
eling languages it is fairly common to employ formalisms from the field of programming

language theory such as operational and denotational semantics [32].

Pragmatics. The pragmatics of a modeling language denotes how, when and by whom a
modeling language should be used [33] and is often described through case studies,
guidelines and best practices. It is worth noting that such a description always depends
on the context, for example, the background and expertise of language users, their
modeling goals and their constraints imposed by legacy systems, tools and development
process models.

In the context of MDE, another important ingredient is the concept of transformation, which
enables developers to generate software artifacts, for example, source code, models, XML files
or arbitrary text, from models in an automatic or semi-automatic manner. To this end, dedicated
transformation languages [34] are available to support the development of model-to-model or
model-to-text transformations.

Having introduced the core ingredients of modeling languages it is worth pointing out that in
general two types of modeling languages are distinguished, namely General Purpose Modeling
Language (GPML)) and Domain-specific Modeling Language (DSML), or just[DSLl The former
are characterized by a larger number of generic constructs as found, for example, in the Unified
Modeling Language (UML) and the System Modeling Language whereas the latter
typically comprises a smaller set of concepts and possibly graphical notations that are close to
the respective application domain.

Although are adopted by practitioners their limitation to capture domain-specific
aspects is evidenced by the fact that some GPMLs provide means to add domain-specific
concepts and abstractions to them. For example, the UML provides a profiling mechanism
to customize UML modeling elements, for example class diagrams, through domain-specific
concepts as exemplified in the Modeling and Analysis of Real-time and Embedded Systems

(MARTE) [35] approach.

2.3. Domain-specific Languages

According to van Deursen et al. [36], a DSL is a “programming language or executable specification
language that offers, through appropriate notations and abstractions, expressive power focused on, and
usually restricted to, a particular domain”. In the context of MDE, domain-specific languages
have recently raised attention although they have been already used and described in the past
as little languages [37]. In general DSLs can be classified in two types, namely internal and
external DSLs [38]].
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The internal DSLs are implemented on top of general-purpose programming languages such
as Ruby, Scala, Python or F#. They extend the syntax and possibly semantics [39] of their
host language with notations and abstractions suitable for the particular domain. From a
DSL developer perspective it is worth noting that internal DSLs reuse the hosts language
infrastructure such as compilers, interpreters and integrated development environments. This
enables developers that are familiar with the host language to realize internal DSLs rather
quickly. Depending on the host language, different implementation patterns are available to
realize internal DSLs [40]. Those patterns are related to the following DSL design principles,
namely a) abstraction to make domain concepts explicit, b) absorption to integrate domain
knowledge in the DSL and c) compression to yield a concise domain notation [40].

The external DSLs are designed and developed as standalone languages. In order to implement
external DSLs several functionalities are required in order a) to specify the abstract and concrete
syntax, b) to perform lexical analysis, c) to perform syntactic analysis, and d) other elementary
functionalities for language development.

With the advent of language workbenches [38] developing external DSLs has been tremen-
dously enhanced as those functionalities are integrated in ready-to-use development environ-
ments. Language workbenches such as MPS [41], Spoofax [42], MetaEdit+ [43] and others [44]
enable domain experts to define, develop and compose languages. Some of those workbenches
leverage advancements in mainstream IDEs such as Eclipse, for example, XText [45], whereas
others are built from scratch, for example MetaEdit+ [43]]. Further, some workbenches solely
support the realization of textual DSLs such as XText and Spoofax [42] whereas others such
as MPS [41] support the development of DSLs composed of a mixture of notations, namely
textual, graphical and tabular. Although language workbenches are getting more and more
used to develop real-world DSLs (see [44]) reuse of language ingredients, for example the
abstract syntax, is limited due to workbench-specific representations and mechanisms.

2.4. Domain-specific Languages in Robotics

The design and development of robotic systems is a highly interdisciplinary and complex
exercise, which requires domain experts to integrate and consolidate knowledge and domain
concepts from heterogenous fields of research and engineering. Domain-specific languages
and modeling approaches are therefore well-suited to lower not only the skills required to
handle the complexity of robotic systems, but also to structure the overall robotic development

process.

In this section, the state-of-the-art of MDE approaches in robotics is assessed both from
the perspective of DSL users and developers. To this end, two evaluation dimensions are
introduced. The first deals with the functional aspects that are covered by a DSL whereas the
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second dimension deals with the question of which development phase is enhanced by the
DSL.

2.4.1. Development Process Dimension

One major goal of MDE approaches is to facilitate and enhance the engineering process.
However, in robotics such an engineering process does not yet exist. One reason might be that
it is not very common in robotics to investigate the complete life cycle of robot applications due
to the fact that there are so few applications that have been deployed in real environments over
long periods of time. Within the EU-funded project Best Practice in Robotics (BRICS) a Robot
Application Development Process (RAP) has been developed. The BRICS RAP [11], or just RAP,
is a holistic process model for developing robot applications both in academic and industrial
settings. The process model combines ideas from traditional software engineering [46], agile
software development [47], model-based engineering [23] and system engineering [48] and
foresees — in its latest revision — eight different phases, each of which requires several steps
to complete the task. The also foresees feedback and interaction among development
phases and is like other process models (e.g. V-Model XT [49]), tailorable to the specific needs

of all involved stakeholders (e.g. developers, customers and system integrators).

In the context of this thesis is used to assess the state-of-the-art of MDE in robotics for
two reasons. Firstly, [RAPlis one of the very few reported process models targeting robotic
applications and is therefore applicable for the assessment. Secondly, aims to cover
the complete life cycle of robotic applications, which enables DSL users and developers to
investigate whether DSLs are used to a particular extent in certain process phases. In this
regard, it is worth noting that[RAP|has been successfully used to describe the usage of DSLs in
the context of developing robot motion control software [50].

The following paragraphs briefly describe each process phase of the

Scenario Building (SB]) deals with defining and specifying environment features, constraints
and characteristics. Furthermore, the robot’s task is defined. This includes the specifica-
tion of customer acceptance tests to be performed in the specified and possibly generalized

environment.

Functional Design (ED]) deals with deriving general hardware requirements and top-level
functionalities based on the the scenario definition. Furthermore, top-level functionalities
are decomposed and dependencies among them are identified. Also an initial functional
design stating which functionalities interact with each other is developed.

Platform Building (PB]) deals with determining the robot’s hardware. This includes the
selection and potential configuration of robots” sensors and actuators so that they meet
the requirements defined in the functional design phase.
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Capability Building (CB]) deals with constructing basic and composite components up to the
application level and specifying their constraints for deployment. This also includes the
specification and possibly generation of additional knowledge required for component

execution such as knowledge bases and training data.

System Deployment (SD)) deals with packaging top level component(s) into a complete appli-
cation system which defines a mapping of components and composites to computational
units. Furthermore, features and procedures for system launch management are devel-

oped.

System Benchmarking (SBM)) deals with performing test procedures targeting different qual-
ity attributes such as stress testing, safety and security testing, reliability and durability

testing and performance testing.

Product Deployment (PD)) deals with tailoring an application to a specific robot system. This
includes also the installation of maintenance instrumentation and a final target platform

system testing.

Product Maintenance (PM)) deals with operating and maintaining the robot application.
This includes also the analysis of log files and the tuning of system parameters at run
time.

Obviously the above phases include several steps and activities to achieve the task at hand.
Those steps are described in more detail in the corresponding [RAP| documentation [11].

2.4.2. Functional Dimension

In order to answer the question of which DSLs can be and have been used to express functional
concerns of robotic systems a functional assessment dimension will be introduced. The assess-
ment dimension defines a classification scheme of the robotic domain into subdomains based
on the Springer Handbook of Robotics [12]. More precisely, part A (Robotics Foundations) of the
handbook is employed as a well-accepted, neutral reference which covers the fundamental
principles and methods needed to create a robotic system.

The following paragraphs briefly describe each subdomain. The description includes an
overview of DSLs, which can be located in that subdomain and their potential use in[RAP|and
further details about their realization in terms of abstract syntax, concrete syntax and others. A
summary of the assessment is shown in Tables [2.1|and

Kinematics refers to the motion of bodies in robotic mechanisms without taking forces and
torques into account. Hence, it includes general representations of the position and
orientation of a body, the relation among the joints as well as conventions for representing
the geometry of rigid bodies connected by joints. In [51] Frigerio et al. the authors present
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MDE
Abstract Syntax

Functional DSL Process | Representation | Structural Concrete Syntax

Dimension Phase Constraints

Kinematics Frigerio et al. [51] CB ECore - Text.
Kanayama et al. [52] PB,CB | C++ - Text.
Jara et al. [53] PB,CB | Java - Text. & Graph.
De Laet et al. [54] PB,CB | C++ v Text.
Shakhimardanov [55] | PB,CB | C++ v Text.

Dynamics Frigerio et al. [56]7 CB ECore - Text.
Aertbelién et al. [57] CB Lua Text.
Jara et al. [53] PB,CB | Java - Text. & Graph.

Mechanisms | Kitagishi et al. [58] PB,CB | XSD - Text.

& Hornby et al. [59] CB L-System - Text.

Actuation Schneider et al. [60] PB,CB | ECore v Text.

Sensing Henderson et al. [61] FD, CB | EBNF v Text.

& Ramaswamy et al. [62] | PB, CB | ECore v Text. & Graph.

Estimation Gordillo et al. [63] CB Lisp - Text.

Motion Feniello et al. [|64] FD, CB | EBNF, F# v Text.

Planning Mackenzie et al. [65] FD,CB | - - Text. & Graph.
Dantam et al. [66] CB CFG - Text.

Motion Buch et al. [67] CB BNF - Text.

Control Thomas et al. [68] CB UML/P v Graph.

Force Klotzbiicher et 111369] CB Lua/ECore v Text.

Control

Reasoning Steck et al. [70] CB Lisp v Text.

Methods Joyeux et al. [71] CB Ruby v Text.

Table 2.1. A summary of DSLs belonging to the Kinematics, Dynamics, Mechanism & Actuation,
Sensing & Estimation, Motion Planning, Motion Control, Force Control and Reasoning
Methods subdomains.

a textual DSL for encoding such kinematic descriptions in order to generate C++ code

implementing kinematics and dynamics algorithms. The generated code includes various

matrices such as Jacobians and inertia matrices which can be used, for example, in the

context of model-based controllers [51]. Similarly, serial-link structures and corresponding

Denavit-Hartenberg parameters can be encoded with the Java-based DSL presented

in [53]. In order to encode the kinematics of mobile robots such as differential and omni-

directional mobile bases a C++-based DSL is proposed in [52]. Each DSL mainly deals

with the plaform building phase and partially with the capability building phase (e.g. [51])).

Although, research on robot kinematics can be considered mature, each DSL introduces

slightly different representations of bodies, frames and relations. In [54] and [55] this
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problem is addressed by introducing semantically enriched metamodels for topological

primitives, geometric models and coordinate representations.

Dynamics covers the relationships between actuation and contact forces that act on robot
mechanisms described by rigid bodies which are connected by joints. Furthermore, it
pertains to the acceleration and motion trajectories resulting from these relationships.
In order to encode these relationships and constraints (e.g. accelaration constraints)
Aertbelién et al. [57] developed a Lua-based DSL. The DSL allows domain experts to
specify a set of prioritized, weighted constraints on the position and velocity level which
are then translated into a numerical optimization problem and solved by an optimization
library. The transformation step from the symbolic representation of an optimization
problem to the representation of a solver (e.g. optimization library) can be considered as
a model-to-model transformation. The work of Aertbelién et al. [57] and other research in
the dynamics domain (e.g. [56] and [53]) mainly deals with the capability building phase.

Mechanisms and Actuation focuses on the mechanical structure of a robot that creates its
movable skeleton. All elements that cause a robotic mechanism to move — so called
actuators — are addressed along with the mathematical model that is used to characterize
the robot’s performance. In [60] Schneider et al. the authors introduce a Grasp Domain
Definition Language (GDDL) which enables domain experts to explicitly describe grasp-
ing problems. Part of GDDL is a DSL which allows developers to specify grasping devices
such as dexterous robotic hands in terms of its physical properties (e.g. three-dimensional
mesh) and semantic properties such as whether or not certain grasp types can be executed
with a hand. Those properties and constraints are formalized in and validated at
design time and run time. From an implementation point of view, [GDDIlis realized as
an external, textual DSL implemented with the Eclipse-based XText [45] framework. As
the domain of mechanisms and actuation also implies other DSL approaches (e.g. [58]]
and [59]) are mainly applied during the platform building phase.

Sensing and Estimation ranges from robot state estimation for feedback control to task-
oriented interpretation of sensor data of any kind. Apart from estimation techniques, this
category also covers different kinds of information representations. According to [72],
the work of Henderson and Shilcrat [61] is considered one of the first DSLs in robotics
and dates back to 1984. Their DSL is part of the logical sensor systems framework and
enables domain experts to specify the structure of sensor and sensor data processing
components and their composition. The specifications are stored as symbolic expression
and translated to the Function Equation Language [73], yielding a function graph which
can be evaluated and possibly executed. A more recent work in the sensing and estima-
tion domain is presented by Ramaswamy et al. in [62]. Here, an Eclipse-based graphical
DSL is presented which allows domain experts to specify the component architecture

of sensing and estimation systems by composing different component types such as
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splitting, merging and synchronizing components. The work of Henderson et al. [61] and
Ramaswamy et al. [62] focuses on structural aspects of sensing and estimation systems
whereas Gordillo et al. [63] propose a declarative, visual language to specify complete
vision verification tasks, for example to identify assembly parts, in the context of the
execution of assembly plans. DSL approaches in the sensing and estimation domain are
mainly employed at the functional design and capability building phase.

Motion Planning covers collision-free trajectory planning for mobile platforms as well as robot

actuators. In [65], collision-free trajectories for a fleet of mobile robots are planned based
on scenario specifications. In order to encode those specifications Mackenzie et al. [65]
propose a DSL to specify the configuration of societies of robot systems by describing
high-level goals and constraints, for example, the goal for a group of robots to maintain a
certain formation. Similarly, in Finucane et al. [74]], Linear Temporal Logic is employed
to formalize task specifications which are then automatically translated in verifiable
robot (motion) controllers. In [64] the authors describe a DSL to reason about object
repositioning tasks in the context of a learning from demonstration framework. The
main objective of the aforementioned approaches is a resulting capability (e.g. a motion
planner), thus they mainly deal with the capability building phase.

Motion Control addresses the dynamic model of robotic manipulators, which also includes

different control approaches like independent joint and torque control. Another objective
in the motion control domain is the orchestration of different controllers depending on
the task and environment context. In [68], a UML/P-based [75] DSL called LightRocks is
proposed, which enables domain experts to compose and orchestrate motion skills repre-
sented as finite state machines. The DSL is implemented with the MontiCore language
workbench [76] and experiments have been executed in the context of a KUKA LWR
screwing a wooden screw into a cube. Another notable DSL, which allows domain ex-
perts to encode assembly operations in the context of small size productions, is presented
in [67].

Force Control deals with robust and dynamic behavior of robotic systems in compliant inter-

action between a robot and its environment. Similar to the Motion Control domain, it
includes different control aspects, for example, stiffness and impedance control. In order
to support developers in the specification of force control tasks, Klotzbiicher et al. [69]
proposed an internal, Lua-based DSL. The DSL enables domain experts to specify hy-
brid force position/velocity control operations based on the Task-Frame Formalism [77]].
The specifications are robot-independent and by employing platform-specific models,
those specifications can be executed on different robot plaforms such as the PR2 and
KUKA LWR. Although the DSL is an internal DSL, an abstract syntax in the ECore format
is provided. Interestingly, this ECore metamodel was refined in the GDDL DSL [60]

(Mechanism and Actuation domain) by extending it by a units metamodel. The work of
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Klotzbiicher et al. [69] is also a good example how existing robotics knowledge is reused
in the form of a DSL as the article is from 2011, whereas the underlying theory dates back
to the 1980s and 1990s.

Reasoning Methods focus on symbol-based reasoning and knowledge representation. They
cover logic as well as probability-based approaches. Furthermore, this category also
addresses learning, such as inductive logic programming, neural networks, and reinforce-
ment learning. In order to perform reasoning, learning, and planning domain experts
need to represent the relevant knowledge required for the task at hand. In Artificial
Intelligence, several domain specific languages have been introduced, such as PDDL [78]
and ADL [79] to name just two. Some of these languages have been used in robotics to
represent knowledge in the context of robot plan optimization [80], to embed geometric
reasoning in action descriptions [81] and to develop an integrated robot manipulation
application where task planning capabilities are required [82]. On the other hand, several
DSLs in robotics have been developed which can be located in the reasoning domain. For
example, Joyeux et al. [71] proposed a Ruby-based DSL and framework to manage and
execute robot task plans and Steck et al. [70] proposed a Lisp-based DSL to implement
situation-driven task execution. Both the work of Joyeux et al. and Steck et al. can be
classified in the capability building phase and the product maintenance phase as domain
models are executed and eventually modified at run time.

Although, for each of the aforementioned subdomains DSLs have been developed the majority
of DSLs in robotics belong to the Architectures & Programming subdomain (see Table [2.2),
which will be described in the next paragraph.

Architectures and Programming refers to the way a robotic system is designed at the soft-
ware level. It can be divided into architectural structure and architectural style. The
structure is represented by how the system is split up into sub-systems or units and how
they interact with each other. In order to represent structural information about robot
software architectures several authors proposed DSLs to model basic and composite
robotic software components, for example, Schlegel et al. [83]], Ortiz et al. [84] and Mallet
et al. [85]] to name a few. Those components usually encapsulate one or more function-
alities created within the aforementioned domains. In [86], the interaction among those
components is verified in order to ensure deadlock freedom of a complete robot soft-
ware architecture. The aforementioned DSLs mainly deal with component architectures,
whereas the work of Gherardi et al. [87] introduced an Eclipse-based toolchain to model
both functional and component architectures of robotic systems. Here, the functional
architecture is represented with feature models [88]]. The architectural style addresses the
underlying computational concepts. In [89] the authors introduce a graphical language
and corresponding formalism to represent and analyze different architectural styles in
robotics. Furthermore, the Architectures and Programming domain also deals with how
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the architecture is implemented in terms of architectural units and their mapping to pro-
cesses, threads and objects. Some DSLs addressing such a mapping process are proposed
by Morelli et al. [90], Gobillot et al. [91] and Datta et al. [92]. Those DSLs are typically em-
ployed in the system deployment phase. Another important implementation concern is
how to organize data and control-flow among architectural units as well as how to handle
reactive and temporal events which is adressed in [93] [94] and [95]. The aforementioned
DSLs are mainly used during the design phase of robot software architectures, whereas
the work of [70] [96] also deals with the usage of domain models at run time in order to
cope with varying requirements.

MDE
Abstract Syntax
Functional DSL Process | Representation | Structural Concrete Syntax
Dimension Phase Constraints
Architectures | Ramaswamy et al. [97] | CB, PB | ECore v Text. & Graph.
& Tousignant et al. [93] CB Silver (see [98]) | - Text.
Programming| Schlegel et al. [83] CB, SD | UML Profile v Text. & Graph.
Dhouib et al. [99] CB, SD | UML Profile v Text. & Graph.
Gobillot et al. [91] CB, SD | ECore v Text.
Morelli et al. [90] SD UML Profile - Graph.
Datta et al. [92] CB,SD | XML - Graph.
Gherardi et al. [87] ECore | FD,CB v Graph.
Alonso et al. [100] CB,SD | ECore v Text. & Graph.
Wei et al. [[101]] CB EBNF - Text.
Nordmann et al. [102] | CB,SD | MPS v Text.
Dittes et al. [89] FD,CB | XML v Graph.
Fleurey et al. [96] CB,SD | ECore v Graph.
Steck et al. [70] PM Lisp - Text.
Rusakov et al. [95] CB Eiffel v Text.
Ortiz et al. [84] CB, SD | UML Profile v Text. & Graph.
Mallet et al. [85] CB, SD | EBNF - Text.
Biggs et al. [94] CB Python/EBNF | v Text.
Cassou et al. [103] CB DiaSpec v Text.
Abdellatif et al. [86] CB, GenoM/BIB v Text.
SBM

Table 2.2. A summary of DSLs belonging to the Architectures & Programming subdomain.
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2.5. Summary

This chapter described the core ingredients of [MDEland assessed the state-of-the-art of domain-
specific modeling approaches in robotics.

In summary, DSLs are getting more and more prevalent in robotics. Although some early
DSLs can be found in the 1980s [61] and early 1990s [63] [65], interest in DSLs for robotics
increased during the last few years. For each subdomain, DSLs have been developed and some
approaches can be assigned to two process phases. In particular, DSLs in the Architectures
& Programming subdomain provide not only the means to model components, but also
enable domain experts to express how those components are packaged and possibly mapped
and deployed to computational units (e.g. [99], [91]). Nevertheless, very few DSLs deal
with the system deployment, product deployment and product maintenance phases. In
fact, the majority of DSLs support human experts in performing development activities, for
example, during the capability building phase. This is not surprising as developing core robotic
functionalities (e.g. sensing, control and planning) is performed within that development
phase. Some functional domains are well-covered by DSLs, for example the Kinematics domain
(see Table , whereas for others, for example the Sensing and Force Control domains it is
still early days.

While the main target of DSLs seems to be the automation of software development (e.g.
code generation [99] [51] [100]), some approaches are also used for analysis and verification
(e.g. [86] [89]). From a developer perspective different implementation approaches are em-
ployed to realize DSLs, for example, UML profiles [83]], external DSLs using Eclipse-based
toolchains [97], language workbenches [102] and internal DSLs [54] [69]. However, to a large
extent the DSLs lack a treatment of their structural constraints. Furthermore, the surveyed
DSLs report little about the DSL development process itself. That is, how do DSL developers
identify and consolidate abstractions which on the one hand suit the domain best and on
the other hand are the building blocks of DSLs. Finally, it is worth noting that many robotic
DSLs are used and evaluated in the context of real (e.g. [102] [94]) and simulated (e.g. [103]])
applications even on varying hardware [69].
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Chapter 3.
Specifying Robot Perception Systems

“The hardest part of the software task is arriving at a complete and consistent
specification, and much of the essence of building a program is in fact the debugging
of the specification.”

— Frederick P. Brooks, 1931-*

3.1. Introduction

In this chapter, two domain-specific languages are proposed, namely the Robot Perception
Specification Language (RPSL) and the Deployment Specification Language (DepSL). The design
and development of both languages is motivated by the pressing need of domain experts to
specify their design decisions of robot perception systems in an explicit manner. To this end,
both RPSL and DepSL provide domain-specific notations and abstractions supporting domain
experts to state their functional, architectural and deployment design decisions of robot
perception systems in the form of domain models. The provided notations and abstractions
are based on architectural views representing partial aspects of a robot perception system
showing specific properties. Further, both the abstract syntax and the structural constraints
of RPSL and DepSL are formalized in a rigorous way which enables domain experts to verify
their design decisions already in an early development stage. This contributes to a creative, yet
structured design, development and deployment of robot perception systems where correct-by-
construction domain models are used as first-class citizen for the sake of analysis, inspection

and eventually execution.

The remainder of this chapter is structured as follows. In Section [3.2)a DSL development
process is proposed. The process assembles those stakeholders and their activities and artifacts
which are involved in the design and development of DSLs. The design and development of
RPSL and DepSL described in this chapter were carried out using this process. Furthermore, the
DSL development process defines the structure of the remaining sections. In Section 3.3[one
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of many domain examples used to ground the DSL design and development is described. In
Section [3.4|the domain example is analyzed and subsequently in Section [3.5{common concepts
appearing in those domain examples are identified and described. In Section [3.6|those concepts
are formalized in an abstract syntax (metamodel) and corresponding constraints. In Section[3.7]
the implementation details of both RPSL and DepSL are discussed. Finally, related work is
discussed in Section [3.8]and core results and insights are summarized in Section 3.9}

3.2. DSL Development Process

According to Mernik et al. [104] a DSL development process can be roughly decomposed in
four major phases. Every DSL project starts with a decision to develop a DSL. Such a decision
is usually justified by the needs of potential DSL users. For example, the need to automate
software development activities, to support domain-specific analysis or verification [104] tasks
or the need to express and specify design decisions.

The subsequent domain analysis phase investigates the vocabulary, terminology and concepts
of a domain and is important in order to define the scope of DSL development. The input
and output of the domain analysis varies significantly on the applied analysis approach, the
maturity of the assessed domain and on the format as well as on the availability of domain
knowledge.

Domain analysis approaches can be roughly classified in informal and formal approaches. The
former do not follow a strict methodology and gather domain knowledge from various sources,
for example, source code, technical documentation and the consultation of domain experts.
In addition, the output of those approaches ranges from informal notes and requirement
documents to use case diagrams. Applying somehow more formal approaches such as FODA
(Feature-oriented Domain Analysis) [88] and ODE (Ontology-based Domain Engineering) [105]
yields in domain descriptions consisting of terminologies and explanations of domain concepts
represented in a format proposed by the analysis methodology, for example, an ontology in
the case of ODE.

It is important to highlight that each domain analysis should be based on agreed upon guiding
principles in order to ensure the systematic analysis of a domain. Those principles govern not
only the analysis activities, but also explicitly define the scope of the analysis yielding in turn
in a focused DSL development.

Based on the output of a domain analysis, a DSL still needs to be created which remains chal-
lenging as neither automated tool support nor clear guidelines exist [104]. In the subsequent
DSL design phase, abstractions are identified which are the building blocks of DSLs realized in
the implementation phase.
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Figure 3.1. The different architectural views decomposed into two main categories, namely software and
hardware architecture. The software architecture is further decomposed into the functional
architecture implemented by the component architecture which in turn is mapped to the run
time architecture executed by the computational architecture originating from the hardware
architecture. This chapter deals mainly with the views highlighted in red.

