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In this article, we prove that in the Rademacher setting, a random vector with chaotic components
is close in distribution to a centred Gaussian vector, if both the maximal influence of the associated
kernel and the fourth cumulant of each component is small. In particular, we recover the univariate
case recently established in Döbler and Krokowski (2017).

Our main strategy consists in a novel adaption of the exchangeable pairs couplings initiated in
Nourdin and Zheng (2017), as well as its combination with estimates via chaos decomposition.

Abstract

1 Introduction

1.1 Motivation

Nualart and Peccati’s fourth moment theorem states that a normalised sequence of fixed-order multiple
Wiener-Itô integrals associated to a Brownian motion converges in law to the standard Gaussian if and
only if the corresponding fourth moment converges to 3. It was proved in [21] using the Dambis-Dubins-
Schwartz random-time change technique. Soon after the appearance of [21], several extensions have been
made, among which the paper [23] by Peccati and Tudor provided a significant multivariate extension
using the same techique. Roughly speaking, a sequence of chaotic random vectors on the Wiener space
converges in distribution to a centred Gaussian vector with matched covariance matrix if and only if the
asymptotic normality holds true for each component. Note that the necessary condition boils down to the
convergence of the fourth moments due to the fourth moment theorem of Nualart and Peccati.

In 2009, Nourdin and Peccati [15] combined the Malliavin calculus and Stein’s method of normal
approximation so as to literally create a new field of research, known as the Malliavin-Stein approach. One
of its many highlights is the obtention of the (quantitative) fourth moment theorem in the total-variation
distance. Here is the bound quoted from the monograph [16]: given a normalised q-th Wiener-Itô integral
F associated to a Brownian motion, one has

dTV(F,Z) := sup
A∈B(R)

∣∣∣∣P(F ∈ A
)
− P

(
Z ∈ A

)∣∣∣∣ ≤ 2
√

3

√
q − 1

q
(
E[F4] − 3

)
,

where Z is a standard Gaussian random variable and B(R) denotes the Borel σ-algebra on R. As an
immediate consequence, the fourth moment theorem of Nualart and Peccati follows.

The success of the Malliavin-Stein approach stems from the integration by parts on both sides, namely,
the Stein’s lemma within the Stein’s method and the duality relation between Malliavin derivative and
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2 G. Zheng

Skorohod divergence on a Gaussian space, see the monograph [16] for a comprehensive treatment. The
only ingredients required from the Stein’s method are the Stein’s lemma, Stein’s equation and the regularity
properties of the Stein’s solution, while “exchangeable pairs”, another fundamental tool and notable
cornerstone of Stein’s method, had not been touched until the recent investigation [20] made by Nourdin
and Zheng. They constructed infinitely many exchangeable pairs of Brownian motions and combined
them with E. Meckes’ abstract results [12, 13] on exchangeable pairs to recover the quantitative fourth
moment theorem on a Gaussian space in any dimension. Such an elementary strategy was soon adapted by
Döbler, Vidotto and Zheng in [7] for their investigation on the Poisson space, and they were able to obtain
the quantitative fourth moment theorem in any dimension. In fact, the univariate fourth moment theorem
on the Poisson space was established earlier in [6] under some integrability assumptions involving the
difference operator, which are partially due to the inherent discreteness of the Poisson space. Remarkably,
the authors of [7] were able to obtain the exact fourth moment theorem under the weakest possible
assumption of finite fourth moment. This illustrates the power of the elementary exchangeable pairs
approach.

In this work, under suitable assumptions, we establish a Peccati-Tudor type theorem in the Rademacher
setting using the elementary exchangeable pairs approach.

1.2 Main result

We first fix a rich probability space
(
Ω,F ,P

)
, on which our random objects are defined. Let E be the

associated expectation operator.
We write N := {1, 2, . . .} and denote by X a sequence of independent Rademacher random variables

(Xk, k ∈ N) such that P
(
Xk = 1

)
= pk = 1 − qk = 1 − P

(
Xk = −1

)
∈ (0, 1). We call it the symmetric case,

whenever pk = 1/2 for each k ∈ N; otherwise, we call it the general case. We write Y =
(
Yk, k ∈ N

)
for

the normalised version of X, that is,

Yk =
Xk − pk + qk

2
√

pkqk
, k ∈ N .(1.1)

We write H = `2(N), equipped with usual `2-norm and for p ∈ N, H⊗p means the p-th tensor product of H
and H�p its symmetric subspace. We denote H�p

0 :=
{
f ∈ H�p : f |4c

p = 0
}

with 4p =
{
(i1, . . . , ip) ∈ Np :

ik , i j for different k, j
}
. Clearly, H�0

0 = H⊗0 = R and H�1
0 = H.

Let f ∈ H�d
0 with d ∈ N and Ξ = (ξk, k ∈ N) be a generic sequence of independent normalised random

variables. We define the following homogeneous sum with order d, based on the kernel f , by setting,

Qd( f ; Ξ) :=
∑

i1,...,id∈N

f (i1, . . . , id)ξi1 · · · ξid(1.2)

and in particular, Qd( f ; Y) is called the (discrete) multiple integral of f . We write Cd =
{
Qd( f ; Y) : f ∈

H�d
0

}
and call it the d-th Rademacher chaos, and as a convention, we put C0 = R. In case of no ambiguity,

we will simple write Qd( f ) for Qd( f ; Y).
Let us introduce an important notion before we state our main result: for a given kernel f ∈ H�d

0 , we
denote byM( f ) the maximal influence of f , namely

M( f ) := sup
k∈N

∑
i1,...,id−1∈N

f (i1, . . . , id−1, k)2 for d ≥ 2 and M( f ) := sup
k∈N

f (k)2 for d = 1.(1.3)

This notion is adapted from the boolean analysis (see e.g. [22]), in which the class of low-influence
functions is often what is interesting or necessary in practice. It is also closely related to the invariance
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principle established in [14] and the universality phenomenon of Gaussian Wiener chaos [18]. See also
Section 4 for more details.

In this work, we are mainly concerned with random variables in a Rademacher chaos and random
vectors with components in Rademacher chaoses. More precisely, we establish the following result.

Theorem 1.1. Fix integers d ≥ 2 and 1 ≤ q1 ≤ . . . ≤ qd, and consider the sequence of random vectors

F(n) = (F(n)
1 , . . . , F(n)

d )T :=
(
Qq1( f1,n), . . . ,Qqd ( fd,n)

)T

with kernels f j,n in H�q j

0 for each n ∈ N, j ∈ {1, . . . , d}. Assume that the covariance matrix Σn of F(n)

converges in Hilbert-Schmidt norm to a nonnegative definite symmetric matrix Σ =
(
Σi, j, 1 ≤ i, j ≤ d

)
, as

n→ +∞. Suppose that the following condition holds:

lim
n→+∞

d∑
j=1

M( f j,n) = 0 .

If for each j ∈ {1, . . . , d}, E
[(

F(n)
j

)4
]

converges to 3Σ2
j, j, as n→ +∞, then F(n) converges in distribution to

Z ∼ N(0,Σ), as n→ +∞.

