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Abstract. Generalizing the recent results of Belläıche and Khare for the level 1 case,
we study the structure of the local components of the shallow Hecke algebras (i.e. Hecke
algebras without Up and U` for all primes ` dividing the level N) acting on the space of
modular forms modulo p for Γ0(N) and Γ1(N). We relate them to pseudo-deformation
rings and prove that in many cases, the local components are regular complete local
algebras of dimension 2.

1. Introduction

The p-adic Hecke algebra acting on modular forms of level N of all weights, which is

generated by the Hecke operators away from Np, has been well studied in the past due

to its connection with p-adic families of modular forms and deformation rings of Galois

representations (see [17] for precise definition and more details). One can similarly define

a mod p Hecke algebra acting on modular forms modulo p of level N (in the sense of

Serre and Swinnerton-Dyer) of all weights. The main aim of this paper is to study the

structure of these Hecke algebras acting on modular forms modulo p and their relation

with suitable deformation rings in characteristic p. These objects were previously studied

by Jochnowitz ([22]), Khare ([24]), Nicolas-Serre ([27],[28]), and Belläıche-Khare ([8]). In

this article, we generalize the results of Belläıche and Khare proved in [8] for p ≥ 5 and

N = 1 with minor changes.

Before proceeding further, we fix some notations first. In all of this paper, we fix a

prime number p > 3 and a positive integer N ≥ 1 not divisible by p. We shall denote by

K a finite extension of Qp, by O the ring of integers of K, by p the maximal ideal of O,

by π the generator of p and by F the finite residue field of O. We call GQ,Np the Galois

group of a maximal algebraic extension of Q unramified outside {` s.t. `|Np} ∪ {∞} over

Q. For a prime q not dividing Np, we denote by Frobq ∈ GQ,Np a Frobenius element at

q. We denote by c a complex conjugation in GQ,Np. We write GQ` for Gal(Q`/Q`) for

every prime ` dividing Np. There are natural maps i` : GQ` → GQ,Np well defined up to

conjugacy. For every prime ` dividing Np, we write I` for the inertia subgroup of GQ` .

For a representation ρ of GQ,Np, we shall denote by ρ|GQ`
the composition of i` with ρ:
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this is a representation of GQ` , well defined up to an isomorphism. We denote by ωp :

GQ,Np → F∗ the cyclotomic character modulo p.

We will now define the Hecke algebra that we want to study and the space of modular

forms on which it acts. For the rest of the introduction, Γ means either Γ1(N) or Γ0(N)

and Γ(M) means either Γ1(M) or Γ0(M) accordingly. Following [8], we shall denote by

SΓ
k (O) the module of cuspidal modular forms of weight k for Γ with Fourier coefficients

in O. We see it as a submodule of O[[q]] by the q-expansion. We denote by SΓ
≤k(O) the

submodule
∑i=k

i=0 S
Γ
i (O) of O[[q]]. Note that, this sum is direct (see section 1.2 of [8]). We

denote by SΓ
≤k(F) the image of SΓ

≤k(O) under the reduction map O[[q]] → F[[q]], which

reduces each coefficient of a power series in O[[q]] modulo p. Thus, SΓ
≤k(F) =

∑i=k
i=0 S

Γ
i (F),

where SΓ
i (F) is the space of cuspidal modular forms of weight i for Γ over F in the

sense of Serre and Swinnerton-Dyer i.e. it is the image of SΓ
i (O) under the reduction

map considered above. The map SΓ
≤k(O)/pSΓ

≤k(O) → SΓ
≤k(F) is surjective but not an

isomorphism in general. Let SΓ(O) = ∪∞k=0S
Γ
≤k(O) and SΓ(F) = ∪∞k=0S

Γ
≤k(F).

All the modules considered above have a natural action of the Hecke operators Tn for

(n,Np) = 1. We denote by TΓ
k the O-subalgebra of EndO(SΓ

≤k(O)) generated by the Tn’s

with (n,Np) = 1. We denote by AΓ
k the F-subalgebra of EndF(SΓ

≤k(F)) generated by the

Tn’s with (n,Np) = 1. From the relations between the Hecke operators, we see that TΓ
k

or AΓ
k is generated by the Hecke operators Tq and Sq for primes q not dividing Np (see

section 1.2 of [8] for more details). Here, Sq is the operator acting on forms of weight k

as the multiplication by 〈q〉qk−2 where 〈q〉 is the diamond operator corresponding to q.

We have a natural morphism of F-algebras TΓ
k/pTΓ

k → AΓ
k which is surjective, but in

general not an isomorphism. We set:

TΓ = lim←−TΓ
k , A

Γ = lim←−A
Γ
k

Thus, the Hecke algebras TΓ and AΓ act on SΓ(O) and SΓ(F), respectively. We obtain

a surjective map TΓ/pTΓ → AΓ from the surjective maps considered above. We call AΓ

the Hecke algebra modulo p of level Γ and this is the central object of our study.

The rings TΓ and AΓ are complete and semi-local. Actually, if F is large enough, then,

by the existence of Galois representations attached to eigenforms and by the Deligne-Serre

lifting lemma, the maximal ideals and hence, the local components of both TΓ and AΓ

are in bijection with the set of isomorphism classes of Γ-modular Galois representations

ρ̄ : GQ,Np → GL2(F) (see section 1.2 of [8] for more details). Here and below, Γ-

modular means that ρ̄ is the semi-simplified reduction of a stable lattice for the Galois

representation ρ : GQ,Np → GL2(K) attached by Deligne to an eigenform in SΓ(O).

Observe that, since ρ̄ is odd, if ρ̄ is irreducible, then it is absolutely irreducible. We

define TΓ
ρ̄ and AΓ

ρ̄ to be the local components of TΓ and AΓ corresponding to a Γ-modular
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representation ρ̄. These rings are complete local rings. The surjective map TΓ/pTΓ → AΓ

sends TΓ
ρ̄/pTΓ

ρ̄ onto AΓ
ρ̄ . As AΓ (resp. TΓ) is semi-local and an inverse limit of artinian

rings, AΓ (resp. TΓ) splits into the product of its local components. Thus, it is enough

to study the structure of each local component to understand the structure of AΓ, once

we determine the number of its local components.

The advantage of working with the local components is that one can relate them to

suitable deformation rings. By gluing pseudo-representations attached to modular eigen-

forms of level Γ lifting the system of eigenvalues corresponding to a Γ-modular repre-

sentation ρ̄, one gets a pseudo-representation of GQ,Np taking values in AΓ
ρ̄ and deform-

ing (tr ρ̄, det ρ̄). Let R̃0
ρ̄ be the universal deformation ring with constant determinant of

the pseudo-representation (tr ρ̄, det ρ̄) in the category of local, pro-finite F-algebras with

residue field F. The pseudo-representation obtained above induces a local, surjective

morphism R̃0
ρ̄ → AΓ

ρ̄ when either Γ = Γ0(N) or p - φ(N) and Γ = Γ1(N). Otherwise, it

induces a local, surjective map R̃0
ρ̄ → (A

Γ1(N)
ρ̄ )red. See the next section for more details.

We define a Γ-modular representation ρ̄ to be unobstructed if the tangent space of R̃0
ρ̄

has dimension 2. If ρ̄ is irreducible and p - φ(N), then ρ̄ is unobstructed in our sense if and

only if it is unobstructed in the sense of Mazur ([26], section 1.6). But our notion is weaker

than Mazur’s notion if p|φ(N). See the last section where the notion of unobstructedness

is studied in detail.

We prove the following results concerning the Hecke algebra AΓ
ρ̄ and its relation with

the deformation ring R̃0
ρ̄:

Theorem 1. Let Γ = Γ1(N) or Γ0(N). If ρ̄ is a Γ-modular representation, then both R̃0
ρ̄

and AΓ
ρ̄ have Krull dimension at least 2.

Theorem 2. Suppose either Γ = Γ0(N) or p - φ(N) and Γ = Γ1(N). If ρ̄ is a Γ-modular

representation which is unobstructed, then the morphism R̃0
ρ̄ → AΓ

ρ̄ is an isomorphism,

and AΓ
ρ̄ is isomorphic to a power series ring in two variables F[[x, y]]. If p|φ(N) and ρ̄

is an unobstructed Γ1(N)-modular representation, then the morphism R̃0
ρ̄ → (A

Γ1(N)
ρ̄ )red

is an isomorphism, and (A
Γ1(N)
ρ̄ )red is isomorphic to a power series ring in two variables

F[[x, y]].

In the last section, we shall give some conditions under which a Γ1(N)-modular repre-

sentation ρ̄ is unobstructed and the corresponding local component A
Γ1(N)
ρ̄ is not reduced:

see Proposition 9 and Proposition 10. We shall also give some examples of non-reduced

Hecke algebras: see the remarks and discussion after Proposition 10.

Remark. (1) Our approach to prove Theorem 1 and Theorem 2 does not depend on

whether ρ̄ is irreducible or not. This is mainly because the results that we use
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from deformation theory of Galois representations are available for both reducible

and irreducible ρ̄’s. So, the proof does not become simpler when ρ̄ is irreducible.

(2) Note that from Theorem 2, it follows that if ρ̄ is a Γ0(N)-modular representation

which is unobstructed and if p - φ(N), then the natural restriction morphism

A
Γ1(N)
ρ̄ → A

Γ0(N)
ρ̄ is an isomorphism. In fact, if p - φ(N), then this happens

for any Γ0(N)-modular representation ρ̄. Indeed, fixing such a ρ̄, we see that

the corresponding system of eigenvalues for the diamond operators is trivial. As

p - φ(N), by Hensel’s lemma, any system of eigenvalues lifting ρ̄ is trivial for the

diamond operators. Hence, the diamond operators act trivially on SΓ1(N)(O)ρ̄.

Therefore, SΓ1(N)(O)ρ̄ = SΓ0(N)(O)ρ̄. So, TΓ1(N)
ρ̄ and TΓ0(N)

ρ̄ are isomorphic.

Thus, A
Γ1(N)
ρ̄ and A

Γ0(N)
ρ̄ are isomorphic for all the Γ0(N)-modular representations

ρ̄ if p does not divide φ(N). However, this argument breaks down if p divides φ(N).

Theorem 3. Assume that ρ̄ is a Γ1(N)-modular representation coming from a newform

of level N and is absolutely irreducible after restriction to the Galois group of Q(ζp). If

`|N , p|`2−1 and ρ̄|GQ`
is unramified, then assume `2|N . If `|N , p|`−1, ρ̄|GQ`

is reducible,

ramified and not a sum of two ramified characters, then assume that the highest power of

` dividing N is greater than the highest power of ` dividing the Artin conductor of ρ̄. If

ρ̄|GQp is reducible, assume, in addition, that ρ̄|GQp is not isomorphic to χ ⊗
(

1 ∗
0 1

)
nor

to χ⊗
(

1 ∗
0 ωp

)
, where χ is any character GQp → F∗. Then A

Γ1(N)
ρ̄ has Krull dimension

2. Moreover, (R̃0
ρ̄)

red is isomorphic to (A
Γ1(N)
ρ̄ )red.

Similarly, if ρ̄ is a Γ0(N)-modular representation satisfying the hypotheses as above,

then A
Γ0(N)
ρ̄ has Krull dimension 2. Moreover, if p does not divide φ(N), then (R̃0

ρ̄)
red is

isomorphic to (A
Γ0(N)
ρ̄ )red.

These results are generalizations of Theorem III, Theorem I and Theorem II of [8],

respectively. Note that, it is possible to have mod p deformation ring with constant

determinant which are non-reduced but we do not know of any such examples.

Remark. If p - N , then we know that the module of mod p modular forms for Γ1(N) is

the same as the module of mod p modular forms for Γ1(Npe) for e ≥ 1 (See the remark

after corollary I.3.6 on page 23 of [19] for more details). Hence, the corresponding mod

p Hecke algebras are also the same. So, even though we are assuming that p - N , all

the theorems that we prove for mod p Hecke algebras for Γ1(N) above will still be true

without this assumption on N .

Note that, Theorem 2 easily follows from Theorem 1 and the definition of unobstructed.
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The idea of the proof of Theorem 1 is similar to the idea used in proving Theorem

III in [8]. So, we try to find a relation between the characteristic 0 Hecke algebra TΓ
ρ̄

with the characteristic p Hecke algebra AΓ
ρ̄ . However, there are some difficulties, such as

SΓ(O) ⊗O F not being isomorphic to SΓ(F), in comparing them directly. To overcome

this problem, like [8], we also work with the divided congruence modules of Katz. Using

the results of Katz and the methods of [8], we get the relation between characteristic 0

and characteristic p full Hecke algebras i.e. the relation between the characteristic 0 and

characteristic p Hecke algebras generated by the Hecke operators Tq, qSq for primes q not

dividing Np, U` for primes ` dividing N and Up.

Now, we need to analyze how the addition of the operators U`’s and Up changes our

Hecke algebras in characteristic 0 and p. We can control the change caused by the Up

operator in a similar way as is done in the level 1 case in [8]. This allows us to get a relation

between Hecke algebras in characteristic 0 and p generated by Hecke operators away from

p. Note that, the proof for N = 1 case gets over at this step. However, for N > 1, we

still need to study the effect of adding the extra operators U`’s for primes ` dividing N

to our original Hecke algebras. This differentiates the case of N > 1 from N = 1. In

this direction, we prove that in characteristic 0, if ρ̄ is new i.e. if ρ̄ is not Γ(N ′)-modular

for any proper divisor N ′ of N , then the operator U` acting on SΓ(O)ρ̄ is integral over

TΓ
ρ̄ for every prime ` dividing N . This gives us the finiteness of the U`’s over the mod

p Hecke algebra automatically for a new ρ̄ and, along with the Gouvêa-Mazur infinite

fern argument, leads us to Theorem 1 in those cases. Finally, we prove that if ρ̄ is also a

Γ(M)-modular representation for some M dividing N , then the natural map AΓ
ρ̄ → A

Γ(M)
ρ̄

is surjective using the pseudo-representation attached to it and the Chebotarev density

theorem. Theorem 1 in the case where ρ̄ is new, along with the surjectivity established

above, leads us to Theorem 1 for all the local components of the mod p Hecke algebra.

We would like to point out that, in contrast with [8], our method does not give the precise

kernel of the map TΓ
ρ̄ → AΓ

ρ̄ in all the cases while proving Theorem 1. However, in many

cases, we can find the kernel up to some nilpotence.

To prove Theorem 3, we need to use a result of Böckle and flatness of TΓ1(N)
ρ̄ over

the Iwasawa algebra O[[T ]] which is proved in the same way as in [8]. This, along

with Theorem 1, would imply the first part of Theorem 3. We prove, using tech-

niques and results similar to the ones sketched in the previous paragraph, that the map

TΓ1(N)
ρ̄ /(p, T ) → A

Γ1(N)
ρ̄ has nilpotent kernel if ρ̄ satisfies the hypotheses of Theorem 3.

