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Abstract

This thesis deals with the theory and simulation of resonant Raman
spectroscopy in two-dimensional transition metal dichalcogenides.
We present two different ab initio approaches. In the first, we cal-
culate the Raman susceptibility tensor as a function of laser en-
ergy from the change of the dielectric susceptibility with atomic
displacements. In the second, we formulate the Raman tensor in
terms of time-dependent perturbation theory and calculate it us-
ing electron-light and electron-phonon coupling matrix elements
obtained from density functional theory. We investigate the role of
resonance, quantum interference and excitonic effects in the Raman
spectra of single and triple-layer MoTe2. We compare our simula-
tions with experimental results, explaining the dependence of the
Raman intensities on the excitation energy. We demonstrate that
the two approaches are formally and numerically equivalent in the
adiabatic limit. In addition, the second approach allows to include
the dynamical effects and captures a shift of the intensities with
respect to the adiabatic case. This method is also more computa-
tionally efficient and is extended to include temperature effects us-
ing many-body perturbation theory. We have implemented both of
these methods in a software package with interfaces to open source
ab initio codes. Furthermore, we have developed web based tools
to visualize excitonic states and phonon modes.
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0

Introduction

0.1 Raman spectroscopy of 2D materials

The ability to build smaller and smaller devices stimulates the search for
new materials at the nanoscale with optimal electronic and optical properties.
Low-dimensional materials are a strong focus of this quest.

Layered materials are extended crystalline solids held together by strong
in-plane covalent bonds and weaker out-of-plane forces. The latter are mostly
van der Waals forces and can be broken by exfoliation as was demonstrated
by extracting single graphene layers from graphite [1, 2]. For this finding as
well as the demonstration of the potential of graphene for use in various appli-
cations, A. Geim and K. Novoselov were awarded the Nobel prize in physics
in 2010. Although 2D materials have been known and used since a long time
mostly as dry lubricants [3], only more recently, with this discovery, the in-
vestigation for possible nanotechnological applications has started. Graphene,
however, is not the most suitable material for all types of applications. For
example, its zero band gap limits its use as a semiconductor. Fortunately
the family of 2D materials is wide and varied as shown in Fig. 1. One can
find insulators like hexagonal boron nitride (hBN) with a band gap exceeding
6 eV and typical semiconductors such as the transition-metal dichalcogenides
(TMDs). The later show great potential for semiconductor applications due to

3
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VAN DER WAALS MATERIALS

the energy degeneracy at the K and K’ valleys and prevents a
bandgap from opening. That degeneracy can be li!ed by
breaking the la"ice’s inversion symmetry. For example, in 
h-BN, shown in figure 2c, the two carbon atoms in the graphene
unit cell are replaced by boron and nitrogen, and the inversion
symmetry is broken. As a result, a large energy gap opens 
at the valleys, making h-BN an extremely good insulator and
dielectric.

The TMDs are a particularly interesting class of 2D materi-
als. Their crystal structure, shown in figure 2d, consists of one
layer of a transition metal M, such as molybdenum or tungsten,
sandwiched between two layers of a chalcogen X, such as sul-

fur, selenium, or tellurium. A single 2D
unit consisting of those three atomic lay-
ers is about 6–8 Å thick. The TMDs have
no inversion symmetry, and most of them
have nonzero bandgaps. But their band
structure is complicated by strong spin–
orbit coupling, which arises from the high
orbital velocities in the relatively heavy 
M atoms’ partially filled d subshells. That
spin–orbit coupling splits the TMDs’ va-
lence bands into two spin-polarized bands.
Time-reversal symmetry requires the spin
and momentum degrees of freedom to be
coupled such that the K and K’ valleys
carry opposite spin polarizations. That
unique spin and valley texture causes elec-
trons to experience a pseudo-magnetic
field, which gives rise to a so-called valley
Hall effect even in the absence of an 
applied field. Furthermore, by applying

circularly polarized light, researchers can control both the elec-
trons’ spin and the momentum valley they occupy.3

Quantum confinement and the lack of bulk dielectric
screening have profound effects on the optical properties of
semiconducting TMDs. For example, many bulk TMDs have
indirect bandgaps: The valence-band maximum and conduction-
band minimum are characterized by different wavevectors. 
But in monolayer form, the materials undergo a transition to 
a direct bandgap, which results in stronger optical absorption
and more efficient radiative recombination. Figure 3a shows
the effect for MoS2. Additionally, excitons—electron–hole 
pairs created by single-photon absorption—can have large
binding energies in 2D TMDs due to the lack of bulk dielectric
screening.

Black phosphorus (BP), or phosphorene, a layered allotrope
of elemental phosphorus, has some interesting properties that
arise from its inherent in-plane anisotropy. As shown in figure 1,
BP layers take the form of puckered sheets. Consequently, the
material has an anisotropic band structure, and its charge car-
riers have anisotropic effective mass. As figure 3b shows, the

FIGURE 1. THE WORLD OF TWO-DIMENSIONAL MATERIALS
includes graphene and its analogues, such as hexagonal boron 
nitride; black phosphorus (BP) and its analogues; the III–VI family of
semiconductors; and the transition-metal dichalcogenides (TMDs).
Together they span the full range of electronic properties. The four
corner diagrams show the materials’ cross-sectional structures—
most are not strictly planar.

FIGURE 2. LATTICE STRUCTURES and band structures at the corners of the first Brillouin zone for (a) monolayer graphene, (b) bilayer
graphene, (c) hexagonal boron nitride, and (d) the transition-metal dichalcogenides (TMDs). The dashed lines in the lattice diagrams indicate
unit cells. Because of their inversion symmetry, monolayer and bilayer graphene have no bandgap. Due to spin–orbit coupling, the TMDs’ 
valence band is split into two spin-polarized bands, marked by the red and blue arrows.

Figure 1: The world of 2D materials includes graphene and its analogues, such
as hexagonal boron nitride; black phosphorus (BP) and its analogues; the III–VI
family of semiconductors; and the transition-metal dichalcogenides (TMDs).
Together they span the full range of electronic properties. The four corner
diagrams show the materials’ cross-sectional structures most of which are not
strictly planar. Figure taken from [4]

their good intrinsic properties like high electronic mobility and optical gaps
in the visible range (from 0.5 to 3 eV) [4]. A few applications demonstrated
so far include the fabrication of transistors [5], solar cells [6], memories, and
optoelectronic devices [7].

To develop these new devices it is fundamental to choose the best mate-
rial possible. This requires the characterization of its properties or how those
can be tuned. One can finely tune the properties by stacking different layers
together [8, 9], applying strain [10] or an electric field. When modifying the
material, it is essential to monitor how its properties change with the applied
modification using non-invasive and precise characterization techniques.

One of the most widely known of such techniques is Raman spectroscopy.
It has been extensively used in the search and optimization of 2D materi-
als [11]. The technique was first demonstrated in 1928 by C. V. Raman and his

4
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material

laser

diffraction grating

CCD
Figure 2: Schematic representation of a Raman experiment. The light scattered
in the material is diffracted and detected by the CCD (left). The light scattered
by the material loses energy to excitations in the material (right).

student K. S. Krishnan on liquids [12], for which they received the Nobel Prize
in Physics in 1930, although the effect was previously theoretically predicted
by Adolf Smekal [13]. A modern Raman experiment consists of shining a laser
on the material and detect the inelastically scattered light using a diffraction
grating and a charge-coupled device (CCD), as schematically shown in Fig. 2.

When the incident light interacts with the material, part of it is elastically
scattered, leading to a peak in the scattered light spectra at the energy of
the incident laser. Another part loses energy in the material and the spectra
shows peaks shifted by the energies of the excitations with respect to the elastic
peak. These excitations can be phonons [14, 15], excitons [16] or magnons [17],
among others. The intensities of the corresponding peaks are related to the
strength of the coupling with the laser light. The change of the Raman inten-
sities as a function of incident laser light energy contains information about
the optical properties, like the optical gap, the exciton-photon and exciton-
phonon coupling [18]. Raman spectroscopy is thus a very complete technique,
providing information about electronic, vibrational and optical properties in a
single experiment. Raman is frequently used to investigate 2D materials. In
the case of graphene, it gives information on the number of layers, the under-
lying substrate, the quality of sample (defects), on the doping and strain [19].

5
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For TMDs it has also been used to determine the number of layers via the
difference between the A0

1 (A1g) and E0 (Eg) modes for odd (even) number
of layers [20, 21, 22]. It has been used to investigate excitonic effects in up
to three layers and bulk MoS2 [18]. More recently, the Davydov splitting
of diverse phonon modes was experimentally measured using Raman spec-
troscopy [23, 24, 25, 26]. In this case a strong dependance of the Raman inten-
sities with laser energy is reported but not understood from experimental data
alone.

An essential complement to experiments is their simulation from a theo-
retical point of view. With the improvement of computational power and al-
gorithms in the last decades, it has become possible to calculate (to a good
approximation) many experimental quantities like lattice parameters, phonon
modes, optical response or electronic conductivity. The description of these
has been the motivation of a big effort in the community of solid-state physics
and theoretical spectroscopy over the last 50 years. In particular, the theory
of Raman scattering has been described in previous works using perturbation
theory [15, 27, 28, 29, 30]. In these approaches, the Raman intensities are cal-
culated in terms of the electron and phonon dispersions as well as electron-
phonon and electron-light coupling matrix elements. This accounts for many
effects observed in the experiments like the laser energy dependence of the
intensities and Stokes shift due to the phonon excitation. In practical calcula-
tions, however, these works mostly relied on semi-empirical models like tight-
binding or k.p to obtain the necessary quantities. These methods have the
drawback that they require a priori knowledge about the material.

Ab initio methods, can be directly applied to a wide variety of materials
without the need of parametrization. However, most standard ab initio im-
plementations to calculate Raman intensities available today are limited to
the non-resonant regime and the adiabatic phonon limit [31, 32]. Recently,
a method based on finite differences of the dynamic dielectric susceptibility
with respect to the atomic positions was demonstrated in silicon [33] and
TMDs [34]. This method relies entirely on first-principles methods and cor-
rectly describes the laser energy dependence of the intensities. We will apply

6



0.1 Raman spectroscopy of 2D materials

this method to study the evolution of the Raman intensities with laser energy
for single- and triple-layer MoTe2. The interest in this particular system stems
from the experimental observation of a strong dependence of the Raman inten-
sities of the A0

1 modes with number of layers and laser energy as we will show
in Chapter 5. We compare our calculation results with experimental data, with
good agreement and most importantly we explain it in terms of quantum in-
terference effects. Using this approach we unravel the role of excitonic effects
and selection rules in the Raman intensities. This constitutes the main out-
come of our previous publication (Ref. [35]) and of the present thesis. The main
advantage of this approach is that excitonic effects are easily included in the
Raman spectra using the implementations available to calculate excitonic ef-
fects on the level of many-body perturbation theory (Bethe-Salpeter equation).
Its drawback is that many electronic band structure and exciton calculations
are required to obtain the Raman intensities for the different phonon modes.
Furthermore, relying on static finite differences, it does not capture dynamical
effects of phonons.

To overcome these problems, we propose an approach using perturbation
theory and matrix elements calculated from first-principles. We show that
this method correctly reduces to the static finite differences in the adiabatic
phonon limit but allows to go beyond it incorporating the dynamical effects
of phonons. Moreover, temperature effects can also be included in the calcula-
tions. This method constitutes the second main outcome of the present work.
It allows us to calculate in a computationally very efficient manner the one-
phonon resonant Raman response. While we have tested this approach for
layered materials, its applicability is much more general. We also outline an
approach to express the derivative of the susceptibility including excitonic ef-
fects in terms of electron-phonon matrix elements. This will allow to calculate
the Raman tensor at a much lower computational cost avoiding to use finite
differences.

To run the calculations and interpret the results, we have developed in the
course of this thesis a series of tools that have a broad range of applicability.
To visualize phonons and excitons we developed two web-based visualization

7



0. INTRODUCTION

tools. We also improved the work-flow for running the calculations by creating
a set of automatization scripts in a new Python project called yambopy. Since
this work required diagonalization of large excitonic Hamiltonians, we imple-
mented in the yambo code an interface using the SLEPC library that allows us
to obtain excitonic eigenvalues and eigenvectors using an iterative procedure.
This enables us to obtain selected excitonic states in large systems at a much
smaller computational cost.

0.2 Outline of the thesis

The calculation of Raman spectra from first-principles requires to combine
many state of the art computational electronic structure methods. This thesis
is organized according to the different ingredients needed for the calculations
as shown in Fig. 3.

In the first Chapter we write the Hamiltonian describing the system at the
microscopic level. To solve this Hamiltonian as a whole is a daunting task
and in practice many approximations have to be employed. The first one is
the Born-Oppenheimer approximation that allows us to treat the movement
of the electrons and nuclei separately. We describe this approximation, along
with the density functional theory and the GW methods used to calculate the
electronic energies and wave functions in Chapter 1. In Chapter 2 we describe
the vibration of the ions in the lattice in terms of phonon modes. For that we
write the equations of motion using force constants which we calculate from
first-principles using density functional perturbation theory. In Chapter 3 we
incorporate perturbatively the effects of the lattice vibrations on the electronic
structure leading to two important effects: the band gap renormalization and
a finite lifetime for the electrons and holes in a given state. We show how the
material interacts with light in Chapter 4 and how excitons are formed. In
Chapter 5 we combine the methods described in Chapters 1, 2, and 4 to obtain
the Raman intensities for MoTe2 using the static finite differences approach.
Finally in Chapter 6 we combine the ingredients obtained in all the previous
chapters to calculate the resonant Raman intensities of MoS2 using a perturba-

8



0.2 Outline of the thesis
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Figure 3: Outline of the thesis in figures. We start by individually describing
all the ingredients needed for the calculation of the Raman susceptibilities in
the finite differences and perturbative approaches.
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0. INTRODUCTION

tive approach.

In Appendix A we describe the newly developed tools for automatization
of the calculations. We then describe the web-based tools to visualize phonons
and excitons in Appendix B. In Appendix C we analytically show the equiva-
lence between the finite differences and and the diagrammatic calculations.
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1

Electrons: Screening effects in 2D
materials

The starting point to predict the properties of a material is the descrip-
tion of the movement of the electrons in the potential created by the nuclei.
The Hamiltonian of the system of electrons and nuclei interacting through the
Coulomb force is [36]

Ĥ =Ĥe + Ĥn + Ĥe�n

Ĥ = � Â
i

h̄2

2me
r2

i +
1
2 Â

i 6=j

e2

ri � rj

� Â
I

h̄2

2MI
r2

I +
1
2 Â

I 6=J

ZIZJe2

|RI � RJ |

� Â
i,I

ZIe2

|ri � RI |

(1.1)

where me is the mass of the electron, MI the mass of the nuclei, ZI the charges
of the nuclei and r is the position of the electrons R of the nuclei. The lower
case indices refer to electrons and upper case to the nuclei.

This Hamiltonian is exact in the non-relativistic case, and its eigenvalues
and eigenfunction yield all the information about the many-body (MB) system.
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1. ELECTRONS: SCREENING EFFECTS IN 2D MATERIALS

The issue is that, although we can formulate the problem and implement it
on a computer, it cannot be solved for systems of more than a few electrons
and nuclei. In order to describe the interacting wave function of the system
we have to store all the possible Slater determinants [37, Section 1.2]. This
requires huge amounts of memory and computational power. To overcome
this difficulty, we have to do approximations and simplify the problem to a
more manageable one.

A first approximation is done by verifying that the kinetic terms involving
the inverse masses of the atomic nuclei M�1

I are much smaller than the ones
involving the inverse of the electron mass m�1

e . This approximation allows us
to decouple the electronic and nuclear part of the Hamiltonian. We speak of
the so-called Born-Oppenheimer approximation (BOA) which is widely used in
Quantum Chemistry and Condensed Matter Physics.

Even though it relies on expanding the motion of the nuclei around their
equilibrium positions, this simplification allows to obtain the vibrational
modes (Ĥn term) of the nuclei and their coupling with the electronic states
(Ĥe�n term) in the adiabatic phonon limit.

Within the BOA we can focus on the Hamiltonian describing the electronic
states

Ĥe = � h̄
2me

Â
i

r2
i � Â

i,I

ZIe2

|ri � RI | +
1
2 Â

i 6=j

e2

ri � rj
(1.2)

Although simpler, this Hamiltonian still cannot be solved exactly for systems
with more than a few electrons. There are, however, multiple approaches
to solve it approximately and gradually increase the accuracy of the results
by doing more complex computations. Here we will introduce an approach
that combines density functional theory (DFT) as a starting point for a many-
body perturbation theory calculation (MBPT). In density functional theory, the
many-body system is mapped onto a system of independent particles that is
solved self-consistently. The resulting wave functions serve as the basis for the
MBPT calculation that recovers the many-body character of the system. This
approach has the advantage of never having to deal with the full many-body
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1.1 Density functional theory

wave function, yet recovering the physical observables with high accuracy.
The treatment of the many-body perturbation theory can indeed be made ex-
act as long as the system is treated self-consistently at the MBPT level using
Hedin’s equations 1.

1.1 Density functional theory

DFT is one of the most widely used approaches for computational simula-
tion of Condensed Matter systems. Here we will outline the basic principles
and refer to the literature when appropriate [36, 39].

The advantage of using DFT stems from its ability to make accurate first-
principles ground-state calculations computationally efficient. It does so by
re-casting the problem of solving the complicated many-body problem into
one of solving a group of independent particles self-consistently [40, 41]. Most
of the many-body effects are accounted for in a term which is unknown in
principle but for which approximate expressions exist.

The different aspects of the description of the material (electrons, phonons,
etc) and their interaction with light is described within the DFT framework. In
DFT we describe the system of electrons based on their charge density n(r).
The total energy is written as a functional of n(r) [42]

E({R0}) =T[n(r)] + EHartree[n(r)] + Exc[n(r)] + Een[n(r)] + En({R0}), (1.3)

where T[n(r)] is the kinetic energy of the system with ground-state defined by
the charge density n(r), and Exc[n(r)] is the exchange-correlation energy which
for now is only a term that captures all the interactions not captured by the
other terms. Een(r) is energy of the interaction between electrons and nuclei,
{R0} represents the positions of all the nuclei in the system frozen at given co-
ordinates (as prescribed by the BOA) and En({R0}) is the Coulomb repulsion
between the nuclei.

1The derivation of Hedin’s equations is found in the original paper [38]. It is also exten-
sively discussed in the literature [37]
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1. ELECTRONS: SCREENING EFFECTS IN 2D MATERIALS

The EHartree[n(r)] and Een[n(r)] terms are

EHartree[n(r)] =
e2

2

Z n(r)n(r0)
|r � r0| d3rd3r0, (1.4)

Een[n(r)] =
Z

Ven(r)n(r)d3r, (1.5)

with Ven(r) given by

Ven(r) = � Â
I

ZIe2

|r � RI | , (1.6)

where ZI is the nuclear charge and RI the position of the nuclei (consistent
with Eq. (1.1)). Note that Ven(r) parametrically depends on all the positions of
the ions in the system.

With functionals for the kinetic T[n(r)] and exchange-correlation Exc[n(r)]
energies we can minimize Eq. (1.3) to obtain the charge density n(r). One
possibility for the parametrization of T[n(r)] functional is the Thomas-Fermi
model. This, however, is not very accurate for most physical systems of interest
as it is based on the homogeneous electron gas. A solution to this problem
was proposed by Kohn and Sham and consists of introducing an ansatz [36] of
independent electronic wave functions. In this basis, the kinetic energy T[n(r)]
is calculated using the Laplace operator

T[n(r)] = � h̄2

2me

N

Â
n=1

hyn|r2|yni ,

hyn|r2|yni =
Z

y

⇤
n(r)r2

r yn(r)d3r,
, (1.7)

and the charge density as the sum of the modulus square of the wave functions

n(r) =
N

Â
n=1

|yn(r)|2, (1.8)

where N is the number of electrons. This approach requires that the wave
functions yn(r) (Eq. (1.7)) and the charge density n(r) (Eq. (1.8)) are calculated
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1.1 Density functional theory

n0(r)

VKS(r)

ˆH | ni = ✏n | ni

n(r) =
P

n | n|2

converged?

end

no

yes

Figure 1.1: Flow of a self-consistent DFT calculation in the Kohn-Sham scheme.
Figure adapted from [39, Chapter 6]

self-consistently as shown in Fig. 1.1. This in turn, implies the determination
of the wave functions at each step by solving the eigenvalue problem

ĤKS |yni = en |yni , (1.9)

where n is an index to distinguish the independent particle states, yn(r), and
en their energies. The Hamiltonian is

ĤKS = � h̄
2me

r2
r + VKS(r), (1.10)

with the Kohn-Sham potential given by

VKS(r) = Ven(r) + VHartree(r) + Vxc(r), (1.11)

VHartree(r) =
dEHartree

dn(r)
, (1.12)

Vxc(r) =
dExc

dn(r)
. (1.13)
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1. ELECTRONS: SCREENING EFFECTS IN 2D MATERIALS

were dE
dn(r) is the functional derivative with respect to the density. HKS is a

functional of the density, hence to obtain the independent-particle states, an
initial guess for the density n0(r) is required.

The exchange-correlation term captures the difference in energy between the
exact kinetic energy and the independent particle kinetic energy plus the dif-
ference between the exact interaction energy and the Hartree approximation
and is a functional of the charge density [37]. The first approximation to
the exchange-correlation functional was the local-density approximation (LDA)
where the effects of exchange and correlation are assumed to be the same as in
a system of a homogeneous electron gas. This assumption allows one to write
the exchange term with a simple analytic form and to calculate the correlation
energy with great accuracy using Monte-Carlo methods [43]. This approach
has turned out to be accurate for solids and is still widely used due to its ef-
ficiency and simplicity and good performance. This approximation, however
was not so successful in molecules where the charge density is in general more
localized than in the case of solids. To overcome this issue, the generalized
gradient approximations (GGAs) were introduced [44]. In these type of func-
tionals, the exchange-correlation terms depend not only on the charge density
but also on its gradients.

The “true” form of the exchange-correlation functional depends on the so-
lution of the full many-body problem. This formulation is however not practi-
cal, as we want to avoid to calculate the full many-body system. Different ap-
proximations for the determination of this functional exist [45], some based on
physical principles (like the LDA), others are built to reproduce experimental
results for certain systems. As calculations with more accurate and exact meth-
ods become feasible, it will become possible to converge closer and closer to the
“true” exchange-correlation functional with different methods and approaches,
for example using machine learning [46].

From the auxiliary system in Eq. (1.9) we define a self-consistent set of equa-
tions to obtain the charge density n(r) and wave functions yn(r) of the ground
state. These are the so-called Kohn-Sham equations [36]. It is important to
remark that DFT describes the ground state only and as such, to calculate elec-
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1.1 Density functional theory

tronic and optical gaps, we need to go beyond it in the theoretical description
as we will show in Sec. 1.2.

So far we have not specified the basis we will use to expand the wave func-
tions. The most commonly used for solids is the plane-wave basis set. Plane-
waves are particularly useful for allowing us to systematically increase the size
of the basis and consequently the accuracy of the calculation. Additionally it
offers the advantage of having simple Fourier transformations that are partic-
ularly useful to evaluate certain integrals. This choice is also appropriate to
describe delocalized electrons1 as the plane-waves are inherently delocalized.
Another possible basis set is the one of atomic orbitals localized around the
atoms [47, 48]. A hybrid between localized orbitals and plane-waves are the
wavelets basis set [49]. Many other choices of basis set exist [36], but we will
not discuss them here.

In periodic systems we can define Bloch states (k-dependent). The wave
functions of the system are determined by diagonalizing the Hamiltonian in
reciprocal space

Ĥ |ynki = enk |ynki , (1.14)

where |ynki are the eigenstates of the electrons and enk the eigenvalues. These
eigenvalues and eigenstates describe the system as a first approximation and
provide a convenient basis set to be used in perturbative methods. These meth-
ods allow us to recover the many-body character of the system and will be
described in the next section.

1In general the electrons in the valence bands are localized near the ionic positions, and
are responsible for the chemical bonding of the system. The conduction electrons are, how-
ever, more delocalized. It might seem contradictory to use a ground-state theory to describe
delocalized conduction electrons. However, as we will show in Sec. 1.2, we are not looking for
exact solutions at this point.
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1. ELECTRONS: SCREENING EFFECTS IN 2D MATERIALS

1.2 Many-body perturbation theory

In this section we will present the basic topics of many-body perturbation
theory (MBPT). MBPT consists in treating the complicated many-body inter-
actions in a perturbative way starting from an approximate solution1. The
advantage is that we can avoid calculating the complicated MB wave func-
tion and instead calculate only the quantities of interest. The topics introduced
here are extensively discussed in the literature [50, 51, 52], and we will show
only a brief introduction from a practical perspective. These methods will be
applied to improve the description of the MB system and its optical response.
The first correction, the Hartree-Fock and GW methods which we describe in
Section 1.2.3 allows us to overcome some of the issues of using approximate
functionals for the exchange-correlation Exc[n(r)] in Eq. (1.3).

1.2.1 Second quantization

We start by introducing the concept of second quantization2 which we will
use throughout different chapters of this manuscript. In second quantization,
we define creation and annihilation operators for the particles in the system.
These operators “create” or “annihilate” electrons in the system (we start with
a zero-particle state |0i)

ĉn |0i = 0, ĉ†
n |0i = |ni . (1.15)

Since we will be dealing with a system in the ground-state, we can define the
vacuum as a state made with all the electrons in the valence bands. In this for-
malism we distinguish two different types of operators acting on the electrons

1 A typical starting point are the Kohn-Sham wave functions obtained from DFT.
2The topic of second quantization is treated in more detail in references [50, Chapter 7],

[51, Chapter 1] and [52, Section 1.2]
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1.2 Many-body perturbation theory

(ĉc and ĉ†
c ) and holes (ĉv and ĉ†

v):

ĉc |0i = 0, ĉ†
c |0i = |ci , (1.16)

ĉv |0i = 0, ĉ†
v |0i = |vi . (1.17)

These operators for electrons and holes obey certain commutation relations
that ensure that the MB wave function retains the correct symmetry properties

{ĉc, ĉv} = 0,
n

ĉ†
c , ĉ†

v

o

= 0,
n

ĉc, ĉ†
v

o

= dcv (1.18)

where {â, b̂} = âb̂ + b̂â is the anti-commutator for fermions. An advantage of
these definitions is that all the operators acting on the MB system are expressed
in terms of “creation” and “annihilation” operators and the matrix elements of
the interaction terms.

1.2.2 Green’s functions

1.2.2.1 Zero temperature

Another important tool in the language of many-body perturbation theory
are the Green’s functions. These functions describe the propagation of single
particles governed by the full many-body Hamiltonian.1 This will allow us
to perturbatively include interaction terms using the Feynman diagrammatic
techniques. We will outline here the main concepts that will be needed in the
next chapters. Mathematically, (at zero temperature) the time-ordered or causal
one-particle Green’s function is given by [50, Chapter 9]

Gk(t2 � t1) = �i hY0|T{ĉk(t2)ĉ†
k(t1)}|Y0i , (1.19)

where Y0 is the exact normalized wave function of the interacting N-particle
system. The operators ĉk(t) and ĉ†

k(t) destroy and create a particle in state with
momentum k (the band index is omitted for simplicity) at time t respectively.

1A pictorial representation of the interpretation of what is a Green’s function is given in [50,
Chapters 1,2 and 3]. A more formal description is done in [50, Chapters 9]
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1. ELECTRONS: SCREENING EFFECTS IN 2D MATERIALS

Their time evolution is given in the Heisenberg picture

ĉ†
k(t1) = ei Ĥt1 ĉ†

ke�i Ĥt1 , (1.20)

ĉk(t2) = ei Ĥt2 ĉke�i Ĥt2 , (1.21)

where Ĥ is the Hamiltonian of the fully interacting system. The T operator is
the Wick time-ordering operator and when acting on the time-dependent op-
erators permutes them so that the time in which they act is decreasing from
left to right. In the case of fermions, it multiplies them by a factor (�1)P where
P is the number of permutations needed to make the operators time-ordered.
Wick’s theorem allows us to evaluate matrix elements of the interacting system
by permuting the operators acting at different times and generating the differ-
ent terms. A detailed explanation of Wick’s theorem can be found in Ref. [50,
Appendix F]. These different terms are them added up in a perturbative series.
An alternative way to find these different terms is by the Feynman diagram-
matic technique.

The Green’s function of the system can be written as two separate branches
as in Ref. [50, Eq. 9.5])

Gk(t1 � t2) =

8

<

:

�i hY0|ĉk(t2)ĉ†
k(t1)|Y0i , t2 > t1,

+i hY0|ĉ†
k(t1)ĉk(t2)|Y0i , t2 < t1.

(1.22)

The independent particle Green’s function is given by

G(0)
k (t1 � t2) =

8

<

:

�iq(ek � eF)e�iek(t2�t1)/h̄, t2 > t1,

+iq(eF � ek)e�iek(t2�t1)/h̄, t2 < t1,
(1.23)

where eF is the Fermi level and q(t) is the Heaviside step-function, defined as

q(t) =

8

<

:

1, t > 0,

0, t < 0.
(1.24)

The Fourier representation of the independent particle Green’s function be-
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1.2 Many-body perturbation theory

comes

G(0)
k (w) =

q(eF � ek)
w � ek � id

+
q(ek � eF)
w � ek + id

. (1.25)

were idelta is an infinitesimal quantity [50, Appendix I].

1.2.2.2 Finite temperature

In the finite temperature case the expectation value of any operator is de-
fined as [50, Chapter 14]

r = e�b(Ĥ�µN), (1.26)

hÔi =
Tr{Ôr}
Tr{r} , (1.27)

where r is the “grand distribution function” and Z is the “grand partition func-
tion”. The finite temperature Green’s functions is then given by

GT
k (t1 � t2) = �i hT{ĉk(t2)ĉ†

k(t1)}i , (1.28)

= �i
Tr[T{ĉk(t2)ĉ†

k(t1)}r]

Tr{r} . (1.29)

The independent particle Green’s function at finite temperature is given by

GT
k (t1 � t2) =

8

<

:

�ie�iek(t2�t1)/h̄[ f (ek)], t2 > t1,

+ie�iek(t2�t1)/h̄[1 � f (ek)], t2 < t1.
(1.30)

where f is the Fermi-Dirac distribution f (ek) = (1 + eenk/kbT)�1

The Fourier representation of the Green’s function is then given by [53,
Eq. 4.5]

Gk(w) =
f (ek)

w � ek � id
+

1 � f (ek)
w � ek + id

, (1.31)
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1. ELECTRONS: SCREENING EFFECTS IN 2D MATERIALS

where we have omitted the band index.

To expand GT in terms of Feynman diagrams one has to use the imaginary
time Green’s function [50, Chapter 14]. In these, the time variable is replaced
by an imaginary time it ! t in what is known as the Matsubara formalism.
This allows us to use the Feynman diagrammatic expansions, including tem-
perature in the electrons and Bosons. The Green’s function for the electrons in
this case is written as

G0
k(iw) =

1
iw � ek

. (1.32)

We will use this to obtain the temperature dependent electron self-energy in
Chapter 3 and the temperature-dependent independent-particle dielectric po-
larizability in Chapter 4.

1.2.3 From Hartree-Fock to GW

Here we outline the idea of the MBPT approach with DFT as a starting
point. To do so we consider two examples: the Hartree-Fock (HF) and the GW
approximations1. The idea of applying MBPT with DFT as a starting point is
that DFT yields results very close to the full solution, and hence the MB in-
teractions can be treated perturbatively. These perturbations also change the
purely independent particle character of the electrons in the system to what is
normally known as quasi-particles (QP). A QP is, simply put, a particle mov-
ing in the many-body system while interacting with it. We can think of it as a
ship moving in the sea feeling the effect of the waves while producing its own
waves.2 This description has the advantage that we never deal with all the
ships and all the waves at the same time (the MB wave function). This picture
is of course only valid in case the many-body effects are weak and the behav-

1More information about the HF method can be found in [37, Section 4.1] and [50, Sec-
tion 4.7]. The GW method is discussed in [37, Section 11] and [54]

2A precedent analogy is made in Ref. [50, Chapter 0] where a particle is compared to a
horse and the quasi-particle to the horse plus the “dust cloud kicked up by a galloping horse in
a western”.
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1.2 Many-body perturbation theory

ior with respect to the independent particle picture does not change much. It
offers the advantage that the different interactions can be treated separately
according to how strong they are. This idea has been used in the past 40 years
with remarkable success in accurately describing complex systems at a afford-
able computational cost [54].

The Hamiltonian for the free electrons moving in the system is given in
second quantization by

Ĥe = Â
i

ei ĉ†
i ĉi , (1.33)

where ĉ†
i and ĉi are the electron creation and annihilation operators defined in

the previous section and ei are the single particle energies. The index i denotes
a single particle state that in the case of using DFT calculations of an infinitely
periodic crystal means k for the k-point and n for the band index.

The relation between the KS Green’s function and the Green’s function
of the many-body system is obtained by replacing the approximate exchange-
correlation energy and adding the MB self-energy Si(w) [55]

Gi(w) = G0
i (w) + G0

i (w)[Si(w) � Vxc
i ]Gi(w). (1.34)

In the next sections we will outline some of the approximations for this self-
energy.