The above theorem is analogous to the Peccati-Tudor theorem on a Gaussian space [23], so we call it a
Peccati-Tudor type theorem, which explains our title. One of the main tools we need for the proof is the
following ingredient from Stein’s method of exchangeable pairs. As one will see easily, we can obtain a
quantitative version of Theorem 1.1, which will be an analogue to [7, Theorem 1.7] and left for interested
readers.

Recall first that two random variables W and W′, defined on a common probability space, are said to
form an exchangeable pair, if (W,W′) has the same distribution as (W′,W).

Proposition 1.1 (Proposition 3.5 in [7]). For each t > 0, let (F, Ft) be an exchangeable pair of centred
d-dimensional random vectors defined on a common probability space. Let G be a σ-algebra that contains
σ{F}. Assume that Λ ∈ Rd×d is an invertible deterministic matrix and Σ is a symmetric, non-negative
definite deterministic matrix such that

(a) lim
t↓0

1
t
E
[
Ft − F|G

]
= −ΛF in L1(Ω),

(b) lim
t↓0

1
t
E
[
(Ft − F)(Ft − F)T |G

]
= 2ΛΣ + S in L1(Ω, ‖ · ‖H.S.) for some matrix S = S (F), and with

‖ · ‖H.S. the Hilbert-Schmidt norm,

(c) for each i ∈ {1, . . . , d}, there exists some real number ρi(F) such that lim
t↓0

1
t
E
[
(Fi,t − Fi)4] = ρi(F),

where Fi,t (resp. Fi) stands for the i-th coordinate of Ft (resp. F).

Then, for g ∈ C3(Rd) such that g(F), g(Z) ∈ L1(P), we have, with Z ∼ N(0,Σ),∣∣∣E[g(F)] − E[g(Z)]
∣∣∣

≤
‖Λ−1‖op

√
d M2(g)

4
E


√√√ d∑

i, j=1

S 2
i, j

 +

√
dM3(g)‖Λ−1‖op

18

√√√ d∑
i=1

2Λi,iΣi,i + E[S i,i]

√√√ d∑
i=1

ρi(F) ,

where Mk(g) := supx∈Rd

∥∥∥Dkg(x)
∥∥∥

op with ‖ · ‖op the operator norm.
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The rest of this paper is organised as follows: Section 1.3 is devoted to a brief overview of related
results and we sketch our strategy of proving Theorem 1.1 in Section 1.4; in Section 2, we provide
preliminary knowledge on Rademacher chaos and a crucial exchangeable pairs coupling. The proof of
our main result will be given in Section 3 and some discussion about universality around Rademacher
chaos will be presented in Section 4.

1.3 A brief overview of literature

Soon after the appearance of [15], Nourdin, Peccati and Reinert combined Stein’s method and a discrete
version of Malliavin calculus to study the Gaussian approximation of Rademacher functionals in the
symmetric case. This analysis is known as the discrete Malliavin-Stein approach. It has been generalised
by the authors of [9, 10] not only in the multivariate setting but also in the general case where functionals
involving non-symmetric, non-homogeneous Rademacher random variables were investigated. Recently,
Döbler and Krokowski [5] gave the following fourth-moment-influence bound and pointed out that it
is optimal in the sense that there are examples, in which the fourth moment condition alone would not
guarantee the asymptotic normality.

Theorem 1.2 (Theorem 1.1 in [5]). Fix p ∈ N and f ∈ H�p
0 satisfying p!‖ f ‖2

H⊗p = 1. Let Z be a standard
Gaussian and F = Qp( f ; Y) ∈ L4(P), then we have the following bound in Wasserstein distance:

dW
(
F,Z

)
:= sup
‖h′‖∞≤1

∣∣∣∣E[h(F) − h(Z)
]∣∣∣∣ ≤ C1

√∣∣∣E[F4] − 3
∣∣∣ + C2

√
M( f ) ,

where C1,C2 are two numerical constants. This result echoes the remarkable de Jong’s central limit
theorem [4].

Besides the aforementioned references, Krokowski [8] derived a multiplication formula that generalises
the one in [17], and applying as well the Chen-Stein’s method, he studied the Poisson approximation of
Rademacher functionals. Independently, Privault and Torrisi [26] also derived a multiplication formula
and moreover, they obtained a generalisation of the approximate chain rule from [17], and applied them to
study Gaussian and Poisson approximation of Rademacher functionals in the general case. Concerning
the normal approximation in [17] or [26], the authors were only able to obtain the bounds in some
“smooth-version” distance, due to regularity involving in their chain rules and Stein’s solution. In a
follow-up work, Zheng [28] obtained a neater chain rule that requires minimal regularity (see [28, Remark
2.3]), from which he obtained the bound in Wasserstein distance as well as an almost sure central limit
theorem for Rademacher chaos. It is worthy pointing out that without using any chain rule, the authors of
[9, 10] used carefully a representation of the discrete Malliavin gradient and the fundamental theorem of
calculus to deduce the Berry-Esseen bound for normal approximation. Using similar ideas, Döbler and
Krokowski [5] also provided the Berry-Esseen bound for their fourth-moment-influence theorem, which is
of the same order as the above Wasserstein bound.

1.4 Strategy of proving Theorem 1.1

Stein’s method of exchangeable pairs was first systematically presented in Charles Stein’s 1986 monograph
[27], which was subsequently developed and ramified by many authors. Concerning our work, we mention
in particular E. Meckes’ dissertation [12], in which she developed an infinitesimal version of this method
to obtain total-variation bound in normal approximation. This infinitesimal version of Stein’s method of
exchangeable pairs was later generalised in [3, 13] for the multivariate normal approximation.

As announced, Proposition 1.1 is one of our main tools, and it can be seen as a generalisation of
[13]. To use it, we need to construct a suitable family of random vectors Ft, t ≥ 0 such that (Ft, F)
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is exchangeable for each t and satisfies several asymptotic regression conditions. In fact, we will first
construct a family of Rademacher sequences Xt such that

(
Xt,X

)
is an exchangeable pair of {±1}N-valued

random variables for each t ≥ 0. More precisely, let X′ be an independent copy of X and Θ = (θk, k ∈ N)
be a sequence of i.i.d. standard exponential random variables such that X, X′ and Θ are independent. For
each t ∈ [0,+∞), we define

Xt
k := Xk1(θk≥t) + X′k1(θk<t) .

It has been pointed out in [10] that Xt has the same distribution as X, see also Remark 3.4 in [17] for the
symmetric case. However, both of these two articles did not explicitly state the exchangeability of Xt

and X, which will be proved in Lemma 2.2. Assuming this and writing F = f(X) for some representative
f : {±1}N → Rd, we can set Ft = f(Xt). It is easy to see that the exchangeability can be passed to (F, Ft)
now. If F =

(
Qp1( f1; Y), . . . ,Qpd ( fd; Y)

)
, then we can write Ft =

(
Qp1( f1; Yt), . . . ,Qpd ( fd; Yt)

)
with Yt

the normalised version of Xt in the sense of (1.1).
Moreover, this exchangeable pairs coupling fits well with the Mehler’s formula, which gives a nice

representation of the discrete Ornstein-Uhlenbeck semigroup
(
Pt, t ≥ 0

)
: given F ∈ L2(Ω, σ{X},P), we

can first write F = f(X) for some f : {±1}N → R, then the Mehler formula ([10, Proposition 3.1]) states
that

PtF = E
[
f
(
Xt) |σ{X}] .(1.4)

For ξ ∈ Cp, as we will see in Section 2, Ptξ = e−ptξ, then the asymptotic linear regression (a) in Proposition
1.1 follows easily, and with slightly more effort, the higher order regressions can also be obtained, see
Proposition 2.1.

