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Abstract

Prohibiting unauthorized access to critical resources and data has be-
come a major requirement for enterprises. Access control (AC) mecha-
nisms manage requests from users to access system resources; the access
is granted or denied based on the authorization policies defined within
the enterprise. One of the most used AC paradigms is role-based ac-
cess control (RBAC), in which access rights are determined based on
the user’s role.

In this dissertation, we focus on the problems of modeling, specifying
and enforcing complex RBAC policies, by making the following contri-
butions:

1. the GemRBAC+CTX conceptual model, a UML extension of
the RBAC model that includes all the entities required to express
the various types of RBAC policies found in the literature, with
a specific emphasis on contextual policies. For each type of pol-
icy, we provided the corresponding formalization using the Object
Constraint Language (OCL) to operationalize the access decision
for a user’s request using model-driven technologies.

2. the GemRBAC-DSL language, a domain-specific language for
RBAC policies designed on top of the GemRBAC+CTX model.
The language is characterized by a syntax close to natural lan-
guage, which does not require any mathematical background for
expressing RBAC policies. The language supports all the autho-
rization policies captured by the GemRBAC+CTX model.

3. MORRO, a model-driven framework for the run-time enforce-
ment of RBAC policies expressed in GemRBAC-DSL, built on
top of the GemRBAC+CTX model. MORRO provides policy
enforcement for both access and usage control.

4. three tools (an editor for GemRBAC-DSL, a model transforma-
tion tool for GemRBAC-DSL, a run-time enforcement frame-
work) have been implemented and released as part of this work.

The GemRBAC+CTX model and the GemRBAC-DSL language have
been adopted by our industrial partner for the specification of the ac-
cess control policies of a Web application in the domain of disaster relief



intervention. We have extensively evaluated the applicability and the
scalability of MORRO on this Web application. The experimental re-
sults show that an access decision can be made on average, in less than
107ms and that the time for processing a notification of an AC-related
event is less than 512ms. Furthermore, both the access decision time
and the execution time for processing a notification of an AC-related
event scale—in the majority of the cases—linearly with respect to the
parameters characterizing AC configurations; in the remaining cases,
the access decision time is constant.



Acknowledgements

Four years ago, more precisely in October 2013, I left my family, my
friends and my country for a new challenging experience which is getting
a PhD degree. However, I realized that doing a PhD it is not only about
research, experiments and writing papers but also about the way you
approach things and interact with other people. During these years, I
have been in contact with people, from all over the world, who I would
like to acknowledge for letting my PhD experience an enjoyable period
in my life.

I would like to express my greatest thanks to my supervisor Prof. Lionel
Briand who supported me with valuable and constructive feedback and
always kindly encouraged me to succeed my thesis. I still remember his
words on my first day in the university: “doing a PhD is like preparing
for olympic games”. It was a great honor and privilege to be part of his
research team Software Verification and Validation.

I would like to express my infinite gratitude to my co-supervisor Dr. Do-
menico Bianculli. His counsel, dedication, availability, comments and
corrections are a relevant lead to the success of this work. I would like
to thank him for his guide and support to get through all the difficult
moments, and also for his precious friendship. Throughout these years,
I have learned a lot from his rigorous and positive attitude on both
levels, professional and personal.

I would like to also express my gratitude to all team members of our
industrial partner HITEC Luxembourg. This industrial collaboration
helped me in validating my work with a real-world application. More-
over, I believe that my working experience with Hitec added a signifi-
cant value to my professional background and carrer.

I would like to thank the members of my defense committee: Dr. Jacques
Klein, Prof. Dr. Davide Balzarotti, and Prof. Dr. Friedrich Steimann
for taking the time and furnishing efforts to evaluate this work.

I would also like to thank my former co-advisors Dr. Marouane Kessen-
tini and Prof. Khaled Ghedira. Dear Professors, thank you for intro-
ducing me into the world of research.

I would like to express my gratitude to colleagues for providing a such
motivating and great work environment.



I would like to thank my friends who have always supported and en-
couraged me. The list is really long, I will just cite Soraya Mefteh who
has been a second mother for me in Luxembourg. I thank her for her
affection, encouragement and long discussions.

I would like to express my deep gratitude and thanks to my family for
their support and encouragement.

Finally, I would like to express my greatest thanks to all those who
contributed in one way or another, to make this work.



Contents

List of Figures x

List of Tables xii

Acronyms xiii

I Overture 1

1 Introduction 2
1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Dissemination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . 6

2 Background 8
2.1 The Original RBAC Conceptual Model . . . . . . . . . . . . . . . . 8
2.2 RBAC Policies Taxonomy . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Prerequisite Policy . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Cardinality Policy . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Precedence and Dependency Policy . . . . . . . . . . . . . . 11
2.2.4 Role Hierarchy Policy . . . . . . . . . . . . . . . . . . . . . . 11
2.2.5 Separation of Duty (SoD) Policy . . . . . . . . . . . . . . . 12

2.2.5.1 Static Separation of Duty (SSoD) Policy . . . . . . 12
2.2.5.2 Dynamic Separation of Duty (DSoD) Policy . . . . 12

2.2.6 Binding of Duty Policy (BoD) . . . . . . . . . . . . . . . . . 13
2.2.7 Role Delegation and Revocation Policy . . . . . . . . . . . . 13

2.2.7.1 Role Delegation Policy . . . . . . . . . . . . . . . . 13
2.2.7.2 Role Revocation Policy . . . . . . . . . . . . . . . . 14

2.2.8 Context-based Policy . . . . . . . . . . . . . . . . . . . . . . 15

vi



CONTENTS

II Specification of Role-based Access Control Policies 16

3 Modeling Access Control Policies 17
3.1 The GemRBAC+CTX Model . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Modeling Context in GemRBAC+CTX . . . . . . . . . . . 20
3.1.2 Modeling Temporal Context . . . . . . . . . . . . . . . . . . 20
3.1.3 Modeling Spatial Context . . . . . . . . . . . . . . . . . . . 22

3.2 OCL Specification of RBAC Policies . . . . . . . . . . . . . . . . . 23
3.2.1 Prerequisite Policy . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Cardinality Policy . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Precedence and Dependency Policies . . . . . . . . . . . . . 25
3.2.4 Role Hierarchy Policy . . . . . . . . . . . . . . . . . . . . . . 25
3.2.5 Separation of Duty Policy (SoD) . . . . . . . . . . . . . . . 26

3.2.5.1 Static SoD . . . . . . . . . . . . . . . . . . . . . . 26
3.2.5.2 Dynamic SoD . . . . . . . . . . . . . . . . . . . . . 27

3.2.6 Binding of Duty Policy (BoD) . . . . . . . . . . . . . . . . . 29
3.2.7 Role Delegation and Revocation policies . . . . . . . . . . . 31

3.2.7.1 Role Delegation Policy . . . . . . . . . . . . . . . . 31
3.2.7.2 Role Revocation Policy . . . . . . . . . . . . . . . . 33

3.2.8 Context-based Policies . . . . . . . . . . . . . . . . . . . . . 34
3.2.8.1 Time-based Policy . . . . . . . . . . . . . . . . . . 35
3.2.8.2 Location-based Policy . . . . . . . . . . . . . . . . 39

3.3 Application to an Industrial Case Study . . . . . . . . . . . . . . . 41
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Policy Specification Language 49
4.1 Motivating example . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 The GemRBAC-DSL language . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.2 Prerequisite policy . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.3 Cardinality policy . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.4 Precedence and dependency policies . . . . . . . . . . . . . . 54
4.2.5 Role hierarchy policy . . . . . . . . . . . . . . . . . . . . . . 54
4.2.6 Separation of duty policy . . . . . . . . . . . . . . . . . . . . 55

4.2.6.1 Static Separation of duty (SSoD) . . . . . . . . . . 55
4.2.6.2 Dynamic Separation of duty (DSoD) . . . . . . . . 55

4.2.7 Binding of duty policy . . . . . . . . . . . . . . . . . . . . . 56
4.2.8 Delegation policy . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.9 Revocation policy . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.10 Contextual policy . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.10.1 Policies with temporal context . . . . . . . . . . . 59
4.2.10.2 Policies with spatial context . . . . . . . . . . . . . 62

4.3 Semantic Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vii



CONTENTS

4.4 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6 Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Modeling Access Control Policies: Related Work 71
5.1 RBAC Model Extensions . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Using OCL for Modeling RBAC Policies . . . . . . . . . . . . . . . 75
5.3 RBAC Policy Specification Languages . . . . . . . . . . . . . . . . . 75

III Enforcement of Role-based Access Control Policies 79

6 Model-driven Enforcement of RBAC policies 80
6.1 Model-driven Run-time Enforcement . . . . . . . . . . . . . . . . . 80

6.1.1 Policies Enforcement Upon Receiving an Access Request . . 81
6.1.2 Policy Enforcement upon receiving AC-related Event En-

forcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2 Integrating the Enforcement Framework into a Web Application Ar-

chitecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.1 Evaluation Settings . . . . . . . . . . . . . . . . . . . . . . . 90
6.3.2 Performance On a Real Industrial System . . . . . . . . . . 90

6.3.2.1 System Configuration . . . . . . . . . . . . . . . . 92
6.3.2.2 AC Request: Access to a Resource . . . . . . . . . 92
6.3.2.3 AC Request: Role Activation . . . . . . . . . . . . 97
6.3.2.4 AC-related Event: User Authentication . . . . . . . 99
6.3.2.5 AC-related Event: User Change Location . . . . . 105

6.3.3 Scalability of the Proposed Architecture . . . . . . . . . . . 107
6.3.3.1 AC Request: Access to a Resource . . . . . . . . . 108
6.3.3.2 AC Request: Role Activation . . . . . . . . . . . . 114
6.3.3.3 AC-related Event: User Authentication . . . . . . . 116
6.3.3.4 AC-related Event: User Change Location . . . . . 121

6.3.4 Overhead of the Communication between the Authorization
Service and the Proxy . . . . . . . . . . . . . . . . . . . . . 124

6.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

IV Finale 129

7 Conclusions and Future Work 130
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

viii



CONTENTS

7.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.4 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . 132

Bibliography 134

ix



List of Figures

2.1 The original RBAC model [3]; the dashed line encloses the admin-
istrative model for RBAC . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Role hierarchy example . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 RBAC policies taxonomy . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 The GemRBAC+CTX conceptual model . . . . . . . . . . . . . . 18
3.2 Spatial context in GemRBAC+CTX. . . . . . . . . . . . . . . . . 20
3.3 Temporal context in GemRBAC+CTX. . . . . . . . . . . . . . . . 20
3.4 Initial system state . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 A portion of the system state after the delegation of role securityOfficer 44
3.6 A portion of the system state after Joe and Kim’s connections . . . 45
3.7 A portion of the system state after Mallory connection . . . . . . . 46
3.8 A portion of the System state after sending an alert . . . . . . . . . 47

4.1 Grammar of GemRBAC-DSL . . . . . . . . . . . . . . . . . . . . 52
4.2 A fragment of an instance of the GemRBAC+CTX model . . . . . 65
4.3 The GemRBAC-DSL editor . . . . . . . . . . . . . . . . . . . . . . 69

6.1 An Overview of the model-driven enforcement process in case of
AC-request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 An overview of the proposed enforcement architecture . . . . . . . . 89
6.3 Access decision time for an AC-request of type access to a resource

in case of role assignment ((a), (c), (e)) and delegation ((b), (d), (f))
scenarios with respect to a basic system configuration . . . . . . . . 94

6.4 Access decision time for an AC-request of type access to a resource
with respect to a History-based DSoD policy in case of role assign-
ment ((a) and (c)) and delegation ((b) and (d)) scenarios . . . . . . 95

6.5 Access decision time for an AC-request of type role activation . . . 98
6.6 Execution time for an AC-related event of type user authentication

with respect to a basic system configuration . . . . . . . . . . . . . 99
6.7 Execution time for an AC-related event of type user authentication

with respect to a precedence policy depending on the user’s position
availability (the user position is known (a) and (c) and not known
in (b) and (d)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

x



LIST OF FIGURES

6.8 Execution time for an AC-related event of type user authentication
with respect to a time-based policy depending on the user’s position
availability (the user position is known in (a), (c) and (e) and not
known in (b), (d) and (e)) . . . . . . . . . . . . . . . . . . . . . . . 102

6.9 Execution time for an AC-related event of type user authentication
with respect to a location-based policy . . . . . . . . . . . . . . . . 103

6.10 Execution time for an AC-related event of type user change location
with respect to a system basic configuration . . . . . . . . . . . . . 105

6.11 Execution time for an AC-related event of type user change location
with respect to a location-based policy . . . . . . . . . . . . . . . . 106

6.12 Scalability for of an AC-request of type access to a resource in case of
role assignment ((a), (c), (e)) and delegation ((b), (d), (f)) scenarios
with respect to a basic system configuration . . . . . . . . . . . . . 110

6.13 Scalability of an AC-request of type access to a resource with respect
to a History-based DSoD policy in case of role assignment ((a), (c),
(e)) and delegation ((b), (d), (f)) scenarios . . . . . . . . . . . . . . 111

6.14 Scalability for an AC-request of type access to a resource in terms
of scalability with respect to BoD in case of role assignment ((a),
(c)) and delegation ((b), (d)) scenarios . . . . . . . . . . . . . . . . 113

6.15 Scalability of an AC-request of type role activation . . . . . . . . . 115
6.16 Scalability for an AC-related event of type user authentication with

respect to basic system configuration . . . . . . . . . . . . . . . . . 116
6.17 Scalability for an AC-related event of type user authentication with

respect to a precedence policy depending on the user’s position avail-
ability (the user position is known (a) and (c) and not known in (b)
and (d)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.18 Scalability of an AC-related event of type user authentication with
respect to a time-based policy depending on the user’s position avail-
ability (the user position is known (a), (c) and (e), and not known
in (b), (d) and (f)) . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.19 Scalability of an AC-related event of type user authentication with
respect to a location-based policy . . . . . . . . . . . . . . . . . . . 121

6.20 Scalability for an AC-related event of type user change location with
respect to a basic system configuration . . . . . . . . . . . . . . . . 122

6.21 Scalability for an AC-related event of type user change location with
respect to a location-based policy . . . . . . . . . . . . . . . . . . . 123

xi



List of Tables

4.1 Mapping of GemRBAC-DSL constructs to OCL constraints on the
GemRBAC+CTX model . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Support of non-contextual policies in the various RBAC models . . 73
5.2 Support of contextual policies in the various RBAC models . . . . . 74
5.3 Support of policies in RBAC languages . . . . . . . . . . . . . . . . 76

6.1 Checked policies for each type of AC request/event . . . . . . . . . 84

xii



Acronyms

BoD Binding of Duty

DSoD Dynamic Separation of Duty

DSoDCR Dynamic Separation of Duty on conflicting roles

DSoDCU Dynamic Separation of Duty on conflicting users

OCL Object Constraint Language

RBAC Role-based Access Control

SoD Separation of Duty

SSoD Static Separation of Duty

SSoDCP Static Separation of Duty on conflicting permissions

SSoDCR Static Separation of Duty on conflicting roles

SSoDCU Static Separation of Duty on conflicting users

UCON Usage control

UML Unified Modeling Language

xiii



Part I

Overture

1



Chapter 1

Introduction

1.1 Context and Motivation

Prohibiting unauthorized access to critical resources and data has become a ma-
jor requirement for enterprises. Access control (AC) mechanisms manage requests
from users to access system resources; the access is granted or denied based on
the authorization policies defined within the enterprise. Access control systems
can be grouped into three categories [1]: discretionary (DAC), mandatory (MAC),
and role-based (RBAC). In DAC, access rights are directly assigned to each user;
moreover, a user is the only entity that can control the access to her own object(s),
by assigning access rights to other users. In the second category, MAC, the access
rights are determined according to mandated regulations stated by a central au-
thority. In RBAC, access rights are determined based on the user’s role, e.g., her
job or function, as well as on the permissions assigned to each role. A permission
is an abstraction of a set of objects, i.e., resources, and the operations that can be
performed on them. By decoupling users from permissions, RBAC simplifies the
administration and the deployment of access control policies in large enterprises.
In this dissertation, we focus on RBAC, since it has become the de facto standard
for access control in enterprise systems [2].

The concept of role-based access control was initially proposed by Sandhu et al.
in 1996 [3]; later on, the various initial proposals of RBACmodels were consolidated
into a unified standard model for RBAC, proposed by the NIST [4]. The basic
RBAC model is composed of:

1. entities, corresponding to users, roles, sessions, and permissions;

2. relations among these entities.

A user is allowed to execute a set of permissions that corresponds to the role(s)
assigned to her; in other words, a role maps each user to a set of permissions. A
session maps each user to the set of her active role(s).

RBAC supports three security principles : least privilege, data abstraction, and
separation of duty. The least privilege principle requires a user to be authorized
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1.1 Context and Motivation

to execute only the minimal set of permissions needed for a given task, as de-
termined by her role. The data abstraction principle is satisfied by abstracting
low-level operations (e.g., the read and write operations provided by the operating
system) with high-level operations defined for each business object in the system
(e.g., updating the list of employees). The separation of duty principle states that
no user should be given sufficient permissions to misuse the system. Although
these principles are supported by RBAC, they are not automatically enforced by
a system implementing RBAC: additional authorization constraints, called also
policies1 have to be defined to restrict the user’s access.

Various types of authorization policies have been proposed in the literature.
For instance, cardinality policies represent a bound on the number of roles and
sessions to which a user can be assigned. Prerequisite policies are a precondition
on user-role assignment, stating that a user can be assigned to a role only if the
user is already a member of another role. Separation of duty policies (SoD) define
a mutual exclusion relation among roles, permissions, or users. Dually, binding
of duty (BoD) policies define a correlation among a set of operations that must
be performed by the same user. Delegation policies allow a user to temporarily
transfer a set of permissions associated to her role to another user. Context policies
restrict a user from performing an action depending on her current location and/or
on the time at which the action should happen.

Various extensions of the original RBAC model (commonly referred to as
RBAC96) have been proposed to support these different types of policies. For
example, support for delegation policies have been added in the models proposed
in [5, 6, 7, 8]; the models introduced in [9, 10, 11, 12, 13] have added support for
contextual policies. However, there is no unified framework that can be used to
define all these types of authorization policies in a coherent way, using a common
model. The lack of a unified framework makes difficult for practitioners to un-
derstand, select among, and implement the different types of policies proposed in
the literature. Moreover, only few of them provide algorithms to evaluate these
policies in order to make an access decision.

On a par with the definition of complex and more expressive RBAC models,
there is the problem of defining policy specification languages that are at least as
expressive as the policies supported by the existing models. While RBAC mod-
els provide the fundamental concepts needed to formalize various types of RBAC
policies, policy specification languages represent a means to express RBAC poli-
cies that can be used (for both policy definition and enforcement) in practice.
One group of proposals to define such languages revolves around XACML [14], the
OASIS standard for defining access control policy languages. Since XACML does
not support RBAC models natively, it has been extended with profiles specific to
RBAC [15, 16]. Other types of RBAC policy languages are ontology-based [17, 18]

1In this dissertation we will use the word “policies” to avoid the confusion with “(OCL)
constraints”.

3



1.1 Context and Motivation

or logic-based [19, 20, 21] languages. The main problem of existing RBAC specifi-
cation languages is that they do not support all the types of RBAC policies defined
in the literature. For example, a simple delegation transfer policy like “any user
with role r1 can transfer her role to any user assigned to role r2” cannot be ex-
pressed in any of the existing languages. Moreover, the semantics of some of these
languages is not executable for the purpose of enforcing the policies specified with
them. Furthermore, many of them are not designed to be used by practitioners.

The policies defined according to the models and languages described above can
be checked at run time, by an enforcement mechanism, to make an access decision
(allow/deny). In the context of Web applications, this mechanism is represented
by a security layer, which serves as an intermediate filter between the client web
service and the database (storing the application resources). An enforcement ar-
chitecture based on the XACML language has been standardized by the OASIS
community [14]. This architecture is essentially composed of a policy enforcement
point (PEP) and a policy decision point (PDP). While the PEP intercepts a user
request, the PDP checks the received request based on the authorization policies
and makes an access decision. Some proposals have been inspired by this XACML
architecture. For instance, authors in [22] propose a model-driven implementation
for the PDP using UML/OCL. Authors in [5] propose a rule-based engine to en-
force delegation and revocation policies. Other proposals [23, 24, 25, 26, 27, 28]
extend the XACML architecture by introducing a second decision point SDP. Ac-
cess decisions are cached in the SDP and they are reused if the request matches
the one of the cached authorizations. Other proposals [29] deal with the aspects
generation from policy specifications; the generated aspects are inserted into the
application to be executed at run time. The main problem is that each enforce-
ment mechanism and its corresponding model, implement a limited set of policies
supported by the model and built into the mechanism.

These limitations have practical implications, since the lack of expressive mod-
els and policy specification languages limits the adoption, among practitioners,
of the more expressive RBAC models proposed in the literature. In turn, this
situation makes practitioners use simple(r) RBAC models, resulting in systems
underspecified from the point of view of access control. We identified practical
needs from HITEC Luxembourg1, the industrial partner with which this project
has been carried out. HITEC Luxembourg is a provider of situational-aware in-
formation systems for emergency scenarios. The requirements gathered from our
partner show the need for an expressive model, a language to specify RBAC poli-
cies, and a mechanism to enforce these policies.

1http://www.hitec.lu/
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1.2 Research Contributions

1.2 Research Contributions

In this dissertation, we aim to address the aforementioned limitations of both
specification and enforcement of RBAC policies. More specifically, we focus on the
following research goals:

1. a formalization of RBAC policies to enable and facilitate the operationaliza-
tion of the access decision procedure,

2. a high-level policy specification language,

3. and an efficient run-time enforcement mechanism.

To achieve these research goals, we make the following contributions:

1. theGemRBAC+CTX conceptual model, which is aGeneralized Model for
RBAC supporting ConTeXt. The model includes all the entities required to
define the various types of access control policies proposed in the literature.
We also propose a template that can be used for the formalization of the
RBAC policies supported on the model to enable their operationalization.
The specification follows a model-driven approach, based on UML and the
Object Constraint Language (OCL): the supported policies are formalized as
constraints expressed with OCL on the GemRBAC+CTX model.

This contribution has been published in [30] and in [31]. This contribution
is discussed in chapter 3.

2. the GemRBAC-DSL language, a specification language for RBAC poli-
cies. The language has been designed to cover the various types of RBAC
policies captured by the GemRBAC+CTX model. The language sports a
syntax close to natural language, to encourage its adoption among practition-
ers. The language semantics has been defined using a model-driven approach
by mapping the constructs of the language to the corresponding OCL con-
straints defined for the GemRBAC+CTX model. We also define semantic
checks to detect conflicts and inconsistencies among the policies written in a
the GemRBAC-DSL language.

This contribution has been published in [32] and is discussed in chapter 4.

3. a run-time enforcement approach of RBAC policies which checks
whether a user is allowed to perform a requested operation. We designed
MORRO, which a is a MOdel-driven fRamework for Run-time of RBAC
pOlicies, by modeling the system state, from an RBAC point of view, as
an instance of the GemRBAC+CTX model. Checking whether an access
request should be granted, based on RBAC policies, will be reduced to check-
ing whether the GemRBAC+CTX instance satisfies the corresponding OCL
constraints.

This contribution is under submission and is discussed in chapter 6.
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1.3 Dissemination

4. GemRBAC-DSL-Editor, and GemRBAC-DSL-Transform and
MORRO are available tools implemented during the PhD research work.
GemRBAC-DSL-Editor and GemRBAC-DSL-Transform are the edi-
tor and the model transformation tool for the GemRBAC-DSL language,
respectively. These tools are presented in chapter 4. MORRO is a model-
driven framework for run-time enforcement of policies defined on the Gem-
RBAC+CTX model, and is discussed in chapter 6.

5. an empirical evaluation is performed on an industrial architecture to assess
the scalability and the performance of the model-driven framework for run-
time enforcement of RBAC policies. We integrated MORRO into a real
system, provided by our industrial partner.

1.3 Dissemination

The research work we performed during the PhD program has led to the following
publications:

Journal paper

• Ameni Ben Fadhel, Domenico Bianculli, and Lionel Briand. A Comprehensive
Modeling Framework for Role-based Access Control Policies. JSS, 107:110–
126, September 2015

Conference papers

• Ameni Ben Fadhel, Domenico Bianculli, Lionel Briand, and Benjamin Hourte.
A Model-driven Approach to Representing and Checking RBAC Contextual
Policies. In Proc. of CODASPY2016, pages 243–253. ACM, 2016

• Ameni Ben Fadhel, Domenico Bianculli, and Lionel Briand. GemRBAC-DSL:
A High-level Specification Language for Role-based Access Control Policies.
In Proc. of SACMAT2016, pages 179–190. ACM, 2016

Under submission

• Model-driven Run-time Enforcement of Role-based Access Control Policies

1.4 Organization of the Dissertation

The rest of the thesis is structured as follows. After a preliminary chapter in which
we present some background concepts on the original RBAC conceptual model
and the various types of RBAC policies proposed in the literature, there are two
parts. Part II includes chapter 3 on modeling role-based access control policies,
chapter 4 presenting the policy specification language, and chapter 5 provides a
review of existing role-based access control models and specification languages.
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1.4 Organization of the Dissertation

Part III contains chapter 6 on run-time enforcement of the access control policies
expressed in part II. Chapter 7 summarizes the thesis contributions and discusses
future research directions.
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Chapter 2

Background

This chapter provides background information on the basic concepts used in this
thesis. Section 2.1. presents the first RBAC conceptual model. Section 2.2 surveys
the various types of access control policies existing in the literature and classifies
them in a taxonomy.

2.1 The Original RBAC Conceptual Model

The original RBAC conceptual model, proposed in 1996 by Sandhu et al. [3],
is composed of users, roles, sessions, and permissions ; figure 2.1 illustrates the
different components of this model and the relations between them. According
to Sandhu et al., a role can be seen, at the same time, both as a collection of
permissions and as a collection of users. A role can be assigned to one or more
users via a user-role assignment relation. A role-permission assignment relation
maps each role to one or more permissions. A session is a mapping of one user to
a subset of the roles that have been assigned to her; this mapping activates the
role(s) for a certain user. A permission allows a user to perform some operation(s)

roleuser

session

permissionrole-permission 
assignment

user-role 
assignment

role activation

role 
hierarchy

* * * *

*

**

1

administrative 
role

administrative 
permission

administrative 
role activation

** administrative role-permission 
assignment

administrative user-role 
assignment

1

*

* *

administrative role hierarchy

Figure 2.1: The original RBAC model [3]; the dashed line encloses the administra-
tive model for RBAC
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r1

r2 r3 r4

r5

Figure 2.2: Role hierarchy example

on some resource(s) of the system.
A role can be inherited using a role hierarchy relation, as shown in figure 2.2.

A role can have one or more juniors (sub-roles) denoted by an arrow. For instance,
r2, r3 and r4 are juniors of r1. In addition to its assigned permissions, r2 inherits
all permissions from its ancestor r1. Moreover, a junior role can have one or more
ancestors (senior roles). As shown in figure 2.2, r5 inherits not only the permissions
of r2 but also the ones of r3.

RBAC administrative model

An instance of an RBAC model can include a large number of objects: the com-
plexity and the size of such model instance represent a challenge to manage and
maintain it. To ease its management, the RBAC model can be extended with
an administrative part [3]; this part is shown in figure 2.1, enclosed with a dashed
line. The administrative extension contains the concepts of administrative role and
administrative permission. Examples of the latter are assigning a user to a role or
adding a new permission or constraint. An administrative role can acquire only
administrative permissions via an administrative role-permission assignment. In
addition, administrative user-role assignments map administrative roles to users.
An administrative role hierarchy defines inheritance relations between administra-
tive roles.

2.2 RBAC Policies Taxonomy

In this section we present our classification of the existing types of RBAC policies
found in the literature. The taxonomy shown in figure 2.3, contains at the top
level eight types of access control policies; these are described in detail in the next
sub-sections.

2.2.1 Prerequisite Policy

A prerequisite policy is a precondition on a role assignment; it can be evaluated
either at the role level or at the permission level [3, 33]. A policy at the role
level states that a user can be assigned to a role only if the user has been already
assigned to another role. For instance, to acquire the role developer in a company,
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Figure 2.3: RBAC policies taxonomy
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Bob must be already an employee in the company. A policy at the permission level
indicates that a permission p1 can be assigned to a role r only if this role already
has permission p2. For example, an employee cannot have the permission write
document if she does not have the permission read document.

2.2.2 Cardinality Policy

We classify cardinality policies as role-centric, permission-centric, and user centric.
A role-centric cardinality policy can represent a bound on the cardinality of either
the role activation relation or the user-role assignment one [34]. An example of the
former is a policy like: “a user cannot activate more than three roles in a session”;
an example of the latter is “a role cannot be assigned to more than four users”. A
permission-centric cardinality policy can represent a bound on the number of roles
assigned to a permission. An example of this policy is “a permission cannot be
assigned to more than six roles”. A user-centric cardinality policy can represent a
bound on the number of roles assigned to a user. An example of this policy is “a
user cannot be assigned to more than two roles”.

2.2.3 Precedence and Dependency Policy

In some systems, assigning a role to a user does not entail that the user can
activate it at any time. A role that can be activated is called enabled. Role
enabling and role activation can be controlled by specific policies that determine
precedence/dependency relationships [35] between two or more roles. For example,
a policy like “the resident physician role can be enabled only if the attending
physician role has been already activated” defines a precedence policy between the
enabling of a role and the activation of another one. A precedence policy can be
complemented with the corresponding dependency policy on the deactivation of a
role; to continue the example above, the corresponding dependency policy would
look like “the attending physician role cannot be deactivated if there is an activated
resident physician role”.

2.2.4 Role Hierarchy Policy

This type of policy specifies the assignments of roles through a hierarchy. As
explained in section 2.1, assigning role r to user u implies assigning u all junior
roles of r. A role hierarchy policy can also be applied at the permission level: if a
role acquires a permission p, all its sub-roles will also acquire it [3]. For instance,
considering figure 2.2, role r5 will inherit the permissions of roles r2 and r3.
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2.2 RBAC Policies Taxonomy

2.2.5 Separation of Duty (SoD) Policy

Separation of duty (SoD) policies [36] are used to define mutual exclusion relations
among roles, permissions, or users. Mutually-exclusive entities are also called con-
flicting. In the literature, there are two types of SoD: static (SSoD) and dynamic
(DSoD).

2.2.5.1 Static Separation of Duty (SSoD) Policy

This type of separation of duty is also known as strong exclusion [37]. It can
refer to users, roles, and permissions [19, 34]. A user-centric static separation, also
called SSoD conflicting users, states that two conflicting users cannot be assigned
to the same role. A role-centric separation, also called SSoD conflicting roles,
specifies that the same user cannot be assigned to mutually-exclusive roles. SSoD
can also be permission-centric: this means that a user is not allowed to acquire
two conflicting permissions and, symmetrically, that two conflicting permissions
cannot be assigned to the same role.

2.2.5.2 Dynamic Separation of Duty (DSoD) Policy

Dynamic separation of duty deals with user-role activation through a session. In
this case, a user is allowed to acquire conflicting roles; however, she cannot activate
them at the same time. There are different types of DSoD [37]:

• Simple DSoD specifies that conflicting roles cannot be activated in the same
session. As in SSoD, simple DSoD can also be user-, role- or permission-
centric [33].

• Object-based DSoD allows a user to activate two conflicting roles at the
same time, as long as she does not operate on the same object. For instance,
a user can be an author or a reviewer ; an author can submit a paper but
cannot be a reviewer for it. This type of policy is also called Resource-based
Dynamic Separation of Duty [38].

• Operational-based DSoD aims to prevent a user from performing all the
operations in the same business task (e.g., a sequence of operations defined
in a workflow). This means that a user can activate two conflicting roles at
the same time, as long as the union of the operations allowed by the roles
assignment does not correspond to the entire sequence of operations defined
in the business task.

• Operational Object-based DSoD is a combination of the two previous
types of policy. During the execution of a certain business task, a user can
activate two conflicting roles at the same time, even if the union of the
operations allowed by the roles assignment correspond to the entire sequence
of operations defined in the business task. The only policy is that no user
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can perform all the operations on the same object. This type of policy is also
called History-based SoD [37] because the history of the operations performed
by a user determines what she is allowed to do. Reference [37] also introduces
the concepts of order-dependent and order-independent history-based SoD.
The former requires that a role performs its operations in a particular order;
the latter does not take into account the order of operations.