1.2.3.1 Hartree-Fock

We introduce now the many-body Hamiltonian, including pair-wise inter-
actions between the electron

Ĥ = Â
i

ei ĉ†
i ĉi +

1
2 Â

ij,nm
Vijnmĉ†

i ĉ†
j ĉnĉm (1.35)
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where Vijnm are the Coulomb interaction matrix elements [37, Appendix A]

Vijnm =
Z

d3rd3r0
y

⇤
i (r)yj(r0)vc(r, r0)yn(r0)y

⇤
m(r) (1.36)

Those are calculated using the bare Coulomb potential vc(r) = 1/|r| with the
Fourier transform vc(q) = 4p/|q|2.

The two leading order terms from this interaction are represented in Fig. 1.2
in terms of Feynman diagrams1. One takes into account the forward scatter-
ing amplitude which corresponds to the tadpole diagram a). The second term
accounts for the exchange interaction and is represented by diagram b). Di-
agram a) is already included self-consistently at the DFT level (see Eq. (1.4))
and Diagram b) has the form [55]

Sx
nk = � Â

q
Â
m

vc(q + G)|rnm(k, q, G)|2 f (emk�q) (1.37)

where rnm(k, q, G) = hynk|ei(q+G)·r|ymk�qi. This correction improves in the

+ΣHF =

a) b)

Figure 1.2: Feynman diagrams for the HF self-energy

description of the many-body system and stems from the condition that the
fermions must be anti-symmetric and indistinguishable. These conditions are
imposed by a single Slater determinant construction of the Many-Body wave
function. In extended systems, the HF correction greatly overestimates the
quasi-particle corrections to the DFT eigenvalues.

1For a good introduction to the meaning and interpretation of a Feynman diagram see
Ref. [50, Chapters 1, 2 and 3].
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1.2.3.2 GW approximation

The reason for the failure of HF is the lack of screening of the Coulomb in-
teraction in the exchange diagram of Fig. 1.2 b). The screening leads to an
effective weakening of the Coulomb interaction due to the presence of the
other electrons in the system. This means that one electron does not interact so
strongly with another because other electrons are “in the way”. The screening
of the Coulomb interaction accounts for some effects of correlation, meaning
that the interaction between every two electrons depends on the others in the
system. This has the effect of reducing the HF QP corrections closer to the
experimentally observed value compared to the DFT values 1.

Figure 1.3: Weaker coulomb interaction screening due to the low dimension-
ality of the material (MoTe2 in this case). The interaction lines between two
point charges are not screened in all space.

The screening of the Coulomb interaction is smaller in lower dimensional
compounds (2D, 1D or point-like). The reason is that since the electrons are not
distributed uniformly in all space, the Coulomb interaction is not completely
screened, leading to a bigger QP correction. This correction is smaller than
in the HF case, as there is still some screening. A pictorial representation of
the non-uniform distribution of electrons and how this affects the screening is
shown in Fig. 1.3. The inclusion of the screened Coulomb interaction in the
exchange term of Fig. 1.2 is what is known as the GW approximation which is
diagrammatically represented in Fig. 1.4.

1A good discussion about the meaning of correlation is found in Ref. [37, Chapter 2.1]
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ΣGW (ω) + + +...

=

=

Figure 1.4: Feynamn diagrams for the GW self-energy.

The difference between the GW diagrams of Fig.1.4 and HF of Fig.1.2 is that
the interaction line in the exchange term (second diagram) can be mediated by
electron-hole pairs. We can focus on the term in Fig.1.2 b) and replace the bare
Coulomb interaction with one that is screened. The screening is evaluated us-
ing the random-phase approximation (RPA). The diagrammatic representation
of RPA is shown in Fig. 1.5.

= + +

×=

+...

=

1−

+ +...+

Figure 1.5: Diagrammatic representation of the screened Coulomb interaction
calculated in the random phase approximation (RPA).

The diagrams of Fig. 1.5 can then be translated into mathematical expres-
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sions [50]

WRPA
GG0 (q, w) =

vc(q + G)

1 + vc(q + G)P0
GG0(q, w)

=
vc(q + G)

e

RPA
GG0 (q, w)

(1.38)

where P0(q, w) is the irreducible polarization bubble which we will show how
to calculate in detail in Chapter 4. WRPA(q, w) is simply the RPA-screened
Coulomb interaction.

Using Eq. (1.38), the diagrams from Fig. 1.4 can also be translated into math-
ematical expressions as [55]

SGW
nk (w) = Sx

nk + Sc
nk(w) (1.39)

giving us the expressions to calculate the GW self-energy. The first term is the
exchange self-energy from HF in Eq. (1.37) and is added to the correlation term

SGW
nk (w) =i Â

mq
Â

GG0
vc(q + G)rnm(k, q, G)r

⇤
nm(k, q, G0)

⇥
Z dw

0

2p

G0
m(k � q, w � w

0)[eRPA]�1
GG0(q, w

0)
(1.40)

In a practical calculation of the GW quasiparticles one starts by computing
the screened Coulomb interaction in Eq. (1.38) which requires the calculation
of the irreducible polarizability P0(q, w). This is commonly done at the in-
dependent particle level using the DFT states. The bottleneck at this stage
is the sum over many empty bands required to obtain a well converged real
part of the polarizability P0

GG0(q, w). Since the evaluation of the polarizabil-
ity is q-independent, the computations for the different points can be done in
parallel. The second step is the evaluation of Eq. (1.37) which is not very com-
putationally demanding. The last step is the calculation of Eq. (1.40) which
also requires a large part of the overall computational time and also requires
a sum over empty states. In this case the evaluation of each QP correction is
independent of the others and their computation can be parallelized.
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1. ELECTRONS: SCREENING EFFECTS IN 2D MATERIALS

1.2.4 GW band-structure of MoTe2

The expressions described in the previous section are implemented in var-
ious open-source and proprietary codes available to the community. As an
illustrative example of the many-body effects in the electronic band-structure,
we report here the results of GW calculations for single-layer (1L) and triple-
layer (3L) MoTe2 performed using the yambo code [55]. In these calculations

Figure 1.6: GW corrections for single- and triple-layer MoTe2 in the upper and
lower panel respectively.

we are interested in obtaining a scissor operator for the subsequent calcula-
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1.2 Many-body perturbation theory

tions of the optical absorption (Chapter 4) and Raman susceptibility (Chap-
ter 5). The scissor operator [56] consists of assuming that the QP corrections to
the DFT eigenvalues can be reproduced by a constant shift of the conduction
bands. The values obtained from the GW calculations in single- and triple-
layer MoTe2 are reproduced in Table 1.1. A more elaborate approximation is

scissor shift (eV)
Single-layer 0.667
Triple-layer 0.548

Table 1.1: Scissor operator for single- and triple-layer MoTe2.

to consider that the correction consists of both a shift of the conduction bands
plus a different stretching for the valence and conduction bands. For simplic-
ity, we consider only a rigid scissor shift due to the GW correction.
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2

Phonons: Vibrating nuclei

In this chapter, we study the vibrational degrees of freedom of the nuclei
in crystals. We expand the total energy in terms of displacements of the atoms
around their equilibrium positions using the Born-Oppenheimer approxima-
tion (BOA). We then write the equations of motion for the nuclei in the har-
monic approximation. These equations are solved to obtain vibrational eigen-
modes of the nuclei. In Section 2.2 we will make the connection with the quan-
tum case using creation and annihilation operators in the second quantization
formalism. The interactions of the electrons with the nuclei are calculated us-
ing different ab initio approaches which we will describe in Section 2.3. Second
quantization will then be used throughout the rest of the thesis for the descrip-
tion of the electron-phonon self-energy in Chapter 3 and Raman scattering in
Chapter 5.

2.1 Equations of motion for the nuclei

In this section we define phonons as the collective motion of the nuclei in
an extended periodic system. We highlight the main points of the derivations
given in Ref. [57]. For that we start by expanding in a Taylor series the total
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2. PHONONS: VIBRATING NUCLEI

energy of the system around the equilibrium positions of the nuclei

E({R}) =E({R0})+

Â
Ia

∂E({R0})
∂RIa

(RIa

� R0
Ia

)+

1
2 Â

IaJb

∂E({R0})
∂RIa

∂RJb

(RIa

� R0
Ia

)(RJb

� R0
Jb

) + O(R3),

(2.1)

where {R} and {R0} are the set of positions and equilibrium positions of all
the nuclei in the system respectively, I is a combined index that denotes the
index of the atom in the unit cell and the index of the unit cell in the system
(in the case of periodic crystals), RI is the position 1 of the atom and a and b

are cartesian directions. The first term corresponds to the total energy of the
system in equilibrium. The second term contains the forces felt by an atom
upon displacement around its own equilibrium position

FIa

({R0}) = � ∂E({R})
∂RIa

�

�

�

�

R=R0
. (2.2)

The last term contains the force constants that correspond to the induced force
on an atom when another atom is displaced

CIa,Jb

=
∂

2E({R})
∂RIa

∂RJb

�

�

�

�

�

R=R0

= �∂FIa

({R})
∂RJb

�

�

�

�

�

R=R0

. (2.3)

The truncation of the expansion at the second order corresponds to the har-
monic approximation. The additional terms that appear beyond second-order
are anharmonic terms. These are important to determine phonon lifetimes as
well as the structure’s lattice constants at different temperatures. Different ap-
proaches are currently being developed to determine and study anharmonic
effects in materials [58, 59]. These topics are beyond the scope of the present
work and we will be using the harmonic approximation throughout the rest of

1At this point it is convenient to note that RI = rI + r
eI where rI is the position of the unit

cell that contains the atom and r
eI is the position of the atom in the unit cell. For the most part

we will use only RI for the position.
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2.1 Equations of motion for the nuclei

the manuscript.

Equation (2.1) can be re-written by defining a variable that corresponds
to the displacement of the atoms around their equilibrium positions, RIa

=

R0
Ia

+ uIa

leading to

E({R}) =E({R0})+

� Â
i

FIa

uIa

+

1
2 Â

Ia,Jb

CIa,Jb

uIa

uJb

+ O(u3).

(2.4)

If we take the system to be in equilibrium, all the forces acting on the atoms
must vanish (FIa

= 0). The Hamiltonian of the system in the harmonic approx-
imation is then [57, Chapter 3]

H =
1
2 Â

Ia

mu̇2
Ia

+
1
2 Â

Ia,Jb

CIa,Jb

uIa

uJb

, (2.5)

and the equation of motion is

MIüIa

= � Â
Jb

CIa,Jb

uJb

. (2.6)

We introduce here the type of solutions that we seek for the vibrational
problem

uµ

Ia

(q, t) =
1
2

1p
MI

n

Aµ(q)exµ

Ia

(q)ei [q·RI�w

µ

(q)t] + Aµ⇤(q)exµ⇤
Ia

(q)e�i [q·RI�w

µ

(q)t]
o

,

(2.7)

where e

x

µ are the phonon mode eigenvectors 1. Recall that RI is the sum of
the position of the atom in the unit cell and the position of the unit cell in the

1To seek solutions for the problem in this form corresponds to a canonical transformation
of the coordinates to a new set of coordinates that allows to decouple the vibrations of the set
of 3N harmonic oscillators.
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2. PHONONS: VIBRATING NUCLEI

crystal. Replacing RI = rI + r
eI we obtain

uµ

Ia

(q, t) =
1
2

1p
MI

n

Aµ(q)x

µ

Ia

(q)ei [q·rI�w

µ

(q)t] + Aµ⇤(q)x

µ⇤
Ia

(q)e�i [q·rI�w

µ

(q)t],
o

(2.8)

where x

µ

Ia

= e

x

µ

Ia

e�iq·r
eI . Both definitions are valid, but lead to different dynam-

ical matrices. This becomes evident when replacing the solutions in Eq. (2.6)

w

2
µ

(q)exµ

Ia

(q) = Â
Jb

1
p

MI MJ
CIa,Jb

eiq·(RI�RJ)
e

x

µ

Jb

(q), (2.9)

w

2
µ

(q)x

µ

Ia

(q) = Â
Jb

1
p

MI MJ
CIa,Jb

eiq·(rI�rJ)
x

µ

Jb

(q). (2.10)

Which leads to two different definitions of the dynamical matrix:

eDIa,Jb

(q) =
1

p

MI MJ
CIa,Jb

eiq·(RI�RJ), (2.11)

DIa,Jb

(q) =
1

p

MI MJ
CIa,Jb

eiq·(rI�rJ). (2.12)

We will consider in the rest of the thesis the definition of Eq. (2.12). Spe-
cial care should be taken when comparing phonon eigenvectors obtained with
different conventions as they may or may not include this additional phase
factor. This aspect was taken into consideration in the implementation of the
phononwebsitewhich we described in Appendix. B. The solution to Eq. (2.6)
is an eigenvalue problem

Â
Jb

DIa,Jb

(q)x

µ

Jb

(q) = w

2
µ

(q)x

µ

Ia

(q). (2.13)

With the definitions above we have a way to calculate the atomic displace-
ments according to the different phonon modes of the system. What is left to
know now is with which amplitude the phonon modes vibrate. In the classical
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2.2 Quantization of the phonons

limit, from the principle of equipartition of energy, we have [57, Chapter 2]

hEi = Â
qµ

1
2

w

2
µ

(q)|A
µ

(q)|2 = Â
qµ

hE
µ

(q)i , (2.14)

hE
µ

(q)i =
1
2

w

2
µ

(q)|A
µ

(q)|2 = kBT, (2.15)

|A
µ

(q)|2 =
2kBT

w

2
µ

(q)
, (2.16)

where kB is the Boltzmann constant.

2.2 Quantization of the phonons

In a similar fashion as to what was done in Chapter 1 for electrons we will
introduce here the creation and annihilation operators for phonons1.

Equation (2.8) is a particular solution for the problem and represents a
wave with momentum q (this defines the direction and wavelength of the
vibration). In the most general possible solution, the wave can travel in all
different possible directions and wavelengths where the momentum q lies in
the first Brillouin zone. These are the so called normal coordinates. In simple
terms, these coordinates are a transformation from the coordinates of the in-
dividual particles to coordinates of the system that describe the positions of
these individual particles. These states and the respective energies are them-
selves “quasi-particles”. The name stems from the fact that they behave like
particles inside the system (as they have an eigenstate and eigenenergy) even
though they do not correspond to a real particle in the sense of an electron or
an atomic nucleous but instead the collective motion of multiple particles. The

1 For a full derivation of the form of the operators the reader is refered to Ref. [57] and for
a modern treatment in Ref. [60]. We will outline here just the main concepts.
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2. PHONONS: VIBRATING NUCLEI

normal coordinates are defined as [57, Eq. 3.59 and Eq. 3.60]

Q
µ

(q) =
1
2 Â

Ia

p

MIx
µ⇤
Ia

(q)uIa

, (2.17)

P
µ

(q) =
1
2 Â

Ia

1p
MI

x

µ⇤
Ia

(q)pIa

, (2.18)

where pIa

= MIu̇Ia

Using these coordinates, the Hamiltonian in Eq. (2.5) is
written as

H =
1
2 Â

qµ

h

|P
µ

(q)|2 + w

2
µ

(q)|Q
µ

(q)|2
i

. (2.19)

If we use the Schrödinger equation to find the energy levels of a particle in a
harmonic potential, we will find that the particle occupies discrete levels of en-
ergy. The Hamiltonian for the phonons can be written in second quantization
as [57, Eq. 3.71]

Ĥ = Â
qµ

h̄w

µ

(q)
h

â†
µ

(q)â
µ

(q) +
1
2

i

, (2.20)

where

Q̂
µ

(q) =

s

h̄
2w

µ

(q)
[â†

µ

(�q) + â
µ

(q)], (2.21)

P̂
µ

(q) = i

s

h̄w

µ

(q)

2
[â†

µ

(�q) + â
µ

(q)]. (2.22)

The displacements and momenta can be written in terms of the creation and
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2.3 Calculation of forces and force constants

annihilation operators as

ûIa

= Â
µq

s

h̄
2MIwµ

(q)
x

µ

Ia

(q)
h

â†
µ

(�q) + â
µ

(q)
i

, (2.23)

p̂Ia

= Â
µq

s

h̄
2MIwµ

(q)
x

µ

Ia

(q)
h

â†
µ

(�q) � â
µ

(q)
i

, (2.24)

respectively. These creation and annihilation operators have a similar effect as
the corresponding operators for fermions in Sec. 1.2.1

â
µ

(q) |0i = 0, â†
µ

(q) |0i = |µ(q)i . (2.25)

The commutation relations for bosonic operators are:

⇥

â
µ

, â
n

⇤

= 0,
h

â†
µ

, â†
n

i

= 0,
h

â
µ

, â†
n

i

= d

µn

, (2.26)

and the phonon propagator in the Matsubara formalism is given by [52, Sec-
tion 3.2]

D0
µ

(qµ, iwi) =

✓

1
iwi � w

µ

(q)
� 1

iwi + w

µ

(q)

◆

. (2.27)

We will use the phonon propagator in Chapter 3 to calculate the electron self-
energy due to electron-phonon interaction in the Matsubara formalism.

2.3 Calculation of forces and force constants

Now that we have defined all the important quantities related to the vi-
bration of the atoms, we will describe how they are computed. From a first-
principles approach, we described in Chapter 1 a method to calculate the total
energy of the system with the atoms clamped in their equilibrium positions.
The most straight forward way to obtain the forces is then to evaluate the
derivatives of the total energy of the system. This can be done using finite
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2. PHONONS: VIBRATING NUCLEI

differences to calculate the derivative in Eq. (2.2). To evaluate the forces on N
atoms requires 3N evaluations of the total energy. To obtain the force constants
in Eq. (2.3) which correspond to derivatives of the forces, we need to calculate
the total energy for at least (3N)2 displacements. This can be reduced to half
since the force-constants matrix are symmetric. Note, that N is not the number
of atoms in the unit cell but the number of atoms in a supercell large enough
for the periodic copies to be outside the interaction range. How long the inter-
action range is, depends on the particular system under study, and in practical
calculations this has to be carefully checked.

This method rapidly becomes prohibitive even for a system of a couple of
atoms as the force constants decay only after a fair amount of nearest neigh-
bors shells are included. For example 3-4 for semiconductors [30], 10-20 for
metals and around 30 for graphene [61]. The number of nearest neighbors in
each shell increases depending on the dimensionality of the system: 1D in-
creases with N, 2D with N2 and 3D with N3. This makes it clear that the direct
application of this approach is impractical for many cases of interest.

2.3.1 Direct calculation of the forces

A way to reduce the number of calculations required is to apply the
Hellman-Feynman theorem for the forces to the electronic structure Hamil-
tonian

FI = �∂E({R})
∂RI

�

�

�

�

R=R0
(2.28)

= �
⌧

Y0({R0})

�

�

�

�

∂Ĥ
∂R I

�

�

�

�

Y0({R0})

�

(2.29)

which in the case of a DFT calculation (Sec.1.1) becomes

FI = �
Z

nR0(r)
∂VR0(r)

∂RI
d3r � ∂En({R})

∂RI
, (2.30)
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2.3 Calculation of forces and force constants

where we write nR0(r) explicitly to show that the charge depends on the equi-
librium positions of the ions. Using this we obtain directly the forces acting
on the atoms, as long as the derivative of the Hamiltonian with the atomic po-
sitions is known. The scaling of the calculation of force constants drops from
(3N)2 total energy to 3N force calculations. Since the calculation of the forces,
in general, does not add much computation overhead in comparison to the to-
tal energy calculation, this method allows one to obtain the force constants in
a much easier way.

A way to reduce the number of calculations is to use the symmetry oper-
ations of the crystal. These are transformations that can be applied to all the
atoms to map the system onto itself. Knowing these, one can show that the
forces acting on some atoms upon displacement of another atom have to be
equivalent or in some cases identically vanish [62]. This is used to greatly re-
duce the number of total energy or force calculations needed to obtain the force
constants of the system.

The main advantage of this method is that it can be directly applied to any
electronic structure method that can calculate forces. The main disadvantage
is that one is constrained in the sampling of the Brillouin zone to fractional
divisions commensurate with the supercell.

2.3.2 Density functional perturbation theory

It is possible to calculate directly the force constants in Eq. (2.3) in a DFT
framework as shown in Refs. [56] and [63]. Consider the derivative of Eq. (2.29)

CI,J =
∂

2E({R})
∂RI∂RJ

�

�

�

�

R=R0

= �∂FI(R)
∂RJ

�

�

�

�

R=R0

(2.31)

=
Z

∂n(r)
∂RI

∂Ven(r)
∂RI

d3r +
Z

n(r)
∂Ven(r)
∂RI∂RJ

d3r +
∂

2En(R0)
∂RI∂RJ

. (2.32)
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Linearization of Eq. (1.8) yields

∂n(r)
∂RI

= 4Re Â
n

hyn| ∂

∂RI
|yni . (2.33)

The change of the orbitals is obtained using standard perturbation theory
and summing over all the eigenstates of ĤKS

∂ |yni
∂RI

= Â
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en � em

(2.34)
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Figure 2.1: Self-consistent calculation of the derivatives of the wave functions
and charge density.

This problem was reformulated in a way that no empty states are needed
by taking derivatives of Eq. (1.9) with respect to the positions of the ions

�

Ĥ � en
�

∂ |yni
∂RI

= �
✓

∂V̂KS
∂RI

� ∂en
∂RI

◆

|yni , (2.35)
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where,

∂VKS(r)
∂RI

=
∂Ven(r)

∂RI
+ e2

Z

∂n(r0)
∂RI

1
|r � r0|dr0 + dVxc(n)

dn

�

�

�

�

n=n(r)

∂n(r)
∂RI

. (2.36)

This again prescribes a self-consistent solution as shown in Fig. 2.1 similarly to
what is used to find the Kohn-Sham states in Fig. 1.1

2.3.3 Dielectric formulation

An alternative approach for the calculation of the change of the charge den-
sity upon an ionic displacement consists of writing it in terms of the dielectric
response function [60, Section III B. 4]. In this approach the change of the
charge density upon an atomic displacement is written as

∂n(r)
∂RI

=
Z

c(r, r0)∂Ven(r0)
∂RI

d3r0 (2.37)

where c(r, r0) is the dielectric function which we will discuss in Chapter 4. This
approach might prove to be advantageous with respect to the standard DFPT
for calculations where the dielectric response is required (GW calculations dis-
cussed as in Chapter 1 or BSE calculations as we will discuss in Chapter 4) as
it allows to reuse the results and avoid spurious computations. In these calcu-
lations the dielectric response and empty states are required and there might
be no advantage in reformulating the problem in terms of occupied states as
is done in DFPT to evaluate the derivative of the potential uppon atomic dis-
placement.

2.3.4 Molecular dynamics

Another method to calculate the force constants is to perform a molecular
dynamics run [64] where the positions of the nuclei are evolved in time. First
the ions are nudged from their equilibrium position in random directions ac-
cording to a certain amplitude related to the temperature of the system by
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Eq. (2.16). At each time step, the forces are calculated using the Hellman-
Feynman theorem (Eq. (2.29)). The positions of the atoms are then changed
in time according to the equation of motion:

FIa

(t) = MI
∂

2rIa

(t)
∂

2t
. (2.38)

Once the positions of the atoms as a function of time ri(t) are known, it is pos-
sible to obtain the vibration of eigenmodes by Fourier transforming in space
r ! q and time t ! w

µ

. This approach directly incorporates anharmonic ef-
fects [65]. The main drawback is that to properly capture the long-wavelength
phonon modes, large supercells are required, which quickly becomes pro-
hibitive.

In the present work we will not use this method to obtain the vibrational
spectra and instead will use a perturbative description of the vibrational spec-
tra and Raman spectroscopy. This approach, however, might prove more fea-
sible than the perturbative approach when going beyond the harmonic ap-
proximation. We will also point out in Section 5.2.1 that a molecular dynamics
based approach might be used to obtain Raman intensities and frequencies at
different temperatures.

2.3.5 Fitting to existing data

Another method to obtain the force constants is to fit them to existing data
in a similar way as what is done in the case of tight-binding for the electronic
structure. Force constants are defined for the different pairs of atoms inter-
acting in the system and then are fitted to reproduce for example the phonon
dispersion. We will show this for the example of graphene where we used
such a model to reproduce both the phonon modes and frequencies calculated
with ab initio methods. The advantage of this method is to provide an effec-
tive model that captures the essential physical aspects of the system at a lower
computational cost.

42



2.4 Phonon modes of Graphene

2.4 Phonon modes of Graphene

In this section we introduce a new force constant model fitted to ab initio
data to describe the phonon eigenmodes of graphene. Although this section
is not essential to the main topic of this thesis, the results shown here are an
important contribution to the calculation of electron-phonon matrix elements
in graphene using empirical models. These are one of the essential quantities
to calculate the Raman spectrum using the perturbative approach we will de-
scribe in Section 6. A new fit of the force constants of graphene was required
as the previously available models [66, 67] did not correctly reproduce the
phonon eigenvectors in the long-wavelength limit. This feature was required
to correctly compute the electron-phonon coupling matrix elements using a
tight-binding approach. These were in turn used to evaluate the electronic
lifetimes and phonon-limited mobility of graphene and carbon nanotubes us-
ing the Boltzmann transport equation [68]. Using the models previously pub-
lished, the mobility was over-estimated with respect to previously published
data on graphene [69]. The advantage of fitting the force constants to ab initio
data is that we incorporate part of the effect of long-range force constants in a
smaller set of parameters. This simplifies the calculation of the phonon modes
of larger structures. In our study [68] we were interested in evaluating how
the mobility of carbon nanotubes approaches that of graphene by increasing
the diameter. We will additionally study the effect of the long-range force con-
stants and their importance in describing the Kohn anomaly [70, 71]. The Kohn
anomalies are sharp features in the phonon dispersion due to the abrupt change
of the screening of lattice vibrations in q vectors that connect two points of the
electronic Fermi surface.

To obtain a better description of the phonon modes of graphene we have
refitted the force constants model of Ref. [67] to an ab initio calculation of
the phonon dispersion. The calculation of the dispersion was done using the
abinit code [72]. The electronic structure is calculated in the local density ap-
proximation (LDA) using a regular 60 ⇥ 60 k-mesh in the first Brillouin zone
and an energy cutoff of 35 Ha. The electrons follow a Fermi-Dirac distribution
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l
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Figure 2.2: Relation between the local and cartesian coordinates. See main text
for explanation.

with a thermal smearing of 0.002 Ha. We found the optimized cell parame-
ter to be 4.631 Å. The dynamical matrices were calculated using DFPT on a
30 ⇥ 30 q-mesh. Since LDA overbinds, i.e., phonon frequencies have the ten-
dency to be slightly too high, a scaling factor is used such that the phonon
frequencies of the LO/TO mode at Gamma match the experimental value [67].
To ensure transferability to new structures, these force constants are defined
in local coordinates. The transformation of the local coordinates to Cartesian
is represented in Fig 2.2 and is defined as follows: the l direction is along the
line connecting the two interacting atoms, ti is perpendicular to this line in the
plane of the graphene sheet, and to is the out-of-plane direction.

In the local reference frame we define the longitudinal forces (fl), trans-
verse in-plane (fti), and transverse-out-of-plane (fto) forces that act on a partic-
ular atom when its nth nearest neighbor is displaced. In the conventional four
nearest neighbors (4NN) force constant model, only these “diagonal” terms are
fitted. In our model, we include also the “off-diagonal” coupling between the
longitudinal direction and the transverse-in-plane direction (fl/ti and fti/l).
The force constant matrix for the interaction between two atoms in the local
reference frame thus reads

Cn =

0

B

@

f

l
n f

l/ti
n 0

f

ti/l
n f

ti
n 0

0 0 f

to
n

1

C

A

(2.39)
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2.4 Phonon modes of Graphene

The off-diagonal force constants f

ti/l and f

l/ti obey the following rela-
tions [61]

f

l/ti
1 = f

l/ti
3 = 0, f

l/ti
2 = �f

ti/l
2 , (2.40)

f

ti/l
1 = f

ti/l
3 = 0, f

l/ti
4 = f

ti/l
4 . (2.41)

By our fitting procedure we obtained the parameters reproduced in Ta-
ble 2.1. During the fitting we have noticed that the off-diagonal terms of the

n 1 2 3 4
f

l
n (104 dyn/cm) 40.905 7.402 -1.643 -0.609

f

ti
n (104 dyn/cm) 16.685 -4.051 3.267 0.424

f

t0
n (104 dyn/cm) 9.616 -0.841 0.603 -0.501

f

l/ti
n (104 dyn/cm) 0.000 0.632 0.000 -1.092

f

ti/l
n (104 dyn/cm) 0.000 -0.632 0.000 -1.092

Table 2.1: Parameters of the 4NN force constant model with off-diagonal cou-
plings. The corresponding dispersion relation is shown in Fig. 2.3. Table origi-
nally published in Ref. [68].

second and the fourth nearest neighbor (fl/ti
2 and f

l/ti
4 respectively) are essen-

tial to reproduce correctly the phonon modes obtained from first-principles.
A good fit of the phonon frequencies alone can be achieved even without the
off-diagonal terms as shown in the models in Fig. 2.3. When we are interested
in calculating the electron-phonon coupling, it is essential to correctly describe
the long-wavelength phonon modes. To compare the quality of the different
fits available in the literature and our new fit, we analyze the analytical form
of the phonon eigenvectors near G [73]. The canonical phonon modes (the
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2. PHONONS: VIBRATING NUCLEI

phonon modes in the limit q = 0) have the following form [74]

x

˜LA
Ia

(q) =
1p
2

eiq·(R+rI) q
|q| , (2.42)

x

T̃A
Ia

(q) =
1p
2

eiq·(R+rI) q ?
|q ?| , (2.43)

x

˜LO
Ia

(q) =gI
1p
2

eiq·(R+rI) q
|q| , (2.44)

x

˜TO
Ia

(q) =gI
1p
2

eiq·(R+rI) q ?
|q ?| . (2.45)

As we move slightly away from q = 0, the phonon modes start to mix up and
obey the following relations [73]

x

LA
Ia

(q) =
q

1 � a

2|q|2x

˜LA
Ia

(q) � d|q|[sin(3qq)x

˜LO
Ia

(q) + cos(3qq)x

˜TO
Ia

(q)],

(2.46)

x

TA
Ia

(q) =
q

1 � a

2|q|2x

T̃A
Ia

(q) � d|q|[cos(3qq)x

˜LO
Ia

(q) � sin(3qq)x

˜TO
Ia

(q)],

(2.47)

x

LO
Ia

(q) =
q

1 � a

2|q|2x

˜LO
Ia

(q) � d|q|[sin(3qq)x

˜LA
Ia

(q) + cos(3qq)x

T̃A
Ia

(q)],

(2.48)

x

TO
Ia

(q) =
q

1 � a

2|q|2x

˜TO
Ia

(q) � d|q|[cos(3qq)x

˜LA
Ia

(q) � sin(3qq)x

T̃A
Ia

(q)],

(2.49)

where d is the mixing of acoustic and optical components of the phonon modes
at small q. The correct ratio d in the transverse and longitudinal acoustic
branches at q 6= 0 can only be achieved with the inclusion of the off-diagonal
force constants.

We used the d parameter of the different models to determine their fitness
in reproducing the phonon modes. By using our new fit with the parameters
in Table 2.1, the ab initio d ratio was reproduced to a very good degree in con-
trast with previously published models as shown in Fig. 2.4. The comparison
of the phonon dispersions obtained from first-principles calculations and the
force constant models is shown in Fig. 2.3. The model of Jishi et al. [66] that
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2.4 Phonon modes of Graphene

is commonly used in the literature was fitted to experimental data. With re-
cent experiments and ab initio calculations, it was found that this model does
not correctly capture all the phonon frequencies [67]. A new model was then
proposed by Wirtz et al. [67] fitted to ab initio data, which correctly repro-
duces the phonon frequencies. This model however does not include all the
off-diagonal force constants and as such it does not reproduce the ab initio d

parameter. The correct reproduction of the d parameter may seem a technical
detail, however, it turned out essential for a quantitatively correct calculation
of the electron-phonon coupling involving these modes. Thus, the calculated
mobility of graphene sensitively depends on this value as well [68].

We note that although the agreement between our new 4NN model and
the ab initio calculation is good, the later cannot reproduce the Kohn anomalies
in the two highest optical branches. This would require the inclusion of many
more distant neighbor interactions in the model, even infinitely many, if one
wants to reproduce the kink [61]. This would defeat the objective of using a
simple model. However, for the calculation of the phonon-limited resistivity
of graphene and carbon-nanotubes it is not needed to reproduce this feature
as we have shown in Ref. [68]. The reason is that for moderate currents and
not to high temperatures (0 � 500 K) it is mainly the low-frequency phonon
modes that play a role in the electronic mobility. Our new 4NN force constants
model allows one to calculate the electron-phonon scattering rates and carrier
mobilities, in good agreement with ab initio calculations for graphene [69].
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Figure 2.3: Phonon dispersion of graphene. The red lines are the frequencies
calculated using the 4NN force constant model, and gray lines are DFT-LDA
calculations using abinit. Figure taken from Ref. [68]. An interactive version
of the ab initio data is available on the phononwebsite [75].
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Figure 2.4: Comparison of the mixture of acoustic and optical modes of
graphene for different force constant models existing in the literature.