In contrast to the vast majority of DSL approaches in robotics — as described in Chapter [2| -
this work does not neglect to describe the DSL development process itself. To this end, a DSL
development process is proposed and employed to design and develop DSLs for the robot
perception systems domain. The process employs the major phases of Mernik et al. [104] and
applies architectural views (see Section as guiding principles in the domain analysis
phase.

3.2.1. Architectural Views

Architectural views are means to analyze, design and develop the architecture of software-
intensive systems — like those considered in this thesis — from different perspectives. According
to the Software Engineering Body of Knowledge [106] published by the IEEE Computer
Society a view “represents a partial aspect of a software architecture that shows specific properties of a
software system”. For example, in [107]] Kruchten proposed the “4+1” view model of software
architecture where each view deals with a set of related architectural aspects. Kruchtens
physical view, for example, deals with questions such as how to map software to the hardware

while taking non-functional requirements of the application into account.

In the context of this thesis, the architectural views proposed in the EU-funded BRICS
project [11] are employed as guiding principles to facilitate the analysis of the assessed domain.

The BRICS project identified six architectural views (see Figure[B.1). The first three views are
related to hardware and can be treated as the hardware architecture:
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e The computational architecture view deals with information of the computational de-
vices. This includes which types of processing units, for example CPUs and GPUs, are
available, how much working memory is available, which operating system they run and
how the computational devices are networked together.

o The electrical architecture (EA) view deals with all electrical issues of the robot system.
This includes all electromechanical (e.g. actuators), electrical (e.g. batteries, switches, and
so forth), electronic (e.g. sensors, circuit boards, and so forth) and computational (e.g.
microcontrollers, PCs, and so forth) elements and all the wiring (e.g. power supply, buses,
and so forth) between them.

e The mechanical architecture view deals with all the mechanical aspects of a robot system.
This includes CAD models of each component, how and where they are connected to each
other during assembly, and additional information about the mechanical components or
the overall system that may be of relevance for software development. For example, the
color and shape of system parts is of interest to detect when robot parts get into the field
of view of the robot’s own perception system.

With respect to the BRICS RAP process model (see Chapter [2), information about the hardware
architecture is determined in the platform building phase. The remaining three views are

related to the software and can be jointly considered as the software architecture (see Figure[3.)):

e The functional architecture view deals with general functionality rather than software
and implementation issues. The view deals with major functional components and how
they interact in order to solve certain tasks. Although a function can be provided solely
by a hardware module, for example, a sensing, they often have a software equivalent,
for example, software drivers. Thus, the functional architecture belongs to the software
architecture view.

e The component architecture view deals with all concerns of the actual software imple-
mentation of the functional architecture, mainly software components and their interac-

tion and interfaces plus the relevant data structures.

e The run time architecture view maps the component architecture onto a particular com-
putational architecture, mainly by mapping components onto processes and threads and

by mapping processes and threads onto the available computational devices.

With respect to the BRICS RAP process model (see Chapter [2), information about the functional
architecture is determined in the functional design phase, information about the component
architecture is determined in the capability building phase and information about the run time

architecture is determined in the capability building and system deployment phase.
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3.2.2. Process Overview

An overview of the DSL development process proposed in this thesis is depicted in Figure
In fact, the DSL development process is based on a reverse-engineered process model presented
in [15]]. Here, insights gained from the development of the Grasp Domain Defintion Language
(GDDL) [60] — a textual DSL for the specification of grasping knowledge — where reverse-
engineered into a process model. Although the GDDL language is targeted towards another
domain — than the one considered in this work — the DSL development process is generic,
yet tailorable to meet the requirements of other DSL developments. To this end, architectural
views have been integrated as guiding principles in the domain analysis phase to accomodate

the needs of the robot perception systems domain.
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Figure 3.2. Diagram of the DSL development process composed of activities, artifacts and information
flow. The activities are executed by different stakeholders involved in the DSL development.

3.2.3. Process Concepts

The process involves three types of stakeholders, which have different experiences and back-
ground knowledge in, for example, developing robotic applications. Each stakeholder con-

tributes to the development process during different phases.

Domain Experts want to solve a problem in their domain and see the potential that a DSL in
one way or another improves the solution or simplifies the task. Thus, they are also the
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main users of the developed DSL. While the domain experts have a sound understanding
of their domain, they are not necessarily software developers.

Architecture Experts have very good knowledge about one or more architectural views (see
Section[3.2.1) which are related to the domain experts’ problem. Thus, in certain phases,
they contribute knowledge about those views to the DSL development. Very often those
experts are also knowledgeable about other parts of a robotic system such as navigation,
manipulation or planning and they keep the robots” task and environment in mind.

DSL Developers are the software developers in the process and usually do not have a back-
ground in the previous domains. Therefore, they cooperate with the aforementioned
experts, to get an insight into their domains, but also to extract the relevant domain
knowledge. The developers then formalize this knowledge into metamodels. Based on
these metamodels, they design and implement DSLs and corresponding tooling.

It is worth noting that in small DSL projects often these roles are taken on by the same
person. However, in more complex project settings, different and potentially multiple persons
represent the stakeholders. The interaction between these stakeholders in different project
phases forms the DSL development process, which consists of the concepts described in the

following paragraphs.

Activities represent work that is performed by one or more of the stakeholders to solve a task.
Usually, activities require input from previous process phases and produce output for

other activities.

Artifacts are the output of an activity. Depending on the activity, artifacts include developed
software or textual and graphical documents which describe, for example, use cases,

requirements or reviews. Each artifact is stored in a repository.

Models are a special type of an artifact in the DSL development process, which represents

formalized domain knowledge.

3.2.4. Process Flow Phases

In the following paragraphs the process activities depicted in Figure [3.2|are explained.

Description of Domain Examples. The domain expert describes several domain examples or
use cases which demonstrate a) the diversity and variability and b) the commonalities in
the domain of his/her problem. The resulting domain examples are stored in a repository
for further analysis in the next activity.

Analysis of Architectural Views. In the next phase, the domain expert in cooperation with
the architecture expert, investigates each domain example from the perspective of an
architectural view (see Section 3.2.1). One outcome of this investigation is a set of findings
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representing an insight. For example, which type of laser scanner or bus system is used
in the domain example. Another outcome is a set of requirements related to the DSL itself
and it’s corresponding tooling. For example, whether a textual DSL is prefered over a
graphical DSL or which keywords of the language shall be highlighted in the editor.

Identification of Common Concepts. This activity is handled only by the architecture expert
who is knowledgeable about different architectural views. The expert investigates the
tindings which she/he gets from the repository and derives and eventually generalizes
concepts. A concept represents a commonality or category within an architectural view.
For example, the concept of a sensor is a generalization of the laser scanner findings
described in the above mentioned paragraph. After the architecture expert has identified
the concepts, she/he documents them, so that a common terminology emerges. The
resulting informal descriptions are stored in a repository. For each concept, they contain
elements such as, a lexicographic explanation or an exemplifying diagram, a graphical
or textual ontology which represents the relation to other concepts, a list of known

limitations or examples of this concept.

Formalization of Concepts. In this phase the DSL developer receives the informal descrip-
tions and transforms them to formal metamodels (see Chapter [2). While the DSL devel-
oper performs the main work in this phase, she/he also receives support from the domain
and architecture expert, for example, to clarify ambiguities in the informal description.
During the formalization, the DSL developer selects one of the following approaches:

¢ Definition. New metamodels are defined, if no proper metamodel exists. This will

usually be the case for the core metamodels of a domain.

e Refinement. Exisiting metamodels are refined, in case there are metamodels from

related or previous projects which already cover the architectural view partially.

e Reuse. If a metamodel for an architectural view already exists, for example, as part

of a standard, or from another project, it is reused unchanged.

Development of DSLs and Tooling. Only the DSL developer is responsible for the tooling
development. The input to this activity are, on the one hand, the metamodels from the
metamodel repository and, on the other hand, the requirements from the findings/re-
quirements repository. The metamodels form the basis of the textual DSL’s grammar or
the items visualized in a graphical editor. Based on the requirements, the type, layout,
structure and constraints of the editor are specified. The developed tools, such as the
editors for specifying domain models and also — if required — the application-specific
generators for generating, for example, source code are stored in the tool repository.

Implementation of Domain Examples. In this phase, the domain expert and the architecture
expert implement their domain examples with the developed tools. The results are
domain models which are then either input to a) runtime components directly as configu-
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ration or b) code generators (which are also part of the tools repository) for generating
artifacts, such as code, deployment or configuration files.

Analysis of Models. In the final phase, the domain and architecture experts investigate the
modeled domain examples and the created tools. If the models describe the domain exam-
ples sufficiently well and the experts are satisfied with the tools, the process terminates.
Otherwise, deficits, missing functionality or newly found concepts and requirements are

identified and serve as input for subsequent iterations.

In the following sections the proposed DSL development process is executed. Section
describes a representative domain example which is used as a running example troughout
this chapter. Section analyzes the domain example from the perspective of the BRICS
architectural views (see Section [3.2.T) in order to retrieve architectural findings. Those findings
serve as input to derive common concepts (see Section which in turn are formalized
(see Section yielding in metamodels. The implementation of DSLs conforming to those

metamodels is described and discussed in Section 3.7

3.3. Description of Domain Examples

The domain example is taken from the field of service robotics. Those robots are getting more
and more deployed both in domestic and industrial environments in order to perform a wide
range of tasks. In tasks such as object picking, placing and human-robot handovers in-hand

slippage is inherent, i.e. a grasped object moving within the robot’s grasp. Therefore, robots
ability to detect slippage is crucial for executing manipulation tasks successfully.

In order to detect in-hand slippage on the Care-O-bot 3 service robot (see Figure[L.1), Sanchez
proposed in [108]] three different types of slip detectors based on tactile (exteroceptive) and
force (proprioceptive) measurements and as a fusion of these. The force slip detector assumes
a slip occurs whenever a force is exerted in the right direction (e.g. downwards with respect
to the grasp frame). The tactile slip detector employs the algorithm introduced in [109] to
estimate the tangential force on the sensor caused by a sliding pressure (e.g. a grasped object
slipping). The combined slip detector fuses both slip signals from the tactile slip detector and
the force slip detector in a rule-based manner where experimentally obtained treshold values
for the tactile and force slip detector are compared with each other.

The domain example described above serves as a running example throughout this chap-
ter. It is worth noting that further domain examples have been assessed in this work, for
example, a people detection approach [110] based on 3d data provided by a RGB-D camera,
an object categorization approach [111] and basic object detection, recognition and tracking
approaches [112] [113] for domestic and industrial service robots. Those examples were used
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Figure 3.3. Schematic visualization of the in-hand slip detection system proposed by the domain expert

Sanchez || .

to identify architectural findings and to generalize common concepts in the domain of robot

perception systems.

3.4. Analysis of Architectural Views

A schematic diagram of the three slip detectors is shown in Figure[3.3] Analysing the diagram,
consulting the domain expert and assessing the corresponding implementation leads to the
findings described in the following paragraphs.

From a computational architecture point of view:

e The sensing modalities available on the Care-O-bot 3 are a set of tactile sensors and one
force/torque sensor (Flﬂ).

From a functional architecture point of view:

e Each slip detector implements the same functionality to detect whether an in-hand slip
occurs or not. The notable difference is how each slip detector represents a slip. On the
one hand the combined slip detector represents a slip on a symbolic level and on the other
hand both the tactile and force slip detector represent a slip on a numeric level (F2).

1From now on Fx will be used to enumerate an architectural finding.
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e The combined slip detector depends on the output provided by both the force and tactile
slip detector (F3).

e As experimentally validated in [16] the performance of each slip detector is context-
dependent. The performance depends on the action the robot performs. The tactile slip
detector, for example, recognizes a slip whenever an object is grasped whereas the force
slip detector detects actual slips very accuratly. Nevertheless, the force slip detectors
performance is poor when no slippage occurs and the robot moves it’s base (F4).

From a component architecture point of view:

e One can distinguish each slip detector in its integral parts, namely sensing and processing

components connected by directed edges denoting flow of data (F5).

e The sensing components only provide data whereas processing components compute
and produce data (F6).

e The data produced and consumed by the components spans multiple level of abstractions.
The data ranges from raw sensor data (e.g. wrench x € R®) and intermediate results (e.g.
average intensity x € R") to symbolic data (e.g. s1ip_up) (F7).

From a runtime architecture point of view:

e In order to minimize latency and to ensure a fast response of the slip detectors, both tactile
and force slip detectors should be deployed on the same computer where the sensors
are connected to. For example, on the Care-O-bot 3 three computational platforms are
available (F8).

It is important to emphasize that each finding (F1-F8) correlates to one or more design decisions
made by domain experts. Very often those design decisions are implicitly represented, hidden
and scattered in technical documentation, source code, configuration files or even worse
remain in the head of the expert. Which in turn is a major cause for the inflexibility of today’s
robot perception systems as if any of the implicit assumptions is changing, the task to adapt
the system remains challenging and is prone to errors.

3.5. Identification of Common Concepts

Before common concepts of robot perception systems are indentified it is worth noting that
those systems are characterized by a huge amount of variability. The variability is caused
by the different and evolving environmental, task and platform requirements making the
design and development of robot perception systems such a challenging exercise. Resolving
those requirements is usually done by making concrete design decisions yielding a selection
of one or more variants originating from functional, architectural and deployment variability
dimensions (see Figure [3.5). For example, in order to satisfy the requirement of avoiding
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Figure 3.4. The relation between variability dimensions and architectural views.

slippage of grasped objects one needs to select between three different functional variants,
namely the force, tactile and combined slip detector (see Section 3.3).

Although different variability dimensions should be completely orthogonal, i.e. they can
vary independently, selecting one variant over another requires a deep understanding of the
properties of the variant as they might influence each other. For example, finding F3 (see
Section [3.4) implies that selecting the combined slip detector requires also to select the force
and tactile slip detector as the combined one depends on them.

Thus, a MDE approach — as the one suggested in this thesis — should not only foster modeling
of variability dimensions in an orthogonal manner, but should also enable domain experts to

make affects among and withing variability dimensions explicit.

This requires to identify which architectural views logically belong to which variability di-
mension. To this end, the functional, architectural and deployment variability dimensions are
arranged with the architectural views (see Figure 3.5) introduced in Section Here, the
functional variability is covered by the functional architecture, the architectural variability is
covered by the component architecture and the deployment variability is covered both by the

run time and the computational architecture.

In the following sections the concepts appearing in those dimensions are introduced and

discussed.

3.5.1. Functional Variability

The core concept to describe functional architectures of robot perception systems are perception

features introduced in the following paragraphs.
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Perception Features encode higher-level knowledge about functionalities capable to achieve
some perception-related task (e.g. detecting a slipping object). Similar to generic features
proposed in the Feature-oriented Domain Analysis [88] approach, perception features, or
just features, are independent of implementation attributes. From a modeling perspective,
perception features are arranged in a tree structure where an edge between parent and
child feature represents a containment relation. Two kinds of containments are available,
namely aggregation where a parent feature is made of child features (AND-relation) and
specialization where child features are possible variants (OR-relation) of the parent feature
(see finding F2 in Section [3.4). It is important to note that the term feature originates
from the software engineering domain whereas in robotics one would use the term

capability [114] to describe the same thing.

In order to encode dependencies and incompatabilities among perception features the
concept of integrity constraints is introduced (see finding F3 in Section 3.4). Two kinds
of integrity constraints are available, namely requires for modeling dependencies and

excludes for modeling incompatabilities among perception features.

Obviously, a tree of perception features expresses — at a large scale — the complete set
of available perception features. Selecting exactly those features required to meet the
requirements of a certain application still remains the task of the domain expert. In
Chapter 4| an approach to support domain experts in finding and selecting variants is
presented. The set of selected features is valid if and only if it does not violate the imposed

constraints.

In the context of the domain example one could express the tactile and force slip detectors
as features which are specializations of a rather generic slip detection feature (see Sec-
tion[3.3). In addition, one could express a dependency from the combined slip detection
feature to the tactile and force slip detection features.

3.5.2. Architectural Variability

The core concepts involved in modeling the architectural variability dimension are components
and perception graphs which are described in the following paragraphs.

Components are the basic architectural building blocks of robot perception systems. Here,
a component encapsulates a functionality and restricts the access to that functionality
via explicitly defined interfaces [115]. Component-based development fosters not only
a structured design, but is also nowadays the predominant software implementation
approach in robotics [116]. Many diverse component-oriented robotic software frame-
works such as ROS [117], Orocos [118], OpenRTM [119], GenoM [120] [85] and so forth

exist. Those frameworks differ mainly in how component concepts, for example ports,
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interfaces and so forth, are mapped to concrete programming language primitives and
implementation-specific attributes [121].

Many domain experts use component-oriented robotic software frameworks in their
daily work and are capable to express their system designs in a component-oriented
manner. The architectural sketch, for example, shown in Figure 3.3|includes the concept
of a component as a system constituent and expresses which type these components may
be, which components are connected to each other and which types these connections
may be.

In the context of this work, two types of components are distinguished, namely sensor
and processing components. Sensor components are used to model exteroceptive and
proprioceptive sensors such as cameras, laser scanners, force sensors and so forth whereas
processing components are solely used to model computational components realizing
perception-related functions such as filters, feature descriptors and so forth (see also
finding F5 and F6 in Section [3.4). As sketched in Figure [3.3| components interact with
other components. The concepts making this interaction possible include ports, interfaces,
data types and connections. A port is the software equivalent to the concept of a connector
in hardware and are components” communication end-points for its connections to other
components. Ports are typed (see Section[3.5.5) and play an important role in component-
based design as they enable developers to provide several functionally different interfaces
and to constrain their use to well-defined entitities that will be connected to a port.

In this work a port is by definition a data-flow port having a name, type and an interface
for reading and writing data. Via this interface, the port can only communicate informa-
tion with data semantics to and from other components’” ports; the interaction is supposed
to not directly influence control flow on both the sender and the receiver side. This implies
that ports are not employed for configuration concerns. Hence, the domain expert needs
to specify (see Section 3.5.5) all components together with particular configuration values.
This approach fosters the modeling of feasible configuration values for components (e.g.
camera resolution, filter tresholds and so forth), as the domain expert is led to provide
them. This also provides the possibility — if required at a later development stage — to
reduce the design space (e.g. through grouping components).

Perception Graphs are reusable architectural units realizing specific perception features. For
example, the sensor component FT Sensor and processing component Force Slip shown
in Figure 3.3/ form together a perception graph realizing the force slip detection feature.
Both components are linked by connections providing the actual wiring between ports of
different components. That is, while a port is a component-level mechanism to make a
particular component interface available to the outside, connections perform the linking
between ports. In this work those connections are always directed and acyclic which
yields a directed, acyclic graph of connected components. The concept of a perception
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graph enables domain experts to model - from a structural point of view — the realization
of diverse perception features ranging from simple filtering pipelines to more elaborated
perception graphs with multiple input, output and processing branches. It must be
stressed that perception graphs do not remain isolated, but can be composed to construct
more advanced systems which are rich of functionality (see finding F3 in Section [3.4).
Further, perception graphs can be — like components — attached with configuration values
such as contextual information about the appropriateness of a slip detector for a certain
context (see finding F4 in Section 3.4) or other functional and non-functional properties.

3.5.3. Deployment Variability

The core concepts involved in modeling the deployment variability dimension are platforms

and deployments which are described in the following paragraphs.

Platforms encode not only the configuration of peripheral devices such as sensors, actuators

and their properties (see finding F1 in Section [3.4), but also choices related to the com-
putational architecture. Firstly, the computational architecture is composed of virtual
and real processors. Examples for the former are virtual machines and examples for the
latter are CPUs and GPUs. Those processors are capable of scheduling and executing
processes and threads. Secondly, platforms are composed of different memory types, for
example working memory like RAM, used to store data and code. Thirdly, in order to
interconnect platforms, processors, memory and devices different bus types such as CAN,
Ethernet and so forth are available. Platforms and their constituents can be enriched with
functional and non-functional properties such as latency, frequency and so forth (see
finding F8 in Section [3.4).

Deployments encode how the component architecture — in the context of this thesis expressed

as perception graphs — are mapped to the run time architecture which in turn is is exe-
cuted on the aforementioned platforms. In order to facilitate the association of component
architectures, run time architectures and platforms one requires additional concepts.
Firstly, the run time architecture needs to be defined in terms of executable and schedu-
lable processes and threads. Secondly, different constraint types are required to specify
deployment requirements such as the availability of peripheral devices like sensors (see
finding F1 in Section [3.4) or constraints on properties of platform elements (see finding
F8 in Section [3.4). Lastly, the peculiarities of deployment mechanisms and frameworks
needs to be described. Those mechanisms which can be, for example, found in robotics
software frameworks take the aformentioned information as an input and initiate the
deployment according to it, i.e. components are started, configuration parameters are set

and so forth.



Specifying Robot Perception Systems 39

3.5.4. Design Space

Developing robot perception systems requires domain experts to combine functional, archi-
tectural and deployment variability. Such a combination is required as one needs not only to
select the perception features and their perception graphs required for the task at hand, but

also as one needs to decide how and on which platform those graphs shall be deployed on.

Generally speaking, combining variability dimensions forms a design space which defines at a
meta level what are all of its possible implementations. Those possibilities are called design
alternatives and differ on many different aspects, one being preferred to the other depending
on how, where, when or what the application should do. It is important to emphasize that
even small domain models expressing functional, architectural and deployment variability
include already many design alternatives. Such a situation is exemplified in Figure 3.5 where
the design space of the slip detection domain example is visualized as the cartesian product of
the elements in the variability dimensions.

System
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Figure 3.5. The design space as a combination of functional, architectural and deployment variability. In
this example the functional variability is composed by three features, the architectural vari-
ability is composed by three perception graphs and the deployment variability is composed
by two platforms.

In total the slip detection domain example contains 18 design alternatives. More precisely, from
a functional architecture point of view four different feature selections are possible, namely
(Force), (Tactile), (Combined, Force, Tactile) and (Force, Tactile). Here, each single feature (e.g.
Force) is realized by one perception graph and each graph can be deployed on two platforms
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(see finding F8 in Section [3.4). Therefore, selecting solely feature (Force) yields in 2 design
alternatives whereas selecting features (Combined, Force, Tactile) yields in 8 design alternatives.
Adding, for example, another platform or perception graph contributes significantly to the

overall number of design alternatives.

Exploring such a huge design space in order to review design alternatives is a complex and

challenging exercise. Hence, in Chapter[4an approach for design space exploration is proposed.

3.5.5. Conceptual Spaces

Assessing the architectural views one can identify the need to represent not only structural ele-
ments such as components, perception graphs and so forth, but also more abstract, conceptual
information. For example, from an architectural perspective, the concepts Wrench, Slip_Up and
so forth are used to express the data produced and consumed by the components of the slip
detection example (see finding F2 in Section [3.4). In addition, concepts are not only used to
express functional and non-functional properties of platforms, components and perception
graphs (see finding F8 in Section [3.4), but also to express contextual information about, for
example, the suitability of certain slip detectors for a certain task (see finding F4 in Section [3.4).
Very often domain experts are capable to assign concrete values to those concepts, for example,

the size and number of memory for platforms and so forth.

It is important to note that the concepts which are involved in specifying robot perception
systems are on different levels of abstractions. For example, the concepts produced by the
components of the slip detection example (see finding F2 in Section range from raw
sensor data and sub-symbolic information to symbolic information. Hence, a knowledge
representation framework which enables domain experts to represent input and output of
components, functional and non-functional properties of components, perception graphs and

so forth as well as contextual information on various levels of abstractions is required.

In this work the Conceptual Space knowledge representation approach by Gardenfors [122] is
utilized. Here, a conceptual space is a metric space composed of dimensions. In that space
concepts are defined as convex regions. A more detailed treatment of conceptual spaces is
given in Section [3.6.5|

3.6. Formalization of Concepts

This section formalizes the concepts identified in the previous section in the form of metamod-

els and corresponding constraints.
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3.6.1. Approach

As discussed in Chapter 2| different approaches exist to formalize domain concepts in the form
of one or more metamodels and corresponding constraints. In the context of this work the
modeling language Alloy is used to formalize the domain concepts identified in Section 3.5

Alloy [31] is a textual, precise, declarative formal modeling language based on relational
calculus and transitive closure. Originally, Alloy was developed to “capture the essence of
software abstractions simply and succinctly, with an analysis that is fully automatic, and can expose
the subtlest of flaws" [31], and was successfully applied in a variety of domains, from general
software engineering [123]] [124] to cryptographic protocol verification [125].

Alloy allows the definition — in an Alloy model — of a) concepts called signatures, b) relations
between concepts called fields, and c) constraints on those relations called facts. In essence,
a signature introduces a set of elements called atoms. Furthermore, Alloy comes with its
dedicated tool, the Alloy Analyzer, which relies on SAT (Boolean Satisfiability) solvers to find
in a finite domain, given an Alloy model, the set of all instances conforming to its constraints. It
can also find counter-examples, given an Alloy expression to be asserted. The Alloy Analyzer
mechanism fosters to develop Alloy models in an incremental, step-wise manner as every
modeling step can be analyzed and possibly reverted. Therefore, the technique propagated by

Alloy is often called an agile, formal modeling approach.

In the following sections some Alloy models are introduced. Those models formalize the
previously identified concepts, namely perception features, components, perception graphs
(see Section [3.5.2) and platforms (see Section 3.5.3).

