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Hörmander condition’ 129

9. Some examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
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Prof. Vlad Bally and Prof. Eva Löcherbach, who are great experts on many aspects of the study
of Stochastic Differential Equations, and whose articles have been a great source of inspiration for
my work. I am truly honoured that they accepted take some of their time to review my thesis. I
would also like to thank Paolo Pigato, for helpful discussions and explanations of his articles in
the context of his visit to Luxembourg as well as for more recent discussion, and Erlend Grong,
for advice, and discussions about Lie Algebra theory.

A very special thanks is due to Xi Geng, for stimulating discussions and comments about
my work and his own as well as other mathematical topics, for informally teaching me certain
fundamental aspects of Rough Path theory, and, most importantly, for communicating his sincere
passion and beautiful enthusiasm for mathematics to me.

Last but not least, I would like to thank my parents, Peihsuan Tsai, all my friends at the
university in general, and in particular Lijuan Cheng, for their daily moral support and guidance
in those perforce, occasionally trying times.

1



Abstract

One of the purposes of this thesis is to use Malliavin calculus and Stochastic Taylor expan-
sions to study the densities of interacting systems of stochastic differential equations (SDE), seen
as projections of SDE onto a low-dimensional space, and to control the dependence of the con-
stants on the dimension of the background space. The setting includes time-dependent SDE and a
relatively large class of path-dependent SDE. Several results also shed light even on the classical
theory of SDE in Rn, independently of the control on the constants.

In Part 1, assuming the system satisfies suitably defined projected equivalents of the classic
ellipticity or weak Hörmander conditions, we prove Gaussian estimates in terms of the Euclidean
distance where, provided natural assumptions, for a fixed target-space dimension, the constants
depend polynomially on the background dimension, and, in the elliptic case, on the number of
driving Brownian motions.

In Part 2, we first define suitable generalisations of (time-dependent) control distances and
prove Kusuoka-Stroock type results without control on the constants. In particular, we obtain a
time-dependent extension of a result of Léandre about SDE with non-trivial drifts, i.e., drifts which
are not uniformly contained in the span of the other vector fields.

Then, we introduce a condition which we call the ‘Progressive Hörmander condition’ and
prove similar control-type estimates valid under this assumption, with polynomial control on the
growth of the constants with background space dimension. The condition is of independent in-
terest in the study of SDE on Rn, and shows the connection between the classic works of Ben
Arous, Kusuoka, Léandre and Stroock, and the more recent works of Bally, Caramellino, Delarue,
Menozzi and Pigato. To main technique required is the study of density and scaling properties of
some careful choice of linear combinations of terms of the signature of the driving path.

In Part 3, we introduce a stricter condition called the ‘separated progressive Hörmander con-
dition’, and prove lower bounds and local strict positivity under this assumption. (By ‘local’ we
mean local around the solution of the deterministic ODE driven by a null control, rather than local
round the initial point.) The main technical difficulty is the identification of points contained in the
interior of the support of the log-signature1 of the path in Rd+1 composed of d Brownian motions
and a deterministic linear component.

The purpose of Part 4 is to use some results and techniques of the rest of the thesis to prove
extensions of a theorem of Löcherbach about uniformly elliptic interacting branching diffusions.

1Ignoring the deterministic time component (of the log-signature).
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Introduction and main results

The purpose of this thesis is to prove bounds for the densities of low-dimensional quantities
relative to solutions to high-dimensional (possibly degenerate, non-Hörmander) SDE satisfying
either a modified form of ellipticity defined directly on the target space or a modified form of the
weak Hörmander condition defined directly on the target space.

More specifically, let σ0, σ1, . . . , σd be sufficiently smooth vector fields on Rm, and let X be
the solution to the following Stratonovich SDE:

dXt =
d∑
i=1

σi(Xt) ◦ dW i
t + σ0(Xt)dt,

with initial condition X0 = x, where Wt is a d-dimensional Brownian motion. Let F : Rm → Rn
be a function that sends X to some smaller-dimensional space Rn (the initial space Rm is called
the background space, and Rn the target space). Write Yt = F (Xt). We call the ordered list
(x, σ, F ) a random SDE system or simply system. We are interested in bounds on the density of
Yt in the target space (when this density exists). For all of the introduction and most of the thesis,
we assume that F is linear.

The above model includes interacting systems of SDE, SDE with time-dependent coefficients,
as well as a large class of SDE with path-dependent coefficients. Indeed, it is now understood
(cf. [12, 27]) that reasonable paths are determined up to tree-like equivalence by the integrals of
arbitrary functionals along it. The above setting allows for the possibility of including a finite
number of integrals of functionals as elements of the background space.

Several results appear to be new even in the traditional setting of an SDE on Rn.

Literature review: what is known about the case of a single SDE in Rn (i.e. F = Id).
In this case, local integrability in space-time has previously been achieved by Gaussian bounds

of the form

pt(x, y) ≤ C e
− |y−x|

2

Mt

t
n
2

in the elliptic case (cf. [36]) and by bounds in terms of the control distance of the following form:

pt(x, y) ≤ C e−
d(x,y)2

Mt

|Bd(x,
√
t)|

in [37] (or see [13] for an analytic approach) in the strong Hörmander case with a drift uniformly
inside the span of the diffusion vector fields. In the case of weak Hörmander with arbitrary drift,
there is of course the following Gaussian bound (proved in [36]):

pt(x, y) ≤ C e
− |y−x|

2

Mt

t
ν
2

,

where ν is some number greater than the dimension and the order of hypoellipticity. This bound
is not sharp, and indeed not even integrable in space-time.

Some work has been done on providing sharper bounds in the context of weak Hörmander with
non-trivial drift. It has been achieved locally by Léandre in [39], where a bound of the following

3
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form is shown
pt(x, y) ≤ C

|Bdt(x,
√
t)|

where dt is some natural time-dependent control ‘distance’. Before that, asymptotic estimates
have been obtained by Ben Arous in [1]. More asymptotic results are provided in [38].

For lower bounds, the classical result is

pt(x, y) ≥ C e
−d(x,y)2/Mt

|Bd(x,
√
t)|

in [37], valid only for trivial drifts (i.e. assuming the drift is uniformly contained in the span of the
diffusion vector fields): It is well known that the densities of solution to weak-Hörmander SDE
with non-trivial drifts can fail to have full support (cf. example 10.1.1). Finding the precise, most
general set of conditions on σ required to guarantee strict positivity in a weak Hörmander setting
is a difficult open problem.

Other works that examine positivity for elliptic SDE from a theoretical point of view include
[5], [3], etc. In [34], the author defines a notion of ‘elliptic random variable’ further than the con-
cept of solutions to SDE, and proves the positivity of the density for such random variables. Other
relevant work includes the analysis of the strict positivity of densities of solutions to equations of
the form dXt = σdW + B(Xt)dt where σ is constant and B is polynomial, satisfying modified
versions of the Hörmander condition in [28, 33].

The strict positivity of the density is also known for certain specific classes weak Hörmander
SDE, for instance, in [30], strict positivity is established for an SDE arising from the modeling of
Neurons (see [30]).

There has been renewed interest in proving (non-Euclidean) upper and lower bounds for den-
sities of SDE satisfying the weak Hörmander condition, with particular emphasis on expressing
the distance in the exponential in concrete and simple ways that emphasise scaling properties:
two-sided estimates have been obtained in [50, 6, 20] in the following particular cases:
(1) ‘Weak Hörmander of order three’ (with our terminology), with an additional ‘geometric con-

dition on the variance’ assumption, locally ([50]).
(2) A chain of SDE with only the first SDE involving Brownian motions and the other equations

only having a drift depending on the previous SDE (globally in [20] and then locally with
sharper constants in [50] Chapter 3, section 3.5)

(3) Strong (time-dependent) Hörmander of order 2, locally, in [8] and [50] (Chapter 4).
For time-dependent coefficients, the existence and smoothness of densities, as well as bounds of
the form

pt(x, y) ≤ C e
− |y−x|

2

Mt

t
ν
2

are known, cf. [15], [53], [17], and integrable upper bounds are known under Hörmander of order 2
from [8, 9].