2.5 Phonon modes of TMDs

In this section we will briefly show and describe the phonon modes of the
TMDs which we will study in the present manuscript, MoTe2 and MoS2.1 The
phonon frequencies are directly related to the positions of the Raman shifted
peaks in the experiments. We will show in Chapter 5 calculations of the Raman
intensities for MoTe2 using the finite differences method and in Chapter 6 for
MoS2 using a perturbative approach and comparing with the finite differences
approach. Here we will describe the Raman-active phonon modes for single-
and triple-layer MoTe2 as well as the phonon modes of MoS2.

Single layer TMDs in the hexagonal phase (we will only deal with this
phase as it is the one found at room temperature for both MoS2 and MoTe2)
have three atoms in the unit cell and nine distinct phonon branches. The
phonon modes are characterized according to their representation in the point
group within the space group of the crystal. To denote the different representa-

1Some example phonon dispersions are available in the phonon website described in Sec-
tion B.1.
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Figure 2.5: Phonon modes of single-layer MoTe2. a) Phonon dispersion. b)
and c) Representation of the vibrational patterns of the A0

1 and E0 modes of
MoTe2 respectively. The images of the phonon modes were generated with the
phononwebsite [75] where an interactive version is available.
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2.5 Phonon modes of TMDs

tions it is common to use the Mulliken notation [76]. Phonons of TMDs have a
dispersion similar to that of graphene for the out-of-plane modes ZA and A0

1
1.

The main difference between the phonon dispersions of MoS2 and of MoTe2 is
related to the masses. S is much lighter than Te (32.065 and 127.6 atomic mass
units respectively). This causes the phonon modes where the Te atoms are
moving to have lower frequencies than the ones of MoS2. In structures wherePHONONS IN SINGLE-LAYER AND FEW-LAYER MoS2 AND . . . PHYSICAL REVIEW B 84, 155413 (2011)

to the change of the force acting on atom I in direction α with
respect to a displacement of atom J in direction β:31

C̃Iα,Jβ(q) = − ∂F α
I

∂u
β
J (q)

. (3)

The Fourier transform of the q-dependent matrix leads
to the real-space atomic force constant matrix CIα,Jβ(RIJ ),
where RIJ is the vector that joins atoms I and J . Thus,
CIα,Jβ < 0 (>0) means a binding (antibinding) force in
direction α acting on atom I when atom J is displaced
in direction β. It is worth mentioning that the diagonal
term in the atom index CIα,Iβ corresponds, according to
Newton’s third law, to the total force exerted on atom I
in direction α upon displacement of all other atoms in
direction β:32

CIα,Iβ(0) =
∞∑

J ̸=I

∂F α
I

∂u
β
J

. (4)

This term is always positive (unless the crystal is unstable)
and in the following we refer to it as self-interaction.
Equation (4) demonstrates the contribution of many atoms
to the self-interaction. One can distinguish two contributions,
the short-range part (which is mainly due to covalent bonding
to the close neighbors) and the Ewald or long-range part33

(due to the Coulomb forces between the effective charges).
This distinction will be helpful to interpret the evolution of the
self-interaction for varying layer thicknesses and to understand
the unexpected trends of the phonon frequencies (Sec. IV).

For the calculation of the dynamical matrix we have
used density functional perturbation theory (DFPT)31 where
atomic displacements are taken as a perturbation potential,
and the resulting changes in electron density and energy are
calculated self-consistently through a system of Kohn-Sham-
like equations. Within this approach the phonon frequency can
be obtained for arbitrary q, with calculation only in a single
unit cell.

Since MoS2 and WS2 are slightly polar materials, certain
IR-active phonon modes at $ give rise to a macroscopic electric
field. This electric field affects the longitudinal optical (LO)
phonons in the limit q → 0, breaking the degeneracy of the LO
mode with the transversal optical (TO) mode.34 Thus, in bulk
MoS2 and WoS2, the nonanalytic part of the dynamical matrix
(which contains the effective charges and the dielectric tensor)
must be calculated in order to obtain the correct frequencies at
the Brillouin zone center.35 The LO-TO splitting for the E1u

mode has the value of 2.8 cm−1. In the case of a single-layer
or few-layer system, this effect is even smaller.

III. PHONON DISPERSIONS

A. MoS2

We start our analysis of the vibrational properties with the
description of the general features of the phonon dispersions
of bulk and single-layer MoS2, shown in Fig. 2. We have
also depicted the experimental data obtained with neutron
inelastic scattering spectroscopy.21 The overall agreement
between theory and experiment is good, even for the interlayer
modes. This confirms our expectation that the LDA describes
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FIG. 2. (Color online) Phonon dispersion curves and density of
states of single-layer and bulk MoS2. Points are experimental data
extracted from Ref. 21. Bottom panel: Inset of the phonon branches
in the region of the E1

2g and A1g modes.

reasonably well the interlayer interaction (even though it does
not describe the proper physics of the interlayer forces).

The bulk phonon dispersion has three acoustic modes.
Those that vibrate in-plane [longitudinal acoustic (LA) and
transverse acoustic (TA)] have a linear dispersion and higher
energy than the out-of-plane acoustic (ZA) mode. The latter
displays a q2 dependence analogous to that of the ZA
mode in graphene (which is a consequence of the point-
group symmetry36). The low-frequency optical modes are
found at 35.2 and 57.7 cm−1 and correspond to rigid-layer
shear and vertical motion, respectively (analogous with the
low-frequency optical modes in graphite37). When the wave
number q increases, the acoustic and low-frequency optical
branches almost match. It is worth mentioning the absence of
degeneracies at the high-symmetry points M and K and the
two crossings of the LA and TA branches just before and after
the M point.

The high-frequency optical modes are separated from the
low-frequency modes by a gap of 49 cm−1. We have drawn in
Fig. 3 the atomic displacements of the Raman-active modes
E1

2g and A1g and the infrared-active mode E1u. The Raman-
active modes are also indicated in the phonon dispersion of
Fig. 2. The in-plane modes E1

2g and E1u are slightly split in

155413-3

Figure 2.6: Phonon modes of single-layer and bulk MoS2. Figure taken
from Ref. [77]. Interactive version of similar calculations available on the
phononwebsite [75].

more layers are stacked together, more phonon modes exist. If these layers
were not interacting with each other, all the phonon frequencies would have
the same frequency. In reality the different layers notice each others’ presence

1For a detailed analysis of the phonon modes of TMDs see Refs. [77, 22].
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2. PHONONS: VIBRATING NUCLEI

via van der Waals interaction. This leads to a splitting of the phonon frequen-
cies similar to what occurs in the electronic levels of molecules. This same
phenomena was first investigated by Alexander Davydov in the case of opti-
cal excitations and is referred to as Davydov splitting [78].
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Figure 2.7: Experimental phonon frequencies for the phonon modes of MoTe2
as a function of the number of layers (dots). The continuous line is a fit to a
linear chain model. The modes belonging to the A0

1 and A1g representations
are shown in panel a) and the ones to the E0 and Eg representations in panel b).
The blue lines correspond to phonon modes that are not Raman active. Figure
taken from Ref. [24].

Accurate experimental measurements of the phonon mode frequencies as a
function of the number of layers were reported [24] using Raman spectroscopy.
We reproduce the results relevant to the present document in Fig. 2.7. A more
detailed discussion of the phonon modes of MoTe2 along with their represen-
tations is available in Ref. [24]. The modes belonging to the A0

1 and A1g rep-
resentations have a much stronger interlayer coupling, which leads to a larger
splitting of the phonon frequencies for increasing number of layers. In the
case of triple-layer, we distinguish the phonon modes with the labels A0

1(a)
and A0

1(b) for the one of lower and higher phonon frequency respectively. The
Raman intensities of these will be extensively discussed in Chapter 5. The
modes of the E0 and Eg representations do not show such strong dependence
and their frequencies remains mostly unchanged with increasing number of
layers.
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3

Electron-phonon coupling: Band
gap renormalization and lifetimes

In this section we incorporate the effect of the ionic vibrations on the elec-
tronic structure, i.e., we investigate the electron-phonon interaction. Because
the ions are vibrating around their equilibrium positions, the potential that
the electrons feel is also oscillating. We can conceive the band structure as a
time-dependent quantity assuming that the electrons move much faster than
the ions. In the Born-Oppenheimer treatment of the electronic structure, this
effect is not accounted for. However, it can be included perturbatively a pos-
teriori in the same way that the Coulomb interaction was included in the GW
approximation outlined in Section 1.

The vibrations of the nuclei change the energies of the electronic levels of
the system, hence the band gap of semi-conductors depends on the tempera-
ture. This effect is important in technological applications where the operating
temperature can vary on a large range, for example in transistors.

The amplitude of the oscillations of the ions is related to the temperature of
the system (Eq. (2.16)) and the electron-phonon correction to the eigenvalues
depends on it. At T=0 K the ions are oscillating due the quantum mechanical
zero-point motion as shown in Section 2.2.
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Apart from the zero-point motion, temperature affects the material in other
ways, the most immediate being the thermal lattice expansion. This is related
to long-wavelength vibrations of the atoms. It is common to say that DFT cal-
culations are performed at zero temperature, although this is not strictly true.
In the same way that temperature affects the material in different ways, the
temperature also enters the theory in different ways. The electronic density
of the system can be treated at the level of DFT using the canonical ensem-
ble. Hence the temperature is considered at the level of the electrons. This
effect is only relevant for metals or small gap semiconductors with Eg < kBT
where there is the possibility of thermal excitations. Additionally, temperature
is related to the energy of the vibrations of the ions and the thermal expansion
which in turn affect the electronic properties. These effects are in general left
out in standard DFT calculations. This is what is often meant by saying that
temperature is neglected altogether.

To incorporate the effect of lattice vibrations of the system we first calculate
the coupling between electrons and phonons. We will use it then to calculate
the electron-phonon contribution to the electron self-energy thus encoding the
effect the phonons have on the electrons using the language of many-body
perturbation theory (MBPT).

3.1 Electron-phonon coupling Hamiltonian

The contribution to the total Hamiltonian due to electron-phonon coupling
can be written in second quantization as

He�n = Â
nn0

µqk
gn,n0,µ

k,k�q(ĉ†
n,k ĉn0,k�q)(â

µ,q + â†
µ,�q), (3.1)

where â† and â are the bosonic creation and annihilation operators, q is the
phonon momentum, µ the phonon mode, k the electron momentum, n and n0

the band indices and, gn,n0,µ
k,k�q the electron-phonon coupling matrix elements.
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k, n

k− q, n′

q, µ

Figure 3.1: Graphical representation of the electron-phonon coupling vertex.

The electron-phonon coupling matrix elements are calculated from

gn,n0,µ
k,k�q = Â

Ia

s

h̄
MIwµq

e

x

µ

Iaq hnk|∂VKS(r)
∂RIa

|n0k � qi , (3.2)

where |nki has the same meaning as |ynki. The evaluation of these matrix ele-
ments can be done using the same DFPT methods as described in Section 2.3.2
to obtain the phonon modes. We use the ∂VKS(r)

∂RI
term obtained from Eq. (2.36)

and the wave functions from Eq. (1.14). In this thesis we will use the implemen-
tations in the ph.x code from the QE suite [79] to obtain the electron-phonon
matrix elements.

3.2 Electron-phonon self energy

We will review here the calculation of the electron-phonon self-energy in
the language of MBPT [80, 60]. Like in the GW case, the self-energy of the
electrons due to electron-phonon interaction will affect their energies and life-
times [80, 60].

To be consistent in the truncation of the order of perturbation theory,
there are two different Feynman diagrams contributing to the irreducible self-
energy. The temperature dependent self-energy is given by the sum of the two

Sep
nk(w, T) = SFan

nk (w, T) + SDW
nk (T). (3.3)

In this section we will outline how these diagrams can be evaluated using the
finite-temperature formalism introduced in Section 1.2.2.
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The first term in Eq. (3.3) is called the Fan term [81] and can be represented
diagrammatically as shown in Fig. 3.2. We follow the Feynman rules and trans-

iωi iωi

ωqλ

Figure 3.2: The Feynman diagrams for the Fan self-energy.

late the diagrams to mathematical expressions

SFan
nk (iwi) =

1
b

Â
qµn0

|gn,n0,µ
k�q,k|2

•

Â
j=�•

D
µ

(qµ, iwj)Gn0(k � q, iwi � iwj) (3.4)

Upon replacing the electronic (Eq. (1.32)) and phononic expressions
(Eq. (2.27)) for the Green’s function, the expressions becomes

SFan
nk (iwi) =

1
b

Â
qµn0

|gn,n0,µ
k�q,k|2⇥

•

Â
j=�•

 

1
iwj � wqµ

+
1

iwj + wqµ

! 

1
iwi � iwj � en0,k�q

!

.
(3.5)

Evaluation of the sum over the Matsubara frequencies yields

SFan
nk (iwi) = Â

qµn0
|gn,n0,µ

k�q,k|2
 

n(wqµ

) + 1 � f (en0,k�q)

iwi � en0,k�q � wqµ

+
n(wqµ

) + f (en0,k�q)

iwi � en0,k�q + wqµ

!

,

(3.6)

where n(T, w) = (eh̄w/kbT � 1)�1 is the Bose-Einstein distribution and kB is the
Boltzmann constant. This expression still depends on an imaginary frequency.
To relate it to quantities that can be experimentally measured we analytically
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3.2 Electron-phonon self energy

continue it to the real axis [50] by replacing iwi ! w � ig

SFan
nk (w, T) = Â

qµn0
|gn,n0,µ

k�q,k|2
⇣n(wqµ

, T) + 1 � f (en0,k�q, T)

w � en0,k�q � wqµ

� ig
+ (3.7)

n(wqµ

, T) + f (en0,k�q, T)

w � en0,k�q + wqµ

� ig

⌘

, (3.8)

where we also made the temperature dependence of the occupation factors
explicit.

The second term in Eq. (3.3) is the Debye-Waller term as shown in Fig. 3.3.
The loop integration yields a real quantity, hence this term does not contribute

iωiiωi

ωqλ

Figure 3.3: The Feynman diagram of the Debye-Weller term.

to the lifetime of the electron.

SDW
nk (T) = Â

qµn0
Lnn0

µ

q,�q,k
⇥

2n(wqµ

, T) + 1
⇤

(3.9)

where Lnn0
µ

q,�q,k is the second-order electron-phonon coupling matrix element.
This term is calculated in terms of the first order electron-phonon coupling
matrix elements using the translation invariance of the system [80, 82].

The determination of the quasiparticle energies is done using the quasipar-
ticle equation:

e

QP
nk = e

KS
nk + Sep

nk(w, T)|
w=e

QP
nk

. (3.10)

The zeros of this equation correspond to the energies of the new quasiparticles.
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The evaluation of Sep
nk(w) at each frequency is however a rather expensive cal-

culation as it implies the sum over empty states. It is convenient to find a
method to solve Eq. (3.10) evaluating Sep

nk(w) the least number of times possi-
ble. This has been done using two distinct approaches. One of them is based
on linearizing Sep

nk(w) around the e

KS
nk energies and finding the intersection

with zero. This corresponds to using Newton’s method with one iteration. In
the second approach, the self-energy is evaluated at different energies near the
Kohn-Sham energy e

QP
nk . The function is interpolated and the zero of Eq. (3.10)

is found iteratively until the self-energy is evaluated at the energy of the quasi-
particle.

The real part of the self-energy gives a correction to the energy of the state:

e

QP
nk (T) = e

KS
nk + Re{Sep

nk(w, T)|
w=e

QP
nk

}, (3.11)

where enk is the DFT eigenvalue calculated at zero temperature.

The imaginary part of the self-energy corresponds to the line width of the
state and its inverse is the lifetime

1
tnk(T)

= Im{Sep
nk(w, T)|

w=e

QP
nk

}. (3.12)

The lifetimes due to the GW self-energy are large near the gap for semicon-
ductors. In contrast, the lifetimes due to electron-phonon interaction lead to a
broadening of the electronic states near the gap. This broadening is responsible
for the temperature dependance of the optical spectra as we will show in Sec-
tion 4.5.5 for the case of MoS2 and for the Raman spectra in Section 6.8. It also
enters in the Boltzmann transport equation limiting the electronic conductivity
as we have shown in the case of graphene and nanotubes [68].
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3.3 Temperature dependent band structure of MoS2

Figure 3.4: Bandgap renormalization Denk as a function of temperature for
MoS2. Denk corresponds to Sep

nk(w, T)|
w=e

QP
nk

from Eq. (3.10).

3.3 Temperature dependent band structure of MoS2

We show here some results for the temperature dependent band structure
of MoS2. These results will be used in Chapters 4 and 6 in the calculation of
the temperature dependence of the Raman spectra of MoS2.

Using the formulas described above as implemented in the yambo code,
we calculated the electron-phonon self-energy from Eq. (3.3). The electron-
phonon matrix elements are obtained from the ph.x code [79]. We described
the ground state using DFT with an LDA functional. The ionic positions were
relaxed with the experimental lattice parameter of 5.97 Bohr [83] and 50 Bohr
of vacuum separation. We used a 24x24 k-mesh for both the electronic struc-
ture and the phonons. We included electron-phonon matrix elements up to 40
bands in the self-energy.

The band gap renormalization is obtained from the self-energy using
Eq. (3.10). The renormalization at 0 K is 61.8 meV and the evolution with tem-
perature is shown in Fig. 3.4. The results for the lifetimes are obtained from
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the self-energy using Eq. (3.12) and are represented in Fig. 3.5 along with the
electronic density of states (DOS). From Fig. 3.5 we can verify that the lifetimes

Figure 3.5: Lifetimes of the electronic states of MoS2 as a function of tempera-
ture. It can be seen that the lifetimes roughly follow the electronic density of
states.

are roughly proportional to the electronic DOS times a constant depending on
the temperature

1
tnk(T)

µ a · �n(w

µ

, T) + 1
 · DOS(enk) (3.13)

where tnk(T) is the lifetime of the electronic state enk and n(w

µ

, T) is the Bose-
Einstein distribution. We remark that the definition of a in Eq. (3.13) depends
on the broadening factor (0.1 eV) used to calculate the DOS. The w

µ

is an ef-
fective vibrational frequency on the order of magnitude of the phonon modes
of the system. We fitted the function of Eq. (3.13) to the data from Fig. 3.5 and
obtained the data in Fig. 3.6. This result indicates that if we are interested in
the phonon lifetimes alone, we can estimate them from a calculation of a small
set of data and extrapolate it for different temperatures. This estimative can be
a good starting guess for calculations where only qualitative results are neces-
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Figure 3.6: Fit of the dependence of the lifetimes on temperature. The crosses
represent ab initio data and the fit is done using Eq. (3.13).

sary. The explicit calculation of the lifetimes in the full Brillouin zone is still
desired for high accuracy and comparison with experiments.

3.3.1 Band structure and lifetimes interpolation using a Wan-
nier basis

We interpolated the lifetimes using a newly developed technique based on
the interpolation of the eigenvalues using Wannier functions [84]. In the same
way that the Wannier basis proves to be efficient in interpolating band struc-
tures we decided to use this approach to interpolate other quantities related to
the band-structure. The method is quite general, and in principle any quantity
that depends on the band structure and the electronic states can be interpolated
using this technique (orbital decomposition, electronic lifetimes, quasi-particle
energies, spectral function, excitonic weights).

In a Wannier basis the k dependent electronic Hamiltonian is obtained by
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Fourier transforming it into

He

ijk = Â
i

1
Nr

He

ij(r)eir·k, (3.14)

where He

ij is the Hamiltonian projected in Wannier basis, r is the position of the
unit cell copy of the atomic orbital in real space and Nr is the number of equiv-
alent copies (degeneracy). Diagonalizing He

ijk we obtain pairs of eigenvalues
enk and states y

e

ink. The idea is to use the Fourier interpolation determined by
the states to expand the quantities on arbitrarily fine k-grids. This can be done
by rebuilding a different Hamiltonian (on a regular k-mesh) with the quan-
tities we want to interpolate in a similar way as we would rebuild the He

ijk
Hamiltonian

He

ijk = Â
l
(y

e

ilk)elk(y

e

l jk)⇤, (3.15)

Ha
ijk = Â

l
(y

e

ilk)alk(y

e

l jk)⇤. (3.16)

Then we transform this Hamiltonian to real space again

Ha
ij(r) = Â

k
Ha

ijkeir·k. (3.17)

Using this Hamiltonian we can now recover Ha
ijk at any arbitrary k-point mesh

using Equation (3.14). In a practical implementation, it is desired to keep the
order of the eigenstates and the quantity being interpolated to assign the cor-
rect quantity to the correct state. One way to accomplish that is to use the
eigenstates from He

ijk to obtain the eigenvalues of Ha
ijk by writing

alk = (y

e

ilk)Ha
ijk(y

e

ilk). (3.18)

In Fig. 3.7 we show the application of this method to interpolate the quasi-
particle eigenvalues and lifetimes due to electron-phonon interaction at differ-
ent temperatures for MoS2.
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Figure 3.7: Band structure of MoS2 and linewidths due to electron-phonon
coupling calculated using the yambo code [55]. The linewidths are interpo-
lated using the technique described above. The size of the calculated states
and the width of the interpolated ones represents the linewidth of the state.

3.4 Conclusions

In this chapter we described how the electron-phonon matrix elements are
calculated in the ph.x code. These quantities are then used in the expres-
sions of the electron self-energy due to electron-phonon interaction (Eq. (3.8)
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and Eq. (3.9)) to calculate the temperature dependent band-structure of MoS2.
This includes mainly two effects: the band gap renormalization and lifetime
dependence on temperature.

The approaches outlined here will be used to calculate the electronic life-
times and band gap renormalization of MoS2 to be used in Chapter 4 to cal-
culate the temperature dependent optical spectra and in Chapter 6 to calculate
the temperature dependent Raman spectra.

It should be noted that in the cases where there is a strong electron-phonon
coupling, the nuclei should be treated explicitly as moving particles with their
own density, beyond the BOA [85]. This approach however is more compu-
tationally costly as it requires the electronic and ionic density to be treated
simultaneously. In the systems we consider, these effects are small and can be
included perturbatively using the approaches outlined here.

64



4

Electron-light coupling: Optical
absorption

4.1 Optical properties

When light shines on a medium, different processes can occur as schemat-
ically shown in Fig. 4.1. Part of the light is directly reflected, another part is
scattered (elastically or inelastically) and the rest is either transmitted or ab-
sorbed. Some of the light that was absorbed will create excitations in the ma-
terial which after some time will decay and recombine emitting light again in
a process known as photoluminescence.1 In this chapter we will study optical
absorption, leaving the case of light scattering in particular Raman scattering
to be treated in the next chapters. We will first show that the different com-
ponents of the light after interaction with the material can be written in terms
of the dielectric susceptibility tensor calculated from linear response theory.
Next we will outline how to calculate the dielectric susceptibility tensor on the
independent-particle level, and on the many-body level combining the GW ap-
proximation and Bethe-Salpeter equation (BSE). The results of the BSE yield in-
formation about the correlated movement of electrons and holes in the system.

1Good introductions to the topic of light-matter interaction are found in [14, Chapter 1],
[30, Chapters 6 and 7] and [86, Chapter A].
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Luminescence

Material

(Absorbed)

Scattered
(Raman, Brillouin)

Transmitted

Incident

Reflected

Figure 4.1: Different light-matter interaction processes as shown in Ref [30].
Both the absorption and Raman scattering are dissipative processes.

To better understand this, we will analyze and represent the wave functions of
electrons and holes in the system.

4.2 Macroscopic electrodynamics

Applying an electromagnetic field to a dielectric medium will induce a po-
larization, P(r, t), given by [87]

P(r, t) = e0

Z

�(r, r0, t, t0) · E(r0, t0)d3r0dt0, (4.1)

where �(r, r0, t, t0) is the most general form of the dielectric susceptibility ten-
sor which relates the incident electric field to the polarization created in the
material as a response and e0 is the vacuum permittivity. Time is homoge-
neous in the absence of time-dependent perturbations. For the discussion in
this section we consider that space is also homogeneous �(r, t) [30]. The sus-
ceptibility is also called response function of the material. A response function
is a general concept that relates a perturbation to an effect, i.e. how the mate-
rial responds to an external force. In this case, the force is caused by the electric
field, and the response is the creation of a polarization. The total field inside
the material is given by the electric displacement vector D(r, t). It is the sum
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of the external field and the induced polarization field inside the material

D(r, t) = e0E(r, t) + 4pP(r, t) = e0✏E(r, t), (4.2)

where ✏ is the dielectric tensor that relates the field inside the material to an
external electric field

✏(r, t) = 1 + 4p�(r, t). (4.3)

The real part of the susceptibility can be related to the refractive index while
the imaginary part is related to absorption [87, 88]. Consider Maxwell’s equa-
tions in the absence of charges and currents with a time-dependent electric
field E(r, t)

r ⇥ H = �iwe0✏ · E, (4.4)

r ⇥ E = iwµ0H, (4.5)

r · E = 0. (4.6)

with the electric field represented by a damped plane wave traveling in the z
direction in the cartesian plane oscillating with frequency w

E = E0e�i(wt+nk0·z)e�azk̂. (4.7)

In this case, the damping constant a is related to absorption of the electromag-
netic wave because the amplitude of the electric field is diminishing exponen-
tially as a function of the distance traveled in the material. Combining Eqs. 4.4
and 4.5 we obtain

r · (r · E) � r2E = w

2
e0µ0✏E. (4.8)

using c = (e0µ0)�1/2 and Eq. 4.6. Separating ✏ into its real and imaginary parts
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we obtain

✏ = ✏1 + i✏2 = (n + ia/k0)
2, (4.9)

✏1 = n2 � a

2

2k0
, (4.10)

✏2 = in
a

k0
, (4.11)

which indicates that the imaginary part of the dielectric tensor is related to
the extinction (a > 0) or creation (a < 0) of the oscillating electric field inside
the material. In the case a > 0 part of the energy of the field is absorbed in
the material. It is a general statement, known as the fluctuation-dissipation the-
orem [86, 89] where the imaginary part of a linear response function is related
to the dissipation of energy. The theorem relates a fluctuation of the internal
coordinates to a quantity characteristic of energy loss. The case of optical ab-
sorption (the energy loss part) is related to the fluctuation of the polarization
in the material due to the incident electromagnetic field.

4.3 Microscopic electrodynamics

4.3.1 Electron-light interaction Hamiltonian

We want to describe the interaction of an electromagnetic field with the
sample. Let us consider the same situation in the previous section of a system
with electrons interacting with an external electromagnetic field. We want to
obtain a Hamiltonian of the form

Ĥ = Ĥ0 + ĤL + Ĥe�L, (4.12)

where the first term is the Hamiltonian describing electrons, the second one
the photons and the third term describes the coupling with the electromagnetic
field defined by the electromagnetic potential Â(r).

The Hamiltonian from Eq. (4.12) comes by modifying a term in our elec-
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tronic structure Hamiltonian in Eq. (1.2) that yields the coupling of the elec-
trons with an electromagnetic field [86]. This replacement is called minimal
coupling and consists of substituting p̂ ! p̂ � eÂ(r) leading to

Ĥ =
1

2me
Â

j

�

p̂j � eÂ(r)
�2

+ V̂(r)

=
1

2me
Â

j
p̂2

j � e
me

p̂j · Â(r) +
e2

2me
Â2(r) + V̂(r),

(4.13)

where p̂j = �i h̄rj is the momentum operator of the electrons and Â(r) is the
electromagnetic vector potential. As is common practice in the literature, we
ignore the term in e2 that should only play a role in strong electromagnetic
fields [90].

To make the connection between the electromagnetic fields and the poten-
tials (Â, f) we choose the transverse gauge r · Â = 0 and f = 0. In this gauge
we have to use the transverse response formalism introducing a p̂ · Â(r) type
coupling (velocity gauge) [91]. However, since the electromagnetic wave vec-
tor q is small when compared to the crystal momentum1 the electromagnetic
field can also be treated as a longitudinal perturbation using r̂ · Ê(r) type cou-
pling (length gauge). Indeed it can be shown that in the dipole approximation,
which corresponds to taking the q ! 0 limit, both approaches are equivalent
as long as the charge conservation equation is fulfilled [91]. In the following we
will use the r̂ · Ê(r) type coupling. To ensure charge conservation the velocity
matrix elements are obtained from the commutator

h̄v̂j = i [Ĥ, r̂j] (4.14)

where r̂j is the position of the electron. This leads to an additional contribution
in the computation of the electron-light matrix elements that is related to the
commutator of the r̂j position operator and the non-local part of the Hamil-
tonian. This part has its origins in the pseudo-potentials we use to describe

1Experiments are typically made with lasers in the visible range with a wavelength of 380
nm - 750 nm while the crystal lattices are in the 0.2 nm - 0.6 nm range.
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k

k

λ

Figure 4.2: Graphical representation of the electron-light coupling vertex.

the electrons close to the atomic core. The pseudo-potentials are non-local and
hence do not commute with r̂j (position of the electron). Thus an additional
term must be considered explicitly [91]

v̂j = Â
j

✓ p̂j

me
+

i
h̄
[V̂NL, r̂j]

◆

, (4.15)

where V̂NL denotes the non-local part of the pseudo-potential. The matrix ele-
ments of this operator are related to the position matrix elements in the dipole
approximation using the commutator in Eq. (4.14). The r̂ matrix elements are
the dipole or electron-light coupling matrix elements that we will use through-
out this manuscript to describe the interaction of the system with the electro-
magnetic field

Ll

nn0k = hnk|r̂l|n0ki , (4.16)

where l is the quantum number of the photon denoting its polarization and
frequency, n and n0 are the bands of the system. In this work we will use
implementations openly available in the community [55, 79, 92, 72] to calculate
these matrix elements. It should be noted that in the current implementation in
EPW the electron-photon coupling matrix elements are calculated in the local
approximation [92], i.e. not including the commutator in Eq. (4.15). This fact
is important in the calculation of the Raman intensities as we will discuss in
Chapter 6.

The electromagnetic fields can be quantized and described in terms of their
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normal coordinates

Â(r) = Â
lq,

s

2p

w

l,qV
[b̂

l,qeiq·r + b̂†
l,qe�iq·r]e

l

(q), (4.17)

where b̂†
ql

and b̂ql

are the photon creation and annihilation operators, e
l

(q)

denotes the polarization of the electric field, and V is the quantization volume.
The Hamiltonian for light is given by

HL = Â
l,q

h̄w

l,q

✓

b̂
l,qb̂†

l,q +
1
2

◆

(4.18)

where w

l

is the frequency of the photons. The electron-light coupling Hamil-
tonian in the long-wavelength limit (q = 0) is given by

Ĥe�L = Â
lnn0k

Ll

nn0k ĉ†
nk ĉn0k(b̂

l

+ b̂†
l

). (4.19)

4.4 Optical absorption in the independent-particle
picture

Let us now calculate the optical response of the material to an external elec-
tric field from a purely perturbative approach. Here we will use the frame-
work of many-body perturbation theory to expand the Green’s function of
the dielectric susceptibility in terms of the electronic states. The advantage
of this formulation is that we can obtain a perturbative series expansion of the
Green’s function and gradually include more interactions. We will start from
the simplest case where the incident laser field excites the electron from its
ground state leaving a hole behind and then both recombine. This process can
be represented diagrammatically as shown in Fig. 4.4. This diagram can also
be thought of as the first order contribution to the self-energy of the photon in
the dielectric medium, which in this case is the material under study.

The first-order polarizability of the electrons at finite temperature is shown
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iωn

iωi + iωn
ϵl,k+q

ϵj,k

iωi,q iωi,q

Figure 4.3: Polarization bubble in the independent-particle formalism.

diagrammatically in Fig. 4.3 and is mathematically given by

P0(q, iwi) =
1
b

Â
jlk

+•

Â
n=�•

G0
j,k(wn)G0

l,k+q(iwi + wn)

=
1
b

Â
jlk

+•

Â
n=�•

1
iwn � ej,k

· 1
iwi + iwn � el,k+q

.
(4.20)

Summing over the Matsubara frequencies we obtain [50, Chapter 14]

P0(q, iwi) = Â
jlk

f (ej,k) � f (el,k+q)

iwi � (el,k+q � ej,k)
. (4.21)

In a similar way as we did in Eq. (3.8) we analytically continue to the real axis
using iwi ! w + ig

P0(q, w) = Â
jlk

f (ej,k) � f (el,k+q)

w � (el,k+q � ej,k) + ig
. (4.22)

The susceptibility can be calculated in terms of operators from Fig. 4.4
with [93]

c

SL(wL) µ
Z d2k

(2p)2
dw

2p

eiw0+
Tr
n

Ĝ0(k, w)d̂S(k)Ĝ0(k, w � wL)d̂L(k)
o

. (4.23)

Note that at this point the definition does not depend on the particular basis
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iωi,q iωi,q

iωn

iωi + iωn
ϵl,k+q

ϵj,k

Figure 4.4: First order Feynman diagram for the dielectric response.

that we choose for the problem. To calculate the susceptibility we need to in-
troduce a basis to describe the electronic states, the electron-phonon, and the
electron-photon coupling matrix elements. The particular origin of the ma-
trix elements is not important, these can be obtained from density functional
theory calculations based on any basis set or semi-empirical models like tight
binding or k.p. In the case of DFT calculations it is typical to describe the
electrons on a discrete mesh of k-points. One can go back to the continuous
dependence on k, however this is only relevant for cases where an analytic de-
scription of the matrix elements and eigenvalues is available. This is the case
for k.p empirical models or the tight-binding description of materials with few
bands.