We use it, along with the results of Böckle, to conclude the second part of Theorem 3 for

the Γ1(N) case. The theorem for the Γ0(N) case then follows easily from the theorem for

the Γ1(N) case.
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Finally, we would like to remark on possible generalization of these results to the case

of Hilbert modular forms. A well behaved theory for mod p Hilbert modular forms with

arbitrary weights, which includes a lot of tools and facts for mod p modular forms that we

use, is available (see the works of Andreatta-Goren ([1]) for more details). Moreover, an

analogue of Gouvêa-Mazur infinite fern argument is also true for certain local components

of the p-adic Hecke algebra acting on the space of Hilbert modular forms due to work of

Chenevier (see Theorem 5.9 of [13]). However, contrary to the case of modular forms, the

theory of divided congruence modules of Katz and properties of Hecke operators acting

on them is not known for Hilbert modular forms. We expect results similar to what we

have proved above to hold for Hilbert modular forms once we know the theory of divided

congruence modules of Hilbert modular forms and the infinite fern argument for all the

local components. The results will depend on the space of mod p Hilbert modular forms

we consider. For instance, we expect the lower bound on the Krull dimension of the

mod p Hecke algebra for Hilbert modular forms of parallel weights to be 2, while the

corresponding lower bound for the mod p Hecke algebra for Hilbert modular forms of

arbitrary weights to be 2n, where n is the degree of extension of the totally real field over

Q.
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gesting this problem to me and for his patience, guidance, encouragement and support

during the completion of this paper. His suggestions have also played an instrumental

role in making the exposition clearer and simplifying a lot of proofs. I would also like to

thank Aditya Karnataki for numerous helpful mathematical discussions. I would like to

thank the referee as well for a careful reading and helpful suggestions.

2. Deformation rings and Hecke algebras

The goal of this section is to relate mod p Hecke algebras with appropriate deformation

rings.

Using [3, Step 1 of the proof of Theorem 1], which is essentially an argument of gluing

pseudo-representations attached to modular eigenforms of a fixed level and all weights,

we get the following lemma (see [8, Proposition 2] also):

Lemma 1. Let Γ be either Γ0(N) or Γ1(N). For a Γ-modular representation ρ̄, there ex-

ists a unique continuous pseudo-representation (τΓ, δΓ) : GQ,Np → TΓ
ρ̄ such that τΓ(c) =

0, τΓ(Frobq) = Tq and δΓ(Frobq) = qSq for all the primes q not dividing Np. We have

τΓ (mod mTΓ
ρ̄
) = tr ρ̄, δΓ (mod mTΓ

ρ̄
) = det ρ̄. By composing (τΓ, δΓ) with the natu-

ral morphism TΓ
ρ̄ → AΓ

ρ̄ , we get a pseudo-representation (τ̃Γ, δ̃Γ) : GQ,Np → AΓ
ρ̄ lifting

(tr ρ̄,det ρ̄).
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A deformation (t, d) of a pseudo-representation (t̄, d̄) is called a deformation with con-

stant determinant if d = d̄.

Lemma 2. If Γ = Γ0(N) or if p - φ(N) and Γ = Γ1(N), then for a Γ-modular represen-

tation ρ̄, (τ̃Γ, δ̃Γ) is a deformation of (tr ρ̄, det ρ̄) with constant determinant.

Proof. Let q be a prime not dividing Np. Note that, in the Γ0(N) case, Sq acts as

multiplication by qk−2 on a weight k modular form with Fourier coefficients in O. If two

modular forms of levelN are congruent modulo p, then their weights are congruent modulo

p − 1. So, Sq acts like a constant on SΓ0(N)(F)ρ̄ for every ρ̄. Since δ̃Γ(Frobq) = qSq and

the set of Frobq for primes q not dividing Np is dense in GQ,Np, we get that δ̃ is constant

and we are done in the Γ0(N) case.

Applying the same reasoning to the Γ1(N) case, we get that, for every prime q not

dividing Np, Sq acts like cq〈q〉 on SΓ1(N)(F)ρ̄ where cq is an invertible constant. Since

Sq ∈ AΓ1(N)
ρ̄ , it follows that 〈q〉 ∈ AΓ1(N)

ρ̄ for every prime q not dividing Np. If p does

not divide φ(N), then the order of every diamond operator 〈q〉 is co-prime to p. We have

chosen F to be large enough so that it contains all the mod p system of eigenvalues. Thus,

by Hensel’s lemma, 〈q〉 and hence Sq, will be constant in A
Γ1(N)
ρ̄ for every ρ̄ and every

prime q not dividing Np. Therefore, δ̃Γ is constant in the Γ1(N) case if p does not divide

φ(N) by the same argument as in the Γ0(N) case. �

If p|φ(N), then the determinant δ̃Γ may not be constant. See the last section for more

details. If the order of 〈q〉 is pe, then (〈q〉− 1)p
e

= 0 in A
Γ1(N)
ρ̄ . Therefore, in (A

Γ1(N)
ρ̄ )red,

we have 〈q〉 = 1 for all such 〈q〉’s. Thus, from the proof of the lemma above, it follows

that if p|φ(N), then the determinant (δ̃Γ1(N))red : GQ,Np → ((A
Γ1(N)
ρ̄ )red)∗ is constant.

Let Rρ̄ be the universal deformation ring of the pseudo-representation (tr ρ̄, det ρ̄) in

the category of local pro-finite O-algebras with residue field F, R̃ρ̄ be the corresponding

universal deformation ring mod p and R̃0
ρ̄ be the corresponding universal deformation ring

mod p with constant determinant (see [12], [8, Section 1.4] for more details regarding the

existence and properties of these rings). For a Γ-modular representation ρ̄, the pseudo-

representation (τΓ, δΓ) defines a local morphism Rρ̄ → TΓ
ρ̄ which is identity modulo their

maximal ideals. Similarly, we get a local morphism R̃ρ̄ → AΓ
ρ̄ . From the previous para-

graphs, we see that the morphism R̃ρ̄ → AΓ
ρ̄ factors through R̃0

ρ̄ if Γ = Γ0(N) or if p - φ(N)

and Γ = Γ1(N). However, this is not true in general. But, from above, we see that for a

Γ1(N)-modular representation ρ̄, the map R̃ρ̄ → (A
Γ1(N)
ρ̄ )red factors through R̃0

ρ̄. All the

morphisms considered above are surjective. Indeed, for a prime q not dividing Np, the im-

ages of the trace and the determinant, coming from the universal pseudo-representation,

of Frobq under the morphisms above are Tq and qSq, respectively.
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3. Relation between the full Hecke algebras in characteristic 0 and p

The goal of this section is to get a relation between the full Hecke algebras like the

one obtained in Proposition 16 in [8]. We will be following the approach of [8] to get

a result similar to Proposition 16 of [8] for both the cases, Γ1(N) and Γ0(N). We will

briefly recall, without proofs, some important results of the theory of divided congruences

of Katz needed for our purpose. Then, we will state some results about the comparisons

of various Hecke algebras which are similar to the results given in sections 3, 4, 5 and 6

of [8]. Since the proofs of these results are more or less the same as the ones given in

[8], we shall not give them in full detail here. Instead, we will mostly refer readers to

the proofs of corresponding results in [8] and will provide some additional details when

required. In this section, we will follow the notation of [8] for the divided congruence

modules and the Hecke algebras along with an additional index representing the level.

For instance, DΓ1(N)(O) will represent the divided congruence module of cuspidal forms

for Γ1(N) over O. These modules and the Hecke algebras acting on them are defined in

exactly the same way as their level 1 counterparts in [8] after making appropriate level

changes. Main references for this section are [23], [21] and [8]. Throughout this section,

Γ means either Γ1(N) or Γ0(N).

3.1. The divided congruence modules of Katz. In this and the following subsection,

we quickly list all the results that are needed from the theory of divided congruence

modules. These results are the level N counterparts of the results that appear in [8].

We will now define the divided congruence modules of Katz. Let SΓ
≤k(K) be the

subspace of K[[q]] given by
∑i=k

i=0 S
Γ
i (K), where SΓ

i (K) is the space of cusp forms of weight

i and level Γ with Fourier coefficients in K which is identified as a subspace of K[[q]] via

q-expansions. Let DΓ
≤k(O) be the O-submodule of O[[q]] given by the intersection of

SΓ
≤k(K) with O[[q]]. They are called divided congruence modules because they capture

congruences between cusp forms of different weights (see Remark 3 of section 2 of [8]

for more details). We define DΓ
≤k(F) as the image of DΓ

≤k(O) under the reduction map

O[[q]]→ F[[q]]. Let DΓ(O) = ∪∞k=0D
Γ
≤k(O) and DΓ(F) = ∪∞k=0D

Γ
≤k(F). We call DΓ(O) the

divided congruence module of cuspidal forms of level Γ and DΓ(F) the divided congruence

module of cuspidal forms modulo p of level Γ. See section 2 of [8] for more details.

Lemma 3. The natural map DΓ
≤k(O) ⊗O F→ DΓ

≤k(F) is an isomorphism.

Proof. If f ∈ DΓ
≤k(O) lies in the kernel of the natural surjective map DΓ

≤k(O)→ DΓ
≤k(F),

then f
π lies in both SΓ

≤k(K) and O[[q]]. Hence, it lies in DΓ
≤k(O) which implies the lemma.

See the proof of Lemma 5 of [8]. �
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We now recall, without proofs, two theorems of Katz which relate the divided congru-

ence module of cuspidal forms mod p of level Γ with the space of mod p cuspforms of

level Γ:

Proposition 1. (Katz)

(1) There exists a unique action of Z∗p× (Z/NZ)∗ on DΓ1(N)(O) denoted by ((x, y), f)

7→ (x, y).f , such that for (x, y) ∈ Z∗p×(Z/NZ)∗, and f ∈ SΓ1(N)
k (O) ⊂ DΓ1(N)(O),

(x, y).f = xk〈y〉f .

(2) There exists a unique action of Z∗p on DΓ0(N)(O) denoted by (x, f) 7→ x.f such

that for x ∈ Z∗p, and f ∈ SΓ0(N)
k (O) ⊂ DΓ0(N)(O), x.f = xkf

See [23, Cor 1.7] for the proof.

Theorem 4. (Katz) The space SΓ(F) is the space of invariants of 1 + pZp acting on

DΓ(F).

This is proved in [23, Sec.4]; see also [21, Thm. 1.1].

The two results of Katz recalled in this subsection are proved only for p > 3. We do

not know whether they also hold for p = 2, 3.

3.2. Hecke operators on the divided congruence modules. We can define the Hecke

operators Tq, Sq for primes q not dividing Np and U` for primes ` dividing N on DΓ(O).

Their action on the q-expansions is given in the same way as it is given on the q-expansions

of the classical modular forms.

See the proof of Corollary and Definition 7 of [8] and [21, Page 243] for more details.

Now we introduce partially full Hecke algebras which are generated by the U`’s for

every prime ` dividing N along with the Tn’s for (n,Np) = 1. We add an extra pf in the

index to denote these Hecke algebras. Thus, TΓ,pf
k is the O-subalgebra of EndO(SΓ

≤k(O))

generated by the Tn’s with (n,Np) = 1 and U`’s with ` prime dividing N , while AΓ,pf
k is

the F-subalgebra of EndF(SΓ
≤k(F)) generated by the Tn’s with (n,Np) = 1 and U`’s with

` prime dividing N . We can consider the projective limits:

TΓ,pf = lim←−TΓ,pf
k , AΓ,pf = lim←−A

Γ,pf
k

Lemma 4. (1) The sub-algebra of EndO(DΓ
≤k(O)) generated by the Hecke operators

Tq, Sq for primes q not dividing Np and U` for primes ` dividing N is naturally

isomorphic to TΓ,pf
k .

(2) The sub-algebra of EndO(DΓ
≤k(O)) generated by the Hecke operators Tq, Sq for

primes q not dividing Np is naturally isomorphic to TΓ
k .
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Proof. Both parts of the lemma follow from the observations that SΓ
≤k(O) is a co-torsion

submodule of DΓ
≤k(O) and the action of Hecke operators on DΓ

≤k(O) extends their action

on SΓ
≤k(O). Indeed, as SΓ

≤k(O) is a co-torsion submodule of DΓ
≤k(O), if f ∈ DΓ

≤k(O), then

πnf ∈ SΓ
≤k(O) for some n which implies that an Hecke operator vanishing on SΓ

≤k(O) also

vanishes on DΓ
≤k(O). See the proof of Lemma 8 of [8] for more details. �

Lemma 5. (1) The homomorphism φ : Z∗p → EndO(DΓ1(N)(O)), defined by φ(x)f =

(x, 1).f for f ∈ DΓ1(N)(O), takes values in the sub-algebra TΓ1(N) and hence, in

TΓ1(N),pf.

(2) The homomorphism φ : Z∗p → EndO(DΓ0(N)(O)), defined by φ(x)f = x.f for f ∈
DΓ0(N)(O) takes values in the sub-algebra TΓ0(N) and hence, in TΓ0(N),pf.

Proof. The proof of part 1 is almost the same as the proof of Lemma 9 of [8]. We only

need to change the last step of the proof slightly, so we sketch it briefly here. Following

the same proof, we see that TΓ1(N) is a closed subset of EndO(DΓ1(N)(O)) under the weak

topology, and the map φ : Z∗p → EndO(DΓ1(N)(O)) is continuous for the weak topology.

For a prime q which does not divide Np and is 1 (mod N), one has φ(q) = q2Sq ∈ TΓ1(N),

since 〈q〉 is the trivial operator as q is 1 (mod N). If x ∈ Z∗p, there exists, by the

Chinese remainder theorem and Dirichlet’s theorem on primes in arithmetic progression,

a sequence of primes qn (different from primes dividing Np) which are 1 (mod N) and

which converges to x p-adically. Hence, φ(qn) converges to φ(x) in EndO(DΓ1(N)(O)).

Therefore, φ(x) ∈ TΓ1(N). The proof of the part 2 is the same as the proof of Lemma 9

of [8]. �

Let Λ be the Iwasawa algebra, O[[1 + pZp]]. By choosing a topological generator of

1 + pZp, say 1 + p, one gets an isomorphism Λ ' O[[T ]]. Under this isomorphism, the

maximal ideal mΛ of Λ gets mapped to (π, T ). We get a morphism ψ : Λ → TΓ of O-

algebras from the group homomorphism φ : 1 + pZp → (TΓ)∗. Using the morphism ψ, we

can consider TΓ as a Λ-algebra.