The Löcherbach problem
In [42], Löcherbach considers the following model (which is a generalisation of the model

where particles are independent, considered by Bally and Löcherbach in [10]):
Particles are born in Rn following a Poisson process with known intensity measure, particles

die or split into two at a Poisson rate that depends on the position of all particles, and for a fixed
total number l of particles, the positions ξi of the l particles (i = 1, . . . , l) evolve according to
the following interacting system of SDE (here ξ is the total configuration of all particles, ξ =
(ξ1, ξ2, . . . , ξl)):

dξit = σi(ξi, ξ)dW i
t

where the W i are (independent) d-dimensional Brownian motions. Under smoothness, bounded-
ness, subcriticality, and uniform ellipticity conditions, the author obtains the existence and conti-
nuity of a density for the invariant measure. The main technical step of the proof is to obtain a
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bound of the form

pit(ξ, y) ≤ C e
− |y−x|

2

Mt

t
n
2

,

where pit(ξ, y) is the density of the position of particle ξi at time T + t conditionally given that
there is a jump (i.e. either an immigration, death or branching event) at time T and no jump
between T and T + t, with the complete position of all particles at time T being given by ξ. The
final argument then relies on the local space-time integrability of the estimate and on the fact that
the constants involved depend polynomially on the number of particles.

Our contributions: Description of Part 1, and motivation for Parts 2 and 3
It is a fact not usually explicitly stated, but following easily by inspection of classic proofs, that

the constants in traditional Gaussian upper bounds on solutions to SDE satisfying the Hörmander
condition only depend on the following finite number of real quantities:

• the bounds on the derivatives of the driving vector fields;
• the order at which the Hörmander condition holds;
• the Hörmander constant;
• the number of driving vector fields and corresponding Brownian motions;
• the dimension of the ambient space,

i.e., the bounds do not actually depend on the fine structure of the driving vector fields or the
sub-Riemannian metric which they induce.

For systems, another relevant quantity is the dimension of the background space. In this work,
one particular aim is, in the framework of systems, to reproduce the SDE results under the weaker
degeneracy assumptions defined directly on the target space, and to control the dependence of the
constants on the dimension of the background space and (in the elliptic case) on the number of
Brownian Motions. In many cases this can be a highly non-trivial task.

We will define the following notion of projected weak Hörmander constant HL of order L
directly on the target space:

DEFINITION. The weak Hörmander HL constant at x of order L of the system (x, σ, F ) is
defined as

HL := min

(
1, inf

v∈Rn
|v|=1

∑
|α|≤L

α#(α) 6=0

〈dF.σ[α], v〉2
)
.

(Here σ[α] denotes the iterated brackets of σ following the multi-index α and |α| is the order of the
multi-index α, where drift components are counted twice, see thesis for precise definitions.) The
ellipticity constant of a system is the weak-Hörmander constant of order 1. A system is ‘(L,HL)-
weak Hörmander at x’ if its weak Hörmander constant at x of order L is greater than HL.

REMARK 0.0.1. It is possible for a system to be (L,HL) weak Hörmander, whilst the back-
ground SDE is only (L′, ε)-weak Hörmander, with L′ arbitrarily larger than L and ε arbitrarily
smaller than HL. This is another reason why estimates with any control on the constants behave
better than estimates obtained through the estimation of the density of the background process in
its intrinsic space.

We also define the following quantity G (relative to the orders (L, g)) which we call the
‘tension’, and corresponds to boundedness assumptions:

DEFINITION. The tension of order (L, g) of a system (x, σ, F ) is defined (when F is linear)
as

G = sup
x∈Rm

sup
v∈Rm
|v|=1

∑
|α|≤L

〈σα, v〉2
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+ sup
v∈Rm,|v|=1

sup
o≤g

sup
w∈(Rm)⊗o
∀i,|wi|=1

d∑
k=0

〈 ∂
oσk

Π∂wi
, v〉2 + |dF |2 + 1,

where |dF |2 denotes the squared operator norm of dF , not the Frobenius norm, and σα denotes
iterated derivatives of σ following the multi-index α, see thesis for precise definition.

A system is said to be (L, g,G)-tense if its (L, g)-order tension is less than G.

Constants which, for fixed n,L, g, do not depend at all on m or d, and depend polynomially
on HL, G, will be called proper constants.

Constants which, for fixed n,L, g, d, depend polynomially on m,G,H will be called polyno-
mial constants.

Constants which, for fixed n,L, g, depend polynomially on d,m,G,H will be called strongly
polynomial constants.

REMARK 0.0.2. It is now clear to us that this definition of G is not optimal except for de-
terministic purposes. Research on better control of the constants in probabilistic results with a
different definition of G 2 is ongoing.

The main aims of Part 1 of this thesis are to show the following:

• If (x, σ, F ) is a uniformly (1, g,G)-tense, uniformly H-elliptic system, and g is large
enough (g ≥ n + N ), there exist strongly polynomial constants C,M,D such that for
any t ≤ D, Yt admits a density pt(x, y) satisfying, for all N ≤ g − 3 − n, and any unit
v1, v2, . . . , vN

| ∂Npt(x, y)

∂v1∂v2 . . . ∂vN
| ≤ C

exp(−|F.x−y|
2

Mt )

t
n+N

2

,

cf. Theorem 4.3.2. See also extension 4.3.3 for better control on the constants.
• If A is a uniformly (L, g,G)-tense, uniformly (L,HL)-weak Hörmander system, and
g ≥ n + 3, there exist both polynomial constants C,M,D such that for any t ≤ D, Yt
admits a density pt(x, y) satisfying, for all N ≤ g − 3− n, and any unit v1, v2, . . . vN

| ∂Npt(x, y)

∂v1∂v2 . . . ∂vN
| ≤ C

exp(−|F.x−y|
2

Mt )

t(n+N)24L ,

cf. Theorem 4.4.2.

The above theorems represent motivation for the rest of the thesis and show that defining
hypoellipticity and ellipticity directly in the target space and in terms of the projected vector fields
is enough to ensure the existence of a density worthy of further study.

Similarly to the classical situation, those bounds are also the first technical step towards at-
tempts to show the more challenging estimates in Part 2.

As mentioned in the literature review, it was also proved in [37] that drift-free Stratonovich
SDE satisfying the Hörmander condition uniformly admit bounds of the form

pt(x, y) ≤ C e−
d(x,y)2

Mt

|Bd(x,
√
t)|
,

where d is the Carnot-Carathéodory distance. This motivates the following question:

2A reasonable candidate is

G = sup
v∈Rm,|v|=1

sup
o≤g

∑
w∈(Rm)⊗o

wi∈B

d∑
k=0

〈 ∂
oσk

Π∂wi
, v〉2 + |dF |2,

where B is an orthonormal basis of (Rm)⊗o



INTRODUCTION AND MAIN RESULTS 7

QUESTION 0.0.3. Define a function

d : Rm ⊗ Rn → R, (x, y) 7→ d(x, y) = inf
γ∈Pd1

(|γ|L2 : y = F (X1), X1 = Sol(γ, x)) ,

where Sol(γ, x) denotes the solution to the ordinary differential equation

dXt =

d∑
i=1

σi(Xt)dγ
i
t

with initial condition X0 = x, evaluated at time 1, and |γ|2L2 denotes the energy of the path γ, and
Pd1 denotes the set of smooth paths starting at 0.
(a) Can one obtain estimates of the form

pt(x, y) ≤ C e−
d(x,y)2

Mt

|Bd(x,
√
t)|
,

for a drift-free system satisfying the (projected equivalent of the) Hörmander condition?
(b) If so, is it possible to ensure that the constants M,C are proper, or at least, (strongly) polyno-

mial?
(c) Can results be extended to non-trivial drifts by changing the metric?

