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Abstract—Finite state models, such as Mealy machines or
state charts, are often used to express and specify protocol and
software behavior. Consequently, these models are often used
in verification, testing, and for assistance in the development
and maintenance process. Reverse engineering these models from
execution traces and log files, in turn, can accelerate and improve
the software development and inform domain experts about the
processes actually executed in a system. We present flexfringe,
an open-source software tool to learn variants of finite state
automata from traces using a state-of-the-art evidence-driven
state-merging algorithm at its core. We embrace the need for
customized models and tailored learning heuristics in different
application domains by providing a flexible, extensible interface.

I. INTRODUCTION

State machines are key models for the design and analysis
of computer systems [1]. In particular, they are frequently
used to specify software and protocol behavior [2]. Learning
state machines, i.e., reversing the design process [3], enjoys
a lot of interest from the software engineering and formal
methods communities. Learned state machines provide insight
into complex software systems and their properties can be
tested using model checking [4] and testing techniques [1].
In the literature, this approach has been used for learning
and analyzing models for different types of complex software
systems such as web-services [5], X11 windowing programs
[6], communication protocols [7], even malicious ones [8],
[9], [10], [11], and Java programs [12]. Last year it proved
to be powerful indeed, being a key part of the winning
contribution to the rigorous examination of reactive systems
(RERS) challenge in 2016 [13].

Compared to other, more classical models of data from
machine learning, state machines are often seen as more
interpretable and more suitable for the domain of software
engineering [14], [15]. In our experience, it is often beneficial
to learn variants of state machines, such as timed automata
[16], mealy machines [17], or register automata [18], rather
than plain state machines. This is impossible without modi-
fications to existing (learning) algorithms and programs. We
therefore present flexfringe, a tool that brings a flexible and
extensible approach to learning variants of automata using a
well-known greedy state-merging method [19].

The remainder of this paper is organized as follows: Section
II introduces the tool and the core algorithm, Section III
outlines the usage of the command line as well as Python
interface. Section IV explains the different control options for

the algorithm. Before concluding with a short discussion in
Section VII, we discuss related work in Section VI.

II. THE TOOL

flexfringe and its documentation together with full usage
examples is made available as open-source at http://www.
automatonlearning.net/flexfringe.

A. Design and Goals

Our tool aims to fill the need for a highly customizable state
machine learning tool. It evolved from its precursor, called
DFASAT, which provided a very competitive implementation
of a state-merging algorithm, winning the StaMiNa compe-
tition [20], [21], and performing well on software related
problems in other competitions like SPiCE [22].

The functionality of our tool is centered around one core
algorithm, the evidence-driven blue-fringe state-merging algo-
rithm [19], and its probabilistic variants such as ALERGIA
[23]. We have adapted the original algorithm by making it
flexible and easy to customize. It can now deal with a wide
range of heuristics and model types, including probabilis-
tic and non-probabilistic deterministic finite state machines
(P/DFA), deterministic finite state transducers like Mealy and
Moore machines, as well as ad-hoc defined automata types
like regression automata (RA) [24]. The key contributions of
our tool are:

• an efficient implementation of the core state-merging
algorithm using a union-find data structure to store and
undo merges,

• several search methods for finding better models (includ-
ing the translation to satisfiability from [21]),

• advanced features of state-merging algorithms such as
sinks [21] and data streaming [25],

• many parameters that modify the core functionality and
search strategy of flexfringe,

• the ability to modify the heuristic and type of model and
its visualization by adding a single file to the code, and

• an interactive interface and bindings to Python that allows
a user to iterate through and modify the different steps
of the algorithm in order to fine-tune a newly defined
heuristic.

Our goal is to provide practitioners not only with a conve-
nient and easy to use tool, but help them to build customized
models, heuristics, and visualizations without the need of a
deep understanding of the core state-merging algorithm.



B. How it works: Flexible State-Merging

We provide a brief discussion of the core algorithm, as
outlined in Algorithm 2. The sole purpose of this discussion is
to provide enough details to understand custom heuristics and
extensions to flexfringe. More detailed discussions on state-
merging can be found in, e.g., [19], [21]. The algorithm centers
around a heuristic search that uses a consistency check and a
score function. For classical models like probabilistic and non-
probabilistic automata, heuristics with convergence proofs and
correctness guarantees exist in a range of paradigms (e.g. in-
the-limit learning or PAC-learning [26]).