2.2.6 Binding of Duty Policy (BoD)

Unlike SoD policies, binding of duty policies define a correlation between a set of
permissions; the permissions being correlated and the corresponding operations are
also called bounded. BoD policies are usually defined in the context of workflow
systems, whose activities can be performed by different subjects with different
roles. Reference [39] classifies this type of policy as role-based and subject-based.
In role-based BoD, the operations allowed by two or more permissions have to be
performed by the same role. In subject-based1 BoD, the same user must perform
the operations allowed by the bounded permissions; moreover, the user has to
maintain the same role while performing all these operations.

2.2.7 Role Delegation and Revocation Policy

A delegation allows a user (called the delegator) to transfer the permissions associ-
ated with her role (called the delegated role) to another user (called the delegate).
A delegation takes place only if the delegate has not already been assigned to the
delegated role or has already received it by means of another delegation. Further-
more, when a hierarchy has been defined for roles, the delegate receives not only
the delegated role but also all its sub-roles. A delegation is put to an end through
a revocation action. Below we present the different types of role delegation and
revocation policies which can be set within an RBAC system.

2.2.7.1 Role Delegation Policy

A user can delegate her role or permission to another user. A delegation can
be single- or multi-step, total or partial [5], and can be either of type “grant” or
“transfer” [7].

A user can acquire a role through a standard user-role assignment (in which case
the role is called original), or through a delegation (in which case the role is called
delegated). A single-step delegation forbids a user to delegate a delegated role. On
the other hand, a multi-step delegation allows a user to delegate a delegated (i.e.,
non-original) role; however, the number of delegation steps is bounded and should
not exceed a maximum delegation depth, predefined for the system.

1The word subject refers to a user having activated a certain role.
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With a total delegation, a user delegates all the permissions belonging to a
certain role; with a partial delegation, a user delegates only a subset of the role
permissions.

When a delegation is of type “grant”, the delegator can continue to use the
role that has been delegated. On the other hand, when the delegation is of type
“transfer”, right after the delegation the delegator is no longer assigned to the role
that has been just delegated.

As mentioned above, when a hierarchy has been defined for roles, the delegate
receives not only the delegated role but also all its sub-roles. Delegations of type
“transfer” can be strong or weak depending on the assignment of the juniors of
the delegated role to the delegator. With a strong transfer, the delegator is not
assigned to the delegated role and to all its sub-roles anymore. A weak transfer can
be classified as static or dynamic. With a static weak transfer, the delegator keeps
using a subrole r of the delegated role only if she is a member of another senior of
role r. In case of a dynamic weak transfer, the delegator keeps using a subrole r of
the delegated role only if she activates a senior of role r. As an example, consider
the role hierarchy in figure 2.2 and assume that user u1 is assigned to r2 and to
r3. If user u1 delegates her role r2 to user u2, the latter will acquire role r2 and its
junior role r5. If the delegation is a static weak transfer, after the delegation u1

will still be a member of role r5, since she is still a member of role r3, which is a
senior of role r5. On the other hand, if the delegation by user u1 of role r2 to user
u2 is of type dynamic weak transfer, the delegator will be still a member of role r5
after the delegation only if role r3 is active.

2.2.7.2 Role Revocation Policy

A delegation is often followed by a revocation; in the following we refer to the
revocation model proposed in [5].

A role can be revoked either by any user who acquired the role via a user-
role assignment, or by the user who delegated the role. In the former case, the
revocation is called grant-independent ; in the latter it is called grant-dependent.

The dominance of a revocation refers to its effects on the user-role assignment
relation, as determined by role hierarchy; it can be either weak or strong. Let us
consider the case in which a user may be directly assigned to a role or may be
assigned to a role by inheriting it through a role hierarchy. A weak role revocation
only removes the user from the delegated role and does not impact on the other
roles acquired through the role hierarchy. A strong revocation removes the user
from the delegated role and also from the ones inherited through the role hierarchy.
For instance, if user u1 delegates her role r1 to user u2, u2 will acquire r1 and its
juniors r2, r3, r4 and, r5 as shown in figure 2.2. With a strong revocation, u2 will
be revoked from r1 and all its junior roles.
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A revocation can affect not only the user who received the role being revoked,
but also the other delegate users determined by a multi-step delegation. A cas-
cading revocation removes the delegated role assignment and the assignment(s)
resulting from a multi-step delegation. A non-cascading revocation removes only
the requested delegation and does not affect the delegation(s) of the delegated role.

If a delegation has a certain duration, a revocation can be triggered automati-
cally after the duration expires. If a duration is not specified, a delegation remains
active until a user revokes it explicitly.

2.2.8 Context-based Policy

Contextual policies allow a user to perform an action depending on her current
location (location-based context policies) [10] or on the time (time-based context
policies) at which the action should happen [11].

Contextual information can be assigned to users, roles and/or permissions.1 A
user context refers to her current position and time. A role (respectively, a permis-
sion) context refers to the location from and the time at which the corresponding
role (respectively, permission) can be activated.

A location can be physical or logical. A physical location corresponds to some
specific geographic coordinates; a logical location corresponds to a bounded space
like a specific room in a building. With a location-based context policy, roles can
be enabled and activated when the user’s position matches the location specified
in the policy. A role is automatically disabled when the user leaves the geofence
determined by the location specified with the policy.

Time-based context policies specify the periodicity and/or the duration of role
activation [9]. For example, a policy can restrict a role to be activated only on
working days within a predefined range of hours. Moreover, a policy can limit the
cumulative time during which a role is active, e.g., “for three hours per day”.

A context-based policy can be specified at the permission level to prohibit a
user to perform a permission assigned to her active role, when her contextual
information is not valid.

These policies can also be used to manage conflicting roles that a user can
acquire through a role hierarchy. Each of the conflicting roles can have a time-
based context policy that restricts its activation to a certain period of time. If
the time windows of the activation of conflicting roles do not overlap with each
other, the SoD policy will not be violated. More in general, context policies can be
applied to a hierarchy policy to restrict role inheritance and activation depending
on location and/or time [13].

1A wider notion of the context is covered in the attribute-based access control (ABAC)
model [40] by considering the context as an attribute that can be assigned to users, roles, and
permissions.
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Chapter 3

Modeling Access Control Policies

As mentioned in the previous chapter, many types of RBAC policies have been
proposed in the literature. However, the original RBAC model [3] supports a
limited number of these authorization policies, which cannot fulfill the expressive-
ness requirements that have emerged in the recent years in modern organizations.
Examples of these new requirements are supporting delegation and revocation of
roles/permissions, and enabling roles based on the spatio-temporal context of users.

To fill this gap, researchers have proposed several extensions of the original
RBAC model, to support the definition of new types of policies. Though this
work opens new possibilities for applying RBAC in modern enterprise systems,
it is not easy to exploit in its current form. Indeed, these types of policies and
their corresponding models are scattered across multiple sources, are defined using
different formalisms, and sometimes the concepts are expressed in an ambiguous
manner.

This situation is very impractical for practitioners who want to select the rel-
evant types of policies to be implemented in their systems. Moreover, they are
faced with several models, often partially overlapping with each other, but with
slightly different semantic variations. Furthermore, to the best of our knowledge,
there is no model that can express all types of policies that we have identified in
our taxonomy (see chapter 5). Last, scattered and heterogenous models make it
difficult for researchers to understand the state of the art in a coherent manner.

We contend there is clearly a need for organizing the various types of RBAC
authorization policies systematically, based on a unified framework. Our goal is to
define a conceptual model significantly more expressive than the state of the art, on
top of which we can operationalize the access decision procedure. A more expressive
and operational model critically determines its applicability in real scenarios. To
achieve this goal, we follow a model-driven approach, based on UML and the Object
Constraint Language (OCL) [41].

This chapter makes the following contributions:
1. the GemRBAC+CTX model, which is a generalized model for RBAC that

includes all the entities required to define the policies classified in the tax-
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Figure 3.1: The GemRBAC+CTX conceptual model

onomy presented in chapter 2, with a specific emphasis on context-based
policies;

2. a template for the formalization of RBAC policies included in the taxonomy
as OCL constraints to operationalize the access decision for user’s requests
using model-driven technologies;

3. the application of the GemRBAC+CTX model for the specification of real
RBAC policies in an industrial setting.

The rest of the chapter is organized as follows. Section 3.1 introduces the
GemRBAC+CTX model. Section 3.2 presents the templates for the formalization
of RBAC policies using OCL constraints defined on the GemRBAC+CTX model.
Section 3.3 reports on an industrial application of the proposed model for the
verification of RBAC policies.

3.1 The GemRBAC+CTX Model

In this section we present our GemRBAC+CTX model (shown in figure 3.1 as a
UML class diagram), which extends the original RBAC96 model with additional
concepts. The components of the original model are modeled as classes (User,
Session, Role, Permission) and associations (between User and Role, User and
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Session, Role and Permission). We define a permission as a set of operations that
can be performed on an object: we model this by associating the class Permission
with the classes Object and Operation. The class Object can be extended to include
additional information as required by the application needs, e.g., state information
for a stateful object.

Role activation is modeled as an association between the Session and Role

classes. We also model role enabling with another association between these two
classes.

In GemRBAC+CTX the concept of delegation is represented by the class
Delegation. This class contains various attributes: startDate and endDate rep-
resent the bounds of a delegation period; the boolean attributes isTotal and
isRevoked represent, respectively, whether the delegation is total and whether the
delegation has been revoked or not. The attribute isTransfer indicates whether
the delegation is of type “transfer” or “grant”. The concepts of delegator, del-
egate and revoking users are represented as associations between the User and
Delegation classes. Similarly, the concepts of the role of the delegator, the role
of the delegate, and the delegated role are represented as an association between
class Role and class Delegation. We also model the set of delegated roles as an
association between classes User and Role. The specific type of revocation is rep-
resented by specific boolean attributes of the Role class: isDependent, isStrong,
and isCascading.

The context is modeled with the class RBACContext, which is composed of two
classes, TimeExpression and Location. The RBACContext class represents spa-
tial and temporal information, which are associated with each instance of the
User, Role and Permission classes. The user context, representing her spatial in-
formation, is modeled with the userLocation association between the User and
RBACContext classes. The context in which a role should be assigned (as pre-
scribed by a contextual policy) is modeled with the roleContextAssignment as-
sociation between the RBACContext and Role classes; similarly, the context in
which a role should be enabled (as prescribed by a contextual policy) is mod-
eled with the roleContextEnabling association between these two classes. The
context for permission enabling and assignment is modeled in a similar way with
the permissionContextAssignment and permissionContextEnabling associations
between the RBACContext and Permission classes. The temporal context, modeled
as class TimeExpression refers to the current time or the time on which a given role,
respectively permission, can be enabled/assigned. The spatial context, modeled as
class Location, refers to a specific bounded area or geographical location. It can
be assigned to a user, role or permission. A role, respectively permission, is en-
abled/assigned if its location matches the user’s position. The context specification
in the GemRBAC+CTX model is detailed in the next section.

Since policies such as History-based SoD require a record of operations per-
formed over time, we introduce the History class. An instance of this class records
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Figure 3.3: Temporal context in GemRBAC+CTX.

that a user performed a certain operation on a given object according to a given per-
mission, in a certain location, while having a certain role; these data are gathered
through the associations with (respectively) User, Operation, Object, Permission,
Location and Role. Notice that we also record the time at which the user performed
the operation (see section 3.3 for more details).

3.1.1 Modeling Context in GemRBAC+CTX

A temporal (respectively, spatial) context models the time (location) on which
a given role, or permission, can be enabled/assigned; a role or permission can
be enabled/assigned if its contextual information matches the user’s one. In this
section, we extend class RBACContext to support more detailed spatial and temporal
concepts that can be specified by context-based policies. An example of these
policies is “enable role r every Monday, from 9.00 to 11.00 ” or “enable role r within
a radius of 20 miles from the main building”. In the rest of this section, we provide a
description of the temporal and spatial context over the GemRBAC+CTX model.

3.1.2 Modeling Temporal Context

To support temporal context specification in the GemRBAC+CTX model, we
introduce a new class hierarchy under class TimeExpression. The new classes and
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their associations are shown in the class diagram in Figure 3.3.
A time expression is composed of absolute and/or relative time expressions;

these concepts are modeled as classes AbsoluteTE and RelativeTE. An absolute time
expression refers to a concrete point or interval in the timeline. An absolute time
point, modeled with the class TimePoint, corresponds to a given time instant, e.g.,
“January 21, 2014 at 8:00:00 ”. Hereafter, to improve the readability we will omit
the hours from a time point when we refer to midnight. A time interval, modeled
with class TimeInterval, corresponds to a segment in the timeline; a time interval
can be either of type bounded or unbounded. A bounded time interval corresponds,
for example, to the expression “from January 21, 2014 to April 25, 2015 ”. This
interval has a start TimePoint (January 21, 2014 ) and an end TimePoint (April
25, 2015 ). An unbounded interval corresponds to the expression “starting from
October 15, 2013 ”; it has only the start TimePoint (October 15, 2013 ) and is
unbounded to the right.

A relative time expression is an expression that cannot be mapped directly to
a point or to an interval in the timeline. For example, the common expression
“(at) 9 a.m.” by itself cannot be directly mapped to a point in the timeline un-
less another expression, e.g., “(on) May 2, 2015 ” is specified. Class RelativeTE

has two subclasses, RelativeTime and PeriodicTime. By analogy with the class
AbsoluteTE, the class RelativeTime has two subclasses, RelativeTimePoint and
RelativeTimeInterval. Class RelativeTimePoint has four subclasses: HourOfDay

refers to a specific hour of the day, e.g., “(at) 9 a.m.”; DayOfWeek corresponds to
a given day of the week, e.g.,“(on) Monday” refers to any Monday; DayOfMonth

refers to a day in a month such as “(on) April, 5 ”; MonthOfYear refers to a given
month, e.g., “(in) April ”. Unlike class TimeInterval, class RelativeTimeInterval

always refers to a bounded time interval, whose start and end points have both
the same type (a subclass of RelativeTimePoint). Class ComposedRelativeTE can
be recursively composed with itself through the association overlay, to represent
composite time expressions. These composite expressions are required to have com-
posite elements of different granularity. We enforce this requirement by defining a
structural constraint on the model. Informally, a MonthOfYear can overlay either
a DayOfWeek or an HourOfDay; a DayOfWeek or a DayOfMonth can overlay only an
HourOfDay. The same constraint applies if any subclass c of RelativeTimePoint

mentioned in it is replaced with a RelativeTimeInterval with bounds of type c.
An example of an expression that can be modeled by composing different instances
of ComposedRelativeTE by means of the overlay association is “in February, from
the second Monday to third Friday, from 10:00:00 to 12:00:00 ”. This expression
is modeled by an instance of MonthOfYear (February) overlaid with an instance of
RelativeTimeInterval, with start- and end-point of type DayOfWeek (from Mon-
day to Friday), overlaid with an instance of RelativeTimeInterval, with start-
and end-point of type HourOfDay (from 10:00:00 to 12:00:00 ). The indexes that
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refer to a specific occurrence of Monday and Friday are modeled with the index

attribute, which is defined only for class DayOfWeek.
Class RelativeTE can also represent periodicity in temporal expressions such

as “every 3 months”. The periodicity is modeled with its subclass PeriodicTime.
Its attribute period is a numeric value associated with a time unit (e.g., day, hour,
month) modeled with the attribute timeUnit. A PeriodicTime is always part of
a TimeExpression that has exactly one AbsoluteTE; the latter defines either the
starting time of the period (as in “every 3 months, starting from April 5, 2015 ”) or
the time interval in which it applies (as in “every 3 months, from April 5, 2015 to
June 8, 2017 ”). We assume that each PeriodicTime has a nextStart association
with a TimePoint corresponding to the beginning of the next period.

In the context of RBAC, a temporal context can have a time-based policy
that represents a bound for the sum of activation durations of a given role (or
permission). For instance, a security engineer could enable a certain role from
Monday to Friday but allow users to activate it only for two hours over the five
days. We keep track of this duration with class ActivationDuration, which is
associated with classes RelativeTE and AbsoluteTE. Moreover, this duration can be
cumulative (i.e., related to multiple sessions) or noncumulative (i.e., related to the
current session); this concept is represented by the boolean attribute isContinuous
of the class ActivationDuration.

3.1.3 Modeling Spatial Context

Similarly to what we have done for temporal context, to support temporal context
specification in the GemRBAC+CTX model, we introduce a new class hierarchy
under class Location. The new classes and their associations are shown in the class
diagram in Figure 3.2.

At a very high-level, a location represents a specific bounded area or point in
space. A location can be either physical or logical; these concepts are modeled as
classes PhysicalLocation and LogicalLocation.

A physical location identifies a precise position in a geometric space. We con-
sider three possible ways to express a physical location and we model them as
subclasses of PhysicalLocation. Class Point represents a geographic coordinate
with latitude, longitude and altitude. Class Circle represents a circular area, char-
acterized by a radius and a center. Class Polygon is an area enclosed by at least
three segments, which are modeled with class Polyline; each Polyline is a seg-
ment composed of a start and an end Point. Notice that a Polygon (as a set of
Polylines) can model areas with complex shapes, such as the border of a city.

A logical location is an abstraction of one or many physical locations. For
instance, the logical location “offices on the second floor ” refers to the set of physical
locations corresponding to the actual office rooms in the second floor of a building.
A logical location can also be a convenient shorthand to identify a geographical
landmark without providing its coordinates. The concept of logical location is
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modeled with class LogicalLocation. We assume that there is a geocoding function
that maps each LogicalLocation to the corresponding PhysicalLocation(s).

A location can be defined relatively to another location by providing a direction
and optionally a distance. We model these concepts with class RelativeLocation,
which is associated with class RelativeDirection, and has a distance attribute.
The latter has two subclasses, CardinalDirection and QualitativeDirection. Class
CardinalDirection represents the degrees of rotation based on cardinal points on
a compass. An example of a location using a relative location denoted with a
cardinal direction is “6 miles West from the Tour Eiffel ”. This expression contains
a distance (6 miles), a cardinal direction (Southwest, i.e., 225°) and a logical lo-
cation (Tour Eiffel). Class QualitativeDirection represents a relative proximity
to a location, such as “inside” or “outside”. An example of a location using a
relative location denoted with a qualitative direction is “100 meters outside the
White House”. This expression contains a distance (100 meters), a qualitative
direction (outside) and a logical location (White House). Class Location provides
some operations that check for topological relations between locations: operation
contains checks if a location is a part of another one; operation overlaps checks
if two locations share a common area.

Notice that the user context is composed only of a set of Locations including
at most one PhysicalLocation and a set of LogicalLocations.

3.2 OCL Specification of RBAC Policies

In this section we show how the RBAC policies described in section 2.2 of chap-
ter 2 can be formalized as OCL constraints on the GemRBAC+CTX model.
This formalization aims to precisely specify the semantics of such policies in such
a way that they can be operationalized, for example through an OCL constraint
checker. Thus, the problem of making an access decision for RBAC policies can be
reduced to checking the corresponding OCL constraints on an instance of the Gem-
RBAC+CTX model. While defining the OCL constraints, we made the following
working assumption which states that “at any time during the execution of the
system for which RBAC policies are defined, we are able to take a snapshot of the
system state and represent it as an instance of the GemRBAC+CTX model”. This
assumption is based on previous work on model-driven run-time verification [42],
which shows how a run-time system can be represented as a “live” instance of a
conceptual model, on which to check OCL constraints. For the purpose of the
formalization, we enrich the model with some helper classes and operations, also
included in figures 3.1, 3.2 and 3.3.

The Ecore version of the GemRBAC+CTX model, the OCL constraints de-
fined in the following subsections, and model instances that violate/satisfy them
are available at https://github.com/AmeniBF/GemRBAC-model.git.
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3.2.1 Prerequisite Policy

A prerequisite policy can specify a pre-condition either for user-role assignment or
for role-permission assignment. In the first case, the policy states that to acquire
role r1, the user must have been already assigned to role r2. This policy can be
written in OCL as an invariant of the Role class:

1 context User inv PreqRole:

2 let roleSet: Set(Role) = self.roles -> union(self.delegatedRoles) -> asSet()

3 in roleSet-> select (r:Role | r.idRole =’r1’ or r.idRole =’r2’) -> size() =2

In this constraint we first select the set of roles assigned and delegated to the user
(line 2); these roles are derived from navigating the roles and delegatedRoles

associations. Then, we check whether roles r1 and r2 are included in this list
(line 3).

A prerequisite policy on role-permission assignment has a similar structure:

context Role inv PreqPermisssion:

self.permissions -> select (p:Permission | p.idPermission = ’p1’

or p.idPermission = ’p2’) -> size() = 2

3.2.2 Cardinality Policy

A cardinality policy on the role activation relation is expressed in OCL as an
invariant of the Session class:

context Session inv CardinalityActivation:

let u: RBACUtility = RBACUtility.allInstances() -> any(true)

in self.activeRoles -> size() <= u.maxActiveRole

In this expression, the number of roles activated for the current session is deter-
mined by the cardinality of the activeRoles association between classes Session

and Role; maxActiveRole is a constant defined in the class RBACUtility.
The policies for the number of roles assigned to a user and for the number of

permissions assigned to a role are defined in a similar way for classes User and
Role:

context User inv CardinalityRole:

let u: RBACUtility = RBACUtility.allInstances() -> any(true),

roleSet : Set(Role) = self.roles -> union(self.delegatedRoles)-> asSet()

in self.roleSet -> size() <= u.maxRole

context Role inv CardinalityPermission:

let u: RBACUtility = RBACUtility.allInstances() -> any(true)

in self.permissions -> size() <= u.maxPermission

Notice that when expressing the policy on the number of roles assigned to a
user, we consider both assigned and delegated roles.
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3.2.3 Precedence and Dependency Policies

Precedence and dependency policies control the enabling and the deactivation of
roles. A precedence policy on the enabling of a role with respect to the activation
of another one can be expressed as an invariant of the Session class:

1 context Session inv RoleEnablingPrecedence:

2 let r1: Role = self.enabledRoles-> select(a: Role| a.idRole = ’r1’)->any(true),

3 r2: Role = Role.allInstances()->select(a: Role| a.idRole = ’r2’)->any(true)

4 in if not r1.oclIsInvalid() then

5 Session.allInstances()->exists(s: Session| s.activeRoles->includes(r2))

6 endif

In the OCL expression above, we first select, among the roles enabled in the
session, the instance corresponding to role r1 (line 2); these roles are derived from
navigating the enabledRoles association between classes Session and Role. Then,
we select the instance corresponding to role r2 (line 3). We check if role r1 is
enabled by checking whether the selected instance of this role is not null (line 5);
this check is done by calling the oclIsInvalid operation. If role r1 is enabled then
r2 must be among the activated roles; the list of these roles is derived from the
activeRoles association.

The corresponding dependency constraint can be expressed as an invariant of
of the Role class:

1 context Role inv RoleActivationDependency:

2 if a.idRole = ’r2’ and self.sessionsA -> isEmpty() then

3 let r1: Role = Role.allInstances()-> select(a: Role| a.idRole = ’r1’)

4 ->any(true)

5 in Session.allInstances() -> forAll (s:Session

6 | s.activeRoles -> union(s.enabledRoles) -> excludes(r1))

7 endif

In this OCL constraint we first check (line 2) if the current role is r2 and if this role
is active. The list of sessions where the role is active is derived from the sessionsA
association. If role r2 is not active (corresponding to the case in which the condition
self.sessionsA -> isEmpty() is satisfied), we select (line 3) the instance of role r1
from all the instances of class Role. Then, we check if role r1 is enabled or active
in all instances of class Session.

3.2.4 Role Hierarchy Policy

A role hierarchy policy can be expressed on user-role and permission-role assign-
ment relations. In the first case, it states that if a user acquires a role, she will also
acquire all its juniors. This can be expressed in OCL as an invariant of the User

class:

context User inv RoleHierarchy:

let r1:Role = self.roles -> select(a: Role | a.idRole = ’r1’)->any(true)
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in if not r1.oclIsInvalid() then

self.roles -> includesAll(r1.juniors)

endif

In this expression we first select role r1 from the roles assigned to the user; this
list is derived from the roles association. Then, we check if role r1 is assigned to
the user by checking whether the selected instance of this role is not null (line 3);
this check is done by calling the oclIsInvalid operation. The condition in line4,
states that the roles assigned to the user should include all junior roles of role r1;
the junior roles are derived from the juniors association.

A role hierarchy policy on the role-permission assignment states that if a role
acquires a permission, all its sub-roles will acquire it. This policy is defined as an
invariant of the class Role:

context Role inv PermissionHierarchy:

let p1: Permission = self.permissions

-> select(a: Permission| a.idPermission = ’p1’)->any(true)

in if not p1.oclIsInvalid() then

self.juniors -> forAll (r: Role | r.permissions -> includes(p))

endif

In this expression, we check if each sub-role is assigned to the p1 permission.

3.2.5 Separation of Duty Policy (SoD)

3.2.5.1 Static SoD

The static SoD (SSoD) can be user-, role- or permission-centric. The user-centric
SoS specifies that role r1 can be assigned either to user u1 or to user u2, but not
to both. This policy can be expressed in OCL as an invariant of the Role class:

1 context Role inv SSoDCU:

2 if self.idRole =’r1’ then

3 let conflictingUsers: Set (User) = self.users -> select (u:User

4 | u.idUser = ’u1’ or u.idUser = ’u2’)

5 in conflictingUsers -> Size() <2

6 endif

In the OCL expression above, we first select the list of conflicting users, u1 and
u2, from the list of users assigned to role r1; these users are derived from the
users association. The condition states that the list of users assigned to the role
should contain either user u1 or user u2. but not both. In other words, the list of
conflicting users assigned to role r1 should contain at most one user.

The role-centric and permission-centric SoD are defined in a similar way as
invariants of the User and Permission classes, respectively:

context User inv SSoDCR:

let roleSet : Set(Role) = self.roles -> union(self.delegatedRoles) -> asSet(),

conflictingRoles: Set (Role) = roleSet-> select (r:Role
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| r.idRole=’r1’ or r.idRole=’r2’)

in conflictingRoles -> size()<2

context Role inv SSoDCP1:

let conflictingP: Set (Permission) = self.permissions -> select (p:Permission

| p.idPermission=’p1’ or p.idPermission=’p2’)

in conflictingP -> size()<2

context Permission inv SSoDCP2:

if self.idPermission =’p1’ then

let conflictingRoles: Set (Role) = self.roles -> select (r:Role

| r.idRole=’r1’ or r.idRole=’r2’)

in conflictingRoles -> size()<2

endif

3.2.5.2 Dynamic SoD

Unlike static 1SoD, dynamic SoD (DSoD) allows a user to acquire two conflicting
roles but she cannot activate them at the same time. To express that roles r1
and r2 should not be active in the same session, we can write the following OCL
constraint as an invariant of the Session class:

context Session inv DSoDCR:

let conflictingRoles: Set (Role) = self.activeRoles -> select (r:Role

| r.idRole=’r1’ or r.idRole=’r2’)

in conflictingRoles -> size () <2

Object-based SoD is another variation of DSoD which allows a user to activate two
conflicting roles (r1 and r2) at the same time, as long as she does not operate on
the same object. It can be expressed in OCL as an invariant the Session class:

1 context Session inv ObjectDSOD:

2 let conflictingRoles: Set (Role) = self.activeRoles -> select (r:Role

3 | r.idRole=’r1’ or r.idRole=’r2’)

4 in if conflictingRoles -> size()>1 then

5 let r1:Role = conflictingRoles -> select (r:Role | r.idRole=’r2’) -> any(true),

6 r2:Role = conflictingRoles -> select (r:Role | r.idRole=’r1’) -> any(true),

7 logr1: Set (History) = r1.accessHistory() -> select (a: History

8 | a.user= self.user),

9 logr2: Set (History) = r2.accessHistory() -> select (a: History

10 | a.user= self.user),

11 objects1: Set (Object) = logr1 -> collect (object),

12 objects2: Set (Object) = logr2 -> collect (object)

13 in objects1 -> intersection (objects2) -> isEmpty()

14 endif

In this constraint we refer to instances of the History class, which keeps track of
each operation performed in the system, recording the user who performed it, the

1For all abbreviations see the glossary on page xiii.
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role she had, the object on which the operation was performed, the time and the
location. We use the operation accessHistory of the Role class to retrieve the
instances of History. filtered on the current user (lines 8 and 10). Then, for each
conflicting role (in this case r1 or r2), we collect the list of objects (objects1 and
objects2, respectively) from the list of logs performed by the current user while
activating a conflicting role (lines 11 and 12). Checking whether the history of the
conflicting role(s) does not contain any operation performed on the same object
is equivalent to checking whether the intersection of the list of objects (objects1
and objects2) in their history is empty (line 13). The generalized version of this
policy containing more than two conflicting roles is expressed in a similar way:

context Session inv ObjectDSOD:

let conflictingRoles: Set (Role) = self.activeRoles -> select (r:Role

| r.idRole=’r1’ or r.idRole=’r2’

or r.idRole=’r3’)

in if conflictingRoles -> size()>1 then

conflictingRoles-> forAll(r:Role|

let rlog: Set (History) = r.accessHistory()-> select (log:History

| log.user = self.user)-> asSet(),

roleslog: Set (History) = conflictingRoles -> excluding(r)

-> collect(r.accessHistory()),

userlog: Set (History) = log -> select (log:History

| log.user = self.user )-> asSet(),

objects: Set(Object) = userlog -> collect (object)-> asSet(),

in rlog -> collect (object) -> intersection (objects) -> isEmpty())

endif

With an Operational-based DSoD policy, a user can activate two conflicting roles
(r1 and r2) at the same time, as long as the union of the operations allowed by
the roles assignment does not correspond to the entire sequence of operations (op1
and op2 ) defined in a business task. This can be expressed in OCL as an invariant
of class Session:

1 context Session inv OperationalDSoD:

2 let conflictingRoles: Set (Role) = self.activeRoles -> select (r:Role

3 | r.idRole=’r1’ or r.idRole=’r2’)

4 in if conflictingRoles -> size()>1 then

5 let opBT : Set(Operation) = Operation.allInstances()

6 -> select(o: Operation | o.idOperation = ’op1’

7 or o.idOperation =’op2’)->asSet()

8 op: Set(Operation) = conflictingRoles

9 -> collect (permissions.operations) -> asSet()

10 in (opBT - op) -> notEmpty()

On line 5 we select the instances of operations op1 and op2 , operations defined
in the business task. We have to check that the union of the operations allowed
by the conflicting roles is a proper subset of the business task operations. This is
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equivalent to stating that the difference between the two sets is not empty (line 10).
This check is done if both roles are active (line 4).

The History-based DSoD policy combines both the Object-based one and the
Operational-based one. Differently from these two, History-based DSoD allows a
user to activate two conflicting roles at the same time, as long as the user does
not perform all the operations on the same object. This can be specified as an
invariant of the Session class:

1 context Session inv DSoDHis:

2 let conflictingRoles : Set(Role) = self.activeRoles ->select (r: Role

3 | r.idRole = ’r1’ or r.idRole =’r2’)->asSet()

4 in if conflictingRoles -> size()>1 then

5 let roleslog: Set (History) = conflictingRoles -> collect(logRole)

6 -> select (log:History| log.user = self.user)

7 -> asSet(),

8 objects: Set(Object) = roleslog -> collect (object)-> asSet(),

9 opBT : Set(Operation) = Operation.allInstances()->select(o: Operation

10 | o.idOperation=’op1’ or o.idOperation=’op2’)

11 -> asSet()

12 in objects -> forAll (o: Object

13 | let logObject: Set (History) = roleslog -> select(l:History

14 | l.object=o and opBT->includes(l.operation)),

15 opObjBT: Set(Operation) = logObject-> collect(operation)

16 -> asSet()

17 in (opBT-opObjBT) -> notEmpty())

18 endif

In the OCL expression above, we first select the list of conflicting roles r1 and r2
active in the current session (lines 3 and 4). Then, we check if the user is activating
more than one conflicting role (line 4). We retrieve the list of logs performed by
the current user while activating a conflicting role (lines 5–7). We compute the list
objects of objects from the logs performed by the current user. We also select the
list of operations (op1 and op2 ) defined in the business task (lines 9–11). For each
object o in the list objects, we compute the list opObjBT of operations performed
by the user (either under role r1 or r2) on the object o (line 11). The condition
checks whether the list opLog of operations defined in a business task is a proper
subset of the list opObjBT.