The above bound will be proved globally, in a weak Hörmander context, with a time-dependent
metric dt in Theorem 8.2.1, using techniques inspired from [37, 39].3

However, the problem of ensuring that the constants are (strongly) polynomial proved to be
extremely challenging.

We provide an alternative proof with polynomial constants valid only under a condition which
we call the ‘detailed-Progressive weak Hörmander condition’ (which includes systems satisfying
the weak-Hörmander condition of order 2) cf. Theorem 8.3.1, which is one of the main Theorems
of this thesis. The condition and its implications in terms of equivalences of control distances is
of independent interest, and shows links between [37] and some of the more modern part of the
literature (cf.[50, 8]) Aside from not using the Fourier approximation argument of Kusuoka and
Stroock, the proof presents the advantage that it would establish the strong polynomiality of the
constants assuming a proof of the strong polynomiality of the Euclidean bound 4.4.1.

Any systems satisfying the Hörmander condition of order 2, and all the SDE treated in [50,
20, 8] satisfy the ‘detailed-Progressive weak Hörmander condition’.

Because the works [50, 20, 8] include lower bounds, at this point, it is interesting to note that
the classical example (see system (10.1.1) below, going back to [39], also quoted in [50]) of a
weak Hörmander SDE whose solution fails to have full support does, in fact, satisfy our ‘detailed-
Progressive weak Hörmander condition’. This means that the ‘detailed-Progressive Hörmander’
condition is not enough to guarantee strict positivity. It is therefore natural to attempt to construct
stricter sets of conditions that guarantee the strict positivity of the density. The investigation of
that issue is the aim of Part 3, where we provide a class of systems the densities of whose solutions
can be proved to have full support.

Our contributions: Description of Parts 2,3,4 and list of main results
In Parts 2 and 3 depending on the assumptions on the model and what kind of control we aim

for on the dependence of the constants, we introduce various time-dependent functions of the form
dt(x, y) on Rm ⊗ Rn. To simplify the exposition, we call these objects ‘distances’ even though
they clearly cannot satisfy the mathematical definition of a distance. In the most simple situation
where the drift is null and we don’t aim for control on the dependence of constants, dt(x, y) is
usually the smallest possible energy of a driving path γ in Rd such that the solution to the ODE

3For a single SDE, the problem was proved globally for trivial drifts in [37] and locally for the weak Hörmander
case in [39]. The local part of our estimate coincides with the estimate in [39] for SDE, and although our metric is not
the ‘optimal’ metric from a theoretical point of view, our estimate is globally space-time integrable.
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associated to the problem, dXt = σ(X)dγt, with x0 = x, satisfies y = F (X1). In other contexts
dt is a suitable generalisation of that concept.

We prove various upper bounds both in terms of the Euclidean metric, and bounds where those
‘distances’ play the same role as the control distance in Kusuoka-Stroock bounds.

We introduce the ‘progressive Hörmander condition’4 and the ‘separated progressive Hör-
mander condition’. Roughly speaking, the progressive Hörmander condition states that for all
i ≤ L, arbitrary iterated derivatives (of the vector fields) of order i must be uniformly in the
span of brackets of order i or less. The separated progressive Hörmander condition requires,
additionally, that iterated brackets involving more than one drift- and more than two non-drift
indices be uniformly contained in the span of brackets of strictly lower order.

We will see that the progressive Hörmander condition is precisely the condition required for
statements such as ‘the diffusion moves at speed tk/2 in the direction of every k’th order bracket’
to make sense:

In general, the control distance can be seen locally as the push-forward of a homogeneous
norm on the log-signature space by the composition of the exponential map and a linear map. In
some specific situations such as the ones treated in [50](Ch.3) and [20], this can be expressed as
some homogeneous norm on Rn. The progressive Hörmander condition is the condition required
to make it possible to express the control distance as the push-forward of a homogeneous norm
by a linear map only, without the exponential: Heuristically, we can equally think of the Carnot-
Carathéodory distance as the minimum square root of the energy of a control γ in Rd, satisfying
dz = ∂f.dγ for a curve z going from x to y, or as the minimum square root of the integrated
homogeneous norm of a driving geometric rough path γ in Gl(Rd) such that dz = ∂f.dγ =
∂f.d exp(log(γ)), for a solution curve z leading to y. We will define the metric dt,log,∞(x, y)
as the minimum square root of the integrated squared homogeneous norm of a driving control Γ
in the free lie algebra Ll(Rd) (seen simply as a vector space) such that dz = ∂f.dΓ (without
exponentials!) for a solution curve z leading to y. On the spectrum of ‘increasing complexity
of metrics and decreasing specificity of assumptions’, dt,log,∞ can be seen as ‘in between’ the
metrics introduced in [50, 8, 20] and the general control distance from [37]. The control metric
and dt,log,∞ are equivalent if the ‘progressive Hörmander’ condition holds. The control distance,
dt,log,∞ and the metric dAR from [8, 50] are locally equivalent whenever the assumptions of those
references are satisfied.

We can now list the main results of the thesis for a random SDE system:
• Integrable Gaussian upper bounds in the elliptic case with strongly polynomial constants;

cf. Theorem 4.3.2 in Part 1, i.e. ∀t ≤ D,x ∈ Rm, y ∈ Rn∣∣∣∣ ∂Npt(x, y)

∂v1∂v2 . . . ∂vN

∣∣∣∣ ≤ C exp
(
−|Fx−y|2

Mt

)
t
n+N

2

,

where D,C and M are proper.
• Non-integrable Gaussian upper bounds in the Weak Hörmander case with polynomial

constants; cf. Theorem 4.4.2 in Part 1. i.e. ∀t ≤ D,x ∈ Rm, y ∈ Rn

| ∂Npt(x, y)

∂v1∂v2 . . . ∂vN
| ≤ C

exp(−|F.x−y|
2

Mt )

t(n+N)24L ,

where D,C and M are polynomial.
• Integrable upper bounds, in terms of the ‘log-homogeneous distance’, under the detailed-

Progressive Hörmander condition and the assumption that the background vector fields
are uniformly progressively finitely generated; cf. Theorem 8.3.1 in Part 2, i.e. ∀t ≤
D, x ∈ Rm, y ∈ Rn,

pt(x, y) = Ex(δ(Yt = y)) ≤ C e−
dt,log,∞(x,y)2

Mt

|Bdt,log,∞(x,
√
t)|
,

4The ‘detailed-Progressive Hörmander condition’ is a slightly stricter version, the difference is mostly technical.
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where D,C and M are polynomial, and dt,log,∞ can be locally described as the smallest
homogeneous norm of a tensor s . ∈ span|α|≤L e

[α] such that
∑
|α|≤L s

ασα = y− dF.x.
Note that dt,log,∞ locally generalises the norms introduced in [50, 20, 8].

REMARK 0.0.4. Our estimate is global and the constants C,M in particular do not
depend on the initial point x. This includes situations where the dimension of spandi=1 σ

i

is not constant, whilst keeping uniformity over x. Such global estimates translate to
estimates with a power of t in the denominator replacing the volume of the ball. If the
power of t is required to be optimal (i.e. the homogeneous dimension at that point e.g.
2n−dim(spank σ

k) when L = 2), then this latter estimate will only hold with constants
depending on the initial point.