3.3. Divided congruence modules of level Γ0(Np) and Γ1(Np). In this subsection,

we consider the divided congruence modules of cuspidal forms for levels Γ0(Np) and

Γ1(Np). They are defined in the same way as in the level N case after just changing the

level. For the rest of this section, Γ still means Γ0(N) or Γ1(N) and Γ(p) means either

Γ0(Np) or Γ1(Np) accordingly.

Proposition 2. The closures of DΓ(O) and DΓ(p)(O) in O[[q]], which is provided with

the topology of uniform convergence, are equal.

Proof. See [19, Proposition I.3.9] and section 1 of [21]. �
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Corollary 1. There is an isomorphism preserving q-expansions of DΓ(p)(O) ⊗O F '
DΓ(F).

Corollary 2. The algebras TΓ(p),pf and TΓ,pf are naturally isomorphic. The algebras TΓ(p)

and TΓ are naturally isomorphic.

Proof. The natural restriction maps between the Hecke algebras of level Np and N are

isomorphisms because their action is continuous and the modules on which they are acting

have the same closure. See the proof of Cor. 13 of [8] for more details. �

3.4. Full Hecke algebras. In this subsection, we consider full Hecke algebras i.e. the

Hecke algebras generated by all the operators Tq, Sq for primes q with (q,Np) = 1, U`

for primes ` dividing N and Up. So, TΓ(p),full
k , DAΓ,full

k and AΓ,full
k are the Hecke algebras

generated by the Hecke operators Tq, Sq for primes q with (q,Np) = 1, U` for primes

` dividing N and Up acting on D
Γ(p)
≤k (O), DΓ

≤k(F) and SΓ
≤k(F), respectively. We denote

by TΓ(p),full, DAΓ,full and AΓ,full the full Hecke algebras acting on DΓ(p)(O), DΓ(F) and

SΓ(F), respectively which are obtained by taking the inverse limits over the weights k of

appropriate Hecke algebras as before.

Proposition 3. The pairings TΓ(p),full
k ×DΓ(p)

≤k (O)→ O, DAΓ,full
k ×DΓ

≤k(F)→ F, AΓ,full
k ×

SΓ
≤k(F)→ F given by (t, f) 7→ a1(tf) are perfect.

Proof. This is well known but we recall the proof here. Suppose f ∈ DΓ(p)
≤k (O) be such

that a1(tf) = 0 for all t ∈ TΓ(p),full
k . This means a1(Tnf) = an(f) = 0 for all n co-prime

to Np, a1(U`f) = a`(f) = 0 for all primes ` dividing N and a1(Upf) = ap(f) = 0. Thus,

we have an(f) = 0 for all n which implies f = 0. Now, suppose t ∈ TΓ(p),full
k is such that

a1(tf) = 0 for all f ∈ DΓ(p)
≤k (O). This means a1(s(tf)) = a1(t(sf)) = 0 for all s ∈ TΓ(p),full

k .

Thus, from the previous part, we get that tf = 0 for all f ∈ DΓ(p)
≤k (O) which means t = 0.

The proof for other cases goes in the exact same way. �

Corollary 3. The map TΓ(p),full
k → DAΓ,full

k induces an isomorphism TΓ(p),full
k ⊗O F →

DAΓ,full
k . Hence, we get an isomorphism TΓ(p),full ⊗O F ' DAΓ,full.

Proof. By the perfect duality above and Lemma 3, we see that the rank of torsion-free

O-module TΓ(p),full
k and the dimension of DAΓ,full

k as F-vector space are the same which

implies the corollary above. See the proof of Cor. 15 of [8] for more details. �

The composition Λ→ TΓ,pf → TΓ(p),full defines a structure of Λ-algebra on TΓ(p),full.

Proposition 4. One has TΓ(p),full/mΛTΓ(p),full ' AΓ,full.



12 SHAUNAK V. DEO

Proof. The proposition follows from Theorem 4 (a theorem of Katz that we recalled in

section 3.1), the perfect duality and its corollary above. See the proof of Prop. 16 of [8]

for more details. �

4. Relation between the components of Partial and Full Hecke algebras

Throughout this section Γ means either Γ1(N) or Γ0(N) and Γ(p) means either Γ1(Np)

or Γ0(Np) accordingly. Recall that we have a direct product decomposition TΓ =
∏

TΓ
ρ̄

and a direct sum decomposition SΓ(O) = ⊕SΓ(O)ρ̄ where the product and sum are

taken over all the Γ-modular representations. Note that, SΓ(O)ρ̄ is the intersection of

the subspace of SΓ(Qp) generated by the eigenforms lifting the system of eigenvalues

corresponding to ρ̄ with SΓ(O). The decompositions above are such that TΓ
ρ̄ is also the

largest quotient of TΓ which acts faithfully on SΓ(O)ρ̄. Let TΓ,pf
ρ̄ be the largest quotient

of TΓ,pf which acts faithfully on SΓ(O)ρ̄. Define AΓ,pf
ρ̄ in a similar way.

Note that, since DΓ(O) contains SΓ(O) as a co-torsion submodule, we have a direct

sum decomposition DΓ(O) = ⊕DΓ(O)ρ̄ similar to that of SΓ(O). Moreover, TΓ,pf
ρ̄ and TΓ

ρ̄

are the largest of quotients of TΓ,pf and TΓ respectively, acting faithfully on DΓ(O)ρ̄.

By a result of Serre and Tate (see [22, Lemma 4.4]), the sub-algebras of TΓ(p),full and

AΓ,full generated by the Hecke operators Tq, Sq for primes q not dividing Np and Up

are semi-local and the local components of both of them are in bijection with the set of

F-valued systems of eigenvalues of the Hecke operators Tq, Sq for primes q not dividing

Np and Up appearing in SΓ(F). Hence, they are in bijection with the pairs (ρ̄, λ), where ρ̄

: GQ,Np → GL2(F) is a Γ-modular representation attached to some eigenform f ∈ SΓ(F)

and λ is the eigenvalue of Up on f (see [22]).

So, we get a direct sum decomposition DΓ(p)(O) = ⊕DΓ(p)(O)ρ̄,λ similar to that of

SΓ(O) seen above. Now, let us define TΓ(p),full
ρ̄,λ to be the largest quotient of TΓ(p),full

acting faithfully on DΓ(p)(O)ρ̄,λ and AΓ,full
ρ̄,λ to be the largest quotient of AΓ,full acting

faithfully on SΓ(F)ρ̄,λ.

We get, using the Chinese Remainder Theorem and the definitions above, the product

decompositions TΓ(p),full =
∏

TΓ(p),full
ρ̄,λ , TΓ,pf =

∏
TΓ,pf
ρ̄ . Similarly, we get product decom-

positions of AΓ,full and AΓ,pf. Here, the products are finite products as the pairs (ρ̄, λ)

are finitely many.

Proposition 5. (1) For a Γ-modular representation ρ̄, one has a natural isomor-

phism of AΓ,pf
ρ̄ -algebras AΓ,pf

ρ̄ [[Up]] ' AΓ,full
ρ̄,0 .

(2) For a Γ-modular representation ρ̄, one has a natural isomorphism of TΓ,pf
ρ̄ -algebras

TΓ,pf
ρ̄ [[Up]] ' TΓ(p),full

ρ̄,0 .
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Proof. The first part of this proposition is proved by Jochnowitz (see the proof of Theorem

6.3 of [22]). The proof of the second part of the proposition is the same as that of

Proposition 17 of [8]. In the proof of Proposition 17 in [8], they adapt the proof of

Jochnowitz in characteristic 0 which relies on the interplay between the operators Up and

V . Here, V is the operator which sends
∑
anq

n to
∑
anq

pn. The same argument works

here. �

5. Finiteness of TΓ,pf
ρ̄ over TΓ

ρ̄ for new ρ̄

Throughout this section, Γ means either Γ1(N) or Γ0(N) and Γ(M) means either

Γ1(M) or Γ0(M) accordingly. Let us call a Γ-modular representation ρ̄ new if it is not

Γ(M)-modular for any proper divisor M of N . Thus, the system of eigenvalues of the

Hecke operators corresponding to ρ̄ does not have a nontrivial eigenspace in SΓ(M)(F) for

any proper divisor M of N . Let SΓ,new
k (Qp) be the O-submodule of SΓ

k (Qp) consisting

of new modular forms of weight k and level Γ. Let SΓ,new
≤k (Qp) =

∑k
i=0 S

Γ,new
i (Qp) and

SΓ,new(Qp) =
⋃∞
k=0 S

Γ,new
≤k (Qp). The following lemma follows directly from the discussion

above and the description of SΓ(O)ρ̄ given in the previous section:

Lemma 6. If ρ̄ is a new Γ-modular representation, then SΓ(O)ρ̄ is an O-submodule of

SΓ,new(Qp).

Now we recall a well-known result regarding the Galois representations attached to

level N newforms:

Lemma 7. Let f be a classical newform of tame level N over Qp. Let ρf be the p-adic

Galois representation attached to f and let Vf denote its underlying space. Let ` be a

prime dividing N and let a`(f) be the U` eigenvalue of f . Let (Vf )I` be the vector space

of I` co-invariants of Vf . Then the following are equivalent:

(1) a`(f) is a non-unit

(2) a`(f) = 0

(3) (Vf )I` = 0

If these equivalent conditions do not hold, then we have that (Vf )I` is one dimensional

and a`(f) is equal to the eigenvalue of Frob` acting on this line.

(See Lemma 2.6.1 of [18]).

Proposition 6. If ρ̄ is a new Γ-modular representation, then TΓ,pf
ρ̄ is finite over TΓ

ρ̄ .

More precisely, U` (for every `|N) is integral over TΓ
ρ̄ of degree at most 2. If one of the

following condition holds:
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(1) Γ = Γ0(N) and there does not exist a prime ` such that `||N and p|`+ 1,

(2) Γ = Γ1(N) and if there exists a prime ` such that p|`2 − 1 and `||N , then p|`+ 1

and det ρ̄(I`) 6= 1

then TΓ,pf
ρ̄ = TΓ

ρ̄ .

Proof. Let Γ = Γ0(N). Since ρ̄ is new, we know, from Lemma 6, that SΓ(O)ρ̄ ⊂
SΓ,new(Qp). Now, TΓ,pf

ρ̄ is the largest quotient of TΓ,pf which acts faithfully on SΓ(O)ρ̄.

Let ` be a prime dividing N . By Theorem 5 of [2], if `2 divides N , then U` acts like 0

on SΓ,new
k (Qp) and if `||N , then U2

` acts like `k−2 on SΓ,new
k (Qp). Hence, if `2 divides N ,

then U` acts like 0 on SΓ(O)ρ̄ and if `||N , then U2
` acts like `−2φ(`) on SΓ(O)ρ̄, where φ

: Z∗p → TΓ
ρ̄ is the map considered in Lemma 5. Thus, if `2|N , then U` = 0, and if `||N ,

then U2
` − `−2φ(`) = 0 in TΓ,pf

ρ̄ .

Suppose `||N and let f be a newform of level Γ0(N) lifting the system of eigenvalues

corresponding to ρ̄. Let π` be the `-component of the automorphic representation cor-

responding to f and ρf be the p-adic Galois representation attached to f . As `2 - N ,

π` is either principal series or special (see section 1.2 of [11]). So, it follows from the

local Langlands correspondence, that ρf |GQ`
is either a direct sum of two characters or a

non-trivial extension of a character by its cyclotomic twist (see section 3 and 5 of [31]).

As f is a newform of level Γ, the Artin conductor of ρf is N (level of f). Since `||N , the

exponent of ` appearing in the Artin conductor of ρf is exactly 1 which means (ρf )I` ,

the subspace of ρf on which I` acts trivially, is one dimensional. So, if ρf |GQ`
is a direct

sum of two characters, then one of them is unramified and the other is tamely ramified.

Otherwise, ρf |GQ`
is a non-trivial extension of an unramified character by its cyclotomic

twist. As f is a modular form of level Γ0(N), its nebentypus is trivial, which means

det ρf (I`) = 1. This implies that ρf |GQ`
is not a direct sum of two characters and hence,

ρf |GQ`
'
(
εpχ ∗
0 χ

)
, where ∗ is non-zero and ramified, χ is an unramified character and

εp is the p-adic cyclotomic character of GQ` .

As a`(f), the U` eigenvalue of f , is non-zero, by Lemma 7 above, it is the eigenvalue

of Frob` acting on (ρf )I` . Thus, a`(f) = χ(Frob`). Let x be a lift of Frob` in GQ` . Note

that, tr(ρf ◦ i`(x)) = εpχ(Frob`)+χ(Frob`) = (`+1)χ(Frob`) = (`+1)a`(f), which means

a`(f) =
tr(ρf◦i`(x))

`+1 . Suppose p - ` + 1 which implies that ` + 1 is a unit in TΓ
ρ̄ . Then on

every newform f of level Γ lifting ρ̄, the action of U` coincides with the action of (τΓ◦i`)(x)
`+1

which lies in TΓ
ρ̄ as `+1 is a unit in TΓ

ρ̄ . As ρ̄ is new, every eigenform of level Γ lifting ρ̄ is a

newform. This implies that U`− (τΓ◦i`)(x)
`+1 acts like 0 on SΓ(O)ρ̄ and hence, U` = (τΓ◦i`)(x)

`+1

in TΓ,pf
ρ̄ . Therefore, U` ∈ TΓ

ρ̄ if `||N and p - `+ 1.
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Note that, TΓ,pf
ρ̄ is generated by the Hecke operators U` over TΓ

ρ̄ . So, by combining the

discussion of the last two paragraphs, we get that TΓ,pf
ρ̄ = TΓ

ρ̄ if there does not exist a

prime ` such that `||N and p|`+ 1. Otherwise, we have U` ∈ TΓ
ρ̄ if either `2|N or p - `+ 1

and U2
` − `−2φ(`) = 0 if `||N . Therefore, we conclude that TΓ,pf

ρ̄ is a finite extension of

TΓ
ρ̄ .

Let Γ = Γ1(N). There is a continuous pseudo-representation (τΓ, δΓ) : GQ,Np → TΓ
ρ̄

such that τΓ(Frobq) = Tq, δ
Γ(Frobq) = qSq for primes q not dividing Np. Hence, we get

a continuous pseudo-representation (t, d) : GQ,Np → TΓ,pf
ρ̄ since TΓ

ρ̄ ⊂ TΓ,pf
ρ̄ . For every

prime ` dividing N , let us choose an element g` of GQ` which gets mapped to Frob` under

the quotient map GQ` → GQ`/I`. We have already fixed a natural map i` : GQ` → GQ,Np.

Hence, we get a pseudo-representation (t ◦ i`, d ◦ i`) : GQ` → TΓ1(N),pf
ρ̄ .