3.2.6 Binding of Duty Policy (BoD)

Binding of duty policies define a correlation between a set of permissions. A role-
based BoD policy requires that bounded operations must be executed by the same
role. This policy can be specified in OCL as an invariant of the Role class:

1 context Role inv RoleBoD:

2 let boundedPermissions: Set (Permission)= self.permissions

3 ->select(p:Permission|p.idPermission=’p1’

4 or p.idPermission = ’p2’)
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5 in if boundedPermissions-> size() = 2 then

6 let boundedroles: Set (Role)= Role.allInstances()-> excluding (self)

7 -> select (r:Role | r.permissions

8 -> includesAll(boundedPermissions)),

9 roleLog: Set (History)= self.logBOCurrentProcessInstance()

10 in if not(roleLog -> isEmpty()) then

11 boundedroles->forAll(r:Role

12 |r.logBOCurrentProcessInstance()->isEmpty())

13 endif

14 endif

In the OCL expression above, we first retrieve the set of bounded permissions
(lines 2–4). Then, the condition checks whether the current role is a bounded role
by checking its assignment to all bounded permissions (line 5). We retrieve the
list of roles assigned to the bounded permissions (lines 6–8). Then, we determine
which bounded operations have been performed by the current role in the current
process instance1 by calling the operation logBOCurrentProcessInstance() of the
Role class (line 9). If the current role has performed some bounded operations
(line 10), then the condition is satisfied if none of the bounded operations have been
previously performed by any other role different from the current one (line 12).
In other words, if a user with the current role has already performed a bounded
operation, any other user with the same role is allowed to perform another bounded
operation in the current process instance.

The subject-based BoD policy requires that bounded operations must be exe-
cuted by the same subject (user and role). This policy can be expressed in OCL
as:

1 context Role inv SubjectBoD:

2 let boundedPermissions: Set (Permission)= self.permissions

3 ->select(p:Permission|p.idPermission=’p1’

4 or p.idPermission = ’p2’)

5 in if boundedPermissions-> size() = 2 then

6 let boundedroles: Set (Role)= Role.allInstances()-> excluding (self)

7 -> select (r:Role | r.permissions

8 -> includesAll(boundedPermissions)),

9 subjectLog: Set (History)= self.logBOCurrentProcessInstance()

10 select (a: History | a.user= self.user)

11 in if not(subjectLog -> isEmpty()) then

12 boundedroles -> forAll(r:Role

13 |r.logBOCurrentProcessInstance()->isEmpty())

14 endif

15 endif

This OCL constraint is similar to the one defined for role-based BoD. How-
ever, the log subjectLog corresponds to the bounded operations that have been

1We recall that BoD policies are usually defined in the context of process-based workflow
systems.
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performed by a given user u with a given role r in the current process instance.

3.2.7 Role Delegation and Revocation policies

3.2.7.1 Role Delegation Policy

A delegation is characterized by a delegated role, a delegator, a delegate and their
corresponding roles. In a multi-step delegation, a user is allowed to delegate a dele-
gated role according to a maximum delegation depth (hereafter called maxDepth).
This type of delegation can be specified in OCL as an invariant of the Delegation

class:

1 context Delegation inv MultiStepDelegation:

2 self.getAbsoluteDelegationPath() -> size() <= self.maxDepth

In the OCL expression shown above, the operation getAbsoluteDelegationPath

returns the list of delegation steps starting from the original (non-delegated role).
The size of this list is then compared with the attribute maxDepth. The single-
step delegation policy can be defined as a multi-step delegation with a maximum
delegation depth equal to 1.

A delegation can be total or partial depending on the number of permissions
being delegated. A total delegation delegates all the permissions belonging to a
certain role; it can be specified in OCL as an invariant of the Delegation class:

1 context Delegation inv TotalDelegation:

2 self.isTotal implies

3 self.delegatedPermissions = self.delegatedRole.permissions

This expression states that if the delegation is total (represented by the attribute
isTotal) then the list of delegated permissions (derived from the association delega-

tedPermissions) should be equal to the list of permissions associated to the dele-
gated role.

A partial delegation (characterized by the attribute isTotal being false) is
defined in a similar way:

1 context delegation inv PartialDelegation:

2 not (self.isTotal) implies

3 (self.delegatedRole.permissions - self.delegatedPermissions) -> notEmpty()

A delegation can be either of type “grant” or “transfer”. While a “grant” type
delegation does not affect the permissions of the delegator, in case of a delegation
of type “transfer”, the delegator cannot use the delegated role after the delegation.
A delegation of type “transfer” can be either strong or weak. In case of strong
transfer, in addition to the delegated role, the delegator is no longer assigned to
any of its juniors. This policy can be expressed in OCL as an invariant of the
Delegation class:
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1 context Delegation inv StrongTransfer:

2 let roles: Set(Role) = self.delegatedRole.getAlljuniors() -> including (self.

delegatedRole)

3 in self.isTransfer = delegationType::strong implies

4 self.delegatorUser.roles -> excludesAll(roles)

5 and self.delegateUser.delegatedRoles ->

6 includes(self.delegatedRole)

In the OCL expression shown above, we first retrieve the list of roles from the
Delegation object, including the delegated role and its juniors (line 2). The oper-
ation getAlljuniors returns the juniors of the delegated role, walking through the
transitive closure of the hierarchy relation. For instance, the operation getAllju-

niors applied to role r1 in figure 2.2 returns the list of roles: r2, r3, r4 and r5. The
OCL expression at line 3 states that if the delegation is of type strong transfer (rep-
resented by the expression self.isTransfer = delegationType::strong) then the
list of roles assigned to the delegator (derived from the delegatorUser.roles as-
sociation) should include neither the delegated role nor any of its juniors. Besides,
the list of roles delegated to the delegate should include the delegated role; these
roles are derived by navigating the delegateUser.delegatedRoles association.

A delegation of type weak transfer can be either static or dynamic. In case
of static weak transfer, the delegator keeps using a subrole r of the delegated role
only if she is a member of another senior of role r. This policy can be expressed
in OCL as an invariant of the Delegation class:

1 context Delegation inv StaticWeakTransfer:

2 let acquiredRoles: Set(Role) = self.delegatorUser.roles

3 -> union(self.delegatorUser.delegatedRoles),

4 allowedRoles: Set(Role) = self.delegatedRole.getAllJuniors()

5 -> select (r : Role | (r.seniors -> excluding(delegatedRole))

6 -> exists (r1 : Role | acquiredRoles ->includes(r1))),

7 roles: Set(Role) = (self.delegatedRole.getAllJuniors()

8 -> including(self.delegatedRole)) - allowedRoles

9 in self.isTransfer = delegationType:: weakStatic implies

10 self.delegatorUser.roles -> excludesAll(roles)

11 and self.delegatorUser.roles -> includesAll(allowedRoles)

12 and self.delegateUser.delegatedRoles -> includes(self.delegatedRole)

In the OCL expression shown above, we first retrieve the list (acquiredRoles) of
roles available to the delegator, defined as the union of the roles assigned to and
delegated to the delegator (lines 2 and 3). Then, we select among the subroles
of the delegated role, the roles (allowedRoles) that the delegator is allowed to
acquire. We check if one of the juniors of the delegated role has another senior in
the list acquiredRoles (lines 4–6). We compute the list of roles that the delegator
cannot use after the transfer, keeping into account the allowedRoles (lines 7 and
8). If the transfer is of type static weak (condition checked at line 9) the list of
roles assigned to the delegator should include neither the delegated role nor any of

32



3.2 OCL Specification of RBAC Policies

its juniors (except for those allowed by the hierarchy relation). Finally, the list of
roles delegated to the delegate should include the delegated role (line 12).

The policy for the delegation of type dynamic weak transfer has a similar struc-
ture:

1 context Delegation inv DynamicWeakTransfer:

2 let acquiredRoles : Set(Role) = self.delegatorUser.roles

3 -> union(self.delegatorUser.delegatedRoles),

4 allowedRoles : Set(Role) = self.delegatedRole.getAllJuniors()

5 -> select (r : Role | (r.seniors

6 -> excluding(delegatedRole)) -> exists(r1 : Role

7 | self.delegatorUser.sessions -> exists(s:Session

8 | s.activeRoles -> includes(r1)))),

9 roles : Set(Role) = (self.delegatedRole.getAllJuniors()

10 -> including(self.delegatedRole)) - allowedRoles

11 in self.isTransfer = delegationType:: weakDynamic implies

12 self.delegatorUser.roles -> excludesAll(roles)

13 and self.delegatorUser.roles -> includesAll(allowedRoles)

14 and self.delegateUser.delegatedRoles -> includes(self.delegatedRole)

Notice that in this case the list allowedRoles (lines 4–8) includes the subroles
having an active senior in the delegator session.

3.2.7.2 Role Revocation Policy

A delegation is revoked by setting the attribute isRevoked to true. The delegation
is revoked automatically when its duration expires; this policy can be specified as
an invariant of the Delegation class as follows:

context Delegation inv AutomaticRevocation:

let u: RBACUtility = RBACUtility.allInstances() -> any(true),

in u.currentDate >= self.endDate implies self.isRevoked

A revocation is called grant-dependent if only the delegator is allowed to revoke
the delegation. On the other hand, a grant-independent revocation allows not only
the delegator but also any original user to revoke the delegation. This policy can
be expressed in OCL as an invariant of the Delegation class:

1 context Delegation inv RevacationDependency:

2 if self.isRevoked then

3 if self.delegatedRole.isDependent then

4 self.revokingUser = self.delegatorUser

5 else

6 self.revokingUser = self.delegatorUser or self.delegatedRole.users

7 ->includes(self.revokingUser)

8 endif

9 endif

In the OCL expression above, we first check if the revocation is grant-dependent,
by checking the attribute isDependent of the association delegatedRole (line 3).
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If this is the case, only the delegator is allowed to revoke the delegation (line 4).
Otherwise, the delegation can be revoked either by the delegator or by any user
assigned to the delegated role (lines 6 and 7).

A revocation can be classified as strong or weak according to its dominance.
A strong revocation removes from a user not only the delegated role but also its
junior roles. A strong revocation can be expressed in OCL as an invariant of the
Role class:

1 context Delegation inv StrongRevocation:

2 if self.isRevoked then

3 self.delegatedRole.isStrong implies

4 self.delegateUser.delegatedRoles

5 -> excludesAll(self.delegatedRole.getAllJuniors())

6 endif

In the constraint above, the implication states that if the revocation is strong (as
determined by the attribute isStrong), the set of roles received by the delegation
(delegateUser.delegatedRoles) should not include juniors of the delegated role.

A revocation can be classified as cascading or non-cascading according to its
propagation. A cascading revocation removes all delegations resulting from a multi-
step delegation. It can be specified in OCL as an invariant of the Delegation class:

1 context Delegation inv CascadingRevocation:

2 if self.isRevoked then

3 self.delegatedRole.isCascading implies

4 self.delegatedDelegation -> forAll (d: Delegation | d.isRevoked = true)

5 endif

In the constraint above, the implication states that in case of a cascading revo-
cation (as determined by the attribute isCascading), all the delegated delega-
tions should be revoked; this list of delegations is derived from the association
delegatedDelegation.

3.2.8 Context-based Policies

While the non-contextual policies described above are specified as OCL constraints,
contextual policies are expressed on the model level by adding additional instances
of one or more UML classes (see section 3.1.1). As explained in Section 3.1.1, the
context in which a Role (or a Permission) can be enabled or assigned (as prescribed
by a contextual policy), is captured on the UML model. RBAC contextual poli-
cies can then be checked by verifying OCL constraints on the GemRBAC+CTX
model. In this way, an access decision (e.g., allowing a user to activate a role) can
be performed by checking whether an instance of the GemRBAC+CTX satisfies
the OCL constraints associated with it. In the rest of this section we provide several
templates that can be used to formalize contextual RBAC policies for role enabling
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or assignment as OCL constraints on the GemRBAC+CTX model. These RBAC
policies are based on real policies defined in our industrial case study.

In the definition of the OCL constraints, we make some working assumptions.
We assume that each snapshot contains the time at which it was taken (modeled
as an association between classes RBACUtility and TimePoint) and the current day
of week (modeled as an association between classes RBACUtility and DayOfWeek).
This assumption can be guaranteed by applying a timestamp to each snapshot.
We also assume that the position of the user is always known, by means of a GPS;
this is very reasonable nowadays. Lastly, we assume that policies are not conflict-
ing with each other; e.g., we avoid the case of having two policies, one enabling
(assigning) and another one disabling (unassigning) the same role/permision in the
same context.

The Ecore version of the GemRBAC+CTX model, the OCL constraints de-
fined in this section, and model instances that violate/satisfy them are available
at https://github.com/AmeniBF/GemRBAC-CTX-model.git.

3.2.8.1 Time-based Policy

A policy on role enabling with an absolute time expression restricts the time interval
at which a role can be enabled, as in “role r1 is enabled from January 21, 2014
to April 25, 2015”. This policy can be checked by verifying the following OCL
invariant of class Session:

1 context Session inv AbsoluteBTIRoleEnab:

2 let u: RBACUtility = RBACUtility.allInstances() -> any(true),

3 r: Role = Role.allInstances()->select(r:Role |r.idRole = ’r1’) ->any(true),

4 temporalContext: Set(TimeExpression) = r.roleContextEnabling.timeexpression

5 -> flatten() -> asSet(),

6 timeE: Set(AbsoluteTE) = temporalContext.absolute -> flatten() -> asSet(),

7 timeI: Set(AbsoluteTE) = timeE -> select(e | e.oclIsTypeOf(TimeInterval)

8 and e.oclAsType(TimeInterval).end->notEmpty())

9 in if timeI.oclAsType(TimeInterval)

10 -> exists(i| u.getCurrentTime().isContained(i)) then

11 self.enabledRoles -> includes(r) or self.activeRoles -> includes(r)

12 endif

In this OCL expression, we first select the instance corresponding to role r1 (line 3).
Then, we retrieve the list temporalContext of time expressions in which the role
should be enabled (lines 4–5) and compute, over the elements of this list, the list
timeE of absolute expressions assigned to them (line 6). In this example, since
there is only one TemporalExpression object containing one AbsoluteTE object,
the timeE list will include only one instance of TimeInterval whose start and end
TimePoints corresponds to “January 21, 2014” and “April 25, 2015”. Since the
enabling temporal context in the policy is expressed as a bounded time interval,
we have to select, among the elements of timeE, the list timeI of expressions in the
form of a time interval (lines 7–8) with a bounded end point; this last condition
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is checked with the expression at line 8. Afterwards, we check if the time when
the snapshot was taken—obtained by calling the operation getCurrentTime of class
RBACUtiliy—is contained in one of the time intervals in list timeI (lines 9–10). If
this is the case, we check whether role r1 is in the list of enabled or active role of
the current session (line 11).

A policy on permission assignment with a relative time expression restricts
the time at which a permission can be assigned to a role. As explained in Sec-
tion 3.1.1, we support different forms of relative time expression. For the purpose
of illustration, we consider a relative time expression structured as a DayOfWeek

(or a RelativeTimeInterval with bounds of type DayOfWeek), which, subsequently,
can overlay an Hour (or a RelativeTimeInterval with bounds of type Hour). An
example of a policy with a relative time expression of this form is “assign role r1
to user u1 only from Wednesday to Friday, from 10:00 to 14:00”. Such a policy can
be checked by verifying the following OCL invariant of class Permission:

1 context Permission inv DayOfWeekHourPermAssign:

2 if self.idPermission = ’p1’ then

3 let u: RBACUtility = RBACUtility.allInstances()-> any(true),

4 day: RelativeTimePoint = u.getDayOfWeek(),

5 r: Role = Role.allInstances()->select(r: Role| r.idRole= ’r1’)->any(true),

6 temporalContext: Set(TimeExpression) = self.permissionContextAssignment.

7 timeexpression -> flatten() -> asSet(),

8 timeE: Set (ComposedRelativeTE) = temporalContext.relative.

9 oclAsType(ComposedRelativeTE)

10 -> flatten() -> asSet(),

11 days: Set (ComposedRelativeTE) = timeE ->select(t|

12 (t.oclIsTypeOf(RelativeTimeInterval) and

13 t.oclAsType(RelativeTimeInterval).start.

14 oclIsTypeOf(DayOfWeek) and day.isContained

15 (t.oclAsType(RelativeTimeInterval)))

16 or (t.oclIsTypeOf(DayOfWeek) and

17 day.equalTo(t.oclAsType(DayOfWeek))))

18 in if days -> exists (t| t.checkHours(u)) then

19 self.roles -> includes (r)

20 else

21 self.roles -> excludes (r)

22 endif

23 endif

In this OCL expression if the current permission is p1, we select the day cor-
responding to the day of week at which the snapshot was taken, by calling the
getDayOfWeek operation of the class RBACUtility (lines 3–4). Then, we select
the instance corresponding to role r1 (line 5). We retrieve the list of time ex-
pressions temporalContext in which the permission should be assigned to role r1
(lines 6–7) and compute, over the elements of this list, the list timeE of relative
time expressions assigned to them (lines 8–10). Based on the type of policy de-
scribed above, we have to select, among the elements of timeE, the list days of rel-
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ative time expressions having a ComposedRelativeTE of type DayOfWeek or of type
RelativeTimeInterval with bounds of type DayOfWeek (lines 11–17). While select-
ing the time expressions in this list, we check whether the day at which the snapshot
was taken is contained in the selected TimeExpression. To do so, we check sepa-
rately for the DayOfWeek, by calling operation equalTo of class RelativeTimePoint
(line 17), and for the RelativeTimeInterval by calling operation isContained of
class RelativeTimePoint (line 14). In this specific example, list days will include
a TimeExpression that contains two ComposedRelativeTE. These objects are: a
RelativeTimeInterval (whose start and end RelativeTimePoints correspond to
“Wednesday” and “Friday”); and a RelativeTimeInterval (whose start and end
RelativeTimePoints correspond to “10:00” and “14:00”). We remark that the first
object overlays the second. We check whether the time at which the snapshot was
taken is contained in one of the TimeExpressions in days. To do so, we check the
hours overlaid by the day(s) of the week by calling operation checkHours of class
ComposedRelativeTE (line 18). If the check succeeds, we require role r1 to belong
to the list of roles of permission p1 (line 19). Otherwise, we require the role not to
be in this list (line 21). For the sake of simplicity, in the remaining of this section
we focus only on the specification of policies at the role level.

A policy on role assignment with a relative time expression containing an index
of a specific DayOfWeek restricts the day in which a given user can acquire a given
role, as in “assign role r1 to user u1 on the 2nd Monday of June”. This policy can
be checked by verifying an OCL invariant of class Role:

1 context Role inv indexRoleAssign:

2 let u: RBACUtility = RBACUtility.allInstances()-> any(true),

3 month: ecore::EInt = u.getCurrentTime().month,

4 day: RelativeTimePoint = u.getDayOfWeek(),

5 temporalContext: Set(TimeExpression) =self.roleContextAssignment

6 .timeexpression -> flatten() -> asSet(),

7 timeE: Set(ComposedRelativeTE) = temporalContext. relative

8 .oclAsType(ComposedRelativeTE) -> flatten()

9 -> asSet()

10 in self.idRole = ’r1’ and self.users -> select(u| u.idUser =’u1’) -> notEmpty()

11 implies timeE -> exists(t | t.oclIsTypeOf(MonthOfYear)

12 and t.oclAsType(MonthOfYear).month = month

13 and t.checkDayIndex(u))

In this invariant we first select the month and day of week at which the snap-
shot was taken by calling the getCurrentTime and getDayOfWeek operations of class
RBACUtility (lines 3–4). Then, we retrieve the list temporalContext of time ex-
pressions in which the role should be assigned (lines 5–6) and compute, over the
elements of this list, the list timeE of relative time expressions assigned to them
(lines 7–9). The implication at lines 10–13 states that if the current role is r1
and user u1 is a member of this role, the temporal context for role assignment
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should match the current DayOfWeek; this condition is verified by calling operation
checkDayIndex of class ComposedRelativeTE.

A policy on role assignment with time expression containing a periodic expres-
sion restricts the time at which a role can be assigned to a user as in “user u1

acquires role r1 every 5 days starting from July 10, 2014 at 16:00”. This policy can
be checked in OCL as an invariant of class Role:

1 context Role inv periodicUnboundTIRoleAssign:

2 let u: RBACUtility = RBACUtility.allInstances()-> any(true),

3 u1: User = User.allInstances()->select(u: User| u.idUser= ’u1’)->any(true),

4 temporalContext: Set(TimeExpression) = self.roleContextAssignment

5 .timeexpression -> flatten() -> asSet(),

6 timeE: Set(AbsoluteTE) = temporalContext.absolute -> flatten()-> asSet(),

7 absoluteE: Set(AbsoluteTE) = timeE -> select (t | t.absolute

8 .oclAsType(TimeInterval) -> exists(a

9 | a.start.equalTo(u.getCurrentTime())

10 or a.start.isBefore(u.getCurrentTime()))),

11 periodicE: Set(PeriodicTime)= absoluteE.relative.oclAsType(PeriodicTime)

12 -> flatten() -> asSet()

13 in self.idRole= ’r1’ and self.users->includes(u1) implies periodicE.nextStart

14 ->select( a | a.equalTo(u.getCurrentTime()))->notEmpty()

In this invariant, we first select the instance corresponding to user u1 (line 3).
We retrieve the list temporalContext of time expressions in which the role should
be assigned to user u1 (lines 4–5) and compute, over the elements of this list, the
list timeE of absolute time expressions assigned to them (line 6). In this example,
the list timeE will include a TimeExpression with an unbounded TimeInterval

whose start TimePoint corresponds to “July 10, 2014 at 16:00”. Then we select
among the element of list timeE, the list (absoluteE) of expressions having an
absolute TimeInterval that contains the TimePoint at which the snapshot was
taken (lines 7–10). We check this containment by comparing the time at which
the snapshot was taken with the start TimePoint of the unbounded TimeInterval.
Afterwards, we retrieve the list of PeriodicTime objects in each expression in list
absoluteE (lines 11–12). The implication at lines 13–14 states that if the current
role is r1, and user u1 is member of this role, the time at which the snapshot was
taken should match the starting time (derived from the nextStart association) of
the next period.

A policy on role enabling with a duration associated with an absolute time
expression restricts the activation of a role up to a specific duration, as in “enable
all roles on April 23, 2015 from 8:00 to 18:00; each role can be active for 3 hours
cumulatively”. This policy can be checked in OCL as an invariant of class Session:

1 context Session inv DurationAbsoluteBTIRoleEnab:

2 let u : RBACUtility = RBACUtility.allInstances()-> any(true),

3 rolesA: Set(Role) = self.enabledRoles-> select(r| r.getCurrentAbsoluteTE(u)

4 -> notEmpty() and r.getCurrentAbsoluteTE(u).hasDuration())

5 in rolesA -> forAll(r | r.getCurrentAbsoluteTE(u).duration.greaterThan
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6 (u.getCumulativeActiveDuration(r,self.user, r.getCurrentAbsoluteT(u)

7 .duration.timeUnit)))

In this OCL constraint, we select a subset (list rolesA) of the roles enabled in the
current session (lines 3–4). This subset includes the roles whose temporal context
for enabling contains an absolute time expression that matches the time at which
the snapshot was taken (checked by calling the operation getCurrentAbsoluteTE

of the class Role). For each role in rolesA, this absolute time expression should be
associated with a duration (checked by calling the operation hasDuration of the
class AbsoluteTE). Then, we check whether the duration of each role in the list is
less than the duration specified in its temporal context for enabling (lines 5–7). We
assume that the duration of the activation of each role for each user is recorded in a
database and made available through the operation getCumulativeActiveDuration

of class RBACUtility.

3.2.8.2 Location-based Policy

A policy on role assignment with a physical location forbids the role assignment
when the user is not located in a physical location belonging to the role spatial
context for assignment, as in “role r1 is assigned to user u1 only if the latter is in
location loc1”. We assume that loc1 is of type PhysicalLocation. This policy can
be checked in OCL as an invariant of class Role:

1 context Role inv physicalLocationRoleAssign:

2 let u1: User= User.allInstances()->select(u: User| u.idUser = ’u1’)->any(true),

3 u1Loc: Set(PhysicalLocation) = u1.userLocation.location -> select(l

4 |l.oclIsTypeOf(PhysicalLocation))->any(true),

5 spatialContext: Set(Location) = self.roleContextAssignment.location

6 -> flatten() -> asSet(),

7 locPh: Set(Location) = spatialContext -> select (loc

8 | loc.oclIsTypeOfe(PhysicalLocation))

9 in if self.idRole = ’r1’ and loc -> exists(l| l.contains(u1Loc)) then

10 self.users -> includes(u1)

11 else

12 self.users -> excludes(u1)

13 endif

In this OCL expression, we first select the instance corresponding to user u1 (line 2)
and the physical location associated to user u1 (lines 3–4). As mentioned in sec-
tion 3.1.1, we assume the user to have only one physical location. Then, we retrieve
the list spatialContext of locations at which the role should be assigned to user
u1 (lines 5–6) and compute, over the elements of this list, the list locPh of physical
locations (line 8). We check if the current role is r1 and if a physical location in
list locPh matches the user’s location, by calling the operation contains of class
Location. If this is the case, the list of roles assigned to user u1 should contain
role r1 (lines 9–10). If it is not the case, the role should not be included in this list
(line 12).
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A policy on role enabling with a logical location is checked in a similar way by
replacing the instances of PhysicalLocation with instances of LogicalLocation:

1 context Session inv logicalLocationRoleEnabling:

2 let u1Loc: Set(LogicalLocation) = self.userLocation.location -> select(l

3 |l.oclIsTypeOf(LogicalLocation))->any(true),

4 r1: Role = Role.allInstances() -> select(r |r.idRole = ’r1’)->any(true),

5 spatialContext: Set(Location) = r1.roleContextAssignment.location

6 -> flatten() -> asSet(),

7 loc: Set(Location) = spatialContext -> select (loc

8 | loc.oclIsTypeOfe(LogicalLocation))

9 in if loc -> exists(l| l.contains(u1Loc)) then

10 self.enabledRoles -> union(self.activeRoles) -> includes(r1)

11 else

12 self.enabledRoles -> union(self.activeRoles) -> excludes(r1)

A policy on role assignment with a relative location forbids the role assignment
when the user is not located in a relative location belonging to the role spatial
context for assignment, as in “enable role r1 only within 3 meters outside location
loc1”. Location loc1 can be either of type PhysicalLocation or LogicalLocation.
This policy is checked in OCL as an invariant of class Session:

1 context Session inv relativeLocationRoleEnabling:

2 let r1: Role = Role.allInstances()->select(r: Role| r.idRole= ’r1’)->any(true),

3 spatialContext: Set(RBACContext) = self.roleContextEnabling.location

4 -> flatten() -> asSet(),

5 loc: Set(Location) = spatialContext -> select(l |l.relativelocation

6 -> notEmpty()) -> flatten() -> asSet(),

7 relativeLoc: Set(Location) = loc -> collect(l| l.computeRelative

8 (l.relativelocation)) ->flatten()->asSet()

9 in if relativeLoc -> exists(l| self.user.userLocation.location

10 -> exists(pos| l.contains(pos))) then

11 self.enabledRoles -> includes(r1) or self.activeRoles -> includes(r1)

12 else

13 self.enabledRoles -> excludes(r1) and self.activeRoles -> excludes(r1)

14 endif

In this OCL invariant, we first select the instance corresponding to role r1 (line 2).
We retrieve list spatialContext of locations at which the role should be enabled
(lines 3–4) and compute the list loc of all locations associated with a relative
one (lines 5–6). For each location in list loc, we compute in relativeLoc the
location resulting from the call to operation computeRelative of class Location

(lines 7–8). This operation takes in input RelativeLocation and is applied to a
PhysicalLocation or LogicalLocation, hereafter called base location. It returns
the location resulting from the application to the base location of the parameters
(distance and direction) of the relative location. The resulting location is always of
type PhysicalLocation. We check if any of locations in relativeLoc matches the
user’s position (lines 9–10). If it is the case, the role r1 should be enabled or active
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(line 11). Otherwise, the role should be disabled and deactivated in the current
session (line 13).

In this section we have shown how the access decision for spatial and temporal
RBAC policies defined according to the GemRBAC+CTX model can be reduced
to the verification of OCL constraints of an instance of the GemRBAC+CTX
model. For simplicity reasons, we have considered temporal and spatial policies
in isolation. Nevertheless, we support also composite context-based policies, i.e.,
policies that contain both a temporal and a spatial context. These policies can
be checked in OCL by a logical conjunction of the individual OCL constraints
corresponding to the composite spatial and temporal policies.

3.3 Application to an Industrial Case Study

In the rest of this section we report on the application of our approach based on
GemRBAC+CTX for the modeling of a real application and of its RBAC policies.
More specifically, we show how the GemRBAC+CTX model can be instantiated
to represent some states corresponding to run-time changes of the system, and how
we can define RBAC policies using the OCL templates proposed in the previous
section.

Application Scenario

This application scenario has been developed by our partner HITEC Luxembourg.
The application is an integrated communication solution, to be used in case of an
emergency scenario (e.g., a natural large-scale disaster or a civil war situation), to
ease the process of assisting refugees and/or casualties in such situations.

The application allows different (humanitarian) organizations to participate
to various missions. During a mission, a user of the application can send alerts
to request treatment services for injured people. Each user belongs to at least
one organization and can be assigned to one or many missions. Each mission
is characterized by a name, a geofence, and a set of policies. The geofence is a
geographic boundary that defines where users assigned to a certain role should be
situated during the mission period.

The membership of a user to an organization or to a mission does not automat-
ically grant the access to the corresponding resources. Following the principles of
RBAC, the access is allowed (or denied) according to the user’s role. In the rest
of this section, we present a small excerpt of the application and consider only a
subset of the actual RBAC entities. Moreover, the description has been sanitized
for confidentiality reasons. We consider the mission Philippine, which is situated
within the geofence labeled AbayZone1. We refer to the following RBAC entities:

• users = {Joe, Kim, James, Alice, Mallory};
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• roles = {missionAdmin, missionAgency, missionMember, securityOfficer,
trainee};

• permissions = {manageRefugee, manageDevice, sendAlert, noBandWith-
Limit};

• operations = {create, read, update, delete};

• objects = {refugee, device, alert};

• spatial context = {AbayZone1};

• temporal context = {freeTime}.
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Figure 3.4: Initial system state

Figure 3.4 depicts an instance of the GemRBAC+CTX model representing the
initial system state for the mission Philippine. Each role is assigned to a set of
permissions. A permission is an abstraction of a set objects and a set of oper-
ations. Notice that we only consider one object assigned to each permission for
the sake of readability. For instance, the permission manageDevice corresponds to
the execution of the the operations create, read, update, and delete on the object
device. All roles, except role missionMember are given the permission sendAlert,
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to send an alert. The role missionAdmin can manage all the resources; permis-
sions of the form manage* include all the operations defined in the system. Role
trainee is given the permissions of the form read* for the objects of type device and
refugee. Role securityOfficer is a subrole of role agencyAdmin; hence, it inherits
all the permission of its senior. Roles are assigned to users as follows: all users
are assigned to role missionMember, Joe is assigned to role missionAdmin, Kim is
assigned to role agencyAdmin, James is assigned to role securityOfficer, and Mal-
lory is assigned to role trainee. In addition to the user-role and role-permission
assignments shown in figure 3.4, some additional policies can further restrict the
user access. The following policies are defined for the system:

PL1: permission noBandwidthLimit is assigned to role missionMember only
during freeTime that ranges from 00.00 to 06.00 and from 20.00 to 23.59 during
weekdays and all-day during the weekend. This policy is typically used to ensure a
fair use of the available bandwidth.

PL2: role agencyAdmin is enabled only outside Zone1. This policy is typically
used to ensure that administrative tasks are performed, for security reasons, outside
the area of the mission.

PL3: role missionAdmin is enabled only inside Zone1. This policy is typically
used for guaranteeing that mission management is done locally.

PL4: role trainee is enabled only if role securityOfficer is active. This policy
is typically used to deal with the supervision of the trainee activities.

PL5: role securityOfficer can be delegated as a strong transfer to any user
assigned to role missionAdmin. We recall that right after a delegation of type
strong transfer, the delegator is no longer assigned to the delegated role and all its
juniors.