REMARK 0.0.5. For a zero drift SDE satisfying the progressive Hörmander condi-
tion, dt,log,∞ is locally equivalent to the Carnot-Carathéodory distance (cf. 7.1.1), but
neither the full equivalence of the metrics nor the above estimate hold in the more gen-
eral setting. It is, however, true for drift-free SDE that the volumes of balls of radius

√
t

with respect to the distances d and dt,log,∞ are uniformly comparable (cf. Lemma 5.1.12)
even if the progressive Hörmander condition does not hold.

• Assuming the detailed-progressive Hörmander condition (on the target space), but not
that the background vector fields are uniformly progressively finitely generated, cf. The-
orem 8.4.1 there are polynomial constants D,M,C such that for t ≤ D,x ∈ Rm, y ∈
Rn,

pt(x, y) ≤ C e−
dt(x,y)2

Mt

|Bdt(x,
√
t)|
.

REMARK 0.0.6. This is almost the same as the above estimate, except for the re-
moval of the background UPFG condition. The proof is only a slight variation. Nonethe-
less, removing this assumption could be seen as a significant difference.

• Uniform (and global) integrable upper bounds in the general case (including non-trivial
drifts) 5; cf. Theorem 8.2.1 in Part 2. i.e. for t ≤ D,x ∈ Rm, y ∈ Rn,

pt(x, y) ≤ C e−
dt(x,y)2

Mt

|Bdt(x,
√
t)|
,

where D,C,M do not depend on the background space dimension, but depend uncon-
trollably on d. Only the most local part of the estimate, was proved in the SDE case
before in [39] 6

• Control-type lower bounds for systems with zero drift, without control on the constants;
cf. Theorems 10.3.1 and 10.3.2 in Part 3.

pt(x, y) ≥ C

|Bd(x,
√
t)|
,

for t, d(x, y)2 ≤ D for some constants D,C.
• Under the Hörmander condition with zero drift, diagonal upper bounds with the ‘log-

homogeneous distance’, with polynomial constants; cf. Theorem 8.6.1 in Part 2. This
estimate is meant to show potential for better results rather than be particularly interesting
in itself: like the proof of Theorem 8.3.1, it has the advantage that the constants would
be strongly polynomial assuming the strongly polynomial Euclidean result.

5In fact, the constants can also be shown to be (weakly) polynomial
6Note the distance used in [39] is not the same as the one we use, though this does not affect the most local part

of the estimate. As explained in the thesis, the distance used in [39], which we write d̃t really is the optimal one from a
theoretical point of view, but (even in the SDE case) it is difficult to get a completely global estimate using this distance.
Our global estimate is still space-time integrable. Even in the weak separated progressive Hörmander case, it is difficult
to globalise the estimate, even though we have a lower bound.
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• Under the condition which we call ‘separated progressive Hörmander’, we prove local
lower bounds7 and global strict positivity (if the condition holds uniformly), cf. The-
orems 10.3.1 and 10.3.2 in Part 3. Local positivity if the condition holds locally best
summarizes the progress represented by these estimates.

The ‘separated progressive Hörmander’ condition is satisfied by a set of non-trivial examples
that strictly includes the examples treated in [50, 20, 8].

Warning For a single SDE satisfying the conditions of the main model in Chapter 3 of [50]
or those of [20] (also treated in [50]), the estimates we obtain (including the upper bounds) are
not as good as the ones in those references for t . d2 . t ln(t), because our ‘distance’ is
slightly different, though balls of radius

√
t are comparable (not just in volume), and (therefore)

the estimates coincide for d2 ≤ t.
The lower bound estimate implies the strict positivity of the density, which (even for an SDE

in Rn) under weak Hörmander does not follow from classical results and, as mentioned above,
(other) diffusions under weak Hörmander can fail to have full support. Our estimate, like the
corresponding one in [50] and [8], but unlike [20], is only local. Understanding better the tail
behaviour of solutions to weak Hörmander SDE’s would be an interesting topic to study further.

Part 4 deals with interacting branching diffusions as considered in [42]: Using similar tech-
niques to the ones used for the proofs of our estimates, we show a generalisation of the theorem
of Löcherbach first to a time- and (partly) path-dependent setting in the elliptic case with slightly
weaker assumptions than in the original paper. Then, conditionally given a proof of a strongly
polynomial version of the Euclidean Result 4.4.1, we give an extension to a weak Hörmander sit-
uation, provided the ‘No degeneracy from interaction’ (NDI) condition, which we introduce. The
condition is equivalent to keeping the driving vector fields independent of each other, but allowing
the Brownian motions relative to different particles to be correlated with correlations that solve an
interactive SDE depending on the state of the whole system. Control-type lower bounds applied to
a non-NDI and drift-free Löcherbach system demonstrate that it would be very difficult to prove
a generalisation of the Löcherbach theorem to non-NDI situations using the same or a similar
method of proof.

Summary of key technical difficulties and solutions
The main difficulty in proving Kusuoka-Stroock type bounds is that it seems impossible to

employ a truly direct integration by parts formula approach: the best applying standard Malliavin
calculus techniques to that situation can do is obtain Euclidean bounds, which are not space time
integrable in general. To obtain a sharp enough estimate, we must use more information about the
likely shape of a sample path. This is a very fundamental difference with the far less ambitious
goal of finding Euclidean bounds, and in particular, with the elliptic case.

The intuitive idea is to attempt to bound the ‘density in path space’ of the realisation of a
d-dimensional Brownian path, and use a disintegration formula on the solution map associated to
the SDE considered.

More precisely, the solution provided by Kusuoka and Stroock was to look at an auxiliary
object, which contains more information about the sample path than the solution of the SDE
(evaluated at time t) does, but is still finite-dimensional. This basic auxiliary object used in that
paper is now much better understood, and used extensively in Rough Path Theory, where it is
known as the ‘truncated signature’. This object is a tool to study a given SDE (or RDE), and it is
itself the solution of an auxiliary SDE (or RDE)8.

One of the reasons why obtaining polynomial control of the constants in the estimates in
the answer to question 0.0.3 is that bounds on the density of the truncated log signature grow
uncontrollably with the number of independent Brownian motions involved.

7In general, and similarly to [50, 20], ‘local’ means local around (the image of) the solution to the deterministic
system driven by the constant driving path 0, rather than local around the image of the initial point F (x).

8This auxiliary SDE is associated to the original problem only through how many Brownian motions are present:
dependence on the initial point only appears later, in the finite dimensional analogue of the solution map.
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One of the biggest technical difficulty challenge was to define auxiliary objects better suited
to the problem of controlling the dimensional dependence of the constants. We call these auxiliary
objects the log-compensated signature (used for the diagonal estimate), the compensated signa-
ture (used for proving proper upper bounds under the progressive Hörmander condition), denoted
R, the strictly compensated signature R̄ (used for the proofs of lower bounds under the separated
progressive Hörmander condition) and (for Löcherbach systems under NDI) the interactive sig-
nature. Contrary to the truncated signature, the objects are not solutions of SDE’s. Furthermore,
both the compensated signature and the interactive signature also fail to satisfy as good scaling
properties as the truncated signature does (and there is no group structure either, contrary to the
classical situation). However, all objects are solutions of auxiliary Random SDE systems9. The
auxiliary objects which don’t satisfy scaling in the usual way do satisfy a weaker form of scaling
that is enough to prove the theorems listed above.

The main technical difficulty in the proof of our lower bounds under the ‘separated progres-
sive Hörmander condition’ was the identification of points contained in the interior of the sup-
port of the log-signature of the path in Rd+1 composed of d Brownian motions and a time-linear
path, coupled with some arguments developed in the rest of the thesis for general ‘Progressive
Hörmander’ systems. To show that the points in question are in the interior of the support, first,
explicit piecewise linear controls were built by solving systems of equations obtained via the
Baker-Campbell-Hausdorff formula, then some perturbation of the construction was applied to
ensure strict positivity.