Now, consider the characteristic polynomial Q`(x) of g` which is defined by Q`(x) =

x2 − (t ◦ i`)(g`)x + (d ◦ i`)(g`). Let f be a newform of level N lifting the system of

eigenvalues corresponding to ρ̄. Denote by ρf the p-adic Galois representation attached

to f and by a`(f) its U` eigenvalue. By Lemma 7, if a`(f) = 0, then U` kills f . If

a`(f) 6= 0, then a`(f) is the root of the characteristic polynomial Pf (x) of ρf ◦ i`(g`). But

Q`(U`)f = Pf (a`(f))f = 0. Thus, in this case, Q`(U`) kills f . We will now determine if

it is possible to have two newforms f and g of level N lifting ρ̄ such that a`(f) 6= 0 but

a`(g) = 0 or equivalently (by Lemma 7), (ρf )I` is one dimensional but (ρg)I` = 0.

Let f be a newform of level Γ lifting ρ̄ as above and π` be the `-component of the

automorphic representation corresponding to f . So, π` is one of the following: principal

series, special and supercuspidal (see section 3 of [31]). As f is a newform, the Artin

conductor of ρf is N (level of f). Suppose `|N but `2 - N . Then, from the analysis

carried out in the Γ0(N) case above, we see that ρf |GQ`
is either a sum of an unramified

character and a tamely ramified character or a non-trivial extension of an unramified

character by its cyclotomic twist. Hence, the space (ρf )I` of I` co-invariants is also one

dimensional. Therefore, if `||N , then for every newform f of level Γ lifting ρ̄, (ρf )I` is one

dimensional and hence, a`(f) 6= 0.

Now suppose `2|N and moreover, the space of I` co-invariants of ρf is one dimensional.

So, the exponent of ` appearing in the Artin conductor of ρf is at least 2. This means

that π` is not special as otherwise, (ρf )I` being one dimensional will imply that ρf |GQ`
is

a non-trivial extension of an unramified character by its cyclotomic twist and hence, the

exponent of ` appearing in the Artin conductor of ρf is 1. The non-triviality of (ρf )I`

also implies that π` is not extraordinary supercuspidal (see proof of [31, Proposition 3.2]

for more details). Suppose π` is supercuspidal but not extraordinary. Then, by the local

Langlands correspondence, ρf |GQ`
= Ind

GQ`
GK

χ, where K is a quadratic extension of Q`,
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GK is the absolute Galois group of K, χ is a character of GK taking values in Qp and

moreover, ρf is irreducible (see section 3 of [31]). But as (ρf )I` is one dimensional, we get

that χ is an unramified character of GK . However, since the maximal unramified extension

of K is an abelian extension of Q`, this implies that ρf |GQ`
is a sum of two characters

contradicting the hypothesis that ρf |GQ`
is irreducible. Hence, π` is not supercuspidal.

Therefore, π` is principal series which means that ρf |GQ`
is a sum of two characters χ1

and χ2. Moreover, (ρf )I` 6= 0 implies that one of them is unramified, while `2|N implies

that the other is wildly ramified. Without loss of generality, suppose χ1 is wildly ramified

and χ2 is unramified.

Thus, ρ̄|GQ`
= χ1⊕χ2, where χ1 and χ2 are the reductions of χ1 and χ2 in characteristic

p, respectively. Note that, χ2 is unramified while χ1 is wildly ramified as ` 6= p. Let g

be another newform of level Γ lifting ρ̄ and π′` be the `-component of the automorphic

representation corresponding to g. If π′` is special, then ρg|GQ`
is a non-trivial extension

of a character by the cyclotomic twist of itself. This would imply that both χ1 and

χ2 are either unramified or ramified which is not the case. Hence, π′` is not special.

If π′` is extraordinary supercuspidal, then ρ̄|I` is irreducible as p ≥ 5 (see proof of [31,

Proposition 3.2]). So, π′` is not extraordinary supercuspidal. If π′` is supercuspidal but

not extraordinary, then ρg|GQ`
is induced from a character of the absolute Galois group

of a quadratic extension of Q`. Moreover, the subspace of ρg fixed by I` is trivial. But

the subspace of ρ̄ fixed by I` is one dimensional. Thus, the exponent of ` in the Artin

conductor of ρg is greater than the exponent of ` in the Artin conductor of ρ̄ (see section

1.1 of [11]). But [11, Proposition 2], along with the assumption that π′` is supercuspidal,

implies that ρ̄ is unramified at ` which gives us a contradiction. Therefore, π′` is not

supercuspidal.

This means that π′` is principal series and hence, ρg|GQ`
is a sum of two characters, say

χ′1 and χ′2. Without loss of generality, suppose χ′1 is a lift of χ1 and χ′2 is a lift of χ2.

As χ1 is wildly ramified, the Artin conductor of χ1 is same as the Artin conductor of χ′1

and the Artin conductor of χ1 (see section 1.2 of [11]). As the exponent of ` in the Artin

conductor of ρf is the sum of the exponents of ` in the Artin conductors of χ1 and χ2

and its exponent in the Artin conductor of ρg is the sum of its exponents in the Artin

conductors of χ′1 and χ′2. As both f and g are newforms of level N , the exponents of ` in

the Artin conductors of ρf and ρg are same. This implies that the Artin conductors of χ2

and χ′2 are same, which means that χ′2 is also unramified. In particular, we see that (ρg)I`

is one dimensional. As a consequence, we see that if f is a newform of level Γ lifting ρ̄

and (ρf )I` is one dimensional, then, for every newform g of level Γ lifting ρ̄, (ρg)I` is one

dimensional.
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Let us continue with the assumption that there is a newform f0 of level Γ lifting ρ̄

such that (ρf0)I` is one dimensional. Observe that in this case, from the discussion so

far, we get that for every newform g of level Γ lifting ρ̄, ρg|GQ`
is reducible and moreover,

at least one character appearing in the semi-simplification of ρg|GQ`
is unramified. Thus,

(ρ̄|GQ`
)ss = α ⊕ β, where (ρ̄|GQ`

)ss is the semi-simplification of ρ̄|GQ`
and α and β are

characters of GQ` such that at least one of them is unramified. Note that, both α and β

are defined over F. Indeed, both α|I` and β|I` take values in F as one of them is unramified

and det(ρ̄) is defined over F. So it follows from the previous discussion that the image

of I` under ρ̄ in GL2(F) is abelian and hence, is upper-triangular under a suitable basis.

Therefore, since I` is normal in GQ` , it follows that if ρ̄ is ramified at `, then under the

same basis, the image of GQ` under ρ̄ in GL2(F) is also upper-triangular which implies

that both α and β are defined over F. If ρ̄ is unramified at `, then ρ̄ is reducible as it is

new. As ρ̄ is semi-simple, it follows that both α and β are defined over F.

Suppose α 6= β. Then, by [6, Theorem 1.4.4, Chapter 1], TΓ
ρ̄ [GQ` ]/(ker(τΓ ◦ i`(GQ`))) is

a Generalized Matrix Algebra (GMA) of the form

(
TΓ
ρ̄ B

C TΓ
ρ̄

)
, where B and C are finitely

generated TΓ
ρ̄ -modules contained in the total fraction ring of TΓ

ρ̄ , and the diagonal entries

reduce to α and β modulo the maximal ideal of TΓ
ρ̄ . Moreover, BC ⊂ TΓ

ρ̄ and it is an

ideal of TΓ
ρ̄ . Let us call it I.

For a newform f of level Γ lifting ρ̄, let φf : TΓ
ρ̄ → Qp be the map which sends a Hecke

operator to its f -eigenvalue and denote its kernel by Pf . From the previous paragraph,

we see that the 2 dimensional pseudocharacter τΓ ◦ i` of GQ` is a sum of two characters

modulo Pf and hence, is reducible modulo Pf for every newform f of level Γ lifting ρ̄.

Therefore, by [6, Proposition 1.5.1, Chapter 1], it follows that I ⊂ Pf for every newform

f of level Γ lifting ρ̄. This means that if x ∈ I, then x(f) = 0 for every newform f of level

Γ lifting ρ̄. As every eigenform of level Γ lifting ρ̄ is a newform, we see that I = 0. Thus,

the projection on the diagonal entries of the GMA

(
TΓ
ρ̄ B

C TΓ
ρ̄

)
above gives two characters

α̃ and β̃ of GQ` taking values in TΓ
ρ̄ such that, α̃ is a deformation of α, while β̃ is a

deformation of β.

As at least one of α and β is unramified, without loss of generality, assume that β is

unramified. Suppose α is ramified. Then, it follows, from the analysis above, that for a

newform f of level Γ lifting ρ̄, ρf |GQ`
is a direct sum of an unramified character and a

ramified character. As α is ramified, the unramified character appearing in ρf |GQ`
is a

lift of β and hence, it is the image of β̃ modulo Pf . This means that the reduction of β̃

modulo Pf gives an unramified character for every newform f of level Γ lifting ρ̄. Hence,

by the reasoning used in the previous paragraph, we see that β̃ is an unramified character

of GQ` . By Lemma 7, it follows that for every newform f of level Γ lifting ρ̄, the U`
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eigenvalue of f is the reduction of β̃(Frob`) modulo Pf . Thus, U` − β̃(Frob`) annihilates

every newform f of level Γ lifting ρ̄. Therefore, U` = β̃(Frob`) in TΓ,pf
ρ̄ and hence, U` ∈ TΓ

ρ̄

as β̃(Frob`) ∈ TΓ
ρ̄ .

Now, suppose α is also unramified. This means that for a newform f of level Γ lifting

ρ̄, ρf |GQ`
is either a non-trivial extension of an unramified character by its cyclotomic

twist or a direct sum of an unramified character and a tamely ramified character and in

both cases, `||N (see [11, Proposition 2]). Moreover, in the second case, p|`− 1. Suppose

ρf |GQ`
is a direct sum of an unramified character and a tamely ramified character. Let ε

be the nebentypus of f . Note that, det(ρf (I`)) = ε((Z/`Z)∗) 6= 1 but its reduction is 1 in

characteristic p. So, by [11, Proposition 3], there exists a newform g of level Γ lifting ρ̄

such that ε′((Z/`Z)∗) = 1, where ε′ is the nebentypus of g. Thus, ρg|GQ`
is a non-trivial

extension of an unramified character by its cyclotomic twist. This means that either α/β

or β/α is the cyclotomic character ωp. But as p|`− 1, ωp(Frob`) = 1 and hence, ωp is the

trivial character. However, this means that α = β which contradicts our assumption that

α 6= β. Therefore, we get that, if α is unramified, then ρf |GQ`
is a non-trivial extension

of an unramified character by the cyclotomic twist of itself for every newform f of level

Γ lifting ρ̄. By [11, Proposition 3] and the discussion above, it follows that p - ` − 1.

Indeed, if p|`− 1, then by [11, Proposition 3], there exists a newform g lifting ρ̄ such that

det(ρg(I`)) 6= 1 which gives a contradiction.

As α is also unramified, we saw above that either α/β or β/α is ωp. If both of them

are ωp, then ω2
p = 1 which means p|`2 − 1. As p - ` − 1, we get that p|` + 1 if both of

them are ωp. Suppose p - ` + 1 which implies that exactly one of them is ωp. Without

loss of generality, assume α/β is ωp. Now in this case, the image of α̃ is the cyclotomic

twist of the image of β̃ modulo Pf for every newform f of level Γ lifting ρ̄. Thus, for

every such newform f , GQ` acts by the image of β̃ modulo Pf on (ρf )I` . Hence, the U`

eigenvalue of f is the reduction of β̃(Frob`) modulo Pf for every newform f of level Γ

lifting ρ̄. Therefore, by the reasoning used in the previous case, we see that U` = β̃(Frob`)

in TΓ,pf
ρ̄ which means that U` ∈ TΓ

ρ̄ .

Now suppose that there exists a newform f0 of level Γ lifting ρ̄ such that (ρf0)I` = 0

which means U`f0 = 0. Then, by our analysis above, it follows that `2|N and U`f = 0 for

all newforms f of level Γ lifting ρ̄. As ρ̄ is new of level Γ, we get, by the reasoning used

above, that U` = 0 in TΓ,pf
ρ̄ .

By combining the discussion so far, we see that for a prime ` dividing N , U` ∈ TΓ
ρ̄ if

one of the following conditions hold:

(1) `2|N ,

(2) `||N and p - `2 − 1,
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(3) `||N , p|`+ 1 and det ρ̄(I`) 6= 1.

Otherwise, Q`(U`) kills every newform f of level N lifting ρ̄. Since ρ̄ is new, every

eigenform of level N lifting ρ̄ is a newform. This implies that either U` ∈ TΓ
ρ̄ or Q`(U`) = 0

for every prime ` dividing N . For every prime ` dividing N , Q`(x) is a monic polynomial

with coefficients in TΓ
ρ̄ as the pseudo-representation (t, d) takes values in TΓ

ρ̄ . Hence, U`

is integral over TΓ
ρ̄ for every prime ` dividing N of degree at most 2. Therefore, TΓ,pf

ρ̄

is finite over TΓ
ρ̄ and moreover, TΓ,pf

ρ̄ = TΓ
ρ̄ if `||N and p|`2 − 1 implies that p|` + 1 and

det ρ̄(I`) 6= 1 as TΓ,pf
ρ̄ is generated by these U`’s over TΓ

ρ̄ . �

Remark. (1) Note that, the proof given above for the Γ1(N) case works for the Γ0(N)

case as well. But we give a different proof because it gives us a more precise result

in the Γ0(N) case and it is also simpler than the proof in the Γ1(N) case.

(2) Even though we do a detailed analysis in the Γ1(N) case above, it is not really

necessary to only prove that U` integral over TΓ1(N)
ρ̄ . Indeed, by the reasoning used

in the last paragraph of the proof above, we can easily prove that U`Q`(U`) = 0

which proves that U` is integral over TΓ1(N)
ρ̄ . For most of our purposes, we only

need the result that U` is integral over TΓ1(N)
ρ̄ . But we give this detailed analysis

to obtain a more precise result which is helpful in getting more precise version of

Theorem 3 in some cases (see the remark after the proof of Theorem 3).

6. The case of ρ̄ which is not new

Throughout this section Γ means either Γ1(N) or Γ0(N) and Γ(M) means either Γ1(M)

or Γ0(M) accordingly. Let ρ̄ be a Γ-modular representation which is not new. Thus, the

system of F-valued eigenvalues corresponding to ρ̄ has a nontrivial eigenspace in SΓ(M)(F)

for some proper divisor M of N . Let us denote by Mρ̄ the smallest divisor of N such

that the system of F-valued eigenvalues corresponding to ρ̄ has a nontrivial eigenspace in

SΓ(Mρ̄)(F). Note that, ρ̄ is then a new Γ(Mρ̄)-modular representation.