With the discretization in reciprocal space and projecting the operators into
a basis we obtain

c

SL(wL) µ
1

Nk
Â
ijk

Z dw

2p

eiw0+
n

G0
ik(w)LS

ijkG0
jk(w � wL)LL

jik.
o

(4.24)

The factor eiw0+ suggests a contour integration in w in the upper half plane

c

SL(wL) µ
1

Nk
Â
ijk

⇢

h

f (eik)LS
ijkG0

jk(w � wL)LL
jik

i

w=eik+ig/2
+

h

f (ejk)LL
ijkG0

ik(w)LS
jik

i

w=wL+ejk+ig/2

�

(4.25)
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Substituting the form of the Green’s function of equation (1.31) we obtain

c

SL(wL) µ Â
ijk

n f (eik)(1 � f (ejk))LS
ijkLL

jik

�wL � (ejk � eik) + ig
+

f (ejk)(1 � f (eik))LS
ijkLL

jik

wL � (eik � ejk) + ig

o

.

(4.26)

This is the most general form of the susceptibility and it can be applied to
metals. In the case of a semiconductor where we can clearly define valence
and conduction bands, this simplifies to

c

SL(wL) µ Â
cvk

(

LS
vckLL

cvk
wL � (eck � evk) + ig

+
LS

vckLL
cvk

�wL � (eck � evk) + ig

)

. (4.27)

We can again verify that the imaginary part of the susceptibility gives us
the optical absorption using the following identity [50]

lim
g!0+

1
x ± ig

= P
1
x

⌥ ipd(x). (4.28)

This allows us to write the imaginary part of the susceptibility in terms of

Im{c(wL)} µ Â
cvk

LS
cvkLL

cvkd(wL � Decvk), (4.29)

with Decvk = eck � evk. Equation (4.29) indicates us that the absorption is
always positive, which in turn means that for a system in equilibrium the radi-
ation always looses energy to the system. If the particles have a finite lifetime,
the delta function is broadened to a Lorentzian. If we consider the electron-
light coupling matrix elements as a constant, the dielectric function is propor-
tional to the joint-density of states (JDOS). The JDOS in turn corresponds to a
histogram of the possible vertical transitions between valence and conduction
bands energies.
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4.4.1 The case of MoTe2

Using Eq. (4.29) we can evaluate the optical absorption of MoTe2 in the
IP approximation. Understanding which electronic transitions contribute to it
will help to interpret the Raman spectra [94] in Chapter 5. The calculations of
the electronic band-structure were performed using the pw.x code from the
QE [79] suite. The wave functions were obtained on a 60 ⇥ 60 ⇥ 1 k-grid in
the Brillouin zone. We used a 90 Ry cutoff for the plane-wave basis set and
the experimental lattice parameter of 3.52 Å [35]. The electron-light coupling
matrix elements were calculated using the yambo code [55]. The results for
single- and triple-layer MoTe2 are shown in Fig. 4.5. Both in the case of single
and triple-layer MoTe2, the edge of the absorption is due to band-to-band tran-
sitions around K (red line). In the case of a 2D material with parabolic bands
near the gap, the DOS looks like a step function. The same behavior occurs in
the optical absorption spectra since the absorption is roughly proportional to
the JDOS (See Eq.(4.29)). The valence bands are split due to spin-orbit coupling
interaction by an energy of around 222 meV. This leads to a second plateau in
the absorption spectrum (green lines). Finally at around 1.5 eV the bands near
M and in the pocket between K and G start to contribute (blue line).

The results for IP absorption will be used in Chapter 5 to obtain the Ra-
man susceptibility by finite differences upon atomic displacements. In Fig. 4.5
panel c) and d), we have demonstrated that the features in the absorption spec-
trum can be associated with electron-hole pair transitions at a certain energy.
The connection between the absorption spectra and the band structure is some-
times cumbersome to establish. To clarify this connection, we will describe two
additional representations.

In the case of the IP absorption, all the contributions add up since we sum
the square of the matrix elements in Eq. (4.29) 1. We can decompose the contri-

1This is not the case for the Raman susceptibilities where the intensities are proportional
to the square of the sum of the contributions across the Brillouin zone as we will show in
Chapter 5.
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Figure 4.5: Independent-particle absorption for single- and triple-layer MoTe2
in panel a) and b) respectively. The vertical lines at EL = 1.58 and EL = 1.96
eV represent the laser energies used in the experiments described in Chap-
ter 5. A broadening of 0.1 eV is used. Electronic band structure of single- and
triple-layer MoTe2 in panel c) and d) respectively. The arrows represent the
transitions contributing to the peaks in the optical absorption.

butions from the different k points using

Im{c(wL)} µ Â
k

Im{ck(wL)}. (4.30)

This suggests a representation where the susceptibility is k-resolved in the Bril-
louin zone as a function of laser energy as shown in Fig. 4.6. Alternatively,
we show in Fig. 4.7, as a color gradient, Im{ck(wL)} on a k-path along the
high-symmetry lines in the Brillouin zone for single- and triple-layer MoTe2.
Also shown in Fig. 4.7) in light gray is a dispersion of the electron-hole transi-
tions where energy differences between conduction and valence state energies
is represented. The main contributions to Im{c(w)} for laser energies between
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Figure 4.6: IP absorption Im(cxx
k ) for single- (left) and triple-layer MoTe2 (right)

resolved in the Brillouin zone at two different laser energies EL = 1.58 eV and
1.96 eV. A broadening of 0.1 eV is used to simulate the electronic line width.

0.8 and 2 eV come from the lower bands in the transition representation in a
region around K and between K and M.

These types of representations are particularly useful to understand which
electronic transitions are contributing to the optical absorption. In combi-
nation with knowledge of the evolution of the bands with lattice vibrations
(phonons), these representations will be helpful in understanding which bands
and which regions in k-space contribute to the resonant Raman spectra of
MoTe2 in Chapter 5. In general, this representation may also be useful to un-
derstand how to tune the electronic properties as a function of external param-
eters in order to obtain the desired optical absorption spectra.
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Figure 4.7: a) IP absorption Im(cxx
k ) represented in transition space along the

high-symmetry points in the Brillouin zone for single- (panel a) and triple-
layer MoTe2 (panel b). We show only points close to M and K as there are no
relevant transitions close to the G point for laser energies up to 2 eV.

4.5 Many-body effects in the optical absorption

Having calculated the independent-particle dielectric susceptibility we can
consider the contribution of higher order terms i.e. different ways the electrons
and holes interact. These terms appear when successively perturbing the elec-
tronic states with the different interactions in the material similarly to what
was done in Chapter 1 and Chapter 3. A pictorial way to interpret this is to
imagine the particles in the system moving from one point in space and time
while interacting with all the other particles in all possible ways. This means
that to calculate the probability of a physical process to happen we have to
consider all the possible ways by which the process can happen. As a first step
beyond the independent-particle approximation we can calculate the polariz-
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ability taking into account that the process represented in diagram in Fig. 4.4
can happen multiple times. This is the random phase approximation (RPA)
introduced in Chapter 1. If the electron and hole in the diagrams of Fig. 1.5
interact with each other via the bare and screened Coulomb interaction as in
Fig. 4.8 then they start to move together. This means that their propagation in

= +

+

+

+

+...

+

+

Figure 4.8: Dielectric susceptibility including Coulomb interaction between the
electrons and the holes. There are more contributions of higher order not rep-
resented here.

the material is not independent. To account for this, one defines a propagator
for the correlated movement of electrons and holes. Starting from Eq. (4.23)
we can evaluate the trace

c

SL(wL) µ
Z d2k

(2p)2

Z dw

2p

eiw0+
n

LS
ijkĜ0

jk(w)LL
jikĜ0

ik(w � wL)
o

, (4.31)

and re-arrange the equation as

c

SL(wL) µ
Z d2k

(2p)2

n

LS
ijkLL

jik

Z dw

2p

eiw0+
G0

jk(w)G0
ik(w � wL)

o

, (4.32)
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which, using

L0
jik(w) =

Z dw

0

2p

eiw00+
G0

jk(w

0)G0
ik(w

0 � w), (4.33)

can be re-written as

c

SL(wL) µ
Z d2k

(2p)2 Â
k

n

LS
ijkLL

jik L̂0
jik(wL)

o

. (4.34)

With this we did not include any new physics in the description of the sys-
tem. We did, however, define a new object, L0(w), that describes the collective
movement of a non-interacting electron-hole pair. If the electron and the hole
are not independent, i.e., if they are interacting with each other, this interac-
tion should be taken into account when evaluating the propagator. In this case
we define a new propagator L(w). The dielectric function then is given by
evaluating the diagram in Fig. 4.9. There, the propagator of the interacting
electron-hole pair is described by the function L(w). The dielectric function
including excitonic effects can then be obtained by evaluating the diagram in
Fig. 4.9. In the next section we will show how to calculate this new function

L

ωi ωi

Figure 4.9: Diagram of the dielectric function including excitonic effects.

using the Bethe-Salpeter equation (BSE).

4.5.1 Bethe-Salpeter equation

The calculation of L(w) corresponds to describing the movement of the
interacting electron-hole pair. The interaction between them is due to the
Coulomb force. It can be direct or mediated by a phonon due to electron-
phonon interaction. Depending on how strong these two types of interaction
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are, it can be important to include them or not. The direct Coulomb interac-
tion between an electron and a hole is stronger than the one mediated by the
vibration of the nuclei, which dictates that it is more important to include the
former than the later. As the computational methods advance, it will become
feasible to include both interactions on the same level as shown in a recent
publication [95]. Here, we will follow the standard schemes used in the liter-
ature so far and restrict ourselves to the study of the electron-hole interacting
through the statically screened Coulomb force [96, 97]. This can be accom-
plished by summing over all the ladder diagrams of interaction between the
electron and the hole in a Dyson equation, which leads us to the Bethe-Salpeter
equation [96]

L̂0(wL) = L̂0(wL) + L̂0(wL)K̂L̂(wL), (4.35)

where K̂ is the BSE Kernel with the interactions that will be added in the Dyson
equation for the two particle Green’s functions. There is a great amount of lit-
erature with different derivations of the Bethe-Salpeter equation [98, 96]. Here
we will show an approach [99] starting from the Hartree-Fock (HF) approxi-
mation and introducing the screening in the same way as done in the case of
the GW approximation discussed in Chapter 1. To describe the correlated mo-
tion of electrons and holes, we introduce a basis set constructed as a weighted
sum of individual electron-hole states

|si = Â
cvk

As
cvk |cki ⌦ |vki , (4.36)

where AS
cvk are the coefficients of the new quasiparticles s written in terms of

independent-particle electron and hole states. These particles are commonly
called excitons as they are formed when an electron is excited to the conduc-
tion band and then interacts with the hole left behind. Considering again the
many-body Hamiltonian of particles interacting through the Coulomb interac-
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tion from Eq. (1.35)

Ĥ = Â
ij

hijĉ†
i ĉj + Â

ij,nm
Vij,nmĉ†

i ĉ†
j ĉnĉm, (4.37)

where hij are the single particle Hamiltonian matrix elements, and Vij,nm are
the Coulomb matrix elements. Calculating matrix elements of this new Hamil-
tonian, we get

hcvk|Ĥ|c0v0k0i = (e

HF
ck � e

HF
vk )dcc0dvv0dkk0 � Vv0ck,vc0k0 + Vv0ck,c0vk0 , (4.38)

where Vc0v,cv0 is the direct Coulomb interaction and Vv0c,c0v is the exchange in-
teraction. These two terms have close similarity with the two terms in Hartree-
Fock self energy in Fig. 1.2. These can be also be written in terms of the func-
tional derivative of the Hartree-Fock self-energy with respect to the Green’s
function [98, 100]

K(1, 2, 3, 4) =
dSx(1, 3)
dG(2, 4)

, (4.39)

where each index indicated the coordinates of an electron in space, e.g., 1 =

(x1, t1). We have discussed in Chapter 1 that the Hartree-Fock approximation
does not yield good results in extended solids due to the lack of screening of
the Coulomb interaction. We have also seen how to overcome this issue by
including the screened Coulomb interaction in the RPA approximation in the
same way we did in the GW approximation.

This leads to a modification of the direct interaction term Vc0v,cv0 by a
screened one Wc0v,cv0 and the modification of the quasiparticle energies calcu-
lated with Hartree-Fock to the ones calculated with GW:

hcvk|Ĥ|c0v0k0i = (e

GW
ck � e

GW
vk )dcc0dvv0dkk0 � Wv0ck,vc0k0 + Vv0ck,c0vk0 (4.40)

Now that we have a form to the Hamiltonian, we can find the wave functions
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and energies of the new quasiparticle states by simply diagonalizing it:

Â
c0v0k0

hcvk|Ĥ|c0v0k0i AS
c0v0k = ES AS

cvk (4.41)

Due to the size of the matrix (number of transitions time number of k-
points), we need to be careful in choosing the diagonalization algorithm. In
fact, in general, we are just interested in the first few states. The discussion of
techniques to reduce the effective size of the Hamiltonian as well as to avoid
the diagonalization of the full matrix will be the topic of discussion of the next
section.

4.5.2 Diagonalization of the excitonic Hamiltonian

A technical problem arises here when dealing with Hamiltonians of large
size. From Eq. (4.41) we see that the size of the Hamiltonian increases both
with k-sampling as well as the number of bands included. This scaling of the
Hamiltonian is quite critical, because the convergence of the optical spectrum
is quite slow with the number of k-points. Several techniques have been em-
ployed to overcome this difficulty. On the one hand, it is possible to obtain the
dielectric function using a Haydock iterative scheme [101, 102]. Although very
efficient, this class of methods has the major drawback that they do not give
direct access to the excitonic wave functions and energies, only to the spectral
functions. Another method consists of sampling the quasiparticles on a finer
k-mesh and in Eq. (4.40) using the values averaged over a set of neighboring
k-points [103]. Such a technique does not increase the size of the Hamiltonian
and leads to excitonic states in good agreement with calculations performed
on larger k-grids. In the same spirit, one can calculate the excitonic Hamilto-
nian on a set of shifted grids and average the different obtained spectra [33].
All these different approaches lead to an improvement in the accuracy of the
calculations at a smaller computational cost. However, they do not address the
issue of obtaining the excitonic energies and wave functions of large systems.
A first step to solve this problem is to efficiently parallelize the diagonaliza-
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tion of the excitonic Hamiltonian using the standard distributed linear algebra
packages such as SCALAPACK [104]. Such distributions allow the diagonal-
ization of the Hamiltonian of Eq. (4.41) for larger systems or including more
valence and conduction states.

One major drawback of these algorithms is that they are designed to per-
form the diagonalization of the full Hamiltonian matrix. This is expensive in
terms of memory and computing power. In addition, in most applications we
are only interested in the excitons with lower energy, hence it is not required to
obtain all the states. Here we propose and demonstrate an approach that relies
on using iterative methods to calculate the excitonic wave functions and ener-
gies. We implemented this approach in the yambo code using the open-source
library SLEPC [105]. This library allows one to use matrix-free methods for the
calculation of eigenvalues and eigenvectors. In a matrix-free method, the diag-
onalization routine does not need to directly access the Hamiltonian. Instead,
the input is another routine that calculates the product of the excitonic Hamil-
tonian with a vector. Using the SLEPC library makes it possible to adapt codes
that currently use Haydock methods to calculate the excitonic absorption spec-
tra to also obtain excitonic wave functions and energies. Additionally these
methods can be combined with the interpolation schemes mentioned above,
allowing the study of excitonic states on large extended systems. The excitonic
states can, furthermore, serve as input for additional calculations. One of the
applications that we envision for this implementation is to use these excitonic
states to calculate the Raman intensities in a perturbative way as we will de-
scribe in the IP case in Chapter 6.

4.5.3 Optical absorption spectra with excitons: MoTe2

Once we have obtained the excitonic states in Eq. (4.36), we can use them
to calculate the optical absorption spectra. The dielectric susceptibility is ob-
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tained in terms of the excitonic states

c(wL) µ Â
s

h0|Ĥe�L|si hs|Ĥe�L|0i
wL � Es + ig

+
h0|Ĥe�L|si hs|Ĥe�L|0i

�wL � Es + ig
, (4.42)

where Es are the excitonic energies and |si the eigenstates obtained from
Eq. (4.41) and g is the excitonic line width.

The matrix elements of the coupling with the electric field can be obtained
from

(hS| ⌦ h0|)Ĥe�L |si = Â
cvk

As
cvk h0|b̂SĤe�Lĉ†

ck ĉvk|0i (4.43)

= Â
cvk

As
cvkLS

cvk = GS
s , (4.44)

which, when inerted into Eq. (4.42), leads to

c(wL) µ Â
s

GS
s GL⇤

s
wL � Es + ig

+
GS

s GL⇤
s

�wL � Es + ig
. (4.45)

Using this equation as implemented in the yambo [55] code we evaluated
the optical response including many-body effects of single- and triple layer
MoTe2. This is done including the GW correction in the form of a scissor shift
and the BSE equation. The wave functions were obtained on a 36 ⇥ 36 ⇥ 1 k-
point sampling in the Brillouin zone. We used a 40 Ry cutoff for the plane-wave
basis set and a Coulomb cutoff technique [106] to avoid spurious interactions
between the periodic copies in the z-direction and a vacuum separation of 50
and 70 Bohr for single- and triple-layer, respectively. The results obtained us-
ing the Haydock method and the slepc library are shown in Figs. 4.10 and
4.11.

The first peak in both single- and triple-layer is labeled the A exciton [107].
The second peak is due to the spliting of the bands due to spin-orbit interaction
as mentioned in the IP analysis in Section 4.4.1. The inter-layer interaction
contributes additionally to the splitting of the excitonic states.
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While it is possible to get a good description of the spectra using the Hay-
dock method, it does not allow us to obtain the excitonic wave functions. This

Figure 4.10: Optical absorption spectra of single-layer MoTe2 using the BSE
equation. In the SLEPC case the absorption spectrum was calculated using
only the first few states. The vertical lines represent the energies and indices
of the brightest excitons.

is, however, possible when using the slepc library. In it we choose to find the
first N eigenstates of the full excitonic Hamiltonian. This means that we do
not make any approximation in including less transitions in the Hamiltonian.
Instead, we generate the full Hamiltonian but determine explicitly only a set
of eigenstates.

One of the important applications of determining the excitonic wave func-
tions is to classify them according to their point group symmetry. This is not
possible using the iterative Haydock method, instead we need to obtain explic-
itly the wave function either using the full diagonalization of the Hamiltonian
or of a subspace using a library like the slepc. This was done in the case of
single-layer hexagonal boron nitride [108]. This type of classification helps to
better understand which excitons should be bright and under which condi-
tions. This classification of the excitons can furthermore be used to interpret
trends in the optical spectra of materials.
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4.5 Many-body effects in the optical absorption

Figure 4.11: Optical absorption spectrum of triple-layer MoTe2 using the BSE
equation. In the SLEPC case the absorption spectrum was calculated using
only the first few states. The vertical lines represent the energies and indices
of the brightest excitons.

4.5.4 Representation of the excitonic states

The excitonic wave function depends on 6 coordinates where the first set of
three coordinates represents the probability of finding a hole in one place given
that the electron is in the position represented by the other three coordinates

|si = Â
cvk

As
cvk |cki ⌦ |vki (4.46)

ys(rh, re) = Â
cvk

As
cvkyvk(rh)yck(re). (4.47)

There are different ways to represent this complicated function. We can
represent the probability of finding an electron and a hole in the same point,
which gives us information about where the excitons are formed or destroyed
(called free-hole representation in the yambo code). Another way, the most
used one, is to fix the position of the hole in one point and represent the prob-
ability density of the electron in all the other points in space.

We used our new implementation based on the SLEPC library to iteratively
obtain the excitonic states of the BSE Hamiltonian in Eq. (4.41). In Fig. 4.12 we
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Figure 4.12: Electronic transitions contributing to the first (1-2) and second (41-
42) brightest excitons for single-layer MoTe2. In panel a) and b) we represent
by a circle the Kohn-Sham states contributing to the excitonic state where the
size of the circle is proportional to the weight of the electron-hole pair. In
panels c) and d) we add the contributions of the different bands and represent
their weight in the Brillouin zone.

show the transitions contributing to the first two bright excitons in single-layer
MoTe2 using the two different representations. In one case we add the contri-
bution of all the transitions in the k-point and represent it in reciprocal space.
This gives us information about which regions in the Brillouin zone are con-
tributing to the excitonic state. In the second case we represent the weight
of the contributions in the band-structure plotted along the high-symmetry
line. In this case it becomes evident which transitions contribute are contribut-
ing to the excitonic state. For example, the first peak is due to transitions
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near the band-gap and the second peak due to the transitions between the
second-higher valence band and the conduction band. The splitting between
the higher and second-higher bands is due to the strong spin-orbit interac-
tion in MoTe2. The representation of these excitons in real space is shown in
Fig. 4.13. Here we can see as expected that higher localization in reciprocal
space corresponds to more delocalization in real space.

Figure 4.13: Real space excitonic wave functions of the first two brightest exci-
tons in single-layer MoTe2. The excitons with index 1-2 are shown in panel a)
the 41-42 in panel b). These images are generated with the VESTA software.

We represent the transitions contributing to the formation of the excitons
in triple-layer MoTe2 in Fig. 4.14. In this case it is interesting to analyze how
the electrons distribute in the different layers according to the position of the
hole as shown in Fig. 4.15. In the representation shown here we fixed the hole
in the central layer.

The representations shown in Figs 4.12 and 4.14 are done using the
yambopy code. We plan their future implementation in the phononwebsite.
This will allow for an easier and more educative analysis of the excitonic cal-
culations.
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Figure 4.14: Electronic transitions contributing to the first (2) and second (12)
brightest excitons for triple-layer MoTe2. In panel a) and b) we represent with
a circle the Kohn-Sham states contributing to the excitonic state where the size
of the circle is proportional to the weight of the electron-hole pair. In panels
c) and d) we add the contributions of the different bands and represent their
weight in the Brillouin zone.
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Figure 4.15: Real space excitonic wave functions of the first two excitons in
triple-layer MoTe2. The hole is fixed near the Mo atom in the central layer. The
excitons with index 2 are shown in panel a) the 12 in panel b). These images
are generated with the VESTA software.
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4.5.5 Temperature dependent optical spectra: MoS2

Apart from the inclusion of excitonic effects it is also possible to include
the effect of temperature using the concepts introduced in Chapter 3. Here
we show the results of a calculation of optical absorption of MoS2 in the
independent-particle approximation including the lifetimes due to electron-
phonon scattering. The same principle applied here will be used to incorpo-
rate the effects of temperature in the Raman spectra in Chapter 6. Calculations
including both the effect of temperature and the excitonic effects were demon-
strated in the literature [109] but this topic is outside the scope of the current
work.

To converge the calculation of the optical absorption spectra we interpo-
lated the MoS2 band structure using the method described in Section 3.3.1 on
a grid of 240x240 k-points. The need for a fine sampling of the Brillouin zone
is due to the low broadening of the electronic states near the absorption edge.
In Fig. 4.16 we show the effect of the inclusion of the lifetimes of the electrons
in the independent-particle absorption. There are two important effects in the

Figure 4.16: Temperature dependent optical absorption spectra of MoS2.

optical spectrum due to temperature captured by this approach. The first ef-
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fect is the band gap renormalization which shifts the absorption edge to lower
energies as described in Chapter 3. Secondly there is a broadening of the peaks
due to the increase of the quasi-particle linewidths.
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5

Raman spectroscopy: Finite
differences approach

5.1 Introduction

The Raman spectrum reveals information about excitations in the mate-
rial. We start this chapter with a review of the Raman scattering amplitude
from a classical perspective. We will define what is measured in a Raman
experiment and describe a method to calculate it. One of the required quan-
tities, the dielectric susceptibility, is calculated from first-principles using the
methods described in Chapter 4. We apply this method to study one-phonon
resonant Raman spectroscopy in single- and triple-layer MoTe2 to compare
with experimental results obtained by the group of Stéphane Berciaud at
IPCMS/University of Strasbourg and other results in the literature [24, 25, 26].

In a recent experiment, a strong exciton-phonon coupling was reported for
single-, double-, triple-layer, and bulk MoS2 [18]. This experiment provided
not only evidence of the symmetry-dependence of the exciton-phonon cou-
pling but also about sharp features in the optical spectra namely the A, B ex-
citons [110]. Our study of the dependance of the Raman intensities with laser
energy was motivated by an earlier publication about the characterization of
the phonon vibrational modes of MoTe2 using Raman spectroscopy [24]. In
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it, the Raman spectrum of up to 10 layers was experimentally measured and
described using a force constant model for the phonon frequencies and modes.
This allowed the detailed study of the interlayer forces and determination of
the frequencies of the Raman inactive phonon modes not directly measured
in the experiment. Because single-layer MoTe2 is a near-infrared direct opti-
cal band gap semiconductor (1.1 eV gap at room temperature), it is possible to
probe the excitonic states with visible photon energies [107, 24]. Additionally
the Davydov split modes appear prominently at visible (hence easily avail-
able) laser photon energies. The description of the Raman intensities was done
using a bond-polarizability model [111]. In this model, the susceptibility of the
material is empirically parameterized by the sum of the polarizabilities of the
individual bonds. The results obtained for different multi-layers are repro-
duced in Fig. 5.1. This model, however, does not account for the dependence of

Experimental data

[1] G. Froehlicher et al. Nano Lett. (2015).!
[2] H.P.C. Miranda et. al. Nano Lett. 17, 2381 (2017).
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FIG. S8: Raman Spectra obtained with the bond polarizability model.
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bond polarisability [1]

• Bond polarizability -> static 
electric field!

• Good agreement with 1.58eV!
• Bad for higher laser energies

7

Figure 5.1: Raman spectra calculated using a bond-polarizability model. In this
model a static electric field is considered. Figure taken from the supplementary
material of Ref. [24].

the polarizability on the laser frequency and does not reproduce the intensities
of the phonon modes at different laser energies (see supplementary material
of Ref. [24]). This drawback is also common to the standard DFPT calculations
of the Raman intensities where a static electric field is assumed [31, 32]. Up to
now, most theoretical studies have been focused on this non-resonant regime,
either using the bond-polarizability model or density functional perturbation
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theory [20, 21, 112].

It is well known from experiments that the Raman intensities have a strong
dependence on the laser energy for certain phonon modes, as was shown for
MoSe2 [113, 114], MoS2 [115], and WS2 [116]. In MoTe2 as well, the measure-
ments show a strong dependence [117, 107, 24, 25, 26]. In the case of triple-
layer MoTe2, it was observed that the intensity ratio between the lowest- and
highest-frequency modes belonging to the same A0

1 Davydov triplet signifi-
cantly changes with laser photon energy [24, 25, 26].

Q. J. SONG et al. PHYSICAL REVIEW B 93, 115409 (2016)

(a) (b)

FIG. 7. (a) Raman spectra of Davydov doublets of the A′
1 modes in 3L MoTe2 excited by ten laser excitation energies, where the Raman

intensity is normalized to the A3 mode in quartz at about 465 cm−1. (b) The intensity of the A′
1(R1) (blue open diamonds) and A′

1(R2) (red solid
circles) as a function of the excitation energy. The dashed gray line is the reflectance contrast spectrum (!R/R) of 3L MoTe2 in the visible
range.

[20,40,41]. The A′
1(R2) peak shows strong intensity once

the excitation energy is near 1.85 eV, which is close to
the energy of the A′ exciton (∼1.73 eV) and B′ exciton
(∼1.96 eV). It indicates that the Raman process of the A′

1(R2)
peak is mainly resonant with the A′ and B′ excitons. With
respect to the large excitation energy, the frequencies of the
A′

1(R1) and A′
1(R2) peaks are almost identical to each other.

However, the two modes exhibit different resonant profiles,
which may result from the differences in the electron-phonon
coupling strength of the two modes. Indeed, similar results
have been observed for the different C and LB modes in twisted
multilayer graphenes [20,21]. Although our result in Fig. 7(b)
shows that the A′

1(R2) peak is enhanced in intensity when
the excitation energy is close to the A′ exciton, the A′

1(R1)
intensity is significantly enhanced in this excitation energy
by the A′ exciton, which makes it difficult to distinguish the
A′

1(R2) peak from the strong A′
1(R1) peak for the excitation

energies of 1.71 and 1.58 eV, as indicated in Fig. 7(a).
Thus, one must choose proper excitation energy to observe
Davydov splitting of the A′

1(A2
1g) mode in NL MoTe2 (N > 2)

due to the different resonant profiles between two Davydov
components.

IV. CONCLUSIONS

In summary, we have studied the Raman spectra of few-
layer MoTe2 in both ultralow-frequency and high-frequency
regions. In the ultralow-frequency region, the frequencies of C
and LB modes agree well with the prediction based on the LCM
in which only nearest interlayer coupling is considered. The
intensity of the lowest-frequency LB mode is much stronger
than that of the C mode. This phenomenon is opposite to the
reported results for few-layer MoS2 and WSe2. The results
indicate that the second-nearest layer-breathing interlayer

coupling and the substrate effect can be ignored in the
analysis of Raman spectra of exfoliated NL MoTe2 on different
substrates. Under resonant excitation conditions, Davydov
splitting of the out-of-plane A′

1(A2
1g) modes at ∼170 cm−1

is observed. The number of the Davydov components and
their frequencies are dependent on layer number. Based on the
symmetry analysis, all the predicted Raman-active A′

1(A2
1g)

modes in NL MoTe2 (N = 3–6) have been assigned. It is
noteworthy that the Davydov splitting of the A′

1(A2
1g) modes

is more obvious than those reported for MoSe2 and WS2.
The Davydov splitting of high-frequency A′

1(A2
1g) modes has

been well understood by the van der Waals model, in which
only the nearest interlayer coupling is taken into account. The
resonant behavior of the A′

1 modes in 3L MoTe2 indicates
that the difference in the electron-phonon coupling strength
between two Davydov components may result in different
resonant profiles, and thus proper excitation energy must
be chosen to observe the Davydov splitting of the A′

1(A2
1g)

modes in NL MoTe2 (N > 2). The detailed exploration for
Davydov splitting in few-layer MoTe2 reveals how the van
der Waals interactions significantly affect the frequency of
the high-frequency intralayer phonon modes and expands our
understanding on the lattice vibrations and interlayer coupling
of transition metal dichalcogenides.

Note added. Recently, we became aware of a preprint
reporting resonant Raman scattering in few-layer MoTe2 [42].
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Figure 5.2: Raman spectra of Davydov doublets of the A0
1 modes in 3L MoTe2

excited by ten laser excitation energies, where the Raman intensity is normal-
ized to the A3 mode in quartz at about 465 cm�1. (b) The intensity of the A01
(R1) (blue open diamonds) and A01 (R2) (red solid circles) as a function of the
excitation energy. The dashed gray line is the reflectance contrast spectrum
(dR/R) of 3L MoTe2 in the visible range. Figure taken from Ref. [26].

In Fig. 5.2 we reproduce the main results of Ref. [26]. For laser energies
up to approx. 1.8 eV the A0

1 mode with higher phonon frequency has a larger
Raman intensity. This is in agreement with the results obtained in the non-
resonant regime using the bond polarizability model reproduced in Fig. 5.1.
However, for larger laser energies the A0

1 mode with lower frequency becomes
dominant. This puts in evidence the limitations when comparing experimen-
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tal Raman spectra measured in the resonant regime with models in the non-
resonant regime.

We will present the use of a finite differences approach for the calculation
of Raman intensities as a function of laser energy using the methods reported
in Refs. [14, 30, 33]. In this framework, the Raman intensities are defined as the
first order change of the dielectric susceptibility due to phonon vibrations (see
Sec. 5.2.1).

5.2 Classical theory of light scattering

The theory of light scattering in solids can be introduced with concepts
from classical electrodynamics [14]. Consider an electronic charge distribution
evolving in time. Associated to this charge there is an electric polarization, P.
Due to temperature or the action of external forces this charge will oscillate
with a certain frequency wS. From Maxwell’s equations, the energy of the
radiation emitted per unit time, WS(wS), by a dipole within a solid angle W
is [14]

dWS(wS)
dW

=
w

4
S

(4p)2
e0c3 |eS · P(wS)|2, (5.1)

where eS denotes the direction of the scattered light, e0 the permittivity of the
vacuum and c is the speed of light. The external force driving the polariza-
tion is an external electromagnetic field with frequency wL. In that case the
polarization is related to the incident electromagnetic field

P(t) =
Z

�(t � t0) · eLELeiwLt0dt0, (5.2)

where EL is the amplitude of the electromagnetic field, eL the light polariza-
tion vector and, �(wL) is the dielectric susceptibility tensor of the material as
defined in Chapter 4. Performing a Fourier transformation in time t to wS we
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5.2 Classical theory of light scattering

obtain

P(wS) = �(wS) · eLELd(wS � wL). (5.3)

Inserting Eq. (5.3) into Eq. (5.1) we obtain

dWS(wS)
dW

=
w

4
S

(4p)2
e0c3 |eS ·�(wS) · eL|2E2

L. (5.4)

The differential cross section can be obtained dividing by the incident energy
per unit area WL = e0cE2

L

dWS(wS)
dW

1
WL

=
ds(wS)

dW
=

w

4
S

(4pe0)2c4 |eS ·�(wS) · eL|2, (5.5)

The information about the excitations of the material is included in the dielec-
tric response. At this point the scattered light will have the same frequency as
the incident light. This is the definition of an elastic light scattering process.
The description of elastic processes is, however, not enough to obtain informa-
tion about lattice vibrations, and other excitations.