Another important ingredient in our proof is Ledoux spectral point-of-view for fourth moment theorem
[11], which was later refined e.g. in [1, 2]. Such a spectral viewpoint helps one get rid of some
computational deadlock that is usually caused by the complicated multiplication formula. In particular,
our proof is motivated by some arguments in [2].

As a byproduct of our strategy, we will provide a short proof of Theorem 1.2 in the beginning of
Section 3. Some estimate from this proof will also be helpful for our multivariate case.

Acknowledgement. Part of this work was done during a visit at National University of Singapore. I
thank very much Professor Louis H. Y. Chen at NUS for his very generous support and kind hospitality.
The gratitude also goes to Professor Giovanni Peccati for sharing his alternative proof of Lemma 2.4 in
[6], which motived our proof of Lemma 2.1.

2 Preliminaires

Denote by σ{X} the σ-algebra generated by the sequence X, and note that σ{X} = σ{Y}. The Wiener-
Itô-Wash chaos decomposition asserts that any random variable F ∈ L2(Ω, σ{X},P) admits a unique
representation

F = E[F] +
∑
p≥1

Qp( fp) with fp ∈ H
�p
0 for each p ∈ N,(2.1)

where the above series converges in L2(P). We denote by Jk(·) the projection onto the k-th Rademacher
chaos Ck: for F given in (2.1), Jp(F) = Qp( fp) for each p ∈ N, and J0(F) = E[F]. It is not difficult to
check that for f ∈ H�p

0 and g ∈ H�q
0 , it holds that

E
[
Qp( f )Qq(g)

]
= 1{p=q}p!〈 f , g〉H⊗p .
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This is known as the orthogonality property of the multiple integrals. One can refer to N. Privault’s survey
[25] for more details and relevant discrete Malliavin calculus.

The authors of [17] established a multiplication formula for discrete multiple integral in the symmetric
case: given f ∈ H�p

0 and g ∈ H�q
0 , one has

Qp( f )Qq(g) =

p∧q∑
r=0

r!
(
p
r

)(
q
r

)
Qp+q−2r

(
f ⊗̃rg14p+q−2r

)
,(2.2)

where the r-contraction f ⊗r g of f and g is defined by

( f ⊗r g)
(
i1, . . . , ip−r, j1, . . . , jq−r

)
:=

∑
k1,...,kr∈N

f
(
i1, . . . , ip−r, k1, . . . , kr

)
· g

(
j1, . . . , jq−r, k1, . . . , kr

)
and f ⊗̃rg is the canonical symmetrisation of f ⊗r g, i.e. for any h ∈ H⊗p, h̃ is given by

h̃(i1, . . . , ip) =
1
p!

∑
σ∈Sp

h
(
iσ(1), . . . , iσ(p)

)
,

with Sp the permutation group over {1, . . . , p}. We follow the convention that c̃ = c for each c ∈ R.
Note it is easy to deduce from the Cauchy-Schwarz inequality that ‖̃h‖H⊗p ≤ ‖h‖H⊗p for each h ∈ H⊗p,
then applying the above orthogonality property and mathematical induction gives us a weak form of the
hypercontractivity property in the symmetric case, namely, E

[
|F|r

]
< +∞ for any F ∈ Cp, p, r ∈ N.

However, in the general case, one can not even guarantee the existence of finite fourth moment of a
generic multiple integral. Such a phenomenon, due to the asymmetry, is also revealed in the corresponding
multiplication formulae, see Proposition 2.2 in [8] and Proposition 5.1 in [26]. As already pointed out
in [5], given F ∈ Cp ∩ L4(P), one can not directly deduce from these multiplication formulae that F2

admits a finite chaotic decomposition. Adapting the induction arguments from the proof of [6, Lemma
2.4], Döbler and Krokowski gave the following positive result.

Lemma 2.1 (Lemma 2.3 in [5]). Let F = Qp( f ) ∈ L4(P) and G = Qq(g) ∈ L4(P) for some f ∈ H�p
0 and

g ∈ H�q
0 . Then FG ∈ L2(P) admits a finite chaos decomposition of the form

FG = E[FG] +

p+q−1∑
k=1

Jk(FG) + Qp+q
(
f ⊗̃g14p+q

)
.

In particular, if Q1(h) belongs to L4(P) for some h ∈ H, then

Q1(h)2 = ‖h‖2
H

+ Q1(w) + Q2
(
h⊗̃h142

)
with w(k) =

h(k)2(qk − pk)
√

pkqk
, k ∈ N.

(As this lemma is crucial for our work and for the sake of completeness, we provide in Section 3.3 another
and direct proof suggested by Giovanni Peccati.)

2.1 Ornstein-Uhlenbeck Structure and carré du champs operator

Denote by dom(L) the set of those F in (2.1) verifying

∞∑
p=1

p2E
[
Qp( fp)2] =

∞∑
p=1

p2 p!‖ fp‖
2
H⊗p < +∞ .
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For such a F ∈ dom(L), we define LF = −
∑

p≥1 pQp( fp). In particular, if F ∈ Cp, LF = −pF. In other
words, −L has pure spectrum N ∪ {0} and each eigenvalue p ∈ {0} ∪ N corresponds to the eigenspace Cp.
And we call L the Ornstein-Uhlenbeck operator, equipped with its domain dom(L).

For F,G ∈ dom(L) such that FG ∈ dom(L), we define the carré du champs operator Γ(F,G) by setting

Γ(F,G) :=
1
2
(
L(FG) − FLG −GLF

)
.

In particular, for F,G as in Lemma 2.1, one has FG ∈ dom(L) and

Γ(F,G) =
1
2
[
(p + q) + L

] p+q∑
k=0

Jk(FG)

 =
p + q

2
E[FG] +

p+q−1∑
k=1

p + q − k
2

Jk(FG) ,(2.3)

and as a consequence of the orthogonality property, one deduces that

Var
(
Γ(F,G)

)
=

p+q−1∑
k=1

(p + q − k)2

4
Var

(
Jk(FG)

)
≤ max{p2, q2}

p+q−1∑
k=1

Var
(
Jk(FG)

)
,(2.4)

which is all we need about the carré du champs.

For each t ∈ [0,+∞) and F as in (2.1), we define

PtF := E[F] +

∞∑
p=1

e−ptQp( fp) .

(Pt, t ≥ 0) is called the Ornstein-Uhlenbeck semigroup, which can be represented alternatively by the
Mehler formula (1.4). To verify (1.4), one can first consider F = Qp( fp) in a Rademacher chaos
with fp ∈ H

�p
0 having finite support and then use the standard approximation argument. Note that for

F ∈ dom(L), it is not difficult to check t−1(PtF − F) converges in L2(P) to LF, as t ↓ 0.