Since no user is connected to the system, no session is created for the ini-
tial system state (figure 3.4). According to policy PL1, the temporal context
for assignment of permission noBandwidthLimit is freeTime. It is modeled as a
TimeExpression composed of four RelativeTimeIntervals. Interval weekend has a
start (Saturday) and end (Sunday) RelativeTimePoint of type DayOfWeek. Inter-
val weekDays has a start (Monday) and end (Friday) RelativeTimePoint of type
DayOfWeek. Interval weekDays overlays hours1 and hours2: these intervals are
of type HourOfDay. Let us consider the case in which one wants to check pol-
icy PL1 on this instance. This policy can be checked using the OCL invariant
DayOfWeekHourPermAssign introduced on page 36. The if condition at line 18 is
false because the time at which the snapshot was taken is not included in the
temporal context for enabling permission noBandwidthLimit. Hence, we follow
the else branch, calling operation excludes at line 21. Since role missionMem-
ber is not assigned to permission noBandwidthLimit, policy PL1 is not violated.
According to policy PL2, the spatial context for enabling role AgencyAdmin is mod-
eled as a LogicalLocation (LLAgencyAdmin) associated with a RelativeLocation

(rloc1 ) that contains a QualitativeDirection (inside). The spatial context for
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Figure 3.5: A portion of the system state after the delegation of role securityOfficer

enabling role MissionAdmin, indicated in policy PL3, is modeled in a similar way
(see LLMissionAdmin, rloc2 ). The snapshot in Figure 3.4 includes an instance of
RBACUtility that captures the TimePoint and the DayWeek at which it was taken
(Monday, May 4, 2015 at 12:15:23 ).

In the rest of this section, we consider three run-time changes of the system.
Each change is represented by a snapshot that captures the system state. On each
snapshot we check whether the policies defined above are satisfied or violated.

First, let us consider the case in which user James gets a new job. Since he
cannot participate to the mission anymore, he has to delegate, as a transfer, his
role securityOfficer to Joe. To perform the delegation, he has to first activate the
role to delegate. Figure 3.5 depicts, as an object diagram, an instance of the Gem-
RBAC+CTX model that corresponds to a portion of the system state right after
this delegation. Since the delegation of James to Joe is of type transfer, James is
no longer member of role securityOfficer ; the latter is assigned to Joe via a role

delegation association. Notice that the object officerDeleg of type Delegation,
having the attribute isTransfer set to strong, has been created. It keeps track
of the delegated role (securityOfficer), the delegator user (James), the role of the
delegator at the time of the delegation (securityOfficer), the delegated role (secu-
rityOfficer), the delegate user (Joe), and the role of the delegate (missionAdmin).
Policy PL5 states that right after a delegation of type strong transfer, the delega-
tor is no longer assigned to the delegated role and all its juniors. This policy can
be expressed using the OCL invariant StrongTransfer provided on page 32. As
James is no longer a member of role securityOfficer, one can check that constraint
policy PL5 is satisfied.

When users Joe and Kim connect to the system, a new session is created for
each of them, as shown in figure 3.6, with objects sesJoe and sesKim. In session
sesJoe, role missionAdmin is active and roles missionMember and securityOfficier
are enabled for user Joe. In session sesKim, roles missionMember and agencyAdmin

are enabled for user Kim. This model instance also captures the location of the two
users at the time of their connection. Each of these locations is represented with
an association between each User and his RBACContext, which contains an object
of type Point. Objects pK and pJ refers to the position of users Kim and Joe. We
assume that only Joe is located in the defined zone Zone1. We now consider the
case in which one wants to check policy PL2 on this model instance. This policy
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Figure 3.6: A portion of the system state after Joe and Kim’s connections

can be checked on both Sessions, sesKim and sesJoe, using the OCL invariant
relativeLocationRoleEnabling (introduced on page 40) parametrized with role
agencyAdmin. For session sesKim, the if condition at lines 9–10 is true because
Kim, according to the assumption made above, is outside Zone1, meaning that
her position (object pK) is contained in the location LLAgencyAdmin associated with
the spatial context for enabling role agencyAdmin (object scAgencyAdmin). Hence,
we follow the then branch, calling the operation includes at line 11. Since role
agencyAdmin is enabled in the session, this operation returns true, meaning that
policy PL2 is not violated for Kim. Policy PL3 is checked in a similar way on
sessions sesKim and sesJoe, using the same OCL invariant parametrized with role
missionAdmin. This policy is not violated since role missionAdmin is not enabled
for Kim (i.e., there is no association between objects sesKim and missionAdmin) and
is active for Joe (i.e., there is an association between sesJoe and missionAdmin).

We now consider yet another change of the system corresponding to the instant
when user Mallory is connected. A new session sesMallory is created for him.
Only role missionMember is enabled in sesMallory. The dependency policy PL4
states that role trainee is enabled if role securityOfficer is active. Since role securi-
tyOfficer is not active, Mallory cannot activate his role: as shown in figure 3.7, role
trainee is not enabled in session sesMallory. This constraint can be expressed using
the OCL invariant RoleActivationDependency provided on page 33, by replacing
the parameter r with role trainee, and role r1 with role securityOfficer.

In this case, let us assume that Mallory, while activating his role missionMem-
ber, finds an injured person who needs medical treatment services. She sends an
alert (permission sendAlert) to request help for the casualty. As shown in figure
3.8, a new object of the class History has been created to record the details of the
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Figure 3.7: A portion of the system state after Mallory connection

operation: the user (Mallory), the user’s position (pM), the current time CT, the
operation (create) performed on the object alert, the corresponding permission
sendAlert, and the activated role missionMember.

In the application of the proposed approach to a real scenario, we mainly fo-
cused on assessing whether all policies required by the application could be ex-
pressed with our approach. The new model has allowed the security engineers
of our partner to define 19 new types of RBAC contextual policies. With these
new policies, engineers can now tune the definition of fine-grained (from the point
of view of context) RBAC policies. This is a major improvement over the previ-
ous solution, which granted permissions under any context, for the lack of better
specification methods. Moreover, since the GemRBAC+CTX defines structural
constraints among entities, it will prevent end-users to define RBAC policies that
are not well-formed.

Overall, the application of the modeling approach supported by the GemR-
BAC+CTX model has been warmly welcome by the security engineers of HITEC.
Nevertheless, the engineers also reported some drawbacks of our current approach.
In particular, they remarked that defining RBAC policies as OCL constraints on the
GemRBAC+CTX class model was sometimes cumbersome, especially for com-
plex policies (with large corresponding models). To address this limitation, we
have developed a domain-specific language (DSL), defined on top of the GemR-
BAC+CTX model and which will be presented in chapter 4, to allow the definition
of policies at a higher-level of abstraction, using a syntax close to natural language.

3.4 Summary

In this chapter we have proposed an extension of the original RBAC conceptual
model, called GemRBAC+CTX, which includes all the entities required to ex-
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Figure 3.8: A portion of the System state after sending an alert

press the various types of RBAC policies with a specific emphasis on context-based
policies. These RBAC policies have been selected based on an analysis and clas-
sification of the various RBAC extensions proposed in the literature. The various
RBAC policies have been formalized as OCL constraints on the UML representa-
tion of the GemRBAC+CTX model. Our goal is to enable the specification of
policies that make use of the concepts previously proposed in the literature, using
a unified model (GemRBAC+CTX) and a standardized language (OCL) for their
definition. With respect to the state of the art (presented in section 5.1 of chap-
ter 5), not only we consider all types of RBAC policies proposed in the literature,
but we also use a common model and notation to define them, improving their
understanding.

In terms of application, from the point of view of the definition of RBAC poli-
cies, we believe that this work can represent a one-stop source for security engineers,
who can access the taxonomy of the various types of RBAC constraints, determine
their exact meaning by referring to their formalization as OCL constraints on the
GemRBAC+CTX model, select the constraints that suit the needs of their orga-
nization, and operationalize them based on readily-available OCL checkers.

We also maintain that our framework can be a basis on which to further develop
a model-driven approach for the verification of RBAC policies. Verification should
be intended here in its broadest scope, including design-time verification (e.g.,
consistency checking of policies [43, 44]) and run-time enforcement (e.g., allowing
access to resources only if an instance of the GemRBAC+CTX model satisfies the
constraints associated with it as will be illustrated in chapter 6). In particular, for
the latter, we assume that the run-time infrastructure collects snapshots represent-
ing the state of the system (from the point of view of RBAC) as instances of the

47



3.4 Summary

GemRBAC+CTX model. RBAC policies can be defined as OCL constraints that
the instances of the GemRBAC+CTX model should satisfy; these constraints
are based on the OCL templates proposed in section 3.2. An OCL checker (such
as Eclipse OCL [45]) can be used to check if a model instance satisfies the OCL
constraints associated with it, resulting in the enforcement of the corresponding
access control policies.
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Chapter 4

Policy Specification Language

As mentioned in chapter 1, several RBAC models have been proposed to represent
different types of RBAC policies. However, the expressiveness of these models has
not been matched by specification languages for RBAC policies. Indeed, existing
policy specification languages do not support all the types of RBAC policies de-
fined in the literature. As part of this thesis, we aim to bridge the gap between
highly-expressive RBAC models and policy specification languages, by presenting
GemRBAC-DSL, a new specification language designed on top of the GemR-
BAC+CTX model presented in chapter 3. The language sports a syntax close to
natural language, to encourage its adoption among practitioners. We also define
semantic checks to detect conflicts and inconsistencies among the policies written
in a GemRBAC-DSL specification. We show how the semantics of GemRBAC-
DSL can be expressed in terms of the formalization of RBAC policies (presented in
chapter 3) as OCL (Object Constraint Language) constraints on the correspond-
ing RBAC conceptual model. This formalization paves the way to define a model-
driven approach for the enforcement of policies written in GemRBAC-DSL.

This chapter makes the following contributions:
1. the GemRBAC-DSL specification language for RBAC policies;
2. the definition of the semantic checks for a GemRBAC-DSL policy specifica-

tion;
3. a publicly-available implementation of an editor to write policies in GemRBAC-

DSL and check for potential conflicts and inconsistencies among them.
The rest of the chapter is organized as follows. Section 4.1 illustrates a mo-

tivating example. Section 4.2 presents the language, illustrating the syntax and
providing examples for each type of policy. Section 4.3 defines the semantic checks
for policies expressed in GemRBAC-DSL. Section 4.4 provides a brief overview of
the semantics of the language. Section 4.5 discusses the design trade-offs and the
limitations of GemRBAC-DSL, as well as its adoption by our industrial partner.
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4.1 Motivating example

In this section we illustrate an example of RBAC policy specifications that moti-
vates our work. The example represents a subset of a real-world case study, defined
in collaboration with our industrial partner, HITEC Luxembourg. The case study
deals with the specification of the RBAC policies for a Web application that pro-
vides information related to humanitarian missions, ranging from satellite images to
highly-confidential data about refugees and casualties. For confidentiality reasons
we consider a small, sanitized subset of the system, but provide a representative
list of policies that covers exhaustively all the types of RBAC policies used in the
policy specifications of the case study.

We consider a humanitarian mission taking place from February 12, 2016 to
June 8, 2016 in a geographical area symbolically known as “Zone1 ”, delimited by
four segments with coordinates (longitude and latitude in decimal degrees, ele-
vation in meters): (15:24:200)–(20:27:200), (20:27:200)–(17:27:200), (17:27:200)–
(15:27:200), (15:27:200)–(15:24:200). The mission defines five roles (admin, assis-
tant, trainee, participant, analyst), five permissions (addCasualty, modifyCasualty,
deleteCasualty, analyseSatellitePhoto, saveSatellitePhoto), four operations (create,
read, update, delete). The access control policies for this mission are:
PL1: To acquire role trainee, a user must be assigned to role participant.
PL2: Role assistant cannot be assigned to more than three users.
PL3: Role trainee is enabled only if role admin is active. The latter cannot be

deactivated if the role trainee is still active.
PL4: If a user acquires role assistant, she will also acquire all its junior roles.
PL5: A user can acquire either role assistant or trainee.
PL6: A user can activate roles assistant and admin at the same time, as long as

she does not perform all the operations (create, read, update, delete) on the
same object (of type “casualty record”).

PL7: The operations allowed by permissions addCasualty, modifyCasualty, and
deleteCasualty should be performed by users having the same role.

PL8: In case a user assigned to role admin is on leave, she has to delegate all
the permissions associated with her role to another user who is assigned to
role assistant. The delegation lasts for two weeks; during this period the
delegator is still allowed to execute the permissions associated with the role
she has delegated. Moreover, the delegated role can be further delegated
(by a delegate), with a maximum delegation depth of 2.

PL9: The delegation regulated by policy PL8 can be revoked by any user assigned
to role admin. The revocation will not affect the (further) delegations of role
admin possibly performed by delegated users. Moreover, the revocation will
only remove the affected users from the delegated role admin, and will not
impact the other roles possibly acquired through a role hierarchy (of the
delegated role).
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PL10: Role analyst is a part-time job; it can be active for a maximum duration
of 4 hours per day.

PL11: Role participant is enabled for the entire duration of the mission.
PL12: Permission addCasualty is assigned to role trainee only during weekdays

from 8:00 to 17:00.
PL13: Role admin is enabled only in zone Zone1.
PL14: Role trainee is enabled at 100 meters from the boundary inside Zone1.

The policies above show that defining the access control requirements of our
example requires to deal with several types of policies (see taxonomy in chapter 2):
prerequisite (PL1), cardinality (PL2), precedence (PL3), role hierarchy (PL4), SoD
(PL5, PL6), BoD (PL7), delegation (PL8), revocation (PL9), contextual (PL10–
PL12). To express these policies security engineers need a policy specification
language expressive enough to support all of them.

4.2 The GemRBAC-DSL language

The GemRBAC-DSL policy specification language has been designed as a domain-
specific language built on top of the GemRBAC+CTX model. The choice of the
underlying model for the language has been dictated by the need to support a large
variety of RBAC policies, like the ones used for the specification of our industrial
case study (see Section 4.1). Hence, the language inherits the expressiveness of the
GemRBAC+CTX model (see chapter 3).

The main goal during the design of the language has been to encourage its use
among practitioners. Indeed, the language captures the main RBAC concepts that
security analysts are familiar with and allows for their specification using a syntax
close to natural language. Furthermore, the language design process has incorpo-
rated the feedback provided by the security analysts of our industrial partner, who
have commented on the expressiveness and the clarity of the language. At the time
of writing, the language is being introduced into the security development lifecycle
of our partner, to support the top-down definition of access control policies and
enforcement mechanisms.

4.2.1 Syntax

The syntax of GemRBAC-DSL is shown in figure 4.1, using the Extended Backus-
Naur Form (EBNF) notation: non-terminal symbols are enclosed in angle brackets;
terminal symbols are enclosed in single quotes; (derivation) rules are denoted with
the ::= symbol; alternatives within a rule are indicated using a vertical bar; a star
stands for zero or more occurrences of an element; a plus stands for one or more
occurrences of an element; square brackets denote optional elements.
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〈RBAC-definition〉 ::= 〈preamble〉 〈policies〉
〈preamble〉 ::= 〈users〉 〈roles〉 〈permissions〉 〈operations〉 〈role-hierarchy〉
〈permission-hierarchy〉 〈geofences〉

〈users〉 ::= ‘users:’ 〈user〉 (‘,’ 〈user〉)* ‘;’
〈roles〉 ::= ‘roles:’ 〈role〉 (‘,’ 〈role〉)* ‘;’
〈permissions〉 ::= ‘permissions:’
〈permission〉 (‘,’ 〈permission〉)* ‘;’

〈operations〉 ::= ‘operations:’
〈operation〉 (‘,’ 〈operation〉)* ‘;’

〈id〉 ::= (‘a’-‘z’ | ‘A’-‘Z’ | ‘0’-‘9’)+
〈user〉 ::= 〈id〉
〈role〉 ::= 〈id〉
〈permission〉 ::= 〈id〉
〈operation〉 ::= 〈id〉
〈role-hierarchy〉 ::= ‘role-hierarchy:’

(〈rHierarchy〉 (‘,’ 〈rHierarchy〉)* | ‘none’) ‘;’
〈permission-hierarchy〉 ::= ‘permission-hierarchy:’

(〈pHierarchy〉 (‘,’ 〈pHierarchy〉)* | ‘none’) ‘;’
〈rHierarchy〉 ::= 〈role〉 ‘: {’ 〈role〉 (‘,’ 〈role〉)* ‘}’
〈pHierarchy〉 ::= 〈permission〉

‘: {’ 〈permission〉 (‘,’ 〈permission〉)* ‘}’
〈geofence〉 ::= ‘geofences:’ (〈geofence〉 (‘,’ 〈geofence〉)*

| ‘none’) ‘;’
〈geofence〉 ::= 〈id〉
〈policies〉 ::= ‘policies:’ (〈policy〉‘;’)+
〈policy〉 ::= 〈id〉 ‘:’ (〈Prerequisite〉 | 〈Cardinality〉

| 〈PrecEnabling〉 | 〈Hierarchy〉 | 〈SSoD〉 | 〈DSoD〉
| 〈BoD〉 | 〈Delegation〉 | 〈Revocation〉 | 〈ContextPolicy〉)

Figure 4.1: Grammar of GemRBAC-DSL

A GemRBAC-DSL policy specification (captured by the start symbol
〈RBAC-definition〉) contains a 〈preamble〉 and a list of 〈policies〉. The 〈preamble〉
contains the declaration of the main entities that will be used in the rest of the spec-
ification1: the list of users 〈users〉, the list of roles 〈roles〉, the list of permissions
〈permissions〉, and the list of operations 〈operations〉. The 〈preamble〉 contains also
the list 〈role-hierarchy〉 of role hierarchy relations, and the list 〈permission-hierarchy〉

1Notice that the assignments of users to roles, of permissions to roles, and of operations
to permissions are not specified with GemRBAC-DSL. We assume that these assignments are
defined in the RBAC system on which the policies are going to be enforced.
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of permission hierarchy relations. Within these lists, each hierarchy relation
(〈rHierarchy〉 for role hierarchy and 〈pHierarchy〉 for permission hierarchy) declares
the parent (role or permission) followed by the list of its junior (roles or permis-
sions, respectively). The absence of role (or permission) hierarchies is explicitly
denoted with the keyword ‘none’. The 〈preamble〉 ends with the list 〈geofences〉 of
logical locations, i.e., symbolic abstractions that refer to real physical locations(see
section 3.1.3 of chapter 3). All the lists used in the 〈preamble〉 are comma-separated
and contain alphanumeric identifiers. Finally, the list of policies 〈policies〉 contains
the actual policy specifications, where each policy is composed by an identifier and
by its body. The following subsections illustrate each type of policy supported by
GemRBAC-DSL; for each policy, we include the syntax, its explanation, and an
example of specification based on the policies defined in section 4.1.

4.2.2 Prerequisite policy

The syntax of a prerequisite policy is defined as:

(1)〈Prerequisite〉 := 〈PrereqRole〉 | 〈PrereqPermission〉
(2)〈PrereqRole〉 ::= ‘assign-role’ 〈role1 〉 ‘prerequisite’ 〈role2 〉
(3)〈PrereqPermission〉 ::= ‘assign-permission’ 〈permission1 〉 ‘prerequisite’

〈permission2 〉

The syntax uses keywords for defining a prerequisite policy either at the role (key-
word ‘assign-role’ in rule 2) or at permission level (keyword ‘assign-permission’
in rule 3). In rule 2, 〈role2 〉 corresponds to the precondition for the assignment
of 〈role1 〉. Similarly, in rule 3, 〈permission2 〉 corresponds to the precondition
for the assignment of 〈permission1 〉. For example, the prerequisite policy on role
assignment PL1 is expressed in GemRBAC-DSL as:

PL1: assign-role trainee prerequisite participant;

4.2.3 Cardinality policy

The syntax of a cardinality policy is defined as:

(1)〈Cardinality〉 ::= 〈CardActivation〉 | 〈CardUser〉 | 〈CardPermission〉
| 〈CardRoleToUser〉 | 〈CardRoleToPermission〉

(2)〈CardActivation〉 ::= ‘maxActiveRoles =’ 〈integer〉
(3)〈CardUser〉 ::= ‘maxUsers =’ 〈integer〉 [‘only-for-role’ 〈role〉]
(4)〈CardPermission〉 ::= ‘maxPermissions =’ 〈integer〉 [‘only-for-role’ 〈role〉]
(5)〈CardRoleToUser〉 ::= ‘maxRoles-User =’ 〈integer〉 [‘only-for-user’ 〈user〉]
(6)〈CardRoleToPermission〉 ::= ‘maxRoles-Permission =’ 〈integer〉

[‘only-for-permission’ 〈Permission〉]
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GemRBAC-DSL supports five types of cardinality policies: maximum number of
active roles within a session (rule 2), maximum number of users assigned to a role
(rule 3), maximum number of permissions assigned to a role (rule 4), maximum
number of roles assigned to a user (rule 5), maximum number of roles assigned to
a permission (rule 6). In rules 2–6, 〈integer〉 represents the cardinality bound. In
rules 3–6, if the optional element is omitted, it means that the bound will apply,
respectively, to all roles (rules 3–4), all users (rule 5), all permissions (rule 6).
For example, the cardinality policy on user-to-role assignment PL2 is expressed in
GemRBAC-DSL as:
PL2: maxUsers = 3 only-for-role assistant;

4.2.4 Precedence and dependency policies

The syntax of a precedence policy is defined as:

(1)〈PrecEnabling〉 ::= ‘enable’ 〈role1 〉 ‘ if active’ 〈role2 〉
[‘,’ 〈timeShift〉] [‘deactivation-dependency’]

(2)〈timeShift〉 := ‘after’ 〈integer〉 〈timeUnit〉
(3)〈timeUnit〉 ::= ‘second’ | ‘minute’ | ‘hour’ | ‘day’ | ‘week’ | ‘month’ | ‘year’

In rule 1, 〈role2 〉 denotes the role whose activation has to precede the enabling of
the role denoted by 〈role1 〉. An optional 〈timeShift〉 can be specified to define the
amount of time that has to pass between the role enabling and the role activation
events (rules 2–3). The optional keyword ‘deactivation-dependency’ is used to
express a dependency policy. For example, the precedence and dependency policy
PL3 is expressed in GemRBAC-DSL as:
PL3: enable trainee if active admin deactivation-dependency;

4.2.5 Role hierarchy policy

The syntax of an hierarchy policy is defined as:

(1)〈Hierarchy〉 ::= ‘trigger-’ (〈RoleHierarchy〉 | 〈PermissionHierarchy〉)
(2)〈RoleHierarchy〉 ::= ‘role-hierarchy’ 〈role〉
(3)〈PermissionHierarchy〉 ::= ‘permission-hierarchy’ 〈permission〉

The syntax uses two different keywords for distinguishing between role hierarchy
(rule 2) and permission hierarchy (rule 3). Notice that while the preamble of a
GemRBAC-DSL specification declares the role and permission hierarchy relations
for the system, a security analyst has to explicitly define a role hierarchy policy
(for a role or permission) to put the hierarchy relation(s) into effect. For example,
the role hierarchy policy PL4 can be expressed as:
PL4: trigger-role-hierarchy assistant;

54



4.2 The GemRBAC-DSL language

4.2.6 Separation of duty policy

The language supports the various types of separation of duty policies introduced
in section 2.2.5 of chapter 2.

4.2.6.1 Static Separation of duty (SSoD)

The syntax of an SSoD policy syntax is defined as:

(1)〈SSoD〉 ::= 〈SSoDCR〉 | 〈SSoDCU 〉 | 〈SSoDCP〉
(2)〈SSoDCR〉 ::= ‘conflicting-roles-assignment’ 〈role〉 (‘,’ 〈role〉)+

[‘on permission’ 〈permission〉]
(3)〈SSoDCU 〉 ::= ‘conflicting-users-assignment’ 〈user〉

(‘,’ 〈user〉)+ [‘on role’ 〈role〉]
(4)〈SSoDCP〉 ::= ‘conflicting-roles-assignment’

〈permission〉 (‘,’ 〈permission〉)+ [‘on role’ 〈role〉]

SSoD policies can define conflicting roles (rule 2), conflicting users (rule 3), and
conflicting permissions (rule 4). Rules 2–4 have an optional block that indicates
that the SSoD policy is applied only when the roles are assigned to a specific
permission (rule 2) and when the users (rule 3) or the permissions (rule 4) are
assigned to a specific role. For example, the SSoD policy on conflicting roles PL5
is expressed in GemRBAC-DSL as:

PL5: conflicting-roles-assignment assistant, trainee;

4.2.6.2 Dynamic Separation of duty (DSoD)

GemRBAC-DSL supports the specification of four types of DSoD: simple, object-
based, operational-based, and history-based DSoD. The syntax for DSoD policies
is similar to the one for SSoD policies but uses different keywords:

(1)〈DSoD〉 ::= 〈DSoDCU 〉 | 〈DSoDCP〉 | 〈DSoDCR〉
(2)〈DSoDCU 〉 ::= ‘conflicting-users-activation’ 〈user〉 (‘,’ 〈user〉)+

[‘on role’ 〈role〉]
(3)〈DSoDCP〉 ::= ‘conflicting-permissions-activation’

〈permission〉 (‘,’ 〈permission〉)+ [‘on role’ 〈role〉]
(4)〈DSoDCR〉 ::= ‘conflicting-roles-activation’ 〈role〉 (‘,’ 〈role〉)+

[‘depending-on-business-task-list’ 〈operation〉 (‘,’ 〈operation〉)+]
[‘on-same-object’]

The optional keyword ‘on-same-object’ in rule 4 is used to express an object-
based DSoD policy. Similarly, the keyword ‘depending-on-business-task-list’
followed by a list of 〈operation〉s is used to specify an operational-based DSoD. A
history-based DSoD is defined by combining these two keywords. For example, the
history-based DSoD policy PL6 is expressed in GemRBAC-DSL as:
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PL6: conflicting-roles-activation assistant, admin

depending-on-business-task-list create,read,update,delete on-same-object;

4.2.7 Binding of duty policy

The syntax of a BoD policy is defined as:

〈BoD〉 ::= ‘bounded-permissions’ 〈permission〉 (‘,’ 〈permission〉)+
(‘role-BoD’ | ‘subject-BoD’)

The syntax distinguishes between a role- or a subject-based policy with the two
keywords ‘role-BoD’ and ‘subject-BoD’. The bounded permissions are specified as
a list of 〈permission〉s. For instance, the role-based BoD policy PL7 is expressed
in GemRBAC-DSL as:

PL7: bounded-permissions addCasualty, modifyCasualty, deleteCasualty role-BoD;

4.2.8 Delegation policy

The language supports the various types of delegation introduced in section 2.2.7.1
of chapter 2. The syntax of a delegation policy is defined below:

(1)〈Delegation〉 ::= (‘user ’〈user〉 | ‘role ’〈role〉) ‘can-delegate’ 〈role〉
(‘to users’ 〈user〉 (‘,’ 〈user〉)* | ‘to roles’〈role〉 (‘,’ 〈role〉)*) ‘as’
(‘total’ | ‘partial with permissions (’〈delegated-permissions〉‘)’) ‘,’
(‘grant’ [〈duration〉] (‘single’ | ‘multi-step’ 〈integer〉)
|‘transfer’ (‘strong’|‘weak-static’|‘weak-dynamic’))

(2)〈delegated-permissions〉 ::= 〈permission〉 (‘,’ 〈permission〉)*
(3)〈duration〉 ::= ‘for’ 〈integer〉 〈timeUnit〉

In the syntax, keywords ‘user’ and ‘role’ are used to denote the delegator. The
keyword ‘can-delegate’ denotes the 〈role〉 being delegated. The list of delegate
〈user〉s is denoted by the keyword ‘to users’; similarly, the keyword ‘to roles’
denotes the list of delegate 〈role〉s. If the delegation is partial, the keyword
‘partial-with-permissions’ denotes the list of 〈permission〉s being delegated. In
the case of a multi-step delegation, the syntax requires to indicate the 〈integer〉
corresponding to the maximum number of delegation steps allowed. If the dele-
gation is of type grant, a duration (denoted with the keyword ‘for’, rule 3) can
be optionally specified to indicate the amount of time after which the delegation
is automatically revoked. For example, the delegation policy PL8 defines a dele-
gation that is multi-step (with a maximum delegation depth of 2), total (because
all the permissions of the delegated role have to be delegated), of type grant (be-
cause the delegator is still allowed to execute the permissions associated with the
delegated role), with a duration of at most two weeks. This policy is expressed in
GemRBAC-DSL as:
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PL8: role admin can-delegate admin to roles assistant as total, grant for 2

week, multistep 2;

4.2.9 Revocation policy

The language supports the various types of revocation introduced in section 2.2.7.2
of chapter 2. The syntax of a revocation policy is defined as:

〈Revocation〉 ::= (‘user’ 〈user〉 | ‘role’ 〈role〉 | ‘delegator’)
‘can-revoke-delegation’ 〈id〉
(‘from users’ 〈user〉 (‘,’ 〈user〉)* | ‘from roles’ 〈role〉 (‘,’ 〈role〉)*)) ‘as’
(‘strong’ | ‘weak’) ‘,’ (‘nonCascading’ | ‘cascading’)

The syntax allows for specifying who can revoke a certain delegation; the keywords
‘user’ and ‘role’ denote, respectively, an explicit user or role, while the keyword
‘delegator’ implicitly refers to the user or role that originally performed the del-
egation. The delegation that is being revoked is referenced through its identifier,
preceded by the keyword ‘can-revoke-delegation’. The keyword ‘from users’ de-
notes the list of 〈users〉 from which the delegation is revoked; similarly, the keyword
‘from roles’ denotes the list of 〈roles〉 from which the delegation will be revoked.
The additional keywords that come after the keyword ‘as’ indicate the type of
revocation. For example, the revocation policy PL9 is defined as weak (because it
will not impact the other roles possibly acquired through a role hierarchy) and as
non-cascading (because it will not affect the further delegations performed along
a delegation chain). This policy is expressed in GemRBAC-DSL as:

PL9: role admin can-revoke-delegation PL8 from roles assistant as weak,

nonCascading;

4.2.10 Contextual policy

The syntax for a contextual policy is defined as follows:

(1)〈ContextPolicy〉 ::= 〈RoleContextPolicy〉 | 〈PermContextPolicy〉
(2)〈RoleContextPolicy〉 ::= ‘role-context’ 〈role〉

(〈activeDuration〉
| ( (‘assign’ | ‘unassign’) [‘to user’ 〈user〉] 〈context〉
| (‘enable’ | ‘disable’) 〈context〉
[‘,’ (‘assign’ | ‘unassign’) [‘to user’ 〈user〉] 〈context〉 ])
[‘,’ 〈activeDuration〉]))

(3)〈activeDuration〉 :: = ‘activation’
(‘duration’ 〈integer〉 〈timeUnit〉
| ‘ cumulative duration = ’ 〈integer〉 〈timeUnit〉 ‘,’
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‘reset =’ (‘none’ | 〈periodicTime〉) ‘,’
‘duration-per-session =’ (‘unlimited’ | 〈integer〉 〈timeUnit〉))

(4)〈periodicTime〉 ::= ‘every’ [〈integer〉] 〈timeUnit〉
(5)〈PermContextPolicy〉 ::= ‘permission-context’ 〈permission〉

((‘assign’ | ‘unassign’) [‘to role’ 〈role〉] 〈context〉
| (‘enable’ | ‘disable’) 〈context〉
[‘,’ (‘assign’ | ‘unassign’) [‘to role’ 〈role〉] 〈context〉])

(6)〈context〉 ::= ‘@’ (〈temporalContext〉 | 〈spatialContext〉
| 〈SpatioTemporalContext〉 (‘&&’ 〈SpatioTemporalContext〉)*)

(7)〈SpatioTemporalContext〉 ::= 〈spatialContext〉 〈temporalContext〉

A contextual policy can be specified either at the role (rule 2) or at the permission
level (rule 5). At the role level, a contextual policy can define a) a bound for the
sum of activation durations of a given role and/or, b) the context of role assignment
and/or role enabling. An activation duration represents the amount of time during
which a role is active. As shown in rule 3, an activation duration can be speci-
fied for a single session (denoted with keyword ‘duration’) or for multiple sessions
(denoted with keyword ‘cumulative duration =’). In the second case, a security
analyst should specify a reset period (line 3 of rule 3) and a bound for the max-
imum duration per single session (line 4 of rule 3). The reset period corresponds
to a specific period of time after which the cumulative duration is reinitialized to
zero. This period is represented by a periodicity expression as indicated in rule 4.
The keyword ‘none’ is used to indicate the absence of a reset period (rule 3). Sim-
ilarly, the keyword ‘unlimited’ is used to indicate the absence of a bound for the
activation duration per session (rule 3). In addition to the activation duration, a
security analyst can specify if a role should be assigned/unassigned (possibly to a
specific user, as denoted by the optional keyword ‘to user’), or if a role should be
enabled/disabled in a specific 〈context〉(rule 2). Notice that the same policy can
restrict both role enabling/disabling and assignment/unassignment as indicated
by the optional part in line 4 of rule 2. Rule 5 is structured similarly to rule 2
(lines 1–4) but it is used for specifying the enabling/disabling and/or assignmen-
t/unassignment of permissions. As shown in rule 6, GemRBAC-DSL supports
temporal, spatial and spatio-temporal context specifications preceded by the ‘@’
symbol. Temporal and spatial policies will be illustrated in the next subsections,
using the concepts of the GemRBAC+CTX model. Since spatio-temporal speci-
fications can be seen as the conjunction of a temporal policy and a spatial one, we
will omit their description.