Lemma 8. If ρ̄ is a Γ-modular representation which is not new, then the natural map of

local algebras r : AΓ
ρ̄ → A

Γ(Mρ̄)
ρ̄ obtained by restriction is surjective.

Proof. First note that SΓ(Mρ̄)(F)ρ̄ ⊂ SΓ(F)ρ̄. Hence, using this inclusion, we obtain

a natural map r : AΓ
ρ̄ → A

Γ(Mρ̄)
ρ̄ by restriction. Its image Im(r) is complete and

hence, closed. It contains all the Hecke operators Tq and qSq (considered as operators

on SΓ(Mρ̄)(F)ρ̄) for all the primes q not dividing Np. There is a continuous pseudo-

representation (τ̃Γ(Mρ̄), δ̃Γ(Mρ̄)) : GQ,Mρ̄p → A
Γ(Mρ̄)
ρ̄ and Im(r) contains the Hecke op-

erators Tq = τ̃Γ(Mρ̄)(Frobq) for primes q not dividing Np. By the Chebotarev density

theorem, the set of Frobq for primes q not dividing Np is dense in GQ,Mρ̄p. Since τ̃Γ(Mρ̄)
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is continuous and Im(r) is closed, it contains τ̃Γ(Mρ̄)(g) for every g ∈ GQ,Mρ̄p. It also con-

tains qSq = δ̃Γ(Mρ̄)(Frobq) for all the primes q not dividing Np. As δ̃Γ(Mρ̄) is continuous

and Im(r) is closed, by the Chebotarev density theorem, we see that it contains δ̃Γ(Mρ̄)(g)

for every g ∈ GQ,Mρ̄p. For every prime q not dividing Mρ̄, we have τ̃Γ(Mρ̄)(Frobq) = Tq

and δ̃Γ(Mρ̄)(Frobq) = qSq. Hence, we see that Im(r) contains Tq, qSq for all the primes

q not dividing Mρ̄p. Thus, Im(r) is a closed sub-algebra of A
Γ(Mρ̄)
ρ̄ containing all of its

generators. Hence, Im(r) = A
Γ(Mρ̄)
ρ̄ . This proves the lemma. �

7. Proof of Theorem 1

Throughout this section Γ means either Γ1(N) or Γ0(N), Γ(p) means either Γ1(Np) or

Γ0(Np) accordingly and Γ(M) means Γ1(M) or Γ0(M) accordingly. As we noted before,

the natural map TΓ,pf →
∏

TΓ,pf
ρ̄ is an isomorphism and it lifts the natural map TΓ →∏

TΓ
ρ̄ . The corresponding statement for AΓ,pf and AΓ is also true. The natural surjective

map TΓ,pf → AΓ,pf sends TΓ,pf
ρ̄ onto AΓ,pf

ρ̄ . The natural surjective map TΓ(p),full → AΓ,full

takes TΓ(p),full
ρ̄,λ onto AΓ,full

ρ̄,λ .

Thus, from Proposition 4 and the discussion above, it follows that AΓ,full
ρ̄,0 is isomorphic

to TΓ(p),full
ρ̄,0 /mΛT

Γ(p),full
ρ̄,0 . By Proposition 5, TΓ(p),full

ρ̄,0 = TΓ,pf
ρ̄ [[Up]] and AΓ,full

ρ̄,0 = AΓ
ρ̄ [[Up]].

Thus, AΓ,pf
ρ̄ is isomorphic to TΓ,pf

ρ̄ /mΛTΓ,pf
ρ̄ . As the ideal mΛ is generated by two elements,

the hauptidealsatz implies that dimAΓ,pf
ρ̄ ≥ dimTΓ(p),pf

ρ̄ − 2.

Suppose ρ̄ is a new Γ-modular representation. Then, we have proved so far that TΓ,pf
ρ̄

is a finite extension of TΓ
ρ̄ . Observe that under the surjective map TΓ,pf

ρ̄ → AΓ,pf
ρ̄ , TΓ

ρ̄ is

mapped onto AΓ
ρ̄ . This follows from the fact that the map between the partially full Hecke

algebras is obtained by first reducing the partially full Hecke algebra in characteristic 0

modulo p to get an action on DΓ(F)ρ̄ and then restricting it to the subspace SΓ(F)ρ̄.

Hence, we see that AΓ,pf
ρ̄ is finite over AΓ

ρ̄ .

Therefore, dimAΓ,pf
ρ̄ = dimAΓ

ρ̄ and dimTΓ,pf
ρ̄ = dimTΓ

ρ̄ . By the Gouvêa-Mazur infinite

fern argument, we see that dimTΓ
ρ̄ ≥ 4 (see [17, Corollary 2.28] and [20, Theorem 1]).

Hence, dimAΓ
ρ̄ ≥ dimTΓ

ρ̄ − 2 ≥ 2.

Now suppose that ρ̄ is not a new Γ-modular representation. Thus, as remarked before,

there exists a proper divisor Mρ̄ of N such that ρ̄ is a new Γ(Mρ̄)-modular representation

(we can take it to be the smallest divisor of N such that the eigenspace corresponding to

the system of eigenvalues corresponding to ρ̄ is nonzero in SΓ1(Mρ̄)(F)). If Mρ̄ = 1, then

we know that dimA
Γ(Mρ̄)
ρ̄ = 2 by Theorem III of [8]. If Mρ̄ > 1, then since ρ̄ is a new

Γ(Mρ̄)-modular representation, repeating the argument given in the previous paragraph

for A
Γ(Mρ̄)
ρ̄ and TΓ(Mρ̄)

ρ̄ gives dimA
Γ(Mρ̄)
ρ̄ ≥ 2 (we can do this since, all the results till the

previous section are valid for any level not divisible by p. This condition is satisfied by Mρ̄
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as it divides N which is co-prime to p). Thus, in any case, we see that dimA
Γ(Mρ̄)
ρ̄ ≥ 2.

By Lemma 8, we have a surjective map AΓ
ρ̄ → A

Γ(Mρ̄)
ρ̄ . Hence, dimAΓ

ρ̄ ≥ 2 when ρ̄ is

not a new Γ-modular representation. Thus, Theorem 1 is proved for all the Γ-modular

representations ρ̄ .

8. Proof of Theorem 3

Theorem 5. (Böckle, Diamond-Flach-Guo, Gouvêa-Mazur, Kisin) Under the hypotheses

of Theorem 3, the natural map Rρ̄ → TΓ1(N)
ρ̄ is an isomorphism between local rings of

dimension 4.

Proof. If ρ̄ is a Γ1(N)-modular representation which also satisfies the hypotheses of The-

orem 3, then mimicking the proof of Theorem 18 of [8] gives the result of the theorem.

We can mimic the argument since, under all these assumptions, the infinite fern argument

of Gouvêa-Mazur, [9, Theorem 2.8, Theorem 3.1 and Theorem 3.9], [14, Theorem 1.1],

[15, Theorem 3.6] and [25, Main Theorem], which are the key ingredients of the proof of

Theorem 18 of [8], hold. Note that the Hecke algebra appearing in [9, Theorem 3.9] is of

a higher level N ′ such that N |N ′ and N and N ′ have the same prime factors (see the dis-

cussion after [9, Theorem 2.7] for more details). But the hypotheses of Theorem 3, along

with [11, Proposition 2], ensure that all eigenforms of level N ′ lifting ρ̄ arise from new-

forms of level dividing N which means that the natural restriction map TΓ1(N ′)
ρ̄ → TΓ1(N)

ρ̄

is an isomorphism. �

Lemma 9. Under the hypotheses of Theorem 3, the algebra TΓ1(N)
ρ̄ is flat over Λ for the

structure of Λ-algebra on TΓ1(N)
ρ̄ defined at the end of section 2.2.

Proof. The proof is similar to that of Lemma 19 of [8]. But we need to make a few

changes. Let ρ̄ be a Γ1(N)-modular representation. If the p-primary part of (Z/NZ)∗ is∏i=n
i=1 Z/peiZ, then the universal deformation ring Rdet ρ̄ of det ρ̄ is Λ[Y1, .., Yn]/(Y1

pe1 −
1, · · · , Ynp

en − 1). Thus, if p does not divide φ(N), then Rdet ρ̄ = Λ. Using the same

arguments as used in the proof of Lemma 19 of [8], we get that Rρ̄ is flat over Rdet ρ̄.

Since Rdet ρ̄ is finite and free over Λ, it is also flat over Λ. So, we get that Rρ̄ is flat over

Λ. To verify that the map Λ → Rρ̄ → TΓ1(N)
ρ̄ is the same as the map Λ → TΓ1(N)

ρ̄ given

at the end of section 2.2, we first show that it is true for all the primes q ∈ 1 + pZp which

are 1 (mod N). This is shown in exactly the same way as it is showed for all the primes

q ∈ 1+pZp in the proof of Lemma 19 of [8]. Since we are choosing the primes which are 1

(mod N), the nebentypus is trivial at those primes and hence, we can use the argument

used in the proof of Lemma 19 of [8] without modifications. By Dirichlet’s theorem on

primes in arithmetic progressions, we know that the set of all such primes is dense in
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1 + pZp. Thus, by continuity, we see that the two maps considered above are the same.

Under the hypotheses of Theorem 3, the map Rρ̄ → TΓ1(N)
ρ̄ is an isomorphism. Hence,

we conclude that TΓ1(N)
ρ̄ is flat over Λ for the Λ-algebra structure defined on TΓ1(N)

ρ̄ at

the end of section 2.2. �

There is a surjective map TΓ1(N)
ρ̄ → A

Γ1(N)
ρ̄ whose kernel contains mΛT

Γ1(N)
ρ̄ by Propo-

sition 4. Hence, we get a surjective map TΓ1(N)
ρ̄ /mΛT

Γ1(N)
ρ̄ → A

Γ1(N)
ρ̄ . Since TΓ1(N)

ρ̄ is

flat over Λ by Lemma 9, it follows, from [16, Theorem 10.10], that the Krull dimension

of TΓ1(N)
ρ̄ /mΛT

Γ1(N)
ρ̄ is equal to dimTΓ1(N)

ρ̄ − 2 = 4 − 2 = 2. Thus, the Krull dimension

of A
Γ1(N)
ρ̄ is at most 2. But, by Theorem 1, the dimension of A

Γ1(N)
ρ̄ is at least 2. Hence,

the dimension of A
Γ1(N)
ρ̄ is exactly 2. This concludes the proof of first part of Theorem 3

for Γ1(N) case.

Let us assume that ρ̄ satisfies the hypothesis of Theorem 3 and is also new. Then

we have proved that TΓ1(N),pf
ρ̄ is an integral extension of TΓ1(N)

ρ̄ and A
Γ1(N),pf
ρ̄ is an

integral extension of A
Γ1(N)
ρ̄ . By Proposition 4, we see that the kernel of the natu-

ral map TΓ1(N),pf → AΓ1(N),pf is mΛTΓ1(N),pf. Thus, the kernel of the natural map

TΓ1(N)
ρ̄ → A

Γ1(N)
ρ̄ is contained in every prime ideal of TΓ1(N),pf

ρ̄ containing mΛT
Γ1(N),pf
ρ̄ .

Hence, by going-up theorem, the kernel is contained in every prime ideal of TΓ1(N)
ρ̄

containing mΛT
Γ1(N)
ρ̄ . Therefore, the natural surjective map (TΓ1(N)

ρ̄ /mΛT
Γ1(N)
ρ̄ )red →

(A
Γ1(N)
ρ̄ )red is an isomorphism. Under the hypothesis of Theorem 3, the surjective map

Rρ̄ → TΓ1(N)
ρ̄ is an isomorphism. Thus, from the proof of Lemma 9, it follows that

(R̃0
ρ̄)

red is isomorphic to (Rρ̄/mΛRρ̄)
red (this follows from the fact that the universal de-

formation ring of det ρ̄ is Rdet ρ̄ = Λ[Y1, .., Yn]/(Y1
pe1 − 1, ..., Yn

pen − 1) and hence, its

maximal ideal is Rad(mΛ)) and the map Rρ̄ → TΓ1(N)
ρ̄ considered above induces an iso-

morphism (R̃0
ρ̄)

red → (TΓ1(N)
ρ̄ /mΛT

Γ1(N)
ρ̄ )red. As seen before, we have a surjective map

(R̃0
ρ̄)

red → (A
Γ1(N)
ρ̄ )red and this map factors through (TΓ1(N)

ρ̄ /mΛT
Γ1(N)
ρ̄ )red. Since both

the maps (R̃0
ρ̄)

red → (TΓ1(N)
ρ̄ /mΛT

Γ1(N)
ρ̄ )red and (TΓ1(N)

ρ̄ /mΛT
Γ1(N)
ρ̄ )red → (A

Γ1(N)
ρ̄ )red are

isomorphisms, we see that (R̃0
ρ̄)

red is isomorphic to (A
Γ1(N)
ρ̄ )red under the map mentioned

above.

Now suppose ρ̄ satisfies the hypotheses of Theorem 3 but it is not new. Note that,

while proving the theorem for a new ρ̄ of level N , we use the result that TΓ1(N),pf
ρ̄ is

an integral extension of TΓ1(N)
ρ̄ to prove that the kernel of the surjective map TΓ1(N)

ρ̄ →
A

Γ1(N)
ρ̄ is nilpotent modulo mΛT

Γ1(N)
ρ̄ , which in turn implies the isomorphism between

(TΓ1(N)
ρ̄ /mΛT

Γ1(N)
ρ̄ )red and (A

Γ1(N)
ρ̄ )red. This, along with the isomorphism between Rρ̄

and TΓ1(N)
ρ̄ , gives us the isomorphism between (R̃0

ρ̄)
red and (A

Γ1(N)
ρ̄ )red. In the present

situation, we know that Rρ̄ and TΓ1(N)
ρ̄ are isomorphic. So, to prove the theorem in the

current case, it suffices to prove that TΓ1(N),pf
ρ̄ is an integral extension of TΓ1(N)

ρ̄ . To prove
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this, we will first compare the Artin conductor of ρ̄ with the level N and then do a case by

case analysis using the technique used in the proof of Proposition 6. Let C be the Artin

conductor of ρ̄. Recall that we assume ρ̄ to be semi-simple. As there exists a newform

of level N giving rise to ρ̄, we see that N = C
∏
rv(r), where the product is over finitely

many primes r and v(r) ≤ 2 for every r (See [11, Proposition 2] and the discussion before

it). Note that the product may include some divisors of C.