3.6.2. Functional Variability

Perception Features In order to express the functional variability of robot perception systems
the Alloy model shown in Figure expresses the concept of a feature model. Features are
defined with the signature Feature that can be mutually exclusive or require one another. In
essence, a feature model is a tree of features expressed with the FeatureTree signature having
a root feature without any incoming edges. The relationship between parent and children
in a feature tree are of two kind, namely specialization or containment. Their semantics
differ when it comes to feature selection, namely any children feature can be selected in
the case of a containment relationship, while exactly one should be selected in the case of a
specialization relationship. In the context of Feature Oriented Domain Analysis (FODA) [88],
feature selections define a possible configuration of a software that belongs to the application
expressed by the feature model. As discussed in Section [3.5.1] those selections can be further
refined by integrity constraints. For example, a feature A excluding B implies that B can not be

selected if A is selected.
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#  Excludes

» Requires

Figure 3.6. Visualization of the constraints corresponding to the Feature signature. Here, the numbers

in the red circle correspond to the constraints enumerated in Section[3.6.2] The figure depicts
two distinct feature models with root features named X and Z. Obviously the relation from
feature Y to D is not permitted as a feature model solely has one root feature. Feature D
attempts to exclude feature A which is not permitted as C requires D and A is a parent of
C. As C already requires D it is not allowed at the same time to exclude D. Furthermore,
features can not exclude or require itself (see features A and B). As the specialization is
a logical OR relation it is meaningless for B to exclude C. It is important to note that C
is not permitted to exclude or require feature E from another feature model. Having this
constraint prevents the composition of feature models. Although feature model composition
approaches are becoming popular [126] [127] the core idea of the approach presented in
this thesis is to have feature models expressing solely the functional variability and not
additional aspects as possibly introduced by composing further feature models.

In addition, some obvious constraints for the Feature signature are defined in the following

enumeration and visualized in Figure

1.

2
3
4.
5

There is only one root feature in the parents of a given feature.

. Given a feature f, features required by f can not exclude f and f’s parent.
. A feature f can not exclude and require the same feature.

A feature f can not exclude itself or its children/parent.

. A feature f can not require itself or its children/parent.
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6. Features of one feature tree can not exclude or require features of another feature tree.

7. A feature f can require or exclude another one only if both have ancestors which are (or

are themselves) different alternatives of a same containment.

3.6.3. Architectural Variability

Components. The Alloy model shown in Figure 3.7|declares two main signatures, namely
SensorComponent and ProcessingComponent. Signatures in Alloy introduce a set of elements
called atoms. In Alloy speak both signatures are extensions of the abstract signature Component
and form a disjoint union (partition) of the Component set. Similarly, the Input and Output
signatures are extensions of the abstract signature Port.

7

abstract sig Port {
portType: one Concept,
prototype: set Prototype
}

sig Input extends Port {}{
this in Component.input

}

sig Output extends Port {}{
this in Component.output

}

abstract sig Component {
input: disj set Input,
output: disj set Output,
prototype: set Prototype
H
this in PerceptionGraph.components

}

sig SensorComponent extends Component {}{
#(input) = O and #(output) > O
}

sig ProcessingComponent extends Component {}{
#(input) > O and #(output) > 0
}

\.

Figure 3.7. The Alloy model declaring components as the core architectural building blocks. Note, that
both Component and Port are associated with any number of Prototype used to express
component respectively port properties.

The former expresses the concept of an input port and the latter expresses an output port (see
Section 3.5.2). Both Input and Output have a field portType which represents a relation with
domain Input respectively Output and a range given by the signature Concept. It is important
to note that each element from Input and Output is associated with exactly one element from
Concept (see Section [3.6.5). Having defined this multiplicity it is ensured that a port is always
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declared with exactly one type. The Component signature defines also two fields, namely input
and output declaring distinct input respectively output ports.

In addition, the Alloy model defines some simple, yet important constraints. In order to
ensure that ports are always part of a component two signature facts are given both for
Input and Output (see line 7 respectively 11 in Figure [3.7). Similarly, elements from both
the SensorComponent and ProcessingComponent sets are part of a PerceptionGraph (see line
19 in Figure [.7). Further, cardinality constraints (see line 23 and 27 in Figure are given,
namely a) sensor components have zero input and at least one output port; and b) processing
components have at least one input and one output port.

Perception Graphs. The Alloy model shown in Figureformalizes a PerceptionGraph sig-
nature having three fields, namely components, connections and compGraph. The components
tield is simply any subset of Component. The connections field defines the possible connec-
tions among components expressed as an arrow product of Output and Input defined in the
component Alloy model (see Figure[.7).

e A

abstract sig PerceptionGraph{
prototype: set Prototype,
components: set Component,
connections: Output -> Input,
compGraph: Component -> Component

H
all port:connections [Output] + connections.Input | port in components.(input+output)
all out : connections.Input | out.type = connections[out].type
all disj cl1,c2 : components| c2 in compGraph[cl] <=> c2 in connections[cl.outputl].~

input
no c:components| ¢ in c. compGraph
compGraph [Component]+ compGraph.Component in components

}

\. J

Figure 3.8. The Alloy model declaring perception graph as a composition of components. Note, that
a PerceptionGraphs are associated with any number of Prototype used to express port
properties.

Similarly, the possible computation graphs — connected sensing and processing components —
is defined as an arrow product of Component. However, having solely the PerceptionGraph
signature is not sufficient for expressing well-formed perception graphs as identified in Sec-
tion[3.5.2] To this end, some constraints (signature facts) for the perception graph model are, in
the same order:

¢ All the input and output ports of connections belong to components which are part of the
perception graph.

o All the connections between input and output ports are only possible if the port type is
the same.
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e The components in compGraph reflect the input and output relations of connections.
o All the perception graphs are acyclic.

e Components in compGraph are actual components of the perception graph.

3.6.4. Deployment Variability

Platforms. The Alloy model shown in Figure |3.9|declares the computational architecture.
The main signature is the Platform and associated platform consituents, namely Processor,

Memory and NetworkInterface.

Here, the Cpu, Gpu and VirtualProcessor signatures are extensions of the abstract signature
Processor and form a partition of the Processor set. Semantically Cpu, Gpu and VirtualProcessor
express elements where processes and threads can be executed. According to the AADL stan-
dard [128] it is important to note that a VirtualProcessor is simply a logical resource. Hence,
the Alloy model ensures that a VirtualProcessor itself is bound to a physical CPU. Further,
it is ensured that a platform always contains at least one Cpu and one Ram element. Here,
the Ram signature is an extension of the abstract Memory signature expressing random access
memory. In order to model other means to store data and code, for example, hard disks and so
forth, one would simply add another Memory extension. The Platform signature defines also a
networkInterface field declaring distinct NetworkInterfaces. Semantically, such a software
or hardware interface is used to connect the Platform to a computer network, other computers
or peripherals. To this end, the Bus signature expresses a means to interconnect platforms.

3.6.5. Conceptual Spaces

The Alloy model shown in Figure declares conceptual spaces according to the description
of Adams and Raubal [129]. However, for the sake of simplicity the Alloy model does not
include a Domain signature for expressing sub-spaces of a conceptual space as originally pro-
posed by Adams and Raubal. A conceptual space is built up from a set of QualityDimensions
and a Concept is a convex region in that space. Points within that region are called Prototypes
and represent entities /objects of the real world. In [122] Gardenfors describes a simple, yet
illustrative example of a one-dimensional conceptual space of time where a point now divides

the space in two concepts, namely past and future.

It is important to note that prototypes encode typical values for a concept. For example, within
a three-dimensional conceptual color space RGB made of red, green and blue dimensions a
prototype with the values (255,255,0) would represent a typical value for the concept yellow.
As quality dimensions represent “...means for measuring and ordering different quality values of
objects in the space” [129] they need to be equipped with a scale of measurement. In the context
of this work three MeasurementLevels — as proposed by Adams and Raubal — are employed,
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e N

abstract sig Processor {
prototype: set Prototype
H
this in Platform.processor

}
sig Cpu, Gpu extends Processor {}

sig VirtualProcessor extends Processor {
boundTo: disj one Cpu

}

sig Device {
prototype: set Prototype,
connectedTo: some Platform

}

abstract sig Memory {
prototype: set Prototype
H
this in Platform.memory

}
sig Ram extends Memory {}

sig Bus {
prototype: set Prototype,
connectedTo: disj set Bus
H
this not in connectedTo

}

sig NetworkInterface {
prototype: set Prototype,
connectedTo: lone Bus

H
this in Platform.networkInterface

}

sig Platform {

prototype: set Prototype,

processor: disj set Processor,

memory: disj set Memory,

networkInterface: disj set NetworkInterface
H

one p: processor | p in Cpu

one m: memory | m in Ram

}

\. J

Figure 3.9. The figure shows the Alloy model declaring the elements required to model the computa-
tional architecture.

namely RATIO, INTERVAL and ORDINAL. Each dimension permits to apply a set of logical and
mathematical operators suitable to model different data. For example, each dimension of
the previous mentioned RGB conceptual color space would be expressed as a non-circular
QualityDimension with an INTERVAL having an integer Range from 0 to 255.
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7

sig Concept {
dimension: some QualityDimension

}

sig QualityDimension {
measurementLevel: one MeasurementLevel,
circular: Bool,
range: lone Range
H
measurementLevel in INTERVAL implies (#range >= 1)

}

sig MeasurementLevel {}
one sig RATIO, INTERVAL, ORDINAL extends MeasurementLevel {}

sig Range {
min: one Int,
max: one Int

}
sig Value {}

sig Prototype {
concept: one Concept,
values: set Value

}

\.

Figure 3.10. The Alloy model formalizing conceptual spaces according to Adams and Raubal [129].

3.6.6. Resolutions

Up to now the feature, perception graph and platform models represent three different vari-
ability dimensions of robot perception systems. It is important to emphasize that those models
are orthogonal to each other which means that they can be modified independently without
affecting each other. Nevertheless, at the latest when a certain perception feature is selected at
run time a mapping from features to perception graphs and platforms need to be performed.
In order to enable such a mapping and to maintain the orthogonality of those models two

resolution models are introduced in order to serve as a weaving mechanism.

The first resolution model encodes the resolution of a feature by one or more perception
graphs. In contrast to Gherardi and Brugali [87] the resolution is not distinct as more than
one perception graph might resolve a feature. Such a undetermined resolution is necessary in
situations where several perception graphs are realizing the same feature, but with different
behavior. Examples are varying timing and precision properties or differences in the expected
output of a graph. In order to expose those differences and to enable — at a later stage — the
selection process the resolution model allows to expose one or more output ports and possibly
properties of perception graphs. In order to ensure the well-formedness of resolutions two
constraints are defined. Firstly, exposed ports must belong to components composed in the
resolved perception graph. Secondly, exposed prototypes must belong either to components
composed in the resolved perception graph or to the perception graph itself.
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The second resolution model encodes the mapping of a perception graph to a platform. The
mapping is distinct and expresses a default deployment of a perception graph to a particular
computational platform. Such a default deployment is desirable in situations where domain
experts already know a priori that certain deployment constraints, for example, availability
of sensors and so forth are fulfilled by certain platforms. Here it should be mentioned that
providing a resolution from perception graph to platform is not mandatory as the deployment

approach presented in Chapter [f]is capable to perform the mapping in an automatic manner.

3.7. Development of DSLs and Tooling

This section details the implementation of RPSL and DepSL.

3.7.1. Approach

Basically two general approaches are common to implement domain-specific languages,
namely internal and external DSLs (see Chapter [2). In this research both RPSL and DepSL
are realized as internal DSLs. Due to the fact that internal DSLs reuse language infrastructures
of their host languages, for example, interpreters, compilers, libraries and so forth, DSL de-
velopers can focus on language design and not on DSL implementation peculiarities such as

lexical and semantic analysis.

In this work, the RPSL and DepSL domain abstractions (see Sections 3.5/and are embedded
within the type system of the host language. Hence, both DSLs can be considered as embedded
DSLs [130] and not as generative DSLs as their domain abstractions are not transformed,
for example, to code. As many internal DSLs are using interpreted languages such as Ruby,
Python, Lua and so forth, internal DSLs usually require solely an interpreter for the host
language. Both RPSL and DepSL employ Ruby as a host language.

Ruby is a multi-paradigm, dynamic, interpreted programming language designed and de-
veloped by Yukihiro Matsumoto [131]. An important feature of Ruby is its type system also
known as duck typing. Here, objects are not identified and distinguished according to a
strict, static hierarchy of classes, but rather by checking the existence of certain properties and
methods. To this end, reflection capabilities are built into Ruby to derive information about a
program. For example, Ruby provides methods to infer properties like names and parameters
of classes, modules and so forth. Having access to such information makes it possible to apply
metaprogramming techniques in a systematic manner. Those techniques allow, for example,
during run time the deletion of class methods or even the modification of their visibility. Both
reflection and metaprogramming are crucial techniques used in the context of Ruby-based
DSL development [132] as they enable developers to modify the appearance and to some
extent the behavior of the host language. The suitability of those techniques for the sake
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of Ruby-based DSL development is shown in major Ruby-based frameworks and tools, for
example, Sinatra [133]], a framework for developing web applications or Rake [134], a build
utility for Ruby. Those frameworks and tools expose a large part of their functionality through
DSLs.

3.7.2. Implementation

As envisaged in the DSL process (see Figure both metamodels (see Section and
requirements/findings (see Section serve as input to the DSL development activity. Based
on those artifacts the identified and formalized domain concepts (see Section 3.5) are grounded
in usable — from a DSL user perspective — abstractions.

The domain concepts belonging to the functional and architectural dimension are embedded
in RPSL and the domain concepts found in the deployment dimension are embedded in DepSL.
According to Giinther [132] grounding and embedding activities can be distinguished in three
types, namely a) language modeling which deals with implementing the domain concepts
using the primitives and concepts available in the host language, b) language integration which
deals with making the DSL usable with other DSLs, frameworks and tools; and c) language
purification which deals with making the DSL as expressive as possible by, for example,

eliminating non-domain relevant tokens and providing syntactic sugar.

From a language modeling point of view the core concepts such as components, percep-
tion graphs, platforms and so forth are embedded as Ruby classes which is a standard ap-
proach [132] to express domain concepts in Ruby. Those classes can be considered as the
backbone of both RPSL and DepSL as they are not directly exposed to the DSL user. In fact,
mainly domain operations, for example, adding a port to a component, defining the name of
a perception graph and so forth are exposed. Those domain operations are available within
reusable Ruby modules. To this end, two modules are defined, namely one for RPSL and
another for DepSL.

In Figure an excerpt of a domain model for the force-based slip detector (see Section [3.3)
is shown. Using RPSL to specify the force-based slip detector simply requires to load the RPSL
Ruby module (see line 1 in Figure[3.11)). Subsequently, all the elements of the force-based slip
detector, for example, sensing and processing components, perception graphs and so forth can
be specified.

To support this the concept of Ruby block scoping is intensively used both in RPSL and DepSL as
a DSL purification technique. A block scope provides a clear context for evaluating statements
and - if required — to stack hierarchical information. By using the do. . . end notation (see, for
example, line 3 and 6 in Figure one can define a block scope. Scoping improves the DSL
expressiveness as the clear context provided by the block decreases the required text to write

in order to use certain operations. For example, having the block scope one can simply write
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7

require ’rpsl’

rpsl.sensor_component do
name "force_sensor"

add_port :out, "out_port", "wrench"

end

rpsl.processing_component do
name "slip_detection"

add_port :in, "in_port", "wrench"

add_port :in, "out_port", "force
end

rpsl.perception_graph do
name "force_slip_detector"
connect :src => "force_sensorA"
:sink => "slip_detection

_slip"

, "out_port",

., "in_port"

attach_prototype "is_base_moving"

end

rpsl.concept do
name "task_context"
use_dimensions "twist_linear_x"
use_dimensions "twist_linear_y"
#

end

rpsl.interval_dimension do
name "twist_linear_x"
interval :is_circular => false,
:type => :RPSL_FLOAT64
end

rpsl.prototype do
name "is_base_moving"
concept "task_context"
add_prototype_element :NON_ZERO,
#

:start => 0, :end

"twist_linear_x"

=>

:INFINITY,

end

\.

Figure 3.11. An excerpt of the domain model of the force-based slip detector (see Section represented

in RPSL. Two atomic components are modeled, namely a force_sensor providing wrench
data (out_port) and a slip_detection component demanding wrench data (in_port)
and providing a slip signal. Both components are connected in the force_slip_detector
yielding a structurally complete specification of the force-based slip detector. The attached
prototype is_base_moving belonging to the task_context concept encodes the suitability
of the force_slip_detector for scenarios when the base is moving. The task_context
concept is composed of dimensions expressing the odometry of the robot, namely linear
and angular velocity. To precisely express the situation when the base is moving a pro-
totype is_base_moving is defined which assigns non-zero values for the corresponding
linear and angular dimensions. Note, the model is erroneous in line 8 where a processing
component is defined without having an output port and in line 16 where the non-existing
component force_sensorA is connected with the s1ip_detection component. Interpret-
ing the domain model with RPSL yields the error message shown in Figure[3.12] Further, the
RPSL above is an excerpt and lacks the specification of how the functional and deployment
variability is resolved. An example domain model of perception features is shown in
Chapter[d|and an DepSL example is shown in Chapter 6]
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add_port instead of sensor_component.add_port (see line 5 in Figure3.11) for adding a port

to a sensor component.

In the context of RPSL and DepSL additional purification techniques are applied, namely
parentheses cleaning and keyword arguments [132]. The former eliminates parentheses around
method calls and improves readability. The latter uses a literal hash to name parameters in
order to avoid ambiguities. For example, the literal hashs :src and :sink (see Figure [3.1]]
line 16-17) are used to distinguish the parameters required to declare a connection among

components.

In order to ensure, for example, the well-formedness of the RPSL domain model shown in Fig-
ure[3.1T)one needs to check all the constraints defined in Section[3.6] This checking is done once
the domain model is interpreted. To this end, dedicated methods are programmically checking
whether constraints are violated or not. Those methods range from reflection techniques used
to check the existence of properties to more elaborated approaches implementing, for example,
a topological sort to ensure the DAG property of perception graphs. In case constraints are
violated the DSL user gets informed with an elaborated error message (see Figure 3.12).

$> ERROR: processing component slip_detection [LINE: 8] does not have an output port.
ERROR: perception graph force_slip_detector [LINE: 14] is not valid as component
force_sensorA does not exists.

Figure 3.12. The textual error message printed on a console when interpreting the domain model shown
in Figure with RPSL.

3.8. Related Work and Discussion

In this section related work will be discussed with respect to the activities defined in the DSL
development process (see Section[3.2). Before each individual DSL process activity is discussed,
the following paragraph assesses related work for the development process itself.

DSL Development Process. In robotics — as noted in Chapter 2] - very little is known about
how DSL developers indentify and consolidate abstractions which on the one hand suit
the domain best and on the other hand are the building blocks of DSLs. Although some
authors report how they ground their DSLs, for example, based on an ontology [99], an
architectural pattern [103] or a domain analysis [102], little is known about the involved
stakeholders and their activities. Having such reports would help the robotics community
to design and develop DSLs and could be the starting point for structuring an overall

DSL development process in robotics.
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In this work stakeholders were defined before assessing domain examples. This supported
not only a structured DSL development, but also improved the awareness of certain
aspects. For example, while assessing the slip detection domain example, Sanchez
initially was only the domain expert whereas the author of this thesis was the architecture
expert and DSL developer. After some iterations it turned out that Sanchez — based
on his experience in deploying the slip detector — actually contributed several findings
(see Section by learning the architectural views through the interaction with the

architecture expert.

Interestingly, the tailored DSL development process employed in this work contains
related building blocks and terminology as those found in well-known, generic software
development methodologies such as Unified Process [135] and more agile methods [47]
such as Scrum [136]]. Those methodologies contain several building blocks, for example,
activities, iterations, stakeholders and so forth which are generic enough to describe who,
when and why some activity is performed. In addition, activities such as the creation
of use cases is similar to techniques employed in the Unified Process. However, one
major difference remains: the major artifacts created in the DSL development process are
metamodels and not executable source code. Therefore, activities like unit testing — as
envisaged in agile process models — are not that straightforward to implement in the DSL
development process as required techniques, for example, model-based testing are not

(yet) mature enough.

In the software engineering domain, Kolovos et al. [137] have identified three stakeholders
in their DSL development process, namely a) the system/software engineer, who aligns
with the DSL developer in the proposed process (see Section3.2) and develops the tooling,
b) the developers, who uses the tools to develop domain models; and c) the customer,
who evaluates the developed models. While only the system/software engineer has an
equivalent in the proposed process, Kolovos et al. also outline an end-user programming
approach, which combines the developer and the customer. This latter approach is also

part of the proposed development process.

Description of Domain Examples. Very often grounding DSL design and development on

domain examples is the standard, yet most appropriate approach for assessing a domain
if other means, for example, domain ontologies are not available. It is worth noting
that the selection of domain examples is challenging. On the one hand those examples
should be broad enough to identify commonalities of a domain and on the other hand
specific enough to identify variabilities of a domain [138]]. In order to ensure that domain
examples are both broad and specific domain experts have been included for selecting
and describing domain examples. Including domain experts in this activity yielded a
pleasant side effect, namely domain experts experienced the pressing need to have means

to specify their design decisions of robot perception systems.
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Analysis of Architectural Views. Atkinson and Tunjic described in [139] the importance and
need to employ view-based approaches for designing and developing software-intensive
systems. Views are in particular useful in model-based development environments where
one or more DSLs are utilized to represent knowledge about partial aspects of a system.
To conclude, the views used in this thesis showed to be meaningful and sufficient as
demonstrated in the structured identification of architectural findings (see Section .

Identification of Common Concepts. In the following paragraphs modeling approaches from
the general-purpose and robotics domain are assessed from the architectural views
perspective. To this end, the concepts available in those approaches are related to the
concepts which are available in RPSL and DepSL. A summary of this assessment is shown
in Table 3.8/and discussed in the following paragraphs.

e AADL is a textual architecture description language with visual portrayals of certain
modeling elements [128]. Initially, AADL was developed for modeling avionics
architectures, but is nowadays used for modeling embedded and cyber-physical
systems of various sort [140]. From the architectural views perspective, AADL
lacks concepts to model high-level software features as those proposed in this thesis.
Central to AADL are different component categories used to model application
software not only in terms of their component architecture, but also in terms of
processes, threads and execution platforms. As discussed in Section [3.6]the concepts
available in DepSL are inspired by AADL.

e SysML is a visual modeling language [141] realized as an UML profile (see Chapter 2).
On the one hand the profile is a subset of UML2 and on the other hand introduces
several modifications and extensions of standard UML in the form of new diagram
types. From the architectural views perspective SysML lacks concepts to model
high-level software features as the one proposed in this thesis. Nevertheless, SysML
provides the UML package diagram which enables domain experts to organize
models into packages and to define dependencies between them. Although the
package diagram could be somehow misused to model the functional variability
of robot perception systems it is not expressive as the feature modeling approach
employed in this thesis as, for example, the specialization concept is missing. In
order to model component-based systems, SysML introduces two additional diagram
types, namely the block diagram and the internal block diagram. The former enables
domain experts to model components and their composition whereas the latter
represents interconnections and interfaces between blocks. Those blocks are not
only used to model software components, but also to model other system entities,
for example, hardware, data and even persons interacting with the system. Hence,
first-class citizens for modeling, for example, platforms (see Section , devices and

so forth are not available.
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Architectural Views
Domain Approach Functional Component | Runtime Computational
General AADL — ° ° °
Purpose SysML o . o o
Robotics Hyperflex ° . - -
SmartSoft — . ° )
V3CMM — ° — )
RobotML — ° o °
SafeRobots ) . — —
LSS — . — o
RPSL ° ° — _
DepSL — — ° °
Table 3.1. The table summarizes related work from the architectural views perspective. Here, a —

means that no concepts are availabe to express a view, a o means concepts are partially
available and a ® means concepts are available.

HyperFlex is a software toolchain supporting developers in designing, reusing and
composing robotic software systems [87]. From an architectural views perspec-
tive, HyperFlex is mainly concerned with modeling the functional and architectural
variability of robotic software systems. To this end, feature models and framework-
specific component models are integrated in the toolchain. However, HyperFlex lacks

concepts to model the run time and computational architecture.

SmartSoft is a model-based robotics software development approach. The approach
provides an integrated development environment called SmartMDSD for robotics
software development [83]. SmartMDSD is based both on Eclipse modeling tools and
on UML profiles for specifying their underlying metamodel. The toolchain integrates
textual and graphical DSLs in order to enable domain experts and developers to
model not only the component architecture of robotic systems, but also to coordinate
tasks and to orchestrate components [70]. Nevertheless, concepts for modeling the
functional architecture are missing. Further, SmartMDSD is based on the SmartSoft
robotics software frameworks and framework-specific concepts such as communi-
cation patterns and so forth are exposed to the toolchain user. Therefore, a basic
understanding of SmartSoft concepts is crucial in order to use the toolchain.

V3CMM is a modeling language — based on Eclipse/ECore - for component-based de-
sign and development of robotic systems [100]. The V3CCMM metamodel and tooling
comprises three complementary views, namely a structural view, a coordination view
and an algorithmic view. The structural view mainly deals with the specification and
composition of components and relates to the component architecture view defined
in this thesis. The coordination view deals with the event-driven behavior of the
components by employing UML state machines whereas the algorithmic view is
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based on UML activity diagrams to express different component implementations.
For example, simple method calls or requests to execute operations provided by other
components. However, concepts to model the functional architecture are missing and
details about the run time architecture are hidden in code generation templates.

e RobotML is a modeling language based on UML profiles and targeted to ease the
design, simulation and deployment of robotic applications [99]. To this end, RobotML
is structured around four main packages, namely a) the architecture package provid-
ing concepts to model software and hardware components, b) the behavior package
providing state machine concepts to model the behavior of software components,
c) the communication package providing concepts relevant for data and control flow
among components, and d) the deployment package providing concepts to define an
assignment of a robotic system to a target platform, for example, a middleware or
simulator. Although RobotML provides an impressive tooling — for example for the
sake of code generation — concepts for modeling the functional architecture are miss-
ing. In addition, details about the run time architecture and deployment pecularities
are hidden in code generation facilities.

e SafeRobots is an Eclipse-based toolchain integrating graphical and textual DSLs for
developing robotic systems [97]. From an architectural views perspective — as dis-
cussed in Chapter 2| - SafeRobots is mainly concerned with modeling the component
architecture not only from a structural, but also from a non-functional point of view

by attaching non-functional properties to components and sub-systems.

e LSSL is the logical sensor specification language [61] which enables domain experts
to model the structure of sensor and sensor data processing components (see Chap-
ter[2). LSSL is focused on modeling the computational architecture — solely in terms
of sensing devices — and the component architecture. Concepts for modeling the
functional and run time architecture are not available.