An example of a contextual policy on role activation with a reset period is
PL10, which can be expressed in GemRBAC-DSL as:

PL10: role-context analyst activation cumulative duration = 4 hour, reset =

every day, duration-per-session = unlimited;
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4.2.10.1 Policies with temporal context

The syntax for defining a temporal context is:

〈temporal〉 ::= ‘time’ (〈absoluteTime〉 | 〈relativeTime〉
| (〈compositeTime〉 (‘&’ 〈compositeTime〉)*)

〈compositeTime〉 ::= 〈absoluteTime〉 〈relativeTime〉

We recall (chapter 3) that an absolute time expression refers to a concrete point or
interval in the timeline; conversely, a relative time expression cannot be mapped
directly to a concrete point or interval in the timeline. Furthermore, absolute time
and relative expressions can also be composed. The syntax of an absolute time
expression is:

(1)〈absoluteTime〉 ::=
((〈date〉 [‘at’ 〈hour〉] | ‘(’ 〈date〉 (‘,’〈date〉)+‘)’)
|(‘starting from’ 〈date〉 [‘at’ 〈hour〉]
| ‘[’〈date〉‘,’〈date〉‘]’
| ‘(’ ‘[’〈date〉‘,’〈date〉‘]’ (‘, [’〈date〉‘,’〈date〉‘]’)+‘)’)
[〈periodicTime〉] )

(2)〈periodicTime〉 ::= ‘every’ [〈integer〉] 〈timeUnit〉
(3)〈date〉 ::= 〈sDayOfMonth〉(‘1’-‘9’)(‘0’-‘9’)(‘0’-‘9’)(‘0’-‘9’)
(4)〈sDayOfMonth〉 ::= 〈integer〉 〈sMonth〉
(5)〈sMonth〉 ::= ‘Jan’ | ‘Feb’ | ‘Mar’ | ‘Apr’ | ‘May’

| ‘June’ | ‘July’ | ‘Aug’ | ‘Sept’ | ‘Oct’ | ‘Nov’ | ‘Dec’

(6)〈hour〉 ::= ((‘0’-‘1’)(‘0’-‘9’) | (‘2’)(‘0’-‘3’)) ‘:’
(‘0’-‘5’) (‘0’-‘9’) ‘:’ (‘0’-‘5’) (‘0’-‘9’)

An absolute time expression can have different forms. The simplest form is cap-
tured by 〈date〉, which is composed of a day of the month 〈sDayOfMonth〉 and a
year (rule 4). An 〈sDayOfMonth〉 denotes a day, represented as an 〈integer〉, and
a month, represented as an 〈sMonth〉. The latter corresponds to the abbreviation
for a specific month (rule 6). A 〈date〉 can be optionally followed by the ‘at’ key-
word and an 〈hour〉, to represent a specific hour during a day1. An absolute time
expression can also correspond to a list of 〈date〉s enclosed in round brackets. An-
other type of absolute time expression is represented by intervals. An unbounded
time interval is specified with a 〈date〉 prefixed by the keyword ‘starting from’.
A bounded time interval is represented as two 〈date〉s enclosed in square brack-
ets. Lists of bounded intervals are enclosed in round brackets. Unbounded and
bounded time intervals as well as lists of bounded time intervals can be followed
by a periodicity expression (denoted with the keyword ‘every’, see rule 2), which

1The current version of GemRBAC-DSL does not support the concept of time zone.
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specifies how often, during the selected interval(s), the action determined by the
policy (e.g., enabling a role) should be in effect. For example, the role enabling
policy PL11 can be expressed as:

PL11: role-context participant enable @time [12 Feb 2016, 8 Jun 2016];

A relative time expression is a time expression that cannot be mapped directly
to a concrete point or interval in the timeline. The syntax of a relative time
expression is:

〈relativeTime〉 ::= ((〈iHour〉 ( ‘,’ 〈iHour〉)*)
| (〈dayOfMonthH 〉 (‘and @ time’ 〈dayOfMonthH 〉)*)
| (〈dayOfWeekH 〉 (‘and @ time’ 〈dayOfWeekH 〉)*)
| (〈monthDayOfWeekH 〉
(‘and @ time’ 〈monthDayOfWeekH 〉)*))

A relative time expression can have different forms. The first form is as a list
of hour intervals, which are intervals whose start and end points are hours. The
syntax of an hour interval is:

(1)〈iHour〉 ::= ‘from’ 〈hour〉‘to’ 〈hour〉
[(‘excluding (’ 〈exHour〉 (‘,’ 〈exHour〉)* ‘)’]

(2)〈exHour〉 ::= ‘from’ 〈hour〉‘to’ 〈hour〉

Within the definition of an 〈iHour〉, one can also specify a list of hour intervals to
be excluded, denoted with the keyword ‘excluding’ (rule 2).

A relative time expression can be also defined as a list of expressions starting
with a day of month (〈dayOfMonthH 〉s). This expression corresponds to a day of
month (〈dayOfMonth〉) that optionally overlays an hour interval. The syntax of a
relative expression with a day of month is:

(1)〈dayOfMonthH 〉 ::= 〈dayOfMonth〉(‘,’〈dayOfMonth〉)*
[(〈iHour〉 ( ‘,’ 〈iHour〉)*)]

(2)〈dayOfMonth〉 ::= 〈sDayOfMonth〉 | 〈iDayOfMonth〉
(3)〈iDayOfMonth〉 ::= ‘from’ 〈sDayOfMonth〉 ‘to’

〈sDayOfMonth〉 [‘excluding (’ 〈exDayOfMonth〉
(‘,’ 〈exDayOfMonth〉)* ‘)’]

(4)〈exDayOfMonth〉 ::= 〈sDayOfMonth〉|〈exIDayOfMonth〉
(5)〈exIDayOfMonth〉 ::= ‘from’ 〈sDayOfMonth〉 ‘to’

〈sDayOfMonth〉

A day of month can correspond to a single day (〈sDayOfMonth〉, see page 15) or an
interval of days of month (〈iDayOfMonth〉) (rule 2). The latter can also be defined
to exclude a single day of month or an interval of days of month 〈exIDayOfMonth〉;
notice that exclusion is not recursive.
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A relative time expression can also have the form of a list of 〈dayOfWeekH 〉s.
The latter is a day of week that optionally overlays GemRBAC-DSLGemRBAC-
DSLan hour interval. The syntax of a relative expression with a day of week is:

(1)〈dayOfWeekH 〉 ::= 〈dayOfWeek〉 (‘,’ 〈dayOfWeek〉)*
[〈iHour〉 ( ‘,’ 〈iHour〉)*]

(2)〈dayOfWeek〉 ::= 〈sDayOfWeek〉 | 〈iDayOfWeek〉
(3)〈sDayOfWeek〉 ::= [[‘on’] ‘the’ 〈integer〉] (‘Monday’

| ‘Tuesday’ | ‘Wednesday’ | ‘Thursday’ | ‘Friday’ | ‘Saturday’ | ‘Sunday’ )
(4)〈iDayOfWeek〉 ::= ‘from’ 〈sDayOfWeek〉 ‘to’

〈sDayOfWeek〉 [‘excluding (’ 〈exDayOfWeek〉
(‘,’ 〈exDayOfWeek〉)* ‘)’]

(5)〈exDayOfWeek〉 ::= 〈sDayOfWeek〉 | 〈exIDayOfWeek〉
(6)〈exIDayOfWeek〉 ::= ‘from’ 〈sDayOfWeek〉 ‘to’

〈sDayOfWeek〉

This syntax follows a pattern similar to the ones seen above. For example, the time-
based policy on permission assignment PL12 is expressed in GemRBAC-DSL as:

PL12: permission-context addCasualty assign to role trainee @time from Monday

to Friday from 08:00:00 to 17:00:00;

A relative time expression can be also defined as a set of 〈monthDayOfWeekH 〉s.
The latter is a list of 〈month〉s that optionally overlays a 〈dayOfMonthH 〉 or an
〈iHour〉. The syntax of 〈monthDayOfWeekH 〉 is:

(1)〈monthDayOfWeekH 〉 ::= 〈month〉 ( ‘,’ 〈month〉)*
[(‘#’ 〈dayOfWeekH 〉)+
|(〈iHour〉 ( ‘,’ 〈iHour〉)*)]

(2)〈month〉 ::= 〈sMonth〉 | 〈iMonth〉
(3)〈iMonth〉 ::= ‘from’ 〈sMonth〉 ‘to’ 〈sMonth〉

[‘excluding (’ 〈exMonth〉 (‘,’ 〈exMonth〉)* ‘)’]
(4)〈exMonth〉 ::= 〈sMonth〉 | 〈exIMonth〉
(5)〈exIMonth〉 ::= ‘from’ 〈sMonth〉 ‘to’ 〈sMonth〉

Also this syntax follows the same structure of the previous definitions. Notice that
in this case, the list of 〈month〉s can overlay either a list of 〈iHour〉s or a list of
〈dayOfWeekH 〉s.

An 〈sDayOfWeek〉 can contain an index (represented as an 〈integer〉), which
refers to a specific occurrence of a day, as in “on the first Monday” (of a month).
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4.2.10.2 Policies with spatial context

The syntax for defining a spatial context is:

(1)〈spatial〉 ::= ‘location’ 〈location〉 (‘,’ 〈location〉)*
(2)〈location〉 ::= [relativeLocation] (‘physical’ 〈physicalLocation〉

| ‘geofence’ 〈geofence〉)
(3)〈physicalLocation〉 ::= 〈point〉 | 〈polygon〉 | 〈circle〉 | 〈userPos〉
(4)〈point〉 ::= ‘(lat’ 〈float〉‘: long’ 〈float〉‘: alt’ 〈float〉‘)’
(5)〈userPos〉 ::= ‘position’ 〈user〉
(6)〈circle〉 ::= ‘center’ 〈point〉 ‘radius’ 〈float〉 〈locUnit〉
(7)〈polygon〉 ::= 〈polyline〉 〈polyline〉 ( ‘,’ 〈polyline〉)+
(8)〈polyline〉 ::= ‘line {’ 〈point〉 ‘,’ 〈point〉 ‘}’
(9)〈relativeLocation〉 ::= [〈integer〉 〈locUnit〉] 〈direction〉
(10)〈locUnit〉 ::= ‘miles’ | ‘meters’ | ‘kilometers’
(11)〈direction〉 ::= 〈cardinalDir〉 | 〈qualitativeDir〉
(12)〈cardinalDirection〉 ::= (‘N’ | ‘E’ | ‘S’ | ‘W’ | ‘NE’ | ‘SE’ | ‘SW’ |‘NW’)

| ‘degree’ 〈integer〉
(13)〈qualitativeDirection〉 ::= ‘inside’ |‘outside’ |‘around’

We recall (chapter 3) that the spatial context refers to a set of locations; these
location can be of type physical (a precise position in a geometric space) or logical
(a symbolic abstraction of one or many physical locations). Physical locations
are denoted in GemRBAC-DSL with the keyword ‘physical’, while the keyword
‘geofence’ denotes logical locations. Notice that the identifiers that can be used
as logical locations are those declared in the preamble under the rule 〈geofences〉.

The simplest type of physical location is a 〈point〉, i.e., a set of geographic
coordinates denoted with the keywords ‘lat’, ‘long’, and ‘alt’, corresponding to
latitude, longitude, and altitude (rule 4). Each coordinate is expressed as a floating-
point number. The keyword ‘position’ followed by a user id (rule 5) is used to
define a location in terms of the coordinates of a user. Bounded physical locations
can have the shape of a circle or of a polygon. A 〈circle〉 is denoted with a ‘center’
and a ‘radius’; the latter is specified using units of length (see rules 6 and 10).
A polygon is defined in terms of polylines, which are denoted with the keyword
‘line’ and a start and an end 〈point〉 (rules 7–8). For example, the location-based
policy on role enabling PL13 is expressed in GemRBAC-DSL as:

PL13: role-context enable admin @location physical

line {(lat 15 : long 24 : alt 200), (lat 20 : long 27 : alt 200)},

line {(lat 20 : long 27 : alt 200), (lat 17 : long 27 : alt 200)},

line {(lat 17 : long 27 : alt 200), (lat 15 : long 27 : alt 200)},

line {(lat 15 : long 27 : alt 200), (lat 15 : long 24 : alt 200)};
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As shown in rule 2, both physical and logical locations can be optionally prefixed
by 〈relativeLocation〉, which represents a location defined with respect to another
one. A 〈relativeLocation〉 is expressed with a 〈direction〉 and an optional distance
expressed with a unit of length (rule 9). A direction of type 〈cardinalDirection〉 is
denoted with symbols corresponding to cardinal and ordinal directions or with the
degrees of rotation (denoted with the ‘degree’ keyword followed by an integer) on
a compass (rule 12). A direction of type 〈qualitativeDirection〉 represents a relative
proximity to a location and is defined using the keywords ‘inside’, ‘outside’, or
‘around’ (rule 13). For example, the contextual policy PL14, which contains a
relative location, is expressed in GemRBAC-DSL as:

PL14: role-context trainee enable @location 100 meters inside geofence Zone1;

4.3 Semantic Checks

A security analyst can erroneously write policies that are inconsistent or conflict-
ing. In the following paragraphs we describe all the possible conflicts that can
be found in a GemRBAC-DSL specification. We mainly focus on inter-policy
conflicts, i.e., global conflicts between different policies. The Eclipse-based editor
for GemRBAC-DSL includes semantic checks for these conflicts, which are then
reported to the user as errors or warnings.

Prerequisite role and SSoD on conflicting roles policies. Let PR be the set of
roles involved in a prerequisite role policy, and SCR be the set of conflicting roles
in a SSoDCR policy. If PR ⊆ SCR, the two policies are in conflict. The reason is
that, while the prerequisite role policy requires the assignment of two roles to the
same user (in a certain order), the SSoDCR policy prohibits this assignment. This
situation can be avoided by not specifying prerequisite role policies and SSoDCR
policies for the same subset of roles. This conflict is reported as an error. The
conflict between the prerequisite permission policy and the SSoDCP one is defined
in a similar way.

Prerequisite role and Role hierarchy policies. Let PR be the set of roles in a
prerequisite role policy, and RH be the set {r} ∪ juniors(r) in a role hierarchy
policy, where junior() is a function that returns the junior roles of its argument.
If PR ⊆ RH , the prerequisite role and the role hierarchy policies will require
the assignment of the same subset of roles. Hence there is no need to define a
prerequisite policy between a role and its parent role. This conflict is reported
as a warning. The conflict between the prerequisite permission policy and the
permission hierarchy one is defined similarly.

Cardinality (role-to-user assignment) and Role hierarchy policies. Let n be the
number of juniors of role r in a role hierarchy policy, andmaxRoles be the maximum
number of roles that can be assigned to a user, as specified by a cardinality policy. If
n ≥ maxRoles , the cardinality policy will be violated. This situation can be avoided
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by having maxRoles greater than the number of juniors of any role. This conflict
is reported as an error. The conflict between the cardinality (role-to-permission
assignment) policy and the permission hierarchy one is defined similarly.

Cardinality (permission-to-role assignment) and Binding of duty policies. Let
n be the number of bounded permissions in BoD policy, and maxPerm be the
maximum number of permissions that can be assigned to a role, as specified by
a cardinality policy. If n > maxPerm, the cardinality policy will be violated,
because the BoD policy will require a role to be assigned to more than maxPerm

permissions. This situation can be avoided by having maxPerm be equal or greater
than the number of bounded permissions in a BoD policy. This conflict is reported
as an error.

Role hierarchy and SSoD on conflicting roles policies. Let RH be the set {r}∪
juniors(r) in a role hierarchy policy, where junior() is a function that returns the
junior roles of its argument; let SCR be the set of conflicting roles in an SSoDCR
policy. If |RH ∩ SCR| > 1 the two policies are in conflict. Indeed, while the
role hierarchy policy requires the assignment of a set of roles, the SSoDCR policy
prohibits this assignment. To avoid this situation an SSoDCR policy should not
contain a role and its junior(s) or, similarly, two juniors of the same role. This
conflict is reported as an error. The conflict between the permission hierarchy
policy and the SSoDCP one is defined similarly.

Role hierarchy and Context (role unassignment) policies. Let JRH be the set
containing the juniors of role r. If a context policy on role un-assignment is speci-
fied for any role s ∈ JRH , the role hierarchy policy will be violated. Indeed, while
the role hierarchy requires the assignment of a junior of role r, the role context
policy can prohibit this assignment. This conflict is reported as an error. The con-
flict between the permission hierarchy and context-based (permission assignment)
policies is defined similarly.

SSoD and DSoD on conflicting roles policies. Let SCR and DCR be the sets of,
respectively, conflicting roles in an SSoDCR policy and a DSoDCR one. If |SCR ∩
DCR| > 1, the assignment of at least two conflicting roles will be allowed by the
DSoDCR policy but forbidden by the SSoDCR policy, generating an inconsistency
in the system. This conflict is reported as a warning. The conflict between the
SSoD and DSoD on conflicting users (or permission) policies is defined similarly.
Notice that an SSoDCU policy and a DSoDCU one with the same list of users on
different roles are not conflicting.

SSoD on conflicting permissions and Binding of duty policies. Let SCP be the
set of conflicting permissions in an SSoDCP policy and let PBoD be the set of
bounded permissions in a BoD policy. If |SCP ∩ PBoD | > 1, the two policies
are in conflict. Indeed, while the SSoDCP restricts the assignment of at least two
conflicting permissions, the BoD policy requires this assignment. To avoid this
situation, an SSoDCP policy should not contain permissions that are used in a
BoD policy. This conflict is reported as an error.
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employee:
Role

scEmployee: 
RBACContext

LLEmployee:LogicalLocationRoleContext
Enabling

rloc1: RelativeLocation
inside:QualitativeDirection
-direction: inside

-label: Office

Figure 4.2: A fragment of an instance of the GemRBAC+CTX model

Delegation and SSoD on conflicting roles policies. Let SCR be the set of con-
flicting roles in an SSoDCR policy, r be the role being delegated, and RECR

be the set of roles that will receive the delegation in a delegation policy. If
({r} ∪ RECR) ⊆ SCR, the two policies are in conflict. The reason is that, while
the delegation policy allows the assignment of a set of roles to the same user, the
SSoDCR policy prohibits this assignment. This conflict is reported as an error.

Additional checks. The editor also detects overlapping intervals in policies with
temporal context, and circular dependencies for role hierarchy and precedence poli-
cies.

4.4 Semantics

As shown in chapter 3, the GemRBAC+CTX model, which is the conceptual
RBAC model on top of which GemRBAC-DSL has been designed, comes with an
operationalization of the semantics of the policies it supports. Since the GemR-
BAC+CTX model and GemRBAC-DSL have the same expressiveness, we can
define the semantics of GemRBAC-DSL by mapping its constructs to the corre-
sponding OCL constraints defined for the GemRBAC+CTX model.

Each entity in the 〈preamble〉 of a GemRBAC-DSL specification corresponds
to an instance of a UML class in the GemRBAC+CTX model: users, roles,
permissions, operations, and logical locations (〈geofences〉) are mapped to instances
of the homonymous classes in GemRBAC+CTX. Similarly, role and permission
hierarchies correspond to the homonymous associations in the GemRBAC+CTX
model.

Each type of RBAC policy is mapped to the corresponding OCL constraint
template defined in the GemRBAC+CTX model; in each template the symbolic
parameters are replaced with the actual entities used in the specification. For
instance, the semantics of the object-based DSoD policy

objDSoD: conflicting-roles-activation author, reviewer on-same-object;

can be defined by the OCL invariant DSoDCR of the class Session (introduced on
page 27), by replacing the parameters r1 and r2 with roles author and reviewer.

Regarding contextual policies, the context to be assigned/enabled (as pre-
scribed by the policy) is represented in the GemRBAC+CTX model, as an asso-
ciation with the corresponding role/permission. For example, consider the policy

loc: role-context enable employee only @location inside office;
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which enables role employee only inside the logical location denoted by the la-
bel “office”. Figure 4.2 depicts an excerpt of an instance of the GemRBAC+CTX
model in which role employee is associated to a SpatialContext object that contains
the object LLEmployee of type LogicalLocation, which denotes the location “of-
fice”. This object is associated with object rloc1 of type RelativeLocation, which
contains a QualitativeDirection. The policy loc can be mapped to the OCL in-
variant relativeLocationRoleEnabling of class Session (introduced on page 40),
parametrized with role employee.

Expressing the semantics of GemRBAC-DSL policies as OCL constraints on
the GemRBAC+CTX model enables the users of the language to benefit from the
model-driven policy enforcement mechanisms as we will show in chapter 6. Briefly,
making an access decision for a policy can be reduced to checking the corresponding
OCL constraint on a instance of the GemRBAC+CTX model, which represents
a snapshot of the system at a certain time.

Table 4.1: Mapping of GemRBAC-DSL constructs to OCL constraints on the
GemRBAC+CTX model

Type of policy OCL constraint ref
〈PrereqRole〉 context User inv PreqRole page 24
〈PrereqPermission〉 context Role inv PreqPermisssion page 24
〈CardActivation〉 context Session inv

CardinalityActivation

page 24

〈CardUser〉 context User inv CardinalityRole page 24
〈CardPermission〉 This policy is expressed in a similar way as

the previous one by replacing the context of
User with the context of Permission.

page 24

〈CardRoletoPermission〉 context Role inv CardinalityPermission page 24
〈CardRoletoUser〉 This policy is expressed in a similar way as

the previous one by replacing the instances
of permissions with instances of users.

page 24

〈PrecEnabling〉 context inv RoleEnablingPrecedence page 25
Dependency
〈PrecEnabling〉

context Session inv

RoleActivationDependency

page 25

〈RoleHierarchy〉 context User inv RoleHierarchy page 26
〈PermissionHierarchy〉 context Role inv RoleHierarchy page 26
〈SSoDCU 〉 context Role inv SSoDCU page 26
〈SSoDCR〉 context User inv SSoDCR

context Role inv SSoDCP2

page 26

〈SSoDCR〉 context User inv SSoDCR

context Role inv SSoDCP2

page 26

〈SSoDCP〉 context Role inv SSoDCP1 page 26
〈DSoDCR〉 context Session inv DSoDCR page 27
〈DSoDCU 〉 context Role inv DSoDCU web1

continued on next page
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〈DSoDCP〉 context Role inv DSoDCP web1
〈DSoDCR〉 context Session inv ObjectDSOD page 27
〈DSoDCR〉 context Session inv OperationalDSoD page 28
〈DSoDCR〉 context Session inv HistoryDSOD page 29
Role-based 〈BoD〉 context Session inv RoleBoD page 29
Subject-based 〈BoD〉 context Session inv SubjectBoD page 30
〈Delegation〉 context Delegation inv TotalDelegation

context Delegation inv

MultiStepDelegation

context delegation inv

PartialDelegation

context Delegation inv StrongTransfer

context Delegation inv

StaticWeakTransfer

context Delegation inv

DynamicWeakTransfer

context Delegation inv

AutomaticRevocation

page 32

〈Revocation〉 context Delegation inv

RevacationDependency

context Delegation inv StrongRevocation

context Delegation inv

CascadingRevocation

page 33

TPA with
〈absoluteTime〉

context Session inv AbsoluteBTIRoleEnab

context Permission inv

AbsoluteBTIPermAssign

context Role inv AbsoluteTPRoleAssign

context Role inv AbsoluteUBIRoleAssign

page 35
web2

TPA with
〈periodicTime〉

context Role inv

periodicUnboundTIRoleAssign

page 38

TPA with
〈activeDuration〉

context Session inv

DurationAbsoluteBTIRoleEnab

page 38

TPRInd
〈sDayOfWeek〉

context Role inv indexRoleAssign page 37

TPRH 〈iHour〉 context Role inv

RelativeHoursRoleAssign

web2

TPRDM
〈dayOfMonthH 〉

context Role inv

DayOfMonthHoursRoleAssign

context Permission inv

DayOfMonthHoursPermAssign

web2

TPRDW
〈dayOfWeekH 〉

context Permission inv

DayOfWeekHourPermAssign

page 36

TPRMD
〈monthDayOfWeekH 〉

context Role inv

MonthDayOfWeekHourRoleAssign

web2

continued on next page
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TPCT
〈compositeTime〉

This policy can be checked by a logical conjunction
of two temporal policies: one with absolute time
and one with relative time.

SPP 〈physicalLocation〉 context Role inv

physicalLocationRoleAssign

page 39

SPL 〈geofence〉 context Session inv

logicalLocationRoleEnabling

page 40

SPR 〈relativeLocation〉 context Session inv

relativeLocationRoleEnabling

page 40

SPT〈SpatioTemporal〉 This policy can be checked by a logical conjunction
of the spatial and temporal policies.

Legend. TP: temporal policy; TPA: TP with absolute time; TPR: TP with rel-
ative time; TPRInd: TPR containing an index; TPRH: TPR of type hour inter-
val; TPRDM: temporal policy with a relative time of type day of month that op-
tionally overlays hours; TPRDW: TPR of type day of week that optionally over-
lays hours; TPRMD: TPR of type day of month that optionally overlays days of
week (the days of week may optionally overlay hours); TPCT: TP with compos-
ite time; SP: spatial policy; SPP: SP with a physical location; SPL: SP with
a logical location; SPR: SP with a relative location; SPT: spatio-temporal policy.

Table 4.1 describes the mapping of each RBAC policy supported by GemRBAC-
DSL to its corresponding OCL constraint(s) defined on the GemRBAC+CTX
model. The first column indicates the type of policy and the corresponding gram-
mar rule. The second column denotes the corresponding OCL constraints, whose
full definition can be found in the reference indicated in the third column. The ref-
erence “web” and “web2” are the websites https://github.com/AmeniBF/GemRBAC-model
and https://github.com/AmeniBF/GemRBAC-CTX-model.git, respectively.

4.5 Discussion

Adoption. GemRBAC-DSL has been used by our industrial partner for the
specification of the RBAC policies of a production-grade Web application. The
adoption of GemRBAC-DSL has allowed its engineers to easily specify all the
policies for their system, including 19 new types of contextual policies. Despite the
fact that some constructs of the language are non-trivial, the engineers were able
to use GemRBAC-DSL confidently after three half-day training sessions.
Limitations and Design Trade-offs. GemRBAC-DSL can express all and only
the types of policies supported by its underlying model, GemRBAC+CTX. Since
GemRBAC+CTX is quite an expressive model, GemRBAC-DSL includes many
constructs that could have increased its level of complexity, hindering its adop-
tion. Designing a simpler language would have implied providing limited support
in terms of policy types, leading to partial fulfillment of our expressiveness require-
ments and a limited improvement over the state of the art. Hence, at the language
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4.6 Tool Support

Figure 4.3: The GemRBAC-DSL editor

design stage, we decided to pursue our expressiveness requirements, and to pro-
vide a syntax close to natural language to favor the adoption among practitioners
and compensate (also by means of a feature-rich editor) for the complexity of the
language.

4.6 Tool Support

The GemRBAC-DSL editor (GemRBAC-DSL-Editor) has been implemented
as an Eclipse plugin. We used Xtext 2.8 to define the textual syntax and the se-
mantic checks (illustrated in section 4.3) for the language. As can be seen in
figure 4.1, the editor supports syntax highlighting and conflict detection. Fur-
thermore it performs also syntactic checks, such as detecting duplicated items in
lists, or verifying that the identifiers of the entities (e.g., roles, users) used in the
policies have been declared in the preamble. The editor is publicly available at
https://github.com/AmeniBF/GemRBAC-DSL.git. Moreover, the language seman-
tics has been implemented as a model transformation tool GemRBAC-DSL-
Transform using Eclipse Epsilon [46]. The GemRBAC-DSL-Transform
takes as input RBAC policies expressed in GemRBAC-DSL and produces as out-
put the corresponding OCL constraints, and a set of operations (e.g., add hierarchy,
add context . . . ). These operations will be applied to the GemRBAC+CTX in-
stance at deployment time. The model transformation tool is publicly available at
https://github.com/AmeniBF/GemRBAC-DSL-Transform.
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4.7 Summary

4.7 Summary

In this chapter we presented GemRBAC-DSL, a domain-specific language that
facilitates the specification and consistency checking of policies based on highly-
expressive RBAC models. GemRBAC-DSL supports all types of policies captured
by the GemRBAC+CTX model, a comprehensive model encompassing all pro-
posed types of policies. We have shown how the language can be used to specify the
RBAC policies of an industrial application with complex, context-aware policies.
The semantics of GemRBAC-DSL has been defined with a mapping to an existing
OCL formalization of the RBAC policies supported by GemRBAC+CTX. This
mapping paves the way for automating the enforcement of policy specifications
written in GemRBAC-DSL, using a model-driven approach.
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Chapter 5

Modeling Access Control Policies:
Related Work

This chapter provides an overview of the state of the art related to modeling RBAC
policies. Section 5.1 illustrates existing extensions to the original RBAC model.
Section 5.2 provides existing work dealing with the formalization of RBAC policies
as OCL constraints. Finally, section 5.3 reviews existing work related to policy
specification languages.

5.1 RBAC Model Extensions

The original RBAC model, introduced in chapter 2 (section 2.1), was proposed
by Sandhu et al. in [3] and is commonly referred to as RBAC96. It is actually
defined as a family of reference models: RBAC0, RBAC1, and RBAC2. The basic
model, RBAC0, is composed of users, permissions, sessions, and assignment and
activation relations. The other two models are defined incrementally over RBAC0
by adding concepts to it: RBAC1 adds the concept of role hierarchy while RBAC2
adds authorization constraints.

Several researchers extended RBAC96 to support additional type of policies
such as delegation and context. In the rest of this section, we review some of these
works.

RDM2000 [5] extends RBAC96 to support role delegation. It includes two
types of user-role assignment: in addition to the original user assignment defined
in RBAC96, RDM2000 proposes the delegated user assignment, which maps a
user to a delegated role. A limitation of this work is that it only supports to-
tal delegation; this means that a user is not allowed to delegate a subset of her
assigned permissions. Another extension related to the concept of delegation is
PDM, permission-based delegation authorization model, proposed in [6]. In this
model, if a user wants to delegate a set of permissions, she has to create a new
role with the required permissions; this role can inherit from any original role. A
limitation shared both by RBDM2000 and by PDM is that they only support grant
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delegation; a complete delegation model supporting both grant and transfer oper-
ations has been proposed by Crampton et al. [7]. However, the models provided
by RBDM2000, by PDM, and by Crampton et al. do not support the various types
of revocation policies presented in our taxonomy (see section 2.2 of chapter 5).
Sohr et al. [8] extends their previous model introduced in [38] to support the role
delegation properties of RDM2000; this extension supports the various types of
revocation.

Regarding temporal policies, the first temporal RBAC model, TRBAC, was
proposed by Bertino et al. in [9]. TRBAC introduces periodic policies on role
enabling and disabling, which define the period of time (delimited by two time
points) during which a role can be enabled/disabled. TRBAC also supports the
definition of dependencies among the enable/disable actions of roles; for instance
one can require that role r1 must be enabled whenever role r2 is disabled. While
TRBAC supports temporal policies only for role enabling/disabling, there is a
more general version called GTRBAC [11, 47] that supports temporal policies
also on role activation and assignment. Moreover, GTRBAC adds support for
temporal aspects in role hierarchy, cardinality, dependency, and SoD policies. The
GTRBAC was extended in [48] to support delegation by adding the delegation
properties supported in PDM. A limitation of these models is the lack of support
for temporal policies at the permission level.

The first model to support location-based constraint has been GEO-RBAC [10].
It introduces the concept of spatial role, which consists of a role and its correspond-
ing region, i.e., the area or the place in which the role can be enabled. In this model,
each user is associated to a real position, obtained by a positioning device, and a
logical position, which is the mapping of the user’s real position into a region of
the system. Role enabling is conditioned by the logical position of a user, which
should match the one specified in the spatial role definition. This means that
the list of enabled roles evolves according to the user’s position. An administra-
tive model for GEO-RBAC, called GEO-RBAC Admin was proposed in [49]; in
this model an administrative role is defined as a spatial role. While GEO-RBAC
supports location-based policies only for role enabling (and consequently for role
activation), the LRBAC [50] and SRBAC [51] models extend these policies also to
user-role and role-permission assignments. However, these models do not support
spatial policies for permission enabling and have limited support for role disabling.