2.2 Exchangeable pairs of Rademacher sequences

Lemma 2.2. Let Xt and X be given as before, then
(
X,Xt) has the same distribution as

(
Xt,X

)
. In

particular, for any f j ∈ H
�p j

0 with p j ∈ N, j = 1, . . . , d,(
Qp1( f1; Y), . . . ,Qpd ( fd; Y)

)
and

(
Qp1( f1; Yt), . . . ,Qpd ( fd; Yt)

)
form an exchangeable pair, where Yt stands for the normalised version of Xt in the sense of (1.1).

Proof. Note first that Xt is a sequence of independent Rademacher random variables for each t ∈ [0,+∞).
For each k ∈ N, it is easy to check that

P
(
Xt

k = −1, Xk = 1
)

= P
(
Xt

k = 1, Xk = −1
)

= (1 − e−t)pkqk .

This gives us the exchangeability of (Xk, Xt
k) for each k ∈ N. Let a = (ai, i ∈ N),b = (bi, i ∈ N) ∈ {±1}N,

then using the independence within those two sequences X,Xt, we obtain

P
(
X = a,Xt = b

)
=

∏
k∈N

P
(
Xk = ak, Xt

k = bk
)

=
∏
k∈N

P
(
Xk = bk, Xt

k = ak
)

by exchangeability of Xk, Xt
k

= P
(
X = b,Xt = a

)
.
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This proves the exchangeability of X,Xt. The rest follows from a standard approximation argument: it is
clear that after truncation, (with [N] := {1, . . . ,N})(

Qp1( f11[N]p1 ; Y), . . . ,Qpd ( fd1[N]pd ; Y)
)

and
(
Qp1( f11[N]p1 ; Yt), . . . ,Qpd ( fd1[N]pd ; Yt)

)
form an exchangeable pair; letting N → +∞ and keeping in mind that the exchangeability is preserved in
limit, we get the desired result. �

The following result brings more connections between our exchangeable pairs and Ornstein-Uhlenbeck
operator.

Proposition 2.1. Let F = Qp( f ; Y) ∈ L4(P) for some f ∈ H�p
0 and define Ft = Qp( f ; Yt). Then, (F, Ft)

is an exchangeable pair for each t ∈ R+. Moreover,

(a) lim
t↓0

1
t
E
[
Ft − F|σ{X}

]
= LF = −pF in L4(P).

(b) If G = Qq(g; Y) ∈ L4(P) and Gt = Qq(g; Yt) for some g ∈ H�q
0 ,

then we have lim
t↓0

1
t
E
[
(Ft − F)(Gt −G)|σ{X}

]
= 2Γ(F,G), with the convergence in L2(P).

(c) lim
t↓0

1
t
E
[
(Ft − F)4] = −4pE[F4] + 12E

[
F2Γ(F, F)

]
≥ 0.

Proof. By the Mehler formula (1.4), we have

1
t
E
[
Ft − F|σ{X}

]
=

Pt(F) − F
t

=
e−pt − 1

t
F ,

converges in L4(P) to −pF = LF, as t ↓ 0. As a consequence of Lemma 2.1, FG has a finite chaos
expansion of the form FG = E[FG] +

∑p+q
k=1 Qk

(
hk; Y

)
for some hk ∈ H

�k
0 . Therefore, FtGt = E[FG] +∑p+q

k=1 Qk
(
hk; Yt), implying

1
t
E
[
FtGt − FG|σ{X}

]
=

p+q∑
k=1

1
t
E
[
Qk

(
hk; Yt) − Qk

(
hk; Y

)
|σ{X}

]
converges in L2(P) to

∑p+q
k=1 −k Jk(FG) = L(FG), as t ↓ 0. Hence, we infer that in L2(P) and as t ↓ 0,

1
t
E
[
(Ft − F)(Gt −G)|σ{X}

]
=

1
t
E
[
FtGt − FG|σ{X}

]
− F
E[Gt −G|σ{X}]

t
−G
E[Ft − F|σ{X}]

t
→ L(FG) − FLG −GLF = 2 Γ(F,G) .

Since the pair (F, Ft) is exchangeable, we can write

E
[
(Ft − F)4] =E

[
F4

t + F4 − 4F3
t F − 4F3Ft + 6F2

t F2]
= 2E[F4] − 8E

[
F3Ft

]
+ 6E

[
F2F2

t
] (

by exchangeability of (F, Ft)
)

= 4E
[
F3(Ft − F)

]
+ 6E

[
F2(Ft − F)2] (after rearrangement)

= 4E
[
F3E[Ft − F|σ{X}]

]
+ 6E

[
F2E[(Ft − F)2|σ{X}]

]
.

so (c) follows immediately from (a),(b) and the fact that F ∈ L4(P). �
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3 Proofs

We begin with the following lemma, whose proof is postponed to Section 3.3.

Lemma 3.1. Given F = Qp( f ) with f ∈ H�p
0 and G = Qq(g) with g ∈ H�q

0 , we assume that F,G ∈ L4(P).
Then we have the following estimates:

p+q−1∑
k=1

Var
(
Jk(FG)

)
≤ E

[
F2G2] − 2E[FG]2 − Var(F)Var(G) + (p + q)!

∥∥∥ f ⊗̃g14c
p+q

∥∥∥2
H⊗p+q ,(3.1)

and in particular,

max

 2p−1∑
k=1

Var
(
Jk(F2)

)
, p!2

p−1∑
r=1

(
p
r

)2∥∥∥ f ⊗r f
∥∥∥2
H⊗2p−2r

 ≤ E[F4] − 3E[F2]2 + (2p)!
∥∥∥ f ⊗̃ f 14c

2p

∥∥∥2
H⊗2p ,(3.2)

with

∥∥∥ f ⊗̃g14c
p+q

∥∥∥2
H⊗p+q ≤

p∧q∑
r=1

r!
(
p
r

)(
q
r

)
min

{
‖ f ‖2
H⊗pM(g), ‖g‖2

H⊗qM( f )
}
.(3.3)

(As a convention, we put
0∑

r=1

= 0.)

Before we prove our multivariate limit theorem, we will give a short proof of the univariate case in
Wasserstein distance, using our exchangeable pairs coupling.

3.1 Alternative proof of Theorem 1.2

We need the following result, which is the univariate analogue of Proposition 1.1.

Proposition 3.1. Let F and a family of real random variables (Ft)t≥0 be defined on a common probability
space (Ω,F ,P) such that Ft

law
= F for every t ≥ 0. Assume that F ∈ L4(Ω,G ,P) for some σ-algebra

G ⊂ F and that in L1(P),

(a) lim
t↓0

1
t
E
[
Ft − F|G

]
= −λ F for some λ > 0,

(b) lim
t↓0

1
t
E
[
(Yt − Y)2|G

]
= (2λ + S )Var(F) for some random variable S ;

(c) and lim
t↓0

1
t
E
[
(Ft − F)4] = ρ(F)Var(F)2 for some ρ(F) ≥ 0.

Then, with Z ∼ N
(
0,Var(F)

)
, we have

dW(F,Z) ≤
√

Var(F)

λ
√

2π
E
[
|S |

]
+

√
(2λ + E[S ])Var(F)

3λ

√
ρ(F) .