Formalization of Concepts. As stated in Chapter [2|the majority of developers in robotics ap-
ply somewhat established approaches and corresponding tooling, for example ECore/OCL,
for formalizing their DSL metamodels and constraints. On the contrary, employing Alloy
for this purpose — as done for RPSL and DepSL- is somehow unusual. Using Alloy for
DSL development yields an iterative process where signatures (concepts) are specified
and instances of those signatures and their relations are generated. Analysing and pos-
sibly finding problems in those instances fosters the definition of structural constraints
which can be added to the concerned signatures. Subsequently, those constraints can be
directly evaluated by generating instances again. However, a major disadvantage of such
an approach is that language formalization and implementation are decoupled. More
precisely, there is no automatic way to ensure that all the constraints for RPSL and DepSL
are actually realized in the corresponding Ruby implementation. To this end, the DSL
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developer is in charge of implementing functions to ensure the well-formedness of RPSL
and DepSL domain models.

Development of DSLs and Tooling. From a DSL development and tooling perspective the
most obvious question to raise is why RPSL and DepSL were developed as internal DSLs
and not, for example, as modeling languages based on UML/SysML profiles. Clearly,
profile approaches are appealing as the development is well-supported in terms of tools
and libraries. Those tools and libraries facilitate the development of model-to-text trans-
formations, graphical editors and so forth. However, profile approaches are considered
to be heavyweight as they inherit UML/SysML concepts. In fact, as UML/SysML are
general-purpose modeling approaches they contain numerous, domain-independent
concepts. Furthermore — as Alonso et al. [100] already pointed out — domain models
built from those profiles carry many tags and stereotypes which makes it challenging to
inspect, analyze and debug them.

Implementation and Analysis of Domain Examples/Models. All the domain examples de-
scribed in the first DSL development process activity were modeled with RPSL and DepSL.
In addition, the robot perception applications described in Chapters 5 and [/jemployed
RPSL and DepSL to express design decisions. In those applications the concise and small
set of concepts available in RPSL and DepSL turned out to be sufficient, yet expressive
enough to let domain experts express their design decisions. Furthermore, one observed
that domain experts reused domain models, for example, sensor and platform models,
for specifying new robot perception systems. Clearly, such a modeling by reuse activity
is enabled by the availability of DSLs as they enable domain experts to create models
in an reusable manner. Having RPSL and DepSL at their disposal domain experts easily
identified design flaws of their perception systems, for example, redundant high-level per-
ception features, missing dependencies among features, data type errors, underspecified
platform models and so forth. It is worth noting that RPSL has been also used not only to
specify robot perception systems, but also to analyze them. For example, Ingibergsson et
al. [142]] employed RPSL to model a perception system for the sake of analyzing functional
safety requirements of an agricultural robot. To this end, Ingibergsson et al. [142] extended
RPSL with means to annotate domain models with safety and validity requirements.

Last but not least it is worth to discuss RPSL and DepSL in connection with a criticsm often
associated with DSLs, namely the language cacophony problem. According to Fowler [38]
language cacophony describes the concern that languages in general are difficult to learn.
Although DSLs should not be confused with general-purpose programming languages —
which are much harder to learn — both RPSL and DepSL propose two — for many domain
experts — unknown concepts and abstractions, namely perception features and conceptual
spaces. Although a DSL should be “natural/suitable for the stakeholder who specify a particular
concern" [143]], those concepts were selected not because they appear explicitly in the domain of
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robot perception systems, but because they can be used to solve some representation problems
(see Sections and 3.5.5). Thus, domain experts need to study those concepts in order
to use RPSL and DepSL. It can be said that domain experts like doctoral students who have
employed RPSL and DepSL grasped those concepts very easily after studying some examples.
Nevertheless a study which investigates the advantages and disadvantages of RPSL and DepSL

from different user perspectives remains to be done in future work.

3.9. Summary

The quote by Brooks sets the tone of this chapter, namely how to enable domain experts
to specify their robot perception systems in the presence of functional, architectural and
deployment variability. To this end, this chapter introduced a structured, domain-specific
approach for identifying, consolidating and describing the concepts which are involved in
specifying robot perception systems. The small, yet concise set of formalized concepts are the
building blocks of two internal DSLs, namely RPSL and DepSL both enabling domain experts not
only to express, but also to communicate their design decisions to other stakeholders. Having
RPSL and DepSL at their disposal domain experts are encouraged to employ a lightweight, agile
development approach of robot perception systems where specifications are not dumb text

documents, but interpretable, verifiable RPSL and DepSL models.
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Chapter 4.

Exploring the Design Space of Robot
Perception Systems

“Something hidden. Go and find it. Go and look behind the ranges — something lost
behind the ranges. Lost and waiting for you. Go!”
— “The Explorer" from Rudyard Kipling, 1865-1936

4.1. Introduction

Chapter [3|showed how the functional, architectural and deployment variability dimensions of
robot perception systems can be specified individually by utilizing RPSL and DepSL. Combining
those dimensions leads to a design space of robot perception system which defines at a
meta level what are all of its possible implementations. Those possibilities are called design
alternatives and differ on many different aspects, one being preferred to the other depending

on how, where, when or what the application should do.

Exploring the design space is the process of reviewing those design alternatives — prior to
their implementation — with intention to verify that the set of all design alternatives to be
implemented covers all the possible scenarios in which the application is to be executed. This

exercise is known as Design Space Exploration (DSE) [144].

In this chapter two challenges related to DSE of robot perception systems are addressed, namely,
a) the formal definitions of design spaces, a non-trivial task due to the many dimensions to be
taken into consideration, and b) the automatisation of DSE, that is, enabling a domain expert

to review design alternatives corresponding to a given design space effortlessly.

Those challenges are tackled by applying two technologies, namely RPSL (see Chapter
for the specification of both functional and architectural variability and Lightning [145], a

59
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language workbench. This workbench is used not only to obtain design alternatives from RPSL

specifications, but also to visualize them.

The remainder of this chapter structured as follows. In Section typical DSE activities
performed by domain experts are identified. In Section 4.3| those activities are composed into a
DSE approach. Furthermore, it is described how each activity is realized and supported by
software tools in the DSE approach. In Section 4.4| the proposed DSE approach is exemplified
with the help of a real-world case study. Related work is discussed in Section 4.5{and some

insights are summarized in Section [4.6}

4.2. Motivation

Starting point of the DSE approach proposed in this chapter is a robot perception domain expert
who is capable of expressing a design space as a combination of variability dimensions. To
this end, both functional and architectural variability — expressed in RPSL— of robot perception
systems are considered as design spaces (see Chapter[8). The domain models representing those
variabilities are a) well-formed as they conform to the specified metamodels (see Section 3.6),
and b) checked whether or not they comply with the constraints (see Section [3.7).

However, solely relying on well-formed domain models is merely adequate to carry out design
space exploration for two main reasons. Firstly, there are simply too many design alternatives
even for small domain models (see Section to inspect manually. Secondly, obtaining
those design alternatives manually is already an exercise considered to be prone to errors as
all the constraints of RPSL need to be checked also for each design alternative.

Therefore, an approach to DSE of robot perception design spaces should enable domain experts
to carry out the activities described in the following paragraphs. To support domain experts
in executing DSE it is desirable that those activities are performed by software tools in a

(semi)-automatic manner:

Obtaining Design Alternatives. A DSE is about reviewing valid design alternatives for a
given design space, thus a DSE approach should provide mechanisms to automatically
obtain from a domain model the set of all possible — and valid with respect to structural

constraints — design alternatives.

Inspecting Design Alternatives. In order to let domain experts inspect design alternatives
they need to be depicted in an adequate manner. As discussed in [146] it is desirable to
depict design alternatives in a syntax the domain expert is familiar with. In the context of
this thesis, design alternatives obtained while performing DSE are represented intuitively
in order to minimize the cognitive effort the domain expert need to provide to inspect
them. This has effect to increase both the speed and the quality of the design space

exploration.
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Filtering Design Alternatives. Very often domain experts are not interested in the complete
set of design alternatives, but might want to review those design alternatives having
certain properties solely. For example, an execution time below a given treshold, usage
of certain processing components and sensors and so forth. Hence, a DSE approach
should thus let domain experts filter out valid design alternatives that do not meet their

expectations regarding the previous properties.

4.3. Approach

An overview of the DSE approach proposed in this thesis is depicted in Figure Here,
the DSE activities described in Section 4.2 are arranged in a process model. The first activity
performed by a domain expert is the specification of domain models using RPSL. Those domain
models are stored in a repository. Based on those models design alternatives are obtained.
This activity is automated by the language workbench Lightning described in Section
In order to enable domain experts to inspect those design alternatives they are automatically

translated in a graphical representation.

Depending on the goals of the DSE the domain expert decides whether or not to terminate the
exploration. In essence, two options are available, namely a) the domain expert recognizes
that there are too many design alternatives so she/he needs to filter and guide the exploration,
or b) the RPSL domain models need to be refined in case unfeasible design alternatives have
been identified. Those refinement activities, for example, adding perception graphs, removing

features and so forth, are well-supported by RPSL.

4.3.1. Specification of Domain Models

In order to specify domain models for the sake of design space exploration one simply needs

to employ RPSL to express functional and architectural design decisions.

4.3.2. Generation of Design Alternatives

Before design alternatives can be obtained they need to be rigorously defined. Given a domain
model — expressed in RPSL— a conforming design alternative consists of a selection of features
and of a selection of exactly one perception graph per selected feature. Those selections are
called configurations. The design alternative also contains what is called a super graph, the
super graph being a well-formed composition of all the selected perception graphs. Having the
concept of a super graph enables domain experts to identify perception graph compositions
which were not foreseen and arise simply by selecting certain features. Like the formalization



62 Exploring the Design Space of Robot Perception Systems
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Figure 4.1. The proposed design space exploration process composing activities and repositories of
artifacts.

of RPSL metamodels (see Section [3.6), configurations and super graphs are defined in Alloy
(see Figure[f.2). This allows us to employ Alloy to obtain all possible design alternatives.

Obtaining design alternatives is achieved by leveraging the Alloy Analyzer. The analyzer relies
on boolean satisfiability (SAT) solvers in order to find in a finite domain the set of all instances

conforming to its constraints.

The structural constraints expressed in Alloy for the design alternative model (see Figure

are, in the same order:

e With respect to configurations:

For each selected feature there should be exactly one perception graph mapped to
this feature in the resolution model and selected in the configuration.

The number of selected graphs should correspond to the number of selected features.

The set of selected feature should not be composed of features which are excluding

each other or their parents.

The set of selected feature should contain at least one leaf feature implementing each

required feature.

All selected features should be leaf features.
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module AlternativeModel
open ResolutionModel

one sig Configuration{
selectedFeatures: set Feature,
selectedGraph: set PerceptionGraph,

H
all f:selectedFeatures | one p:PerceptionGraph| f->p in feature2Graph.mapping and p

in selectedGraph

#selectedGraph = #selectedFeatures
no disj x,y:selectedFeatures.~*(spec+contain) | x.excluded=y
selectedFeatures.required in selectedFeatures.~*(spec+contain)
selectedFeatures.(contain+spec)=none

3

one sig SuperGraph extends PerceptionGraph{

H
components= compGraph[Component] + compGraph.Component
components=Configuration.selectedGraph.@components
this.contains[Configuration.selectedGraph]

}

\.

Figure 4.2. An Alloy model defining a design alternative. In order to access the concepts of features
and perception graphs (see Section the Alloy model opens the resolution model.

e With respect to the super graph resulting from the given configuration:
— The components of the super graph should have at least one input/output connection.
— The super graph contains all selected graphs.
— The components present in the super graph are those composing the selected graphs.

In order to exemplify the concepts introduced above the slip detection domain example from
Section [3.3]is employed. Assuming the functional variability of the slip detection example is
expressed by three features, namely Force, Slip and Combined and all of them have a containment
relation with a root feature. In addition, those features are resolved by exactly one perception
graph. A configuration which selects these three features would then yield in a super graph
respectively design alternative expressed in Figure[3.3]as the constraints of the super graph are
respected. For example, at least one input port of the Combined Slip component and so forth

are connected.

4.3.3. Visualization and Inspection of Design Alternatives

The design alternatives obtained by the Alloy analyzer (see Section [4.3.2) need to be inspected
by the domain expert. To this end, design alternatives should be visualized in an - for domain
experts — intuitive manner. By using Alloy a graphical representation of instances (design
alternatives) is already available out of the box. Here, the Alloy analyzer generates a graphical
visualization of instances following the structure of their origin, that is elements typed by
given signatures are represented as boxes and relations between those elements are depicted
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module VisualisationTransformation
open AlternativeModel
open VisualLanguageModel

one sig CREATE{
mainFrame: Component -> INVISIBLE_CONTAINER,
inputFrame: ProcessingComponent -> INVISIBLE_CONTAINER,
component: Component -> RECTANGLE,
inputPort: Input -> RECTANGLE,
outputFrame: Component -> INVISIBLE_CONTAINER,
outputPort: Output -> RECTANGLE,
arc: Output -> Input -> CONNECTOR,
}
pred guard_component (c:Component) {
c in SuperGraph.components
}
pred value_component (c:Component, r:RECTANGLE) {
r.color=(c.weight=1 implies WHITE else (c.weight=2 implies YELLOW else ORANGE))
}
pred guard_arc(o:0Output, i:Input) {
o->i in SuperGraph.connections
}
pred value_arc(o:0Output, i:Input, c:CONNECTOR) {
c.source=CREATE. outputPort [o]
c.target=CREATE. inputPort [i]
c.color=RED
}

\.

Figure 4.3. This F-Alloy excerpt contains all the mappings used to define how the super graph of a
design alternative is to be rendered and a selection of two pre and post conditions (called
guard and value predicates) applying to two of those mappings, namely, component and
arc. The component mapping defines, according to its associated guard predicate, that each
component composing the SuperGraph resulting from the current configuration is to be
rendered as a rectangle. The value predicate then assigns a color to that rectangle given
the weight associated to the component it represents (see Section [#.3.4). The arc mapping
and its associated guard and value predicate together define, that for each pair of output
and input port connected in the resulting SuperGraph, a red connection has to be created
between their visual representations (defined by the inputPort and outputPort mapping,
respectively).

by an arrow. However, for the sake of design space exploration such a standard depiction of
design alternatives is not feasible as the visualization would not convey any domain-specific
information. For example, both features and perception graphs would be represented in the
same manner — as they are expressed as Alloy signatures — although both concepts differ
significantly.

In order to enhance the readability of design alternatives this work employs Lightning, an
Alloy-based language workbench. In essence, Lightning is an Eclipse-based plug-in allowing
the definition and instantiation — using Alloy — of domain-specific languages. Here, the domain
specific visualization of design alternatives is given as a model transformation from the
alternative model (see Figure to a visual language model. This transformation is expressed
in F-Alloy [147], a sub-language of Alloy and integrated in Lightning, allowing the specification
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Figure 4.4. A youBot mobile manipulation robot deployed in a factory-like environment composed
of different service areas. Here, the picture shows an area to insert objects and an area
composed of a conveyor belt.

of efficiently computable model transformations. An excerpt of such transformation is given
in Figure

Having visualized design alternatives, domain experts are required to inspect them. Depending
on the overall exploration objectives domain experts will either conclude their exploration

if they are satisfied or they will continue to explore the design space by adding filters (see
Section 4.3.4).

4.3.4. Filtering of Design Alternatives

From an architectural perspective design alternatives are basically compositions of perception
graphs which in turn are built up from sensing and processing components. Very often domain
experts are capable to express functional and non-functional properties of those components.
For example, different implementations of the SURF feature descriptor available in
different processing components, a domain expert is often competent to assign weights to these
components. Depending on concrete application requirements a weight might have different
meaning such as precision, processing time, memory overhead and so forth. Expressing
those weights is important when it comes to DSE and corresponing filtering where certain
perception graph compositions are possibly unexpected for domain experts. For example,
two graphs are composed in a design alternative and both graphs have a computationally
expensive component yielding in an unfeasible design alternative due to timing issues. Having
a weighting mechanism a domain expert can filter out those design alternatives not meeting
her /his expectations. In order to support such filtering RPSL is extended with the notion of
weights assigned to each component which enables domain experts to discriminate perception
graphs by their characteristics.
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rpsl.feature_model do
name "PickandPlace"
add_feature "Application", :is_root
add_feature "ServiceArea", :is_mandatory, :child_of => "Application"
add_feature "ObDetection", :child_of => "Application"
add_feature "ObRecognition", :requires => "ObDetection", :child_of => "Application"
add_feature "ContRecognition", :child_of => "Application"
add_feature "CavRecognition", :child_of => "Application"
end

Figure 4.5. The functional variability expressed in RPSL. Note, the ServiceArea detection feature is
mandatory and the ObjRecognition feature requires the ObjDetection feature.

4.4. Case Study

In this section the proposed DSE approach is exemplified with the help of a case study. The
study has been developed in the context of two recent robot competitions, namely RoCKlIn [[149]
and RoboCup@Work [6]]. In those competitions mobile robots such as a youBot (see Figure
are deployed in factory-like environments. Here, the environment is composed of service
areas and each service area represents a region of the factory having a specific purpose for a
particular task. For example, areas to load objects, to insert objects into object-specific cavities
and to place objects into containers. Depending on a goal specification given by some factory
worker the task of the robot is to pick objects such as screws, nuts and profiles from containers

and to place and eventually insert them at corresponding service areas.

4.4.1. Specification of Domain Models

From a robot perception perspective a huge functional variability is required to achieve the
task at hand, namely features to detect, recognize and possibly track service areas and objects
are are required. The variability — expressed in RPSL— is shown in Figure [4.5/and depicted
graphically in the upper-part of Figure[d.7]

The feature model shown (see Figure includes five leaf features representing high-level
perception functions. More precisely, the features described in the following paragraphs are
crucial for a pick and place task of industrial objects, for example, screws, nuts and so forth, in

the factory-like environment:

e The ServiceArea detection feature allows to delimit the service area by detecting the
dominant plane in the surrounding of the robot. This information is required by all other

features as objects, container and cavities are all lying on this dominant plane.

e The ObDetection feature provides a bounding box for each object present in the service

area.
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rpsl.sensor_component do

name "Kinect"

add_port :out, "outCloud", "xyzRGB"
end

rpsl.processing_component do
name "PlaneDetect"

weight 2

add_port :in, "inCloud", "xyzRGB"

add_port :out, "outPlane", "Plane"
end

rpsl.perception_graph do
name "ServiceAreal"
connect :src => "Kinect", "outCloud",
:sink => "PlaneDetect", "inCloud"
end

\.

Figure 4.6. This perception graph specification proposes to perform the service area detection by using
a Kinect RGB-D camera and a plane detection algorithm such as RANSAC [150]. The Kinect
is declared as a sensor component whose output port is called outcloud (typed xyzRGB) and
the plane detection algorithm is declared as a processing component whose input port is
called inCloud (typed xyzRGB) and output port is called outPlane (typed Plane).

e The ObRecognition feature provides, when possible, a pose and a label for each detected
object. The ObDetection feature is thus required by this feature.

e The ContRecognition feature provides, when possible, a pose and a bounding box for

each container present in the service area.

e The CavRecognition feature provides, when possible, a pose for each cavity present in
the service area.

Each perception feature is resolved by one or more perception graphs. For example, the RPSL
specification of a perception graph associated to the ServiceArea detection feature is given
in Figure It is important to note that this perception graph composes the super graph

depicted in Figure 4.7|as it is a possible implementation of the selected feature ServiceArea.

4.4.2. Generation of Design Alternatives

The first step in order to obtain design alternatives is the translation of RPSL models — like
the ones given in Figure [4.6) - into Alloy models. Those models are constrained so that the
only instance obtainable by Alloy analysis corresponds to the given RPSL specification. This
translation is done automatically as it is very straightforward, namely each element of the
specification is declared as a singleton extending the appropriate type and fields of those
elements having their value bound by constraints. Subsequently, design alternatives are ob-
tained by performing an Alloy analysis on the alternative model. The Alloy analysis produces

conforming instances by translating constraints of the analyzed model into a boolean formula
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which is then solved by off-the-shelf SAT-solvers, for example, miniSAT [151], SAT4] [152] and
so forth.

4.4.3. Visualization and Inspection of Design Alternatives

As discussed in Section [4.3.2] instances obtained by the Alloy analysis are given as input to
the F-Alloy interpreter embedded in the Lightning tool along with the model transformation
given in Figure This interpreter builds from the transformation specification and its input
the corresponding visual language instance that can then be rendered to the user. Such a visual
feedback, obtained from the analysis of the alternative model (see Figure , is depicted in
Figure

The figure shows a domain specific visualization of an alternative model instance. The tree
in the upper part of the visualization represents the feature tree of the case study, in which
selected features are highlighted in green. For the sake of readability the alternative model
to visual language transformation was modified to mask requirement (feature dependencies)
arrows. This change can be undone at anytime by the user. The lower part of the visualization
depicts the super graph resulting from the composition of perception graphs mapped in
the resolution model to the highlighted selected features. It is important to note that this
super graph was not specified in RPSL and is resulting from the Alloy analysis of those well

constrained models.

The red and green squares surrounding each component are their output and input ports,
respectively. The PlaneDetect component appears in yellow as it is assigned a weight of 2 in
the RPSL specification. The black box in the top left corner lists additional properties of the
selected configuration. In this example the total weight of the super graph implementing the
selected features is shown.

4.4.4. Filtering of Design Alternatives

Domain experts can further guide the exploration by defining additional constraints in the
alternative model or by changing the weights assigned to each component. Adding constraints
has as effect to reduce the number of instances conforming to the alternative model, thus
narrowing the set of design alternatives to be considered. This mechanism becomes useful

when the domain expert is interested in design alternatives showcasing specific properties.

In the following paragraphs two examples of constraints used to guide the design space

exploration of the case study are discussed.

Specific Feature/Component Selection. Assuming a domain expert is interested in review-

ing all design alternatives implementing the ObjectRecognition feature and whose su-
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Configuration ppiication
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Figure 4.7. A screenshot of a visualization of an design alternative as depicted in the Ligtning language
workbench.

pergraph contains a sensor providing xyzRGB data in order to ensure that ObjRecognition
can be carried for this kind of input data. The Alloy constraint used to express this is
shown in Figure

Optimal Solution Selection (with respect to the attributed weights). Assuming a domain
expert is interested in reviewing design alternatives with exactly three features imple-
mented and having a minimal weight. The Alloy constraint used to express this is shown
in Figure 4.8 with 1 incrementally increasing until a design alternative is found.

4.5. Related Work and Discussion

The proposed DSE approach builds up on methods and tools from several domains, namely
Electronic Design Automation (EDA)), Robotics and Software Engineering.

In the electronic design automation domain the DSE problem is often framed as a constrained
optimization problem where one or more objectives such as timing, energy and costs of
material need to be optimized for a particular task. For example, the work of Hourani et
al. [153]] synthesizes designs of digital signal processors performing well in terms of area,
throughput and power dissipation. The overall design space of their application domain
is reduced by user-defined performance constraints. Here and in other work, for example
Oh et al. [154], design space exploration is performed with the aim to optimize one or more

objectives.

The approach presented in this chapter is focused on first obtaining all possible design al-
ternatives differing mainly on the structural appeareance (e.g. whether certain perception
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ObjRecognition in Configuration.selectedFeatures and some
(SensorComponent & xyzRGB.~type.~output ) & SuperGraph.components

#Configuration.selectedFeatures=3 and SuperGraph.getWeight[]I< n

Figure 4.8. Alloy constraints used to filter design alternatives.

graphs are connected or not) and without considering further properties. As demonstrated in
Section[4.4] this appearance carries enough domain knowledge such that a domain expert can
seamlessly perform an exploration even without prior knowledge of intermediary languages
and concepts.

As already shown in Chapter 2] MDE approaches are getting popular in robotics to structure
and manage specific aspects of a design space. Those approaches propose domain-specific
languages allowing the intuitive representation of functional [87], architectural [83] [99] [84]
and platform [83] [99] variabilities. Although the development of robotic systems greatly
benefits from those approaches (e.g. through model validation, model reuse and code genera-
tion), providing model-based solutions to design space exploration remains challenging. In
particular, modeling design spaces as a whole —i.e., taking into account all variabilities — and
using those models to perform a systematic and possibly (semi)-automatic exploration has not
yet been achieved. Thus, the proposed DSE approach can be considered as the first one in the
domain of Robotics Software Engineering enabling domain experts to explore a design space

in a systematic and (semi)-automatic manner.

The design space to be explored in presented approach to DSE is based on the combination of
functional and architectural variability. It is important to emphasize that the representation of
those dimensions is inspired by metamodels described [87]. Similar to their work, resolution
models are employed to compose functional with architectural variability, but in a domain-
specific manner —i.e., an architecture is represented as a perception graph. In addition, the
following small, yet important change is made: a perception feature resolution yields one or
more perception graphs in order to express different architectures, with different characteristics
for the same capability. This enables domain experts to compose different perception graphs
in the exploration phase.