Let ` be a prime dividing N . So, if f is an eigenform of level N lifting the system

of eigenvalues associated to ρ̄, then f comes from a newform g of level M such that the

highest power of ` dividing N
M is at most 2. Thus, f(z) =

∑i=r
i=1 g(diz), where di’s are

some divisors of N
M . Now we will analyze the action of U` on f case by case to find a

monic polynomial with coefficients in TΓ1(N)
ρ̄ satisfied by U`.

Case 1: `|M but ` - NM : In this case, ` - di for all i and hence, f is new at `. Therefore,

from the proof of Proposition 6, we see that U`Q`(U`)(f) = 0 where Q`(x) is the charac-

teristic polynomial of a lift of Frob` in GQ,Np as considered in the proof of Proposition 6.

Case 2: `|M and `||NM : In this case, for every i either `||di or ` - di and g is an eigenform

for U`. So, U`f is an eigenform of level N
` which is also new at ` if it is non-zero. So, by

the same logic as in the previous case, U`Q`(U`)(U`f) = 0.

Case 3: `|M and `2|NM : In this case, for every i either ` - di or ` divides di with multi-

plicity at most 2 and g is an eigenform for U`. So, U2
` f is an eigenform of level N

`2
and it

is new at ` when it is non-zero. Thus, we get U`Q`(U`)(U
2
` f) = 0.

Case 4: ` - M and ` - di for all i: If ` - M and ` - d, then it follows directly from

the description of the action of T` and U` on the q-expansions of modular forms, along

with the assumption that g is an eigenform of level M , that U` stabilizes the subspace of

modular forms of level Md` generated by g(dz) and g(`dz) (see [5, Lemma III.7.2] and the

discussion around it). Moreover, the characteristic polynomial of U` over this subspace

is (U2
` − tr ρg(Frob`)U` + det ρg(Frob`)), where ρg is the p-adic Galois representation of

GQ,Mp attached to g. Thus, in this case, we get that Q`(U`)(f) = 0.

Case 5: ` - M and ` divides at least one of the di’s: Note that, U`g(diz) is an

eigenform of level N
` if `||di and U2

` g(diz) is an eigenform of level N
`2

if `2|di. This means

that for all i, one of the g(diz), U`g(diz) and U2
` g(diz) is an eigenform of level co-prime

to `. So, by case 4, we have Q`(U`)(U
2
` g(diz)) = 0 for all i as both Q`(U`)(U`g(diz)) = 0

and Q`(U`)(g(diz)) = 0 imply Q`(U`)(U
2
` g(diz)) = 0. Hence, we have Q`(U`)(U

2
` f) = 0.

From the previous paragraphs, we conclude that, if f is an eigenform of level N lifting ρ̄,

then (U3
`Q`(U`))f = 0 which means U3

`Q`(U`) = 0. As Q`(x) is a monic polynomial with

coefficients in TΓ1(N)
ρ̄ , U` is integral over TΓ1(N)

ρ̄ for all primes ` dividing N . Therefore,

TΓ1(N),pf
ρ̄ is an integral extension of TΓ1(N)

ρ̄ and A
Γ1(N),pf
ρ̄ is an integral extension of A

Γ1(N)
ρ̄ .
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Now using the argument used for the new case above, we get that (R̃0
ρ̄)

red is isomorphic

to (A
Γ1(N)
ρ̄ )red. This concludes the proof of the second part of Theorem 3 for Γ1(N) case.

Let ρ̄ be a Γ0(N)-modular representation which satisfies hypothesis of Theorem 3.

Then, by the arguments above, it follows thatA
Γ1(N)
ρ̄ has Krull dimension 2 and (A

Γ1(N)
ρ̄ )red

is isomorphic to (R̃0
ρ̄)

red. We have a natural surjective map A
Γ1(N)
ρ̄ → A

Γ0(N)
ρ̄ . By The-

orem 1, the Krull dimension of A
Γ0(N)
ρ̄ is at least 2. Hence, we conclude that the Krull

dimension of A
Γ0(N)
ρ̄ is exactly 2. If p does not divide φ(N), then as observed in the

introduction, the natural surjective map A
Γ1(N)
ρ̄ → A

Γ0(N)
ρ̄ is an isomorphism. Hence, we

get that (A
Γ0(N)
ρ̄ )red is isomorphic to (R̃0

ρ̄)
red. Thus, Theorem 3 is proved in the Γ0(N)

case.

Remark. Let ρ̄ be a Γ1(N)-modular representation satisfying the hypothesis of Theorem 3

and assume p - φ(N). Moreover, assume if `||N and p|` + 1, then det ρ̄(I`) 6= 1. Hence,

from the proof of Proposition 6 and the proof of Theorem 1, we see that the kernel of

the map TΓ1(N)
ρ̄ → A

Γ1(N)
ρ̄ is mΛT

Γ1(N)
ρ̄ . As p - φ(N), the kernel of the surjective map

Rρ̄ → R̃0
ρ̄ is mΛRρ̄. As ρ̄ satisfies the hypotheses of Theorem 3, we get that Rρ̄ ' TΓ1(N)

ρ̄ .

Hence, by combining all the observations above, we see that the natural surjective map

R̃0
ρ̄ → A

Γ1(N)
ρ̄ is an isomorphism. Thus, for this case, we get a stronger statement than

Theorem 3.

9. Proof of Theorem 2

Throughout this section Γ means either Γ0(N) or Γ1(N) with p - φ(N). Assume that

ρ̄ is an unobstructed Γ-modular representation. So, by assumption, the cotangent space

of R̃0
ρ̄ has dimension 2 and this implies that its Krull dimension is at most 2. We have a

surjective morphism R̃0
ρ̄ → AΓ

ρ̄ . The Krull dimension of AΓ
ρ̄ is at least 2 by Theorem 1.

Hence, the Krull dimension of R̃0
ρ̄ is exactly 2 and it is a regular local ring of dimension 2.

Therefore, by [16, Proposition 10.16], it is isomorphic to F[[x, y]]. Hence, the surjective

map R̃0
ρ̄ → AΓ

ρ̄ is an isomorphism. This proves Theorem 2 for the cases considered above.

If ρ̄ is an unobstructed Γ1(N)-modular representation and p|φ(N), then we have a

surjective morphism R̃0
ρ̄ → (A

Γ1(N)
ρ̄ )red. By Theorem 1, A

Γ1(N)
ρ̄ and hence, (A

Γ1(N)
ρ̄ )red

both have Krull dimension at least 2. Therefore, the argument used in the previous

paragraph proves Theorem 2 in this case as well. This completes the proof of Theorem 2

in all the cases.
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10. Unobstructed modular representations

In this section, we study Γ1(N)-modular representations to determine if and when

they can be unobstructed. If ρ̄ is irreducible, then ρ̄ is unobstructed in our sense if and

only if H1(GQ,Np, ad0ρ̄) has dimension 2 (see section 1.4 of [8]). By Tate’s global Eu-

ler characteristic formula, we see that dim H1(GQ,Np, ad0ρ̄) ≥ 2 with equality if and

only if H2(GQ,Np, ad0ρ̄) = 0. If p does not divide φ(N), then this is equivalent to

H2(GQ,Np, adρ̄) = 0, as adρ̄ = 1 ⊕ ad0ρ̄ and, by the global Euler characteristic for-

mula, H2(GQ,Np, 1) = 0. Thus, in this case, ρ̄ is unobstructed in our sense if and only if it

is unobstructed in the sense of Mazur ([26], section 1.6). The study of such unobstructed

representations is carried out in [31], [32] when p does not divide φ(N).

However, if ρ̄ is irreducible and p divides φ(N), then the global Euler characteristic

formula tells us that H2(GQ,Np, 1) 6= 0 and hence, H2(GQ,Np, adρ̄) 6= 0. Thus, we see

that ρ̄ is always obstructed in the sense of Mazur if p|φ(N) (see Theorem 4.5 of [31]).

However, it is not clear a priori if ρ̄ can be unobstructed in our sense when p|φ(N). We

devote most of this section to study the unobstructedness of reducible and irreducible ρ̄’s

when p|φ(N).

Throughout this section, we assume that p|φ(N) unless otherwise stated. Note that,

as p - N and p|φ(N), there exists at least one prime divisor ` of N such that p|` − 1 i.e.

` ≡ 1 (mod p). Let C be the category of local profinite F-algebras. Let Dρ̄ be the functor

from C to SET S of deformations of the pseudo-representation (tr ρ̄, det ρ̄) and D0
ρ̄ be its

subfunctor of deformations with constant determinant.

Proposition 7. If p|φ(N), then every reducible Γ1(N)-modular representation is ob-

structed.

Proof. Let ρ̄ be a reducible Γ1(N)-modular representation. Up to a twist, ρ̄ is of the form

1 ⊕ χ where χ is an odd character of GQ,Np taking values in F. The character χ is odd

because ρ̄ is odd. By main theorem of [4], we have the following exact sequence involving

tangent space of Dρ̄ :

0→ Tan(D1 ⊕Dχ)
i−→ Tan(Dρ̄)→ H1(GQ,Np, χ)⊗H1(GQ,Np, χ

−1)→ H2(GQ,Np, 1)2

Here, Dχ and D1 are the deformation functors of χ and 1 as characters of GQ,Np, respec-

tively and i is the map which sends a pair of deformations (α, β) of (χ, 1) on F[ε]/(ε2) to

the deformation α+ β of tr ρ̄ = 1 + χ.

Let γ be an element of H1(GQ,Np, χ) ⊗ H1(GQ,Np, χ
−1) which is the image of some

deformation (t, d) of (tr ρ̄, det ρ̄) to F[ε]/(ε2). Thus, d is a deformation of det ρ̄ = χ and

hence, an element of Tan(Dχ) ⊂ Tan(D1 ⊕ Dχ). Thus, subtracting the image of this
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element under the map i from (t, d) gives us an element of Tan(D0
ρ̄) whose image in

H1(GQ,Np, χ)⊗H1(GQ,Np, χ
−1) is still γ. Therefore, we have an exact sequence:

0→ Tan((D1 ⊕Dχ)0)
i−→ Tan(D0

ρ̄)→ H1(GQ,Np, χ)⊗H1(GQ,Np, χ
−1)→ H2(GQ,Np, 1)2

Here, (D1⊕Dχ)0 is the subfunctor of D1⊕Dχ parameterizing the deformations (α, β) of

(1, χ) such that αβ is constant.

Observe that, dimH1(GQ,Np, 1) = n + 1, where n = number of prime divisors of N

which are 1 mod p. Hence, dim Tan((D1⊕Dχ)0) = n+ 1. Since, i is an injective map, we

get dim Tan(D0
ρ̄) ≥ n+ 1. Thus, if n ≥ 2, then dim Tan(D0

ρ̄) ≥ 3. Hence, ρ̄ is obstructed

when n ≥ 2 i.e. when there are at least two primes dividing N which are 1 mod p.

Let us now assume that n = 1. Thus, there is a unique prime ` which divides N

and which is 1 mod p. In this case, dimH1(GQ,Np, 1) = 2 and by Tate’s global Euler

characteristic formula, dimH2(GQ,Np, 1) = 1. From the exact sequence above, we get

that dim Tan(D0
ρ̄) ≥ 2 + dimH1(GQ,Np, χ) dimH1(GQ,Np, χ

−1)− 2 dimH2(GQ,Np, 1).

We shall distinguish between two cases:

First case: χ|GQ`
= 1

Note that, as ` ≡ 1 (mod p), ωp|GQ`
= 1.

If χ 6= ωp, then, by Greenberg-Wiles version of Poitou-Tate duality ([30, Theorem 2]),

we get that dimH1(GQ,Np, χ) ≥ dimH1(GQ` , χ|GQ`
)−dimH0(GQ` , χ|GQ`

)+dimH1(GQp , χ|GQp )−
dimH0(GQp , χ|GQp ). As ` ≡ 1 (mod p), dimH1(GQ` , 1) = 2. By the local Euler charac-

teristic formula, dimH1(GQp , χ|GQp )−dimH0(GQp , χ|GQp ) = 1+dimH2(GQp , χ|GQp ) ≥ 1.

Since, χ|GQ`
= 1, we see that dimH1(GQ,Np, χ) ≥ 2− 1 + 1 = 2.

If χ = ωp, then, using the Kümmer exact sequence, we get that a class in H1(GQ,Np, ωp)

is represented by a co-cycle of the form g 7→ g(α)/α, with α ∈ Q, αp ∈ Q and vq(α
p) = 0

for all primes q - Np (See section 1 of [30] for more details). Hence, dimH1(GQ,Np, ωp) =

n′, where n′ = number of distinct prime factors of Np. Hence, dimH1(GQ,Np, ωp) ≥ 2.

Since, χ−1|GQ`
= 1 as well, the same argument gives us dimH1(GQ,Np, χ

−1) ≥ 2.

Thus, combining all the calculations above, we get that dim Tan(D0
ρ̄) ≥ 2 + (2)(2) −

2(1) = 4. Hence, if n = 1 and χ|GQ`
= 1, then ρ̄ is obstructed.

Second case: χ|GQ`
6= 1

As χ|GQ`
6= 1, ωp ⊗ χ 6= 1. Thus, H0(GQ` , χ|GQ`

) = 0, H2(GQ` , χ|GQ`
) = H0(GQ` , ωp ⊗

χ|GQ`
) = 0 and hence, H1(GQ` , χ|GQ`

) = 0. Similarly, we get that H1(GQ` , χ
−1|GQ`

) = 0.

Thus, the calculations done in the first case do not imply that dim Tan(D0
ρ̄) > 2 which is

required to prove that ρ̄ is obstructed.
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Let us assume that ρ̄ is unobstructed. So, the dimension of the tangent space of R̃0
ρ̄ is 2.

By Theorem 1, its Krull dimension is at least 2. Hence, R̃0
ρ̄ is isomorphic to F[[x, y]], the

power series ring in two variables. Let (tuniv, duniv) be the universal pseudo-representation

with constant determinant in characteristic p deforming (tr ρ̄, det ρ̄).

By [6, Theorem 1.4.4, Chapter 1], R̃0
ρ̄[GQ` ]/(ker(tuniv ◦ i`(GQ`)) is a Generalized Ma-

trix Algebra (GMA) of the form

(
R̃0
ρ̄ B

C R̃0
ρ̄

)
, where B and C are finitely generated R̃0

ρ̄-

modules and the diagonal entries reduce to 1 and χ modulo the maximal ideal of R̃0
ρ̄.