For the proof, one can refer to [7, Proposition 3.3]. One may also want to refer to Theorem 3.5 of [17] for
a different coupling bound.
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Now given F = Qp
(
f ; Y

)
∈ L4(P) (with E

[
F2] = 1), we can get by using (2.4) and (3.2) that

Var
(
p−1Γ(F, F)

)
≤

2p−1∑
k=1

Var
(
Jk(F2)

)
≤ E[F4] − 3E[F2]2 + (2p)!

∥∥∥ f ⊗̃ f 14c
2p

∥∥∥2
H⊗2p

≤ E[F4] − 3E[F2]2 + γpE[F2]M( f ) with γp :=
(2p)!

p!

p∑
r=1

r!
(
p
r

)2

.(3.4)

Also using the chaos expansion of F2 and Γ(F, F) as well as the orthogonality property, we have

3E
[
F2Γ(F, F)

]
− pE[F4] = 3E

[
F2(Γ(F, F) − p

)]
− p

(
E[F4] − 3

)
= 3E


 2p∑

k=0

Jk(F2)


2p−1∑

k=1

2p − k
2

Jk(F2)


 − p

(
E[F4] − 3

)
≤ 3p

2p−1∑
k=1

Var
(
Jk(F2)

)
− p

(
E[F4] − 3

)
.

It follows from (3.4) that

3E
[
F2Γ(F, F)

]
− pE[F4] ≤ 2p

(
E[F4] − 3

)
+ 3pγpM( f ) .(3.5)

Now define Ft = Qp
(
f ; Yt) for each t ∈ [0,+∞), then by Proposition 2.1, (Ft, F) is an exchangeable

pair satisfying the conditions in Proposition 3.1 with G = σ{X}, λ = p, S = 2Γ(F, F) − 2p and
ρ(F) = −4pE[F4] + 12E

[
F2Γ(F, F)

]
. Therefore,

dW(F,N) ≤
1

p
√

2π
E
[
|2Γ(F, F) − 2p|

]
+

√
2p

3p

√
−4pE[F4] + 12E

[
F2Γ(F, F)

]
≤

2
√

2π

√
Var

(
p−1Γ(F, F)

)
+

√
2p

3p

√
−4pE[F4] + 12E

[
F2Γ(F, F)

]
(since E[Γ(F, F)] = p)

≤
√

2/π
√
E[F4] − 3 + γpM( f ) +

2
√

2
3

√
2
(
E[F4] − 3

)
+ 3γpM( f )

≤
( √

2/π +
4
3
) √
|E[F4] − 3| +

( √
2/π +

2
√

6
3

)√
γp

√
M( f )

This proves Theorem 1.2 with C1 =
√

2/π +
4
3

and C2 =
(√

2/π +
2
√

6
3

)√√ (2p)!
p!

p∑
r=1

r!
(
p
r

)2

.

Remark 3.1. (1) For F in the first Rademacher chaos, one can directly prove Theorem 1.2 without
using the exchangeable pairs. Indeed, if F = Q1(h) ∈ L4(P) for some h ∈ H with ‖h‖H = 1 and
Z ∼ N(0, 1), then by [28, Theorem 3.1],

dW(F,Z) ≤

√√
∞∑

k=1

1
pkqk

h(k)4 .

By Lemma 2.1, F2 = 1 + Q1(w) + Q2
(
h ⊗ h142

)
with w(k) =

h(k)2(qk−pk)
√

pkqk
, k ∈ N. This implies

E
[
F4] = 1 +

∞∑
k=1

h(k)4 (qk − pk)2

pkqk
+ 2‖h ⊗ h‖2

H⊗2 − 2‖h ⊗ h14c
2
‖2
H⊗2
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= 3 +

∞∑
k=1

h(k)4 (qk − pk)2

pkqk
− 2

∞∑
k=1

h(k)4 = 3 +

∞∑
k=1

h(k)4 q2
k + p2

k

pkqk
− 4

∞∑
k=1

h(k)4 .

Noticing p2
k + q2

k ≥ 1/2 for each k ∈ N, we have

1
2

∞∑
k=1

1
pkqk

h(k)4 ≤ 4
∞∑

k=1

h(k)4 + E
[
F4] − 3 ≤ 4M(h) + E

[
F4] − 3 .

Hence, dW(F,Z) ≤
√

2
√∣∣∣E[F4] − 3

∣∣∣ + 2
√

2
√
M(h). Moreover, using the so-called second-order

Poincaré inequality in [10, Theorem 4.1], we can have the Berry-Esseen bound

dKol
(
F,Z

)
:= sup

z∈R

∣∣∣P(F ≤ z
)
− P

(
Z ≤ z

)∣∣∣ ≤ 2

√√
∞∑

k=1

1
pkqk

h(k)4 ≤ 2
√

2
√∣∣∣E[F4] − 3

∣∣∣ + 4
√

2
√
M(h) .

(2) Continuing the discussion in previous point and assuming pk = p = 1 − q = 1 − qk for each k, we
have

E
[
F4] − 3 =

p2 + q4 − 4pq
pq

∞∑
k=1

h(k)4 .(3.6)

If p ∈ (0, 1) \ { 12 ±
1

2
√

3
}, then we have the exact fourth moment bounds:

dW(F,Z) ≤

√√
1
pq

∞∑
k=1

h(k)4 ≤

(
E[F4] − 3

p2 + q2 − 4pq

)1/2

and dKol(F,Z) ≤ 2
(
E[F4] − 3

p2 + q2 − 4pq

)1/2

,

see also Corollary 1.4 in [5].

3.2 Proof of Theorem 1.2

Without losing any generality, we assume that Σn = Σ and each component of F(n) belongs to L4(P). Recall

that F(n) = (F(n)
1 , . . . , F(n)

d )T :=
(
Qq1

(
f1,n; Y

)
, . . . ,Qqd

(
fd,n; Y

))T
and we define F(n)

t = (F(n)
1,t , . . . , F

(n)
d,t )

T

with F(n)
i,t := Qqi

(
fi,n; Yt) so that by Lemma 2.2 and Proposition 2.1,

(
F, Ft

)
:=

(
F(n), F(n)

t
)

form an
exchangeable pair satisfying the conditions in Proposition 1.1 with G = σ{X}, Λ = diag(q1, . . . , qd) and

S =
(
2Γ

(
F(n)

i , F(n)
j

)
− 2q jΣi, j

)
1≤i, j≤d

, ρi
(
F(n)) = −4qi E

[
(F(n)

i )4
]

+ 12E
[
(F(n)

i )2Γ(F(n)
i , F(n)

i )
]
.

Indeed, the condition (c) in Proposition 1.1 follows from the relation (c) in Proposition 2.1, and for each
i, j ∈ {1, . . . , d}, we have

lim
t↓0

1
t
E
[
F(n)

i,t − F(n)
i |σ{X}

]
= −qiF

(n)
i in L4(P),

and

lim
t↓0

1
t
E
[(

F(n)
i,t − F(n)

i
)(

F(n)
j,t − F(n)

j
)
|σ{X}

]
= 2q jΣi, j +

[
2Γ

(
F(n)

i , F(n)
j

)
− 2q jΣi, j

]
in L2(P).