Other works support full context-based policies by combining spatial and tem-
poral information. The LoTRBAC model [52] extends GTRBAC by assigning a
location to each user, role and permission. In this model, location and tempo-
ral information control role enabling and activation. LoTRBAC does not support
permission enabling and the specification of the perimeter of physical locations.
STARBAC [12], with support for contextual policies for role enabling. ESTAR-
BAC [53] extends STARBAC to support contextual policies for role enabling and
both user-role and role-permission assignment.
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Table 5.1: Support of non-contextual policies in the various RBAC models

Prq RH Card SoD

S D Obj Op His

RBAC96 [3] + + + + + - - -
RDM2000 [5] + + + + + - - -
PDM [6] N/A + + + + - - -
Crampton et al. [7] N/A + + + + - - -
Sohr et al. [8, 38] + + + + + + + +
TRBAC [9] N/A - + - - - - -
GTRBAC [11] N/A time + time time - - -
GEO-RBAC [10] N/A + N/A + + - - -
LRBAC [50] N/A - + - - - - -
LoTRBAC [52] N/A + + + + - - -
STRBAC [13] N/A context N/A context context - - -
GSTRBAC [54] + context + context context - -
SRBAC [51] N/A - N/A location location - - -
STARBAC [12] - - - - - - - -
ESTARBAC [53] - + - + + - - -
OrBAC [55] + + + + + - - -
GemRBAC+CTX + + + + + + + +

Delegation Precedence Revocation BoD

G/Tr S/M P/T Dom Pr Dep

RBAC96 [3] - - - - - - - -
RDM2000 [5] G + T - - - - -
PDM [6] G + + - - - - -
Crampton et al. [7] + + + - - - - -
Sohr et al. [8, 38] G + T - + + + -
TRBAC [9] - - - + - - - -
GTRBAC [11] G + + + - - - -
GEO-RBAC [10] - - - - - - - -
LRBAC [50] - - - - - - - -
LoTRBAC [52] - - - - - - - -
STRBAC [13] G - + - - - - -
GSTRBAC [54] - - - - - - - -
SRBAC [51] - - - - - - - -
STARBAC [12] - - - - - - - -
ESTARBAC [53] - - - - - - - -
OrBAC [55] - - - - - - - -
GemRBAC+CTX + + + + + + + +

Legend. Prq: Prerequisite; RH: Role Hierarchy; Card: Cardinality; S: Static SoD; D:
Dynamic SoD; Obj: Object-based DSoD; Op: Operational-based DSoD, His: History-
based DSoD; G/Tr: Grant/Transfer delegation; S/M: Single/Multi-step delegation;
P/T: partial/total delegation; Dom: dominance; Pr: propagation; Dep: Dependency;
BoD: Binding of duty;

Another model, STRBAC [13], allows for defining location- and time-based
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Table 5.2: Support of contextual policies in the various RBAC models

Contextual policies Scope Decision

ART PTE I AD PL LL RL CP PA PE RA RE algorithm

TRBAC [9] + + + - - - - N/A - - - + +
GTRBAC [11] + + + + - - - N/A - - + + +
GeoRBAC [10] - - - - + + - N/A - - - + +
LRBAC [50] - - - - + + - N/A + - + + +
SRBAC [51] - - - - + + - N/A + - + + -
STARBAC [12] + + - - + + - + - + - + -
ESTRBAC [53] + + + - + + - + + - + + +
STRBAC [13] + + - - + + - - + - + + +
GSTRBAC [54] + + - - + + - + + - + + -
OrBAC [55] + + - - + + - + - + - + +
LotRBAC [52] + + + + + + + + + - + + -
GemRBAC+CTX+ + + + + + + + + + + + +

Legend. ART: Absolute and Relative TE; PTE: Periodic TE; I: Index; AD: Activation
Duration; PL: Physical Location; LL: Logical Location; RL: Relative Location; CP:
Composite context-based policies, RA: User-role Assignment, RE: Role Enabling, PA:
Role-permission Assignment, PE: Permission Enabling.

policies related to role-to-user and role-to-permission assignments. This may result
in a limited subset of permissions allowed for a certain role, at a given time in a
given place. Furthermore, STRBAC supports location- and/or time-based policies
also for role hierarchy and separation of duty. STRBAC was extended in [56]
to support delegation policies based on contextual information. In STRBAC, a
change in a spatio-temporal constraint may lead to the addition of a new role.
Moreover, STRBAC does not support the definition of composite context-based
policies. This limitation is overcome by the GSTRBAC model [54, 57] which lifts
this requirement by introducing the concept of spatio-temporal zone (st-zone). An
st-zone is an RBAC entity abstracting a location and a time, and is assigned to
other entities like users, roles, permissions, and resources. In this mode, a role is
enabled if its st-zone matches the one of the user; similarly, a permission is enabled
if its st-zone matches the one of the corresponding resource.

Table 5.1 shows to which extent the various models discussed in this section
support the RBAC non-contextual policies included in the taxonomy presented
in section 2.2. As one can notice, the GemRBAC+CTX is the only one that
provides a complete support for non-contextual policies. Table 5.2 summarizes
to which extent the RBAC models discussed above support the various concepts
related to contextual policies. It also indicates the scope (assignment/enabling of
permissions and/or roles) in which such policies can be used, the availability of an
access decision algorithm. As one can see, the GemRBAC+CTX model is the
only one that supports 1) all the various spatio-temporal concepts for contextual
policies; 2) the use of such policies for the assignment and enabling of both roles
and permissions; 3) a checking procedure for these policies.
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We also remark that none of the existing RBAC models would be able to
express the application presented in chapter 3 in section 3.3. More specifically,
models RBAC96, RDM2000, PDM, Crampton et al., Sohr et al., TRBAC, GTR-
BAC, GEO-RBAC and LRBAC lack full support of context-based policies. Con-
sequently, policies PL1, PL2 and PL3 could not be defined in these models.
Although models LoTRBAC, STRBAC, ESTARBAC and GSTRBAC cover time-
based and location-based policies, they do not support dependency and transfer
policies. Consequently, policiesPL4 andPL5 could not be defined in these models.

5.2 Using OCL for Modeling RBAC Policies

There have been several proposals for using OCL for the formalization of RBAC
policies [8, 22, 33, 58, 59, 60, 61]; however, the types of policies considered in each
of these formalizations are a subset of the ones presented in this work. In terms
of model-based approaches for RBAC, SecureUML [62] is a modeling language for
the model-driven development of secure systems, based on RBAC; it extends the
original RBAC model to support authorization constraints, which are preconditions
expressed in OCL, associated with operations that access system resources. In
reference [63], authors present an RBAC model which combines SecureUML and
ComponentUML. The latter is a UML-based language for modeling system entities
and relationships between them. Authorization constraints are defined as OCL
queries such as ‘are there actions on concrete resources that every user can perform
in the given scenario? ’. Similarly to our work, OCL queries are evaluated on the
model instance which is a snapshot of the system state. However, we analyze the
OCL constraints from a user’s request point of view in order to make the access
decision. The model-driven security approach proposed in [64] builds a security-
aware graphical user interface model from the security model presented in [63] and a
graphical user interface model. The goal is to automatically generate the graphical
user interface application. Reference [65] shows how to incorporate RBAC policies
into UML design models using UML diagram templates, but only supports role
hierarchy and static and dynamic separation of duty constraints.

Our approach fills the gap between the existing OCL-based formalizations of
the RBAC policies and the various types of policies proposed in the literature, by
formalizing all the types of policies classified in our taxonomy as OCL constraints
on the GemRBAC+CTX model.

5.3 RBAC Policy Specification Languages

One of the first policy languages proposed for RBAC is RCL2000 [19], which is
a formal language based on first-order predicate logic and defined on top of the
RBAC96 model. The language supports only role hierarchy and separation of duty
policies. FORBAC [21] is also an extension of RBAC based on first-order logic.
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Table 5.3: Support of policies in RBAC languages

Prq RH Card Prec SoD BoD Context Deleg Rev

S D Obj Op His T L

RCL2000 [19] - + + - + + - - - - - - - -
FORBAC [21] + - - - - - - - - - + + - -
Tower [20] + + + + + + + + + - - - +/- +/-
XACML [15, 16] + + + - + + - - - - + + GT -
X-RBAC [66] + + + - + + + - - - + + - -
X-GTRBAC [67] + + + - + + + - - - - + - -
ROWLBAC [17] + + + - + + + - - - - - GT -
XACML+OWL [18] + + + + + + + + + - - - - -
RBAC-DSL [8] + + + + + + + + + - - - GT +

Legend. Prq: Prerequisite; RH: Role Hierarchy; Card: Cardinality; Prec: Precedence and Dependency;
S: Static SoD; D: Dynamic SoD; Obj: Object-based DSoD; Op: Operational-based DSoD, His: History-
based DSoD, Deleg: Delegation.

It adds support for attributes in policies and numeric constraints; both features
enable the definition of more complex policies, like those containing contextual
constraints. However, FORBAC does not support role hierarchy, delegation, cardi-
nality, and separation of duty. Furthermore, a limitation shared both by RCL2000
and FORBAC is the difficulty of use by practitioners, since both languages re-
quire a strong mathematical background. Tower [20] is a high-level specification
language for access control policies; it supports delegation and history-based SoD
policies. However, delegation and revocation policies are defined only as adminis-
trative operations for role-to-user assignment, i.e., in terms of adding/removing a
role to/from a user.

Another research stream considers XML-based languages, starting from the def-
inition of XACML (eXtensible Access Control Markup Language) [14]. XACML is
a language for access control, standardized by the OASIS community. The XACML
standard provides not only the specification language for access control policies but
also a reference enforcement architecture. XACML is a general-purpose language
for expressing various types of access control models and policies; being general-
purpose, it does not support RBAC natively (e.g., sessions are not supported).
RBAC support can be added to XACML by means of profiles. The OASIS RBAC
profile for XACML [16] supports only role hierarchy and static separation of duty
policies. Another RBAC profile of XACML [15] supports separation of duty, del-
egation, and context-based policies. X-RBAC [66] is an XML-based specification
language for RBAC policies in multi-domain environments where authorization
policies are distributed over several domains. X-RBAC supports context-based,
role hierarchy, cardinality and separation of duty policies. X-GTRBAC [67] is a
language defined on top of the GTRBAC model [11] for specifying RBAC poli-
cies for heterogeneous and distributed enterprise resources. X-GTRBAC adds the
concept of user’s credentials to the GTRBAC model: users are grouped accord-
ing to their credentials. X-GTRBAC supports cardinality, separation of duty, role
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hierarchy, and temporal policies.
Another language, conceptually similar to XACML, is xfACL (eXtensible Func-

tional Language for Access Control) [68]. xFACL is a general-purpose access control
language, which tries to combine the benefits of XACML and RBAC. It is based
on the specification of attributes for entities involved in decisions (e.g., users, op-
erations) and supports auxiliary policies to extend its expressiveness. The latter is
also its main drawback, since support for each type of policy has to be manually
added by means of an auxiliary function.

Other languages deal with the integration of ontologies to provide a semantic in-
terpretation of access control policies across different, heterogenous organizations,
and to support advanced access control policies. For instance, ROWLBAC [17] is
an ontology-based language that combines OWL (Web Ontology Language) and
RBAC properties. The language supports the specification of prerequisite, role
hierarchy, SoD, and delegation policies. The XACML+OWL framework [18] com-
bines OWL and XACML. Role hierarchy and separation of duty policies are speci-
fied using OWL, while the XACML engine is used to make decisions for user access
requests. The interactions between the XACML engine and the OWL ontology are
defined through semantic functions.

RBAC DSL [8] is a domain-specific language for RBAC based on UML dia-
grams and OCL constraints. The corresponding meta-model includes two levels:
the policy level and the user Access Level. The first level defines the basic RBAC
concepts: roles, resources, permissions and operations. At this level, SoD, cardinal-
ity, and role hierarchy policies are represented as UML attributes and associations.
The second level defines the concepts of user, session, resource access, and snapshot
(i.e., an instance of an RBAC model at a specific time point). A predecessor/ suc-
cessor relation is defined for the concept of user, session and access to identify the
individual users, sessions and accesses over time. At this level, authorization poli-
cies are defined as OCL constraints based on the information available in the policy
level. RBAC DSL supports also delegation and revocation policies. However, as
acknowledged also in chapter 3, defining RBAC policies as OCL constraints can be
difficult, since it requires a high level of knowledge and expertise with OCL, espe-
cially in our case in which OCL constraints tend to be rather complex to express
RBAC policies.

Table 5.3 summarizes the support for the various types of RBAC policies in the
policy specification languages discussed above. The types of policies used for the
comparison have been taken from the taxonomy in chapter 2 and reflect the ones
we have observed in our industrial case study. We remark that the specification of
some types of policies, such as context-based and delegation, depends not only on
the language but also on the underlying model.

One can see that none of these languages is expressive enough to express all the
policies presented in Section 4.1, related to our industrial case study. Moreover, the
analysis has also shown that the majority of existing policy specification languages
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is based on some formalism (either first-order logic fragments, including OCL, or
ontology languages based on description logic) that require a strong theoretical
and mathematical background, which is rarely found among practitioners. Hence,
we contend that there is a need for an expressive specification language for RBAC
policies like GemRBAC-DSL that can also be used by practitioners.
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Enforcement of Role-based Access
Control Policies
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Chapter 6

Model-driven Enforcement of RBAC
policies

In the previous part, we presented the GemRBAC+CTX model and its corre-
sponding language GemRBAC-DSL to facilitate the specification of RBAC poli-
cies. In this chapter, we show how to enforce these policies to prevent unauthorized
user access. Our goal is to propose a model-driven approach for the enforcement
of policies written in GemRBAC-DSL. More specifically, we leverage the opera-
tionalization through OCL constraints of GemRBAC-DSL policies to reduce the
problem of enforcing RBAC policies to the evaluation of the corresponding OCL
constraints on an instance of the GemRBAC+CTX model; this instance captures
the state of the system (from the point of view of access control) at the time an
access request is made.

This chapter makes the following contributions:
1. a model-driven framework for runtime enforcement of GemRBAC-DSL poli-

cies;
2. an extensive empirical evaluation on a real industrial system to assess the

scalability and the performance of the proposed approach.
The rest of the chapter is organized as follows. Section 6.1 presents an overview

of the model-driven approach for enforcing RBAC policies. Section 6.2 describes
the integration of the proposed approach into the architecture of a Web application.
Section 6.3 presents the results of the empirical evaluation. Finally, section 6.4
provides a review of existing enforcement approaches.

6.1 Model-driven Run-time Enforcement

As mentioned above, the idea at the basis of our model-driven enforcement frame-
work is to map the GemRBAC-DSL policies to a set of OCL constraints (and
a list of operations); this transformation is detailed in chapter 4. We assume to
have access to a snapshot of the system state, represented as an instance of the
GemRBAC+CTX model. At the beginning of the operations of the system, the
initial instance contains the RBAC components (i.e., users, roles and permissions)
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and their assignment relations as defined by the access control configuration of the
system; the instance is then updated as the system configuration evolves from the
point of view of access control. We mention that static checking of RBAC policies
is out of the scope of this thesis, i.e., we assume that both the model instance
and its corresponding OCL constraints are valid. In what follows, we will use the
term Snap to refer to the model instance representing the current system state.
Both the GemRBAC+CTX instance and the OCL constraints will serve as input
for the enforcement framework. Figure 6.1 depicts an overview of the proposed
model-driven approach. The enforcement framework includes two main compo-
nents: SnapProcessor and OCLChecker. Once a user sends an access request, the
processor SnapProcessor takes as input Snap and generates TargetSnap as output.
The snapshot Snap captures the RBAC system state at the time when the access
request has been made. The generated snapshot captures the next system state,
as if the request had been allowed. Both snapshots, Snap and TargetSnap, are
modeled as instances of the GemRBAC+CTX model expressed in UML. After
creating TargetSnap, SnapProcessor selects based on the type and the parameters
of the access request (see section 6.1.1), the list of policies to be checked. In this
way, making a decision about an AC request is equivalent to verifying whether
the TargetSnap instance satisfies the OCL constraints corresponding to the access
control policies; this check is performed by the OCLChecker. If the checked con-
straints evaluate to true, it means that the AC request can be allowed, since it will
not violate any policy. On the contrary, when the checked constraints evaluate to
false, it means that allowing the request would violate one or more of the policies
in place.

Our approach adopts also the usage control (UCON) [69] concept; the access
decision should be reevaluated when a new update, from an access control point
of view, occurs at the system state level. Once an AC-related event, such as
a user authentication or a user change location, is triggered, the SnapProcessor
updates the current system state (Snap) and enforces the access control policies,
accordingly. For instance, upon successful login, the SnapProcessor creates a new
session for the authenticated user and enables the set of roles assigned to the user
within this session. We assume the enforcement framework to receive a notification
from an external component whenever an AC-related event is triggered.

In the next subsections we show how we enforce the access control policies when
making an access decision for an AC request or updating the system state upon
receiving a notification for an AC-related event.

6.1.1 Policies Enforcement Upon Receiving an Access Re-
quest

A user can send an AC request to activate a role, to access a resource, to delegate
a role, to revoke a delegated role, or to perform an administrative operation such
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Algorithm 1: Check AC Request
input : a = AC Request; Snap = current system state; P = list of authorization policies;
output: d = access decision;

1 PC ←− ∅ ; // list of policies to check

2 targetSnap ←− null ; // the next snap

3 switch a do
4 case role activation do
5 if role r1 is enabled for user u1 then
6 targetSnap ←− Snap.activateRole(r1, u1);
7 PC ←− selectPL(P, role activation, r1);
8 else
9 d ←− false;

10 end
11 end
12 case access to a resource do
13 if role r1 is active in session s1 then
14 p1 ←− selectPermission(r1, op1 , obj1 );
15 if p1 not null and p1 is enabled for role r1 then
16 assignedPerm ←− true;
17 if role r1 has been delegated to user u1 then
18 deleg ←− selectDelegation(r1,u1 );
19 if deleg is partial then
20 assignedPerm ←− p1 ∈ delegatedPermissions
21 end
22 end
23 if assignedPerm then
24 targetSnap ←− Snap.addHistory(u1, r1, p1, op1 , obj1 );
25 PLC ←− selectPolicies(P, resource access, p1);
26 end
27 else
28 d ←− false;
29 end
30 else
31 d ←− false;
32 end
33 end
34 case role delegation do
35 if user u2 is not assigned to role r1 then
36 targetSnap ←− Snap.delegate(u1, r1, u2, delegType);
37 PLC ←− selectPolicies(P, role delegation, r1);
38 else
39 d ←− false;
40 end
41 end
42 case role revocation do
43 targetSnap ←− Snap.revoke(u1,r1, d1);
44 PLC ←− selectPolicies(P, revocation, r1);
45 end
46 case user-to-role assignment do
47 targetSnap ←− Snap.assignUser(u1, r1);
48 PLC ←− selectPolicies(P, role assignment, r1);
49 end
50 case role-to-permission assignment do
51 targetSnap ←− Snap.assignPermission(p1, r1);
52 PLC ←− selectPolicies(P, permission assignment, p1);
53 end
54 end
55 if d is null then d ←− targetSnap.check(PLC);
56 if d then Snap ←− targetSnap;
57 return d;
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Figure 6.1: An Overview of the model-driven enforcement process in case of AC-
request

as assigning a role to a user or to a permission. The procedure for checking an AC
request is shown in algorithm 1. This algorithm takes as input an access request
a, the current system state Snap at the time of the request and the list of policies
P and returns an access decision d (allowed/denied).

After initializing variable PLC, representing the list of policies to check, to an
empty list, and targetSnap to null, the algorithm goes through a switch state-
ment, depending on the type of the access request. In each alternative branch, the
algorithm creates targetSnap as follows.

Role activation: in this case the request consists of user u1 sending a request
to activate role r1 (lines 4–11). First, the SnapProcessor checks if role r1 is enabled
for user u1. If it is the case, the SnapProcessor builds the TargetSnap by calling
the activateRole operation of the Session class. This operation removes role r1
from the list of enabled roles and adds this role to the list of active roles for user u1.
If a precedence policy is specified for role r1, the operation activateRole enables
the list of roles which should be enabled for other users, accordingly. Then, the
SnapProcessor retrieves list PLC from the list of policies P by calling operation
selectPolicies (line 7). The list of policies PLC is selected based on the type (role
activation) and on the parameters (u1, r1) of the AC request. Table 6.1 shows
the list of policies to check for each type of AC request. In this case, list PLC will
contain policies of type “cardinality on role activation” and “dynamic separation
of duty for conflicting users and roles”. To be checked, the parameters of these
policies should match at least one of the AC request parameters. For instance, a
dynamic separation of duty for conflicting users policy should have user u1 among
the list of conflicting users. If the requested role is disabled, the SnapProcessor
follows the else branch in lines 8–9 and the decision d is set to false.

Access to a resource: in this case the request consists of user u1 with role
r1 sending a request to perform operation op1 on object o1 (lines 12–33). First,
SnapProcessor checks if role r1 is active in the current session of user u1 (line 13).
If role r1 is not active, the SnapProcessor follows the else branch in line 30 and the
decision d is set to false. However, if the role is active, SnapProcessor selects, among
the list of permissions assigned to role r1, permission p1 which abstracts operation
op1 and object o1 (line 14). Then, if the selected permission p1 is assigned to role
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Table 6.1: Checked policies for each type of AC request/event

Prq RH Card Prec Dep SoD BoD Context DelegRev

AC AS S DCR DCU Obj Op His T L

Role activation X X X
Access to
a resource X X X X
Role delegation X X X X X
Role revocation X X X X
Administrative
operation

X X X X X X

User
authentication X X X
User
change location X
User
disconnection X

Legend. Prq: Prerequisite; RH: Role Hierarchy; Card AC: Cardinality on role activation;
Card AS: Cardinality on assignment relations; Prec: Precedence; Dep: Dependency; S: Static
SoD; DCR: Dynamic SoD on conflicting roles; DCU: Dynamic SoD on conflicting users; Obj:
Object-based DSoD; Op: Operational-based DSoD, His: History-based DSoD, Deleg: Dele-
gation, Rev: Revocation.

r1 and is enabled, the SnapProcessor checks whether role r1 has been delegated
to user u1 (line 17). However, if permission p1 is not assigned to role r1, the
SnapProcessor follows the if branch at line 27. If the user acquired the role (r1)
through a delegation, the SnapProcessor verifies if the delegation is of type partial
(see section 2.2.7.1 in chapter 2) and if permission p1 belongs to the set of delegated
permissions. If it is the case or if the delegation is of type total, the SnapProcessor
builds the TargetSnap by adding a new instance of type History to the current
Snap (line 24). This instance is obtained by calling the operation addHistory which
records user u1 who performed operation op1 on object o1 according to permission
p1, while having role r1. Then, the SnapProcessor retrieves list PLC (line 25); this
is selected based on the type (access to a resource) and on the parameters (r1,
p1, op1 , and o1) of the AC request. As shown in table 6.1, list PLC will contain
four types of policies: object-based, operational-based, history-based separation of
duty, and binding of duty (BoD). To be checked, the parameters of these policies
should match at least one of the AC request parameters. For instance, a BoD
policy should have permission p1 among the list of bounded permissions.

Role delegation: in this case the request consists of user u1 sending a request
to delegate her role r1 to user u2 (lines 34–41). First, the SnapProcessor checks if
user u2 is already assigned to role r1. If it is the case, the SnapProcessor follows
the else branch in line 38 and the decision d is set to false. However, if user
u2 is not assigned to role r1, the SnapProcessor builds the TargetSnap by adding
role r1 to the list of delegated roles for user u2 and creating a new instance of
type Delegation. The TargetSnap is built by calling the delegate operation of
the Session class. Then, the SnapProcessor retrieves list PLC from the list of
policies P by calling operation selectPolicies. The list of policies PLC is selected
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based on the type (role delegation) and on the parameters (u1, r1, r2) of the AC
request. As shown in table 6.1, list PLC will contain the prerequisite, role hierarchy,
cardinality on role assignment, static separation of duty on conflicting roles and
delegation policies. To be checked, the parameters of these policies should match at
least one of the AC request parameters. For instance, a prerequisite policy should
have role r1 among the list of roles in its parameters.

Role revocation: in this case the request consists of user u1 sending a request
to revoke delegation d1 (lines 42–45). We assume user u2 acquired role r2 through
the delegation d2. The SnapProcessor builds the TargetSnap by calling the revoke

operation in line 43. This delegation removes role r2 from the list of delegated
roles assigned to user u2, sets the attribute isRevoked of delegation d1 to true,
and records the revoking user (u1). Then, the SnapProcessor retrieves list PLC

from the list of policies P by calling operation selectPolicies. The list of policies
PLC is selected based on the type (role revocation) and on the parameters (u2,
r2 and d1) of the AC request. As shown in table 6.1, list PLC will contain the
prerequisite, role hierarchy, cardinality on role assignment and revocation policies.
To be checked, the parameters of these policies should match at least one of the
AC request parameters. For instance, a role hierarchy policy should have role r2
among the list of roles in its parameter.

Administrative operation: in this case the request consists of an admin
sending a request to assign role r1 to user u1 (lines 46–49), or role r1 to permission
p1 (lines 50–53). The SnapProcessor builds the TargetSnap by adding the assign-
ment relation. The role-to-user assignment is obtained by calling the operation
assignUser in line 47. The role-to-permission assignment is obtained by calling
the operation assignPermission in line 51. Then, the SnapProcessor retrieves list
PLC from the list of policies P by calling operation selectPolicies. The list of poli-
cies PLC is selected based on the type (role assignment or permission assignment)
and on the parameter (r1 or p1 respectively) of the AC request. Based on the type
of administrative operation, i.e., user-to-role or role-to-permission assignment, list
PLC will contain policies specified at the role or at the permission level, respectively.
As shown in table 6.1, list PLC will contain the prerequisite, role hierarchy, cardi-
nality on role assignment, static separation of duty and context-based policies. To
be checked, the parameters of these policies should match at least one of the AC
request parameters. For instance, a static separation of duty on conflicting roles
policy should have role r1 among the list of conflicting roles.

At the end of the switch case, if the decision variable d has no value, the
algorithms invokes the OCLChecker, to check the policies in PLC on the TargetSnap.
The result of invocation of method check will contain the access decision. If the
access has been granted (line 56), the SnapProcessor updates the current Snap
with the value of TargetSnap, to update the system state (from the point of view
of access control) with the operation that is about to be performed. At the end,
the access decision is returned.
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6.1.2 Policy Enforcement upon receiving AC-related Event
Enforcement

Whenever an AC-related event is triggered, the model-driven enforcement frame-
work has to update the current system state (Snap), and check whether the AC
policies are still satisfied. An AC-related event can be of type user authentica-
tion, user change location or user disconnection: the user authentication event
corresponds to the case when a new user is connected; the user change location
event corresponds to the case when a connected user changes her location; the
user disconnection event corresponds to the case when a user is disconnected due
to network issues. The procedure for checking an access request is shown in algo-
rithm 2. This algorithm takes as input an AC-related event e, the current system
state Snap at the time of the notification and the list of policies P and returns an
updated snap USnap. In what follows we explain the enforcement process for each
type of AC-related event.

User authentication: when a user logins correctly, we assume the enforce-
ment framework to receive a notification from an authentication server, which
checks the user credentials and allows her to authenticate. This notification has
the form {u1, s1, loc} where u1 corresponds to the identifier of the user being
authenticated; s1 corresponds to the token identifier; and loc corresponds to the
current position of the authenticated user1. After receiving the notification, the
SnapProcessor updates the Snap by adding a new session for the authenticated
user and updates the user location (line 5). Then, the SnapProcessor enables all
the roles assigned to user u1 and retrieves list PLC of policies to check from the
list of policies P (line 6). The PLC is selected based on the type of the AC-related
event (in this case user authentication) and on the set of enabled roles for user
u1 within the created session. Table 6.1 shows the list of policies to be checked for
each type of AC-related event. In this case, list PLC will contain the precedence
and context-based policies.

Then, for each selected policy, the OCLchecker verifies whether the policy is
satisfied. In case a policy has been violated, the SnapProcessor disables its corre-
sponding role (lines 8–12).

User change location: we assume the existence of a geo-localization server
which keeps track of the user position. Whenever a user changes her location, the
geo-localization server sends a notification to the enforcement framework. This
notification has the form {u1, loc1, loc2} where loc1 and loc2 correspond to the
previous and to the new position of user u1, respectively. After receiving the noti-
fication for a user change location event, the SnapProcessor updates Snap by calling
operation updateUserLoc in line 17. Then, the SnapProcessor retrieves list PLC of
policies to check from the list of policies P by calling operation selectPolicies.

1We assume that the position of the user is obtained by means of a GPS. In case the user’s
position is not known, the notification will have the form {u1, s1}.
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The list PLC is selected based on the type of the AC-related event (in this case
user change location). As shown in table 6.1, list PLC will contain location-based
policies1. If a violation has been reported, the SnapProcessor updates Snap ac-
cording to the state of the role parameter of the policy (lines 22–26). If the role is
enabled (respectively active), the SnapProcessor will disable (respectively deacti-
vate) it from all the sessions of user u1 by calling operation disable (respectively
deactivate) of the Session class.

Algorithm 2: Check AC-related Event
input : e = AC-related event;

Snap = current system state;
P = list of policies;

output: USnap = updated system state;

1 PLC ←− ∅; ; // list of policies to check

2 USnap ←− Snap; ; // updated Sanp

3 switch e do
4 case user authentication do
5 USnap.addSession (u1, s1, loc);
6 PLC ←− selectPolicies(P, user authentication);
7 USnap.enableAllRoles (u1,s1);
8 foreach role r in enabledRoles do
9 foreach policy p in PLC do

10 if r ∈ p.roles and p is not satisfied then
11 USnap.disable(r,s1);
12 end
13 end
14 end
15 end
16 case user change location do
17 USnap.updateUserLoc(u1, loc1, loc2);
18 PLC ←− selectPolicies(P, user change location);
19 foreach role r in u1 .roles do
20 foreach policy p in PLC do
21 if r ∈ p.roles and p is not satisfied then
22 if r is enabled in s1 then
23 USnap.disable(r, u1)
24 else
25 USnap.deactivate(r, u1)
26 end
27 end
28 end
29 end
30 end
31 case user disconnection do
32 USnap.removeSession(u1, s1);
33 PLC ←− selectPolicies(P, user disconnection);
34 foreach policy p in PLC do
35 if p is not satisfied then
36 USnap.disable(p.role) from all sessions;
37 USnap.deactivate(p.role) from all sessions;
38 end
39 end
40 end
41 end

User disconnection event: to logout, a user sends a request to authentication
server which forwards it to the enforcement mechanism. This request is checked

1For simplicity, we only consider location-based policies on role enabling; this type of policy
defines the location where a given role should be enabled.
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following the same process explained in section 6.1.1. However, a user can be
disconnected due to network issues. In this case, we assume the authentication
server to send a notification to the enforcement framework to update the current
system state. This notification has the form {u1, s1}. After receiving a notification
for a user disconnection, the SnapProcessor removes session s1 of the involved user
(line 32) and retrieves list PLC of policies to check from the list of policies P by
calling operation selectPolicies in line 33. The list PLC is selected based on
the type of the AC-related event (in this case user disconnection). As shown in
table 6.1, list PLC will contain dependency policies (see chapter 2).

In this case, the SnapProcessor updates the Snap by disabling and deactivating
role r1 from all sessions in the system (lines 36 and 37).

6.2 Integrating the Enforcement Framework into a
Web Application Architecture

We have integrated the enforcement framework into the architecture of a Web ap-
plication developed by our industrial partner. The system architecture comprises
four components: a Web application, a set of micro-services, a geo-localization
server, and an authentication server. The Web application allows a user to request
access to resources exposed by micro-service(s). The geo-localization server records
the user’s position. The authentication server allows a user to connect to the Web
application based on her identity. Once a user is authenticated, she can send a re-
quest to access resources or performs operations, which can be seen as AC request.
As mentioned previously, a user request is allowed or denied based on a set of au-
thorization policies. To enable the enforcement of these policies, we implemented
the model-driven enforcement approach introduced in section 6.1 as an authoriza-
tion server composed of the SnapProcessor and the OCLChecker. We also enriched
the architecture with a proxy which will act as intermediate between the user, the
authorization server and the set of micro-services. The complete architecture is
illustrated in figure 6.2. For simplicity, we consider a system configuration with
two micro-services M1 and M2. The enforcement components are:

• an authorization server that checks whether an authenticated user can access
the resources exposed by the set of micro-services;

• AC_data corresponds to local access control data and it includes the Snap
and the RBAC policies expressed as OCL constraints;

• proxy is a gateway service which intercepts user requests, and forwards them
to the involved micro-service(s) if the request has been granted.