In the domain of Software Engineering Saxena et al. [146|] showed that DSE can benefit from
approaches based on Model-Driven Engineering advances. More precisely, authors have
shown that a framework allowing the definition of a specification language and the explo-
ration of design spaces defined in that language can be implemented. On the contrary, the
work presented in this thesis provides an alternative solution to the problem of providing a
DSE framework by reusing already existing tools and technologies rather than implementing
a framework from scratch. The advantages of such an approach is that — the RPSL to Alloy
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transformation being provided — an RPSL expert can directly perform design space exploration
without learning any new intermediate language. However, guiding the design space explo-
ration through the addition of Alloy constraints requires some basic Alloy knowledge which
can be seen as a limitation to the proposed approach. Nevertheless, a general trend is to define
graphical representations for constraint languages (see e.g. [155] and [156]) to make them more
user-friendly, suggesting the possibility that such a language could also be defined for Alloy.
The presented approach also differs from [146] with the domain specific visualization of design
alternatives provided by the framework. The visualization definition can be used out of the
box by neophytes but can also easily be modified by Alloy experts. It is still to be determined
whether or not the visualization provided by the proposed DSE approach is suitable for other
case studies.

A limitation of the current approach is the restriction of the design space to two types of
variabilities, namely functional and architectural variability. For more advanced application
scenarios a domain expert would also be interested in taking into consideration other design
space dimensions as the deployment variability (see Section [3.5.3). In a future work the
definition of multi-dimensional design spaces needs to be investigated. This could be achieved
by using jointly several DSLs or by providing a general language to express them. It would
then be interesting to see whether or not the approach proposed in this chapter can still be

applied to explore such multi-dimentional design spaces.

As the generation of design alternatives is based on analyzing Alloy models it is worth noting
that the analysis itself is a generally undecidable problem. Therefore, the Alloy Analyzer
employs a finite scope approach using SAT-solvers where the number of objects corresponding
to each signature is fixed. As demonstrated in the case study, the small scope approach is also
feasible for reviewing design alternatives in an incremental manner. Here, the exploration
scope is possibly enlarged by the domain expert depending on his/her exploration objectives

(e.g. assessing all design alternatives, specific alternatives and so forth).

4.6. Summary

This chapter introduced a structured, systematic approach to DSE for robot perception systems.
The approach defines a design space as a combination of functional and architectural variability
expressed in RPSL. As both RPSL and the DSE approach are based on Alloy it is possible to
exploit Alloy analysis mechanism to obtain design alternatives in an automatic manner. By
utilizing latest MDE technologies, namely F-Alloy and the Lightning language workbench
the obtained design alternatives are visualized in a domain-specific way. The DSE approach
contributes significantly to an overall and structured development of robot perception systems

where specifications are written (see Chapter , explored and possibly modified.
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Chapter 5.

Implementing Semantic Queries about Domain
Models

“The purpose of abstraction is not to be vague, but to create a new semantic level in
which one can be absolutely precise.”
— Edsger W. Dijkstra, 1939-2002

5.1. Introduction

Chapters and 4{showed how MDE-based approaches can remedy the problem of implicit
knowledge representations in robotics. However, these approaches are usually regarded as a

tool for human robot designers — the robots themselves are denied access to this knowledge.

In MDE such knowledge fulfills varying requirements such as documentation of approaches,
visualization of concepts or the generation of code. The latter point is most frequently associ-
ated with MDE and is a major focus in today’s robotics software engineering (see Section [2.4).
It involves modeling a complete system — or a part of that system — at design time. Then, the
software is generated and the modeling effort is forgotten.

This chapter argues that the next step is to provide robots with these explicit knowledge
representations and let them reason about their software at run time. It is one of the key
ingredients for autonomous and intelligent robots which are able to adapt to their tasks and

dynamic environments [114].

Thus, the core problem being investigated in this chapter is: How to grant robots access to the
software-related models at run time? This involves a) persistently storing the different notations
and formats of DSLs, b) composing the various domain models and c) querying over multiple
domains at design time and run time.

73
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To a certain extent, the AI community has already tackled this requirement, as evidenced by
knowledge-enabled approaches like KnowRob [157], RoboBrain [158] or the OpenRobot Ontol-
ogy (ORO) [159]]. At the core of these approaches, graph-based knowledge representations such
as ontologies provide common representations and query interfaces to the robot’s run-time

environment.

This chapter introduces the following contributions for software-related knowledge. Firstly,
the concept of labeled property graphs as simple, yet powerful means to persistently store
and compose domain models originating from different functional domains and software
development phases is being proposed. Secondly, it demonstrates how the labeled property
graph enables semantic queries in order to derive implicitly defined information based on
stored and composed domain models. Those queries can be instantiated both by a) domain
experts, for example to analyze systems at design time and b) robots, for example, to adapt

systems at run time.

The remainder of this chapter is structured as follows. In Section[5.2]a case study is introduced
exemplifying the challenges which are inherent in utilizing model-based approaches in robotics.
In Section [5.3| the labeled property graph is introduced as a means to store and compose
domain models of various sorts. Section 5.4 explains the feasibility of the aforementioned
graph structure as a suitable representation in order to raise queries and to derive explicitly and
implicitly defined information. Based on the previously mentioned graph and query concepts
the case study is implemented by transforming RPSL and DepSL in a graph structure. Related
work is discussed in Section [5.6/and Section[5.7]summarizes the contributions presented in this
chapter.

5.2. Motivation

This section exemplifies the structured, model-based development of a real-world robotic
application based on the RAP (see Section [2.4.1). Although the RAP forsees eight different

phases, only four phases will be used in the following section to motivate the scenario.

5.2.1. Application Scenario

The application constitutes a quadrocopter instructed to fly in a GPS-denied indoor environ-
ment with time-varying lighting conditions (see Figure [5.I). The environment is equipped
with fiducial markers [160] used by the quadrocopter to localize itself.

As discussed in [161], the recognition performance in the presence of time-varying lighting
conditions significantly depends on adapting the modifiable parameters of the marker recog-
nition algorithm at run time. Therefore, the quadrocopter needs to continously monitor the
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Figure 5.1. The GPS-denied indoor environment under varying lighting conditions seen from the
perspective of the quadrocopter.

lighting condition and eventually adapt its software architecture to continue properly estimate
its own pose. However, as the computational hardware of the quadrocopter is limited it is
not possible to execute all functionalities (e.g. marker detection, flight control etc.) for the
task at hand on the same platform. Therefore, a remote computer with time-varying memory

resources is available where functionalities can be swapped out.

5.2.2. Model-based Development

In order to apply the RAP or any other process model in combination with a model-based
development approach, textual and graphical DSLs are applied in certain development phases
to create domain models. As discussed in Chapters [2] and [3 those models make domain
knowledge explicit, which on the one hand, is relevant for a functional or architectural concern
of the application under study and, on the other hand, important to represent knowledge

during a particular development phase.

Domain models are either created by humans supported through development tools, for
example, integrated development environments or by run time environments in an (semi-
)automated manner. In both cases, domain models come in various forms such as source
code, configuration files, drawings or technical documentation to name a few, all of which are
usually represented in heterogenous formats (see Chapter[2). For example, the domain models
created by RPSL and DepSL are Ruby code (see Chapter [3).

Therefore, it remains challenging to compose those domain models technically and concep-
tually in order to infer answers about the system as a whole. The situation is exemplified in
Figure[5.2l Here, in the platform building phase, the quadrocopter’s computational hardware
is modeled with DepSL (see Chapter E[), which leads to a textual model which then makes
connections and properties such as the number and size of physical memory explicit. Moreover,
in the capability building phase some perceptual components are modeled with RPSL. A typical
question a developer could ask at design time would be: Which components are executable on
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the robot? Answering this question requires the storage of heterogenous domain models in a
somehow unified manner as well as their composition, at design time, in a meaningful way so

that questions can be answered.

It is important to note, that some domain models can only be partially instantiated or not
instantiated at all at design time, as binding information is not (yet) available. For example,
the concrete memory usage of an application is not known before deployment time and
depends on the execution context. Therefore, several authors in robotics [70] [162] and software
engineering [163]] argue that domain models need to be created, modified and eventually

executed at run time.

Further, domain models do not necessarily remain isolated. In fact, as shown in Figure
domain models do have implicit links refining some information. For example, the link from
the capability building phase to the functional design phase refines the information of how a
certain feature is resolved in terms of software components. However, all too often those links
are not made explicit, which prevents the systematic composition of domain models at design

time and run time.

In summary, applying a model-based development approach throughout a complete develop-
ment process is rarely done and it remains challenging a) to persistently store and compose
heterogenous domain models in a unified, systematic manner, b) to query composed domain
models originating from different functional domains and development phases, and c) to

systematically modify and employ domain models both at design time and run time.

5.3. Graph-based Storage and Composition of Domain Models

In order to store and compose heterogenous domain models some sort of common representa-
tion or lingua franca that describes those models needs to be defined. From a DSL developer’s
perspective this appears to be a somehow paradox situation as DSL developers usually aim
to define very specific abstractions and representations. Nevertheless, such a lingua franca is
crucial in order to persistently store and eventually compose domain models. Therefore, in

this section labeled property graphs are proposed as such a lingua franca.

5.3.1. Labeled Property Graph

Generally speaking, graphs are not only well-studied and naturally preserve structure, but can
also be easily implemented. A labeled property graph ¢ is formally defined as a quadruple

G=W,EP,L) (5.1)
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Figure 5.2. A schematic representation of a labeled property graph containing heterogenous domain
models, originating from different functional domains and development phases. Some
domain models are semantically connected through links (e.g. RESOLVES which denotes that
the perception graphs implements a feature). Human developers or run-time environments
either insert new elements into the graph or update existing ones.

where V are the nodes and & are the edges £ C V x V of the graph. Additionally, the
graph contains properties represented as key-value pairs (P) and labels (£). Arbitrarily many
properties p € P can be attached to either nodes or edges. Similarly, arbitrary many labels can
be attached to nodes (I, € £) and edges (I, € £).

Example. In order to demonstrate the formal description some examples based on Figure
are provided. It is important to note that the aforementioned generic graph structure is not
sufficient to enable semantic queries (see Section or to enrich the graph with meaning.
Therefore, further constraints on the labeled property graph have to be imposed. There must
be one or more [, € £ attached to any edge in order to give meaning to relations among nodes.
Here, the meaning is expressed by domain-specific labels which are either pre-specified (X’) or
coming from the domain expert (D), please note that (XY UD) = L.

For example, in the capability building phase software components are represented as nodes
in the graph. As they represent components, they are further labeled as Component. Similarly,
atomic features, represented in the functional design phase, are labeled as Feature. In addition,
to link the Aruco component node with the marker detection feature node two edges are
introduced. The first one from Perception Graph to Aruco is labeled CONTAINS and encodes
that a particular component is part of a larger architecture. In this example, the architecture is
represented as an RPSL perception graph (see Chapter 3).
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The second one from the perception graph to the Marker detection feature with the label
RESOLVES encodes that a particular perception graph implements a higher-level description of
a functionality. In addition, properties of the nodes can be attached in the form of key-value
pairs such as the names of nodes, e.g. (Name, Aruco). The labeled-property graph model also
supports the late binding of domain information in the form of uninitialized properties and
nodes. For example, in the deployment phase a description of the location and name of some
executable is provided (represented as a node in the graph). Depending on the deployment
infrastructure or robot software framework used in the application, this node is labeled as
DeploymentFile, RosLaunch or SystemDServiceFile with a link to some process profile node
which encodes execution properties of the deployed process. As the properties of the latter
node are not known before deployment, the values of the key-value pairs remain blank, e.g.
(MemoryUsage, —) and (StartTime, —).

5.3.2. From Domain Models to Graph Models

Until now, the labeled property graph described in the previous section is a general concept and
not integrated, for example, into the developer’s workflow. In order to achieve a programmatic
integration, domain models need to be (semi-)automatically translated to elements of the
labeled property graph (see Equation[5.).

To achieve this, one needs to assess the domain models in terms of their structural entitites
and relations which yields a graph model. The assessment involves the question which entities
of the domain models should be represented as nodes, labels, properties and which should be
represented as edges (relationships). For software-related domain models in robotics, such
as component models, coordination models (e.g. state-charts) or deployment descriptions
the translation step is obvious. The core entities of interest should be represented as nodes,
whereas edges are used to represent connections between entities. For example, states in a
state-chart are represented as nodes and transitions between states are represented as edges.
Following such an approach also paves the way for (semi-)automatic translations of domain

models to labeled property graph representations.

It is worth noting that such an assessment needs to be performed for each DSL where a graph
model should be created. For example, in Section 5.5/a graph model for RPSL and DepSL is
defined.

Depending on the application scenario a developer also needs to decide which and how much
information is translated from a domain model to a graph model. Fortunately, the labeled
property graph model does not impose any constraints here. Developers can either decide to
completely translate domain models to graph concepts or to partially translate them, where
a node simply contains a property which points to the location of the more detailed domain
model, for example, on the disk.
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5.4. Semantic Querying of Domain Models

The question posed in Section namely which components are executable on the robot’s
platform, is a semantic query. As in the context of semantic web technologies (see Bailey et
al. [164]) a semantic query denotes the process of retrieving implicitly defined information
based on the structural information expressed by the underlying representation. Similarly, as
for related approaches (e.g. OWL ontologies, topic maps, and so forth [164]]), the underlying
representation in this thesis is a graph.

In order to answer the previous question, one needs to check which components have a
deployment description which in turn points to the robot’s platform (see Figure[5.2). Realizing
this checking can be achieved by standard graph traversals where information is collected
and checked while the graph is beeing traversed. Although these traversals are application-
independent they can be interpreted in a domain-specific way. That is, what type of information
is collected and checked depends on the instantiation of the graph (e.g. types of nodes,
properties, and so forth) which in turn depends on the meta-model of the translated domain
model. This is what makes a graph such a powerful representation to implement semantic
queries.

In general, semantic queries can be raised both by humans (domain experts) and robots.
Domain experts usually raise queries at design time in order to retrieve meta-information
about domain models (e.g. the coupling and cohesion ratio among model elements, model
duplication checks, and so forth). Robots on the other hand typically raise queries to retrieve
information what is relevant to the current context condition. For example, which components
are required to achieve a certain task. The queries raised at run time typically also incorporate
information which has been bound at run time (see Section|5.3).

5.5. Case Study

As the core contribution of this chapter is not a single, monolithic system, but a general
approach to store, compose and query domain models, it is hard to quantitatively assess
the contribution. Therefore, this section reports on some lessons learned while realizing the
scenario described in Section 5.2l

A model-based development approach has been employed to realize the application described
in Section More precisely, the RPSL and DepSL (see Chapter |3) were used to create domain
models representing a) different marker detection configurations suitable for varying lighting
conditions, b) their associated deployment descriptions encoding name and location of the
executable and c) the computational hardware of the quadrocoptor and remote platform used
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in the application. Those domain models are then stored in a graph database and queried for

the sake of adapting the system at run time.

5.5.1. Implementation Approach

In order to implement the labeled property graph the open-source graph database management
system neo4j [165] is utilized. The neo4j graph database exposes the property-graph model
with nodes and relationships as first-class citizens. By composing nodes and relationships into
arbitrarily connected structures it is not necessary to depend on join operations (relational
databases) or other customized operations (document-oriented databases) to infer connections
between entitites. This allows domain experts to both preserve the structure of domain models
and to compose domain models through labeled edges. Similarly to other professional database
management systems, neo4j supports full ACID (Atomicity, Consistency, Isolation, Durability)
transaction rules. In addition, database drivers for several programming languages (e.g. Java,
Python and Ruby) are available, which facilitates not only the integration of a robot system,
but also embedding it in DSL development tools and frameworks.
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Figure 5.3. A visualization of the labeled property graph model for RPSL and DepSL showing the
different nodes and labeled edges.
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5.5.2. From RPSL and DepSL Domain Models to Graph Models

Before RPSL and DepSL domain models could be stored in a graph database, a graph model
capturing the essence of RPSL and DepSL needs to be created (see Section[5.3.2). In Figure
an excerpt of the graph model both for RPSL and DepSL is shown. The model depicts a la-
beled, property graph with the core structural elements of RPSL and DepSL as nodes (e.g.
PerceptionGraph, Feature, and so forth). Those nodes are connected by labeled edges de-
scribing the meaning of node relations. For example, the label RESOLVES denotes that a Feature
is realized by a PerceptionGraph.

It is worth noting that not every structural element of RPSL and DepSL is represented as a node
in the graph model. For example, the graph model lacks nodes representing the concept of
Input- and OutputPorts (see Chapter [3) as those can be encoded as directed edges between
Port and Component nodes. More precisely, having labels such as PUSHES and PULLS allows
domain experts to express the port directionality in a very comprehensive manner. In addition,
a single edge can be attached with multiple labels where the meaning differs significantly. For
example, the labels EXTENDS and REQUIRES denote whether a Feature is a specialization of
another feature or whether it depends on another feature.

In order to programmatically realize the translation from RPSL and DepSL domain models to
the required neo4j representation the Neo4j . rb [166] object-to-graph mapping module is used.
The module implements the Active Record pattern [167] and facilitates the creation of graph
models and their instantiation in terms of graph database operations (e.g. insertion of nodes,
edges, update of properties, and so forth).

5.5.3. Semantic Querying of RPSL and DepSL Domain Models

In order to implement semantic queries the neo4j query language Cypher is used. Having
Cypher at their disposal, developers can declaratively query and update the graph database.
The general principle of a Cypher query on the graph is that of matching a graph pattern of
the following form: (A) — [R] — (B). Here, A and B are nodes and R is an edge. By using
such a statement in a MATCH clause the graph database retrieves those nodes and edges where
there is an outgoing relationship (edge) between A and B of type R. This pattern is the general
principle of queries which can be arbitrarily extended and combined with directed, undirected,
optional and multi-step relationships among nodes and more advanced clauses such as RETURN
for node/edge retrieval and CREATE for node/edge creation to name a few.

In Figure 5.4{a simple, yet realistic example is given. Here, the domain model of Figure
where features, components and so forth are represented (stored) as nodes and connected
through labeled edges encoding the relations among these nodes is queried. The query then
retrieves deployment descriptions for those components that have a relation to the marker
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MATCH (f:Feature)-[*]-(c:Component) WHERE f.name = ’MarkerDetect’
MATCH (p:Platform)<-[:EXECUTABLE_ON]-(d:Deployment) WHERE p.name = ’Remote’
RETURN d;

Figure 5.4. A Cypher query involving different domain models.

detection feature and are executable on the remote platform. This is achieved by making
relations between domain models explicit. It is important to note that the EXECUTABLE_ON
relation links the platform domain with the deployment domain which subsequently allows
the filtering of the results in both domains through additional WHERE clauses. As the names
of edges and nodes appear directly in the queries they need to be meaningful and consistent.
This fact needs to be considered during the creation of a graph model (see Section[5.5.2). For
example, naming the relation EXECUTABLE_ON only makes sense when the edge is directed

from the deployment description to a platform description and not vice versa.

Generally speaking, the case study demonstrates the need to query domain models originating
from different functional domains and development phases. By employing relatively simple
queries (see Figure a developer can incrementally extend them (see Figure in order
to derive the information required for the task at hand. In the same way a developer can
cope with growing graph databases by concatenating several MATCH clauses. Also additional

constraints can easily be included through additional and advanced WHERE clauses.
In the context of the case study the following queries have been developed:

o To retrieve those components required to realize the marker detector feature, but which
are also deployable on the remote computer (see Figure[5.4).

o To retrieve those platforms meeting the memory demand of the perception graph realizing
the marker detection (see Figure[5.5).

e To check whether the marker detector feature can be deployed with different camera
resolutions. That is, whether or not camera components (see Figure with different
resolution properties are part of a perception graph realizing the marker detector feature.

o To retrieve those components required to realize the marker detector feature, but which
have been deployed in the past and their average memory usage was below a certain
threshold.

o To check whether the CPU workload would exceed an application-defined limit when the
marker detector and the flight control were both deployed on the same platform. CPU
workload profiles of software components are either acquired at run time or have been
annotated at design time.
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MATCH(f:Feature {name: ’TactileSlip’})-[*#]-(c:Component)
WITH DISTINCT c

WITH SUM(c.memory_demand) as MEM

MATCH (p:Platform)<-[:EXECUTABLE_ON]-(d:Deployment)
WHERE p.memory_available >= MEM

RETURN p;

\.

Figure 5.5. A Cypher query retrieving the platforms meeting the memory requirements.

5.5.4. Run Time Overhead

One might argue that the application of a graph database system introduces a significant run
time overhead on the overall system. In order to investigate this question the experiment

described in the following paragraph has been conducted.

A graph database was populated with N domain models (see Table of potential marker
detectors, all of them varying in configuration properties. Here, N does not denote the number
of nodes in the graph. In fact, the number of nodes is approximatly three times N as additional
nodes are integrated, for example, to express deployment and platform information (see

Figure .

On a standard personal Computelﬂ with Linux Ubuntu 14.04, Version 2.2.5 of the neo4j graph
database different scenarios were replayed. The scenario consists of logged data, namely
the current lighting condition and the available memory available on the two platforms (see
Section 5.2). During each simulation step, a component decides which marker detector shall
be executed on which platform. The decision is driven by the available memory and by the
current lighting situation. By employing the query shown in Figure 5.5/the component derives
the platforms where the marker detector can be deployed without violating the memory
demands. Subsequently, the component employs the algorithm described in [161] to find
out which marker detector is suitable for the current illumination condition. Once a marker
detector and platform is selected, the component stops the current marker detector and starts
the new one if it is not already being executed. In addition, some process meta information
about the deployed marker detector is stored, namely the process start time and the process
ID. This information is inserted and linked to the corresponding marker detector in the graph
database. In summary, two graph database operations are performed, namely insertion and

querying.
The experiment aims to investigate the run time overhead of those operations. To this end, the
time to perform graph database operations were measured. Those measurements are related

to the timing measurements of the adaptation operations, namely starting and stopping an

executable. Here, the executable is a C program implementing the marker detector. For each N,

ntel Core i7-3632QM CPU 2.2GHz x 8 with 8GB RAM



84 Implementing Semantic Queries about Domain Models

’ ‘ Graph DB Operations ‘ Adaptation Operations ‘
insert query start stop
N U o U ‘ o U ‘ o U ‘ o
10 26.861 5.936 4.083 1.274 1.491 2.299 0.066 0.023
100 27.766 6.385 7.323 3.198 1.602 1.906 0.072 0.025
1000 26.599 5.942 8.443 2.937 1.670 2.731 0.065 0.021
10000 26.308 6.208 7.901 2.476 1.651 3.345 0.074 0.082

Table 5.1. Timing results of the graph database operations versus adaptation operations given in
milliseconds.

the experiment was repeated 100 times and Table [5.T|reports mean (y) and standard deviation
(0) of those timings. As seen in Table the insertion operation seems to be independent
of N. This can be explained with the fact that no graph traversal is required as the exact
location of insertion is known, namely next to the selected marker detector. Interestingly,
the impact of N on the timing of the query operation is rather limited as there is only one
major increase from N = 10 with 4ms to N = 100 with 7ms. To which extent the queries
can be optimized through caching or other mechanism remains to be investigated and also
depends on application-specific graph structures. In summary, the graph operations are more
costly than the adaptation operations. However, this also depends on how the adaptation
operations are implemented. For example, not preserving the state of a component as done in

this experiment is faster than saving the state before stopping the component.

5.6. Related Work and Discussion

The application of databases in robotics is not a new concept. In fact, Niemueller et al. [168]
have shown that it is feasible to apply a document-oriented database like MongoDB [169], even
for logging raw sensor data and analyzing robots” behavior in retrospect. Also knowledge-
enabled and ontology-based approaches such as KnowRob [170] [157], RoboBrain [158] or the
OpenRobot Ontology (ORO) [159] rely on knowledge bases to store and query specifications
of robots, their capabilities, tasks and environments. Those approaches are complementary
to the graph databases proposed in this chapter. The effort bridges the gap between a) the
knowledge descriptions about robot’s capabilities, tasks, and so forth; and b) the knowledge
specifications about the implementation of the software that solves the tasks.

In [99] the RobotML language is introduced which enables a domain expert to specify robot
system architectures, communication mechanisms and the behavior of components. Interest-
ingly, the development of RobotML was based on an ontology supporting the DSL designer
by providing concepts specific to the robotic domain. The process of defining an ontology is
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somehow related to the process of defining a labeled property graph. However, in RobotML
the ontology solely supports the DSL domain analysis, whereas in the approach presented in
this chapter the domain models carry their meaning into the robot’s run time.

It is worth noting that working with labeled-property graphs reveals some analogy with the
four-layered metamodeling hierarchy as described by the Object Management Group’s (OMG)
Meta-Object Facility (MOF) [28]]. In the MOF the MO layer are real-world instances which are
represented by models on the M1 layer. The M1 layer conforms to a metamodel on the M2
layer which in turn conforms to a meta-metamodel on layer M3. It can be argued that a graph,
such as the one depicted in Figure is just a different representation of one or more M1
models. Therefore, the set of available properties P and labels £ from meta-models on the M2
layer can be derived. Consequently, the graph in Equation5.T|aligns with the meta-metamodel
of the M3 layer. Obviously the graph structure itself does not constrain the attachment of
properties and labels to the nodes and edges. In the context of this thesis the well-formedness
and validity of specifications is achieved by the approach presented in Chapter 3| Only then
are the valid models transformed into the graph representation. To which extent M1, M2
and M3 models should be stored in the graph database remains to be investigated and also

depends on application requirements.

In robotics [70] [171] and software engineering [96] the authors have already investigated
the application of software-related models for robots at run time. They demonstrated how
software-related models can be employed to resolve dynamic variability faced at run time such
as changing environments and decreasing resources. In order to derive adaptation actions,
different adaptation principles are employed (e.g constraint optimization methods [171]). How-
ever, irrespective of the underlying adaptation principle, all run time adaptation approaches in
robotics need to access and query software-models originating from different domains and

process phases.