It follows that ∥∥∥∥1
t
E
[
F(n)

t − F(n)|σ{X}
]
+ ΛF(n)

∥∥∥∥2

Rd
=

d∑
i=1

(
1
t
E
[
F(n)

i,t − F(n)
i |σ{X}

]
+ qiF

(n)
i

)2
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converges to zero in L2(P), as t ↓ 0; and∥∥∥∥1
t
E
[(

F(n)
t − F(n))(F(n)

t − F(n))T
|σ{X}

]
− 2ΛΣ − S

∥∥∥∥2

H.S.

=

d∑
i, j=1

(
1
t
E
[(

F(n)
i,t − F(n)

i
)(

F(n)
j,t − F(n)

j
)
|σ{X}

]
− 2Γ

(
F(n)

i , F(n)
j

))2

converges to zero in L1(P), as t ↓ 0.

Hence we can apply Proposition 1.1 and consequently, it suffices to show

E
[
‖S ‖H.S.

]
+

√√√ d∑
i=1

ρi
(
F(n)) ≤  d∑

i, j=1

Var
(
Γ
(
F(n)

i , F(n)
j

))
1/2

+

√√√ d∑
i=1

ρi
(
F(n))→ 0 , as n→ +∞.

In view of (3.4) and (3.5), it reduces to prove limn→+∞Var
(
Γ
(
F(n)

i , F(n)
j

))
= 0 for i < j. We split this part

into two steps.

Step 1. Suppose F,G are two real random variables given as in Lemma 2.1 with p ≤ q, then we have

E
[
F2G2

]
= E[FG]2 +

p+q−1∑
k=1

Var
(
Jk(FG)

)
+ (p + q)!

∥∥∥ f ⊗̃g14p+q

∥∥∥2
H⊗p+q

and by (2.4) and Lemma 3.1, we get

1
q2 Var

(
Γ(F,G)

)
≤

p+q−1∑
k=1

Var
(
Jk(FG)

)
≤ Cov

(
F2,G2) − 2E[FG]2 + (2q)!

p∑
r=1

r!
(
p
r

)(
q
r

)
min

{
‖ f ‖2
H⊗pM(g), ‖g‖2

H⊗qM( f )
}
.

Thus, we can further reduce our problem to show

lim
n→+∞

(
Cov

(
(F(n)

i )2, (F(n)
j )2) − 2E[F(n)

i F(n)
j ]2

)
= 0 for any 1 ≤ i < j ≤ d,(3.7)

which will be carried out in the next step.

Step 2. Let F,G be given as in previous step, we have

E
[
F2G2] = E

F2

E[G2] +

2q−1∑
k=1

Jk(G2) + J2q(G2)




= Var(F)Var(G) + E

F2
2q−1∑
k=1

Jk(G2)

 + 1(p=q)E
[
J2q(F2)J2q(G2)

]
.

If p < q, then E[FG] = 0 and

∣∣∣∣Cov
(
F2,G2)∣∣∣∣ ≤ √

E
[
F4]√√√2q−1∑

k=1

Var
(
Jk(G2)

)
≤

√
E
[
F4]√E[G4] − 3E[G2]2 + γpE[G2]M(g) ,
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where the second inequality follows from (3.4) and the constant γp is given therein.

If p = q, then

E
[
J2q(F2)J2q(G2)

]
= (2q)!

〈
f ⊗̃ f , g⊗̃g142q

〉
H⊗2q

= (2q)!
〈

f ⊗̃ f , g⊗̃g
〉
H⊗2q
− (2q)!

〈
f ⊗̃ f , g⊗̃g14c

2q

〉
H⊗2q

= 2q!2〈 f , g〉2
H⊗q +

q−1∑
r=1

q!2
(
q
r

)2〈
f ⊗r g, g ⊗r f

〉
H⊗2q−2r − (2q)!

〈
f ⊗̃ f , g⊗̃g14c

2q

〉
H⊗2q

,

where the last equality follows from Lemma 2.2 in [19]. Consequently, Cov
(
F2,G2) − 2E[FG]2 is equal

to

E

F2
2q−1∑
k=1

Jk(G2)

 +

q−1∑
r=1

q!2
(
q
r

)2〈
f ⊗r g, g ⊗r f

〉
H⊗2q−2r − (2q)!

〈
f ⊗̃ f , g⊗̃g14c

2q

〉
H⊗2q

.(3.8)

The first term in (3.8) can be rewritten as E

2q−1∑
k=1

Jk(F2)Jk(G2)

, which can be bounded by

√√√2q−1∑
k=1

Var
(
Jk(F2)

)√√√2q−1∑
k=1

Var
(
Jk(F2)

)
≤

√
E
[
F4] − 3E[F2]2 + γqE[F2]M( f )

√
E
[
G4] − 3E[G2]2 + γqE[G2]M(g) ;

and the second term in (3.8) can be bounded by

q−1∑
r=1

q!2
(
q
r

)2∥∥∥ f ⊗r g
∥∥∥2
H⊗2q−2r =

q−1∑
r=1

q!2
(
q
r

)2〈
f ⊗q−r f , g ⊗q−r g

〉
H⊗2r(3.9)

≤

q−1∑
r=1

q!2
(
q
r

)2∥∥∥ f ⊗q−r f
∥∥∥
H⊗2r ·

∥∥∥g ⊗q−r g
∥∥∥
H⊗2r

=

q−1∑
r=1

q!2
(
q
r

)2∥∥∥ f ⊗r f
∥∥∥
H⊗2q−2r ·

∥∥∥g ⊗r g
∥∥∥
H⊗2q−2r

≤

√√√q−1∑
r=1

q!2

(
q
r

)2∥∥∥ f ⊗r f
∥∥∥2
H⊗2q−2r

√√√q−1∑
r=1

q!2

(
q
r

)2∥∥∥g ⊗r g
∥∥∥2
H⊗2q−2r(3.10)

≤

√
E
[
F4] − 3E[F2]2 + γqM( f )E[F2]

√
E
[
G4] − 3E[G2]2 + γqM(g)E[G2] ,(3.11)

where (3.9) follows from the easy fact that ‖ f ⊗r g‖2
H⊗2q−2r =

〈
f ⊗q−r f , g ⊗q−r g

〉
H⊗2r , and we used Cauchy-

Schwarz inequality in (3.10), while (3.11) can be deduced from Lemma 3.1 and (3.4); finally, the third

term in (3.8) can be bounded by ‖ f ‖2
H⊗q(2q)!

∥∥∥g⊗̃g14c
2q

∥∥∥
H⊗2q ≤ ‖ f ‖2H⊗q

√
(2q)!γqE[G2]M(g). To conclude

this case, we obtain∣∣∣Cov
(
F2,G2) − 2E[FG]2

∣∣∣ ≤ 2
√(
E
[
F4] − 3E[F2]2 + γqM( f )E[F2]

)(
E
[
G4] − 3E[G2]2 + γqM(g)E[G2]

)
+ ‖ f ‖2

H⊗q

√
(2q)!γqE[G2]M(g) .