9The association to the original problem takes more of the structure of the original problem into account. The
auxiliary SDE system depends on the initial point, but the final estimate does not.



Part 1

Proof of Euclidean bounds



CHAPTER 1

Definitions and notations

DEFINITION 1.0.1. Let X ∈ Rm be driven by the Stratonovich SDE

dXt =

d∑
i=1

σi(Xt) ◦ dW i
t + σ0(Xt)dt,

with initial condition X0 = x, where Wt is a d-dimensional Brownian motion; here σ : Rm →
Mat(m, d + 1) is a function with smoothness conditions which will be introduced later. Let
F : Rm → Rn, X 7→ F (X) be a function that sends X into the smaller dimensional space Rn.
Write Yt = F (Xt). We call the ordered list A = (x, σ, F ) a random SDE system or system. The
space Rm is called the background space, and Rn the target space.

REMARK 1.0.2. There are no non-degeneracy assumptions in the background space, so Xt

need not have a density in Rm. We thinking of m, d� n.

DEFINITION 1.0.3. Let A = (x, σ, F ) be a system. Let v be a vector field in A. We denote
by ∗v the image of the vector field v by the differential of F :

∗v : Rm → Rn, x 7→ dFx.v.

We will also similarly write ∗x for F (x).

DEFINITION 1.0.4. If v = (vi)i=1,2,...,d is a collection of d vector fields in Rm, for any multi-
index α, we define higher order derivatives (vα) and brackets (v[α]) by the induction relations

v(i) = vi,

vi,α = vi(vα) =
m∑
k=1

∂vα

∂xk
(vi)k, and

v[i,α] = [vi, vα] = vi(α)− vα(vi) =
m∑
k=1

∂vα

∂xk
(vi)k −

m∑
k=1

∂vi

∂xk
(vα)k.

The partial orders o0(α) and o1(α) of a multi-index α ∈ Multi({0, 1, , . . . , d}) are defined as

o0(α) = #({k : αk = 0})
o1(α) = #({k : αk 6= 0}).

The order |α| is defined as 2o0(α) + o1(α).
In fact, it will sometimes be useful to view v . (evaluated at a given point of Rm) as a linear map

from the tensor space T l(Rd) to Rd which makes the two operations of taking brackets correspond
to each other (brackets on the tensor space are defined via the formula [e1, e2] = e1⊗ e2− e2⊗ e1

and linear extension). From this perspective, the above definition of vα corresponds to using the
shorthand vα for v

⊗#α
k=1 eαk . It will be shown that the iterative definition of σ[α] coincides with the

definition of σe
[α]

where e[α] is defined linearly on the tensor space.

DEFINITION 1.0.5. We will use the following notation: for any d dimensional bounded varia-
tion path (γ1

t , . . . , γ
d
t ), we define γα,it by the induction

∫ t
0 γ

α
s dγ

i
s. In the case where γ is rough, we

must assume we are already given a geometric rough path lift of γ. In particular, when we use a
similar notation for Brownian motion, the integrals are to be interpreted in the Stratonovich sense.

13
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We have the same remark as above: we can also view γ . or W . as a linear map from the tensor
space to Rd.

DEFINITION 1.0.6. If v is a vector field and n ∈ N, we say that the Cn constant of v is

‖v‖∂,n = sup
m≤n

(sup (|(v, w)α| : #(α) = m, w = (w2, w3, . . . , wm), |wi| = 1 for all i))

where w runs over all collections of vectors and α over all corresponding multi-indices.

DEFINITION 1.0.7. The tension of order (L, g) of a system (x, σ, F ) is defined as

G = sup
x∈Rm

sup
v∈Rm
|v|=1

∑
|α|≤L

〈σα, v〉2

+ sup
v∈Rm,|v|=1

sup
o≤g

sup
w∈(Rm)⊗o
∀i,|wi|=1

d∑
k=0

〈 ∂
oσk

Π∂wi
, v〉2 +

∑
q≤g
|dqF |2,

where |dqF | denotes the operator norm of the q-th derivative of F as a function of q arguments. A
system is said to be (L, g,G)-tense if its (L, g)-order tension is less than G.

REMARK 1.0.8. Because we aim to completely remove background dependence, it is very
important to distinguish between the operator norm and the Frobenius norm for matrices (one
must always work with the former).

DEFINITION 1.0.9. The weak Hörmander constant HL at x of order L of the system (x, σ, F )
is defined as

min(1, inf
v∈Rn
|v|=1

∑
|α|≤L

α#(α) 6=0

〈dF.σ[α], v〉2).

The ellipticity constant of a system is the weak-Hörmander constant of order 1. A system is
‘(L,HL)-weak Hörmander at x’ if its weak Hörmander constant at x of order L is greater than
HL.

DEFINITION 1.0.10. We denote the set of smooth paths γ : [0, 1] → Rd by Pd. As usual, the
length of a path is defined by

|γ| =
∫ 1

0

√√√√ d∑
i=1

|dγ
i

dt
|2 dt.

DEFINITION. Let PdT be the set of smooth d-dimensional paths parametrised over [0, T ]. For
a path γ ∈ PdT , we define the path ∗γ ∈ Pd+1

T by

∀s ∈ [0, T ], ∗γs = (s, γ1
s , γ

2
s , . . . , γ

d
s ).

DEFINITION. If we are given a system (x, σ, F ), with some fixed quantities such as HL and
G known, we call a quantity C(n,m, d, L, g,G,HL) a proper constant if it only depends on
n,G,HL, L, and for fixed n, g, L, is a polynomial function of HL, G, i.e. there exist absolute
constants K1,K2 > 0, N ∈ Z and q ∈ R[−N,...,N ]×[−N,...,N ] such that

C(n,m, d, L, g,G,HL) < K1

 ∑
i,j∈[−N,...,N ]

qi,jG
iHj

L


and

C(n,m, d, L, g,G,HL)−1 < K2

 ∑
i,j∈[−N,...,N ]

qi,jG
iHj

L

 .

We call C(n,m, d, L, g,G,HL) a polynomial (resp. strongly polynomial) constant if it depends
polynomially on G,HL,m for fixed L, n, g, d (resp. polynomially on G,HL,m, d for fixed
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L, n, g). These concepts readily extend to situations where G or HL are replaced by quantities
with a similar role (such as the ‘progressive Hörmander constant’ or the ‘mixed tension’).

We also denote by X0→t the Jacobian process in Rm × Rm, which satisfies the following,
where Xt is the solution to the original SDE 1.0.1, where u, v ∈ {1, 2, . . . ,m}:

X0→0 = Idm×m

d(X0→t)v,u =

 d∑
i=1

m∑
j=1

∂σi(Xt)

∂xj
(X0→t)j,u ◦ dW i

t +
m∑
j=1

∂σ0(Xt)

∂xj
(X0→t)j,udt


v

.

As usual, we also define Xt→0 = (X0→t)
−1 and Xs→t = X0→tXs→0.



CHAPTER 2

Technical Lemmas

Here we write the most fundamental lemmas that will need to be used during the proofs. This
chapter could be considered an appendix.

2.1. On the exponential decay of iterated integrals (concentration results)

For the proof of Euclidean bounds, only the classic first result (the martingale inequality) is
required. The other results will be used in the proof of the control bounds. The beginning of this
section contains a version of the result of Appendix 1 (section 5, page 24) of [6] and inequality 4.5
page 422 in [37] (the former is a variation of the latter).

REMARK 2.1.1. In this section integrals are Itô integrals. We will use the notation Iα(A, T )
and Jα(A, T ) for Itô iterated integrals, and different notations, such as (AW )α for Stratonovich
ones.