By [6, Theorem 1.5.5, Chapter 1], we get injective maps (B/mR̃0
ρ̄
B)∗ ↪→ Ext1

GQ`
(χ, 1)

and (C/mR̃0
ρ̄
C)∗ ↪→ Ext1

GQ`
(1, χ). Since, we have H1(GQ` , χ|GQ`

) = H1(GQ` , χ
−1|GQ`

) =

0, it implies that Ext1
GQ`

(χ, 1) = Ext1
GQ`

(1, χ) = 0 and hence, B = C = 0. Thus,

tuniv ◦ i`(GQ`) = κ1 + κ2, where κ1 and κ2 are characters of GQ` taking values in (R̃0
ρ̄)
∗

and are deformations of 1 and χ, respectively. Therefore, tuniv ◦ i` factors through Gab
Q` ,

the abelianization of GQ` .

By local class field theory, Gab
Q` = Z∗` × Ẑ. Let pe be the highest power of p dividing

`− 1. Let a ∈ Gab
Q` be the unique element of order pe. Since, a has order pe and F[[x, y]]

does not have any nontrivial element of order p, it follows that κ1(a) = κ2(a) = 1. Let b

be a lift of a in GQ` . Hence, tuniv ◦ i`(b)) = 2 i.e. it is constant. Hence, t ◦ i`(b) = 2 for

any deformation t of tr ρ̄ as a pseudo-character of GQ,Np with constant determinant in

characteristic p. But it is easy to construct an explicit such deformation t with t◦i`(b) 6= 2.

Indeed, to construct such a deformation, first observe that the maximal pro-p subgroup

Gab,p
Q,Np of Gab

Q,Np is Z/peZ× Zp. Consider a deformation 1̃ of 1 as a character of GQ,Np to

R = F[[x]][y]/(yp
e−1) which maps Gab,p

Q,Np → 1+mR in the following way: the topological

generator of Zp is mapped to 1 + x and the generator of Z/peZ is mapped to y. The

character χ/1̃, which we will denote by χ̃, is a deformation of χ. Let ρ̃ = 1̃ ⊕ χ̃. Thus,

(tr ρ̃,det ρ̃) is a deformation of (tr ρ̄, det ρ̄) to R with constant determinant. We claim

that tr(ρ̃ ◦ i`(b)) 6= 2.

To prove the claim, first consider the map iab
` : Gab

Q` → Gab
Q,Np induced from i` by passing

to the abelianzations of both the groups. By class field theory, Gab
Q,Np =

∏
Z∗q where the

product is taken over primes q which divide Np. By the local-global compatibility of

class field theory, Z∗` component of Gab
Q,Np, lies in the image of Z∗` ⊂ Gab

Q` under the map

iab
` . Thus, the unique element of Gab

Q,Np of order pe is iab
` (a). Therefore, tr(ρ̃ ◦ i`(b)) =

1̃(iab
` (a)) + χ̃(iab

` (a)) = y + y−1. If y + y−1 = 2, then it would imply (y − 1)2 = 0. But

this relation does not hold in R. Hence, tr(ρ̃ ◦ i`(b)) 6= 2 and our claim is proved.

Thus, we get a contradiction to our hypothesis that ρ̄ is unobstructed. Therefore, in

this case as well, ρ̄ is obstructed.
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Therefore, combining all the results above, we get that if ρ̄ is a reducible Γ1(N)-

modular representation and if p|φ(N), then ρ̄ is obstructed. This finishes the proof of

Proposition 7. �

Remark. Now suppose that ρ̄ is a reducible Γ1(N)-modular representation and p does not

divide φ(N). Up to a twist, ρ̄ = 1⊕χ. If p - φ(N), then, dimH1(GQ,Np, 1) = 1 and, Tate’s

global Euler characteristic formula implies that H2(GQ,Np, 1) = 0. The exact sequence of

[4] considered above implies dim Tan(D0
ρ̄) = 1+dimH1(GQ,Np, χ) dimH1(GQ,Np, χ

−1). If

χ = ωp, then by the Kümmer theory argument above, it follows that dimH1(GQ,Np, ωp)

is the number of distinct prime divisors of Np and hence, greater than 1. Hence, if

χ = ωp, ωp
−1, then dim Tan(D0

ρ̄) > 2. Hence, in this case ρ̄ is obstructed. If χ 6=
ωp, ωp

−1, then by Greenberg-Wiles version of Poitou-Tate duality, we get that k + 1 ≤
dimH1(GQ,Np, χ) ≤ k + 1 + dimA(χ−1ωp) and k′ + 1 ≤ dimH1(GQ,Np, χ

−1) ≤ k′ + 1 +

dimA′(χωp), where k is the number of prime divisors ` of N such that χ|GQ`
= ωp|GQ`

, k′

is the number of prime divisors ` of N such that χ−1|GQ`
= ωp|GQ`

, A(χ−1ωp) is the part

of the p-torsion subgroup of the class group of the totally real abelian extension F of Q
fixed by Ker(χ−1ωp) on which Gal(F/Q) acts by χ−1ωp and A′(χωp) is the part of the

p-torsion subgroup of the class group of the totally real abelian extension F ′ of Q fixed

by Ker(χωp) on which Gal(F ′/Q) acts by χωp.

Proposition 8. Suppose p|φ(N). Let ρ̄ be an absolutely irreducible Γ1(N)-modular rep-

resentation such that ρ̄|GQ`
is reducible for at least one prime ` dividing N which is 1 mod

p. Then, ρ̄ is obstructed.

Proof. Let ρ̄ be an absolutely irreducible Γ1(N)-modular representation. By [32, Lemma

2.5], we have:

dimFH
2(GQ,Np, adρ̄) = dimFX1(GQ,Np, ωp ⊗ adρ̄) + Σq|Np dimFH

0(GQq , ωp ⊗ adρ̄)

Note that adρ̄ = 1 ⊕ ad0ρ̄. By Tate’s global Euler characteristic formula, we get that

dimFH
2(GQ,Np, 1) = n, where n = number of prime divisors of N which are 1 mod p.

For a prime q, dimFH
0(GQq , ωp) is 1 if q is 1 mod p and 0, otherwise. By removing the

contributions of the trivial representation from both sides of the formula above, we get

dimFH
2(GQ,Np, ad0ρ̄) = dimFX1(GQ,Np, ωp ⊗ ad0ρ̄) + Σq|Np dimFH

0(GQq , ωp ⊗ ad0ρ̄).

Now, let ` be a prime dividing N such that ` − 1 is divisible by p. Suppose that

ρ̄|GQ`
is reducible. Thus, ρ̄|GQ`

is an extension of a character χ1 by a character χ2. If

χ1 6= χ2, then, by Tate’s local Euler characteristic formula, Ext1
GQ`

(χ1, χ2) = 0. So,

ρ̄|GQ`
= χ1 ⊕ χ2 and ad0ρ̄|GQ`

= 1 ⊕ χ1χ2
−1 ⊕ χ1

−1χ2. As p|` − 1, ωp(GQ`) = 1 and

H0(GQ` , ωp ⊗ ad0ρ̄) = H0(GQ` , ad0ρ̄) and in this case, both of them are nonzero. Hence,

if χ1 6= χ2, then, by the formula above, H2(GQ,Np, ad0ρ̄) 6= 0 and ρ̄ is obstructed.
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If χ1 = χ2 = χ, then ρ|GQ`
is either χ ⊕ χ or a nontrivial extension of χ by itself. If

ρ|GQ`
= χ ⊕ χ, then clearly 1 ⊂ ad0ρ̄. If ρ|GQ`

is a non-trivial extension of χ by itself,

then choose a basis of ρ̄ such that ρ̄(GQ`) is upper triangular and identify ad0ρ̄ with

the subspace of trace 0 matrices of M2(F). Then, GQ` acts trivially on the subspace of

ad0ρ̄ generated by the element

(
0 1
0 0

)
. Thus, 1 ⊂ ad0ρ̄ in this case also. Therefore,

if χ1 = χ2, then H0(GQ` , ωp ⊗ ad0ρ̄) = H0(GQ` , ad0ρ̄) 6= 0 and hence, by the formula

above, H2(GQ,Np, ad0ρ̄) 6= 0 which implies that ρ̄ is obstructed. This concludes the proof

of Proposition 8. �

We would like to determine the cases when the situation considered as above would

arise i.e. when ρ̄|GQ`
would be reducible. Note that, if f is an eigenform of level N and

ρf is the Galois representation attached to it, then we know all the possible descriptions

of ρf |GQ`
for a prime ` dividing N . So, we will now analyze all the possible descriptions

of ρf |GQ`
for an eigenform f lifting ρ̄ to determine which of them will make ρ̄ obstructed

and when can they arise. This will give us some conditions on ρ̄ which will force it to be

obstructed.

Let f be an eigenform of level N lifting ρ̄, ` be a prime dividing N which is 1 mod p,

ρf be the p-adic Galois representation attached to f and π` be the `-component of the

automorphic representation associated to f . If π` is either principal series or special, then

by the local Langlands correspondence, we see that ρf |GQ`
and hence, ρ̄|GQ`

is reducible

(see section 3 and section 5 of [31] for a similar analysis). This implies that ρ̄ is obstructed.

In particular, if `|N but `2 - N , then we know that π` is either special or principal series

(see section 1.2 of [11]). If (ρ̄)I` , the subspace of ρ̄ on which I` acts trivially, is non-zero,

then clearly ρ̄|GQ`
is reducible. If there exists an eigenform f of level M which lifts ρ̄

such that there exists at least one prime divisor ` of N which is 1 mod p and which does

not divide M , then ρ̄ is unramified at ` and hence, ρ̄|GQ`
is reducible. Therefore, in these

cases, ρ̄ is obstructed.

On the other hand, if π` is supercuspidal, then, as ` 6= 2, it follows, from the local

Langlands correspondence, that ρf |GQ`
is induced from a character χ of GK = Gal(Q`/K),

where K is a quadratic extension of Q` and moreover, ρf |GQ`
is irreducible (see the proof

of Proposition 3.2 of [31]). Let χσ be the Gal(K/Q`)-conjugate character of χ. So,

ρf |GK ' χ ⊕ χσ. If ρ̄|GQ`
is reducible, then clearly, χ = χσ where χ and χσ are the

reductions of χ and χσ in characteristic p, respectively. This means that χ
χσ factors

through the maximal abelian pro-p quotient of GK . But it follows, from local class field

theory and the assumption that p|` − 1, that maximal abelian pro-p extension of K is

also abelian over Q`. So, if χ
χσ factors through the maximal abelian pro-p quotient of

GK , then it implies that ρf |GQ`
= Ind

GQ`
GK

χ is reducible, contradicting the hypothesis that
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it is irreducible. Thus, we see that if π` is supercuspidal and p|` − 1, then ρ̄|GQ`
is not

reducible. We would like to record these results in the following corollary:

Corollary 4. Suppose p|φ(N). Let ρ̄ be an absolutely irreducible Γ1(N)-modular repre-

sentation such that it satisfies one of the following conditions:

(1) There exists at least one prime ` which is 1 mod p such that `|N and `2 - N .

(2) There exists an eigenform f of level M which lifts ρ̄ such that there is at least

one prime divisor ` of N which is 1 mod p and which either does not divide M or

divides M with multiplicity 1.

(3) The subspace (ρ̄)I` is non-trivial.

Then, ρ̄ is obstructed.

The only case which remains to be considered is when ρ̄|GQ`
is irreducible for all the

prime divisors ` ofN which are 1 mod p. Let ρ̄ be such a Γ1(N)-modular representation. In

this case, H0(GQ` , ωp⊗ad0ρ̄) = H0(GQ` , ad0ρ̄) = 0 for all such primes `. Note that, if f is

any eigenform which lifts ρ̄, then the local component π` of the automorphic representation

associated to f is supercuspidal at all such primes. The analysis of contributions coming

from p and other prime divisors of N in the formula above, which are not 1 mod p,

is done in sections 3-5 of [31] and section 3 of [32] to give conditions for vanishing of

corresponding H0’s. We can assume that those conditions hold as well so that we can

ignore those primes. Note that these conditions neither depend on each other nor put

any restrictions on each other. So assuming them together does not yield any immediate

contradiction. Now, moreover assume that ρ̄ does not come from a weight 1 modular

form. We need this hypothesis to use the results of section 3 of [15]. We will analyze the

only remaining group X1(GQ,Np, ωp ⊗ ad0ρ̄) in this case following the approach of [31]

and [32].

Let g be an eigenform such that ρg is a minimally ramified lift of ρ̄ (such a lift does

exist, see section 3.2 of [15]). Hence, it is an eigenform of level N and its weight k lies

between 2 and p− 1. Let K be a finite extension of Qp generated by the eigenvalues of g,

O be its ring of integers and m be its maximal ideal. Denote by Aρg the module (K/O)3

on which GQ,Np acts via ad0ρg. Following [15] and [32], we define H1
∅ (GQ, Aρg) in the

same way as defined in [15, Section 2.1] (See section 2.2 of [32] also).

By [15, Theorem 2.15], we get that H1
f (GQ, ρg) = H1

f (GQ, ρg(1)) = 0, where ρg(1) is the

Tate twist of ρg and H1
f (GQ, ρg), H

1
f (GQ, ρg(1)) are the Bloch-Kato Selmer groups defined

as in section 2.1 of [15]. It follows, from [32, Lemma 2.6], that dimFX1(GQ,Np, ωp ⊗
ad0ρ̄) ≤ dimFH

1
∅ (GQ, Aρg)[m] (m torsion ofH1

∅ (GQ, Aρg)). Now, [15, Theorem 3.7] implies

that the length of H1
∅ (GQ, Aρg) is vm(ηg

∅). Here, vm is the m-adic valuation and ηg
∅ is the



STRUCTURE OF HECKE ALGEBRAS OF MODULAR FORMS MODULO p 31

congruence ideal of g defined in [15, Section 1.7]. From the proof of [32, Proposition 4.2],

we see that vm(ηg
∅) > 0 if and only if m is a congruence prime for g i.e. if there exists an

eigenform h which lifts ρ̄ and which is not a Galois conjugate of g.

Let ε be the nebentypus of g. Let ψ be a character of (Z/NZ)∗ whose order is a power

of p (there exists such a character as p|φ(N)). Thus, ε and ψε have the same reduction

modulo m. Hence, from [11, Proposition 3], it follows that there exists an eigenform h of

level N and nebentypus ψε which lifts ρ̄. If h is a Galois conjugate of g, then ε((Z/NZ)∗)

and ψε((Z/NZ)∗) will be Galois conjugates of each other. Since, g is a minimal lift of ρ̄,

the p-part of ε((Z/NZ)∗) is trivial. But the p-part of ψε((Z/NZ)∗) is non-trivial as ψ is a

character of p-power order. So, they can’t be Galois conjugates of each other. Therefore,

g and h are not Galois conjugates of each other. Thus, m is a congruence prime for g and

H1
∅ (GQ, Aρg) 6= 0. However, this does not ensure that X1(GQ,Np, ωp ⊗ ad0ρ̄) is non-zero

because we do not know whether the injection X1(GQ,Np, ωp ⊗ ad0ρ̄)→ H1
∅ (GQ, Aρg)[m]

given in the proof of Lemma 2.6 of [32], which we used in the last paragraph, is an

isomorphism and in general, it is very difficult to prove such a result (see Lemma 2.6,

remark 2.7 of [32] and the discussion before it for more details). But we do expect that

X1(GQ,Np, ωp ⊗ ad0ρ̄) is non-zero based on the calculations above.