Therefore, the presented approach is a complementary building block for developing adaptive
robot software architectures. More precisely, the work relates to the knowledge building block
where domain models are placed of the well-known MAPE-K (Monitor, Analyze, Plan, Execute
and Knowledge) [163] reference architecture. This relation will be discussed in more detail in
Chapter 6]

By storing such models in a graph database domain experts can, use their familiar, domain-
specific tools and notations and use a common interface to query these models. Due to
the inherent graph-based nature of most models, the storage in a graph database provides
an integration point for further model-based approaches, for instance, those surveyed in
Chapter

In [172], the ModelBus tool integration technology is presented. ModelBus targets large-
scale, distributed model-based software development environments and provides services to
orchestrate and manage modeling artifacts. Examples of those services are model versioning,
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model exchange, and so forth. Unlike the approach presented in this chapter ModelBus lacks
the means to query the modeling artifacts.

The case study demonstrated that a better understanding of the implications of models on the
run time architectures — as seen in the application — is required. For example, which aspects of
the run time system should be represented and how to implement the required monitoring
facilities such as probes for performance measurements and so forth. In order to tackle some
of these issues, Chapter|f] proposes a reference architecture which structures the development
of adaptive applications as those considered in this chapter.

Until now, very few systems in robotics (see Biggs et al. [173]) have been implemented by
following a completely model-based development process. One reason for this could be the
DSL cacophony problem (see Section 3.8), meaning that a vast number of (very relevant) DSLs
exists (see Chapter [2), but their adoption and integration into an overall system remains
challenging. To this end, a common interface of graph databases could offer a means to lower
the burden of this integration effort.

5.7. Summary

The growing interest in software engineering for robotics has already resulted in models and
DSLs (see Chapter[2). Thus, a logical next step is to apply these models at run time by granting
robots access to software-related models. This chapter proposed labeled property graphs and
graph databases as powerful means to achieve this step by storing, composing and querying
domain models which in turn facilitates the development of semantic queries. Those queries
make implicitly defined information accessible and raise the robots” awareness of its software
capabilities.



Chapter 6.
Deploying Robot Perception Systems

“Controlling complexity is the essence of computer programming.”
— Brian Kernigan, 1942—

6.1. Introduction

Deploying complex robot perception systems on real robots and getting it to run reliably
is a challenging task to be performed by developers in the robot application development
process (see Chapter [2). In order to deploy robot perception systems, domain experts need
to go through each architectural view (see Figure and answer several questions. For
example, which components are realizing a certain functionality and which shall be deployed
as processes or threads on which computational platform? Such a question can be considered
as a verbalization of the highlighted links among architectural views as depicted in Figure

In order to answer those questions, knowledge about different architectural aspects — which
can be expressed with RPSL and DepSL (see Chapter 3) — is fundamental for deploying robot
perception systems. Furthermore, deployment includes also two additional activities, namely
deployment planning and execution. According to the deployment specification [174],
deployment planning “...is an activity that takes the requirements of the software to be deployed, along
with the resources of the target environment on which the software will be executed, and decides...how
and where the software will be run in that environment‘ﬂ

It is important to note that the complexity of the planning task increases significantly when
having to cope with heterogenous, networked hardware on large-scale integrated robots. For
those robots the question which platform should execute a given set of processes and threads

n the context of this work, the software to be deployed are perception graphs and the target environment is
expressed in terms of computational architectures (see Chapter [3). From now on the term platform will be used
to describe a computational architecture which provides the resource needed to deploy and execute perception
graphs.

87
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Figure 6.1. The architectural views employed for the design and development of robot perception
systems as introduced in Chapter 3| For deploying robot perception systems the links
visualized in red are of importance.

is challenging to answer, as there might be several options. Thus, deployment planning as
defined above is required.

Once a deployment plan is found, it needs to be executed and possibly modified, as resource
conditions are likely to vary in dynamic environments. For example, sensors might break,
resources such as working memory will decrease, and so forth. Those changes should not be
ignored as they can lead to erroneous and dysfunctional deployments.

Thus, the core problem investigated in this chapter is: How to (re)-plan and execute deployments of
robot perception systems in the presence of changing resource conditions? This involves a) declaring
deployment requirements, b) accessing the knowledge required for deployment, c) creating and
executing a deployment plan, d) monitoring the target environment, and e) re-plan deployment

in presence of violated requirements.

This chapter introduces three contributions for deploying robot perception systems.

o Firstly, DepSL (see Chapter[3) is expanded with means to express not only resource-specific
deployment requirements, but also to represent information relevant for deployment

execution.

e Secondly, a reference architecture for deploying robot perception systems is proposed.
The reference architecture provides a component-based template solution integrating not
only the knowledge required for deployment (see Chapter[5), but also all the other means
required to carry out deployment like monitoring.

e Thirdly, a deployment algorithm is developed to find an assignment of one or more
perception graphs to platforms. The algorithm ensures that the deployment requirements
of perception graphs are met.
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The remainder of this chapter is structured as follows. Section proposes the general
elements of the reference architecture for deploying perception graphs. Section |6.3|introduces
a case study by instantiating and exemplifying the proposed reference architecture. Section [6.4]
discusses related work and Section[6.5 summarizes the core findings of this chapter.

6.2. Reference Architecture

This section proposes a reference architecture for deploying robot perception systems. Ac-
cording to Taylor et al. [115] a reference architecture is defined as “...the set of principal design
decisions that are simultaneously applicable to multiple related systems, typically within an application
domain, with explicitly defined points of variations". Introducing a reference architecture for robot
perception systems is necessary as deployment is a recurring, yet often underestimated activity
which is often prone to errors. Thus, a reference architecture paves not only the way to organize
deployment, but also to provides a template solution for recurring applications. It is worth to
stress that such a template solution is applicable and tailorable for multiple applications.

In this work the proposed reference architecture is depicted in Figure [6.2|as a component-
based diagram. The diagram assembles variable and stable components, both providing and
requiring interfaces. The former are interchangeable for different applications whereas the

latter can be used without changes for different applications.

There are two principal design decisions underlying the definition of the reference architecture.

e Firstly, the knowledge relevant for deployment is explicitly stored in one place, thus
making deployment knowledge accessible for other components.

e Secondly, deployment is performed in two steps. The first step deals with selecting a
set of perception features and corresponding perception graphs suitable for the task
at hand. The second step deals with deciding where (on which platform) the selected
perception graphs will be executed. Having such a step-wise approach enables developers
to implement application-specific perception graph selection components (see Chapter [7)
without dealing with deployment concerns.

In the following sections each component of the proposed reference architecture is described.

6.2.1. Repository

The repository (see Figure plays a central role in the reference architecture as it contains
all the knowledge required for carrying out deployment activities. The knowledge can be
classified in design time and run time knowledge. Examples for the former are domain models
expressing knowledge about platforms, perception graphs and so forth, and examples for the
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Figure 6.2. The reference architecture for deploying robot perception systems depicted as a UML-like
component diagram with variable (interchangeable) and stable software components.

latter are information about the current memory usage of certain components or the availability

of certain sensors.

The repository component provides three interfaces, namely Insert, Query and Notify. The
Query interface is used to retrieve information about design and run time knowledge. The
Insert interface is used to create and update information in the repository, and the Notify

interface is employed to inform other components about those changes in the repository.

Having all the information relevant for deployment in one central place fosters a development
practice where deployment knowledge is explicitly declared and not implicitly encoded and
scattered among components. It is worth mentioning that the repository can be implemented in
multiple ways by applying different technologies ranging from traditional relational databases,
document-oriented database and graph databases (see Chapter 5) to highly engineered mod-
ules providing application-specific APIs.

6.2.2. Context Monitoring

One or more context monitoring components are composed in the reference architecture in
order to provide the contextual information needed to select (see Section[6.2.3) and deploy
(see Section[6.2.4) perception graphs. To this end, context monitors collect — hence requiring
additional interfaces (see Figure - and interpret all the measurements required to infer the
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current state of robots” environment, platform (both mechanical structure, sensors, actuators
and computational elements) and intelligence like tasks, behaviors and skills [175]. Context
monitors make this information accessible to other components by inserting them in the
repository (see Section [6.2.1)).

Very often robotic systems already acquire those measurements and take important decisions
based on their values. However, the acquisition of these measurements is usually hard-
coded in the implementation of the components that reason about them. Thus, introducing
dedicated context monitoring will make components more reusable. In general, context
monitors are application-specific and employ various context representations (e.g. logic-based

vs. probabilistic-based approaches) [176] suitable for the task at hand.

6.2.3. Perception Graph Selection

The perception graph selection component, or just selector, is a variable element in the reference
architecture and in charge of selecting one or more perception graphs suitable for the task
at hand. To this end, activation is either triggered — in a reactive manner — by changes of
context conditions using the Notify interface or by higher-level components via the Select
interface provided by the component. In order to select the perception graphs suitable for the
task at hand, different methods and algorithms like rule-based approaches or more advanced
constraint solvers could be used. Depending on the employed selection algorithm, different
types of queries are eventually applied to retrieve the information required to carry out

selection.

6.2.4. Perception Graph Deployment

As a stable, application-independent element in the reference architecture the perception graph
deployment component, or just deployer, is responsible for deploying one or more perception
graphs. To do so, the deployer provides an Deploy interface which is used by the selector to
inform the deployer which perception graphs have to be deployed. After receiving such a
request, Algorithm T]is used to find those platforms which meet the deployment requirements
for the given graphs. Note, more details about Algorithm [I|are given in Section In case
no platform is suitable, for example, if no platform satisfies the memory requirements, an
error is reported via the Error interface. The implementation of the Error interface depends
significantly on a) how the reference architecture is realized in an application context, and
b) how the overall error management is implemented (see e.g. Garcia et al. [177] for a survey).
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6.2.5. Deployment Infrastructure

The deployment infrastructure, or just infrastructure, is responsible for bringing up and taking
down perception graphs. The infrastructure provides a Control interface which is used by
the deployer to inform the infrastructure which graphs on which platforms should be started
respectively stopped. In order to execute perception graphs on platforms the infrastructure
requires additional, execution-relevant knowledge like how perception graphs are mapped to
executable primitives, for example, processes and threads or where the binaries of perception
graphs are located. In case perception graphs can not be executed, for example, if the binary is

not available, an error is reported via the Error interface.

Note, the deployment infrastructure component is interchangeable, thus different mechanisms
to execute perception graphs can be integrated. For example, one could integrate deployment
tools available in robotic software frameworks such as roslaunch [178] or employing init
systems such as systemd [179] that are capable of manage several processes on Unix systems.

6.3. Case Study

This section exemplifies the reference architecture introduced above with the help of a case
study, namely the slip detection domain example (see Section has been implemented.

In the context of the domain example, Sanchez et al. [16] suggest that the actions and motions
performed by the robot during grasping should be taken into account during slip detection for
improved performance. Thus, an in-hand slip detection architecture should be able to adapt to
the current robot’s actions at run time (cf. finding F4 in Section 3.4). In order to achieve such
adaptive behavior one requires not only to retrieve the current robot action context, but also to

select and deploy the most appropriate perception graph for the task at hand.

The reference architecture proposed in Section 6.2 provides an architectural blueprint to realize
such an adaptive system. In the following sections the realization of the reference architecture
for the slip detection case study is described.

6.3.1. Repository

Both the RPSL and DepSL (see Chapter ) were employed to create domain models representing
the knowledge relevant for deployment. Those domain models represent not only the three
different slip detectors as perception graphs (see Section [3.2.T), but also their associated
deployment descriptions and the computational hardware of the Care-O-bot 3 (see Figure

service robot.
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In order to enable the deployer (see Section [6.2.4) to identify suitable platforms, requirements
have to be specified. To enable domain experts to express platform requirements, DepSL has
been expanded by six requirement types. Those types are proposed by the OMG deployment
specification [174] and described in the following paragraphs.

Quantity. This requirement allows to express a certain number of required elements. For
example, a certain number of tactile sensors (cf. finding F1 in Section 3.4) connected to a
platform.

Capacity. This requirement allows to express a certain capacity of a platform resource which
can be consumed by one or more perception graphs. For example, the size (capacity) of

working memory.

Minimum. This requirement allows to express an acceptable lower bound of a platform

property. For example, the minimum clock rate of a CPU.

Maximum. This requirement allows to express an acceptable upper bound of a platform

property. For example, the maximum latency of a networking connection.

Attribute. This requirement allows to express the existence of certain platform properties. For
example, a certain hardware version of a sensor or a specific operating system installed
on the platform.

Selection. This requirement allows to express a set of elements where one or more should
be available on the platform. For example, different sensors of the same modality (e.g.
RGB-D), but from different manufacturers.

In the context of the case study for each perception graph, namely force, tactile and combined
slip detector, deployment requirements are specified. Those are described in the following

enumeration.

e The force slip detector should be deployed on a platform where the force sensor is
connected to (cf. finding F8 in Section [3.4).

o The tactile slip detector should be deployed on a platform where all tactile sensors are
connected to (cf. finding F8 in Section [3.4). As nine tactile sensors are required for the

tactile slip detector the quantity type is employed to express this requirement.

e The combined slip detector should be deployed on a platform with at least 250 MB
working memory, thus the capacity type is used to express this requirement.

It is important to note that the repository in the context of this case study is realized as a graph
database (see Chapter [5). Thus, both RPSL and DepSL domain models have been translated
to a labeled property graph. As shown in Figure an excerpt of the graph expressing the
case study is depicted. Here, the three different perception graphs are resolved by deployment
models expressing — amongst other things — the above mentioned requirements. Note, the
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deployment model resolving the combined slip detector is connected to the deployment models
of the force and tactile slip detector. This connection is labeled :DEPEND_ON and expresses
that if the combined slip detector is deployed also the force and tactile slip detector should
be deployed. The connection between those models is automatically derived from the fact
that a domain expert already declared their dependency on a perception feature level (see
Section [3.5.T). Figure depicts also the three different platforms which are available on the
Care-O-bot 3. Establishing the links between deployment and platform models is the task of
the deployer (cf. Section[6.2.4). Nevertheless, sometimes domain experts are already at design
time capable to establish fixed links between deployment and platform models. For example,
if a domain expert knows that solely one platform fulfills the requirements a fixed edge labeled
:EXECUTABLE_ON is created (cf. Chapter[5). Obviously, such a fixed assignment should be done
with caution as it limits the deployability of perception graphs.

Although not shown in Figure the repository contains information required by the deploy-
ment infrastructure component (see Section [6.3.5).

6.3.2. Context Monitoring

The main objective of the context monitor is to retrieve the current action performed by the
Care-O-bot 3. Three different actions described in the following paragraphs are detectable by
the context monitor.

grasp: The fingers of the gripper close to hold the object.
move_base: The robot’s base moves while holding the object.

release: The fingers of the gripper open to release the object.

In order to retrieve the action context, symbol grounding is performed by employing the
Conceptual Space knowledge representation framework (see Section . The framework
allows to ground different action contexts through the notion of concepts and dimensions.
Here, the measurable dimensions are the joint values (velocities) for each joint. Typical values
for each concept are expressed in the form of prototypes (cf. Figure B.11). For example, the
prototypes for the release concept has only zero-values for the base velocities whereas the
finger joints are non-zero. During run time, the context monitor then computes for each joint

state sample the closest matching prototype by employing the Euclidian distance as a metric.
Subsequently, the current action context is updated in the repository.
6.3.3. Perception Graph Selection

In order to select a slip detector which is appropriate for the current action context a simple,
yet powerful rule-based approach is applied. During design time a set of of decision rules
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Figure 6.3. Snapshots of the graph-based repository during the case study. Note, the snapshots are an
excerpt of the complete graph database and focus on how the links between the deploy-
ment description (and their corresponding requirements) and the available platforms are

established during the case study.
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have been devised. Here, the action context is part of the rule condition and the selection of a
slip detection perception graph is part of the rule body.

In order to identify these rules, Sanchez et al. [16] evaluated the different slip detectors using
different grasp shapes, namely a grasp that uses all three fingers of the robotic hand and one
that only uses two fingers. Three different objects and three different actions (see Section 6.3.2)

were used in the experiments.

The performance of each slip detector varies considerably depending on the action, for example,
the tactile slip detector outputs a slip whenever grasping an object. Contrary, the force slip
detector achieved perfect accuracy for detecting actual slips, however its performance is poor
when no slippage occurs, for example, when the robot base is moving. More details about the

actual experiments are given in [16]].

Algorithm 1 Finding a platform satisfying the deployment requirments.

1: function Deploy.perceptionGraphs(G) > G is the set of graphs to be deployed.
2 for each g; € G do
3 d; < Query.getDeploymentInformation(g;)
4: if d; # @ then
5: if Query.hasFixedDeployment(d;) then
6 p < Query.getFixedPlatform(d;)
7 if Control.start(g;, p) then
8 return success
9: else
10: Error.deploymentFailed(g;, p)
11: return error
12: else
13: C < Query.getConstraints(d;) > C is the set of deployment constraints.
14: P < checkValidity(C) > P is the set of acceptable platforms.
15: if P # @ then
16: if not Query. isDeployed(g;, P) then
17: if Control.start(g;, px € P) then
18: return success
19: else
20: Error.deploymentFailed(g;, px € P)
21: return error
22: else
23: Error.noAcceptablePlatforms(g;)
24: return error
25: else
26: Error.deploymentInformationMissing(g;)

27: return error
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6.3.4. Perception Graph Deployment

This section explains the deployment algorithms shown in Algorithm [[|and 2| by utilizing the
case study.

At time to the Care-O-bot 3 service robot is standing in the kitchen and has a mug in it’s
hand. At this point in time the graph database is composed of nodes and edges as shown in
Figure Subsequently, a user requests the robot to deliver the mug to the living room.

At time t; the robot starts moving it’s base, hence the context monitor (see Section detects
the move_base action context and updates the repository. Based on the context update, the
selector (see Section [6.3.3) requests the tactile slip detector to be deployed. Thus, the selector
calls the perceptionGraphs () method of the Deploy interface provided by the deployer.

As shown in Algorithm (1| for each selected perception graph g; corresponding deployment
information d; is retrieved. That is, the node which resolves the perception graph is retrieved.
In case no deployment information for g; is available an error is reported. Subsequently it
is checked whether or not a fixed deployment is given. That is, it is checked whether d; has
an edge to a platform which is labeled EXECUTABLE_ON. As shown in Figure no fixed
deployment for the tactile slip detector is provided. Thus, all the deployment requirements
of d; are retrieved in order to find an acceptable platform meeting the requirements. The
checkValidity() method takes the requirements and returns those platforms P satisfying
them. In the context of this example, checkValidity () checks which platform provides nine
tactile sensors as those are required for the tactile slip detector. Basically two situations can
occur, namely no platform is meeting the requirements or one or more platforms meet the
requirements. In the former case an error is reported and for the latter case it is checked
whether or not g; is already deployed on one of the acceptable platforms. If g; is not yet
deployed on one of the acceptable platforms the deployer calls the start () method of the
Control interface provided by the infrastructure component (see Section in order to
request the execution of g; on p; € P. Having successfully deployed g; on pj the infrastructure
component creates an edge labeled DEPLOYED_ON from the tactile deployment node to the

platform node (see Figure[7.4b).

At time t; the robot reaches the living room and hands-over the mug to the user. The robot
opens the fingers of the gripper to release the mug. Thus, the context monitor detects the
release action. Subsequently, the selector chooses an appropriate slip detector for the observed
context, namely the force slip detector. The selector requests the deployer to stop the current
slip detector and to deploy the force slip detector. Depending on the implementation of the
perception graphs it would be also possible to simply send a pause signal to the slip detector.

As shown in Figure once the tactile slip detector is stopped, the edge from the deploy-
ment to the platform node is updated, namely the label is changed from DEPLOYED_ON to
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DEPLOYMENT_HISTORY. Like at time t; deployment requirements are checked and the force slip
detector is deployed on the platform where the force sensor is connected to.

Algorithm 2 Checking whether or not deployments are valid.

1: function checkDeployment(p;)
2 D < Query.getActiveDeployments(p;) > D is the set of active deployments on p;.
3 foreachd; € D do
4: gi < Query.getPerceptionGraph(d;) I g;is the corresponding perception graph.
5: C < Query.getConstraints(d;) > C is the set of deployment constraints.
6 P < checkValidity(C) > P is the set of acceptable platforms.
7 if P = @ then
8 Error.noAcceptablePlatforms(g;)
9: if Control.stop(g;, p;) then

10: return success

11: else

12: Error.stoppingFailed(g;, pi)

13: return error

14: if p; € P then

15: return success

16: ifnot P = @ and p; € P then

17: if Control.start(g;, px € P) then

18: return success

19: else

20: Error.deploymentFailed(g;, px € P)

21: return error

At time t3 the force sensor breaks and no force signal is provided anymore. The context monitor
detects this failure and updates the corresponding platform model, namely the edge from the
platform node to the sensor/device node is removed (see Figure [7.4d). The repository notifies
the deployer about those changes. Subsequently, the deployer executes the checkDeployment ()
method shown in Algorithm 2] The main objective of Algorithm 2is to ensure that deployments
remain valid in the presence of platform changes. To this end, each active deployment on the
updated platform p; is checked whether or not the requirements are met (cf. Algorithm [I)).
Three situations can occur, namely a) no platform meets the requirements, b) p; meets the
requirements, or c) other platforms than p; meet the requirements. In the context of the case
study no platform satisfies the requirements, thus, the force slip detector is stopped.

6.3.5. Deployment Infrastructure

In the context of the case study the deployment infrastructure component is build up on the

systemd [179]] software suite for system and service management on Linux operating systems.

In summary, systemd is an init daemon process responsible for launching services, setting
up logging facilities, mounting file systems, and so forth. Nowadays systemd is the de facto
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standard init system on major Linux distributions and replaces other init suites like sysvinit.
Thus, implementing a deployment infrastructure based on systemd is feasible not only because
it can be used on many Linux distributions, but also as it provides interesting features like

on-demand starting of daemons and services, utilities to manage services, and so forth.

An important concept in systemd is that of a unit described by a configuration file. A unit is

managed by systemd and represents, for example, a service, mount point, device, and so forth.

In the context of this work perception graphs are mapped to services. Here, a service represents
a process which is controlled and supervised by systemd [180]. In this work DepSL is expanded
to enable domain experts to express systemd related execution information. For example, the
name and location of the executable, exception and failure policies, dependencies to other
services, and so forth. Having such information is crucial to create systemd service files which
are used by the systemctl [181] command to start and stop services. Here, both the start ()
and stop () methods of the provided Control interface encapsulate the systemctl command
provided by systemd. Using systemd as deployment infrastructure provides also a convient
way to retrieve meta-information about services. For example, information like the process ID,

process status, activation time, memory consumption, and so forth.

In the context of the case study some information, for example, the process ID and the
timestamp when a service has been started are written by the infrastructure component

in the repository (see Figure7.4d).

6.4. Related Work and Discussion

Software deployment in robotics is usually achieved by some kind of deployment infrastruc-
ture provided by the underlying robot software framework. For example, the roslaunch
deployment tool of the popular ROS [117] framework takes a XML-based description of
the ROS architecture as an input and initiates the deployment according to it. To this end,
components in ROS also known as nodes are started, stopped, parameters are set and so forth.

Another notable deployment approach is proposed by Ando et al. [182]]. Here — in the context of
the OpenRTM robot software framework [183]] — deployment is considered as a part of compo-
nent and system lifecycle management. The approach mainly deals with implementation-level
details, for example, how manager services interact and how components are instantiated.
Like in ROS, the OpenRTM deployment infrastructure relies on dedicated deployment files
expressing crucial deployment information such as the location of an executable and so forth.
Although these approaches help to automate the deployment task they are limited as they
are not capable of expressing and resolving deployment requirements as presented in this
chapter. Nevertheless, those approaches can be integrated in the reference architecture as an
implementation of the deployment infrastructure component (see Section 6.2.5).
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Another robotics software deployment approach is proposed in [184]. Here, Reiser introduced a
web-based tool for configuring and deploying robotics software on service robots. Similarly —as
the approach proposed in this chapter — platform requirements are specified and automatically
resolved. However, his work is limited to static environments whereas the approach presented
in this work allows to deploy perception graphs at run time in presence of varying resource
conditions.

This chapter demonstrated that software deployment decisions should be separated as much
as possible from the core development of software functionalities. As proposed by Mikic
and Medvidovic [185] this is achieved by leveraging domain-specific languages to express
architectural aspects and by explicitly declaring deployment constraints. This will make the
developed software more independent of a particular hardware architecture — and thus more
reusable — and allow it to be deployed more flexibly on a wider variety of robot platforms as
long as the requirements are fulfilled.

Clearly, the architecture proposed in Section [6.2]is inspired by the MAPE-K [163] reference
architecture for self-adaptive software systems as it contains similar building blocks as those
proposed in MAPE-K like monitoring, knowledge storage, analysis and so forth. However,
the introduced deployment architecture is more fine-grained as, for example, a stepwise
deployment is supported. The selector (see Section deals with what should be deployed
and the deployer (see Section [6.2.4) deals with how and where it should be deployed.

All deployment requirements are treated equally by Algorithm [T]as no preferences, weights or
the like are given. Thus, if a platform is not meeting all the provided requirements it is not in
the set of acceptable platforms P (cf. Algorithm[I). In addition, the current implementation
ensures that the deployment requirements are not modified at run time. However, supporting
dynamic, modifiable requirements could be feasible in cloud-robotic scenarios [186] [187]]
where resource are requested on demand. It remains to be investigated which modifications
are required to support dynamic deployment requirements, but in principle Algorithm 1jand
also the repository (see Section could be modified to realize those scenarios.

6.5. Summary

This chapter introduced an approach for deploying robot perception systems in the presence of
varying resource conditions. Both RPSL and DepSL were utilized and expanded to express the
knowledge relevant for deployment. Thus, domain experts can reuse models and can easily
make changes in the deployment setting. In order to carry out deployment, the proposed
reference architecture enables developers to implement deployment mechanisms which are
capable to adapt the deployment on varying resource conditions, thus meeting the deployment
requirements.



Chapter 7.