The algorithm starts by constructing of a tree-shaped au-
tomaton from a set of words with optional labels, called the
input sample. It contains all sequences from the input sample,
with each sequence element as a directed labeled transition,
and states added to the beginning, end, and between each
symbol of the sequence. Two samples share a path in the tree if
they share a prefix. The state-merging algorithm reduces the
size of the automaton iteratively by merging pairs of states
in the model, and forcing the result to be deterministic. The
choice of the pairs, and the evaluation of a merge is made
heuristically: first it is checked whether one state is a sink (line
6), if not the consistency of the merge is evaluated (line 7)
and scored (line 8), and the highest scoring merge is executed
(line 12). If no merge is available, the model is extended
(line 15). This process is repeated and stops if no merges
with high scores are possible. Optionally a search procedure
such as backtracking or best-first search can be used on top of
this greedy algorithm in order to find better models. flexfringe
provides a flexible interface that provides the sink definition,
and evaluation and scoring functions. Figure 1 shows a tree-
shaped automata, and the same automata after some merges.
Note that flexfringe’s core functionality is not different for
labeled and unlabeled inputs. Only the heuristics and types of
models being learned change.

III. USAGE

There are two ways of using our tool: via the command line
interface together with our utility scripts, and via the Python
interface directly or in a Jupyter notebook.

A minimal call from command line, running on the data
in batch mode, requires providing the heuristic name and

Fig. 1. A prefix tree and a DFA obtained via state-merging. States are circles
(annotated with occurrence counts), transitions are directed edges labeled
with transition symbol. Starting and ending state are not indicated in this
visualization.

Require: an input sample S
Ensure: A is a DFA that is consistent with S

1: A = apta(S) {construct the APTA A}
2: R = {q0} {color the start state q0 of A red}
3: B = {q ∈ Q \R | ∃ 〈q0, q, l〉 ∈ T}
{color all targets of transitions from q0 children blue}

4: while B 6= ∅ do {while A contains blue states}
5: for all b ∈ B and r ∈ R do
6: if sink(b) is false then
7: compute consistency(A, r, b) of merge(A, r, b)
8: compute evidence(A, r, b) of merge(A, r, b)

{find the best performing merge}
9: end if

10: end for
11: if ∃b, r : evidence(A, r, b) ≥ lowerbound then
12: A := merge(A, r, b) with highest evidence

{perform the best merge}
13: B := {q ∈ Q \R | ∃r ∈ R ∧ 〈r, q, l〉 ∈ T}

{recompute the set of blue states}
14: else
15: R := R ∪ {b} // extend the red states, adding b
16: B := B ∪ {q ∈ Q \R | ∃ 〈b, q, l〉 ∈ T}
17: end if
18: end while
19: return A

Fig. 2. Evidence-Driven State-Merging . Lines 6, 7, and 8 contain the sink,
consistency, and evidence functions. These are user-defined methods provided
by the flexfringe’s flexible framework. It can also be set to any of the provided
functions such as RPNI [23], ALERGIA [27], MDI [28], EDSM [19], overlap
[21], Mealy, or a combination of these. flexfringe outputs m for a merge
(executed in line 12), and x for an extend (executed in line 15).

data type as well as the name of the data file. All remaining
parameters have default values.

$ ./flexfringe --heuristic-name heurstic
--data-name dtype inputfile.txt

The mode and all parameters can be changed via UNIX-
style command line options, i.e. with a single - and a letter,
or a -- and the full name of the parameter. A list of options
is available by calling ./flexfringe --help. Moreover,
we provide the utility script start.sh which takes a file
listing all the command line options to ease repeated experi-
mentation as follows.

$ ./start.sh settings.ini datafile.txt

For the Python interface, we exposed the core methods of
our tool via boost.python and developed wrappers for the
core functions. A minimal call consists of creating an estimator
object and calling its fit method.

import flexfringe as ff
e = ff.DFASATEstimator(

herustic-name="heuristic",
data-name="dtype")

e.fit_(dfaFile="inputfile")



A. Input Format

The input format is based on the Abbadingo competition
format [19]. Each input file starts with a header line containing
first the number of sequences in the set and then the number
of different symbols occurring across all sequences1.