5.2.1 Inelastic light scattering

Considering again a monochromatic laser with frequency wL, the polariz-
ability P oscillates with this frequency and is represented as a function of time
in Fig. 5.3 a). This polarizability, like the total energy or any other macroscopic
property, depends on the internal coordinates of the system (atomic positions,
electronic states, etc.). These coordinates can change due to random thermal
fluctuations or external forces, thus modifying the response function. If we
consider a phonon vibrating with energy w

µ

and assume that the electrons
relax much quicker than the phonons, the electronic energy levels will also
oscillate with this phonon frequency. This causes the susceptibility (and con-
sequently the polarization) to also oscillate with the phonon frequencies as
shown in Fig. 5.3 b). The modulation of the polarizability with the energies
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P
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P
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a) b)

Figure 5.3: Panel a): polarizability of the system upon perturbation by a laser
with energy 2 eV. In panel b) we consider that the susceptibility also oscillates
as a function of time due to the phonon vibrations w

µ

with energy 0.1 eV (806.6
cm�1). This leads to the polarization being modulated by the phonon frequen-
cies.

of the elemental excitations leads to additional peaks in the Fourier transfor-
mation of the polarization shown in Fig. 5.4. These peaks mark the energies

�3 �2 �1 0 1 2 3
! (eV)

�3 �2 �1 0 1 2 3
! (eV)

a) b)

Figure 5.4: Fourier transformation of the polarizability as a function of time
represented in Fig. 5.3. In panel a) we obtain a peak at the frequency of the
laser light excitation. In panel b) we obtain, in addition to the main peak, two
additional side peaks with frequency given by wL � w

µ

and wL + w

µ

related to
emission and absorption of a phonon (these are called Stokes and anti-Stokes
peaks respectively).
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5.2 Classical theory of light scattering

of the excitations, in this case a phonon, and their intensity is proportional to
the strength of the coupling with the susceptibility. This coupling is related to
the strength of the electron-phonon coupling. It is the vibrating polarization
that creates the scattered light that reaches the detector with intensity given by
Eq. (5.1). Most of this light has the same frequency as the incident light (elastic
scattering) but a fraction of the scattered light experiences a shift in frequency
due to the excitations (inelastic scattering). In a typical Raman spectrum, we
are interested in the relative shift of these peaks with respect to the elastically
scattered peak. A way to obtain these Raman shifts is to calculate the polari-
azability as a function of time letting the positions of the nuclei time evolve as
outlined in Section 2.3.4. The Raman spectrum is then obtained by a Fourier
transformation [118].

In our approach, we assume that electrons respond immediately to the
phonon vibration. This is referred to as the adiabatic limit. This limit is valid as
long as the following condition is fulfilled [14, 102]:

w

µ

⌧ |wL � (eck � evk) + ig|, (5.6)

where eck and evk are the energies of conduction and valence bands respec-
tively and g is the electronic broadening. As we will show later on, this ap-
proximation holds quite well even at laser energies close to resonance with the
electronic states provided that the electronic broadening is large compared to
the phonon frequencies.

We can define at each time a polarizability tensor, �(wL, {Q}), that depends
on the phonon displacements defined in Section 2.1, using an expansion sim-
ilar to Eq. (2.1). Expanding in terms of the phonon displacements normalized
according to

Qµ

ia(q) =
1p
MI

x

µ

Ia

(q), (5.7)
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we obtain

�(wL, {Q}) = �(wL, {R0})+

1
2 Â

qµ

∂�(wL, {R0})

∂Qµ

q

h

Qµ

qe�iw
µqt + Qµ⇤

q eiw
µqt
i

+

1
4 Â

qnµ

∂

2�(wL, {R0})

∂Qµ

q∂Qn

q

h

Qµ

qQn

qe�i(w

µq+w

µq)t+

Qµ

�qQn⇤�qei(w

µq�w

µq)t+

Qµ⇤
q Qn�qei(w

µq�w

nq)t+

Q⇤µ

�qQn

qe�i(w

nq+w

nq)t
i

.

(5.8)

In a similar way as in section 2.1 where we defined forces and force constants
to relate the change of the total energy to the displacements of the atoms, here
we will relate the change of the susceptibility to the phonon displacements.
The first term is just the dielectric susceptibility when all the atoms are in their
equilibrium positions. The second and third terms are the first- and second-
order Raman susceptibility tensors, respectively

↵
(1)
µ

(wL) =
∂�(wL, {R0})

∂Qµ

q=0
, One-phonon Raman tensor, (5.9)

↵
(2)
µnq(wL) =

∂

2�(wL, {R0})

∂Qµ

q∂Qn

q
, Two-phonon Raman tensor, (5.10)

where we simplified the one-phonon Raman tensor since only long-
wavelength phonons (q ! 0) couple with the light. This is due to the fact
that the laser light has a long-wavelength when compared with the interatomic
distances. These expressions relate the oscillations (or fluctuations) of the sus-
ceptibility to the vibration of the atomic nuclei. The magnitude of the change
depends on the magnitude of the different components of the Raman tensor
and on the thermodynamic average of the phonon displacements, i.e., how
many of the phonon modes are excited (as discussed in 2.2).

Inserting Eq. (5.8) in Eq. (5.5) leads to a multitude of terms. Since we are in-
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terested in the first-order Raman processes we only keep the terms in ↵
(1)
µ

(wL)

dss(w)
dW

= Â
µ

w

4

(4pe0)2c4 |eS ·↵(1)
µ

(wL) · eL|2 hQµQµ⇤i , Stokes, (5.11)

dsa(w)
dW

= Â
µ

w

4

(4pe0)2c4 |eS ·↵(1)
µ

(wL) · eL|2 hQµ⇤Qµi , anti-Stokes, (5.12)

where the first term gives the differential cross-section of the Stokes and the
second that of the anti-Stokes Raman scattering process. In the classical case
there is no distinction between the Stokes and anti-Stokes components as
the expectation values of hQµ⇤Qµi and hQµQµ⇤i are the same and given by
Eq. (2.16). Additionally, in a purely classical description of Raman scattering,
the Stokes and anti-Stokes components have the same intensities. This is not
true according to experiments as shown in Fig. 5.5. To properly distinguish be-

Figure 5.5: Stokes and anti-Stokes raman spectra of three zinc-blende-type
semiconductors. Image reproduced from Ref. [30].

tween these two components we have to quantize the phonons. This can still
be done in a semi-classical way, by estimating the amplitudes of the vibrations
of the phonon based on the total energy of the quantum harmonic oscillator
which is given by E = h̄w

µ

[n(T, w

µ

) + 1/2]. The amplitude is estimated from
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the potential energy at maximum enlongation

hQµ⇤
q Qµ

q + Qµ⇤
q Qµ

qi =
h̄

w

µ



n(T, w

µ

) +
1
2

�

, (5.13)

where n(T, w) = (eh̄w/kBT � 1)�1 is the Bose-Einstein distribution for the
phonon states and kB is the Boltzmann constant. At high temperature we re-
cover the classical limit

hQµ⇤
q Qµ

q + Qµ⇤
q Qµ

qi =
h̄kBT
w

µ

. (5.14)

This is, however, still not enough to distinguish the Stokes and anti-Stokes
components. To do so we need to introduce their expectation values using
quantized phonons

hQµ

qQµ⇤
q i = hn|â|n + 1i hn + 1|â†|ni =

h̄
2w

µ

[n(T, w) + 1], Stokes (5.15)

hQµ⇤
q Qµ

qi = hn|â†|n � 1i hn � 1|â†|ni =
h̄

2w

µ

[n(T, w)], anti-Stokes (5.16)

where â† is the phonon creation operator and â the phonon annihilation oper-
ators introduced in Section 2.2. Equations (5.15) and (5.16) indicate a clearly
different temperature dependence of the Stokes and anti-Stokes Raman scat-
tering intensities.

Combining Eqs. (5.11) and (5.15) and taking the limit q ! 0, we obtain for
the differential cross-section of the Raman intensity

dss(wL)
dW

= Â
µ

w

4
L

(4pe0)2c4 |eS ·↵(1)
µ

(wL) · eL|2 h̄
2w

µ

[n(T, w

µ

) + 1]. (5.17)

This equation will serve as the basis for the study of resonant Raman scattering
in MoTe2 in section 5.4. The calculation of the derivatives of the dielectric sus-
ceptibility is done by finite differences of the dielectric susceptibility obtained
using the methods in Chapter 4. Alternatively, the differential cross section
will be formulated in terms of MBPT in section 6.1.
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As a final remark, the ratio between the Stokes and anti-Stokes cross-
sections allows us to estimate the temperature of the sample using

dss(w)
dW

[n(T, w)] =
dsa(w)

dW
[n(T, w) + 1]. (5.18)

The temperature measured in this way is in general different from the environ-
ment temperature as the laser is transferring energy to the sample that is stored
as vibrational energy of the nuclei and the electrons. Using Eq. (5.18) to esti-
mate the temperature should give a more realistic value for the temperature
of the system. This is important for the comparison between the experimental
and the calculated spectrum when including temperature effects.

5.3 Selection rules and interference effects

Selection rules

The periodic crystals are classified according to their symmetries into space
groups. The long-wavelength phonon modes (i.e. phonon modes with q ! 0)
can be classified according to the representation they have within that point
group. Upon calculating the change of the susceptibility tensor (depending
on the directions of the incoming electric field and the polarization) due to
phonon modes belonging to a certain point group symmetry, some compo-
nents of the Raman tensor vanish by symmetry. This fact can be studied sys-
tematically using group theory methods and selection rules can be obtained
for the different phonon modes of a crystal. A complete table of the selection
rules is shown in Ref. [119]. We reproduce here only the selection rules relevant
to the systems under study1 which belong to the D3h point group.

1Both single- and triple-layer as well as odd multiple layers belong to the same point
group. Even multiple layers and bulk belong to a different point group D3d [22, 24].
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Mode A0
1 E0(x) E0(y)

Raman tensor ↵
µ

2

4

a
a

b

3

5

2

4

d
d

3

5

2

4

d
�d

3

5

Table 5.1: Selection rules of the Raman tensor for the space group D3h[15].

Interference effects

For the phonon modes that do not have zero Raman intensities due to se-
lection rules, we would like to calculate the resonant Raman intensities. Fur-
thermore, we would like to understand which bands and which k points are
contributing to these intensities. For a detailed analysis, we proceed in a sim-
ilar way as we did in Eq. (4.30) for the dielectric susceptibility. We write the
Raman tensor from Eq. (5.9) as a sum over the Brillouin zone

↵(w) = Â
k
↵k(w). (5.19)

Contrary to the dielectric susceptibility, however, the Raman intensity (given
by Eq. (5.17)) is the absolute square of the sum of ↵k(w)

I µ

�

�

�

�

�

Â
k
↵k

�

�

�

�

�

2

= Â
k

�

�↵k
�

�

2

| {z }

direct terms

+ Â
k,k0

k 6=k0

�

↵k
�⇤

↵k0 .

| {z }

interference terms

. (5.20)

The addition of complex numbers with a certain phase leads to constructive
or destructive interference effects. If enough electronic transitions with a finite
amplitude are in phase, we detect a large Raman intensity. If the contributions
are out of phase, interference leads to a small or even zero Raman intensity. We
will show that, in general, the biggest contribution comes from the interference
terms in Eq. (5.20), with the direct terms being almost negligible. The interfer-
ence between the different contributions can be related to the symmetry of the
system which is reflected in the matrix elements that enter the computation of
the Raman scattering.
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5.4 Finite differences method applied to MoTe2

In this section we demonstrate the application of the finite differences
method to the calculation of the first-order Raman spectrum of single- and
triple-layer MoTe2. We have published these results in Ref. [35].

The accurate description of resonant Raman scattering is challenging due
to the interplay between electronic correlation and electron-phonon coupling.
Most ab initio methods available today assume static electromagnetic fields,
which is not applicable in the resonant case where the dynamic dielectric re-
sponse needs to be accounted for. Resonant Raman spectroscopy has also been
studied using empirical models fitted from experiments to describe the elec-
tronic bands, phonon dispersion, and electron-phonon coupling [120]. These
methods, even though successful to a certain extent, require previous knowl-
edge about the material under investigation. More recently, a study of the
double-resonant Raman process in MoTe2 investigated the resonance surface
in reciprocal space using calculations of the electronic structure and phonon
dispersion [94]. In this analysis, the authors did not include the strength of
the electron-phonon and electron-light coupling (and their phase), which leads
only to a qualitative picture of the Raman intensities as we will show through-
out this chapter.

We use an ab initio approach to calculate the first-order Raman susceptibil-
ity as a function of laser photon energy. We do so by calculating the directional
derivative of the dielectric response function with respect to lattice displace-
ments with finite differences [33, 34]. For this, we evaluate the dielectric sus-
ceptibility at the two displaced positions R±

Ia

= RIa

± dQµ

Ia

and divide by the
amplitude of the two displacements. We will then use these results to discuss
the main qualitative features on the independent-particle level and show that
the inclusion of excitonic effects provides a reliable quantitative description of
the Raman spectrum, in very good agreement with experimental results.

The key point of this analysis is then to use the concept of quantum in-
terference to explain the observed behavior of the Raman intensity with laser
energy in MoTe2. Quantum interference was shown to be important in the
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Raman intensities of graphene where an increase of the Raman intensity is
observed when destructive interference terms are blocked by the Pauli princi-
ple through electron or hole doping [93, 121, 122, 123]. We show that selection
rules manifest themselves at the level of quantum interference. Moreover, even
when selection rules do not apply, quantum interference explains the observed
behavior of the Raman intensity in triple-layer MoTe2.

5.4.1 Experimental data

The experimental Raman spectra of single- and triple-layer MoTe2 was
measured by the group of Stéphane Berciaud at IPCMS/University of Stras-
bourg. Figure 5.6 shows micro-Raman spectra of single- and triple-layer
MoTe2. The number of MoTe2 layers has been unambiguously identified as
described in Ref. [24].

The raw spectra have been normalized by the integrated intensity of the
T2g Raman mode of silicon at ⇡ 520 cm�1 for a qualitative comparison. The
experimental details are described in Ref. [35] and will not be detailed here.

To quantitatively compare experimentally measured Raman intensities
with the ab initio Raman intensities calculated according to Eq. (5.17), we
have also taken optical interference effects into account and extracted the xx-
component (incoming and scattered light are polarized in-plane) of the Raman
susceptibility after carefully considering the polarization-dependent response
of the setup.

In Figure. 5.6, we show the experimentally obtained Raman spectra of
single- (panel (a)) and triple-layer (panel (b)) MoTe2. The prominent A0

1 and
E0 modes are clearly visible. In single-layer MoTe2, the A0

1 mode dominates
the spectrum at laser energies of EL=1.58 and 1.96 eV, while at EL=2.33 eV the
E0 mode is dominant. Similarly, in triple-layer MoTe2, the A0

1 and E0 mode
dominate the Raman spectrum at EL = 1.58 eV and EL = 2.33 eV, respec-
tively. However, the A0

1 mode and the E0 mode have comparable intensities at
EL = 1.96 eV.
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Figure 5.6: Micro-Raman spectra of single-layer (panel a) and triple-layer
(panel b) MoTe2 at three different laser energies in a backscattering geome-
try. All spectra have been normalized by the integrated intensity of the Raman
mode from the underlying Si substrate at ⇡ 520 cm�1. The corresponding
atomic displacements for the Raman-active modes are shown as insets in the
upper panels. Figure taken from Ref. [35]. The representation of the Raman
inactive phonon modes is available in Ref. [24].

5.4.2 Theoretical Raman spectrum of single-layer MoTe2

In order to introduce the concept of quantum interference in a relatively
easy way, we analyze the Raman spectrum for the A0

1 and E0 modes of single-
layer MoTe2. In all cases we will analyze the xx-component of the Raman
susceptibility tensor, a

xx(w). The other components are related to the xx-
component of a, as shown in Table 5.1.

The details of the calculations are specified in Section 4.5.3. Figure 5.7 a)
shows the Raman susceptibility as a function of laser energy for both the IP
(dashed lines) and BSE calculations (solid lines). Up to a laser energy of 2 eV
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the intensity of the A0
1 mode is larger than that of the E0 mode. At higher

laser energy, the E0 mode has a larger intensity than the A0
1 mode, in good

agreement with the experimental data reported here and in the literature [107,
24, 25]. The overall scale of the theoretical results (IP- and BSE-level) has been
chosen to reflect that of the experimental results. This scale is the same for
both the IP- and BSE-level calculations to allow for a comparison between the
two. Since the overall scaling factor cancels when considering intensity ratios,
the quantity that can be compared unambiguously between experiment and
theory is the ratio of the intensities of the two phonon modes (A0

1 and E0), as
shown in Figure 5.7 b). The inclusion of many-body effects changes the relative
intensities at the excitonic transition energies but does not change the general
trend of the intensity as a function of laser energy.

As mentioned in Section 4.4.1 the main contributions to Im{c(w)} for laser
energies between 0.8 and 2 eV come from the lower bands in transition space
in a region around K and between K and M. It should be noted that only
optically active transitions can contribute to the Raman susceptibility, but not
all of them necessarily do so. For instance, near the band gap, the A0

1 mode
is active while the E0 mode is silent, even though the same electronic transi-
tions contribute and both modes are, in principle, allowed by lattice symmetry.
This behavior can be understood in terms of angular momentum conservation
analogously to the case of graphene [19, 123]. Near the band gap at K the
band structure is rotationally symmetric and thus angular momentum is con-
served. Both incoming and outgoing photons carry an angular momentum of
±h̄ while the E0 phonon does as well. This implies that the final state has a total
angular momentum of ±2h̄ or 0, which violates angular momentum conserva-
tion and renders the E0 mode silent. In contrast, the phonon corresponding to
the A0

1 mode does not carry angular momentum and hence the corresponding
process is allowed.

This can also be understood from the point of view of quantum interfer-
ence. For this purpose, we show the k-resolved Raman susceptibly as a func-
tion of w in Fig. 5.8 in the full Brillouin zone and in Figure 5.9 b) along the
high-symmetry lines. We color-encode the phase when the amplitude is larger
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Figure 5.7: a) Calculated xx-component of the Raman susceptibility tensor
squared (|axx|2) at the IP level (dashed line) and at the BSE level (solid lines)
for single-layer MoTe2 as a function of laser energy for the A0

1 and E0 modes.
The blue squares and green circles correspond to the same quantity (up to a
normalization factor) extracted from the spectra in Figure 5.6 a) and b) using
Eq. (5.17). The vertical lines at the position of the laser energies used in the
experiment are guides to the eye. The BSE optical absorption is represented
by the gray area. The optical gap is in good agreement with the experimental
values reported in Refs. [107] and [24]. b) Ratio of the intensities of the A0

1 and
E0 modes calculated on the IP level (dashed line) and BSE level (solid line).
The black squares represent the experimentally measured ratios. Figure taken
from Ref. [35].

than 7% of the maximum amplitude at that laser energy. For the E0 mode,
the positive contribution from one side of the valley is added to the negative
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Figure 5.8: k-point-resolved contributions to the Raman susceptibility a

xx
k (w)

for single-layer MoTe2 across the BZ for two different laser energies used in
experiment. The E0 mode was chosen to be polarized in the y-direction. Figure
taken from the supplementary information of Ref. [35].

contribution from the other side, which leads to an overall cancelation of the
Raman intensity. By contrast, for the A0 mode the contributions add up con-
structively. At higher laser energies, the full rotation symmetry gradually gets
broken down to the 120� rotation symmetry of the lattice, an effect known as
trigonal warping [124, 19, 123] of the electronic structure. Angular momentum
is then only conserved up to integer multiples of ±3h̄ and both the A0

1 and E0

modes become allowed.

In order to track down the origin of the phase of the Raman susceptibility,
we take a closer look at the derivative of ck(w) with respect to atomic displace-
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5.4 Finite differences method applied to MoTe2

Figure 5.9: k-point resolved contributions a

xx
k (w) to the total Raman suscep-

tibility for single-layer MoTe2 along the high-symmetry lines. Panel (a) shows
the absolute value, while panel (b) shows the phase of a

xx
k (w). The phase is

only shown if the absolute value if greater than 7% of the maximum value at
that w. Figure taken from Ref. [35].

ments [14, 34]

∂c

SL
k (wL)

∂Q
µ

(
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vckLL
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∂
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∂Q
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)

,
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Figure 5.10: a) Band structures of single-layer MoTe2 in the LDA approxima-
tion including spin-orbit coupling. b) Change of electronic bands with atomic
displacements according to the A0

1 and E0 phonon modes.

where Decvk = eck � evk and L and S denote the polarizations of the incom-
ing and scattered light respectively. The first term involves the change of the
electronic band energies, which is given by the diagonal (intra-band) electron-
phonon coupling (EPC) matrix elements as we show in Eq. (C.2). The sec-
ond term stems from the change of the electron-light coupling matrix elements
upon atomic displacements and involves the off-diagonal EPC matrix elements
as shown in Appendix C. The first term is double-resonant and corresponds to
a process where an electron is excited to a conduction band, then scatters with a
phonon within the same band, and finally decays to the valence band by emit-
ting a photon. Since this term is double-resonant, we assume it to be dominant
and we can directly relate the phase of the Raman susceptibility to the sign of
the diagonal EPC matrix elements. We visualize these by plotting the change
of the electronic band energies with respect to atomic displacements, which
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5.4 Finite differences method applied to MoTe2

corresponds to the diagonal EPC matrix elements, as shown in Figure 5.10 b.
From this plot we observe a direct correlation between the sign of the diagonal
EPC and the phase of the Raman susceptibility in Figure 5.9 b. Therefore, we
attribute constructive or destructive interference between regions of the BZ to
differences in sign of the change of the electronic band energies.

5.4.3 Theoretical Raman spectrum of triple-layer MoTe2

In the case of triple-layer MoTe2, we focus our attention on the A0
1(a) and (b)

modes, for which experiments reported here and in the literature [24, 25, 26]
show a variation of the relative Raman intensity as a function of laser energy.
Our calculations, both on the IP and BSE level, reproduce this observation very
well, as shown in Figure 5.11 a) and b).

Common to both calculations is that the A0
1(a) phonon mode is dominant

in intensity for laser energies up to 1.8 eV while at higher laser energies the
A0

1(b) mode is dominant. However, only with the inclusion of excitonic effects
(BSE) do we obtain the experimentally observed ratio. Contrary to the single-
layer case, where the different intensities are related to different symmetries
of the phonon modes, in the triple-layer case, the A0

1(a) and (b) modes belong
to the same representation and hence symmetry based-arguments do not ap-
ply. However, we can still use the concept of quantum interference introduced
previously to explain the intensity inversion.

We start by analyzing the behavior of the Raman susceptibility for laser
energies near the band gap energy. There, the A0

1(b) mode has a large inten-
sity while the A0

1(a) mode is practically silent. This can be understood from
Figure 5.12 b), where we show the diagonal EPC matrix elements along the
high-symmetry line in the BZ. For the A0

1(b) mode the lowest conduction and
highest valence band states at K contribute with the same sign, while for the
A0

1(a) mode they have opposite signs. This is a direct consequence of the band
composition at K as shown in Fig. 5.12 b) and the way the layers vibrate (in-
phase in the A0

1(b) mode and out-of-phase in the A0
1(a) mode) as shown in

Fig. 5.6 b).
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Figure 5.11: a) Calculated xx-component of the modulus square of Raman sus-
ceptibility tensor (|axx|2) at the IP level (dashed line) and at the BSE level (solid
lines) for triple-layer MoTe2 as a function of laser energy for the A0

1(a) and
A0

1(b) modes. The blue squares and green circles correspond to the same quan-
tity (up to a normalization factor) extracted from the spectra in Figure 5.6 a)
and b using Eq. (5.17). The vertical lines are guides to the eye. The BSE optical
absorption is represented by the gray area. The optical gap is in good agree-
ment with the experimental values reported in Refs. [107] and [24]. b) Ratio of
the intensities of the A0

1(b) and A0
1(a) modes calculated on the IP level (dashed

line) and BSE level (solid line). The black squares represent the experimentally
observed ratios. Figure taken from Ref. [35].

The Raman intensities at higher laser energies (between 1.58 and 1.96 eV)
can also be understood from the point of view of quantum interference.
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5.4 Finite differences method applied to MoTe2

Figure 5.12: a) Band structure of triple-layer MoTe2 in the LDA approximation
including spin-orbit coupling. b) Change of the electronic bands with atomic
displacements according to the A0

1(a) (left) and A0
1(b) modes (right).
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Figure 5.13: Argand plot of ak(w) for the A0
1(a) and (b) modes of triple-layer

MoTe2 for laser energies EL=1.58 eV (bottom panel) and 1.96 eV (top panel).
The colors represent the position of the point in the Brillouin zone (see inset).

For this, we represent the contributions from all k-points in the BZ as points
in the complex plane (Argand plot) as shown in Fig. 5.13. By color-encoding
the k-point location in the BZ, we can identify the regions which contribute
constructively to the total Raman amplitude and those that are interfering de-
structively.

The overall phase of the different contributions has been fixed such that
the total Raman susceptibility is real and positive (solid black line). At a laser
energy of 1.58 eV, the contributions from the edge of the BZ, i.e., between K
and M (purple dots), scatter concentrically around the origin and mostly cancel
each other for both phonon modes. However, the regions between K and G and
M and G (blue dots) are building the signal up.

Since these contributions have larger amplitude for the A0
1(b) mode than

for the A0
1(a) mode, the former has a larger intensity at this laser energy. This

becomes clear by looking at Figure 5.15, where we represent the absolute value
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5.4 Finite differences method applied to MoTe2

Figure 5.14: k-point-resolved contributions to the Raman susceptibility a

xx
k (w)

for triple-layer MoTe2 across the BZ for two different laser energies used in
experiment and two different phonon modes A0

1 (a) on the left and A0
1 (b) on

the right. Figure taken from the supplementary information of Ref. [35].
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Figure 5.15: k-point resolved contributions a

xx
k (w) to the total Raman suscep-

tibility for triple-layer MoTe2 along the high-symmetry lines. Panel (a) shows
the absolute value, while panel (b) shows the phase of a

xx
k (w). The phase is

only shown if the absolute value if greater than 7% of the maximum value at
that w.
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Figure 5.16: Relative contributions of the “direct” (dashed line) and “interfer-
ence+direct” (solid line) terms to the total Raman susceptibility for triple-layer
MoTe2. The distinction between direct and interference terms is explained in
Eq. (5.20). Figure taken from the supplementary information of Ref. [35].

of ak(w) along the high-symmetry line in panel (a) and its phase in panel (b).
For a laser energy of 1.58 eV, there are resonant transitions between K and G
and at M (see arrows in panel (a)). At these points the modulus of ak(w) is
large and the phases are the same, which leads to constructive interference of
the signal and an increase in the observed Raman intensity for both phonon
modes.

At a laser energy of 1.96 eV, the situation is rather different. The ak(w)

contributions from the region between K and M (purple dots in the Argand
plot) no longer scatter concentrically around the origin and now destructively
interfere with the contributions from the K-G and M-G regions (blue dots). We
resolve which electronic transitions lead to these destructive interference ef-
fects by referring once more to Figure 5.15. The destructive contributions stem
from transitions at M, which have a relative phase of p/3 (blue areas in Fig-
ure 5.15b) while the constructive ones have relative phases between �p/2 and
�p (green, yellow, and red areas).
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In the case of the A0
1(a) mode, the amplitude of these destructive contri-

butions is small and hence the resulting signal is higher than the one of the
A0

1(b) mode, for which the destructive contributions have a sizable amplitude
as shown in Fig. 5.16. From Figure 5.15 a) we can verify that both the ampli-
tude of the ak(w) near the M point is higher for the A0

1(b) mode and that their
phases are opposite to the ones from the contributions of the constructively
interfering points (see dashed and solid arrows in panel (b)).

The reason for the small amplitudes in the K-M region for the A0
1(a) mode

can be deduced from Figure 5.15 c). The diagonal EPC matrix elements for the
A0

1(a) mode and the lowest conduction bands along the K-M direction have
both positive and negative signs. Consequently, their contribution to ak(w)
mostly cancels out, which leads to a small contribution to the Raman suscep-
tibility. On the other hand, for the A0

1(b) mode, the different EPC matrix el-
ements add up with the same sign and the k-points from this region give a
larger contribution.

5.5 Conclusions

We described and demonstrated the use of an approach for the calculation
of resonant Raman intensities based on finite differences of the dielectric sus-
ceptibility.

We obtained a qualitative agreement with the experimentally measured Ra-
man intensities reported in the literature [24, 25, 26] of the A0

1 Davydov triplet
as a function of laser photon energy.

We started by analyzing the Raman intensities for the A0
1 and E0 phonon

modes in the case of single-layer MoTe2. We then related the interference be-
tween the contributions from different k-points in the Brillouin zone to the
symmetry of the phonon modes. We then used the same concepts to study
the Raman intensities of the modes belonging to the same representation A0

1.
There, we were able to explain the counter-intuitive experimentally measured
dependence of the Raman intensities on laser energy in terms of interference
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effects. We additionally related the phase of the different contributions to
the total Raman intensity to the sign of the change of the eigenvalues upon
displacement according to the phonon mode which is in turn related to the
electron-phonon matrix elements.

The simplicity of this method allows us to easily incorporate excitonic ef-
fects in the calculation of the Raman intensities by just calculating the dielectric
susceptibility incorporating excitonic effects through the Bethe-Salpeter equa-
tion as described in Chapter 4.

There are, however, two drawbacks of using this method for the calcula-
tion of the Raman susceptibilities. The first one is that it relies on the adiabatic
phonon approximation (see Eq. (5.6)). This approximation is not too dramatic
when the phonon frequencies are small as is the case for TMDs (as we will
show in the following chapters). The second drawback has to do with the
computational effort required to evaluate the dielectric susceptibility for the
different displacements. The displacements according to the phonon modes
lead to a breaking of some of the lattice symmetries and to more k-points hav-
ing to be treated explicitly. This is not very satisfactory, given that a large
number of k-points is required to converge the dielectric response function
and consequently also the Raman spectrum. This issue becomes more dra-
matic if we want to include the GW quasi-particle correction of eigenvalues
and excitonic effects. In this case the GW and BSE calculations have to be per-
formed for each of the different displacements which makes it impractical for
large systems with a large number of phonon modes.

In addition to these issues, there is a growing interest in investigating Ra-
man intensities of TMDs at different temperatures [125]. In practice, these
studies allow us to monitor changes in the electronic and structural properties
of a material for different operating temperatures, which is important for any
practical device implementation. The theoretical simulation of the evolution of
the Raman peaks can provide very useful and important data to interpret ex-
periments and is as such highly desirable. It is, however, impossible to include
the effects of temperature on the Raman spectra in a consistent way. Addition-
ally, we are limited to the static phonon limit. Therefore, we will present in the
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following chapter an alternative approach based on perturbation theory.
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6

Raman spectroscopy: Diagrammatic
approach

6.1 Introduction

In this chapter we present an approach to calculate Raman spectra based on
perturbation theory. In this case the one-phonon resonant Raman intensities
are expressed as a sum over states of electron-phonon and electron-light cou-
pling matrix elements. The matrix elements are calculated from first-principles
and then used to obtain Raman spectra as a function of the incident laser en-
ergies. In this framework we can go beyond the adiabatic phonon approxima-
tion (see Eq. (5.6)) and include temperature effects. A summary of the different
approaches and their advantages and drawbacks is shown in Table 6.1.

The theoretical foundations of this method were shown in the literature in
previous works [15, 27, 28, 29, 30]. This method has been used to investigate
the one- and two-phonon Raman spectrum of graphene relying on empirical
models to calculate the coupling matrix elements [126, 93, 127, 128]. An imple-
mentation using quantities interpolated from first-principles was also demon-
strated and applied to the study of the G peak [123].

In the preceding chapters we described how to calculate the coupling ma-
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trix elements from first-principle codes (see Chapters 3 and 4). Here we com-
bine them in an in-house developed implementation to calculate the Raman
intensities. This implementation is able to read these quantities from the dif-
ferent codes (EPW, QE + yambo and abinit) and use them to obtain Raman
intensities as a post-processing step. This allows for the accurate comparison
of the results obtained using different codes. Because it relies on first-principles
calculations, the methods described here can also be promptly applied to dif-
ferent semiconductor systems. In practical terms, this implementation has the
advantage that the electronic eigenvalues and eigenfunctions need to be calcu-
lated only once. The electron-phonon and electron-light matrix elements are
calculated using these wave functions and the change of the self-consistent
potential upon perturbation of the atoms (see Chapter 3). This allows for the
calculations to be performed with much less computational resources than the
finite differences method where the wave functions have to be calculated for
each phonon displacement.