Adapting Robot Perception Systems

“As a rule, software systems do not work well until they have been used, and have
failed repeatedly, in real applications.”
— David Lorge Parnas, 1941 -

7.1. Introduction

This chapter demonstrates how the reference architecture proposed in Chapter [p|can be used
to implement and deploy robot perception systems which are capable to cope with varying
context-conditions. To this end, three different applications are developed, each of them
dealing with variations in different context categories commonly appearing in robotics [176],
namely variations in the task (see Section[7.2), platform (see Section[7.3) and environment (see
Section [7.4) context.

Each application uses the stable, application-independent deployer component (see Sec-
tion[6.2.4) for deploying perception graphs on suitable platforms as exemplified in Chapter 6]
However, as the deployer solely deals with the question which platform should execute some
perception graph, but not which perception graph itself should be deployed, an additional com-
ponent is required. Thus, each application proposes a selector component (see Section [6.2.3)
which decides which perception graph is suitable for the current context condition. Such
a decision eventually leads to an adaptation of the robot perception system, for example,
switching from one perception graph to another.

In order to come up with those adaptation decisions the reference architecture foresees two
additional components, namely the repository and one or more context monitors. The former
contains the design time and run time knowledge required for carrying out the adaptation
(see Section and the latter preprocesses the contextual knowledge (see Section [6.2.2).
Each application described in the following sections realize application-specific repository and
context monitors. Thus, they demonstrate the applicability of the reference architecture.

101
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7.2. Task-based Adaptation

7.2.1. Motivation

Nowadays the robotics and automation industry is shifting its attention towards robotic sce-
narios involving the integration of mobility and manipulation. To this end, mobile robots and
industrial robot arms are integrated on mobile manipulators. Examples of mobile manipulators
include the KUKA youBot [10], KUKA KMR iiwa and the rob@work platform [189] to
name a few. Those mobile manipulators are expected to perform not a single, but preferably a
wide range of complex tasks like assembly, automation and parts handling.

Although industry views mobile manipulators as an essential component for the Factory of
the Future [190], real applications are still rare. It became quickly obvious that the control
concepts and algorithms developed independently for robotic arms and for mobile robots
could not easily be combined and integrated [6]. Thus, more research is necessary to exploit
the capabilities of mobile manipulators in innovative applications.

One way to raise interest in solving particular problems and to create more research and
development activities are scientific competitions as those developed, for example, in the
context of RoboCup [191]]. Examples of well-known competitions can be found in the area of
soccer playing robots [192]], domestic robots [2] and search and rescue robots [193].

Figure 7.1. Robots deployed in a factory-like RoboCup@Work environment with different service areas.

In the context of the Factory of the Future, competitions such as RoboCup@Work [6] and
RoCKIn@Work have been recently established. Those competitions are targeted towards
innovative applications where mobile manipulators are used for industrial, work-related tasks
ranging from loading and unloading of containers with industrial objects like screws, nuts and
bolts, and operation of machines, for example, drilling machines and conveyors to cooperative
assembly of non-trivial objects with other robots and human workers.
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In the context of this section a task from the RoboCup@Work competition has been realized,
namely the Basic Transportation Test (BTT) [195]. The BTT is a well-defined benchmark within
RoboCup@Work and requires the combination of navigation and manipulation abilities to
perform transportation tasks. The objective of the task is to get several objects from one or

more source service areas and to deliver them to one or more destination service areas (see
Figure(7.1).

In RoboCup@Work a service area denotes a region in a factory-like environment for a particular
purpose, for example, areas to load, unload, place and/or insert objects. Service areas may
contain specific objects such as cavities, conveyor belts, racks, storage areas and shelves. In
addition, service areas can have different heights.

It is important to emphasize that the robots competing in RoboCup@Work initially know only
which service areas are available in a factory. The concrete problem description is given by
the referee system of RoboCup@Work [196] at competition time. In the context of the BTT
benchmark, the problem description encodes the goal state of objects and their corresponding
locations (service areas). This is somehow similar to domains and problem descriptions, for
example, in PDDL [78] where the former contains domain predicates and the latter contains
the initial state description and the actual goal.

In order to successfully execute the BIT a robot requires not only navigation, manipulation
and control abilities, but also a broad set of perception abilities to segment, detect, recognize
and possibly track service areas and objects. As the concrete problem description is not known
a priori the robot is required not only to select, but also to specify at run time those perception
features which are suitable for the task at hand. Depending on the concrete task expected to
be performed at a specific service area those specifications differ significantly. For example,
to place an object on a shelf different information about free-space, potential obstacles, and
so forth are required whereas for inserting an object into a cavity other information such as

dimensions of the cavity are required.

Thus, the overall goal of this section is to enable robots” to select perception features by
specifying not only what kind of information they need to carry out their tasks, but possibly
also how this information is provided. For example, object recognition features often differ not
necessarily in their output, but how their output is delivered such as some implementations are
capable of recognizing objects very fast, but not very precise whereas other implementations

are slow, yet precise.

In order to realize such a task-based adaptation of perception features — as motivated in the
aforementioned paragraphs — the reference architecture proposed in Section |6.2| has been
employed (see Task-based Adaptation subystem in Figure[7.2). More precisely, RPSL (see
Chapter 3) is used to model a set of perception features and corresponding perception graphs
which are required for the BTT benchmark. The resulting RPSL domain models are stored in
the repository (see Section|[7.2.3). The selector component (see Section of the Task-based
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Adaptation subsystem provides a Select interface and implements a selection algorithm. This

algorithm selects a suitable perception graph based on a specification received via the Select

interface and the perception features and graphs stored in the repository. In the following

sections each component of the Task-based Adaptation subystem is described.
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Figure 7.2. Overview of the components involved in implementing the task-based adaptation scenario.

On the robot — a KUKA youBot — the Executive component receives both the factory
inventory and the problem description from the so-called Refbox [196]. The Refbox assists a
human referee to carry out the competition by generating problem descriptions, visualizing
the status of the competition, and so forth. The inventory expresses the current state of the
factory whereas the problem description expresses the desired state of the factory. Both
inventory and problem description are encoded as Google Protocol Buffer messages. Note,
more details about the corresponding message types are given in [196] and [197]. Having the
initial state (cf. inventory) and goal state (cf. problem description) the Executive component
plans and executes a sequence of actions in order to achieve the task [113]]. In order to carry
out the perception actions the Executive employs the Select interface provided by the
selector (see Section[6.2.3) to trigger execution of those perception features suitable for the
task at hand. Note, the selector is part of the task-based adaptation subsystem following
the reference architecture proposed in Section In order to select suitable perception
features for the task at hand the Executive also requires some contextual information,
namely the semantic location. That is some high-level information about the current location
of the robot, for example, in front of service area X. In this work it is assumed that such
information is accessible by the Executive component, for example, through some world
model or annotated topological map.
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7.2.2. Context Monitoring

In order to carry out the task and to select which perception features are required for the task at
hand, the Executive (see Figure[7.2) needs to access contextual information. The inventory and
problem description are received from the referee system (see Figure[7.2) whereas the semantic
location is provided by a context monitoring module. This context monitor is configured with
an annotated grid map where certain regions of the map are labeled, for example, service area
X. The monitor then checks to which region the current position of the robot belongs to and

provides this information to the Executive.

rpsl.feature_resolution do
resolve "ServiceArea",
by "ServiceAreal",
:exposed_ports => ["Plane"],
:exposed_properties => ["DetectPlaneHeight"]
end
\ 7

Figure 7.3. Resolution model for the perception feature ServiceArea. The feature is resolved by a
perception graph ServiceAreal. Note, the specification of the graph itself is shown in
Figure The resolution exposes planes as an output and a property DetectPlaneHeight
expressing the height of detectable planes.

7.2.3. Repository

The RPSL domain model expressing the functional variability for the case study discussed in
Section 4.4/ has been employed also in this work. The domain model includes five leaf features
representing high-level perception abilities for detecting objects and service areas plus features
for recognizing objects, containers and cavities. The containment and specializations relations
among those features is discussed in Section [4.4.1]

In order to express the resolutions, RPSL is employed as exemplified in Figure Those RPSL
domain models encode not only which feature is resolved by which perception graph, but
also which output ports and properties of the graph are exposed to facilitate the selection of
perception graphs (see Section[7.2.4). Note, as discussed in Chapter [3 perception features and
perception graphs are completetly orthogonal models, thus the resolution is required to weave

those models together.

The resolutions of the features is described in the following paragraphs and summarized in
Table

ServiceArea is resolved by three different perception graphs. All of them are capable of
detecting service areas/dominant planes on different heights. The exposed property
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Feature H Perception Graph | Exposed Output | Exposed Properties
ServiceArea ServiceAreal Plane DetectPlaneHeight
ServiceArea?2 Plane DetectPlaneHeight
ServiceArea3 Plane DetectPlaneHeight
ObDetection ObjDetection BBox -
Number0£f0bj
ObRecognition FastObjRecognition Pose AvgRecogTime
RecognizableObj
SlowObjRecognition Pose AvgRecogTime
RecognizableObj
CavRecognition CavityRecognitionl Pose -
CavityRecognition2 Pose -
Plane -
ContRecognition RedContainer Pose RecognizableCont
BBox
BlueContainer Pose RecognizableCont
BBox

Table 7.1. The table shows the perception graphs resolving the perception features which are used in
the application. Perception graphs can expose some of their output ports and some of their
properties.

DetectPlaneHeight expresses the height of detectable planes by the corresponding per-

ception graph whereas Plane is an exposed output and encodes the detected plane itself.

ObDetection is resolved by exactly one perception graph exposing a bounding box BBox. As
described in [113] the ObDetection graph utilizes different components for clustering
and for fitting bounding boxes around clusters situated on planes.

ObRecognition is resolved by two perception graphs. Both graphs provide poses of recog-
nized objects (see exposed output Pose in Table[7.1). They differ in the average recognition
time (cf. AvgRecogTime) and in the set of recognizable objects (cf. RecognizableObj). The
resolved graphs for the ObRecognition feature clearly demonstrate the difference be-
tween an exposed output and an exposed property. The former is used for declaring what
the perception graph is capable of providing and the latter is often used to characterize
this output.

CavRecognition is resolved by two perception graphs. Both expose the poses of recognized

cavities and the graph CavityRecognition2 provides also the plane of the cavity area.
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ContRecognition is resolved by two perception graphs. Both graphs expose two outputs,
namely the pose of the recognized container and the bounding box of the container. Fur-
ther, the exposed property RecognizableCont expresses the set of recognizable contain-
ers. As the name suggests the RedContainer perception graph recognizes red containers
whereas the BlueContainer perception graph recognizes blue container.

7.2.4. Perception Graph Selection

The selector component is in charge of identifying those perception graphs which are fulfilling
the specification. In this work the specification is given by the Executive module via the
Select interface (see Figure[7.2).

A specification S is formally defined as a quadruple
S=(f,0,P,T) (7.1)

where f € F encodes the feature which the Executive module would like to select from the
set of available features F, O is the set of output ports a perception graph resolving f should
expose. Similarly, P is the set of properties a perception graph resolving f should expose and
I' is the set of prototypes. Here, a prototype ; € I encodes an expected value for a certain
property. Depending on how a property is defined (see Section [3.6.5) a prototype could have
one or more symbolic and/or numeric values. The general idea of providing a specification S
is that the Executive — or any other component using the Select interface — is solely aware of
which high-level perception features are available, but not how they are resolved in terms of

different perception graphs with varying characteristics.

In order to select a perception graph fulfilling the specification the selector implements Algo-
rithm [3|which is explained in the following paragraphs.

In case the specified feature f exists, all perception graphs resolving the feature are assessed.
For each perception graph two checks are performed. Firstly, it is checked whether the set of
output ports O is exposed by the graph. Secondly, it is checked whether the set of expected
properties P is exposed by the graph. In case both checks are positive, the similarity between
the specified prototypes I and the one attached to the perception graph is computed.

To do so, the method computeSimilarity() implements a similarity measure, for example
Euclidian or Hamming distance, suitable for the task at hand. The obtained similarity value
A € R is subsequently stored together with the assessed perception graph as a candidate. In
case only the former check is positive the perception graph is stored as a candidate with an
empty similarity value. In case the set of candidates C is not empty the application-specific
method bestMatchingGraph () retrieves a best matching graph. Note, in the simplest case the
bestMatchingGraph () method randomly selects a graph, but more advanced computations
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Algorithm 3 Selecting perception graphs meeting the specification.

1: function Select.perceptionFeature(S) > S is the feature select specification.
2 if Query.existFeature(f) then
3 G < Query.getResolvedPerceptionGraphs(f)
4: C+0 > C is the set of candidate perception graphs.
5: if not G = @ then
6 foreach g; € G do
7 EO < Query.getExposedOutputPorts(g;)
8 EP < Query.getExposedProperties(g;)
9: if O C EO then
10: if P C EP then
11: A < computeSimilarity(P, EP,T)
12: C+ CU{(gi,A)}
13: else
14: C(—CU{<gi,@>}
15: if not C = @ then
16: Qk < bestMatchingGraph(C)
17: Deploy.perceptionGraphs(gy)
18: return success
19: else
20: Error.noPerceptionGraphForGivenSpecification(S)
21: return error
22: else
23: Error.noResolvedPerceptionGraphs(f)
24: return error
25: else
26 Error.featureNotAvailable(f)
27: return error

taking, for example, application-specific preferences into account are imaginable. After re-
ceiving the best matching graph g, the graph gets deployed. To do so, the Deploy interface
provided by the deployer component (see Section [6.2.4) is employed.

In three situations Algorithm [3|returns an error, namely a) if the feature f is not available,
b) if no perception graph resolves feature f, or c) if no perception graph fulfills the provided
specification S. For the latter situation the Executive module could - if possible — refine the
specification S. To do so, Algorithm 3| could provide some hints why the specification is not
teasible, for example, because a specific output is not exposed by any assessed graph. However,

in the current version those hints are not yet implemented.

7.2.5. Perception Graph Deployment Infrastructure

In this scenario the ROS [117] robot software framework is used to implement the perception
graphs. Here, each perception graph (see Table is an executable expressed as a ROS node.
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In order to start and stop selected perception graphs and to configure configuration parameters,
the roslaunch [178] API is used which provides methods to start, stop and configure ROS

nodes.

7.2.6. Experiments

In order to study the feasibility of the task-based adaptation the BTT benchmark has been
realized. To this end, the BTT has been performed in an environment composed of three service
areas. Each service area is described in the following paragraphs.

e Service area S is situated on the ground of the factory where objects can be picked. The
area itself is bordered with black tape.

e Service area S has a height of 10cim where objects can be placed and inserted. To this end,

the plane of the service area includes object-specific cavities where objects can be inserted.

e Service area S3 has a height of 15cm where objects can be placed. To this end, objects
can be placed in two different containers, namely a red and a blue container which are

standing on the service area.

Within the marked region of S; four industrial objects are randomly placed, namely a screw,
black aluminium profile, a gray aluminium profile and a nut. The task — as expressed in the
problem description — of the robot is to pick the gray profile and to insert the profile into the
corresponding cavity at S;. In addition, all the remaining objects should be placed in the red

container located at S».

Having contextual information about the semantic location, the inventory and the problem
description the Executive is — among other issues — in charge of specifiying the perception
features which are required for the task at hand. In order to provide such a specification in a
computer-readable manner, RPSL has been extended through a select statement as shown in
Table Basically the statement is a Ruby-based representation of the specification S.

The table reports about some snapshots of selection statements recorded during the execution
of the exemplified scenario. Here, each row represents a point in time where the robot perceived
a scene (cf. second column), specified one or more features (cf. first column) which leads to a
selection and execution of perception graphs which leads to some output (cf. third column). It

is important to note that before and after each snapshot other features are possibly selected.

In the following paragraphs each selection statement shown in Table|[7.2]is discussed in more
detail.

e Firstly, the robot is placed in front of S;. In order to compute the number of objects located
at 51 the robot specifies the ObDetection feature which exposes the numbers of detected
objects in the scene. As shown in Table[7.1|the ObDetection feature is resolved by exactly
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one perception graph also exposing bounding boxes. Thus, this graph is selected and
deployed as the specification is fulfilled. The bounding boxes computed by the graph are
shown in the Output column of the first row in Table

Specification Input

' )
select :0bDetection do

:with_output => "NumberOfO0bj"
end

\. J

{ \
select :0bRecognition do
:with_property
=> "RecognizableObj",
:match => "F20_20_G",
:similarity
=> :JARO_WINKLER
end

\. J

{ \
select :CavRecognition do
:with_output
=> ["Pose", "Plane"]
end

\. J

{ \
select :ContRecognition do
:with_property
=> "RecognizableCont"
:match => "RedContainer"
:similarity => :EUCLIDIAN
end

\. J

Table 7.2. The table shows recorded snapshots of specifications, perceived scene and corresponding
output.

e Secondly, the robot is expected to pick the gray aluminium profile. In the context of
RoboCup@Work this object is called F20_20_G. To do so, the Executive module specifies
the ObRecognition feature by providing a prototype F20_20_G for the RecognizableObj
property. Furthermore, a similarity measure is expressed, namely the Jaro-Winkler dis-
tance for measuring the edit distance between two strings. This measure is used as the
RecognizableObj property is simply a list of strings where each string encodes the object
which is recognizable by the perception graph. In the context of this application both per-
ception graphs resolving the feature ObRecognition are capable of recognizing F20_20_G.
Thus, the bestMatchingGraph () method in Algorithm |3| needs to chose between two
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possible candidates. In this work a graph is randomly selected. The object pose computed
by the graph is shown in the Output column of the second row in Table

e Thirdly, the aluminium profile needs to be inserted in the corresponding cavity. To this
end, the CavRecognition is specified in a similar manner as in the first step, namely solely
via the required output. Here, the Pose information about the cavities is required for
object insertion. As two graphs are fulfilling the specification the bestMatchingGraph ()
method choses in this situation the CavityRecognition2 perception graph which also
provides a plane as shown in the Output column of the third row in Table

e Lastly, to place all objects in the red container the pose of the red container is required.
Therefore, the ContRecognition feature is specified. Similarly as in the second specifica-
tion two perception graphs are resolving the feature, thus a richer specification is helpful.
As shown in Table[7.1]both perception graphs resolving the feature expose a property
called RecognizableCont. This property encodes the recognizable container not in terms
of a simple string, but as an average RGB pixel value. Thus, the Euclidian distance is used
as a similarity measure to compute the distance between the RedContainer prototype
provided in the specification and the prototypes attached to the RecognizableCont prop-
erty. The bounding box and pose of the red container computed by the RedContainer
perception graph is shown in the Output column of the fourth row in Table

The experiments demonstrated how RPSL domain models can be exploited at run time to sup-
port the task-driven selection of robot perception features. This task-driven selection is enabled
by having a simple, yet powerful means to specify — in a declarative manner — high-level
perception features without knowing precisely which graphs are actually realizing this feature.
Thus, the approach conforms to the information hiding principle, where the specification S
serves as a stable interface whereas the perception graphs (aka. the implementations) are likely
to change.

It is important to emphasize that each selection statement shown in Table induces the
deployment of a specific perception graph. Those graphs are visualized in Figure|7.4{where the
graph selected at a specific point in time is visualized in red. On the left-hand side the sensor
components available in this scenario are shown. Those sensor components are connected
with a set of varying processing components required for the task at had. The right-hand
side depicts the output which the different graphs can generate and corresponds to the third
column in Table

7.2.7. Related Work and Discussion

The presented approach resembles some methods and concepts found, for example, in artificial
intelligence. From an Al perspective the task-based adaptation approach is inspired by case-
based reasoning (CBR) methods [198] as both the repository and the selection algorithm have
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CBR counterparts, namely case base and case retrieval mechanism. In fact, CBR approaches
have been applied in robotics to select behaviors in robotic soccer [199] and to select navigation
strategies [200]. The general idea is always the same, namely to reuse existing knowledge
to cope with recurrently and sometimes unexpected context conditions. In this work the
knowledge is expressed as RPSL and DepSL domain models.

In [201] Beetz et al. introduced the RoboSherlock system to adapt robot perception systems.
Here, robot perception is modeled as an Unstructured Information Managament problem
where different perception algorithms are simultanously employed to answer task-related
questions about a scene. Those questions are on a much higher level of abstraction than the
specifications expressed in this section. For example, whether a spoon is available on a table to
perform some cocking task. Nevertheless the work presented in this section is complementary
to RoboSherlock as the focus is on leveraging implementation-level knowledge (the How?)
whereas RoboSherlock focus is on the What?.

7.3. Platform-based Adaptation

7.3.1. Motivation

With the advent of agile and versatile robot platforms, operating in the air, underwater and on
the ground the development of Search and Rescue (SAR) missions [202] in unstructured and
harsh environments such as alpine [203], maritime [204] and desaster [8] settings is becoming a
reality. In those applications mixed teams of autonomous and semi-autonomous heterogenous
agents like humans, robots and distributed sensors need to collaborate to achieve their tasks.

In order to enable collaboration among those agents a world model needs to support physi-
cally distributed data storage and shared data access such that the situational awareness of
individual team members and the team as a whole is improved. Here, a distributed world
model not only creates, but also maintains a digital representation of the environment over
a possibly long period of time based on the results of employed perception algorithms. This
representation needs to be exchanged by replication and synchronization among all agents.

In order to implement collaboration via distributed world models — for example within SAR
missions — a wireless networking and communication infrastructure is required. However, as
Troubleyn et al. [205] point out, real-world environments pose significant Quality of Service
(QoS) challenges on the networking and communication infrastructure. More precisely, QoS
metrics such as the time it takes to transmit a message from source to destination (delay)
and the number of messages which are lost during transmission (message loss rate) are not
necessarily known a priori and change over time. Those time-varying QoS variations are
caused by extreme environmental conditions such as heat and cold, agent mobility and the fact
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Figure 7.5. Overview of the scenario realized in this section. Two physically distributed platforms
are used, namely a mobile robot equipped with a RGB-D camera providing point cloud
data and a Human-Machine-Interface (HMI) — deployed, for example, on a PDA or tablet
computer —exposed to an operator. On the robot the reference architecture proposed in Chap-
ter[f)is implemented (see Platform-based Adaptation subsystem). The Platform-based
Adaptation subsystem selects and deploys perception graphs suitable for reducing the
amount of data send to the HMI. To this end, the Context Monitor (see Section
retrieves the available bandwidth from the communication channel. Before the data
is send it gets serialized and on the receiver side deserialized (see Serialization and
Deserialization components). The Robot Remote Control subystem visualizes the re-
ceived data for the sake of operating the robot.

Component-
based
Subystem

that applications are deployed in unaccessible, unknown environments, for example, disaster

areas.

It is worth to note that the QoS properties are often in conflict with the application requirements.
An operator supervising a SAR mission, for example, could formulate a maximum tolerated
message delay in order to receive certain information which is crucial to proceed with the
mission. In order to cope with these challenges in a systematic manner a representation of QoS
properties and a mechanism to interpret them and eventually adapt the system behaviour is
required.

This section focuses on reducing the amount of data to be transmitted. This is achieved by
an appropriate adaptation of perception capabilities for data reduction at run time. To this
end, the reference architecture proposed in Section |6.2| has been employed (see Figure [7.5).
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More precisely, different data reduction algorithms are modeled with RPSL (see Chapter
and stored in the repository. The selector component (see Section[7.3.4) integrates a simple,
yet powerful algorithm which enables to adapt to QoS changes immediately. This algorithm
employs the concept of Level of Detail (LoD) as a criteria to select an algorithm. Here, bandwith
as contextual information is used as a QoS metric and an according mapping to the LoD is
performed.

As illustrative example application a setup involving a robot equipped with a Kinect RGB-D
camera is chosen. Depending on the concrete resolution and frame rate the RGB-D camera
provides a possibly high-dimensional point cloud data. This data has to be exchanged with
one or multiple Human Machine Interfaces to be used by the operators for the sake of remote
operation (see Figure[7.5). The experiments (see Section[7.3.6) show that the adaptation satisfies
an exemplary chosen application requirement of a max. transmission delay t,4x_desy = 18

even in the presence of changing QoS as commonly faced in SAR missions.

7.3.2. Context Monitoring

This section introduces the Level of Detail (LoD) as a generic metric to define a spatial resolution
of point clouds independent of the actual data representation as no byte consumption is directly
inferable. In the context of this work it is used a) to describe a spatial resolution of a given
point cloud, and b) to describe the boundaries of the output of a data reduction algorithm. A
LoD is defined as follows

Nyoints . sample

LoD =
0 | VA m3

(7.2)

where Npints is the number of point samples per volume V. This formula is somewhat similar
to printer specifications that use dots per inch. In this work the context monitor measures
in the domain of bandwidth which is not directly connected to the representation used in
the perception domain (LoD). The intention is to keep the domains for communication (e.g.
bandwidth) and perception separated otherwise the LoD would not be reusable in other
applications. Therefore, a formal mapping between both domains is defined. For the mapping
between LoD and bandwidth f is defined as follows f : B — LoD where B denotes the domain
of bandwidth in bytes per seconds and LoD is defined as in Equation[7.2} In order to compute
the LoD the context monitor is configured with the following parameters which can be derived

for an application a priori:
® tiax_delay 18 the maximum delay in seconds tolerated by the application.

® Vinax_space is the maximum volume covered by the sensor which can be deduced from the
specification of the sensor.
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® bytesper_point is the relation between the number of points in a point cloud and it’s corre-
sponding message size in bytes.

® fy¢fset 1S the worst case total time required for encoding and decoding a message.

As the bandwidth b € B is a variable that varies at run time, the maximum time required to
send a message can be derived as tuax = tiax_delay — toffset- The number of maximum bytes
that can be send depends on the available bandwidth: bytes,,;x = tuax * b. By knowing the
memory consumption of a point in a point cloud, the maximum number of points to be sent in

a message can be estimated by Npoints = bytesmax /bytesper point-

From the Vinax_space mMaximum covered volume and the maximum allowed points a maximum

LoD can be deduced: LoDjuax = Npoints/ Vinax_space- This leads to mapping f:

(tmax * b)/bytesper_point)>

Vmux_space

LoDy = f(b) = ( (7.3)

This LoDjqx denotes an upper bound for the LoD to satisfy the application tolerance 51 _gelay-
Continously the LoDy, value is updated in the repository by the context monitor. The
Vinax_space and t, ffset parameters introduced above are application-specific. In the context of
this work they are defined as described in the following paragraphs.