Each subsequent line of the corresponds to a single se-
quence. The first element of the line is a numeric label for
the sequence, the second is the number of elements in the
sequence. The remaining elements form the sequence, element
by element, separated by spaces. The elements can be any
sequence of characters without spaces or backslash. Each
element can have data attached with a backslash as separator.
This data is forwarded to reading functions in the flexfringe’s
user-defined framework. This makes it possible to learn Mealy
machines (data is output) or regression automata (data is a
regression target value) by adding only a few lines of code:

label length sym1/data1 ... symn/datan

Streaming mode, as discussed later, also uses this format,
but omits the header. The following example is labeled with
1, has length 4. The events in the sequence are in small caps,
and the data added to each element is in capital letters.

1 4 on/OK start/RUN stop/STOP off/OK

B. Understanding and Using the Output

While running, flexfringe outputs a letter as identifier for
each action it executes on the input data. There are two basic
actions: extends x and merges m. Each letter is followed by a
number indicating the strength of the evidence for the action;
it is the score the heuristic assigned the action, e.g. in this
execution are 5 extends and 16 merges.

start greedy merging
x47 m21 m21 m13 m12 m10 m9 x12 m19
x23 m19 m9 m8 m5 m3 x20 m13 x14
m7 m6 m5 no more possible merges

The output informs a user about the decisions made to
obtain the final model and can be very helpful in adjust-
ing parameters. This is particularly helpful when reverse-
engineering a model: it is often hard to come up with an
error metric to optimize besides the epistemic insight that
a human engineer gains from the model. Understanding the
algorithmic decisions can help the user to either add more data,
tune parameters, or manually exclude decisions considered
bad from an engineering point of view. To support this, we
developed the interactive mode (as discussed below). At each
step, the user can choose between all possible actions, e.g.

./start-interactive.sh interactive-mealy.ini
data/original/traces1000.txt

gives a list of options and allows the user to choose a particular
refinement, or to interactively change a parameter and see the
impact on the proposed merges:

Possible refinements:
m147, m145, m141, m2, m1, m1, m1, m0, m0, m0,

1The header is purely for backward and cross-tool compatibility. flexfringe
automatically extracts this information and does not rely on the header itself.

For instance, changing the search space with set blueblue
1, the interactive mode recalculates the merges and gives:

Your choice at step 1: set blueblue 1
Possible refinements:
m147, m145, m141, m64, m64, m60, m60, m57, m57,
m46, m46, m43, m43, m41, m41, m40, m40, m36,
m36, m35, m35, m2, m2, m2, m2, m1, m1, m1, m1,
m1, m1, m0, m0, m0, m0, m0, m0, m0, m0, m0, m0,

Simultaneously, flexfringe outputs the dot files for the last
two steps, visualizing the impact of difference choices. In this
case, increasing the search space with the blueblue option
discovers more merges, but the highest scoring merge m147
was already contained in the smaller search space. See [29]
for a discussion and more examples of this mode.

Once finished, flexfringe outputs the learned automaton,
which are directed graphs with labels for both nodes and
edges, as files in Graphviz’s dot format. The exact formatting
choices for edges and nodes can be modified with a number
of print-* methods specific to the evaluation function and
data classes, which we discuss in Section V.

To use the automaton model to test word acceptance or
sample from it, it needs to be parsed. Because flexfringe
allows for custom models with custom semantics (e.g. guards
on transitions), the price for the flexibility is the lack of a
general parser. Nevertheless, we provide a short Python script,
evaluate.py, for plain DFA. The output file also contains
the exact command line used to invoke flexfringe as well as
the git commit id the binary was compiled from to support
reproducible experimentation.

IV. CONTROLLING THE ALGORITHM

The core algorithm, beyond the heuristic used in it, is con-
trolled by a series of command lined options. We provide three
modes of operation for the command line tool, controlling how
the search algorithm is used: batch, stream, and interactive.
The mode can be chosen via the --mode option.

The conventional way of using our tool is in batch mode: A
set of collected data is given to the learner, and is processed
at once. This has the advantage that all information available
is used to learn the model.