Although the proposed enforcement architecture has been designed based on the
architectural specifications provided by our industrial partner, it can be generalized
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Figure 6.2: An overview of the proposed enforcement architecture

and integrated into other Web applications. More specifically, the proxy can be
integrated seamlessly within existing load balancers, which are very common in
Web applications [70]; the authorization server and the AC_data are additional
components that can be deployed on any Web application server.

Implementation

The core of the enforcement framework is a component, called MORRO (MOdel-
driven fRamework for Run-time of RBAC pOlicies), which includes the authoriza-
tion server and the proxy. MORRO has been implemented in Java with a micro-
service based architecture using the SpringBoot [71] framework and the ZuuL [72]
proxy. The implementation of the authorization server makes use of the Eclipse
Modeling Framework (EMF) and Eclipse OCL [45]. The Snap is expressed as an
Ecore [73] model.

6.3 Evaluation

We evaluated the performance of our model-driven run-time enforcement frame-
work MORRO for enforcing RBAC policies. Our goal is to evaluate the time
needed to make an access decision, to assess the applicability of the MORRO
framework in a real application when considering real AC configurations: we want
to show that MORRO can be adopted without considerably impacting on the
overall performance (in terms of response time) of a Web application. We also
aim to assess how the access decision time in MORRO is affected by the size of
the system (from the point of view of access control); i.e., we want to evaluate its
scalability under various configurations, as defined by the system parameters.

More specifically, we answer the following research questions:
RQ1: how does MORRO perform on a real industrial system under different

scenarios with respect to each type of policy?
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RQ2: how does the authorization server scale with respect to each type of
policy?

RQ3: what is the communication overhead between the authorization server
and the proxy in case of an AC request, i.e., the time taken to dispatch an au-
thorization request from the proxy to the authorization server, plus the time to
propagate the access decision from the authorization server back to the proxy.

6.3.1 Evaluation Settings

To evaluate our approach we apply it to an industrial application; we deployed
MORRO onto a micro-service-based architecture provided by our industrial part-
ner HITEC Luxembourg. This architecture was running on a machine equipped
with a Quad-core 8GHz CPU and 25 GB of memory; we used this machine to
run all the experiments. All time measurement were performed by invoking the
System.nanoTime() method of the standard Java library.

Based on the AC configuration of the test application defined by our partner,
we consider two types of AC requests, role activation and access to a resource, and
two types of AC-related event, user authentication and user change location.

To answerRQ1 (section 6.3.2), we considered instances of the GemRBAC+CTX
model based on real configurations provided by our industrial partner. To answer
RQ2 (section 6.3.3) we used synthesized model instances, to evaluate the scalabil-
ity in terms of various system configuration parameters; this synthesized instances
were produced using an internally-developed generator.

6.3.2 Performance On a Real Industrial System

To address RQ1, we decompose it into subquestions which take into account dif-
ferent scenarios considering the type of AC requests/events. For each scenario, we
assess the performance with respect to 1) a basic system configuration, i.e., an AC
configuration that is only determined by role assignment and activation relations;
2) configurations that add to the basic system configuration additional policies to
be checked (i.e., selected by the SnapProcessor), as determined by the type and the
parameters of the AC request/event (as described in section 6.1) . The research
subquestions are listed below:

How does MORRO perform on a real industrial system:
(RQ1.1) in the context of an AC request of type access to a resource:

• with respect to a basic system configuration,

• with respect to a DSoD policy,

• with respect to a BoD policy?

(RQ1.2) in the context of an AC request of type role activation:

• with respect to a basic system configuration,
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• with respect to a cardinality policy,

• with respect to a DSoD policy?

(RQ1.3) in the context of an AC-related event of type user authentication:

• with respect to a basic system configuration,

• with respect to a precedence-based policy,

• with respect to a time-based policy,

• with respect to a location-based policy?

(RQ1.4) in the context of an AC-related event of type user change location:

• with respect to a basic system configuration,

• with respect to a location-based policy?

In case of an AC request, we measure the access decision time within the
authorization server, i.e., the time difference from the time the authorization server
receives an AC request to the time it yields an access decision, for various system
configurations. We also measure the access decision time within the proxy (which
will be used further on to answer RQ3), which is the time difference from the time
the proxy receives an AC request from the user until the time the proxy receives
an access decision from the authorization server. In measuring the access decision
time, we took into account the fact that it can be affected by various factors
related to the Java-based environment on which it runs, such as garbage collection
and optimization in the JVM [74]. We also considered the noise introduced by the
network-based communication between the proxy and the authorization server. For
these reasons, for each system configuration, we sent ten AC-requests. However,
we discarded the value for the first one, since it is affected by the loading time
of the run-time libraries. Hence, we report the average value over checking the
nine subsequent requests. To keep the same instance over the different runs, we
designed the (initial) AC configuration of the system such that the access decision
for each request evaluates to deny.

In case of an AC-related event, we measure the execution time needed to update
the current system state (Snap), for various system configurations; the execution
time is the time difference from the time the authorization server receives a no-
tification for an AC-related event until the time it updates the current system
state. Differently from the case of an AC request, processing the notifications of
AC-related events is only affected by the intrinsic noise due to the Java-based en-
vironment, since there is no interaction with the proxy. We were able to achieve
stable results by sending only five notifications. As above, since the first value is
affected by the loading of the run-time libraries, we discarded it and report the
average value over processing the four subsequent notifications.
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6.3.2.1 System Configuration

We considered a real AC configuration used by our industrial partner, consisting
of 1648 users, 396 roles, 53 permissions, 300 objects and 4 operations (create, read,
update, and delete). We defined a set of GemRBAC-DSL policies in collaboration
with the security engineers of our partners; the corresponding sanitized, natural-
language versions of these policies are:

PL1: A user is not allowed to activate more than three roles at the same time.
This policy can be checked using the OCL invariant CardinalityActivation of
class Session introduced on page 24.

PL2: A user can activate either role r1 or role r2. This policy can be checked
using the OCL invariant DSoDCR of class Session introduced on page 27.

PL3: A user is allowed to activate roles r1 and r2 as long as she does not
perform all operations (op1, op2) of a business task at the same resource. This
policy can be checked using the OCL invariant DSoDHis of class Session introduced
on page 29.

PL4: Role r1 is enabled only if role r2 is active. This policy can be checked
using the OCL invariant RoleEnablingPrecedence of class Session introduced on
page 25.

PL5: Role r1 is enabled if the user is located inside ZoneA. This policy can
be checked using the OCL invariant logicalLocationRoleAssign of class Session

introduced on page 40.
PL6: Permissions p1 and p2 should be performed by the same subject1. This

policy can be checked using the OCL invariant SubjectBoD of class Role introduced
on page 30.

PL7: Role p1 can be activated only during the time interval [d1, d2]. This pol-
icy can be checked using the OCL invariant AbsoluteBTIRoleEnab of class Session
introduced on page 35.

6.3.2.2 AC Request: Access to a Resource

To answer RQ1.1, we consider the case when user u1 sends a request to perform
operation op1 on object o1; u1 activates role r1 within session s1 at the time of
the request. We assume that both object o1 and operation op1 are assigned to
permission p1. Moreover, we consider two main scenarios: 1) role r1 is assigned to
user u1, 2) role r2 has been delegated to user u1, through a partial delegation.

First, we consider a basic system configuration in which only AC assignment
and activation relations are in place. For scenario 1, we focus on three parameters:
the number of sessions in the system, the number of active roles in session s1, and
the number of permissions assigned to role r1.

As for scenario 2, we replace the last parameter with the number of permis-
sions delegated to user u1. We measure the access decision time for different

1The word subject refers to a user having activated a certain role.
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configurations of the system state; these configurations are obtained by varying
one parameter and fixing the other two.

All system configurations we have considered, correspond to the worst case
scenario when: i) all roles are assigned to all users, and ii) all users are connected
and activate all their assigned roles. Figure 6.3 reports1 the access decision time
within the authorization server (indicated with the mark ) with respect to a basic
system configuration in case of both role assignment and delegation scenarios.

By fixing the number of active roles in session s1 to 396 and the number of
sessions in the system to 1648, we vary the number of permissions assigned to
role r1 from 5 to 53, considering the scenarios when 10%, 30%, 50%, 70% and
100% of the total number of permissions are assigned to role r1 or delegated to
user u1. We fixed the number of permissions assigned to role r1 to 53 (maximum
number of permissions) for the delegation scenario. Figures 6.3a and 6.3b show the
access decision time, within the authorization server, with respect to the number
of permissions assigned to role r1 and with respect to the number of permissions
delegated to user u1, respectively. For each figure, the y-axis refers to the access de-
cision time while the x-axis shows the parameter being varied (in this case number
of permissions) through various configurations. The time needed to make an access
decision with respect to the number of permissions ranges from 37ms to 50ms for
the assignment scenario and from 48ms to 50ms for the delegation scenario.

By fixing the number of sessions in the system to 1648 and the number of
permissions assigned to role r1 to 42 (value provided by our partner), we vary the
number of active roles in session s1 from 39 to 396. We follow the same percentages
used for the number of permissions assigned to role r1 when varying the number
of active roles in session s1. As for the delegation scenario, we fixed the number
of delegated permissions to user u1 to 41; we consider the worst case scenario for
a partial2 delegation where the set of delegated permissions corresponds to the
biggest subset of the permissions assigned to the delegated role.
More specifically, the number of the permissions being delegated is equal to the
total number of permissions assigned to the role minus one (42-1 in this case).

Figures 6.3c and 6.3d show the access decision time, within the authorization
server, with respect to the number of active roles in session s1 for the role assign-
ment and delegation scenarios, respectively. The time needed to make an access
decision with respect to the number of active roles in session s1 ranges from 36ms

to 41ms for the assignment scenario and from 43ms to 54ms for the delegation
scenario.

By fixing the number of active roles in session s1 to 396 and the number of per-
missions assigned to role r1 to 42, we vary the number of sessions in the system. We
consider the scenarios when 10%, 30%, 50%, 70% and 100% of users are connected

1The mark shown in this figure and in all the subsequent ones indicates the access decision
time within the proxy and will be used to answer RQ3 in section 6.3.4.

2We recall that in partial delegation, a user delegates only a subset of the role permissions.
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Figure 6.3: Access decision time for an AC-request of type access to a resource in
case of role assignment ((a), (c), (e)) and delegation ((b), (d), (f)) scenarios with
respect to a basic system configuration
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Figure 6.4: Access decision time for an AC-request of type access to a resource with
respect to a History-based DSoD policy in case of role assignment ((a) and (c)) and
delegation ((b) and (d)) scenarios

using one device, and the scenario when all users all connected using a second de-
vice. As for the delegation scenario, we fixed the number of delegated permissions
to user u1 to 41. Figures 6.3e and 6.3f show the access decision time, within the
authorization server, with respect to the number of sessions in the system for the
role assignment and delegation scenarios, respectively. The time needed to make
an access decision with respect to the number of session ranges from 38ms to 50ms

for the assignment scenario and from 39ms to 46ms for the delegation scenario.
We also consider a system configuration with a DSoD policy and we observe the

decision time while varying the system state. As shown in table 6.1, three types
of DSoD policies: object-based, operational-based and history-based, are checked
in case of an AC request of type access to a resource. For a set of conflicting roles
only one of these policies should be specified. In our case, we consider the history-
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based DSoD policy (PL3 in section 6.3.2.1) as it is a combination of the object and
operational-based. For this case, we focus on four parameters: 1) the number of
active roles in the session of the user who made the request, 2) the number of logs,
referred to here after as roleLogs, associated with the conflicting roles and with the
user who made the request, 3) the number of objects within the set of logs, and
4) the number of operations in the system. We fixed the total number of logs in
roleLogs to 1k (500 logs per conflicting role). As for the number of operations, we
consider the number of operations in the system (4 operations in this case). As
mentioned previously, we also consider the worst case scenario when: i) all roles are
assigned to all users, and ii) all users are connected and activate all their assigned
roles.

By fixing the number of objects in roleLogs to 300 (maximum number of ob-
jects), we vary the number of active roles in session s1 from 2 to 396. As a DSoD
policy is checked only if the user is activating at least two conflicting roles, both
roles r1 and r2 are active in various system configurations used when checking pol-
icy PL3. We also consider the case when user u1 has already performed operation
op2 on object o1. Therefore, by performing the requested operation, policy PL3
will be violated and the access will be denied. Figures 6.4a and 6.4b show the
access decision time related to a system configuration with policy PL3, within the
authorization server, with respect to the number of active roles in session s1, for
the role assignment and delegation scenarios, respectively. The time needed to
make an access decision with respect to the number of active roles in session s1
ranges from 35ms to 39ms for the assignment scenario and from 40ms to 63ms

for the delegation scenario.
By fixing the number of active roles in session s1 to 396, we vary the number

of objects in roleLogs from 50 to 300 (maximum number of objects). Figures 6.4c
and 6.4d show the access decision time related to a system configuration with
policy PL3, within the authorization server, with respect to the number of objects
in roleLogs, for the role assignment and delegation scenarios, respectively. The
time needed to make an access decision with respect to the number of objects in
roleLogs ranges from 31ms to 45ms for the assignment scenario and from 46ms to
53ms for the delegation scenario.

We also consider a system configuration with BoD policy. As shown in table 6.1,
two types of BoD policies (role-based and subject-based) are checked in case of an
AC request of type access to a resource. For a set of bounded permissions only
one type of these policies should be specified. In our case, we consider the subject-
based BoD policy (PL6 in section 6.3.2.1). To evaluate this policy, we consider a
system configuration where each user is assigned to all roles, each role is assigned
to all permissions, and all users are connected and activate all their roles. We fix
to 1k the number of logs, related to a given process1, and assigned to user u1 while

1We recall that BoD constraints are usually defined in the context of process-based workflow
systems.
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activating role r1, and we measure the access decision time for the assignment and
delegation scenarios. The time needed to make an access decision with respect to
BoD policy is equal to 38ms for the role assignment scenario, and to 44ms for the
role delegation scenario.

The answer to RQ1.1 is that the access decision time is almost constant for
the evaluation of an AC-request of type access to a resource applied to various
system configurations: 1) basic, 2) with respect to a history-based DSoD policy,
3) with respect to a subject-based BoD policy. The small variations shown in
the previous plots can be considered random and correspond to noise introduce
by the underlying Java run-time system (which can also affect the actual time
measurements). Moreover, the access decision time is slightly higher for the
role delegation scenario.

Overall, the access decision time within the authorization server is less than
64ms for the various system configurations described above, while considering
both scenarios.

6.3.2.3 AC Request: Role Activation

To answer RQ1.2, we consider the case when user u1 sends a request to activate
role r1 within session s1.

First, we consider a basic system configuration in which only AC assignment
and activation relations are in place. For this case, we focus on one parameter,
the number of enabled roles in session s1. Notice that the list of roles enabled in
a session is retrieved from the list of roles assigned to its corresponding user. We
consider a system configuration where all roles are assigned to all users. Then,
we vary the number of enabled roles within session s1 from 39 to 396 (maximum
number of roles); we consider the scenarios when 10%, 30%, 50%, 70% and 100% of
the roles assigned to user u1 are enabled in session s1. We recall that to evaluate an
AC-request of type role activation, the authorization server builds the targetSnap
and checks if the built system state satisfies the RBAC policies expressed as OCL
constraints. When considering a system configuration with only assignment and
activation relations, the access is always granted if the requested role is enabled. To
avoid the noise in the measurements due to the loading of various Java libraries in
the system, for each scenario, we send seven AC requests of type role activation for
various roles and we report the time needed to evaluate the last request. Figure 6.5a
shows the access decision time, within the authorization server, with respect to the
number of enabled roles in session s1. The time needed to make an access decision
for an AC-request of type role activation ranges from 9ms to 11ms.

We also consider a system configuration with a cardinality on role activation
policy. We use the same basic system configuration where all roles are enabled and
we consider the cardinality policy (PL1). For this type of policy, we only control
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Figure 6.5: Access decision time for an AC-request of type role activation

the number of active roles in session s1; we vary this parameter from 39 to 395
(maximum number of roles minus one). Notice that role r1 is not active and is
enabled in all system instances. Figure 6.5c shows the access decision time, within
the authorization server, with respect to the number of active roles in session
s1. The time needed to make an access decision for an AC-request of type role
activation with respect to a cardinality on role activation policy (PL1) ranges
from 16ms to 18ms.

We also consider a system configuration with a DSoD on conflicting roles
(DSoDCR). We keep the same instances used for the evaluation of an access re-
source of type role activation described above and we replace the cardinality policy
(PL1) with the DSoDCR policy (PL2). Figure 6.5b shows the access decision time
while varying the number of active roles in session s1. The time needed to make an
access decision for an AC-request of type role activation with respect to a DSoDCR
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Figure 6.6: Execution time for an AC-related event of type user authentication
with respect to a basic system configuration

(PL2) ranges from 7ms to 13ms.

The answer to RQ1.2 is that the access decision time is almost constant for the
evaluation of an AC-request of type role activation applied to various system
configurations: 1) basic, 2) with respect to a cardinality policy, 3) with respect
to a DSoDCR policy. Moreover, the time needed to evaluate an AC request on
role activation with respect to a cardinality policy is slightly higher than the
time needed to evaluate the same request with respect to a DSoDCR policy.
Overall, the access decision time is less than 19ms.

6.3.2.4 AC-related Event: User Authentication

To answer RQ1.3, we consider the case when the authentication server sends a
notification to the authorization server to create a new session and to enable the
roles assigned to the authenticated user within the created session. We consider
two main scenarios: 1) the user position is not known (the notification has the
form {u1, s1} where u1 refers to the user id and s1 refers to the id of the session
to be created for u1), 2) the user position is known (the notification has the form
{u1, s1, loc1} where loc1 corresponds to the authenticated user’s position . For the
sake of simplicity, we only consider locations of type logical. In what follows we
consider the worst case configuration scenario for role assignment and activation
relations; all users, excluding user u1, are connected and activate all their assigned
roles.

First, we consider a basic system configuration in which only AC assignment
and activation relations are in place. We vary the number of roles assigned to user
u1 from 39 to 396 (maximum number of roles). Figures 6.6a and 6.6b report the
execution time needed to create a new session for both scenarios depending on the
user’s position availability. The execution time ranges from 6ms to 7ms when the
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Figure 6.7: Execution time for an AC-related event of type user authentication
with respect to a precedence policy depending on the user’s position availability (the
user position is known (a) and (c) and not known in (b) and (d))

user’s position is not known, and from 7ms to 9ms when the user’s position is
known.

We also consider a system configuration with a precedence policy. In this case,
we consider the precedence policy PL4 defined in section 6.3.2.1. To achieve a
valid system state with respect to policy PL4, user u1 should not be member of
role r2. Moreover, we consider the worst case scenario when role r2 is not active in
any session. To evaluate this policy, we focus on two parameters: the number of
roles assigned to user u1 and the number of sessions in the system.

By fixing the number of sessions in the system to 1647 (this number corresponds
to the case when all users excluding user u1 are connected), we vary the number
of roles assigned to user u1 from 39 to 395. Figures 6.7a and 6.7b report the
execution time needed to create a new session for both scenarios depending on
the user’s position availability. The execution time ranges from 103ms to 130ms

when the user’s position is not known, and from 112ms to 124ms when the user’s
position is known.
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By fixing the number of roles assigned to user u1 to 395 (role r2 is excluded),
we vary the number of sessions in the system. We consider the scenarios when
10%, 30%, 50%, 70% and 100% of users, excluding user u1 are connected using
one device, and the scenario when all users all connected using a second device.
Figures 6.7c and 6.7d report the execution time needed to create a new session for
both scenarios depending on the user’s position availability. The execution time
ranges from 87ms to 490ms when the user’s position is not known, and from 69ms

to 512ms when the user’s position is known.
We also consider a system configuration with a time-based policy on role en-

abling. We recall that a temporal context in the GemRBAC+CTX model is
composed of time expressions and each time expression is composed of absolute
and/or relative expressions. For the sake of simplicity, we only consider time ex-
pressions composed of absolute time intervals. In this case, we consider a system
configuration with a time-based policy (PL7 in section 6.3.2.1). We consider the
worst case scenario for checking PL7 in which the current time (i.e., the time when
user u1 made the request) is not contained in any interval contained in the role
enabling context. We focus on three parameters: the number of contexts where
role r1 can be enabled, the number of time expressions contained in these contexts,
and the number of time intervals contained in these time expressions. For each pa-
rameter, we measure the execution time for different configurations of the system
state; these configurations are obtained by varying one parameter and fixing the
other two.

We consider a system configuration with one enabling context assigned to role
r1; this context is composed of one time expression. We vary the number of time
intervals within this time expression from 1 to 100, with a 10 step increment.
Figures 6.8a and 6.8b report the execution time needed to create a new session for
both scenarios depending on the user’s position availability. The execution time
ranges from 26ms to 39ms when the user’s position is not known, and from 26ms

to 35ms when the user’s position is known.
By fixing the number of time intervals contained in each time expressions to

10 and the number of role enabling contexts assigned to role r1 to 1, we vary
the number of time expressions within this context from 1 to 100, with a 10 step
increment. Figures 6.8c and 6.8d report the execution time needed to create a
new session for both scenarios depending on the user’s position availability. The
execution time ranges from 26ms to 194ms when the user’s position is not known,
and from 29ms to 208ms when the user’s position is known.

By fixing the number of time expressions contained in each role enabling con-
texts assigned to role r1 to 10, and time intervals contained in each time expression
to 10, we vary the number of role enabling contexts from 10 to 100, with a 10 step
increment. Figures 6.8e and 6.8f report the execution time needed to create a new
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Figure 6.8: Execution time for an AC-related event of type user authentication
with respect to a time-based policy depending on the user’s position availability (the
user position is known in (a), (c) and (e) and not known in (b), (d) and (e))
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Figure 6.9: Execution time for an AC-related event of type user authentication
with respect to a location-based policy

session for both scenarios depending on the user’s position availability. The execu-
tion time ranges from 97ms to 250ms when the user’s position is not known, and
from 127ms to 216ms when the user’s position is known.

We also consider a system configuration with a location-based policy. We re-
call that a spatial context in the GemRBAC+CTX model is composed of a set of
locations which can be of type physical, logical or relative. For the sake of simplic-
ity, we only consider locations of type logical. In this case, we consider a system
configuration with the location-based policy (PL5 in section 6.3.2.1). We consider
the worst case scenario for checking PL5 in which the user position (at the time
when user u1 made the request) is not contained in any of the logical locations of
the role enabling context assigned to role r1. We focus on three parameters: the
number of contexts where role r1 can be enabled, the number of logical locations
contained in these contexts, and the number of locations associated with the user.
For each parameter, we measure the execution time for different configurations of
the system state; these configurations are obtained by varying one parameter and
fixing the other two.
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We consider a system configuration with one user’s location and one enabling
context assigned to role r1. We vary the number of locations within this role
enabling context 10 to 100, with a 10 step increment. Figure 6.9a shows the
execution time needed to create a new session. The execution time ranges from
19ms to 26ms.

By fixing the number of locations assigned to user u1 to 1 and the number of
locations contained in each role enabling context assigned to role r1 to 10, we vary
the number of role enabling contexts assigned to role r1 from 10 to 100, with a
10 step increment. Figure 6.9b shows the execution time needed to create a new
session. The execution time ranges from 20ms to 30ms.

By fixing the number of role enabling contexts assigned to role r1 to 1, and
the number of locations contained in this context to 20, we vary the number of
locations assigned to user u1 from 1 to 100, with a 10 step increment. Figure 6.9c
shows the execution time needed to create a new session. The execution time
ranges from 20ms to 31ms.

The answer to RQ1.3 is that the execution time for an AC-related event of
type user authentication is

• constant for a basic system configuration with respect to the number of
roles assigned to user u1;

• constant with respect to the number of roles assigned to user u1 and
linear with respect to the number of sessions, for a system configuration
with a precedence policy;

• constant with respect to the number of time intervals in a time expression
and linear with respect to the number of role context enabling and with
respect to the number of time expressions contained in a role context
enabling, for a system configuration with a time-based policy;

• constant with respect to the number of role enabling contexts, the number
of locations contained in the role enabling context, and the number of
locations associated with a the user who made the request, for a system
configuration with a location-based policy.

We also report that the execution time is not affected by the user’s position
availability for the basic configuration system and for a system configuration
with a precedence or time-based policy; however, the execution time slightly
increases when the user position is known.

Overall, the maximum execution time we measured was 512ms, obtained
for a system configuration with a precedence policy and when all users are
connected using two devices.
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Figure 6.10: Execution time for an AC-related event of type user change location
with respect to a system basic configuration

6.3.2.5 AC-related Event: User Change Location

To answer RQ1.4, we consider the case when the geo-localization server sends a
notification to the authorization server to update the user’s position in Snap. This
notification has the form (u1, loc1,loc2), where loc1 and loc2 refer to the previous
and the new position of user u1.

First, we consider a basic system configuration in which only AC assignment
and activation relations are in place. We vary the number of locations assigned to
user u1 from 1 to 100, with a 10 step increment. Figure 6.10 reports the execution
time needed to update the user’s position in case of an AC-related-event of type
user change location. The execution time ranges from 6ms to 10ms.

We also consider a system configuration with a location-based policy. In this
case, we consider various system configurations used for the AC-related event user
authentication with respect to policy PL5 (section 6.3.2.4).

By fixing the number of locations assigned to user u1 to 10 and the number
of role enabling contexts assigned to role r1 to 1, we vary the number of locations
contained in this role enabling context from 10 to 100, with a 10 step increment.
Figure 6.11a shows the execution time needed to update the user position with
respect to the number of locations in the role enabling context. The execution
time ranges from 7ms to 12ms.

By fixing the number of locations assigned to user u1 to 10 and the number of
locations contained in each role enabling contexts to 10, we vary the number of
role enabling context assigned to role r1 from 10 to 100, with a 10 step increment.
Figure 6.11b shows the execution time needed to update the user position with
respect to the number of role enabling context assigned to role r1. The execution
time ranges from 7ms to 9ms.

Figure 6.11c shows the execution time needed to update the user position with
respect to the number of locations assigned to user u1. The execution time ranges
from 8ms to 12ms.
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Figure 6.11: Execution time for an AC-related event of type user change location
with respect to a location-based policy

The answer to RQ1.4 is that the execution time is almost constant for the
evaluation of for an AC-related event of type user change location applied to
both system configurations: basic, and with respect to a location-based policy.

To conclude, the answer to RQ.1 is that, when enforcing policies in a real
industrial system under various configurations:

• The access decision time within the authorization server is less than
64ms. This value has to be analyzed in the context of Web applications
which are accessed by users from a browser. In modern Web applications,
the complexity of each single Web page requires a relatively high network
time (i.e., the time needed by a browser to fetch all resources to be dis-
played on a page); for example, a web page from Wikipedia requires [75]
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on average 1880ms of networking time. Under this scenario, a maximum
overhead of 64ms due to the AC enforcement framework would corre-
spond to less than 4% increase over the total networking time, which is
quite affordable in practice.

• The execution time for processing a notification of an AC-related event is
less than 512ms. Also this value has to be interpreted in the context of
Web applications. In such a context, an AC event is triggered by a user
action and its processing should be completed before the next user re-
quest, so that the latter can be evaluated on the updated system data (as
modified by the AC event). Hence, the execution time for processing the
notification of an AC-related event should be less than the time between
the completion of a user request and the start of a new one (i.e., the think
time). TCP-W [76], a common benchmark for Web applications, consid-
ers an average think time of 7 s; the maximum value for the execution
time measured in our system (512ms) is well below this threshold.

6.3.3 Scalability of the Proposed Architecture

To addressRQ2, which focuses on the scalability of the architecture, we decompose
it into the following subquestions which take into account different types of AC
requests/events:

How does the authorization server scale:
(RQ2.1) in the context of an AC request of type access to a resource with

respect to the main parameters characterizing:

• a basic system configuration,

• a DSoD policy,

• a BoD policy?

(RQ2.2) in the context of an AC request of type role activation with respect
to the main parameters characterizing:

• a basic system configuration,

• a cardinality policy,

• a DSoD policy?

(RQ2.3) in the context of an AC-related event of type user authentication
with respect to the main parameters characterizing:

• a basic system configuration,

• a precedence-based policy,

• a time-based policy,
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• a location-based policy?

(RQ2.4) in the context of an AC-related event of type user change location,
with respect to the main parameters characterizing:

• a basic system configuration,

• a location-based policy?

We recall that we use synthesized model instances to evaluate MORRO scala-
bility in terms of the various system configuration parameters.

6.3.3.1 AC Request: Access to a Resource

We consider the case when user u1 sends a request to perform operation op1 on
object o1; u1 activates role r1 within session s1 at the time of the request. We
assume that both object o1 and operation op1 are assigned to permission p1. To
evaluate the scalability, we use instances with the same settings as the ones used
while evaluating the performance in case of AC-request of type access to a re-
source (introduced in section 6.3.2.2, page 92). To answer RQ2.1, we increase one
parameter and measure the access decision time.

We followed the same general evaluation methodology described in section 6.3.2.2
but we varied the values of the main relevant parameters to assess the scalability
of the system. More specifically, for a basic system configuration, we considered
three parameters: the number of sessions in the system, the number of active roles
in session s1, and the number of permissions assigned to role r1.

By varying the number of permissions assigned to the parameter corresponding
to role r1 from 1k to 10k, with 1k step increment, we obtained the results shown in
figures 6.12a and 6.12b: the time needed to make an access decision with respect to
the number of permissions ranges from 53ms to 248ms for the assignment scenario
and from 78ms to 272ms for the delegation scenario. As shown in both figures, the
access decision time is linear with respect to the number of permissions assigned
to role r1. This is due to the operation selectPermission executed at line 14
in algorithm 1, which checks through the set of permissions assigned to role r1,
whether there is any permission p1 assigned to both operation op1 and object o1;
this check is indeed linear with respect to the number of permissions.

We recall that the list of active roles in a session is retrieved from the list of
roles assigned to its corresponding user. To increase the number of active roles
within session s1, we increased the number of roles assigned to user u1 from 396 to
10k. By varying the number of active roles in session s1 from 1k to 10k, with 1k
step increment, we obtained the results shown in figures 6.12c and 6.12d: the time
needed to make an access decision with respect to the number active roles within
session s1 ranges from 26ms to 37ms for the assignment scenario and from 33ms

to 46ms for the delegation scenario. As shown in both figures, the access decision
time is almost constant with respect to the number of roles active in session s1.
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This is due to the fact that the check at line13 of algorithm 1 is performed in a
constant time.

To evaluate the access decision with respect to the number sessions in the
system, we increased the number of users from 1648 to 10k. By varying the number
of sessions parameter from 10k to 25k1, with a step increment of 5k, we obtained
the results shown in figures 6.12e and 6.12f: the time needed to make an access
decision with respect to the number of sessions ranges from 49ms to 72ms for the
assignment scenario and from 67ms to 132ms for the delegation scenario. As shown
in both figures, the access decision time is linear with respect to the number of
sessions in the system. This can be explained in terms of the OCL implementation
of the authorization server, in which the SnapProcessor searches through the set
of all sessions in the system to select the instance of the session matching the
corresponding parameter in the AC request.

As for the system configuration with a history-based DSoD policy, we focus on
four parameters: 1) the number of active roles in the session of the user who made
the request, 2) the number of logs, referred to here after as roleLogs, associated
with the conflicting roles and with the user who made the request, 3) the number
of objects within the set of logs, and 4) the number of operations in the system.

Number of active roles in the session. We increased the number of users in
the system from 396 to 10k. By varying the number of active roles in session s1 from
1k to 10k, with 1k step increment, we obtained the results shown in figures 6.13a
and 6.13b: the time needed to make an access decision with respect to the number
of active roles in session s1 ranges from 73ms to 99ms for the assignment scenario
and from 96ms to 108ms for the delegation scenario. As shown in both figures, the
access decision time is almost constant with respect to the number of active roles
in session s1. This is due to the definition of the OCL constraint corresponding to
the History-based DSoD (OCL invariant DSoDHis of class Session introduced on
page 29), in which we first check if both conflicting roles are active in session s1;
this check is performed in a constant time.

Number of logs in roleLogs. By varying the number of logs in roleLogs from
1k to 10k, with 1k step increment, we obtained the results shown in figures 6.13c
and 6.13d: the time needed to make an access decision with respect to the number
of logs in roleLogs ranges from 37ms to 46ms for the assignment scenario and
from 123ms to 148ms for the delegation scenario. As shown in both figures,
the access decision time is linear with respect to the number of logs associated
with the conflicting roles. This is due to the definition of the OCL constraint
corresponding to the History-based DSoD policy (OCL invariant DSoDHis of class
Session introduced on page 29), in which we select the subset of logs associated
with the current user from the set of logs associated with the conflicting roles; this
selection requires to navigate the set of logs associated with each conflicting role.