In the experiments (see Section a Kinect RGB-D sensor is used. Thus, Vyax_space can
be conservatively approximated with Viusx space = 64m> for accounting the bounding box
dimensions of 4m x 4m * 4m. Note, these values can be enforced with an appropriate pre-
ﬁlteringﬂ step.

The data produced by the perception algorithms needs to be serialized in order to send it
to the operators interface. Depending on the serialization approach the #,¢s; value might
vary. In the context of this work HDF5 [207] is used as a serialization format. HDF5 is a file
format for storing large scale scientific datasets and is the de facto standard in many domains.
The fact that a framework independent serialization is chosen allows to make statements
on the size of the transmitted data. In order to investigate the serialization costs artificial
point cloud datasets have been fed to the system with an increasing number of points. The
durations for t,,,.,4. for encoding and ¢4.¢o4. for decoding and the resulting message size bytes
are listed in Table Here, the HDF5 encoding and decoding reveals a predictable monotonic
increasing characteristics. Therefore, the context monitor is configured with bytes e, poins = 32
as it converges to this value for large point clouds.

For example a pass through filter available in the Point Cloud Library [206)].
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Npoints tencode tdecode bytes bytesyer point
10 1.919ms 20.621ms 11584 ~ 1158
100 4.130ms 36.932ms 43616 ~ 436
1000 5.690ms 38.541ms 32517 ~ 32
10000 7.659ms 40.452ms 331616 ~ 33
100000 9.363ms 44.643ms 3211616 ~ 32

Table 7.3. Costs of encoding and decoding point clouds with HDF5.

7.3.3. Repository

Different data reduction algorithms have been modeled with RPSL (see Chapter|3) and stored
in the repository. The RPSL perception graphs are composed of different Octree-based [208]
sub-sampling filters with different leaf sizes. Octrees are commonly used as a strategy to
reduce point cloud data [209]. In order to employ Octrees in the context of this work their
relation to the LoD (see Section[7.3.2) needs to be defined.

The smaller the leaf size Nj,,s the higher the possible resolution. A leaf size N,y = 1m means
all points — if any — in a leaf with size 1m * 1m * 1m are discarded and represented by the center
of that cube. One point per such unit cube is exactly LoD, = 15”’:175’6. The according formula
for other leaf sizes is: LoDy = 1/ (N, f)3. Having this formula allows to compute and
attach the LoD,y values for each Octree perception graph configuration as shown in Table
In addition, a perception graph called camera is also stored in the repository to account for
situations where enough bandwidth is available. In this case the raw data is not changed at all.

Name Nieas in [m] LoDpmax in [Saﬁ‘lfle]
octreel 1 1
octree0.5 0.5 8
octree0.25 0.25 64
octree0.2 0.2 125
octree0.1 0.1 1000
camera - 10000

Table 7.4. Different perception graphs and their Octree configurations available in the repository.

7.3.4. Perception Graph Selection

Whenever the requested LoD values is updated by the context monitor the selector choses the
most suitable perception graph for the current bandwidth context. The Euclidian distance as a
simple, yet powerful comparision metric is employed. A perception graph is chosen based on
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the smallest distance between the requested — as updated in the repository — and the stored
LoD values (see Table[7.4).

7.3.5. Perception Graph Deployment Infrastructure

As in Section each perception graph is expressed as a process having a systemd service
description. Based on the selected perception graph the process is started respectively stopped.

7.3.6. Experiments

In order to investigate the proposed approach a set of experiments have been performed. The
main intention is to assess whether the approach satisfies an application-based tolerance on

the maximum delay in spite of a variable bandwidth of the communication layer.
To this end, two experimental objectives have been defined:

e Objective 1: The tolerated maximum delay — which is defined by the application — always
holds even in the presence of changing QoS. Here, QoS is considered as the available
bandwidth.

e Objective 2: The lower the available bandwidth, the lower the number of points that are

transmitted.
Furthermore, the following hypothesis is investigated:
e Hypothesis 1: The density of the repository affects the delay significantly.

It is worth noting that it is assumed that the latency of the connection itself remains stable. Two
experiments have been designed, both use bandwidth as controlled variable, the parameters
from Section and the repository as described in Section[7.3.3] As point cloud dataset for
the camera an office scene is used.

1. Artificial data: The first experiment employs a full bandwidth spectrum with respect to
existing communication technologies. To this end, the values start at zero, are incremented
each after 10s, and stop at 10® bytes per seconds. By doing so a range is created which
covers typical bandwidths for cell phone networks (10° - 10°), WiFi technology (106 - 107)
and Ethernet (107 - 108).

2. Real world data: The second experiment employs real-world bandwidth measurements
from a 3G cell phone network. Motivated by the fact that some SAR missions propose to
use cell phone networks [204] as one part of their communication infrastructure a real-
world dataset called Car Snaroya Smestad [210] is used to test the system under realistic

bandwidth settings.
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Figure 7.6. Measured transmission delay and transmitted number of points for the artificial dataset.
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Figure 7.7. Measured transmission delay and transmitted number of points for the real-world dataset.

All experiments have been performed on a standard personal computerﬁ The perception
graphs integrate the Octree-based subsampling methods provided by the BRICS 3D [211]
C++ library. As communication framework ROS Hydro is used. Both the robot — having the
Platform-based Adaptation (see Figure subsystem — and the Human-Machine-Interface
are embedded into a ROS node. In order to control the bandwidth an additional relay node
is employed that introduces an artificial delay to the used topic based on a configurable
bandwidth parameter. A bandwidth generator node sends simultaneously the bandwidth
parameter according to the experimental design both to the relay node and the Context

Monitor.

For the first experiment (see Figure the delay tolerated by the application always holds
with a maximum delay of ~ 0.3s. The adaptation decision leads to an increased or decreased
number of points and is clearly visible in discrete steps. This verifies Objective 2. Here, each
discrete step represents a different selection of a perception graph. The last step represents the
transmission of the raw camera data as the bandwidth becomes sufficient. This is caused by

the selection of the camera perception graph. The granularity of discrete steps is dense in the

2Intel Core i7 CPU and = 8GiB RAM and Ubuntu 12.04.
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cell phone bandwidth range whereas in the WiFi range the selection is rather sparse. This can
be explained with the selected Octree configurations (see Table stored in the repository.
Thus, an application developer needs to consider this effect at design time through a carefully
population of the repository. By doing so the application developer can influence the overall
performance of the adaptation. Here, the cell phone bandwidth range has been emphasized,
thus Hypothesis 1 seems to be correct.

For the second experiment (see Figure which uses a real-world data set in the cell phone
bandwidth range the delay tolerated by the application holds mostly with one exception. This
outlier occurs on a sudden change to a very low bandwidth value (2736). In this case the
system selected octreel, however the reduction was not enough. This input value is beyond
the range of what the algorithms in the repository are capable of. As shown in Figure[7.7/mostly
a rather similar data reduction has been applied. The selection toggles between octree0.2
and octree0.25 but as the leaf cell parameters are so similar to each other they produce nearly
the same output. At the exceptional case that misses the application tolerance 15 points have
been transmitted. 2 points would have still met the requirement. This shows a limitation of
the approach, namely it only performs well if the repository has been carefully designed to
cope with expected context variations. Also the extreme case for b = 0 cannot be handled with
this setup.

In summary, both experiments support Objective 1, namely the approach is able to handle
QoS changes for this experimental setup.

7.3.7. Related Work and Discussion

In order to cope with the QoS challenges considered in this section some approaches propose
to reconfigure directly the QoS properties of the communication infrastructure, for example,
the work of Eich et al. [212] and Paikan et al. [213]]. Although, such an approach is appealing
when enough knowledge about the underlying middleware or communication infrastructure is
available, but it remains technology-specific and difficult to maintain. Other approaches reduce
the amount of data that is sent by applying a data reduction [214] or compression strategy [215].
However, these approaches are challenging to adapt at run time especially in the context of
real-world applications where QoS changes are a given. Recent approaches for distributed
world modeling such as the work of Tenorth et al. [216] and Dietrich et al. [217] do not tackle
the requirements imposed by challenging SAR missions as mentioned in Section[7.3.1}

As shown in Section the experiments solely exploit the LoD concept whereas further
concepts, for example, the existence or absence of color information in a point cloud could
be incorporated. This would yield in an extension of the search space for an appropriate
perception graph. Such extensions would also yield in a heterogenous repository with different
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perception graphs. Investigating suitable means to assess those repositories are promosing

directions for future work.

Interestingly, the results presented in this section encouraged Riestock et al. [218] to study
whether or not it is possible to teleoperate a quadrotor solely with a gridmap-based interface in
environments with bandwidth limitations. The idea is that such an interface would visualize
the data produced by the employed Octree perception graphs as proposed in this section.
With the help of a user study Riestock et al. [218] showed, for example, that a gridmap-based
interface is sufficient for maintaining a safety distance to nearby obstacles. Nevertheless, their
work also showed that an adaptive approach — as proposed in this section — is crucial to cope
with bandwidth variations as faced in real-world environments. Thus, the work presented in
this section can be used as one key building block for more intelligent, adaptive teleoperation

interfaces.

7.4. Environment-based Adaptation

7.4.1. Motivation

Small, affordable and lightweight aerial robots, for example, quadrotors equipped with low-
cost cameras are getting more and more used in a wide range of scenarios from guidance
to assistance applications in human-populated, indoor and GPS-denied environments like
warehouses [219]. In those environments it is often possible to add artificial features also known
as fiducials in order to simplify, for example, pose estimation where a correspondence between
points in the real-world and the 2d image projection needs to be established. To this end,
fiducial markers such as Aruco [160], April tags [220] and ArTag [221] are capable of detecting
artificial landmarks at high frame rate. Those landmarks provide enough correspondences to

compute the camera pose if the extrinsic and intrinsic parameters of the camera are known.

Although fiducial markers simplify pose estimation for a moving platform, detecting markers
is challenged by motion blur and varying environmental conditions like changing lighting
situations. Those varying conditions significantly influence the detection rate and accuracy
of the fiducial marker detectors. In order to cope with those conditions, marker detectors
provide — like many other perception algorithms — a set of configurable parameters which
can be tuned to improve the performance even in the presence of varying environmental
situations. However, as Crowley, Hall and Emonent point out in [222] tuning parameters is a

labor intensive exercise performed by highly skilled experts.

Simply ignoring varying environmental conditions will lead to a degraded performance of the
marker detector and thus robots’ ability to navigate as pose estimation would not be possible
anymore. In robotics where increased autonomy is desired the tuning of those parameters
should be performed preferably without human intervention. Thus, this section focuses on
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enabling a robot to autonomously select a marker detector configuration in the presence of
continous and discrete lighting changes faced by robots in real-world scenarios.

The motivation to focus solely on lighting changes is based on the fact that robots deployed in
long-term scenarios — from several hours to several days — need to cope with them in order to

robustly provide their services as their perception functions are immediatly effected by them.

The selection is achieved by instantiating the reference architecture proposed in Section[6.2] To
this end, different marker detector configurations have been modeled with RPSL (see Chapter [3)
and evaluated during a training phase. The resulting RPSL domain models are stored in the
repository. The selector component integrates a simple, yet powerful algorithm which enables
to adapt to lighting changes immediately. This algorithm employs the lighting condition
represented as a histogram as a criteria to select a marker detector configuration.

7.4.2. Context Monitoring

In order to interpret the current lighting condition as environmental context, the context
monitor takes the RGB camera image as an input, converts it to a grayvalue image and

computes a corresponding histogram (see Table which is stored in the repository.

7.4.3. Repository

In this work RPSL is used to represent perception graphs expressing different configurations of
the Aruco [160] marker detection algorithm. The resulting domain models are stored in the
repository. The Aruco fiducial marker approach allows to tune two parts of the core Aruco
detection algorithm, namely configurations for the adaptive thresholding and the type of
method to refine detected corners, for example, the well-known Harris [223] corner detector. In
order to configure the adaptive thresholding two parameters are employed, namely the block
size of the pixel neighborhood which is used to calculate a threshold value for the pixel and
the constant subtracted from the mean. All of those parameters are real-valued. The adaptive
thresholding takes a grayscale image and computes a binary image in which Aruco fiducial
markers are identified. Thus, wrongly configuring the adaptive threshold parameters will —in
some lighting conditions — lead to binary images where the marker is only partially visible or

even disappears.

In order to identify feasible configurations for different lighting situations a training phase
has been performed. The training were carried out in a static scene with ten visible Aruco
markers (see Table[7.5). Here, different Aruco configurations were applied for different lighting
situations. In case a specific Aruco configuration performed good — at least 5 out of 10 markers
were detected — the histogram of the grayvalue image of the current scene with a bin size of
10 were stored together with the current Aruco configuration. In total five different Aruco
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Table 7.5. Some exmaples of different lighting situations and their corresponding grayvalue histograms
occured during the training phase.

configurations and their corresponding histograms were stored in the repository. Those
configurations differ mainly in the parameters for the adaptive thresholding.

7.4.4. Perception Graph Selection

The main objective of the perception graph selection module is to identify a Aruco configuration
suitable for the current lighting situation. The execution of the selection module is triggered
by a notification of the repository whenever the context monitor inserts a new histogram (see
Section[7.4.2). The selector iterates over each perception graph implementing the Aruco marker
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detector feature (see Algorithm [3) and computes the similarity of the histogram attached to
each perception graph with the current one obtained from the repository. As a similarity
measure the Kullback-Leibler divergence is used. The divergence is defined as follows

KL(P,Q) = pr(x) log g((’;)) (7.4)

and is a suitable similarity measure for this task as the lighting situation is modeled as a

distribution of pixels over intervals (histogram).

7.4.5. Perception Graph Deployment Infrastructure

As in Section each perception graph is expressed as a process having a systemd service
description. Based on the selected perception graph the process is started respectively stopped.

Scenario u o Number of switches
Continuous ~ 0.57s ~ 0.23s 7
Discrete ~ 0.64s ~ 0.15s 45

Table 7.6. The timing behavior for the adaptation.

7.4.6. Experiments

Two challenging scenarios with time-varying lighting conditions have been defined for evalu-
ating the proposed approach. Both scenarios are performed in a laboratory and the lighting
conditions were controlled manually by turning several lights on/off and/or activating/deac-
tivating rolling shutters. The first scenario — called continous scenario — contains continously
decreasing and increasing lighting conditions. The second scenario — called discrete scenario
— contains rapid and sporadic lighting changes. In both scenarios a camera was placed in
front off a wall labeled with Aruco markers; a similar setup as for training (see Table[7.5). For
the sake of evaluation an image stream of around 120 seconds has been recorded for both
scenarios. It is important to note that the evaluation scenarios are different in terms of the
concrete lighting situation and their particular duration than the one used for training. In
order to evaluate whether or not the adaptive approach is beneficial in terms of detecting
more or fewer markers than idividual configurations, both scenarios have been replayed to the
individual configurations of the Aruco marker detector and the adaptive approach. As seen in
Table[7.7]the adaptive approach performs best —just looking at the average value of detected
markers — for the continous scenario and third for the discrete scenario. However, assessing
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Scenario Graph U o

Continuous with adaptation ~ 5.88 =~ 3.50
A ~ 1.32 ~ 1.38
B ~ 5.57 ~ 3.82
C ~ 3.45 ~ 3.14
D ~ 4.63 ~ 3.71
E ~ 0.39 ~ 1.33

Discrete with adaptation ~ 6.37 ~ 3.34
A ~ 0.73 ~ 1.04
B ~7.70 ~2.20
C ~ 3.56 =~ 2.86
D ~ 6.45 ~ 2.80
E ~ 0.00 ~ 0.03

Table 7.7. Performance — number of detected markers — of the adaptive approach with respect to the
individual configurations.

solely the average performance is not beneficial as it is expected that an adaptive approach
is in particular beneficial in situations where a configuration needs to be selected in order to
outperform all the other available configurations. Such a situation is visualized in Figure
which shows an excerpt of the continous scenario. The first row depicts the lighting condition
as an average graylevel pixel value over time. The second row shows the performance of the
adaptive approach — the number of detected markers over time — and the remaining rows show
the performance of the individual configurations. In this particular situation only configuration
E is able to detect markers which is also selected by the adaptive approach. Afterwards and
with some delay the adaptive approach switches from configuration E to B.

The average adaptation time, that is the time required to select and execute a perception graph
has been measured as well. As shown in Table|7.6|for both scenarios the adaptation time is
quite similar. For the continous scenario seven switches were performed and for the discrete

scenario 45 switches were performed.

7.4.7. Related Work and Dicussion

From a machine learning perspective the proposed approach can be considered as an instance-
based learning approach as whenever a new lighting situation is perceived it is compared with
those seen in training. Although the proposed approach is — from a learning and computer
vision perspective — not novel, it demonstrates how RPSL models can be used for training.
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Figure 7.8. An excerpt of the continous scenario showing the performance of the adaptive approach
(second row) vs. individual configurations. The colored vertical bars denote the point in
time where a selected perception graph became active.

Interestingly, those models are employed later to realize adaptation in the presence of varying
context variations. The results are promosing, but it remains to be investigated whether the
approach can be used also for realistic robotic applications like long-term navigation where
more data is required for learning. In order to tacke these more challenging scenarios it might
be beneficial to combine several contextual information, namely lighting, occlusion and blur.
However, this would also require to investigate more advanced similarity measures which can

incorporate several attributes expressing heterogenous context conditions.

7.5. Summary

This chapter presented three different robot perception systems which are capable to cope
with varying context-conditions, namely task, platform and environment context. All of them
are based on the reference architecture proposed in Chapter[] The architecture served not
only as a blueprint for structuring the development, but also supported the identification
and implementation of innovative components required to meet the application requirements.
For example, the platform-based adaptation system (see Section focuses on elaborated
context monitoring whereas the task-based adaptation (see Section[7.2) focuses on advanced
perception feature selection. Having said this, the selection of suitable perception abilities is
done on different levels of abstraction, namely two systems are working on the perception
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graph level (see Sections[7.3|and and one system works on the perception feature level
(see Section[7.2). Although adaptation is considered in this work as a selection of features
respectively perception graphs and not as a modification of existing features/graphs it is
sufficient to cope with rather complex context variations.
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Chapter 8.
Conclusion

“Once we accept our limits, we go beyond them.”
— Albert Einstein, 1879-1955

This section concludes the thesis by summarizing the main contributions from Chapters
and providing suggestions for future work.

8.1. Contributions

This thesis sets out to improve robotic software engineering with a particular focus on the spec-
ification, deployment and adaptation of complex robot perception systems. This is achieved
by establishing a structured, formal and model-based development approach. The structure is
based on architectural views which serve as guiding principles to facilitate the analysis of the
assessed domain. Based on the domain analysis, concepts and their constraints among each
other have been identified and rigorously formalized as metamodels. The analysis has been
performed in a well-defined way, which ensures that both commonalities and variabilites of
robot perception systems are captured in the metamodels.

In order to enable domain experts to specify their design decisions of robot perception systems,
two internal, domain-specific languages are proposed, namely RPSL and DepSL. Both languages
conform to the metamodels and provide suitable abstractions and notations to specify robot
perception systems. Having RPSL and DepSL at their disposal domain experts can now not only
express and communicate their design decisions, but also verify them as the specifications
are interpretable. This is achieved by implementing checks which ensure that RPSL and DepSL

domain models comply with the formalized constraints and metamodels.

Another challenge tackled in this thesis is how to cope with the inherent complexity of robot
perception systems which roots in their functional, architectural and deployment variability.
In order to tame this complexity and to deal with variability in a systematic manner this thesis

129



130 Conclusion

introduces a design space exploration approach. The approach is supported by software tools
which enables domain experts to explore and assess — in a semi-automatic manner — all possible

implementations yielding from combining functional and architectural variability.

The approach paves the way to establish a step-wise, iterative design and development of
robot perception systems comprising three steps. Firstly, RPSL is utilized to specify functional
and architectural variability in an individual manner which leads to orthogonal domain
models. Secondly, those models are combined in the exploration phase to assess expected and
sometimes even unexpected design alternatives. Thirdly, based on the insights gained in the
previous step, RPSL domain models are possibly refined.

Model-based approaches in robotics and other domains are often tailored and limited to be
used by humans at design time. This work in contrast goes one step further by proposing
labeled property graphs and graph databases as powerful means to apply models at run time
and to grant robots access to those models. The labeled property graph model is a simple, yet
powerful means to store, compose and query domain models originating not only from the
robotic perception domain. Also heterogenous models originating from different functional
domains and development phases can be combined in the graph to derive implicitly defined
information. This is achieved by implementing domain and application-specific semantic
queries operating on the labeled property graph. Thus, deriving implicity defined knowledge
raises the robots awareness about its capabilities and corresponding software implementations.

Making RPSL and DepSL domain models accessible for robots” — as part of their knowledge
repository — enables them to deploy robot perception systems on their own. To this end, this
thesis proposes a reference architecture which provides not only the means to integrate the
repository, but also to develop additional components required for deploying robot perception
systems even in the presence of varying resource conditions.

The reference architecture served as a blueprint for the implementation of three different
robot perception systems. All of them are capable to cope with varying context conditions
faced at run time and to provide their service by integrating application-specific adaptation
components. Those components derive adaptation actions based on the perceived context
and on explicitly expressed knowledge about their perception abilities. Thus, RPSL and DepSL

domain models are used to close the gap between design time and run time concerns.

8.2. Suggestions for Future Work

This thesis opens up new, interesting directions for further research in robotic software engi-

neering. Some of those directions are motivated and discussed in the following paragraphs.

Generally speaking, it is desirable that model-based approaches are used throughout a com-
plete development process such that each development phase is enhanced by DSLs. As both
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RPSL and DepSL are developed for specific tasks, they obviously support only some phases,
namely the functional design, capability building and the system deployment phase of the RAP
(see Chapter2), whereas other phases are not supported. A future direction of research is not to
extend RPSL and DepSL with means to enhance additional development phases, but to integrate
and link them with approaches tailored for phases like the scenario building phase. Integrating
RPSL and DepSL with approaches, for example from the scenario building phase, would enable
domain experts and developers to trace requirements and to link them with specifications
of perception abilities, perception graphs and their deployment. Such an integration would
also pave the way to extend the design space exploration approach presented in Chapter [4] to
include additional variability dimensions such as deployment and platform variability.

In order to foster the above mentioned research, another promising direction of research is to
perform methodologically sound user studies in the context of real-world robot application
development. In this connection, RPSL and DepSL could be evaluated by users to model not only
robot perception systems, but also other robotic sub-systems like navigation, manipulation
and so forth. Such a user study would help to identify — if any — missing concepts in the
robot perception domain and whether or not the concepts available in RPSL and DepSL can be
employed to model other systems. It is worth to note that such a user study should take into
account the complete application development process in order to identify requirements for
software tools.

Although this research aims to close the gap between design time and run time, it is worth
noting that robots are mainly considered to be consumer and not producer of domain models.
However, for long-term autonomy scenarios robots need also to be producer of domain models.
To achieve this, more research to define richer run time models incorporating experience data
and performance profiles of perception graphs and their deployment is required. Having such
run time models would also pave the way to include this kind of information also for the
sake of run time adaptation. Thus, improving the performance of robot perception systems

throughout the whole life-cycle.

Last but not least another promising future direction of research is to investigate in more detail
the costs which are involved in adapting robot perception systems at run time. Those costs
are typically on different levels of abstraction, for example, settling time, resources required
to perform adaptation, time to come up with adaptation actions and so forth. Investigating
those costs should be done always with respect to some application and domain-requirements
as, for example, in one application a particular cost might be tolerable whereas for another
application they are not acceptable. In order to include those costs and requirements in the

adaptation algorithms means to express them are required.
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Appendix A.

Alloy Model of Perception Features

7

abstract sig FeatureTree{
root: Feature

H
root.~(contain+spec)=none

}

abstract sig Feature {
spec: lone Feature,
contain: set Feature,
excluded: set Feature,
required: set Feature
H
some contain implies no spec
some spec implies mno contain
let rel= (@spec+@contain){ // rel is the set of all edges composing the feature tree
this not in this."rel // prevent loops in the feature tree
this.~*rel & required.@excluded =none // given a feature f, features required by f
can’t exclude f and f’s parents
one (this.*~rel & FeatureTree.root) // there’s only one root feature in the parents
of a given feature.
lone (this.~@contain + this.~@spec )// any feature has at most one parent.
excluded & required = none // a feature can’t exclude and require the same feature

excluded & this.*rel=none // a feature can’t exclude itself or its children
excluded & this.*~rel=none // a feature can’t exclude itself or its parent
&

required this.*rel=none // a feature can’t require itself or its children
required & this.*~rel=none // a feature can’t require itself or its parent
no disj f1,f2:FeatureTree | this in fl.root.*rel and ((excluded+required) & f2.root
.*rel) !=none // features of one feature tree can’t exclude or require features
of another feature tree.
all x: excluded+required | some f:Feature | some disj f2,f3 :Feature | f2+f3 in f.

@contain and (this+x) in (£f2+£3).*rel and (this & f2.xrel) +(x & f3.*rel) =none
// a feature can require or exclude another one only if both have ancestors
which are (or are themselves) different alternatives of a same containment
// for a given feature "this", let x be the set of excluded and required feature.
We don’t want another feature f that is not an ancestor of this but which is an
specialisation alternative of an ancestor of this and an ancestor of x.
all x:excluded+required | no f:Feature | f not in this.*~rel and one f.~@spec and
f.~@spec in this.*~rel and x in f.*rel // required and excluded features should
be in the same specialisation branch.

Figure A.1. The Alloy model for the perception features.
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