In streaming mode, flexfringe reads lines of samples from
standard input and processes them as soon as there is sufficient
data to make a decision. The amount of data required is
decided using the Hoeffding bound. Similar to streaming
decision trees [30], the amount of data required depends on the
difference between the best and second-best possible merge.
We are still performing a theoretical analysis of this bound.
Moreover, we are implementing sketches as in [25] to reduce
memory usage. Intermediate models are generated and made
available as the stream is processed. This has the advantage
of running during data collection, but the disadvantage that it
might mis-estimate data and make a wrong decision.

The interactive mode supports data exploration, especially
if there is only very little data available. Rather than automat-
ically executing the merge heuristic at each step, the current
model is displayed and all considerations of the heuristic are



outlined. The user now can either follow the suggestion of the
merge heuristic, tweak some parameters or even insert more
data (if available) and observe the impact of these actions on
the merge heuristic’s suggestions.

flexfringe has a number of options to control the core state-
merging algorithm. Importantly, --use-sinks activates the
use the sink check that excludes states that meet user-defined
conditions, e.g., having low frequency counts, having only
accepting traces (or none), triggering an error, etc. Excluding
pure accepting and rejecting states was used in the Stamina
competition winner [21]. Excluding low frequency states is
very useful for visualization and debugging purposes (see Fig-
ure 3). The options extent, finalred, largestblue,
blueblue, and lowerbound control the search order and
search space (i.e., the r and b considered in line 11 of
Algorithm 2, and the condition in line 12).

V. CUSTOMIZING THE HEURISTICS

An important aspect of the design of flexfringe is extendabil-
ity and customization: Providing flexfringe with a new merge
heuristic and using it should be easy. To implement a custom
heuristic, the user needs to be able answer two questions:

• When are two states considered consistent and similar?
• How to quantify similarity of states in a score?
The answers provide the key functionality in the user-

provided heuristic: the consistency check and the evidence
score of the heuristic. Both can depend on the sample and the
data of the sample. Intuitively, the heuristic tries to generalize
the data by identifying pairs of states that have similar future
behaviors, i.e., by testing a Markov property. In a probabilistic
setting, this similarity is usually be measured by similarity
of the empirical probability distributions over the outgoing
transition labels. Other common heuristics rely on occurrence
information and the identity of symbols, or use global model
selection criteria to calculate merge scores.

We provide two classes that encode the required function-
ality: evaluation_function and evaluation_data.
To build a custom heuristic, the user needs to provide these
methods by inheriting from the base class. After recompiling,
the custom heuristic can be used by its name using the
heuristic-name and data-name parameters without
having to touch any other files. Each node in the initial prefix
tree (Algorithm 2, line 1) contains a pointer to an instance of
evaluation_data, which can contain information of the
data in in- or outgoing transitions (or an aggregation thereof).
The data is instrumental in learning extended versions of DFA,
such as Mealy machines. Moreover, the class also contains
print-methods to control the style and annotation of states
and transitions in the dot files.

VI. RELATED WORK

There are several families of algorithms to learn automata
models, each offering different benefits and drawbacks. In
[31], the authors provide a C++ implementation of a number of
standard algorithms for P/DFA and introduce a noise-resistant
heuristic. The paper also contains a short comparison of other

Fig. 3. Two automata parts (top, bottom) comparing different behaviors of
card types during payments on a pin entry device with the same firmware,
learned from a random sample of 5000 transactions. For details see our
companion industry track paper [36]. Using a default heuristic, such automata
are typically learned within a few seconds.

tools. In an active learning setting, there is LearnLib [32].
In a passive learning setting (which our tool also falls into),
there is a Python package for learning weighted automata with
spectral learning approach [33]. There are a number of tool
implementing DFA inference for software, e.g. Synoptic [34]
for inference over log-files, and InvariMint [35]. While the
latter can infer DFA with variable bindings on the transitions,
it does not offer the full flexibility flexfringe offers.

VII. FUTURE WORK AND CONCLUSION

We present flexfringe, a flexible state-merging algorithm
for passively learning state machine models from trace data.
The core algorithm is efficient and mature. We have applied
it ourselves to a range of applications such as software bug
discovery [36], modeling network traffic [37], and time series
regression [24]. Now is the time to collect user feedback and
improve the user experience, including the visualization and
customization capabilities. To this aim, we publish flexfringe
as an open source tool and ask the software engineering
community to give it a try. Two important future improvements
are the use of sketches to learn from high volume/velocity
streams, and the ability to provide new heuristics via Python
classes rather than C++ classes that require recompilation.
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