Dynamic
electric field Dynamic phonons

DFPT [32] no no
Finite differences 5.4 yes no

MBPT yes yes

Table 6.1: Limitations and advantages of the different available approaches to
calculate Raman intensities.

The derivation of the expressions to evaluate the Raman susceptibility can
be done in the framework of perturbation theory by considering a process in-
volving one incoming photon, one outgoing photon and a phonon as shown
in Sec. 6.1. We will first derive the expressions using the language of many-
body perturbation theory (MBPT), then by taking analytic derivatives of the
expression for the susceptibility. Finally we compare these expressions to the
ones present in the literature. We then prove in Section 6.6, both theoretically
and numerically, that these approaches reduce to the finite-differences method
when the adiabatic phonon limit is considered.

The connection between the finite differences approach and the MBPT ap-
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6.2 Raman scattering amplitude

proach is in many aspects similar to the connection between the Allen-Heine-
Cardona theory [129] for the band gap renormalization and the results derived
from many-body perturbation theory [80].

The experimental observation of the temperature dependence of the Raman
intensities was reported recently in the literature [125] and we will describe the
approach to simulate this type of experiments in section 6.8. Within this frame-
work we can include the effect of the band gap renormalization as a function
of temperature using the concepts introduced in Chapter 3.

6.2 Raman scattering amplitude

The first-order Raman process involves two photons and one phonon in-
teracting with the electrons. The Hamiltonian is

Ĥ = Ĥ0 + Ĥen + ĤeL, (6.1)

where Ĥ0 is the Hamiltonian for non-interacting electrons, phonons and pho-
tons, Ĥen is the electron-phonon interaction treated in Chapter 3 and ĤeL is the
electron-light interaction treated in Chapter 4.

The Raman scattering cross section can be defined from a purely quantum
mechanical perspective using Fermi’s golden rule [15]. The cross section is
then related to the transition probability from an initial state with the system
in its ground state plus one incident photon with frequency wL to the final state
where the crystal is again in the ground-state plus one phonon with frequency
w

µ

and a photon with frequency wS = wL � w

µ

1
t

µ
ds(wS)

dW
µ Â

LSµ

|↵µ

(wL, w

µ

, wS)|2d(wS � wL � w

µ

), (6.2)

where ↵ is the Raman tensor as defined before in Eq. (5.9). This definition
is similar to Eq. (5.5). In this case, however, ↵µ

(w, wL) is evaluated from a
perturbative calculation in terms of Feynman diagrams as opposed to finite
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differences of the dielectric susceptibility.

The formulation of the Raman tensor from a many-body perspective is not
a closed issue. An alternative formulation of the scattering amplitude is devel-
oped and used in [130] and suggested in [126, Section C]. In this formulation
the Raman scattering cross section is defined from a contribution to the imagi-
nary part of the photon self-energy. This self-energy occurs due to the presence
of electrons and phonons in the material and is represented in the diagram of
Fig. 6.1. A technique to evaluate the imaginary part of Feynman diagrams is

ωL ωL

ωs

ωµ

Figure 6.1: Feynman diagram of a process that appears in the expansion of the
photon self-energy in a system with interacting electrons and phonons. The
Raman scattering amplitude can be obtained by cutting the diagram across the
lines ws and w

µ

as mentioned in [126, Section C].

to use the cutting rules or reduced graph expansion as described in Ref. [50, Ap-
pendix N]. We did notice, however, that applying these rules does not seem
to lead to a single contribution to the lifetime. Indeed there are multiple ways
to “cut” the diagrams each of them giving a different contribution. Further-
more not all of these contributions lead to a photon and a phonon in the final
state. In the case of [130] the energy transfer between initial and final state is
imposed [130, Eq. 3.26] which corresponds to considering only a specific “cut”
of the diagram leading to a photon and phonon in the final state. How to de-
fine the Raman scattering cross-section from an imaginary part of a self-energy
should be the topic of further research but is beyond the scope of the current
thesis.

Finally in Ref. [53] a formulation of the Raman scattering is provided in
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terms of a three-particle Green’s function. In this formulation the excitonic ef-
fects are accounted for in the BSE formalism (discussed in chapter 4). In the
introduction of their paper, they mention some of the problems in defining the
Raman susceptibility in terms of a spectral function of the scattered light. One
of such problems is how to perform analytic continuation of a quantity that
depends on three imaginary frequencies (in the finite temperature formalism)
to the real axis. A theory formulated in these terms enable us to calculate scat-
tering processes with different particles in the final state, i. e. without forcing
the energy conservation through a delta function and without the restriction
to first order Raman scattering.

In the formalism presented here we will enforce the energy conservation,
selecting the desired process as it is done in the literature [130, 53, 126, 15, 27,
28].

6.3 Feynman diagrams for Raman spectroscopy

The one-phonon Raman tensor is evaluated from the sum of the two Feyn-
man diagrams in Fig. 6.2

a

LSµ(wL, w

µ

, wS) = MLSµ

1 (wL, w

µ

, wS) + MLSµ

2 (wL, w

µ

, wS). (6.3)

Following the procedure in Refs. [126, 93, 19, 123] we translate the diagrams

ϵki,ω

ϵkj,ω + ωL

ϵkl,ω + ωµ

ωL

ωS

ωµ

MLSµ
1 =

ϵki,ω

ϵkj,ω + ωL

ϵkl,ω + ωS

ωS

ωL

ωµ

MLSµ
2 =

Figure 6.2: Feynman diagrams contributing to the Raman tensor.
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into the following expressions

MLSµ

1 (wL, w

µ

, wS) µ Â
k

Z dw

2p

eiw0+
Tr
n

Ĝk(w)L̂S
kĜk(w + wS)ĝµ

k

Ĝk(w + wL)L̂L
k

o

,
(6.4)

MLSµ

2 (wL, w

µ

, wS) µ Â
k

Z dw

2p

eiw0+
Tr
n

Ĝk(w)ĝµĜk(w + w

µ

)L̂S

Ĝk(w + wL)L̂L
o

.
(6.5)

To evaluate the trace, we expand the operators in a basis of electronic states

MLSµ

1 (wL, w

µ

, wS) µ Â
k

Â
ijl

Z dw

2p

eiw0+
n

Gik(w)LS
ilkGlk(w + wS)gµ

l jk

Gjk(w + wL)LL
jik

o

,
(6.6)

MLSµ

2 (wL, w

µ

, wS) µ Â
k

Â
ijl

Z dw

2p

eiw0+
n

Gik(w)gµ

ilkGlk(w + w

µ

)LS
ljk

Gjk(w + wL)LL
jik

o

,
(6.7)

where L and S represent the set of quantum numbers (frequency and polar-
ization) of the incoming and scattered light respectively and Gik is given by
Eq. (1.31). When performing the integration over frequency w in the fermion
loop we obtain for each of the two Feynman diagrams three expressions that
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correspond to the 6 Goldstone (time-ordered) diagrams [51]

MLSµ

1 (wL, w

µ

, wS) µ

Â
k

Â
ijlk

n

⇥

f (eik)LS
ilkGlk(w + wS)gµ

l jkGjk(w + wL)LL
jik
⇤

w=eik+ig/2+

⇥

f (elk)gµ

l jkGik(w + wL)LL
jikGjk(w)LS

ilk
⇤

w=wS+elk+ig/2+
⇥

f (ejk)LL
jikGlk(w)LS

ilkGik(w + wS)gµ

l jk
⇤

w=wL+ejk+ig/2

o

,

(6.8)

MLSµ

2 (wL, w

µ

, wS) µ

Â
k

Â
ijl

n

⇥

f (eik)gµ

ilkGlk(w + w

µ

)LS
ljkGjk(w + wL)LL

jik
⇤

w=eik+ig/2+

⇥

f (elk)LS
ljkGjk(w + wL)LL

jikGik(w)gµ

ilk
⇤

w=�wL+elk+ig/2+
⇥

f (ejk)LL
jikGik(w)gµ

ilkGlk(w + w

µ

)LS
ljk
⇤

w=�wS+ejk+ig/2

o

.

(6.9)

After evaluating the poles of one of the Green’s functions we obtain a two-
particle propagator. We represent this propagator in matrix form as

Gijk(w) =
f (eik)

w � (eik � ejk) + ig
+

1 � f (eik)
w � (eik � ejk)

(6.10)

which should not be confused with the expression of the Green’s function in
Eq. (1.31)). Using this notation the matrix elements at any k-point can be eval-
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uated using the expressions

MLSµ

1 (wL, w

µ

, wS) µ Â
k

Â
ijl

�

f (eik)LS
ilkgµ

l jkLL
jikGlik(wS)Gjik(wL)+

f (elk)gµ

l jkLL
jikLS

ilkGjlk(w

µ

)Gilk(�wL + w

µ
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f (ejk)LL
jikLS

ilkgljkGijk(�wL)Gljk(wS)
 

,

(6.11)

MLSµ

2 (wL, w

µ

, wS) µ Â
k

Â
ijl

�
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The resulting expressions here imply a triple sum over N bands which leads
to a scaling with N3. The Fermi occupations will however restrict the number
of terms that are non-zero. For example it is immediately evident that the sum
over the initial state i should be restricted to the valence bands leading to a
Nv ⇥ N2 scaling, where Nv is the number of valence bands.

Because Gijk(w) in Eq. (6.10) is composed of two terms and it appears twice
in each of the 6 terms in Eqs. (6.11) and (6.12) this leads to a total of 24 terms.
Some of these terms cancel exactly and hence the expressions should be simpli-
fied before the implementation in a computer code to avoid the numeric cance-
lation. The numeric cancelation is not exact due to floating point precision and
leads to undesired numerical noise in the calculations. We will discuss how to
obtain these simplified expressions in Section 6.6.

6.4 Virtual states

One important point of discussion and understanding of the Raman pro-
cess has to do with virtual states and their meaning. We will outline here an
example to clarify this concept.

A typical schematic representation of the Raman process is shown in
Fig. 6.3. This representation only serves to show the type of perturbations that
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enter in the Raman process and its physical interpretation should not be taken
too far. Firstly, this representation implies a certain time ordering of the pro-

a) b) c)

Figure 6.3: Pictorial representation of the steps involved in the Raman process.
The physical interpretation of this pictorial representation should not be taken
too far as in step b) the electron decays to an intermediate state that does not
exist.

cesses. The total amplitude of the process, however, is calculated considering
all possible time orderings for the different constituent processes (Eqs. (6.11)
and (6.12)).

A common problem lies in the physical interpretation of the “virtual state”
that appears when the electron seems to decay to a state below the gap. The
virtual state is the name given to a transitory state of the system when going
from an initial to a final state in higher orders of perturbation theory. In these
cases, it seems that in between the initial and final states, that are eigenstates of
the system, the particles can be in intermediate states that are not eigenstates
of the system. This outcome stems from the typical expressions in perturba-
tion theory although these are written exclusively in terms of real states of the
system.

6.5 Practical implementation

To evaluate the Raman scattering cross section from first-principles, we
need the electronic energies and phononic frequencies, the electron-phonon,
and the electron-light coupling matrix elements. These should be obtained in
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the full Brillouin zone (FBZ) on a dense k-point grid. They can be calculated
using different ab initio codes.

Currently we implemented interfaces with the EPW code, the QE suite and
the abinit code. We use the QE suite to obtain the Kohn-Sham states and
calculate the electron-phonon coupling matrix elements with DPFT. To obtain
the electron-light coupling we use the yambo code. We had to modify the code
to calculate the matrix elements for all the possible band combinations (by
default it calculates only transitions between valence and conduction bands).

The yambo implementation allows us to include or not to include the non-
local contributions due to the pseudo-potential in the calculation. The EPW

code reads the Kohn-Sham states and derivative of the self-consistent potential
upon atomic displacements from QE, calculates electron-phonon, and electron-
light coupling matrix elements and allows one to interpolate them to a fine grid
of q-points.1

To further verify the implementation, we used abipy to create a workflow
using the abinit code to calculate the electron-light and electron-phonon cou-
pling matrix elements. The electron-light matrix elements were stored in the
abinit binary format. To read them in Pythonwe modified the optic utility
to convert it to the netcdf format which is then read by our Python classes.
This interface can be improved by modifying the abinit code to write the
matrix elements directly in netcdf format.

Since the matrix elements are gauge-dependent, the user must ensure that
both electron-phonon and electron-light matrix elements were calculated con-
sistently, i.e. using the same wave functions. To allow for maximum flexibility,
our implementation abstracts these objects from their origin through the use of
generic Python classes. For each of the quantities a new interface can be con-
structed that either reads the data from a file stored in disk, directly interfaces
with the code or calculates the quantities using empirical models. This modu-

1We implemented two different interfaces. In one of them we store the electron eigenval-
ues, electron-phonon and electron-light coupling matrix elements in a binary file that is then
read by the Python scripts. The other interface implemented by S. Reichardt reads the matrix
elements in real-space Wannier representation which are then transformed to reciprocal space
inside the python code allowing for more flexibility of changing the k-grids [123].
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lar approach is the same one that we used in the yambopy package described
in Appendix A.

6.5.0.1 Double grid technique

In order to improve the convergence of the final spectra with the number of
k-points we implemented a double-grid technique. This approach relies on the
fact that the matrix elements entering in Eqs. (6.11) and (6.12). are smoother as
a function of k than the electronic enk eigenvalues. Additionally, it is computa-
tionally more expensive to evaluate the matrix elements than the eigenvalues.
The convergence of the whole Raman scattering cross section can thus be im-
proved by calculating only the eigenvalues on a finer mesh in a similar way as
to what was shown for optical absorption at the BSE level [103, 102].

As an illustrative example let’s consider the following expression contained
in Eq. (6.11):

MLSµ

1 (wL, w

µ

, wS) � Â
k

Â
ijl

LS
ilkgµ

l jkLL
jikGlik(wS)Gjik(wL) (6.13)

If we define a grid of k0-points with higher density than the k-grid, then
Eq. (6.13) can be re-written as:

MLSµ

1 (wL, w

µ

, wS) � Â
k

Â
ijl

LS
ilkgµ

l jkLL
jik Â

k02kD
Glik0(wS)Gjik0(wL) (6.14)

were kD denotes a k-point grid denser than k. Which effectively corresponds
to averaging the Green’s function on the denser k0 mesh.

6.5.0.2 Irreducible Brillouin zone

Another way to improve the speed of the calculation is to evaluate the
Green’s functions only on the irreducible Brillouin zone (IBZ). While this is
in principle possible for the matrix elements as well, the implementation is
more cumbersome so we left it for the future. The electron-light and electron-
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phonon coupling matrix elements transforms like a vector. A proper imple-
mentation accounting for the symmetries of the matrix elements in the full
Brillouin (FBZ) should account for that. On the other hand the Green’s func-
tions are scalar quantities and they can be evaluated only once for each point
in the IBZ and used to evaluate the expressions in Eqs. (6.11) and (6.12) on
the FBZ. The implementation in this case is manageable and requires only the
mapping of the k-points from the IBZ to the FBZ. In this case the Raman matrix
elements are evaluated as

MLSµ

1 (wL, w

µ

, wS) = Â
k2kIBZ

Glik(wS)Gjik(wL) Â
k02k⇤

Â
ijl

LS
ilk0 gµ

l jk0LL
jik0 (6.15)

where k⇤ are the points that can be obtained from k using a symmetry trans-
formation of the reciprocal lattice. Depending on the number of symmetries
of the system, this can lead to a great speedup of the computation. The imple-
mentation of this functionality will be the topic of future developments in the
implementation.

6.6 Static finite differences vs diagrammatic ap-
proach

In this section we show how the derivative of c

LS(wL) obtained using fi-
nite differences reduces to the expressions derived is Sec. 6.3 when setting the
phonon frequency to zero (adiabatic phonon limit). We then proceed to ob-
tain all the necessary quantities: the electronic states, electron-phonon and
electron-light coupling matrix elements from different ab initio codes (QE +
yambo, abinit and EPW) for a numerical comparison.

6.6.1 Analytical derivation

We will start with the expression of the susceptibility for a semi-conductor
shown in Eq. (4.27). The derivative with respect to a generic atomic position R
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(represented by ∂R for simplicity) leads to
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The derivatives of the dipoles with displacements can be written in terms
of sums of electron-phonon matrix elements. The full details of the derivation
are shown in Appendix C. The final expression we obtain is

∂Rc(wL) µ Â
vcc0

k

Lvc0kgR
c0ckLcvk

Rcvk(wL)Rc0vk(wL)
+ Â

vcv0
k

�gR
vv0kLv0ckLcvk

Rcvk(wL)Rcv0k(wL)
+

Â
vcv0

k

Lvv0kgR
v0ckLcvk

(eck � ev0k)Rcvk(wL)
+ Â

vcc0
k

�gR
vc0kLc0ckLcvk

(ec0k � evk)Rcvk(wL)
+

Â
vcc0

k

�LvckLcckgR
c0vk

(ec0k � evk)Rcvk(wL)
+ Â

vcv0
k

LvckgR
cv0kLv0vk

(eck � ev0k)Rcvk(wL)
+

(wL ! �wL).

(6.17)

with Rcvk(wL) = [wL � (eck � evk) + ig]. The symbol ∂R corresponds to the
derivative with respect to the displacement of an atom RIa

. The Raman inten-
sity of a certain phonon modes is given by

a
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�
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2
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These expressions are equivalent to the ones derived from the diagram-
matic approach in Eqs. (6.11), (6.12) and (6.3) when setting w

µ

= 0. The ex-
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pressions with explicit w

µ

are shown in Appendix C. Using these expressions
has the advantage that we do not rely on the numeric cancelation of terms.
This makes the calculation faster and more stable. In this case the scaling of
the calculation is (Nk ⇥ Nv ⇥ Nc ⇥ N).

These expressions are also equivalent to the ones derived by Yu and Car-
dona in Ref. [30]

a

LSµ(wL) µ Â
inn0

(

hYi|ĤL
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where in ĤS
e�L and Ĥµ

e�n the particular photon and phonon interacting are
selected. Replacing the interaction terms ĤL

e�L with Eq. (4.19) and Ĥµ

e�n with
Eq. (3.1) setting q ! 0 leads to 12 expressions that are equivalent to (6.17)
when w

µ

= 0 as shown in Ref. [131] and reproduced in Appendix C.

6.6.2 Numerical comparison: single-layer MoS2

After proving analytically that the results obtained from the diagrammatic
calculation are equivalent to the ones obtained from finite differences, we show
that they are also numerically equivalent. We choose as test case for the com-
parison the Raman spectrum of MoS2. In the comparison we will demon-
strate that the interfaces between our implementation are working correctly
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and yield consistent results among the different codes (QE + yambo, EPW and
abinit). We start by comparing the diagrammatic calculation of the Raman
intensity using ingredients obtained from the different codes, obtaining re-
markable agreement. When comparing the finite-differences calculations with
the diagrammatic approach we note good agreement in the resonant regime
but some discrepancy in the non-resonant regime.

6.6.2.1 QE + yambo vs EPW

The DFT ground-state calculations were performed with the pw.x code
from the QE suite using LDA norm-conserving relativistic pseudo-potentials
from the SSSP library [132]. The Brillouin zone was sampled with a 16x16x1 k-
point mesh. We used a lattice parameter of 5.97 Bohr and a vacuum spacing of
50 Bohr between the adjacent layers. The phonon calculations were performed
using the ph.x code. The relevant quantities for the finite differences method
are the phonon displacements at q = G and the dielectric susceptibilities cal-
culated at each displacement. To generate the different displaced cells we used
an in-house developed Python code using the yambopy Python classes (see
Appendix A). For the diagrammatic calculations, we need electron-phonon
and the electron-light coupling matrix elements. These can be obtained using
the yambo interface with ph.x, or using the interpolation implemented in the
EPW [92] code. The later has the advantage that the matrix elements are pro-
jected onto a Wannier basis allowing for a fast interpolation to arbitrarily fine
k-grids. The main drawback is that the interpolation needs first a Wannier-
ization of the electronic band-structure which can be cumbersome and often
requires human intervention. Additionally it can only be done for states well
described by a localized Wannier basis which becomes difficult for higher en-
ergy states as they are more delocalized. We performed the Wannierization
of the band-structure including spin-orbit coupling of MoS2 for 26 bands (sp3
for S atoms and d for Mo). To obtain a reliable comparison between the two
methods we included the same number of bands in both methods. We present
the results of the comparison of the Raman intensities calculated with the two
methods in Fig. 6.4.
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Figure 6.4: Comparison of the Raman intensity of single layer MoS2 as a func-
tion of laser energy calculated using QE plus yambo and the EPW codes. The
calculation is done including the effect of spin-orbit coupling.

The agreement between the diagrammatic calculation and the one obtained
from the finite differences approach is good in the resonant regime as can be
seen in Fig. 6.4. In the non-resonant case however, some discrepancies exist.
The reason for this discrepancy might be due to the presence of an ionic static
electric field in the finite differences case.

6.6.2.2 QE + yambo vs abinit

Here we compare numerically the results of the calculation using the QE +
yambo and abinit codes. In this case we used the FHI LDA norm-conserving
pseudopotentials without spin as those are available in both codes. The results
are in remarkable good agreement as shown in Fig. 6.5. This shows consis-
tency in the calculation of the electron-phonon matrix elements among the two
different codes as previously shown in Ref. [133]. Additionally it shows agree-
ment in the calculation of the electron-light coupling matrix elements between
the abinit code and yambo.
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Figure 6.5: Comparison of the results for the Raman calculations using QE and
the yambo codes and abinit using the diagrammatic approach. The calcula-
tion is done without spin-orbit coupling.

In Fig. 6.6 we compare the calculations performed with the two codes using
the finite differences approach.

6.6.2.3 abinit

To further verify the implementation we calculated the Raman intensities
with the finite differences and the diagrammatic approaches using the abinit
code. We used FHI pseudopotentials without spin for the comparison. A grid
of 60x60x1 k-points was used to sample the Brillouin zone. The calculations
are performed using abipy which allows to quickly and easily perform the
calculations for different materials. The results are shown in Fig. 6.7.

The agreement between the two approaches is quite good for the A0
1 mode

for energies beyond the gap. In the case of the E0 mode some discrepancy
exists even above the gap. This can be due to the inclusion of some static
polarization in the case of finite differences. The origin and solution for the
discrepancy should be the topic of further investigation.
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Figure 6.6: Comparison of the results for the Raman intensity as a function of
laser energy for single-layer MoS2. The calculations were done with the QE
and the yambo codes and abinit using the finite differences approach. The
calculation is done without the effect of spin-orbit coupling.

Figure 6.7: Comparison of the diagrammatic and finite differences approach
for MoS2.
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6.7 Decomposition of the different contributions

Here will show how the different expressions from Eq. C.13 contribute to
the Raman intensity in the case of single layer MoS2. In this calculation we
used the EPW interface

Figure 6.8: Decomposition of the different contributions to the Raman intensity
of the A0

1 mode of MoS2. The calculation was performed using the EPW code
on a 60x60 k grid.

The terms from Eq. C.13 can be separated into three different groups ac-
cording to their denominators. These terms can be double, single or non-
resonant according to whether the two, one or none of the denominators can
become close to zero for a certain laser energy [123]. This analysis is instructive
for two reasons. It was mentioned in the literature [30] that the double reso-
nant term gives the largest contributions to the total Raman intensity in the
case of the semiconductors. This approximation is also commonly used in the
literature [18]. With our new approach we can verify this claim numerically
using first-principles methods.

If this claim is verified, it can be used to obtain the Raman intensity faster
by avoiding to sum over the terms that do not contribute significantly. The
gain in speed might, however, not be worth the effort as the most costly part
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of the computation is the evaluation of the matrix elements and not the Raman
intensities.

We summarize our results for decomposition of the different contributions
in Fig. 6.8. We note that the double resonant term has the largest contribution
almost over the entire energy range as normally assumed in the literature. In
the case of graphene it was shown that all the different terms contribute to the
final Raman intensity [123].

6.8 Temperature effects

Another important advantage of describing the Raman cross-section in a
MBPT framework is to be able to include the effects of temperature in the Ra-
man spectra.

In chapter 3 we showed how the energies and lifetimes of the electrons
are affected by the presence of phonons in the system. The self-energy due to
electron-phonon interaction is highly temperature dependent in contrast to the
one due to electron-electron interaction. The main effect of temperature in the
electrons is the broadening of the states and a renormalization of the band gap.
As the temperature of the material increases, the nuclei oscillate with larger
amplitude around their equilibrium positions (classical version in Eq. (2.16)
or quantum mechanical version in Eq. (2.23)) which additionally leads to the
thermal expansion which we did not account for in the calculations shown
here. Lastly, the occupation of the scattered phonon modes also depends on
the temperature (Eq. (5.17)), and as such, the scattering cross-section is also
temperature dependent.

We use the calculations for MoS2 to show how the inclusion of the electron
self-energy due to electron-phonon interaction dresses the Green’s function.
To account for this self-energy would require to re-write the Green’s functions
as:

Gnk(w) = G0
nk(w) + G0

nk(w)[Sep
nk(w)]Gnk(w) (6.25)
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Figure 6.9: Diagrams for the Raman amplitude with the electrons circulating
in the loop dressed by the electron-phonon self-energy.

In this case, the loop integrations in Eqs. (6.9) have to be done account-
ing for the poles of the new quasi-particle Green’s functions.1. This method
would, however, be very computationally demanding and impractical. One
way to overcome this would be to create and diagonalize a full electron-
phonon Hamiltonian [80] and use those states as the intermediate states of the
system. This is however only important in systems where the electron-phonon
coupling is strong enough to create electron-phonon bound states. Since in the
case of most crystalline semi-conductors, the effect of electron-phonon cou-
pling is not so strong, the effects can be included using the quasi-particle ap-
proximation. In this approximation, the Green’s functions are re-written by
shifting the eigenvalues due to the real part of the self-energy and an imagi-
nary lifetime is added due to the imaginary part of the self-energy. The life-
times of these quasiparticles depend on the temperature and will thus smear
the Raman intensity peaks as shown in Fig. 6.10.

1A good introduction on the effect of a self-energy in the electron propagator is given in
Ref. [50, Chapter 11].
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Figure 6.10: Temperature dependent Raman spectra of MoS2. The electronic
lifetimes were obtained using the methods described in Chapter 3 and used in
a fine 240x240 k-mesh grid.

The physical picture is similar to what we observed in the case of tempera-
ture dependent optical absorption. The presence of the phonons in the system
leads to the band-structure changing with the displacements of the phonons
which leads to a smearing of the energies of the electrons.

6.9 Beyond the adiabatic approximation

An important advantage of this formulation is that it allows us to go be-
yond the static limit imposed in the case of the finite differences approach. This
leads to a shift of the main resonance peak with respect to the static limit. This
shift is positive in the case of Stokes Raman scattering (the one represented
in Fig. 6.11) and negative in the case of anti-Stokes scattering. The value of
the shift is equal to the phonon frequency with respect to the static case of the
phonon mode considered.

We performed the calculation of the Raman intensities in the adiabatic
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Figure 6.11: Comparison of static and dynamic calculation of the Raman inten-
sities for MoS2. The electronic broadening is the one calculated due to electron-
phonon interaction at 0 K. The inset shows a zoom in near the optical gap in
non-logarithmic scale.

phonon limit i.e. w

µ

= 0 and compared with the case where the phonon fre-
quencies are included explicitly in the calculation. The results are shown in
Fig. 6.11. The inclusion of phonon dynamical effects leads to a shift Raman
spectra as a function of laser energy by an energy equal to the phonon fre-
quency. Additionally it leads to a modification of the shape of the peaks. This
is due to the change of the resonance conditions in the expressions in Eq. C.13.

6.10 Excitonic effects

In this section we outline the extension of the perturbative calculation de-
scribed above to include excitonic effects. For that we follow the same ap-
proach outlined by Y. Gillet in his PhD thesis [131] for the derivation of the
Raman susceptibility in the independent-particle approximation which we
showed in Appendix C. In this case however we take the derivatives of the
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expression of the optical susceptibility including excitonic effects in Eq. (4.42)
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wL � Es + ig

+

Â
s
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(6.26)

were we do not write explicitly the photonic states for simplicity. These will
set another index for the electron-light coupling matrix elements determining
the polarization of the laser as we will show in Eq. (6.38).

To express the derivatives of the excitonic states we recall the excitonic
Hamiltonian in Eq. (4.41)

Â
c0v0k0

HBS
cvk,c0v0k0 As

c0v0k0 = Esdvv0dcc0dkk0 As
cvk. (6.27)

Taking derivatives with respect to the ionic positions, ∂R, yields
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The excitonic states can be written as
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With this, we re-write Eq. (6.28) as
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148



6.10 Excitonic effects

The derivatives ∂R |si are given by
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where we have used

∂REs = hs|∂RĤBS|si (6.32)

which can be derived from the Hellman-Feynman theorem. The hs|∂RĤ|s0i
term is the exciton-phonon coupling and can be calculated from

GR
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The excitonic Hamiltonian was given in Eq. (4.40) in the basis of Kohn-
Sham states. The derivatives ∂R(hcvk|Ĥ|c0v0k0i) are calculated using the ap-
proach outlined in Ref. [134]. The derivative of the Bethe-Salpeter Hamiltonian
is

∂RHBS
cvk,c0v0k0 = (∂Reck � ∂Revk)dcc0dvv0dkk0 + ∂RKcvk,c0v0k0 . (6.34)

where ∂Renk = gR
nnk are the diagonal electron-phonon matrix elements. To

build the kernel of the BSE we assume dW
dG

⇠= 0 and hence ∂RW ⇠= 0 [134]

∂RKcvk,c0v0k0 = Â
n

PR⇤
nckKnvk,c0v0k0 + PR

nvkKcnk,c0v0k0+

PR
nc0k0Kcvk,nv0k0 + PR⇤

nv0k0Kcvk,c0nk0 .
(6.35)

149



6. RAMAN SPECTROSCOPY: DIAGRAMMATIC APPROACH

with

PR
nn0k =

8

<

:

0 if n = n0
gR

nn0k
en0k�enk

if n 6= n0 (6.36)

where gR
nn0k are the electron-phonon matrix elements corresponding to the dis-

placement of one atom I in cartesian direction a. Inserting Eqs. (6.31), (6.32),
and (6.33) in (6.26) leads to

∂Rc

LS(wL) = Â
s

Â
s0 6=s

LS
s0GR

s0sL
L⇤
s

(wL � Es + ig)(Es � Es0)
+

Â
ss0 6=s

LS
s GR

ss0LL⇤
s0

(wL � Es + ig)(Es0 � Es)
+

Â
s

LS
s GR

ssLL⇤
s

(wL � Es + ig)2 + (wL ! �wL).

(6.37)

where we have used that

(h0| ⌦ hL|)Ĥe�L |si = LL
s = Â

cvk
As

cvkLL
cvk. (6.38)

|Li denotes a photonic state with quantum number L and LL
cvk are the indepen-

dent particle electron-light coupling matrix elements as defined in Eq. (4.16).

The expression from Eq. (6.37) gives the change of susceptibility upon
atomic displacement which corresponds to the Raman tensor. Using that
∂R = ∂

∂RIa

where I denotes an atom and a a cartesian direction, the Raman
tensor for a certain phonon mode µ is given by

a

LSµ(wL) = Â
Ia

�

�

�

�

∂c

LS(wL)
∂RIa

Qµ

Ia

�

�

�

�

2

(6.39)

The practical implementation and comparison of this approach with the fi-
nite differences method will be the topic of further investigation. Additionally,
the derivation of these expressions using a MBPT framework similar to what
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is outlined in [53] will allow to justify to which extent the static approximation
holds.
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6.11 Conclusions and Outlook

We have shown the derivation of the expressions and the practical imple-
mentation for the calculation of the Raman intensities using a perturbative
approach. This has the advantage that it reduces to the finite differences in
the static limit but allows to easily go beyond it including the effect of the
phonon frequencies. The inclusion of the dynamical effects leads to a shift of
the main scattering edge by an energy equal to the phonon frequency. This
shift is known as Stokes or anti-stokes shift and it should be observed when
measuring the Raman intensity as a function of the laser energy. This approach
also has the advantage that only one calculation of the Kohn-Sham states is
needed as opposed to the finite differences approach where at least one calcu-
lation per displacement is required.

In some materials, in particular 2D systems (due to their weak Coulomb
screening), the electron-hole interaction leads to the formation of excitonic
states. These effects were shown to play an important role in both the opti-
cal absorption spectra (see Chapter 4) and the Raman intensities in the case of
MoTe2 (see Chapter 5). We have outlined the mathematical expressions to ex-
tend the perturbative approach to include excitonic effects in Section 6.10. This
approach will allow to avoid multiple calculations of the BSE for the different
displacements.
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Conclusions

The main goal of this work was to develop different computational ap-
proaches to simulate resonant Raman spectroscopy from first-principles meth-
ods. We have demonstrated the application of these methods to transition
metal dichalcogenides, in particular MoS2 and MoTe2.