The following can be found in the appendix of [49]

LEMMA 2.1.2 (Martingale inequality). Let Mt be a martingale, we have

P(sup
s≤t

(|Ms| ≥ δ)) ≤ 2e
− δ

2

2ρ .

Now, let α ∈ {0, 1, . . . , d}k be a multi-index. We write as usual

|α| = k + #{i ∈ {1, 2, .., k}, αi = 0}

for the order of α. Write ᾱ = (α1, α2, . . . , αk−1) We define the multiple stochastic integral of
order |α|, Iα(A, T ) by induction:

I(0)(A, T ) =

∫ T

0
Atdt,

I(k)(A, T ) =

∫ T

0
AtdW

αk
t ,

Iα(A, T ) =

∫ T

0
I ᾱ(A, t)dW k

t , if αk 6= 0,

Iα(A, T ) =

∫ T

0
I ᾱ(A, t)dt, if αk = 0.

Recall the following theorem from [6].

THEOREM 2.1.1 (Exponential decay of iterated integrals). There exist some universal con-
stants C|α| such that

P

(
sup

0≤t≤T
Iα(A, t) > R

)
≤ C|α| exp

−(Ra )
2
|α|

2T

.
With the exact values of the constants being

Cα = 2|α|.

16
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PROOF. We prove the result by induction.

1. Initial case. If α1 6= 0, this is just the lemma above, with Cα = 2. If α1 = 0, we have for all
∀T > 0, ∣∣∣∣∫ T

0
Atdt

∣∣∣∣ ≤ sup
0≤t≤T

|At|T = aT,

therefore

P

(
sup

0≤t≤T
|
∫ t

0
Asds| > R

)
= 0 if

R

aT
> 1.

This implies that we indeed have

P

(
sup

0≤t≤T
Iα(A, t) > R

)
≤ C|α| exp

−(Ra )
2
|α|

2T


for cα = c(1) = e1/2.

2. Induction step from ᾱ to α. We suppose α = (ᾱ, αk) for some ᾱ.
If αk 6= 0, let us split the event into two as follows, with B a real number (corresponding to

the one being called A in [37]). We have:

P

(
sup

0≤t≤T
|Iα(A, t)| > R

)
≤ P

(
sup

0≤t≤T
|Iα(A, t)| > R, sup

0≤t≤T
|I ᾱ(A, t)| < B

)

+ P

(
sup

0≤t≤T
|I ᾱ(A, t)| > B

)

≤ 2 exp

(
− R2

2B2T

)
+ Cᾱ exp

−(Ba )
2
|ᾱ|

2T


(here we have used the martingale inequality and the induction hypothesis).

Now set B = a
1

|ᾱ|+1R
|ᾱ|
|ᾱ|+1 , and we get the required inequality with Cα = Cᾱ + 2.

If αk = 0, proceeding as in the initial case above (for α1 = 0), we find that

P

(
sup

0≤t≤T
|Iα(A, t)| > R

)

≤ P

(
sup

0≤t≤T
|I ᾱ(A, t)| > R

T

)

≤ Cᾱ exp

−( RaT )
2
|ᾱ|

2T


≤ Cᾱ exp

−(Ra )
2
|α|

2T
(
R

a
)

4
|α|(|α|−2) (

1

T
)

2
|α|−2


≤ Cᾱ exp

−(Ra )
2
|α|

2T
(
(Ra )

2
|α|

T
)

2
|α|−2


≤ Cᾱ exp

−(Ra )
2
|α|

2T

 Id{
(Ra )

2
|α|

T
>1

}+e1/2Cᾱ exp

−(Ra )
2
|α|

2T

 Id{
(Ra )

2
|α|

T
≤1

}
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≤ Cᾱ(1 + e1/2) exp

−(Ra )
2
|α|

2T


where at the last two lines, we have split into two cases according to whether (R

a
)

2
|α|

2T is greater or
smaller than 1. Therefore, the inequality indeed holds with Cα = Cᾱ(1 + e1/2). This completes
the proof. �

2.2. Disintegration formula

The following result from real analysis is the key ingredient for the developments in Part 2.

THEOREM 2.2.1 (Disintegration formula from real analysis, see [37], Lemma 3.14). Let F :
Rm → Rn be a smooth function. Let µ be a measure on Rm with density µ. The pushforward of
the measure is given by the formula

µRn(y) =

∫
F (x)=y

µ(x)J(x)

where

J(x) =

√
1

det(JFJF t)

with JF being the Jacobian matrix (JFi,j = ∂fi
xj

) and t denoting transposition.

2.3. Gronwall-type Lemma

The following Gronwall-type theorem can be seen as a generalisation of Proposition A.1 in
[42], merged with the technical point of Corollary A1 in [42] and adapted to our general setting,
with sharper control on the growth of the constants:

THEOREM 2.3.1. Let St ∈ Rm be a process driven by the following SDE:

dSt = B0dt+
d∑

k=1

BkdW k
t

For some processes Bk
t ∈ Rm × Rm for k = 0, 1, .., d, such that, for all k,

Bk
t = Ekt St + F kt

with Ekt , F
k
t processes in Rm×Rm. Let p ≥ 1 be fixed. Assume we have the following conditions,

for some given constants C0, C1, C2, and β (below, ‖·‖ denotes the operator norm):

(1) ‖‖S0‖2‖pp ≤ C0(p);
(2) if Et : Rm → Rm, y 7→ Et(y) =

∑d
k=1 ‖Ekt y‖2 + |〈y,E0

t y〉|, the operator norm ‖Et‖
satisfies ‖Et‖2 ≤ C1 almost surely and for all t ≤ 1;

(3) if Ft =
∑d

k=1 ‖F k‖2 + |F 0|2, then for all t ≤ 1, E(|Ft|p)
1
p ≤ C2e

βt.

Then, for all x ∈ Rm with |x|Rm = 1, there exist constants K1 and K2, depending only on
C0, C1, C2, p but not β, with K2 not dependent on C0, such that for all t ≤ 1, we have:

‖(sup
s≤t
|Ssx|2Rm)‖p ≤ K1e

max(K2,β)t,

where ‖‖p denotes the (expected) Lp norm.
If, additionally, we have that

S0x = 0, ‖E0‖2 ≤ C1,
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then there exists a constant M depending only on C0, C1, C2, p but not β or m, such that for all
p ≥ 1, ∥∥∥∥(sup

s≤t
|Ssx|2Rm)

∥∥∥∥
p

≤ t
1
2Memax(K2,β)t.

Explicitly,

K1 = K̄
1
p

1 = (C0(p) + 2p(2p− 1))
1
p ,

K2 =
K̄2

p
= 2(C1 + 1) + 8(p− 1)(C2

1 + 1) + C22(2p− 1), and

M = 4
1− 1

p (1 + Λp)
1
p (K1C

p
1 + Cp2 )

1
p ,

where Λp is the constant in the Burkholder inequality.