Let us consider the modular representations coming from a weight 1 modular form. In

the proposition below, we do not put the condition p|φ(N). For a number field L with

ring of integers OL, we denote by A(L)[p] the p-torsion subgroup of the class group of L

and by U(L) the kernel of the map
O∗L

(O∗L)p → (
∏
v|p

O∗Lv
(O∗Lv )p ).

Proposition 9. Let ρ̄ be a Γ1(N)-modular representation coming from a regular modular

form f of weight 1 which has either RM or CM by F (see [7] for the definition of regular).

Let H be the extension of Q which is fixed by Ker(ad0ρ̄). Moreover, assume the following

conditions:

(1) If `|N and p|`+ 1, then ` does not stay inert in F .

(2) If ` is a prime divisor of N , then ρ̄|GQ`
is irreducible.

(3) A(F )[p] = 0 and HomG(A(H)[p], ad0ρ̄) = 0

(4) HomG(U(F ), ad0ρ̄) = 0 and if F is imaginary, then HomG(U(H), ad0ρ̄) = 0.

Then, ρ̄ is unobstructed.

Proof. Note that, ρ̄ = Ind
GQ
GF
δ, where F is a quadratic extension of Q which is either real

or imaginary and δ : GF → F∗ is a character, as it comes from a weight 1 form which

has RM or CM. Let Gal(F/Q) = G′ = {1, σ}. As f is a regular weight 1 eigenform,

ρf |GQp = χ1⊕χ2, where χ1 and χ2 are distinct, unramified characters from GQp → (Qp)
∗.
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So, F and the fixed field H of Ker(ad0ρ̄) are unramified at p. From the hypothesis (2)

above, we see that all prime divisors ` of N are either inert or ramified in F .

Thus, from above, it follows that ad0ρ̄ = ε ⊕ Ind
GQ
GF
χ, where ε is the character of GQ

of order 2 corresponding to F and χ = δ/δσ. So, H1(GQ,Np, ad0ρ̄) = H1(GQ,Np, ε) ⊕
H1(GQ,Np, Ind

GQ
GF
χ). We will analyze each part of this sum separately. We shall mostly

follow the notations of [7] below.

First, we will look at the group H1(GQ,Np, ε) appearing above. From the inflation-

restriction sequence, we see that H1(GQ,Np, ε) = (Hom(GF,S ,F)⊗ ε)G′ , where S is the set

of the places of F dividing Np. From class field theory and the hypothesis (3) above, we

have the following exact sequence of G′-modules:

0→ Hom(Gab
F,S ,F)→ Hom(

∏
v|Np

O∗Fv ,F)→ Hom(O∗F ,F)

Now, by hypothesis (1), we have:

Hom(
∏
v|Np

O∗Fv ,F) = Hom(
∏
v|p

OFv
∏

`|N,p|`−1

∏
v|`

Z/(`− 1)Z,F)

as F is unramified at p. The factors in the second product come from places of F

dividing such primes and, since ` is either inert or ramified in F , each factor appears only

once. Observe that G′ acts trivially on each of them. Thus, (Hom(
∏
`|N,p|`−1

∏
v|` Z/(`−

1)Z,F)⊗ ε)G′ = 0.

If F is imaginary, then O∗F is a finite group and its order is not divisible by p, as p

is unramified in F . Thus, U(F ) = O∗F /(O∗F )p = 0. Hence, in this case, it follows that

(Hom(
∏
v|pOFv ,F) ⊗ ε)G′ has dimension 1. Therefore, H1(GQ,Np, ε) has dimension 1. If

F is real, then the free part of O∗F has rank 1 and the torsion part is {1,−1}. Suppose

p is not split in F . Then, it is inert in F and the fundamental unit of F generates the

residue field of OFp over Fp. Suppose p is split in F . Then
∏
v|pOFv = Zp × Zp and

the action of G′ switches them. Moreover, under the G′-equivariant diagonal embedding

O∗F →
∏
v|pO∗Fv = Z∗p × Z∗p, the fundamental unit of F gets mapped to an element of the

form (a,−a) as the non-trivial element of G′ sends the unit to its inverse. So, it follows,

from the discussion above and hypothesis (4), that in both the cases, G′ acts trivially

on the subspace of elements of Hom(
∏
v|pOFv ,F) which vanish on O∗F . An element of

Hom(Gab
F,S ,F) vanishes on the fundamental unit. Thus, combining this and the previous

paragraph, we see that G′ acts trivially on Hom(Gab
F,S ,F), when F is totally real. It follows

that, in this case, H1(GQ,Np, ε) = (Hom(Gab
F,S ,F)⊗ ε)G′ = 0.

We shall now analyze the second factor appearing in the sum above. Let H be the

extension of Q which is fixed by Ker(ad0ρ̄). Thus, G = Gal(H/Q) is a dihedral group D2n

which is non-abelian and Ind
GQ
GF
χ is an irreducible representation of G. By the arguments
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used above, we get that H1(GQ,Np, Ind
GQ
GF
χ) = (H1(GH,S ,F)⊗ Ind

GQ
GF
χ)G. By hypothesis

(3), H1(GH,S ,F) is the subspace of Hom(
∏
v|NpO∗Hv ,F) vanishing on O∗H . Since H is

unramified at p, we get Hom(
∏
v|NpO∗Hv ,F) = Hom(

∏
v|pOHv

∏
Z/pZ,F) where the last

product is taken over all places v of H which divide N and whose residue fields have pth

roots of unity. If ` is a such a prime, then the G-submodule Hom(
∏
v|` Z/pZ,F) of the

module above is isomorphic to IndGD`α, where D` is the image of GQ` under ad0ρ̄ and α is

the character by which it acts on the pth roots of unity. Note that, by hypothesis (2) above,

Ind
GQ
GF
χ is an irreducible representation of D` for every `|N . So, (Hom(

∏
Z/pZ,F) ⊗

Ind
GQ
GF
χ)G = 0.

Assume F is imaginary. As H is unramified at p and p - |G|, we see, from using

the arguments from [7, Section 3.2], that every irreducible representation of G occurs

in Hom(Gab
H,S ,F) with multiplicity at least 1. The additional multiplicities would only

arise from U(H). But, from hypothesis (4) above, we have HomG(U(H), Ind
GQ
GF
χ) = 0.

Therefore, Ind
GQ
GF
χ occurs in Hom(Gab

H,S ,F) with multiplicity 1. Hence, (Hom(GH,S ,F)⊗
Ind

GQ
GF
χ)G = H1(GQ,Np, Ind

GQ
GF
χ) has dimension 1. If F is real, then Ind

GQ
GF
χ is totally

odd. Thus, we see, from the arguments in [7, Section 3.2], that Ind
GQ
GF
χ occurs in the

subspace of Hom(
∏
v|pO∗Hv ,F) vanishing on O∗H with multiplicity 2. Note that, we do

not need to consider contribution from U(H) as Ind
GQ
GF
χ does not occur in O∗H/(O∗H)p.

Therefore, combining this with the previous paragraph, we see that Ind
GQ
GF
χ occurs in

Hom(Gab
H,S ,F) with multiplicity 2. Hence, H1(GQ,Np, Ind

GQ
GF
χ) has dimension 2.

Combining all the results above, we see that if ρ̄ satisfies all the conditions above, then

H1(GQ,Np, ad0ρ̄) has dimension 2. Hence, ρ̄ is unobstructed in our sense. �

Remark. (1) The hypotheses (3) and (4) are similar to those used by Mazur in sections

1.12 and 1.13 of [26] where he studies unobstructed representations unramified

outside a single prime. Note that, for a number field L, A(L(ζp))[p] = 0 implies

that U(L) = 0 (see remark after Proposition 1 of [10]).

(2) We know that G′ = Gal(F/Q) acts on A(F )[p] by the character ε. So, if A(F )[p] 6=
0, then it would contribute to H1(GQ,Np, ε) in addition to what we have calculated

above. Hence, in this case, we have dimH1(GQ,Np, ε) > 1. Thus, combining this

with the other calculations above, we see that dimH1(GQ,Np, ad0ρ̄) > 2. Hence,

if A(F )[p] 6= 0, then ρ̄ will be obstructed.

(3) Suppose f is a weight 1 form which has RM or CM by F , and there exists a

prime ` such that `|N and p|` + 1. Moreover, assume that ` stays inert in F .

Thus, using the notations of the proof above, we see that Hom(
∏
v|NpO∗Fv ,F) =

Hom(
∏
v|pOFv

∏
`|N,p|`−1

∏
v|` Z/(` − 1)Z

∏
Z/pZ,F), where the last product is

taken over all the prime divisors ` of N which stay inert in F and which are



34 SHAUNAK V. DEO

−1 mod p. Observe that, they are isomorphic to ε as G′ representation. The

projection of the image of O∗F in
∏
v|NpO∗Fv onto this product is also trivial as F

is unramified at p. Hence, this product also contributes to H1(GQ,Np, ε), making

it bigger. All the other calculations at the places above p in the proof above still

remain valid. As a result, we see that dimH1(GQ,Np, ad0ρ̄) > 2. Hence, in this

case, ρ̄ is obstructed.

Note that, the assumptions in the proposition above do not yield any immediate con-

tradiction. Thus, we see that our notion of unobstructedness is weaker than Mazur’s

notion of unobstructedness.

Proposition 10. Let ρ̄ be a modular representation satisfying the hypotheses of Proposi-

tion 9 and suppose p|φ(N). Let the p-primary part of (Z/NZ)∗ be Z/pe1Z×· · ·×Z/penZ.

Assume moreover that:

(1) ρ̄ is a new Γ1(N)-modular representation,

(2) For all primes ` dividing N such that p|`2 − 1, U` acts like 0 on all newforms of

level N which lift ρ̄

Then, the corresponding local component Aρ̄ of the mod p Hecke algebra is isomorphic to

F[[x, y]][y1, ..., yn]/(yp
e1

1 , ..., yp
en

n ) and thus, is not reduced.

Proof. As ρ̄ satisfies the hypotheses of Proposition 9, it satisfies the hypotheses of The-

orem 3 as well. Indeed, ρ̄ comes from a regular, weight 1 form and is unramified at

p. So, ρ̄|GQp is of the required form. If ` is a prime divisor of N which is 1 mod p,

then it splits completely in Q(ζp). As ρ̄|GQ`
is irreducible, ρ̄|GQ(ζp)

is also irreducible.

Therefore, from the results of Böckle, Diamond, Diamond-Flach-Guo and Kisin, it fol-

lows that the surjective map Rρ̄ → TΓ1(N)
ρ̄ is an isomorphism. The hypothesis (2) along

with the proof of Proposition 6 and the proof of Theorem 1 implies that the kernel

of the surjective map TΓ1(N)
ρ̄ → A

Γ1(N)
ρ̄ is mΛT

Γ1(N)
ρ̄ . By Proposition 9, we see that

Rρ̄ ' O[[x, y, T ]][z1, · · · , zn]/(zp
e1

1 − 1, · · · , zp
en

n − 1). Combining all of the above gives us

that Aρ̄ ' F[[x, y]][y1, · · · , yn]/(yp
e1

1 , · · · , yp
en

n ) and hence, the proposition is proved. �

Remark. (1) If the first condition of Proposition 10 is satisfied, then to check the

second condition, it is sufficient, by Lemma 7, to check that ρ̄|I` is irreducible.

(2) Suppose ρ̄ is a Γ1(N)-modular representation which satisfies the two assump-

tions of Proposition 10 and the assumptions of Theorem 3. Moreover, assume

p|φ(N) and let the p-primary part of (Z/NZ)∗ be Z/pe1Z× · · · × Z/penZ. Then,

from the proof above, we see that A
Γ1(N)
ρ̄ ' Rρ̄/(π, T ). Now, as p 6= 2, Rρ̄ '

R0
ρ̄[T, y1, ..., yn]/(yp

e1

1 − 1, ..., yp
en

n − 1), where R0
ρ̄ is the universal deformation ring
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of ρ̄ with constant determinant (see the proof of Lemma 19 of [8] for more details).

So, A
Γ1(N)
ρ̄ is isomorphic to R̃0

ρ̄[z1, ..., zn]/(zp
e1

1 , ..., zp
en

n ) and hence, is not reduced.

So, the assumptions of Proposition 9 are not necessary to get non-reduced Hecke

algebras but are necessary to find the precise structure of the Hecke algebra.

We will now give some examples of non-reduced Hecke algebras following the previous

remark. Let ` be a prime such that p|`−1 and ` is 3 modulo 4. Let K = Q(
√
−`) and hK

be its class number. If p splits in K, then define n to be the smallest integer such that

p is not split in the anti-cyclotomic extension of degree `n of K and `n - hK . Otherwise,

define it to be the smallest integer such that `n - hK . Let χ : GK → Z` → Z/`nZ → F̄∗

where the first map is given by the anti-cyclotomic Z` extension of K, and the last map

is the inclusion of (`n)th roots of unity into F̄∗. Now, we see, from a classical theorem

of Hecke, that ρ̄ = Ind
GQ
GK
χ of GQ,p` is an odd, irreducible representation coming from a

weight 1 newform f of level `2n+3.

As χσ = χ−1 and χ has odd order, they are distinct characters of GK and they only

coincide on ker(χ). Now, ` ramifies in K and the prime v′ of K lying above ` ramifies

in the anti-cyclotomic extension of K of degree `n as `n - hK . As a consequence, we see

that ρ̄|I` and ρ̄|GQ`
are irreducible. As ` splits completely in Q(ζp), it follows that ρ̄|GQ(ζp)

is also irreducible. If p is inert in K, then clearly ρ̄|GQp is a sum of distinct characters

as p is unramified in K. If p is split in K, then for a place v of K above p, χ and χσ

are distinct characters of GKv as χ has odd order and p does not split completely in the

anti-cyclotomic extension of K of degree `n. As the anti-cyclotomic extension of K is

unramified at p, we see that ρ̄|GQp is not a direct sum of characters which are cyclotomic

twists of each other. Therefore, ρ̄ is a new Γ1(`2n+3)-modular representation satisfying

the two conditions of Proposition 10 and the conditions of Theorem 3. Hence, from the

remark above, it follows that A
Γ1(`2n+3)
ρ̄ is not reduced.
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