The calculation of Raman spectra involves the description of the electronic
energy levels which we have done ab initio using density functional theory
corrected with many-body perturbation theory using the GW approximation.
It furthermore requires the knowledge of the lattice vibrations which we have
studied using density functional perturbation theory.

Using a finite-difference approach based on ab initio methods, we have ex-
plained the experimentally observed dependence of the Raman intensities on
the laser energy for single- and triple-layer MoTe2 [24]. In the case of single-
layer we observed that the different excitons couple differently with the A0

1
and E0 modes as observed in the case of MoS2 [18]. This was understood in
terms of symmetry of the bands near the optical gap or, equivalently, in terms
of quantum interference effects. In the triple-layer case we have explained
the experimentally observed [35] dependence of the Raman intensities of the
Davydov triplet belonging to the A0

1 representation. In this case, the symmetry
argument does not hold as the modes belong to the same point group represen-
tation. We were, however, able to explain the effect in terms of quantum inter-
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ference. This lead to the important conclusion that the Raman spectrum cannot
be interpreted in the same way as the optical absorption spectrum. In the latter
case, all the transitions contribute positively with more or less intensity. In the
former, the contributions from different regions of the Brillouin zone can cancel
each other leading to an unexpected behavior of the intensities. As such, the
observed Raman intensities are a collective effect of the whole band structure.
We also observed that in order to quantitatively reproduce the experimental
ratios of the intensities between different modes, excitonic effects should be
taken into account in MoTe2 [35]. The qualitative picture, however, can al-
ready be understood on the independent-particle level. In practical terms, the
finite-differences approach allows us to straightforwardly include many-body
effects in the Raman intensities. However, it requires multiple computations of
the full band structure and excitons upon atomic displacements. This rapidly
becomes impractical for the application to a wide range of materials.

To overcome this we have proposed a method based on perturbation theory
that requires only one computation of the band structure, the electron-light and
electron-phonon matrix elements from first-principles. We compare the two
approaches formally and show that the perturbative approach is more general
in that it allows us to go beyond the adiabatic phonon limit. We reduce the
perturbative approach to the static case to compare with the finite differences
approach with good agreement in the resonant regime. Including the phonon
dynamical effects correctly captures a shift of the resonance peak in the ab-
sorption edge with respect to the non-resonant case. This approach allows us
to include the temperature effects in the Raman spectrum and we show calcu-
lations for the case of single-layer MoS2. This method yields the same results
as the finite differences approach but is much more computationally efficient
which makes it more suitable for high-throughput applications. We also out-
lined an approach to calculate Raman intensities including excitonic effects by
expressing the static derivatives of the dielectric susceptibility with excitons in
terms of electron-phonon coupling matrix elements.

To visualize the intermediate results needed for the calculations of Raman
spectra including excitonic effects we have developed two web based tools.
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The phononwebsite [75] to visualize lattice vibrations. This tool allows the
user to click on a point in the lattice dispersion and visualize the correspond-
ing lattice vibration. We provide access to data from the phonondb database
and some of our own calculations. The user can additionally visualize his
own calculations from popular codes like abinit, ph.x from the QE suite
and phonopy. We have created the excitonwebsite [135] to visualize opti-
cal absorption spectra including excitonic effects. There the user can click on a
peak in the absorption spectrum of a given material and visualize the excitonic
wave function in real space. We provide an interface with the yambo code so
that users can visualize their own results.

Outlook

In the last years, with increasing computational power it has become pos-
sible to simulate the properties of materials from first-principles in a high-
throughput way. In particular, a recent study was published on how to search
for known materials that can be exfoliated to obtain 2D layers [136]. This
means that currently, large sets of data are available with information on the
electronic, vibrational and optical properties of these materials. The availabil-
ity of this data allows one to predict its Raman spectra even without synthe-
sizing the materials. This knowledge can provide very important information
to experimentalists or companies trying to fabricate the materials.

The perturbative method outlined in this thesis allows to obtain the Raman
spectra, starting from these databases, without much additional computation.
The prompt availability of this data for the scientific community will constitute
an important breakthrough and a future outcome of the work described in this
document.

Another important aspect of obtaining the Raman spectra of different mate-
rials is to make it available to the community. For that, the knowledge and ex-
perience gathered in developing the interactive web based visualization tools
will allow us to build a new tool to visualize and navigate the calculations
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Figure 7.1: Representation of how the different developments discussed in this
thesis can be used in a complete framework to predict and analyze Raman
spectra calculated from first-principles.

of the Raman spectrum as a function of laser energy. This idea has been im-
plemented to some degree in the WURM project [137]. However, the data
available so far is limited to the non-resonant regime.

The basic quantities necessary to apply the perturbative method to obtain
the Raman spectrum are the electronic energies and phonon frequencies, the
electron-light, and the electron-phonon coupling matrix elements. These can
be computed from existing databases, stored in compact formats and made
available to the community. The development of such compact formats, al-
though challenging, is possible using currently available approaches. Two
possible ways to accomplish this are the use of semi-empirical parametriza-
tions or the use of a Wannier basis [84]. These different quantities can then be
combined to calculate different corrections to the quasi-particles and spectro-
scopic properties using many-body perturbative techniques. From these data
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bases, it will be easily possible to extract, e.g., the temperature dependent band
structure (spectral function), optical absorption, and Raman spectra.

The work presented here is thus a first step towards making resonant Ra-
man spectra available in a high-throughput manner.
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Appendix A

yambopy

In order to simplify the workflow of yambo calculations and to run calcula-
tions more efficiently, we have created a new tool, yambopy. Similar to existing
tools for the codes abinit [72] which is called abipy [138] and QE [79] which
is called aiida [139].

A typical workflow of a many-body calculation (consider as an example
a GW + BSE calculation) with the yambo [55] code involves multiple steps.
First, it requires the calculation of the ground state properties using a DFT
plane-wave basis code, e.g. abinit or QE. We developed qepy which is a
tool to create input files and read the output of QE calculations distributed
with yambopy.1 Then it requires the translation of the wave functions and
pseudo-potentials to the netcdf [140] format used by yambo (the yambo

databases). The next step is to use yambo to calculate the dielectric screening
in the independent-particle approximation (Eq. (1.38)). The dielectric screen-
ing is then convoluted with the Green’s function to obtain the self-energy of
the electrons due to the screened Coulomb interaction (Eq. (1.40)). The GW
quasiparticle energies can then be used to build up the BSE Hamiltonian 4.5.1

1Different packages were made available to the community since we started the devel-
opment of qepy. These packages also allow one to handle input-output from QE programs.
One such packages is the already mentioned aiida [139]. As a long term goal we seek to
make yambopy interoperable with different python packages handling the plane-wave code
calculations like abipy in the case of abinit and aiida in the case of Quantum Espresso.
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Figure A.1: The typical workflow of an MBPT calculation using the yambo [55]
code.

(where also the dielectric screening is used). Once the calculation is done, we
represent and analyze the results.

The difficulties in handling the many steps involved in the calculation are
further aggravated by the fact that convergence tests are required at each step
to ensure accurate results as exemplified in Fig. A.2.:KDW�LI�ZH�QHHG�WR�UXQ�<DPER�PDQ\�WLPHV"

<DPER�'DWDEDVHV
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Figure A.2: Example of a workflow for the convergence of a RPA dielectric
screening calculation (see Fig. 1.5).

In order to simplify these calculations we created yambopy [141]. yambopy
is a set of classes and scripts written in Python that aim to provide a standard
way to automatize and analyze many-body perturbation theory calculations
made with the yambo code as well as to read, manipulate, and use the different
basic quantities that enter the calculations. This idea has been implemented in
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similar programs like ASE [142], abipy [138], aiida [139], and phonopy [143]
for other codes. Our goal was to apply the same concepts used in these pack-
ages to a new package using the yambo code. This will make many of the
features of the yambo code not available in other codes acessible throught a
python interface.

In the next section we will describe the modules available in yambopy and
the main features. In the last section, we will outline a roadmap for further
development.

A.1 Features

The two main building blocks of the yambopy scripts are the writing of the
yambo input files and reading of the output. Since the yambo code generates
the base input file for the desired runlevel, we implemented a class to read
this file and store it in a Python class YamboIn. This allows to keep track of
all the variables (important for reproducibility of the results) in the input file
as well as to modify them from a Python script. To help in the convergence
of calculations, the function optimize allows us to create a folder with a list
of input files with variables changing according to a user pre-defined list. To
submit jobs on different computer platforms we developed the schedulerpy
package (also distributed with yambopy) that allows us to run commands in
the bash shell or through commonly used job schedulers like PBS and oar.

The yambo code itself stores the intermediate and final results of the cal-
culations in netcdf. yambopy provides a series of classes (for a complete list
see the documentation [144]) to read the data in Python making it easier to
manipulate and represent it using the matplotlib library. Having the pos-
sibility to read, plot, and change them allows for additional flexibility for the
interpretation and analysis of the results. Some of the figures in this document
were generated with tools we implemented in yambopy and made available
in the standard distribution.

For quick access to some features from the command line, we provide the
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yambopy executable. This script is automatically installed with yambopy and
is a platform to call some functionalities of yambopy directly from the com-
mand line (i.e., without needing to create a Python script). This script has now
features to monitor the convergence of GW and BSE calculations executed with
the optimize function and, to plot excitonic wave functions and the dielectric
function among others.

To ensure the quality of the code and its usability by the community we
rely on three platforms: open-source, documentation, and testing. A detailed
documentation of the classes, features, and a tutorial are available in [144].
We keep a public git repository hosted on github [141] where the users can
get the latest version of the code as well as contribute with patches and new
features. We also created a series of tests that are executed at each modification
of the code in the github repository using the Travis-CI platform [145]. This
ensures the reliability of the code despite its continuous development.

A.2 Outlook

The yambopy package is usable as is although still under development. In
the near future we seek to implement a series of additional features that will
improve the usability of the code.

One of these developments is to allow the user to define and run “flows”
like in the fireworks [146], abipy, or aiida codes. A “flow” consists of all
the tasks necessary to obtain a simulation result. These tasks can be performed
with the same or different codes. This allows us to write one Python script
with all the steps of the calculation and the inter-dependencies of the multi-
ple stages. Then it is possible to monitor the current status of the job and fix
any problem that might occur at any stage of the calculation using a Python
interface. Using this we can split the calculation into the maximum number
of steps possible and optimize the parallelization for the different stages inde-
pendently. For example, in a GW calculation, the screening for each q-point
is independent, and in a practical calculation it is advantageous to submit
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more jobs of few CPUS simultaneously instead of one job with many CPUS.
Once the “flow” is specified by the user in a Python script, the code will pre-
pare the folder to run the calculations with the input files. Then using the
schedulerpy it can run the different tasks according to the availability of
computational resources.

For the practical implementation of this feature, one of the existing libraries
(fireworks, abipy, or aiida) should be used as they already provide the
python backend to submit the tasks to an HPC scheduler, keep track of the
dependencies, and monitor their status. An effort in this direction is already
underway with the yambo aiida plugin [147], the development of which is
being done with our collaboration.

Another important feature is to automatically select the best parallelization
possible for the different steps of the calculation. This can be done under the
constraint of the number of computing nodes available (in similar style as to
what is done with the autoparal function in abinit). Considering still the
example of a GW calculation, the optimum parallelization for the dielectric
screening might be different in number of cores/nodes for the calculation of
the quasi-particle energies. The proper handling of this can be implemented
using heuristics in a Python class. This will greatly facilitate the work for the
users while improving the efficiency of the parallelization.
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Appendix B

Electronic structure visualization
tools

We have developed a set of online tools to visualize data from first- or
second-principles calculations which we will describe here.

With the popularization of ab initio codes, it became easier to obtain elec-
tronic structure quantities from computational simulations. These quantities
can be related to electronic states, phonon vibrations, or optical spectra (ab-
sorption, Raman, etc.) among others. The physical understanding and inter-
pretation of the quantities and their relation to observables is not always easy
to establish. Essential in this task is the use of tools to visualize the results. The
currently available tools with this goal [148, 149, 150] mostly require a local
installation of the software which binds the implementation to the platform
where it is being used. Since different users might have different applications
to visualize the data and different local system configurations, sharing the re-
sults in an efficient manner can become more difficult.

To overcome these two problems, we developed two web-based applica-
tions to facilitate the visualization and dissemination of results among scien-
tists. The main goals of the project are fourfold:

• Allow one to easily visualize and interpret data from first principles cal-
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culations

• Share this data among scientists

• Provide an educational tool for students

• Allow for active participation of the community in contributing and
modifying the website

We will describe the phononwebsite in section B.1 and the
excitonwebsite in section B.2.

B.1 Phonon website

This project aims to provide a simple way to visualize the lattice vibrations
of different materials.

With the popularization of ab initio codes the calculation of phonon modes
for solids, molecules or nanostructures has become routine. In addition, with
the exponential increase of computational power available, it became feasible
to do these calculations for large sets of materials in a high-throughput fash-
ion. Currently many repositories exist with electronic structure data openly
available [151, 152, 153, 139] online. With this increasing amount of data, it
becomes important to design new ways to visualize and navigate it. This has
two important goals: at an educational level, it helps the students to link the
concepts with the observable, at a research level it allows one to interpret the
data and understand trends among different materials.

With these goals in mind we will present here an implementation of an in-
teractive, web based tool to visualize lattice vibrations in solids and molecules.

This implementation differs from other currently available tools like
xcrysden [148], v-sim [149] and jmol [150] in that it provides click-and-see
interface between the phonon dispersion and the phonon vibrational modes,
not previously available.
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B.1.1 Visualization of lattice vibrations

In Chapter 2 we described in detail the theory of lattice vibrations. There
we obtained an equation for the harmonic movement of the atoms (Eq. (2.8)).
We also mentioned the two possible conventions to build up the dynamical
matrix leading to two definitions of the vibrational modes up to a phase in
(Eq. (2.11) and (2.12)). Special care should be taken to represent the vibrational
modes depending on whether the code uses one or the other convention. To
visualize the lattice vibrations of a certain phonon mode µ at a selected q-point
we displace the atoms according to the formula:

Qµ
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MI

Re
n

x

µ

Ia

(q)eiq·Ria e�iwt
o

(B.1)

where A represents the amplitude and w the frequency of the oscillation which
can be changed by the user in the web interface. Different methods exist to
calculate displacements of the atoms in the harmonic approximation as we
mentioned in section 2.3. Many of these methods have implementations freely
available online, one such example is phonopy that relies on the finite differ-
ences method briefly described in section 2.3.1. Another example is the density
functional perturbation theory method also available in standard DFT codes
like abinit [154] and ph.x [63].

B.1.2 Description and features

The webpage consists of three panels as shown in Fig. B.1: one panel shows
the phonon dispersion of a given material (right), another panel shows the
animation of the phonon mode at a given q point and phonon branch (center).
The third panel is a control panel (left). The user can interact with the page
by clicking on a certain q-point and phonon mode in the phonon dispersion in
panel a) and visualize the pattern of vibration of the structure in panel b). This
type of interface is the main novelty of this webpage.

The phonon data can have multiple proveniences. For that we designed a
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Figure B.1: Screenshot of the phononwebsite taken on 30/07/2017.
http://henriquemiranda.github.io/phononwebsite/.

set of Python classes to convert the data from the abinit [72], QE [79] codes
to an internal .json file that can be loaded onto the webpage. We have ad-
ditionally implemented the option to load the phonopy band.yaml files di-
rectly onto the website. Furthermore, in collaboration with Atsushi Togo, the
creator of phonopy, we provide access to phonon dispersion data from the
phonondb [155] phonon database hosted at the Kyoto University and main-
tained by him.

To allow easier sharing, the user can either send the files with the phonon
data or post it online. In the first case the files can then be loaded by the recip-
ient user with the “Choose files” button. In the second case the user sending
the data uploads the file online and sends the link <link> to the receiver with
an HTML POST request indicating where the file was uploaded. The link in-
structs the website to download the file from the remote server and display it
directly. To do this, the link of the page can be appended with one tag indicat-
ing the format of the file ?json=<link> or ?yaml=<link>.

To allow the use of the animations in different contexts, we implemented
features to export the animations in .gif and .mov files. This is done using
the open-source package CCapture [156].

In addition, we offer the possibility to generate supercells with a displace-
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ment according to a certain phonon mode. To do this the user can click on a
point in the phonon dispersion, visualize the structure and then download a
POSCAR file with a supercell. Further improvement of this feature is to choose
a specific q-point and automatically choose the number of cell repetitions to
build the cell commensurate with a phonon with this q-point.

B.1.3 Technologies used

One advantage of the application being web-based is that any change in
the code is immediately distributed without the need of end user intervention.
Additionally, this application can be used in virtually any computer or mobile
device without the need for installation of any additional software apart from
a webbrowser.

For the implementation of this software we used freely available open
source libraries. To display the animation of the atomic structures with the
phonon modes we used the HTML5 canvas element to display WebGL objects.

To create and animate the atomic structures with the phonon modes we
used the Three.js [157] javascript based API. This API is very complete
and allows one to easily implement new features and representations of dif-
ferent quantities without much effort. The phonon dispersion graph is shown
using the Highcharts [158] javascript library. This library also provides
an extensive API for representing the data and interacting with it.

B.1.4 File formats

To represent the vibrational data, we created our own internal input .json
format. The .json file is a text-based file that represents the internal data
structures used in the javascript language. The format of the input file is
specified in a static page in the phonon website [75] and serves as a reference
for developers. To allow the output of different codes to be visualized with the
phonon website we suggest two approaches to develop an interface. The first
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approach is to use an external script to create the input .json file that can be
loaded with the “Choose Files” button. Using this method we implemented
Python interfaces for the abinit [72] and ph.x codes [79]. These interfaces
are available from the github repository [159] and the instructions of use are
in the initial page [75].

Alternatively, a javascript function can be easily added to the code to
parse the file to the internal .json format. This approach has advantages for
the user, as no external scripts are required and the output file of the code can
be loaded directly onto the website. Internally a function selects the parser
according to the extension or header of the selected file and sends the file as
plain-text input to the parsing function. Using this approach we developed an
interface for the phonopy [62] code, which means that the band.yaml files
can be loaded directly onto the page and they contain all the necessary infor-
mation.

B.2 Exciton website

In a spirit very similar to the phonon website we developed a web tool to
visualize excitons.

As discussed in Section 4.5.4 a large amount of information is generated
from an exciton calculation. Different types of representations are possible,
each putting in evidence different aspects of the results. One of such represen-
tations is the electron density when the hole is fixed in some position in the
lattice. From it we obtain an idea of how localized the electrons are around
the hole. In order to facilitate the visualization of this data we implemented
a web-based tool, whose interface is described in Fig. B.2. The right panel
shows the optical absorption spectrum of a given material. The different ver-
tical lines mark excitonic states for which the wave function can be visualized.
By clicking on one of the lines, the web-page displays the corresponding exci-
tonic wave function for a given hole position. The isosurfaces of the electronic
probabity density can be adjusted in the control panel on the left side of the
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Figure B.2: Screenshot of the excitonwebsite taken on 30/07/2017.
http://henriquemiranda.github.io/excitonwebsite/

web-page.

The technologies used for the visualization are the same as in the case of the
phonon website (Sec. B.1). The data for visualization can be generated from
any code that calculates the excitonic states from the BSE and stores the eigen-
values and eigenstates. Through the yambopy code we provide a Python

interface to read and display the excitonic wave functions generated from the
yambo code. The instructions of use and an example are made available on the
front page of the website itself.

B.3 Conclusions and roadmap for future develop-
ment

The phononwebsite and excitonwebsite offer didactic and interactive
ways to visualize the results of ab initio calculations. They are both ready to use
and were made available online. These tools are also completely open-source
and hosted on github [160]. As such they can be easily “cloned” in a different
location allowing it to be used in different websites and displaying data from
different sources. As new features are implemented, they are automatically
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made available for the users.

In the future we aim to further expand the amount of data available, i.e.
number of materials for which we show phonon dispersions and excitonic
states. We also aim to improve their functionalities. For that we will describe
some desired features with the aim to stimulate and orient their future devel-
opment.

In the phonon website we will implement a feature to provide information
about the direction of the momentum of the selected phonon. We want to
allow the user to replicate the unit cells in the different directions according to
non-diagonal supercells [161]. We plan to implement an interface able to read
inter-atomic force constants and calculate the phonon frequencies and modes
on the fly. This will allow the user to modify the path in reciprocal space and
obtain immediately the new phonon dispersion. Additionally it will allow one
to investigate how replicating the structure according to a certain supercell
folds the phonon dispersion.

In the exciton website we aim to firstly introduce a larger set of calcula-
tions. This will imply the creation of a new database of excitonic calculations.
Furthermore, we will introduce two additional different types of visualization:
the excitonic wave function in reciprocal space and in the electron-hole disper-
sion as shown in Section 4.5.4. In the real space visualization we will allow
the user to select among different positions of the hole in the structure and
change the electronic density accordingly. We plan to improve the data format
used to store the information of the excitonic density. Currently the data is
being stored in text format which is not very efficient in terms of space and
bandwidth required to transfer the data.

We believe that visualization of the results plays a very important role in
understanding and interpreting the results from ab initio calculations. We will
continue to develop and improve these tools based on feedback from the com-
munity.
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Appendix C

Equivalence between the finite
differences and dynamical approach

In this appendix we show the equivalence between the finite differences
approach and both the diagrammatic one that we outlined in Section 6 and
the expressions by Cardona [30]. This demonstration was previously shown
by Y. Gillet in his PhD thesis [131]. To evaluate Eq. (6.16) we will re-write the
derivatives of eigenvalues and wave functions in terms of the electron-phonon
matrix elements. The derivative of the eigenvalues is directly obtained using
the Hellman-Feynman theorem from Eq. (2.29)

enk = hnk|Ĥ|nki , (C.1)

∂Renk =
⌦

nk
�

�

∂RĤ
�

� nk
↵

. (C.2)

The derivative of the dipole matrix elements (Eq. (4.16)) requires the
knowledge of the derivative of the wave function

∂RLcvk = hkc| r̂∂R(|kvi) + ∂R(hkc|)r̂ |kvi . (C.3)

The derivative of the wave function can be obtained by taking derivatives
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of Eq. (1.14)

∂RĤ |nki + Ĥ∂R |nki = enk∂R |nki + ∂Renk |nki ,
�

∂RĤ � ∂Renk
� |nki =

�

enk � Ĥ
�

∂R |nki .
(C.4)

Reshuffling the terms and inserting a completeness relation we obtain

∂R |nki =
1

enk � Ĥ Â
m

|mki hmk| �∂RĤ � ∂Renk
� |nki

= Â
m 6=n

|mki hkm|∂RĤ|kni
(enk � emk)

+ hkn|∂RĤ|kni � ∂Renk

= Â
m 6=n

|mki gR
nmk

(enk � emk)
,

(C.5)

where in the last step we used again the result from the Hellman-Feynamn
theorem in Eq. (C.2). Substituting the expression for the derivative of the wave
function in Eq. (C.3) and using (4.16) leads to

∂RLL
cvk = Â

n 6=v
k

LL
cnkgR

nvk
evk � enk

+ Â
n 6=c

k

gR
cnkLL

nvk
eck � enk

. (C.6)

Which when replacing by an explicit sum over conduction and valence bands
leads to

∂RLL
cvk = Â

v0 6=v
k

LL
cv0kgR

v0vk
evk � ev0k

+ Â
c0
k

LL
cc0kgR

c0vk
evk � ec0k

+

Â
v0
k

gR
cv0kLL

v0vk
eck � ev0k

+ Â
c0 6=c

k

gR
cc0kLL

c0vk
eck � ec0k

.
(C.7)
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Substituting in Eq. (6.16) leads to

∂Rc

SL(wL) µ Â
vcv0

k

LS
vv0kgR

v0ckLL
cvk

(eck � ev0k)Rcvk(wL)
+ Â

vcc0 6=c
k

LS
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+

Â
vcv0 6=v

k

gR
vv0kLS

v0ckLL
cvk
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+ Â
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k

gR
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c0ckLL
cvk
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+

Â
vcv0 6=v

k

LS
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+ Â
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k

LS
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+

Â
vcv0

k
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(eck � ev0k)Rcvk(wL)
+ Â

vcc0 6=c
k

LS
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c0vk
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+

Â
vc
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cckLL
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Rcvk(wL)2 + Â
vc
k

�LS
vckgR

vvkLL
cvk

Rcvk(wL)2 +

(wL ! �wL)

(C.8)

where we defined Rcvk(wL) = [wL � (eck � evk) + ig]. Combining the terms
with gc0ck, gcc0k and gcck leads to

Â
vcc0

k

LS
vc0kgR

c0ckLL
cvk

[wL � (eck � evk) + ig][wL � (ec0k � evk) + ig]
. (C.9)

And combining the terms with gR
v0vk, gR

vv0k and gvvk we get

Â
vcc0

k

�gR
vv0kLS

v0ckLL
cvk

[wL � (eck � evk) + ig][wL � (eck � ev0k) + ig]
. (C.10)

Combining Eqs. (C.8), (C.9) and (C.10) we finally obtain Eq. (6.17).

This expression, derived by taking finite differences of the dielectric sus-
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ceptibility can be compared with the expressions found in the literature [30]

a

LSµ(wL) µ Â
inn0

(

hYi|ĤL
e�L|Yni hYn|Ĥµ

e�n|Yn0 i hYn0 |ĤS
e�L|Yii
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e�L|Yni hYn|Ĥµ
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µ
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hYi|ĤL
e�L|Yni hYn|ĤS

e�L|Yn0 i hYn0 |Ĥµ
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(wL � (en � ei))(w

µ

� (en0 � ei))

hYi|ĤS
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µ
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µ
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e�L|Yn0 i hYn0 |ĤS

e�L|Yii
(�w

µ

� (en � ei))(wL � w

µ

� (en0 � ei))

hYi|Ĥµ
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µ
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)

(C.11)

where in ĤS
e�L and Ĥµ

e�n the particular photon and phonon interacting are se-
lected. This can be expanded in terms of electron-phonon and electron-light
matrix elements using the Hamiltonians from Eq. (3.1) setting q ! 0 and
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Eq. (4.19) as [131]
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(C.13)

These expressions are equivalent the ones reported in Eq. (6.17) when the
phonon frequency is set to zero. These expressions avoid the numeric can-
celation in Eqs. (6.11), (6.12) and (6.3), and reduce the scaling of the calculation
as discussed in Section 6.6.
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tering in Few-Layer MoTe2. 2D Materials, 3(2):025010, 2016. 6, 95, 97,
110, 115, 122

[26] Q. J. SONG, Q. H. TAN, X. ZHANG, J. B. WU, B. W. SHENG, Y. WAN,
X. Q. WANG, L. DAI, AND P. H. TAN. Physical Origin of Davydov
Splitting and Resonant Raman Spectroscopy of Davydov Components
in Multilayer MoTe2. Physical Review B, 93(11):115409, 2016. 6, 95, 97,
115, 122

[27] JOSEPH L. BIRMAN AND ACHINTYA K. GANGULY. Theory of Enhanced
Raman Scattering and Virtual Quasiparticles in Crystals. Physical Re-
view Letters, 17(12):647–649, 1966. 6, 125, 129

[28] ACHINTYA K. GANGULY AND JOSEPH L. BIRMAN. Theory of Lattice
Raman Scattering in Insulators. Physical Review, 162(3):806–816, 1967.
6, 125, 129

[29] ALBERTO GARCIA CRISTOBAL. Efectos Resonantes de La Dispersion
Raman En Semiconductores. Ph.D. Thesis, 1996. 6, 125

[30] PETER YU AND MANUEL CARDONA. Fundamentals of Semiconductors:
Physics and Materials Properties. Springer Berlin Heidelberg, 2005. 6, 38,
65, 66, 98, 103, 125, 138, 143, 175, 178

[31] MICHELE LAZZERI AND FRANCESCO MAURI. First-Principles Calcu-
lation of Vibrational Raman Spectra in Large Systems: Signature of
Small Rings in Crystalline SiO2. Physical Review Letters, 90(3):036401,
2003. 6, 96

[32] M. VEITHEN, X. GONZE, AND PH. GHOSEZ. Nonlinear Optical Sus-
ceptibilities, Raman Efficiencies, and Electro-Optic Tensors from First-

184

http://dx.doi.org/10.1021/acs.nanolett.5b02683
http://dx.doi.org/10.1021/acs.nanolett.5b02683
http://arxiv.org/abs/1511.07184
http://arxiv.org/abs/1511.07184
https://link.aps.org/doi/10.1103/PhysRevB.93.115409
https://link.aps.org/doi/10.1103/PhysRevB.93.115409
https://link.aps.org/doi/10.1103/PhysRevB.93.115409
http://link.aps.org/doi/10.1103/PhysRevLett.17.647
http://link.aps.org/doi/10.1103/PhysRevLett.17.647
http://link.aps.org/doi/10.1103/PhysRev.162.806
http://link.aps.org/doi/10.1103/PhysRev.162.806
http://adsabs.harvard.edu/abs/1996PhDT........57G
http://adsabs.harvard.edu/abs/1996PhDT........57G
http://link.aps.org/doi/10.1103/PhysRevLett.90.036401
http://link.aps.org/doi/10.1103/PhysRevLett.90.036401
http://link.aps.org/doi/10.1103/PhysRevLett.90.036401
http://link.aps.org/doi/10.1103/PhysRevB.71.125107
http://link.aps.org/doi/10.1103/PhysRevB.71.125107
http://link.aps.org/doi/10.1103/PhysRevB.71.125107


REFERENCES

Principles Density Functional Perturbation Theory. Physical Review B,
71(12):125107, 2005. 6, 96, 126

[33] YANNICK GILLET, MATTEO GIANTOMASSI, AND XAVIER GONZE. First-
Principles Study of Excitonic Effects in Raman Intensities. Physical
Review B, 88(9):094305, 2013. 6, 83, 98, 107

[34] E. DEL CORRO, A. BOTELLO-MÉNDEZ, Y. GILLET, A. L. ELIAS, H. TER-
RONES, S. FENG, C. FANTINI, DANIEL RHODES, N. PRADHAN, L. BAL-
ICAS, X. GONZE, J.-C. CHARLIER, M. TERRONES, AND M. A. PIMENTA.
Atypical Exciton–Phonon Interactions in WS2 and WSe2 Monolayers
Revealed by Resonance Raman Spectroscopy. Nano Letters, 16(4):2363–
2368, 2016. 6, 107, 113

[35] HENRIQUE P. C. MIRANDA, SVEN REICHARDT, GUILLAUME

FROEHLICHER, ALEJANDRO MOLINA-SÁNCHEZ, STÉPHANE BERCI-
AUD, AND LUDGER WIRTZ. Quantum Interference Effects in Resonant
Raman Spectroscopy of Single- and Triple-Layer MoTe2 from First-
Principles. Nano Letters, 17(4):2381–2388, 2017. 7, 75, 107, 108, 109, 111,
112, 113, 116, 119, 121, 155, 156

[36] RICHARD M. MARTIN. Electronic Structure: Basic Theory and Practical
Methods. Cambridge University Press, 2004. 11, 13, 14, 16, 17

[37] RICHARD M. MARTIN, LUCIA REINING, AND DAVID M. CEPERLEY. In-
teracting Electrons. Cambridge University Press, 2016. 12, 13, 16, 22, 24,
25

[38] LARS HEDIN. New Method for Calculating the One-Particle Green’s
Function with Application to the Electron-Gas Problem. Physical Re-
view, 139:A796–A823, 1965. 13

[39] CARLOS FIOLHAIS, FERNANDO NOGUEIRA, AND MIGUEL A. L. MAR-
QUES. A Primer in Density Functional Theory. Springer Science & Business
Media, 2003. 13, 15

185

http://link.aps.org/doi/10.1103/PhysRevB.71.125107
http://link.aps.org/doi/10.1103/PhysRevB.71.125107
http://link.aps.org/doi/10.1103/PhysRevB.88.094305
http://link.aps.org/doi/10.1103/PhysRevB.88.094305
http://dx.doi.org/10.1021/acs.nanolett.5b05096
http://dx.doi.org/10.1021/acs.nanolett.5b05096
http://dx.doi.org/10.1021/acs.nanolett.6b05345
http://dx.doi.org/10.1021/acs.nanolett.6b05345
http://dx.doi.org/10.1021/acs.nanolett.6b05345
https://link.aps.org/doi/10.1103/PhysRev.139.A796
https://link.aps.org/doi/10.1103/PhysRev.139.A796


REFERENCES

[40] P. HOHENBERG AND W. KOHN. Inhomogeneous Electron Gas. Physical
Review, 136:B864–B871, 1964. 13

[41] W. KOHN AND L. J. SHAM. Self-Consistent Equations Including Ex-
change and Correlation Effects. Physical Review, 140:A1133–A1138,
1965. 13

[42] SIDNEY YIP. Handbook of Materials Modeling. Springer Science & Business
Media, 2007. 13

[43] D. M. CEPERLEY AND B. J. ALDER. Ground State of the Electron Gas
by a Stochastic Method. Physical Review Letters, 45(7):566–569, 1980. 16

[44] JOHN P. PERDEW, KIERON BURKE, AND MATTHIAS ERNZERHOF. Gen-
eralized Gradient Approximation Made Simple. Physical Review Letters,
77(18):3865–3868, 1996. 16