Combining the above two cases, we get immediately the relation (3.7), and hence we finish the proof of
Theorem 1.1.
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3.3 Proofs of technical lemmas

Proof of Lemma 2.1 Let us first introduce some notation: if F = f
(
X), we write

F⊕k = f
(
X1, . . . , Xk−1,+1, Xk+1, . . .

)
and F	k = f

(
X1, . . . , Xk−1,−1, Xk+1, . . .

)
,

we define the discrete gradient DkF =
√

pkqk
(
F⊕k − F	k), in particular, DkYk = 1. We can define the

iterated gradients D(m)
k1,...,km

= Dk1 ◦ D(m−1)
k2,...,km

with D(1)
k = Dk. For example, DkQd( f ) = dQd−1

(
f (k, ·)

)
and

D(2)
k,`Qd( f ) = d(d − 1)Qd−1

(
f (k, `, ·)

)
for d ≥ 2 and f ∈ H�d

0 , see [10] for more details.

Proof. It is clear that FG ∈ L2(P) has the chaotic expansion

FG = E[FG] +
∑
m≥1

Qm(hm) ,

where for each m ∈ N, the kernel hm ∈ H
�m
0 is given by hm(k1, . . . , km) := 1

m!E
[
D(m)

k1,...,km
(FG)

]
, due to the

Stroock’s formula (Proposition 2.1 in [10]). So it suffices to show that

D(p+q)
k1,...,kp+q

(FG) = (p + q)!( f ⊗̃g)(k1, . . . , kp+q)14p+q(k1, . . . , kp+q) and D(s)
k1,...,ks

(FG) = 0(3.12)

for any s > p + q. Note that the second part follows immediately from the first one.
Recall the product formula (see e.g. [10, (2.4)]) for the discrete gradient Dk: for F,G ∈ L2(P),

Dk(FG) = (DkF)G + F(DkG) −
Xk
√

pkqk
(DkF)(DkG) =: DL

k (FG) + DR
k (FG) + DM

k (FG) ,

that is, we decompose Dk into three operations DL
k , DR

k and DM
k . Therefore, we can write for k1 < . . . <

kp+q,

D(p+q)
k1,...,kp+q

(FG) =
∑

A1,...,Ap+q∈{L,M,R}

DA1
k1
◦ · · · ◦ DAp+q

kp+q
(FG) =

∑
A1,...,Ap+q∈{L,R}

DA1
k1
◦ · · · ◦ DAp+q

kp+q
(FG) ,

where the last equality follows from the fact that for k , `, D`(XkF) = XkD`F. Moreover, DA1
k1
◦ · · · ◦

DAp+q

kp+q
(FG) = 0 unless L appears exactly p times and R appears exactly q times in the words A1, . . . , Ap+q,

so that one can further rewrite D(p+q)
k1,...,kp+q

(FG) as∑
σ∈Sp+q:

σ(1)<...<σ(p)
σ(p+1)<...<σ(p+q)

(
D(p)

kσ(1),...,kσ(p)
F
)(

D(q)
kσ(p+1),...,kσ(p+q)

G
)

=
∑

σ∈Sp+q

f
(
kσ(1), . . . , kσ(p)

)
g
(
kσ(p+1), . . . , kσ(p+q)

)
,

where the last equality follows from the symmetry of f and g, and it gives us D(p+q)
k1,...,kp+q

(FG) = (p +

q)!( f ⊗̃g)(k1, . . . , kp+q). This proves (3.12), while the particular case follows from again the Stroock’s
formula. More precisely, one can first deduce from the previous discussion that Q1(h)2 = ‖h‖2

H
+ Q1(w) +

Q2
(
h ⊗ h142

)
for some w ∈ H given by w(k) := E

[
Dk

(
Q1(h)2)]. By the definition of discrete gradient, one

has

Dk
(
Q1(h)2) =

√
pkqk


∑

j,k

h( j)Y j + h(k)
1 − pk + qk

2
√

pkqk


2

−

∑
j,k

h( j)Y j + h(k)
−1 − pk + qk

2
√

pkqk


2 

= h(k)2 qk − pk
√

pkqk
+ 2h(k)

∑
j,k

h( j)Y j ,

which concludes our proof of Lemma 2.1. �
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Proof of Lemma 3.1: It follows from Lemma 2.1 that FG = E[FG] +

p+q−1∑
k=1

Jk(FG) + Qp+q
(

f ⊗̃g14p+q

)
,

therefore by orthogonality property, one has

E
[
F2G2] = E[FG]2 +

p+q−1∑
k=1

Var
(
Jk(FG)

)
+ (p + q)!

∥∥∥ f ⊗̃g14p+q

∥∥∥2
H⊗p+q

= E[FG]2 +

p+q−1∑
k=1

Var
(
Jk(FG)

)
+ (p + q)!

∥∥∥ f ⊗̃g
∥∥∥2
H⊗p+q − (p + q)!

∥∥∥ f ⊗̃g14c
p+q

∥∥∥2
H⊗p+q .

Recall from [19, Lemma 2.2] that

(p + q)!
∥∥∥ f ⊗̃g

∥∥∥2
H⊗p+q = p!q!

p∧q∑
r=0

(
p
r

)(
q
r

)∥∥∥ f ⊗r g
∥∥∥2
H⊗p+q−2r ≥ p!q!‖ f ‖2

H⊗p‖g‖2H⊗q + 1(p=q) p!2〈 f , g
〉2
H⊗p ,(3.13)

thus (3.1) follows by noticing that E[FG] = 1(p=q) p!
〈

f , g
〉
H⊗p and Var(F)Var(G) = p!q!‖ f ‖2

H⊗p‖g‖2H⊗q .
Using (3.13) again, we have

p+q−1∑
k=1

Var
(
Jk(F2)

)
= E

[
F4] − 3E[F2]2 − p!2

p−1∑
r=1

(
p
r

)2∥∥∥ f ⊗r f
∥∥∥2
H⊗2p−2r + (2p)!

∥∥∥ f ⊗̃ f 14c
2p

∥∥∥2
H⊗2p ,(3.14)

which implies (3.2).
It remains to prove (3.3) and we’ll use the same arguments as in the proof of [5, Lemma 3.3]:∥∥∥ f ⊗̃g14c

p+q

∥∥∥2
H⊗p+q ≤

∥∥∥ f ⊗ g14c
p+q

∥∥∥2
H⊗p+q =

∑
(i1,...,ip, j1,..., jq)∈4c

p+q

f (i1, . . . , ip)2g( j1, . . . , jq)2

=

p∧q∑
r=1

r!
(
p
r

)(
q
r

) ∑
(i1,...,ip)∈4p
( j1,..., jq)∈4q

card({i1,...,ip}∩{ j1,..., jq})=r

f (i1, . . . , ip)2g( j1, . . . , jq)2 ,(3.15)

where card(A) means the cardinality of the set A, and the combinatorial constant r!
(

p
r

)(
q
r

)
is the number of

ways one can build r pairs of identical indices out of (i1, . . . , ip) ∈ 4p and ( j1, . . . , jq) ∈ 4q.
Therefore, it is enough to notice that for each r ∈ {1, . . . , p ∧ q}, the inner sum in (3.15) is bounded by∑

(i1,...,ip−r ,k1,...,kr)∈4p
( j1,..., jq−r ,k1,...,kr)∈4q

f (i1, . . . , ip−r, k1, . . . , kr)2g( j1, . . . , jq−r, k1, . . . , kr)2

≤
∑

(i1,...,ip−1,k)∈4p
( j1,..., jq−1,k)∈4q

f (i1, . . . , ip−1, k)2g( j1, . . . , jq−1, k)2 ≤ min
{
‖ f ‖2
H⊗pM(g), ‖g‖2

H⊗qM( f )
}
.