1This number is defined with respect to the available memory of the machine where the
authorization server is running.
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Figure 6.12: Scalability for of an AC-request of type access to a resource in case of
role assignment ((a), (c), (e)) and delegation ((b), (d), (f)) scenarios with respect to
a basic system configuration
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Figure 6.13: Scalability of an AC-request of type access to a resource with respect to
a History-based DSoD policy in case of role assignment ((a), (c), (e)) and delegation
((b), (d), (f)) scenarios 111
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Number of objects within the set of logs. We increase the number of
objects in the system to 6k and the number of logs in roleLogs to 8k. By varying
the number of objects in roleLogs from 1k to 10k, with 1k step increment, we
obtained the results shown in figures 6.13e and 6.13f: the time needed to make an
access decision with respect to the number of objects in roleLogs ranges from 56ms

to 67ms for the assignment scenario and from 123ms to 147ms for the delegation
scenario. As shown in both figures, the access decision time is almost constant with
respect to the number of objects in roleLogs. This is due to the definition of the
OCL constraint corresponding to the History-based DSoD policy (OCL invariant
DSoDHis of class Session introduced on page 29), in which we collect all the objects
associated with the logs in the roleLogs set; the time taken by this operation is not
affected by the number of objects associated with the logs.

Number of operations in the system. By varying the number of opera-
tions from 1k to 10k, with 1k step increment, we obtained the results shown in
figures 6.13g and 6.13h: the time needed to make an access decision with respect to
the number of operations ranges from 31ms to 85ms for the assignment scenario
and from 61ms to 89ms for the delegation scenario. As shown in both figures,
the access decision time is linear with respect to the number of operations in the
system. This is due to the definition of the OCL constraint corresponding to the
History-based DSoD policy (OCL invariant DSoDHis of class Session introduced
on page 29), in which we compute the difference between two sets (line 17); set
difference is linear in the size of the elements in the two sets.

As for the system configuration with a BoD policy, we focus on two parameters:
the number of roles in the system and the number of logs of the subject who made
the request. By varying the number of roles from 1k to 10k, with 1k step increment,
we obtained the results shown in figures 6.14a and 6.14b: the time needed to
make an access decision with respect to the number of roles ranges from 55ms to
124ms for the assignment scenario and from 54ms to 106ms for the delegation
scenario. As shown in both figures, the access decision time is linear with respect
to the number of roles in the system. This is due to the definition of the OCL
constraint corresponding to the BoD policy (OCL invariant SubjectBoD of class
Role introduced on page 30), in which we manipulate the variable boundedroles

by iterating through the list of roles in the system; this operation is linear in the
number of roles.

By varying the the number of logs assigned to the current subject (in the current
process instance) from 1k to 10k, with 1k step increment, we obtained the results
shown in figures 6.14c and 6.14d: the time needed to make an access decision with
respect to the number of logs ranges from 59ms to 67ms for the assignment scenario
and from 59ms to 68ms for the delegation scenario. As shown in both figures, the
access decision time is linear with respect to the number of logs assigned to the
current subject. This is due to the definition of the OCL constraint corresponding
to the BoD policy (OCL invariant SubjectBoD of class Role introduced on page 30),
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Figure 6.14: Scalability for an AC-request of type access to a resource in terms of
scalability with respect to BoD in case of role assignment ((a), (c)) and delegation
((b), (d)) scenarios

in which we call operation logBOCurrentProcessInstance, which selects the set of
logs associated with the current subject related to a business process; this operation
is linear in the number of logs.

The answer to RQ2.1 is that, in case of an AC request of type access to
a resource considering role assignment and delegation scenarios, the access
decision time within the authorization server, is:

• almost constant with respect to the number of active roles in session s1,
and linear with respect to the number of permissions assigned to role r1
and number of sessions in the system, for a basic system configuration.
Moreover, the access decision with respect to the number of permissions
is consistently higher than the access decision time with respect to the
number of sessions in the system;
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• almost constant with respect to the active roles in session s1 and with
respect to the number of objects in roleLogs ; linear with respect to the
number of roles in roleLogs and with respect to the number of operations
in the system, for a system configuration with a history-based DSoD
policy;

• linear with respect to the number of roles and with respect to the number
of logs assigned to the current subject, for a system configuration with a
BoD policy.

6.3.3.2 AC Request: Role Activation

We consider the case when user u1 sends a request to activate role r1 within session
s1. To evaluate the scalability, we use instances with the same settings as the
ones used while evaluating the performance in case of AC-request of type role
activation (introduced in section 6.3.2.3 page 97). To answer RQ2.2, we increase
one parameter and measure the access decision time.

We followed the same general evaluation methodology described in section 6.3.2.3
but we varied the values of the main relevant parameters to assess the scalability
of the system. More specifically, for a basic system configuration, we focus on the
parameter corresponding to the number of enabled roles in session s1. We increase
the number of roles assigned to user u1 from 396 to 10k and vary the number of
enabled roles in session s1 from 1k to 10k, with 1k step increment. Figure 6.15a
shows the access decision time, with respect to the number of enabled roles in ses-
sion s1. The time needed to make an access decision for an AC-request of type role
activation ranges from 22ms to 41ms. As hinted by the figure, the access decision
time is constant with respect to the number of roles enabled in session s1. This is
due to the check at line 5 of algorithm 1; this check takes a constant time.

As for the system configuration with a DSoD policy, we focus on the parameter
corresponding to the number of active roles in session s1. We consider the same
instances used for evaluation of the basic system configuration. Figure 6.15b shows
the access decision time while varying the number of active roles in session s1. The
time needed to make an access decision for an AC-request of type role activation
with respect to a DSoDCR (PL2) ranges from 23ms to 29ms. As shown in the
figure, the access decision time is constant with respect to the number of active
roles in session s1. This is due to the definition of the OCL invariant DSoDCR of
class Session introduced on page 27, in which we check whether the conflicting
roles are active; this check takes a constant time.

As for the system configuration with a cardinality policy, we focus on the pa-
rameter corresponding to the number of active roles in session s1 and consider
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Figure 6.15: Scalability of an AC-request of type role activation

the same instances used for the evaluation of the basic system configuration. Fig-
ure 6.15c shows the access decision time while varying the number of active roles
in session s1. The time needed to make an access decision for an AC-request of
type role activation with respect to a cardinality policy (PL1) ranges from 32ms

to 45ms. As shown in the figure, the access decision time is constant with respect
to the number of active roles in session s1. This is due to the definition of the OCL
invariant CardinalityActivation of class Session introduced on page 24, in which
we check the number of active roles in s1; this check takes a constant time.

The answer to RQ2.2 is that in case of an AC request of type role activation,
the access decision time is almost constant for the various system configura-
tions: 1) basic system configuration, 2) DSoD policy, and 3) cardinality policy.
Overall, the access decision time within the authorization server is less than
45ms; this value is achieved when considering a system configuration with a
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Figure 6.16: Scalability for an AC-related event of type user authentication with
respect to basic system configuration

cardinality policy.

6.3.3.3 AC-related Event: User Authentication

We consider the case when the authorization server receives a notification about
the authentication of user u1. To evaluate the scalability, we use instances with the
same settings as the ones used while evaluating the performance in case of an AC-
related event of type user authentication (introduced in section 6.3.2.4, page 99).
To answer RQ2.3, we increase one parameter and we measure the execution time.

We followed the same general evaluation methodology described in section 6.3.2.4
but we varied the values of the main relevant parameters to assess the scalability
of the system. More specifically, for a basic system configuration, we vary the
number of roles assigned to user u1 from 1k to 10k, with a step increment of 1k.
Figures 6.16a and 6.16b report the execution time needed to create a new session
for both scenarios depending on the user’s position availability. The execution time
ranges from 7ms to 20ms when the user’s position is not known, and from 9ms

to 23ms when the user’s position is known. As shown in both figures, the access
decision time is linear with respect to the number of roles assigned to user u1.
This is due to the operation enableAllRoles in algorithm 2, which enables the set
of roles assigned to the authenticated user; the role enabling operation is linear in
the number of roles.

As for the system configuration with a precedence policy, we focus on two
parameters: the number of roles assigned to user u1 and the number of sessions in
the system.

By varying the number of roles assigned to user u1 from 1k to 10k, with a
step increment of 1k, we obtained the results shown in figures 6.17a and 6.17b:
the execution time ranges from 199ms to 339ms when the user’s position is not
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Figure 6.17: Scalability for an AC-related event of type user authentication with
respect to a precedence policy depending on the user’s position availability (the user
position is known (a) and (c) and not known in (b) and (d))

known, and from 245ms to 494ms when the user’s position is known. As shown in
both figures, the access decision time is linear with respect to the number of roles
assigned to the authenticated user. Also in this case, this is due to the complexity
of the operation enableAllRoles in algorithm 2.

By varying the number of sessions in the system from 10k to 25k, with a step
increment of 5k, we obtained the results shown in figures 6.17c and 6.17d: the ex-
ecution time ranges from 885ms to 1689ms when the user’s position is not known,
and from 900ms to 2775ms when the user’s position is known. As shown in both
figures, the access decision time is linear with respect to the number of sessions.
This is due to the definition of the OCL invariant RoleEnablingPrecedence of class
Session introduced on page 25, in which we iterate through the list of sessions in
the system; this operation is linear in the number of sessions.

As for the system configuration with a time-based policy on role enabling, we
focus on three parameters: the number of contexts where role r1 can be enabled,
the number of time expressions contained in these contexts, and the number of
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time intervals contained in these time expressions.
By varying the number of time intervals within a time expression considering the

values 1k, 2k, 10k and 20k, we obtained the results shown in figures 6.18a and 6.18b:
the execution time ranges from 212ms to 322ms when the user’s position is not
known, and from 183ms to 326ms when the user’s position is known. As shown in
both figures, the access decision time is linear with respect to the number of time
intervals contained in the time expression associated with a role enabling context.
This is due to the definition of the OCL invariant AbsoluteBTIRoleEnab of class
Session introduced on page 35, in which we iterate through all the time intervals
(lines 9–10).

By varying the number of the number of time expressions considering the values
1k, 2k, 10k and 20k, we obtained the results shown in figures 6.18c and 6.18d: the
execution time ranges from 204ms to 2086ms when the user’s position is not
known, and from 232ms to 2185ms when the user’s position is known. As shown
in both figures, the access decision time is linear with respect to the number of time
expressions contained in the role enabling context. This is due to the definition of
the OCL invariant AbsoluteBTIRoleEnab of class Session introduced on page 35,
in which we iterate through all the time expressions (lines 6–8).

By varying the number of role enabling contexts considering the values 1k,
2k, 10k and 20k, we obtained the results shown in figures 6.18e and 6.18f: the
execution time ranges from 1225ms to 18 747ms when the user’s position is not
known, and from 1243ms to 18 674ms when the user’s position is known. As shown
in both figures, the access decision time is linear with respect to the number of
role enabling contexts associated with the role assigned to the authenticated user.
This is due to the definition of the OCL invariant AbsoluteBTIRoleEnab of class
Session introduced on page 35, in which we iterate through all the role enabling
contexts (lines 4–5).

As for the system configuration with a location-based policy, we focus on three
parameters: the number of contexts where role r1 can be enabled, the number of
logical locations contained in these contexts, and the number of locations associated
with user u1.

By varying the number of locations within the role enabling contexts considering
the values 1k, 2k, 10k and 20k, we obtained the results shown in figure 6.19a: the
execution time ranges from 36ms to 132ms. As shown in both figures, the access
decision time is linear with respect to the number of locations associated with
the role enabling context. This is due to the definition of the OCL invariant
logicalLocationRoleAssign of class Session introduced on page 40, in which we
iterate through all the locations associated with the role enabling context (lines 7–
8).

By varying the number of role enabling contexts considering the values 1k, 2k,
10k and 20k, we obtained the results shown in figure 6.19b: the execution time
ranges from 57ms to 520ms. As shown in both figures, the access decision time
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is linear with respect to the number of role enabling contexts. This is due to
the definition of the OCL invariant logicalLocationRoleAssign of class Session

introduced on page 40, in which we iterate through all the role enabling contexts
associated with the role assigned to the authenticated user (lines 5–6).

By varying number of locations assigned to the user who made the request
considering the values 1k, 2k, 10k and 20k, we obtained the results shown in
figure 6.19c: the execution time ranges from 22ms to 36ms.

As shown in both figures, the access decision time is linear with respect to the
number of locations assigned to the authenticated user. This is due to the definition
of the OCL invariant logicalLocationRoleAssign of class Session introduced on
page 40, in which we iterate through all locations assigned to the context of the
authenticated user (lines 2–3).

The answer to RQ2.3 is that in case of an AC-related event of type user
authentication, the execution time, within the authorization server, is linear :

• with respect to the number of roles assigned to user u1, considering both
scenarios depending on the user’s position availability, for a basic system
configuration;

• with respect to the number of roles assigned to user u1 and with respect
to the number of sessions in the system, considering both scenarios de-
pending on the user’s position availability, for a system configuration with
a precedence policy;

• with respect to parameters: 1) number of role enabling contexts, 2) num-
ber of time expressions in each role enabling context, and 3) number of
time intervals in each time expression, when considering both scenarios
depending on the user’s position availability, for a system configuration
with a time-based policy;

• with respect to parameters: number of role enabling contexts, number of
locations in each role enabling context, and number of locations assigned
to the user for a system configuration with a location-based policy.

Moreover, the execution time with respect to the number of role enabling con-
texts is consistently higher than the execution time with respect the number
of time expressions and with respect the number of time intervals; the execu-
tion time with respect to the number of role enabling contexts is consistently
higher than the execution time with respect the number of locations in the role
enabling context and with respect the number of locations assigned to the user.
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Figure 6.18: Scalability of an AC-related event of type user authentication with
respect to a time-based policy depending on the user’s position availability (the user
position is known (a), (c) and (e), and not known in (b), (d) and (f))
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Figure 6.19: Scalability of an AC-related event of type user authentication with
respect to a location-based policy

6.3.3.4 AC-related Event: User Change Location

We consider the case when the authorization server receives a notification about
user u1 changing location. To evaluate the scalability, we use instances with the
same settings as the ones used while evaluating the performance in case of AC-
related event of type user change location (introduced in section 6.3.2.5, page 105).
To answer RQ2.4, we increase one parameter and we measure the execution time.

We followed the same general evaluation methodology described in section 6.3.2.5
but we varied the values of the main relevant parameters to assess the scalability
of the system. More specifically, for a basic system configuration, we vary the
number of locations assigned to user u1 considering the values 1k, 2k, 10k and 20k.
Figure 6.20 shows the execution time needed to update the user’s position in case
of an AC-related-event of type user change location. The execution time ranges
from 20ms to 88ms.

As shown in the figure, the execution time is linear with respect to the number
of location assigned to the user. This is due to the updateUserLoc operation in
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Figure 6.20: Scalability for an AC-related event of type user change location with
respect to a basic system configuration

algorithm 2, which updates the user location; the complexity of this operation is
linear with respect to the number of locations associated with the user’s context.

We also consider a system configuration with a location-based policy. In this
case, we consider various system configurations used for the AC-related event user
authentication with respect to policy PL5 (section 6.3.2.4).

By fixing the number of locations assigned to the user to 10 and the number
of role enabling contexts assigned to role r1 to 1, we vary the number of locations
contained in this role enabling context considering the values 1k, 2k, 10k and 20k.
Figure 6.21a shows the execution time needed to update the user position with
respect to the number of locations in the role enabling context. The execution
time ranges from 7ms to 9ms.

By fixing the number of locations assigned to the user to 10 and the number of
locations contained in each role enabling contexts to 10, we vary the number of role
enabling context assigned to role r1 considering the values 1k, 2k, 10k and 20k.
Figure 6.21b shows the execution time needed to update the user position with
respect to the number of role enabling contexts assigned to role r1. The execution
time ranges from 7ms to 9ms.

Figure 6.21c shows the execution time needed to update the user position with
respect to the number of locations assigned to user u1. The execution time ranges
from 14ms to 81ms.

All the plots shown in figure 6.21 have a linear trend. The explanations for this
trend are the same provided for the corresponding plots in the case of an AC-related
event of type user authentication, since we use the same system configuration
with a location-based policy (and thus the same OCL invariant is involved in the
checking).

The answer to RQ2.4 is that, in case of an AC-related event of type user
change location, the execution time, within the authorization server, is:
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Figure 6.21: Scalability for an AC-related event of type user change location with
respect to a location-based policy

• linear with respect to the number of locations assigned to the user, for a
basic system configuration.

• linear with respect to the number of locations assigned to the user and
constant with respect to the number of role enabling contexts and the
number of locations in these contexts, in case of an AC-related event of
type user change location for all system configurations with a location-
based policy.

To conclude, the answer to RQ2 is that, when enforcing policies in a real
industrial system:

both the access decision time within the authorization server and the execution
time for processing a notification of an AC-related event are—in the majority
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of the cases—linear with respect to the parameters of the various system con-
figurations; in the remaining cases, the access decision time is constant.

The highest value for the access decision time we measured was 272ms,
in the case of an AC request of type access to a resource, in a basic system
configuration, in case of a delegation scenario, with 10K permissions assigned
to the role of the user making the request. This value would represent a 15%
overhead with respect to the average networking time (see [75]) for fetching a
complex Web page, as reported in the discussion for RQ1 on page 106. Such
an overhead is still acceptable when enforcing access control policies in large
systems.

The highest value for the execution time we measured was 2017ms, in the
case of an AC-related event of type user authentication, in a system configu-
ration with a precedence policy, with 25K active sessions, with a known user
location. As discussed for RQ1 on page 106, this value would still be below
the think time threshold (7 s) provided by the TCP-W [76] benchmark.

6.3.4 Overhead of the Communication between the Autho-
rization Service and the Proxy

We define the access decision time within the proxy as the time difference from
the time the proxy receives an AC request from the user until the time the proxy
receives an access decision from the authorization server.

We address RQ3 by computing the communication overhead, i.e., the time
taken to dispatch an authorization request from the proxy to the authorization
server, plus the time to propagate the access decision from the authorization server
back to the proxy. To compute it, we subtract the access decision time measured
within the authorization server (indicated with the mark ( ) in the plots in the pre-
vious sections) from the access decision time measured within the proxy (indicated
with the mark ( ) in the plots in the previous sections).

The answer to RQ3 is that the overall overhead communication is less than
60ms for the various system configurations. This means that the maximum
access decision time within the proxy is 107ms, in the case of an AC request of
type access to a resource, for a system configuration with a history-based DSoD,
when considering the AC configuration provided by our industrial partner. This
overhead would represent less than 6% with respect to the average networking
time (see [75]) for fetching a complex Web page. Furthermore, this value is far
below the recommended threshold (200ms) indicated by our industrial partner.
These results confirm the applicability in practice of our approach in a real
system.
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6.4 Related work

This section provides an overview of the XACML architecture for enforcing ac-
cess control policies and reviews some existing enforcement mechanisms for RBAC
policies.

An enforcement architecture based on the XACML language has been stan-
dardized by the OASIS community [14]. This architecture is essentially composed
of a policy enforcement point (PEP) and a policy decision point (PDP). Once a
user sends an access request, the latter is intercepted by the PEP which will trans-
form it into an XACML request and forward it to the PDP. The latter evaluates
the request based on the authorization policies. While the PEP is integrated in
the application server, the PDP is an external authorization server.

We followed a similar architecture while designing MORRO, where the PEP
corresponds to the proxy and the PDP corresponds to the model-driven authoriza-
tion server.

For enforcing RBAC policies, some proposals have been inspired by the XACML
architecture presented above. Sohr et al. [22] implement the PDP as a model-driven
authorization engine. RBAC policies are expressed as OCL contraints using the
USE tool, a validation tool for UML models and OCL constraints. To make an
access decision, the authorization engine checks whether the current system state,
represented as an UML object diagram, satisfies the RBAC policies expressed as
OCL constraints. This work is very close to our contribution. However, we do not
use the system state at the time when the request has been made but we build
a target system state to evaluate an access request. Moreover, in this work, the
RBAC policies are only enforced as a response to a user access request of type role
activation or access to a resource. Zhang et al. [5] propose a rule-based language
and a framework to enforce delegation and revocation policies. The proposed
architecture is implemented as a composition of services. A delegation/revocation
service is used to handle delegation and revocation requests from users. A role
service is responsible for retrieving and updating the RBAC data.

Other proposals deal with the generation of aspects (AOP [77]) from policy
specifications; the generated aspects are inserted into the application to be executed
at run time. Mourad et al. in [29] propose the use of BPEL aspects to enforce
access control policies in the context of web service composition. Kallel et al. [78]
generate enforcement aspects in AspectJ from an RBAC specification written in
TemporalZ. Mariscal et al. [79] introduce a new UML artifact, called role-slice
which is used to generated aspects. Mustafa et al. [80] propose an authorization
engine based on the RBAC96 model. Policies written in a Z specification are
translated into a Java Modeling Language (JML) specification to be checked by an
JML runtime assertion checker. This approach supports the set of policies that can
be defined on the RBAC96 model. Another approach has been proposed in [81]
by Martinez et al. It deals with the generation of a PDP infrastructure from a
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specification written in a policy language, using ATL model transformations. An
adaptive enforcement approach for the RBAC-based delegation model has been
proposed in [82, 83]. Access control policies are transformed into a component-
based architecture model. Each resource and role is mapped to a proxy component
that will be used to make access decision. In addition to policy enforcement, the
proposed framework supports run-time adaptation [84] for RBAC policies. Thus,
policies are enforced in case of a delegation request or a change in the access control
policies.

In addition to the limited support for the various types of authorization policies
(see taxonomy introduced in chapter 2), a limitation shared by the approaches
mentioned above is that they only enforce policies in case of an access request.
They do not support the usage control concept, meaning that their systems cannot
react to changes in the RBAC configuration.

Other proposals deal with context-based usage control in RBAC. Kirkpatrick
et al. [85] propose a proximity-based enforcement mechanism for the GEO-RBAC
model using the XACML architecture. The access control data are derived from
a location device and a role manager. The latter maps each user to the set of her
active roles based on her current location. The PDP is composed of a resource man-
ager which evaluates a user request based on her location and the set of her active
roles. However, this work does not consider role activation as a separate request;
when submitting a request to access a resource, the user has to specify the role to
activate. Although the proposed mechanism incorporates usage control, only poli-
cies supported by the GEO-RBAC model, i.e., location-based and DSoDCR, are
enforced. Once a user sends an access request, the location device detects where
the user is located in a specific area and the role manager computes the set of active
roles based on the detected location and forwards these information to the resource
manager to evaluate the access request. An authorization framework for enforcing
temporal policies, based on the X-GTRBAC language and its model GTRBAC
has been proposed by Bhatti et al. in [67]. Policies written in the X-GTRBAC
language are enforced using a Java-based GUI application. Ben David et al. [86]
propose a run-time enforcement mechanism composed of a monitor and a change
analyzer. Both the running system and the RBAC policies are expressed using the
models@runtime paradigm [87] as a running architecture model. By observing the
system behavior, the monitor sends a notification to the change analyzer whenever
a change is detected. Upon this notification, the change analyzer builds the a tar-
get architecture model that will be used to evaluate the RBAC policies. This work
is similar to our enforcement approach as they build a target model to enforce the
RBAC policies. However, the proposed approach was not implemented and only
assignment and activation relations have been considered.

Other proposals [23, 24, 25, 26, 27, 28] extend the XACML architecture by
introducing a second decision point SDP. Access decisions are cached in the SDP
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and they are reused if the request matches one of the cached authorizations. Vari-
ous implementations have been proposed for the SDP using authorization recycling
[23, 24], authorization recycling, CPOL [25] and bloom filter [26, 27]. Although
these approaches improve the access decision process in terms of time execution,
more memory will be consumed.

We remark that none of the proposed approaches provides a full support for the
authorization policies introduced in chapter 2. Each enforcement mechanism imple-
ments a limited set of policies supported by its corresponding model. Moreover, the
majority of the proposed approaches considers only AC requests of type access to a
resource and role activation. AC requests of type role delegation and role revocation
are only supported by Zhang et al. [5]. As for the usage control, only context-based
events, i.e., user authentication and user change location, are supported in [67, 85].
Furthermore, only few of the aforementioned approaches [22, 25, 81] provide an
empirical evaluation assessing the access decision time; however, we could not
compare these approaches with ours, since the underlying RBAC models and the
application contexts are different.

6.5 Summary

In this chapter we presented a model-driven enforcement framework for policies
written in the GemRBAC-DSL language, which leverages the OCL operational-
ization of the policies. The idea is to reduce the problem of making an access deci-
sion to checking whether a system state (from an RBAC point of view) expressed
as an instance of the GemRBAC+CTX model satisfies the OCL constraints cor-
responding to the RBAC policies to be enforced. In addition to making an access
decision, our approach adopts the usage control (UCON) [69] concept; the access
decision is re-evaluated when a new update, from an access control point of view,
occurs at the system level. Therefore, policies are enforced both when an AC re-
quest is made and when an AC-related event is triggered; we provide the checking
algorithms for both cases.

We extensively evaluated the applicability and the scalability of the proposed
framework on an industrial Web application developed by our partner. The exper-
imental results show that:

• An access decision can be made within the authorization server, on aver-
age, in less than 64ms; the corresponding access decision time, measured
at the proxy level, is 107ms. This overhead would represent less than 6%
with respect to the average networking time (see [75]) for fetching a complex
Web page. Furthermore, this value is far below the recommended thresh-
old (200ms) indicated by our industrial partner. These results confirm the
applicability in practice of our approach in a real system.
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• The execution time for processing a notification of an AC-related event is less
than 512ms. When interpreted in the context of Web applications, this value
is far below the average think time (7 s) defined on TCP-W [76], a common
benchmark for Web applications.

• Both the access decision time within the authorization server and the exe-
cution time for processing a notification of an AC-related event are—in the
majority of the cases—linear with respect to the parameters of the various
system configurations; in the remaining cases, the access decision time is
constant. These results show the scalability of MORRO with respect to the
various parameters (e.g., the number of users, roles, permissions, sessions,
role enabling contexts) that characterize RBAC configurations.

Although the MORRO enforcement architecture has been designed based on
the architectural specifications provided by our industrial partner, it can be gen-
eralized and integrated into other Web applications. Furthermore, though we con-
sidered the GemRBAC+CTX model and its corresponding OCL constraints in
the application of our approach, the latter is generic and does not depend on the
GemRBAC+CTX model: it can be applied to any other access control model
that can be expressed in UML and whose policies can be expressed in OCL.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

RBAC is the de facto standard for access control in enterprise information systems:
by assigning permissions to roles, it decouples users from permissions, simplifying
the administration and deployment of access control in the enterprise. In addition
to role-to-permission and role-to-user assignments, authorization policies can be
defined to restrict unauthorized access to critical resources.

The first RBAC model [3] supported a very small set of authorization policies.
Thus, many extensions of this model have been proposed in the literature to enable
the specification of complex policies such as delegation, revocation and contextual
policies. However, there is no unified framework that can be used to define all
these policies in a coherent way, using a common conceptual model. In addition to
models, a policy specification language is needed to facilitate the definition of these
complex policies. The lack of expressiveness of existing RBAC models/languages
hinders the definition of an enforcement mechanism built on top of them, which
can prevents the design and implementation of an enforcement mechanism derived
from policies, in order to make an access decision.

In this dissertation we have tackled the issues of both specification and enforce-
ment of RBAC policies by pursuing the following research goals:

• formalizing RBAC policies to enable the operationalization of the access de-
cision procedure;

• expressing RBAC policies using a high-level policy specification language;

• enforcing RBAC policies at run time in an efficient manner.

In the rest of this chapter we summarize the contributions presented throughout
this dissertation (Section 7.2), point out their limitations (Section 7.3), and discuss
future research directions (Section 7.4).
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7.2 Contributions

In this dissertation we have addressed the challenges in specifying and enforcing
RBAC policies by making the following contributions:

1. the GemRBAC+CTX conceptual model, a UML extension of the RBAC
model that includes all the entities required to express the various types of
RBAC policies found in the literature, with a specific emphasis on contextual
policies. For each type of policy, we provided the corresponding formalization
using the Object Constraint Language (OCL) to operationalize the access
decision for a user’s request using model-driven technologies.

2. the GemRBAC-DSL language, a domain-specific language for RBAC poli-
cies designed on top of the GemRBAC+CTX model. The language is
characterized by a syntax close to natural language, which does not require
any mathematical background for expressing RBAC policies. The language
supports all the authorization policies captured by the GemRBAC+CTX
model. We defined the language semantics using a model-driven approach,
by mapping each type of GemRBAC-DSL policy to the corresponding OCL
constraint(s) defined on the GemRBAC+CTX model. GemRBAC-DSL
has been adopted by our industrial partner; in its first use for the specifi-
cation of the RBAC policies for a real-world application, it has allowed the
security engineers to define 19 new types of contextual policies.

3. MORRO, a model-driven framework for the run-time enforcement of RBAC
policies expressed in GemRBAC-DSL, built on top of the GemRBAC+CTX
model. MORRO provides policy enforcement for both access and usage con-
trol. The extensive evaluation of the performance of MORRO from the point
of view of the access decision time—executed on a real-world Web application
developed by our industrial partner, under different configurations—showed
that the overhead it adds is acceptable from a practical standpoint and, in the
worst case, scales linearly with respect to the main system parameters. These
results corroborate the feasibility of embedding the MORRO framework in
Web applications.

4. three tools:

• GemRBAC-DSL-Editor, the editor for GemRBAC-DSL;

• GemRBAC-DSL-Transform, the model transformation tool for
GemRBAC-DSL;

• MORRO, the run-time enforcement framework;

have been implemented and released as part of the PhD research work.
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7.3 Limitations

The work presented in this thesis is characterized by various limitations and open
issues.
Expressiveness. With the emergence of attribute-based access control (ABAC)
paradigms [40], more policies can be defined to restrict the user access based on
attributes that can be assigned to users, objects and/or permissions; an example of
such a policy is “a user can access only resources belonging to her own organization”.
The RBAC model itself can be seen as an attribute-based model in which the role
is defined as a user’s attribute.

Although the GemRBAC+CTX model and the GemRBAC-DSL language
have been designed in a way to cover the various types of policies proposed in the
literature, attribute-based policies are not fully taken into account.
Privacy. Preventing unauthorized access to resources based on the user’s location
is conflicting with protecting the privacy concerns of the user. Contextual policies,
and more specifically location-based policies, require a permanent record of the
user’s position, which may violate the laws of the user’s country. Such an issue
could hinder the applicability of our run-time enforcement framework, which relies
on AC-related data.
Enforcement. To enforce RBAC policies, we represent the system state (from an
access control point of view) as an instance of the GemRBAC+CTX model. As
the size of the system increases, more memory space will be required by this rep-
resentation. At the moment, the MORRO framework is not designed to be space
efficient, and does not support “garbage collection” or “compacting” operations on
the model instance.

7.4 Future Research Directions

This dissertation sets the basis to follow different research directions in the future.
GemRBAC-DSL usability assessment. Although three half-day training ses-
sions were enough for the security engineers of our partner to express their policies
using the GemRBAC-DSL language, we plan to further and systematically assess
the usability of the language through user studies with practitioners.
ABAC extension. Our next step regarding the specification of policies, will fo-
cus on supporting attribute-based access control policies in the GemRBAC+CTX
model and in the GemRBAC-DSL language. More specifically, we will base our ex-
tension on the Role-Centric Attribute-Based Access Control (RABAC) [88] model,
which extends the RBAC model by adding attributes to users and objects.
Space efficiency of the MORRO framework. From the point of view of the
enforcement, we will focus on the optimization of the model-driven enforcement
framework, especially in terms of space efficiency. We plan to adopt the Kevoree
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Modeling Framework (KMF) [89] as an alternative to the Eclipse Modeling Frame-
work (EMF), to improve the support of runtime models for large distributed sys-
tems. More specifically, KMF has special mechanisms to decrease the memory
footprint and supports different operations on models (i.e., loading, serializing and
cloning model entities).
Run-time verification of access control policies. The model-driven enforce-
ment approach proposed in this thesis can be used in the context of run-time
verification to check the correctness of the decision made by an existing enforce-
ment mechanism. In order to detect the possible violations of RBAC policies while
making an access decision, a monitoring mechanism should be integrated in the
enforcement architecture to intercept the access decision. By observing the behav-
ior of the system from an access control point of view, the monitor would send a
notification to the authorization server whenever a new access decision is made or
an AC-related event is triggered.
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