PROOF. First , by Itô’s formula, we have (with the usual convention that W 0 = t):

|Stx|2 = |S0x|2 + 2

d∑
k=0

∫ t

0
〈Ssx,Bk〉dW k

s +

d∑
k=1

∫ t

0
|BkSsx|2ds

= |S0x|2 + 2
d∑

k=1

∫ t

0
Jks dW

k
s +

∫ t

0
Hsds,

for processes Jks , Hs ∈ R with:

Jks = 2〈Ssx,Bk〉

= 2〈Ssx, (EkSx+ F k)〉

and

Hs = 2〈Ssx,B0〉+
d∑

k=1

|Bk|2

= 2〈Ssx,E0Ssx+ F 0〉+

d∑
k=1

|EkSsx|2

+

d∑
k=1

|F k|2 +

d∑
k=1

〈F k, EkSsx〉

≤ 2〈Ssx,E0Ssx+ F 0〉+
d∑

k=1

|EkSsx|2

+

d∑
k=1

|F k|2 +

d∑
k=1

|F k|2 +

d∑
k=1

|EkSsx|2

≤ 2C1|Ssx|2 + 2|F |+ 2|Ssx|2.(2.3.1)

Next, we note that
d∑

k=1

(Jk)2 =
d∑

k=1

4〈Ssx, (EkSx+ F k)〉2

≤ 4

d∑
k=1

(|Ssx||EkSx|+ |Ssx||F k|)2
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≤ 4|Ssx|2
d∑

k=1

(|EkSx|+ |F k|)2

≤ 8(

d∑
k=1

|EkSx|2)|Ssx|2 + 8(

d∑
k=1

|F k|2)|Ssx|2

≤ 16|Ssx|4 + 16|E(Ssx)|2 + 8|F ||Ssx|2.(2.3.2)

We use the notation Λt = |Ssx|2. Now, let us apply Itô’s formula to Λt and the func-
tion f(t, x) := eγtxp, where γ < 0 will be chosen later. We will also use the notation Φt =
E(f(t,Λt)). We get:

eγtΛpt = Λp0 + γ

∫ t

0
eγsΛpsds+ p

∫ t

0
eγsΛp−1

s Hsds

+
1

2
p(p− 1)

∫ t

0
eγsΛp−2

s (

d∑
k=1

(Jks )2)ds+Mt,

where Mt is a martingale. It follows that

Φt ≤ Φ0 + γ

∫ t

0
Φsds+ p

∫ t

0
E(eγsΛp−1

s Hs)ds

+
1

2
p(p− 1)

∫ t

0
E(eγsΛp−2

s (

d∑
k=1

(Jks )2))ds.

Now, using Eqs. (2.3.1) and (2.3.2), we can further reduce this to:

Φt ≤ Φ0 + γ

∫ t

0
Φsds+ p

∫ t

0
E
(
eγsΛp−1

s (2C1|Ssx|2 + 2|F |+ 2|Ssx|2)
)
ds

+
1

2
p(p− 1)

∫ t

0
E
(
eγsΛp−2

s (16|Ssx|4 + 16|E(Ssx)|2 + 8|F ||Ssx|2)
)
ds

≤ Φ0 + (γ + 2pC1 + 2p+ 8p(p− 1) + 8p(p− 1)C2
1 )

∫ t

0
Φsds

+ (2p(2p− 1))

∫ t

0
E
(
eγsΛp−1

s |F |
)
ds

≤ Φ0 + (γ + 2p(C1 + 1) + 8p(p− 1)(C2
1 + 1))

∫ t

0
Φsds

+ (2p(2p− 1))

∫ t

0
E
(
eγsΛp−1

s |F |
)
ds.(2.3.3)

Now, by Hölder’s inequality,

eγsE(Λp−1
s |F |) ≤ Φ

1− 1
p

s e
γs 1

p ‖|Fs|‖p

≤ Φ
1− 1

p
s e

γs 1
pC2e

βs.

Setting γ < −pβ, and using ∀u ∈ R, u
p−1
p ≤ 1 + u, we can write

eγsE(Λp−1
s |F |) ≤ Φ

1− 1
p

s e
γs 1

pC2e
βs

≤ (1 + Φs)e
γs 1

pC2e
βs

≤ (1 + Φs)C2.
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Now, writing K̄2 for 2p(C1 + 1) + 8p(p− 1)(C2
1 + 1) + C22p(2p− 1) and K̄1 for C0(p) +

2p(2p− 1), we can rewrite (2.3.3) as:

Φt ≤ Φ0 + (γ + 2p(C1 + 1) + 8p(p− 1)(C2
1 + 1) + C22p(2p− 1))

∫ t

0
Φsds

+ (2p(2p− 1))

∫ t

0
1ds

≤ C0(p) + t(2p(2p− 1)) + (γ + K̄2)

∫ t

0
Φsds

≤ K̄1 + (γ + K̄2)

∫ t

0
Φsds

where at the third line, we have used the first assumption, and at the fourth line, we have used the
fact that t ≤ 1.

We would like to use Gronwall’s identity. We can do that directly if γ + K̄2 ≥ 0, otherwise,
we need to use the fact that Φs ≥ 0 to transform the above into Φs ≤ K̄1. In all cases, we can
write

Φs ≤ K̄1 + (max(γ + K̄2, 0))

∫ t

0
Φsds,

and then use Gronwall’s identity to obtain, for all t ≤ 1:

Φt ≤ K̄1e
max(γ+K̄2,0)t.

Recall that by definition Φt = E(eγtΛpt )) = E(eγt(|Sx|2)p)), therefore,

‖|Sx|2‖ ≤ K̄
1
p

1 (emax(γ+K̄2,0)t−γt)
1
p

= K̄
1
p

1 e
max(

K̄2
p
,β)t

= K1e
max(K2,β)t,

with

K1 = K̄
1
p

1 = (C0(p) + 2p(2p− 1))
1
p

and

K2 =
K̄2

p
= 2(C1 + 1) + 8(p− 1)(C2

1 + 1) + C22(2p− 1).

This concludes the proof of the first statement.
Now, for the second part of the theorem, observe first that for 1 ≤ p ≤ 2, ‖Sx‖p ≤ ‖Sx‖2p,

so we can suppose without loss of generality that p ≥ 2. Now, using the Burkholder and Jensen’s
inequalities, we can write (with Λp being the constant appearing in Burkholder’s inequality):

E(|Sx|p) ≤ 4p−1E
((∫ t

0
(E0Sx)sds

)p)
+ 4p−1E

((∫ t

0
(F 0)sds

)p)
+ 4p−1E

((∫ t

0

d∑
k=1

(EkSx)sdWs

)p)
+ 4p−1E

((∫ t

0

d∑
k=1

(F k)sdWs

)p)
(by Jensen’s inequality)

≤ 4p−1E
((∫ t

0
(E0Sx)sds

)p)
+ 4p−1E

((∫ t

0
(F 0)sds

)p)
+ 4p−1ΛpE

((∫ t

0

d∑
k=1

(EkSx)2
sds

)p)
+ 4p−1ΛpE

((∫ t

0

d∑
k=1

(F k)2
sds

)p)
(by Burkholder’s inequality)
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≤ 4p−1E
(
tp−1

∫ t

0
(E0Sx)psds

)
+ 4p−1E

(
tp−1

∫ t

0
(F 0)psds

)
+ 4p−1ΛpE

(
tp−1

∫ t

0

(
d∑

k=1

(EkSx)2
s

)p
ds

)
+ 4p−1ΛpE(tp−1

∫ t

0

(
d∑

k=1

(F k)2
s)
pds

)
(by Jensen’s inequality again)

≤ 4p−1C
p
2
1 E
(
tp−1

∫ t

0
(|Sx|)psds

)
+ 4p−1E

(
tp−1

∫ t

0
(F 0)psds

)
+ 4p−1ΛpE

(
tp−1

∫ t

0
(C1|Sx|2)pds

)
+ 4p−1ΛpE

(
tp−1

∫ t

0

(
d∑

k=1

(F k)2
s

)p
ds

)

= tp−1(4p−1C
p
2
1 + 4p−1ΛpC

p
1 )E

(∫ t

0
(|Sx|)psds

)
+ 4p−1E

(
tp−1

∫ t

0
(F 0)psds

)
+ 4p−1ΛpE

(
tp−1

∫ t

0

(
d∑

k=1

(F k)2
s

)p
ds

)

= tp−1(4p−1C
p
2
1 + 4p−1ΛpC

p
1 )

∫ t

0
E ((|Sx|)ps) ds

+ 4p−1tp−1

∫ t

0
E
(
(F 0)ps

)
ds+ 4p−1Λpt

p−1

∫ t

0
E

((
d∑

k=1

(F k)2
s

)p)
ds

≤ tp−1(4p−1C
p
2
1 + 4p−1ΛpC

p
1 )(t.K1e

max(K2,β)tp)

+ 4p−1tp−1Cp2e
βtpt+ 4p−1Λpt

p−1Cp2e
βtpt

(by the first part of the theorem, and the third assumption)

≤ 4p−1(1 + Λp)(K1C
p
1 + Cp2 )tpemax(K2,β)tp

= Mptpemax(K2,β)tp,

where M = 4
1− 1

p (1 + Λp)
1
p (K1C

p
1 + Cp2 )

1
p . The theorem follows. �

2.4. Norris Lemmas

The following is a modification of Lemma 2.3.2 in [49]. We use the same notation and almost
the same proof, the main difference with [49] is that we have to be careful about the exact value
of ε0, and how it depends on t0. (This is required to obtain any upper bounds on the density,
regardless of issues about growth of constants.)