[45] MIGUEL A.L. MARQUES, MICAEL J.T. OLIVEIRA, AND TOBIAS BURNUS.
Libxc: A Library of Exchange and Correlation Functionals for Den-
sity Functional Theory. Computer Physics Communications, 183(10):2272–
2281, 2012. 16

[46] JOHN C. SNYDER, MATTHIAS RUPP, KATJA HANSEN, KLAUS-ROBERT

MÜLLER, AND KIERON BURKE. Finding Density Functionals with Ma-
chine Learning. Physical Review Letters, 108(25):253002, 2012. 16

[47] JM SOLER, EMILIO ARTACHO, AND JD GALE. The SIESTA Method for
Ab Initio Order- N Materials Simulation. Journal of Physics, 2745, 2002.
17

[48] VOLKER BLUM, RALF GEHRKE, FELIX HANKE, PAULA HAVU, VILLE

HAVU, XINGUO REN, KARSTEN REUTER, AND MATTHIAS SCHEFFLER.
Ab Initio Molecular Simulations with Numeric Atom-Centered Or-
bitals. Computer Physics Communications, 180(11):2175–2196, 2009. 17

[49] LUIGI GENOVESE, ALEXEY NEELOV, STEFAN GOEDECKER, THIERRY

DEUTSCH, SEYED ALIREZA GHASEMI, ALEXANDER WILLAND,

186

https://link.aps.org/doi/10.1103/PhysRev.136.B864
https://link.aps.org/doi/10.1103/PhysRev.140.A1133
https://link.aps.org/doi/10.1103/PhysRev.140.A1133
https://link.aps.org/doi/10.1103/PhysRevLett.45.566
https://link.aps.org/doi/10.1103/PhysRevLett.45.566
https://link.aps.org/doi/10.1103/PhysRevLett.77.3865
https://link.aps.org/doi/10.1103/PhysRevLett.77.3865
http://www.sciencedirect.com/science/article/pii/S0010465512001750
http://www.sciencedirect.com/science/article/pii/S0010465512001750
https://link.aps.org/doi/10.1103/PhysRevLett.108.253002
https://link.aps.org/doi/10.1103/PhysRevLett.108.253002
http://iopscience.iop.org/0953-8984/14/11/302
http://iopscience.iop.org/0953-8984/14/11/302
http://www.sciencedirect.com/science/article/pii/S0010465509002033
http://www.sciencedirect.com/science/article/pii/S0010465509002033


REFERENCES

DAMIEN CALISTE, ODED ZILBERBERG, MARK RAYSON, ANDERS

BERGMAN, AND REINHOLD SCHNEIDER. Daubechies Wavelets as a
Basis Set for Density Functional Pseudopotential Calculations. The
Journal of Chemical Physics, 129(1):014109, 2008. 17

[50] RICHARD D. MATTUCK. A Guide to Feynman Diagrams in the Many-Body
Problem. Dover Publications, 2 edition, 1992. 18, 19, 20, 21, 22, 24, 27, 57,
72, 74, 128, 145

[51] ALEXANDER L. FETTER AND JOHN DIRK WALECKA. Quantum Theory of
Many-Particle Systems. Courier Corporation, 2003. 18, 131

[52] GERALD D. MAHAN. Many-Particle Physics. Springer Science & Business
Media, 2000. 18, 37

[53] R. W. SAUNDERS AND W. YOUNG. Raman Scattering: One-Phonon
Final States and Many-Body Effects. Journal of Physics C: Solid State
Physics, 13(1):103, 1980. 21, 128, 129, 151

[54] GIOVANNI ONIDA, LUCIA REINING, AND ANGEL RUBIO. Electronic
Excitations: Density-Functional versus Many-Body Green’s-Function
Approaches. Reviews of Modern Physics, 74(2):601–659, 2002. 22, 23

[55] ANDREA MARINI, CONOR HOGAN, MYRTA GRÜNING, AND DANIELE

VARSANO. Yambo: An Ab Initio Tool for Excited State Calculations.
Computer Physics Communications, 180(8):1392–1403, 2009. 23, 24, 27, 28,
63, 70, 75, 85, 161, 162

[56] XAVIER GONZE AND CHANGYOL LEE. Dynamical Matrices, Born Ef-
fective Charges, Dielectric Permittivity Tensors, and Interatomic Force
Constants from Density-Functional Perturbation Theory. Physical Re-
view B, 55(16):10355–10368, 1997. 29, 39

[57] PETER BRÜESCH. Phonons: Theory and Experiments I. Lattice Dynamics and
Models of Interatomic Forces. Springer-Verlag, 1982. 31, 33, 35, 36

187

http://aip.scitation.org/doi/abs/10.1063/1.2949547
http://aip.scitation.org/doi/abs/10.1063/1.2949547
http://stacks.iop.org/0022-3719/13/i=1/a=013
http://stacks.iop.org/0022-3719/13/i=1/a=013
http://link.aps.org/doi/10.1103/RevModPhys.74.601
http://link.aps.org/doi/10.1103/RevModPhys.74.601
http://link.aps.org/doi/10.1103/RevModPhys.74.601
http://linkinghub.elsevier.com/retrieve/pii/S0010465509000472
http://link.aps.org/doi/10.1103/PhysRevB.55.10355
http://link.aps.org/doi/10.1103/PhysRevB.55.10355
http://link.aps.org/doi/10.1103/PhysRevB.55.10355


REFERENCES

[58] ION ERREA, MATTEO CALANDRA, AND FRANCESCO MAURI. First-
Principles Theory of Anharmonicity and the Inverse Isotope Effect in
Superconducting Palladium-Hydride Compounds. Physical Review Let-
ters, 111(17):177002, 2013. 32

[59] ATSUSHI TOGO, LAURENT CHAPUT, AND ISAO TANAKA. Distributions
of Phonon Lifetimes in Brillouin Zones. Physical Review B, 91(9):094306,
2015. 32

[60] FELICIANO GIUSTINO. Electron-Phonon Interactions from First Princi-
ples. Reviews of Modern Physics, 89(1):015003, 2017. 35, 41, 55

[61] O. DUBAY AND G. KRESSE. Accurate Density Functional Calculations
for the Phonon Dispersion Relations of Graphite Layer and Carbon
Nanotubes. Physical Review B, 67(3):035401, 2003. 38, 45, 47

[62] ATSUSHI TOGO AND ISAO TANAKA. First Principles Phonon Calcula-
tions in Materials Science. Scripta Materialia, 108:1–5, 2015. 39, 172

[63] STEFANO BARONI, STEFANO DE GIRONCOLI, ANDREA DAL CORSO,
AND PAOLO GIANNOZZI. Phonons and Related Crystal Properties
from Density-Functional Perturbation Theory. Reviews of Modern
Physics, 73(2):515–562, 2001. 39, 169

[64] R. CAR AND M. PARRINELLO. Unified Approach for Molecular
Dynamics and Density-Functional Theory. Physical Review Letters,
55(22):2471–2474, 1985. 41

[65] O. HELLMAN, I. A. ABRIKOSOV, AND S. I. SIMAK. Lattice Dynam-
ics of Anharmonic Solids from First Principles. Physical Review B,
84(18):180301, 2011. 42

[66] R. A. JISHI, L. VENKATARAMAN, M. S. DRESSELHAUS, AND G. DRES-
SELHAUS. Phonon Modes in Carbon Nanotubules. Chemical Physics
Letters, 209:77–82, 1993. 43, 46

188

https://link.aps.org/doi/10.1103/PhysRevLett.111.177002
https://link.aps.org/doi/10.1103/PhysRevLett.111.177002
https://link.aps.org/doi/10.1103/PhysRevLett.111.177002
https://link.aps.org/doi/10.1103/PhysRevB.91.094306
https://link.aps.org/doi/10.1103/PhysRevB.91.094306
https://link.aps.org/doi/10.1103/RevModPhys.89.015003
https://link.aps.org/doi/10.1103/RevModPhys.89.015003
http://link.aps.org/doi/10.1103/PhysRevB.67.035401
http://link.aps.org/doi/10.1103/PhysRevB.67.035401
http://link.aps.org/doi/10.1103/PhysRevB.67.035401
http://www.sciencedirect.com/science/article/pii/S1359646215003127
http://www.sciencedirect.com/science/article/pii/S1359646215003127
http://link.aps.org/doi/10.1103/RevModPhys.73.515
http://link.aps.org/doi/10.1103/RevModPhys.73.515
https://link.aps.org/doi/10.1103/PhysRevLett.55.2471
https://link.aps.org/doi/10.1103/PhysRevLett.55.2471
https://link.aps.org/doi/10.1103/PhysRevB.84.180301
https://link.aps.org/doi/10.1103/PhysRevB.84.180301
http://www.sciencedirect.com/science/article/pii/000926149387205H


REFERENCES

[67] LUDGER WIRTZ AND ANGEL RUBIO. The Phonon Dispersion of
Graphite Revisited. Solid State Communications, 131:141–152, 2004. 43,
44, 47

[68] JING LI, HENRIQUE PEREIRA COUTADA MIRANDA, YANN-MICHEL

NIQUET, LUIGI GENOVESE, IVAN DUCHEMIN, LUDGER WIRTZ, AND

CHRISTOPHE DELERUE. Phonon-Limited Carrier Mobility and Re-
sistivity from Carbon Nanotubes to Graphene. Physical Review B,
92(7):075414, 2015. 43, 45, 47, 48, 58

[69] CHEOL-HWAN PARK, NICOLA BONINI, THIBAULT SOHIER, GEORGY

SAMSONIDZE, BORIS KOZINSKY, MATTEO CALANDRA, FRANCESCO

MAURI, AND NICOLA MARZARI. Electron–Phonon Interactions
and the Intrinsic Electrical Resistivity of Graphene. Nano Letters,
14(3):1113–1119, 2014. 43, 47

[70] W. KOHN. Image of the Fermi Surface in the Vibration Spectrum of a
Metal. Physical Review Letters, 2(9):393–394, 1959. 43

[71] S. PISCANEC, M. LAZZERI, FRANCESCO MAURI, A. C. FERRARI, AND

J. ROBERTSON. Kohn Anomalies and Electron-Phonon Interactions in
Graphite. Physical Review Letters, 93(18):185503, 2004. 43

[72] X. GONZE, J.-M. BEUKEN, R. CARACAS, F. DETRAUX, M. FUCHS, G.-
M. RIGNANESE, L. SINDIC, M. VERSTRAETE, G. ZERAH, F. JOLLET,
M. TORRENT, A. ROY, M. MIKAMI, PH. GHOSEZ, J.-Y. RATY, AND D.C.
ALLAN. First-Principles Computation of Material Properties: The
ABINIT Software Project. Computational Materials Science, 25(3):478–
492, 2002. 43, 70, 161, 170, 172

[73] J. L. MAÑES. Symmetry-Based Approach to Electron-Phonon Interac-
tions in Graphene. Physical Review B, 76(4):045430, 2007. 45, 46

[74] THIBAULT SOHIER, MATTEO CALANDRA, CHEOL-HWAN PARK,
NICOLA BONINI, NICOLA MARZARI, AND FRANCESCO MAURI.

189

http://arxiv.org/abs/cond-mat/0404637
http://arxiv.org/abs/cond-mat/0404637
http://link.aps.org/doi/10.1103/PhysRevB.92.075414
http://link.aps.org/doi/10.1103/PhysRevB.92.075414
http://dx.doi.org/10.1021/nl402696q
http://dx.doi.org/10.1021/nl402696q
https://link.aps.org/doi/10.1103/PhysRevLett.2.393
https://link.aps.org/doi/10.1103/PhysRevLett.2.393
http://link.aps.org/doi/10.1103/PhysRevLett.93.185503
http://link.aps.org/doi/10.1103/PhysRevLett.93.185503
http://linkinghub.elsevier.com/retrieve/pii/S0927025602003257
http://linkinghub.elsevier.com/retrieve/pii/S0927025602003257
http://link.aps.org/doi/10.1103/PhysRevB.76.045430
http://link.aps.org/doi/10.1103/PhysRevB.76.045430


REFERENCES

Phonon-Limited Resistivity of Graphene by First-Principles Calcula-
tions: Electron-Phonon Interactions, Strain-Induced Gauge Field, and
Boltzmann Equation. Physical Review B, 90(12):125414, 2014. 46

[75] HENRIQUE MIRANDA. Phonon Website, 2016. 48, 50, 51, 157, 171, 172

[76] ROBERT S. MULLIKEN. Report on Notation for the Spectra of Poly-
atomic Molecules. The Journal of Chemical Physics, 23(11):1997–2011,
1955. 51

[77] A. MOLINA-SÁNCHEZ AND L. WIRTZ. Phonons in Single-Layer and
Few-Layer MoS2 and WS2. Physical Review B, 84(15):155413, 2011. 51

[78] A. DAVYDOV. Theory of Molecular Excitons. Springer, 2013. 52

[79] PAOLO GIANNOZZI, STEFANO BARONI, NICOLA BONINI, MATTEO

CALANDRA, ROBERTO CAR, CARLO CAVAZZONI, DAVIDE CERESOLI,
GUIDO L CHIAROTTI, MATTEO COCOCCIONI, ISMAILA DABO, AN-
DREA DAL CORSO, STEFANO DE GIRONCOLI, STEFANO FABRIS, GUIDO

FRATESI, RALPH GEBAUER, UWE GERSTMANN, CHRISTOS GOUGOUS-
SIS, ANTON KOKALJ, MICHELE LAZZERI, LAYLA MARTIN-SAMOS,
NICOLA MARZARI, FRANCESCO MAURI, RICCARDO MAZZARELLO,
STEFANO PAOLINI, ALFREDO PASQUARELLO, LORENZO PAULATTO,
CARLO SBRACCIA, SANDRO SCANDOLO, GABRIELE SCLAUZERO, ARI P
SEITSONEN, ALEXANDER SMOGUNOV, PAOLO UMARI, AND RENATA M
WENTZCOVITCH. QUANTUM ESPRESSO: A Modular and Open-
Source Software Project for Quantum Simulations of Materials.
Journal of physics. Condensed matter : an Institute of Physics journal,
21(39):395502, 2009. 55, 59, 70, 75, 161, 170, 172

[80] ELENA CANNUCCIA AND ANDREA MARINI. Ab-Initio Study of the
Effects Induced by the Electron-Phonon Scattering in Carbon Based
Nanostructures. 2013. 55, 57, 127, 145

[81] H. Y. FAN. Temperature Dependence of the Energy Gap in Semicon-
ductors. Physical Review, 82(6):900–905, 1951. 56

190

http://link.aps.org/doi/10.1103/PhysRevB.90.125414
http://link.aps.org/doi/10.1103/PhysRevB.90.125414
http://link.aps.org/doi/10.1103/PhysRevB.90.125414
http://henriquemiranda.github.io/phononwebsite/
http://aip.scitation.org/doi/abs/10.1063/1.1740655
http://aip.scitation.org/doi/abs/10.1063/1.1740655
http://link.aps.org/doi/10.1103/PhysRevB.84.155413
http://link.aps.org/doi/10.1103/PhysRevB.84.155413
http://arxiv.org/abs/1304.0072
http://arxiv.org/abs/1304.0072
http://arxiv.org/abs/1304.0072
https://link.aps.org/doi/10.1103/PhysRev.82.900
https://link.aps.org/doi/10.1103/PhysRev.82.900


REFERENCES

[82] S. PONCÉ, Y. GILLET, J. LAFLAMME JANSSEN, A. MARINI, M. VER-
STRAETE, AND X. GONZE. Temperature Dependence of the Electronic
Structure of Semiconductors and Insulators. The Journal of Chemical
Physics, 143(10):102813, 2015. 57

[83] N. V. PODBEREZSKAYA, S. A. MAGARILL, N. V. PERVUKHINA, AND

S. V. BORISOV. Crystal Chemistry of Dichalcogenides MX2. Journal
of Structural Chemistry, 42(4):654–681, 2001. 59

[84] NICOLA MARZARI AND DAVID VANDERBILT. Maximally Localized
Generalized Wannier Functions for Composite Energy Bands. Phys-
ical Review B, 56(20):12847–12865, 1997. 61, 158

[85] ROBERT VAN LEEUWEN. First-Principles Approach to the Electron-
Phonon Interaction. Physical Review B, 69(11):115110, 2004. 64

[86] H. BILZ, D. STRAUCH, AND R. K. WEHNER. Light and Matter Id / Licht
Und Materie Id: Infrared and Raman Spectra of Non-Metals. Springer Science
& Business Media, 2012. 65, 68, 69

[87] PETER HERTEL. Lectures on Theoretical Physics, Linear Response Theory.
2012. 66, 67

[88] JOHN DAVID JACKSON. Classical Electrodynamics. Wiley, 1975. 67

[89] HERBERT B. CALLEN AND THEODORE A. WELTON. Irreversibility and
Generalized Noise. Physical Review, 83(1):34–40, 1951. 68

[90] MORTEN FØRRE AND ALEKSANDER SKJERLIE SIMONSEN. Generalized
Velocity-Gauge Form of the Light-Matter Interaction Hamiltonian be-
yond the Dipole Approximation. Physical Review A, 93(1):013423, 2016.
69

[91] R. DEL SOLE AND RAFFAELLO GIRLANDA. Optical Properties of
Semiconductors within the Independent-Quasiparticle Approxima-
tion. Physical Review B, 48(16):11789–11795, 1993. 69, 70

191

http://aip.scitation.org/doi/abs/10.1063/1.4927081
http://aip.scitation.org/doi/abs/10.1063/1.4927081
https://link.springer.com/article/10.1023/A:1013106329156
http://link.aps.org/doi/10.1103/PhysRevB.56.12847
http://link.aps.org/doi/10.1103/PhysRevB.56.12847
http://link.aps.org/doi/10.1103/PhysRevB.69.115110
http://link.aps.org/doi/10.1103/PhysRevB.69.115110
https://archive.org/details/Peter_Hertel___Linear_Response_Theory
https://link.aps.org/doi/10.1103/PhysRev.83.34
https://link.aps.org/doi/10.1103/PhysRev.83.34
https://link.aps.org/doi/10.1103/PhysRevA.93.013423
https://link.aps.org/doi/10.1103/PhysRevA.93.013423
https://link.aps.org/doi/10.1103/PhysRevA.93.013423
http://link.aps.org/doi/10.1103/PhysRevB.48.11789
http://link.aps.org/doi/10.1103/PhysRevB.48.11789
http://link.aps.org/doi/10.1103/PhysRevB.48.11789


REFERENCES

[92] S. PONCÉ, E. R. MARGINE, C. VERDI, AND F. GIUSTINO. EPW: Elec-
tron–phonon Coupling, Transport and Superconducting Properties
Using Maximally Localized Wannier Functions. Computer Physics Com-
munications, 209:116–133, 2016. 70, 139

[93] D. M. BASKO. Calculation of the Raman G Peak Intensity in Mono-
layer Graphene: Role of Ward Identities. New Journal of Physics,
11(9):095011, 2009. 72, 108, 125, 129

[94] HUAIHONG GUO, TENG YANG, MAHITO YAMAMOTO, LIN ZHOU, RYO

ISHIKAWA, KEIJI UENO, KAZUHITO TSUKAGOSHI, ZHIDONG ZHANG,
MILDRED S. DRESSELHAUS, AND RIICHIRO SAITO. Double Resonance
Raman Modes in Monolayer and Few-Layer MoTe2. Physical Review B,
91(20):205415, 2015. 75, 107

[95] GABRIEL ANTONIUS AND STEVEN G. LOUIE. Theory of the Exciton-
Phonon Coupling. arXiv 1705.04245 [cond-mat], 2017. 81

[96] MICHAEL ROHLFING AND STEVEN G. LOUIE. Electron-Hole Excitations
and Optical Spectra from First Principles. Physical Review B, 62(8):4927–
4944, 2000. 81

[97] ANDREA MARINI. Ab Initio Finite-Temperature Excitons. Physical Re-
view Letters, 101(10):106405, 2008. 81

[98] G. STRINATI. Application of the Green’s Functions Method to the
Study of the Optical Properties of Semiconductors. La Rivista del Nuovo
Cimento (1978-1999), 11(12):1–86, 1988. 81, 82

[99] THORSTEN DEILMANN, MATTHIAS DRÜPPEL, AND MICHAEL ROHLF-
ING. Three-Particle Correlation from a Many-Body Perspective: Trions
in a Carbon Nanotube. Physical Review Letters, 116(19):196804, 2016. 81

[100] GIANLUCA STEFANUCCI AND ROBERT VAN LEEUWEN. Nonequilibrium
Many-Body Theory of Quantum Systems: A Modern Introduction. Cam-
bridge University Press, 2013. 82

192

http://www.sciencedirect.com/science/article/pii/S0010465516302260
http://www.sciencedirect.com/science/article/pii/S0010465516302260
http://www.sciencedirect.com/science/article/pii/S0010465516302260
http://stacks.iop.org/1367-2630/11/i=9/a=095011
http://stacks.iop.org/1367-2630/11/i=9/a=095011
http://link.aps.org/doi/10.1103/PhysRevB.91.205415
http://link.aps.org/doi/10.1103/PhysRevB.91.205415
http://arxiv.org/abs/1705.04245
http://arxiv.org/abs/1705.04245
http://link.aps.org/doi/10.1103/PhysRevB.62.4927
http://link.aps.org/doi/10.1103/PhysRevB.62.4927
http://link.aps.org/doi/10.1103/PhysRevLett.101.106405
http://link.springer.com/article/10.1007/BF02725962
http://link.springer.com/article/10.1007/BF02725962
https://link.aps.org/doi/10.1103/PhysRevLett.116.196804
https://link.aps.org/doi/10.1103/PhysRevLett.116.196804


REFERENCES

[101] MYRTA GRÜNING, ANDREA MARINI, AND XAVIER GONZE. Exciton-
Plasmon States in Nanoscale Materials: Breakdown of the Tamm-
Dancoff Approximation. Nano Letters, 9(8):2820–2824, 2009. 83

[102] YANNICK GILLET, MATTEO GIANTOMASSI, AND XAVIER GONZE. Effi-
cient On-the-Fly Interpolation Technique for Bethe–Salpeter Calcula-
tions of Optical Spectra. Computer Physics Communications, 203:83–93,
2016. 83, 101, 135

[103] DAVID KAMMERLANDER, SILVANA BOTTI, MIGUEL A. L MARQUES,
ANDREA MARINI, AND CLAUDIO ATTACCALITE. Speeding up the So-
lution of the Bethe-Salpeter Equation by a Double-Grid Method and
Wannier Interpolation. Physical Review B, 86(12):125203, 2012. 83, 135

[104] ScaLAPACK. 84

[105] VICENTE HERNANDEZ, JOSE E. ROMAN, AND VICENTE VIDAL. SLEPc:
A Scalable and Flexible Toolkit for the Solution of Eigenvalue Prob-
lems. ACM Trans. Math. Softw., 31(3):351–362, 2005. 84

[106] CARLO A. ROZZI, DANIELE VARSANO, ANDREA MARINI, EBERHARD

K. U. GROSS, AND ANGEL RUBIO. Exact Coulomb Cutoff Technique
for Supercell Calculations. Physical Review B, 73(20):205119, 2006. 85

[107] CLAUDIA RUPPERT, OZGUR BURAK ASLAN, AND TONY F. HEINZ. Op-
tical Properties and Band Gap of Single- and Few-Layer MoTe2 Crys-
tals. Nano Letters, 14(11):6231–6236, 2014. 85, 96, 97, 110, 111, 116

[108] THOMAS GALVANI, FULVIO PALEARI, HENRIQUE P. C. MIRANDA, ALE-
JANDRO MOLINA-SÁNCHEZ, LUDGER WIRTZ, SYLVAIN LATIL, HAKIM

AMARA, AND FRANÇOIS DUCASTELLE. Excitons in Boron Nitride Sin-
gle Layer. Physical Review B, 94(12):125303, 2016. 86

[109] ALEJANDRO MOLINA-SÁNCHEZ, MAURIZIA PALUMMO, ANDREA

MARINI, AND LUDGER WIRTZ. Temperature-Dependent Excitonic Ef-
fects in the Optical Properties of Single-Layer MoS2. Physical Review
B, 93(15):155435, 2016. 92

193

http://dx.doi.org/10.1021/nl803717g
http://dx.doi.org/10.1021/nl803717g
http://dx.doi.org/10.1021/nl803717g
http://www.sciencedirect.com/science/article/pii/S0010465516300236
http://www.sciencedirect.com/science/article/pii/S0010465516300236
http://www.sciencedirect.com/science/article/pii/S0010465516300236
https://link.aps.org/doi/10.1103/PhysRevB.86.125203
https://link.aps.org/doi/10.1103/PhysRevB.86.125203
https://link.aps.org/doi/10.1103/PhysRevB.86.125203
http://www.netlib.org/scalapack/
http://doi.acm.org/10.1145/1089014.1089019
http://doi.acm.org/10.1145/1089014.1089019
http://doi.acm.org/10.1145/1089014.1089019
http://link.aps.org/doi/10.1103/PhysRevB.73.205119
http://link.aps.org/doi/10.1103/PhysRevB.73.205119
http://dx.doi.org/10.1021/nl502557g
http://dx.doi.org/10.1021/nl502557g
http://dx.doi.org/10.1021/nl502557g
https://link.aps.org/doi/10.1103/PhysRevB.94.125303
https://link.aps.org/doi/10.1103/PhysRevB.94.125303
http://link.aps.org/doi/10.1103/PhysRevB.93.155435
http://link.aps.org/doi/10.1103/PhysRevB.93.155435


REFERENCES

[110] ALEJANDRO MOLINA-SÁNCHEZ, DAVIDE SANGALLI, KERSTIN HUM-
MER, ANDREA MARINI, AND LUDGER WIRTZ. Effect of Spin-Orbit In-
teraction on the Optical Spectra of Single-Layer, Double-Layer, and
Bulk MoS2. Physical Review B, 88(4):045412, 2013. 95

[111] LUDGER WIRTZ, MICHELE LAZZERI, FRANCESCO MAURI, AND AN-
GEL RUBIO. Raman Spectra of BN Nanotubes: Ab Initio and Bond-
Polarizability Model Calculations. Physical Review B, 71(24):241402,
2005. 96

[112] P. UMARI, ALFREDO PASQUARELLO, AND ANDREA DAL CORSO. Ra-
man Scattering Intensities in Alpha-Quartz: A First-Principles Inves-
tigation. Physical Review B, 63(9):094305, 2001. 97

[113] P. SOUBELET, A. E. BRUCHHAUSEN, A. FAINSTEIN, K. NOGAJEWSKI,
AND C. FAUGERAS. Resonance Effects in the Raman Scattering of
Monolayer and Few-Layer MoSe2. Physical Review B, 93(15):155407,
2016. 97

[114] KANGWON KIM, JAE-UNG LEE, DAHYUN NAM, AND HYEONSIK

CHEONG. Davydov Splitting and Excitonic Resonance Effects in Ra-
man Spectra of Few-Layer MoSe2. ACS Nano, 10(8):8113–8120, 2016.
97

[115] JAE-UNG LEE, JAESUNG PARK, YOUNG-WOO SON, AND HYEONSIK

CHEONG. Anomalous Excitonic Resonance Raman Effects in Few-
Layered MoS2. 7(7):3229–3236, 2015. 97

[116] MATTHIAS STAIGER, ROLAND GILLEN, NILS SCHEUSCHNER, OLIVER

OCHEDOWSKI, FELIX KAMPMANN, MARIKA SCHLEBERGER, CHRIS-
TIAN THOMSEN, AND JANINA MAULTZSCH. Splitting of Monolayer
Out-of-Plane A1’ Raman Mode in Few-Layer WS2. Physical Review B,
91(19):195419, 2015. 97

[117] MAHITO YAMAMOTO, SHENG TSUNG WANG, MEIYAN NI, YEN-FU

LIN, SONG-LIN LI, SHINYA AIKAWA, WEN-BIN JIAN, KEIJI UENO,

194

http://link.aps.org/doi/10.1103/PhysRevB.88.045412
http://link.aps.org/doi/10.1103/PhysRevB.88.045412
http://link.aps.org/doi/10.1103/PhysRevB.88.045412
https://link.aps.org/doi/10.1103/PhysRevB.71.241402
https://link.aps.org/doi/10.1103/PhysRevB.71.241402
http://link.aps.org/doi/10.1103/PhysRevB.63.094305
http://link.aps.org/doi/10.1103/PhysRevB.63.094305
http://link.aps.org/doi/10.1103/PhysRevB.63.094305
http://link.aps.org/doi/10.1103/PhysRevB.93.155407
http://link.aps.org/doi/10.1103/PhysRevB.93.155407
http://dx.doi.org/10.1021/acsnano.6b04471
http://dx.doi.org/10.1021/acsnano.6b04471
http://pubs.rsc.org/en/content/articlelanding/2015/nr/c4nr05785f
http://pubs.rsc.org/en/content/articlelanding/2015/nr/c4nr05785f
http://link.aps.org/doi/10.1103/PhysRevB.91.195419
http://link.aps.org/doi/10.1103/PhysRevB.91.195419


REFERENCES

KATSUNORI WAKABAYASHI, AND KAZUHITO TSUKAGOSHI. Strong
Enhancement of Raman Scattering from a Bulk-Inactive Vibrational
Mode in Few-Layer MoTe2. ACS Nano, 8(4):3895–3903, 2014. 97

[118] SEAN A. FISCHER, TYLER W. UELTSCHI, PATRICK Z. EL-KHOURY,
AMANDA L. MIFFLIN, WAYNE P. HESS, HONG-FEI WANG, CHRISTO-
PHER J. CRAMER, AND NIRANJAN GOVIND. Infrared and Raman Spec-
troscopy from Ab Initio Molecular Dynamics and Static Normal Mode
Analysis: The C–H Region of DMSO as a Case Study. The Journal of
Physical Chemistry B, 120(8):1429–1436, 2016. 101

[119] R. LOUDON. The Raman Effect in Crystals. Advances in Physics,
13(52):423–482, 1964. 105

[120] A. CANTARERO, C. TRALLERO-GINER, AND M. CARDONA. Excitons in
One-Phonon Resonant Raman Scattering: Deformation-Potential In-
teraction. Physical Review B, 39(12):8388–8397, 1989. 107

[121] MARTIN KALBAC, ALFONSO REINA-CECCO, HOOTAN FARHAT, JING

KONG, LADISLAV KAVAN, AND MILDRED S. DRESSELHAUS. The In-
fluence of Strong Electron and Hole Doping on the Raman Intensity
of Chemical Vapor-Deposition Graphene. ACS Nano, 4(10):6055–6063,
2010. 108

[122] CHI-FAN CHEN, CHEOL-HWAN PARK, BRYAN W. BOUDOURIS, JASON

HORNG, BAISONG GENG, CAGLAR GIRIT, ALEX ZETTL, MICHAEL F.
CROMMIE, RACHEL A. SEGALMAN, STEVEN G. LOUIE, AND FENG

WANG. Controlling Inelastic Light Scattering Quantum Pathways in
Graphene. Nature, 471(7340):617–620, 2011. 108

[123] SVEN REICHARDT AND LUDGER WIRTZ. Ab Initio Calculation of the
G Peak Intensity of Graphene: Laser-Energy and Fermi-Energy De-
pendence and Importance of Quantum Interference Effects. Physical
Review B, 95(19):195422, 2017. 108, 110, 112, 125, 129, 134, 143, 144

195

http://dx.doi.org/10.1021/nn5007607
http://dx.doi.org/10.1021/nn5007607
http://dx.doi.org/10.1021/nn5007607
http://dx.doi.org/10.1021/acs.jpcb.5b03323
http://dx.doi.org/10.1021/acs.jpcb.5b03323
http://dx.doi.org/10.1021/acs.jpcb.5b03323
http://dx.doi.org/10.1080/00018736400101051
http://link.aps.org/doi/10.1103/PhysRevB.39.8388
http://link.aps.org/doi/10.1103/PhysRevB.39.8388
http://link.aps.org/doi/10.1103/PhysRevB.39.8388
http://dx.doi.org/10.1021/nn1010914
http://dx.doi.org/10.1021/nn1010914
http://dx.doi.org/10.1021/nn1010914
http://www.nature.com/nature/journal/v471/n7340/full/nature09866.html
http://www.nature.com/nature/journal/v471/n7340/full/nature09866.html
https://link.aps.org/doi/10.1103/PhysRevB.95.195422
https://link.aps.org/doi/10.1103/PhysRevB.95.195422
https://link.aps.org/doi/10.1103/PhysRevB.95.195422


REFERENCES

[124] R. SAITO, G. DRESSELHAUS, AND M. S. DRESSELHAUS. Trigonal Warp-
ing Effect of Carbon Nanotubes. Physical Review B, 61(4):2981–2990,
2000. 112

[125] KATARZYNA GOŁASA, MAGDA GRZESZCZYK, MACIEJ R. MOLAS,
MAŁGORZATA ZINKIEWICZ, ŁUKASZ BALA, KAROL NOGAJEWSKI,
MAREK POTEMSKI, ANDRZEJ WYSMOŁEK, AND ADAM BABIŃSKI. Res-
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