The proof of Lemma 3.1 is complete.

4 Universality of Homogeneous sums

Fix d ≥ 2 and a divergent sequence (Nn, n ≥ 1) of natural numbers. Consider the kernels fn :
{1, . . . ,Nn}

d → R symmetric and vanishing on diagonals and d!‖ fn‖2H⊗d = 1, then according to (1.2),

Qd( fn; Ξ) =
∑

i1,...,id≤Nn

fn(i1, . . . , id)ξi1 · · · ξid .
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The following central limit theorem due to de Jong [4] gave sufficient conditions for asymptotic normality
of Qd( fn; Ξ).

Theorem 4.1. Under the above setting, let Ξ = (ξi, i ≥ 1) be a sequence of independent centred random
variables with unit variance and finite fourth moments. If E

[
Qd( fn; Ξ)4]→ 3 and the maximal influence

M( fn)→ 0 as n→ +∞, then Qd( fn; Ξ) converges in law to a standard Gaussian.

The above result exhibits the universality phenomenon as well as the importance of the notion “maximal
influence”. Another striking result with similar nature is the invariance principle established in [14], in
which the authors were able to control distributional distance between homogeneous sums over different
sequences of independent random variables in terms of maximal influence, see e.g. Theorem 2.1 therein.

Let us restrict ourselves to the Gaussian setting for a while: when G is a sequence of i.i.d. standard
Gaussians, Qd( fn; G) belongs to the d-th Gaussian Wiener chaos, and the fourth moment theorem [21]
implies that if Qd( fn; G) converges in law to a standard Gaussian (or equivalently E

[
Qd( fn; G)4] → 3),

then ‖ fn ⊗d−1 fn‖H⊗2 → 0. WhileM( fn) ≤ ‖ fn ⊗d−1 fn‖H⊗2 due to [17, Lemma 2.4], so thatM( fn) → 0.
This hints the universality of the Gaussian Wiener chaos, see [18] for more details.

The following result is (slightly) adapted from Theorem 7.5 in [18].

Theorem 4.2. Fix integers d ≥ 2 and qd ≥ . . . ≥ q1 ≥ 2. For each j ∈ {1, . . . , d}, let (N j,n, n ≥ 1) be a
sequence of natural numbers diverging to infinity, and let f j,n : {1, . . . ,N j,n}

q j → R be symmetric and
vanishing on diagonals (i.e. f j,n ∈ H

�q j

0 with support contained in {1, . . . ,N j,n}
q j) such that

lim
n→+∞

1(qk=ql)qk!
∑

i1,...,iqk≤Nk,n

fk,n(i1, . . . , iqk ) fl,n(i1, . . . , iqk ) = Σk,l ,

where Σ = (Σi, j, 1 ≤ i, j ≤ d) is a symmetric nonnegative definite d by d matrix. Then the following
statements are equivalent:

(A1) Given a sequence G of i.i.d. standard Gaussians,
(
Qq1( f1,n; G), . . . ,Qqd ( fd,n; G)

)T converges in
distribution to N(0,Σ), as n→ +∞.

(A2) For every sequence Ξ =
(
ξi, i ∈ N

)
of independent centred random variables with unit variance and

supi∈N E
[
|ξi|

3] < +∞, the sequence of d-dimensional random vectors
(
Qq1( f1,n; Ξ), . . . ,Qqd ( fd,n; Ξ)

)T

converges in distribution to N(0,Σ), as n→ +∞.

Similar universality result for Poisson chaos was first established in [24] and refined recently in [7]. It
was pointed out in [24] and [18] that homogeneous sums inside the Rademacher chaos are not universal
with respect to normal approximation and a counterexample is available e.g. in [24, Proposition 1.7]:

A Counterexample: Let Y be a sequence of i.i.d. random variables with P(Y1 = 1) = P(Y1 = −1) = 1/2
(that is, in the symmetric setting). Fix q ≥ 2 and for each N ≥ q, we set

fN(i1, . . . , iq) =


1

q!
√

N − q + 1
, if {i1, . . . , iq} = {1, 2, . . . , q − 1, s} for q ≤ s ≤ N;

0 , otherwise.

Then in the symmetric case,

Qq( fN ; Y) = Y1Y2 · · · Yq−1

N∑
i=q

Yi√
N − q + 1
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converges in law to the standard Gaussian, while if G is a sequence of i.i.d. standard Gaussians, then
for every N ≥ 2, Qq( fN ; G) law

= G1G2 · · ·Gq fails to be Gaussian. It is easy to check that the maximal
influenceM( fN) of the kernel fN is equal to 1/(qq!) for every N ≥ 2, which is consistent with de Jong’s
theorem.

In the end of this section, we provide a (partially) universal result for Rademacher chaos that comple-
ments [7, 18, 24].

Proposition 4.1. Let the assumptions in Theorem 4.2 prevail. Then, the following statement is equivalent
to (A1) and (A2) in Theorem 4.2:

(A3) in the symmetric case, as n → +∞,
(
Qq1( f1,n; Y), . . . ,Qqd ( fd,n; Y)

)T converges in distribution to
N(0,Σ), andM( f j,n)→ 0 for each j ∈ {1, . . . , d}.

Proof. Suppose (A1) holds true, then
(
Qq1( f1,n; Y), . . . ,Qqd ( fd,n; Y)

)T converges in distribution toN(0,Σ)
by “(A2) ⇔ (A1)”; and by the fourth moment theorem on a Gaussian space [21], (A1) implies that
‖ f j,n ⊗q j−1 f j,n‖H⊗2 → 0, as n→ +∞. Recall from [17, Lemma 2.4] thatM( f ) ≤ ‖ f ⊗d−1 f ‖H⊗2 for each
f ∈ H�d

0 , thereforeM( f j,n)→ 0 for each j ∈ {1, . . . , d}. This proves the implication “(A1)⇒ (A3)”.
It remains to show “(A3) ⇒ (A1)”. Now we assume that (A3) is true, then by a weak form of

the hypercontractivity property (see Section 2), we have limn→+∞ E
[
Qq j( fn, j; Y)4] = 3Σ2

j, j for each
j = 1, . . . , d. It follows from Lemma 3.1 that

∥∥∥ f j,n ⊗r f j,n
∥∥∥
H
⊗2q j−2r → 0 for each r = 1, . . . , q j − 1, and any

j = 1, . . . , d. Hence, (A1) follows immediately from the Peccati-Tudor theorem [23]. This concludes our
proof. �
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[5] C. Döbler and K. Krokowski. On the fourth moment condition for Rademacher chaos. arXiv preprint,
(2017)
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