THEOREM 2.4.1. Let α, β(t), y ∈ Rm. Suppose that

γ(t) = (γ1(t), γ2(t), . . . , γd(t)) ∈ Rd

and u(t) = (u1(t), . . . , ud(t)) are adapted processes. Set

α(t) = α+

∫ t

0
β(s)ds+

d∑
i=1

∫ t

0
γi(s)dW

i
s

Y (t) = y +

∫ t

0
a(s)ds+

d∑
i=1

∫ t

0
ui(s)dW

i
s ,

and assume that there exists 0 < t0 < 1 and p ≥ 2 such that

c = E

(
sup

0≤t≤t0,
|β(t)|

)
+ E

(
sup

0≤t≤t0,v∈Rm,|v|=1
(

d∑
k=1

|γ(t)k|2)
1
2

)
(2.4.1)
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+ E
(

sup
0≤t≤t0

|a(t)|
)

+ E
(

sup
0≤t≤t0

|u(t)|)
)
<∞.

Then, for any q > 8 and for any r, ν, κ > 0 such that 18r+9ν+18κ < q−8 and κ < 1, there
exists a constant C(ν, κ) ≤ 1, depending only on ν and κ, such that for all ε ≤ ε0 = C(ν, κ)t0.

Let ω1 denote the following event:

ω1 =

{∫ t0

0
Y 2
t dt < εq,

∫ t0

0
(|a(t)|2 + |u(t)|2)dt > ε

}
.

We have:

P (ω1) ≤ P

(
sup
t≤t0

(
|β(t)|+ (

d∑
k=1

|γk(t)|2)
1
2 + |a(t)|+ |u(t)|

)
≥ e−r

)
+ 2e−ε

−ν

≤ cεrp + 2e−ε
−ν
.

PROOF. Set

θt = sup
t≤t0

(
|β(t)|+ (

d∑
k=1

|γk(t)|2)
1
2 + |a(t)|+ |u(t)|

)
.

Fix q > 8 and r, ν, κ such that ∆ := q − 8− 18r − 9ν − 18κ > 0. Suppose that ν ′ = ν + 2κ. ν ′

satisfies satisfies ∆ := q − 8− 18r − 9ν ′ > 0. Then we define the bounded stopping time

T = inf

(
s ≥ 0 : sup

0≤u≤s
θu > ε−r

)
∧ t0.

We have

P (ω1) ≤ A1 +A2,

with A1 = P(T < t0) and

A2 = P (ω1, T = t0) .

By the definition of T and condition (2.4.1), we obtain

A1 ≤ P
(

sup
0≤s≤t0

θs > ε−r
)
≤ εrpE

(
sup

0≤s≤t0
θps

)
≤ cεrp

Let us introduce the following notation (summation over i is implied)

At =

∫ t

0
a(s)ds, Mv

t =

∫ t

0
ui(s)dW

i
s ,

Nv
t =

∫ t

0
Y (s)ui(s)dW

i
s , Qvt =

∫ t

0
A(s)γi(s)dW

i
s .

Define for any ρi > 0, δi > 0, i = 1, 2, 3,

Bv
1 =

(
[NT ] < ρ1, sup

0≤s≤T
|Ns| ≥ δ1

)

Bv
2 =

(
[MT ] < ρ1, sup

0≤s≤T
|Ms| ≥ δ1

)

Bv
3 =

(
[QT ] < ρ1, sup

0≤s≤T
|Qs| ≥ δ1

)
.

The usual exponential martingale inequality implies ∀v ∈ Rm : P(Bv
i ) ≤ 2e

− δ2i
2ρi . Our aim is

to prove the following inclusion:

{ω1, T = t0} ⊂ B1 ∪B2 ∪B3(2.4.2)
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for the particular choices of ρi and δi:

ρ1 = ε−2r+q, δ1 = εq1 , q1 =
q

2
− r − ν ′

2
,

ρ2 = 2(2t0 + 1)
1
2 ε−2r+

q1
2 , δ2 = εq2 , q2 =

q

8
− 5r

4
− 5ν ′

8
,

ρ3 = 36t0ε
−2r+2q2 , δ3 = εq3 , q3 =

q

8
− 9r

4
− 9ν ′

8
.

From the inclusion (2.4.2) we get

A2 ≤ 2

(
exp(− δ2

1

2ρ1
) + exp(− δ2

2

2ρ2
) + exp(− δ2

3

2ρ3
)

)
≤ 2

(
exp(−1

2
ε−ν

′
) + exp(− 1

4
√

1 + 2t0
ε−ν

′
) + exp(− 1

72t0
ε−ν

′
)

≤ 2

(
exp(−1

2
ε−ν−κε−κ) + exp(− 1

4
√

1 + 2t0
ε−ν−κε−κ) + exp(− 1

72t0
ε−ν−κε−κ

)
≤ 6

(
exp(−ε−ν−κ)

)
as long as ε ≤ 72

−1
κ . Now, for ε ≤ C̄(ν, κ), for some C̄(ν, κ), we can also conclude

A2 ≤
(
exp(−ε−ν)

)
To conclude the above, we have also used the following:

2q1 + 2r − q = −ν ′,

2q2 + 2r − q1

2
− ν ′,

3q3 + 2r − 2q2 = −ν ′.

It remains to show only the inclusion (2.4.2).
Suppose that ω /∈ B1 ∪B2 ∪B3, T (ω) = t0, and

∫ T
0 Y 2

t dt < εq. Then

[N ]T =

∫ T

0
Y 2
t |ut|2dt < ε−2r+q = ρ1.

Then, since ω /∈ B1, sup0≤s≤T |
∫ T

0 Ysu
i
sdW

i
s | ≤ δ1 = εq1 . We also have

sup
0≤s≤T

∣∣∣∣∫ T

0
Ysasds

∣∣∣∣ ≤ (t0 ∫ T

0
Y 2
t a

2
tdt

) 1
2

<
√
t0ε
−r+ q

2 .

The above two points allow us to deduce that

sup
0≤s≤T

∣∣∣∣∫ T

0
YsdYs

∣∣∣∣ < √t0ε−r+ q
2 + εq1 .

Then by Itô’s formula, Y 2
t = y2 + 2

∫ t
0 YsdY s + [M ]t, which gives the following control on

the time integral of [M ]t:∫ T

0
[M ]tdt =

∫ T

0
Y 2
t dt− Ty2 − 2

∫ T

0

(∫ t

0
YsdYs

)
dt

≤ εq + 2t0(
√
t0ε
−r+ q

2 + εq1).

Now, observe that q > q1 + κ and −r + q
2 > q1 + κ. Therefore, as long as ε ≤ 3

−1
κ ≤

(1 + 2t0
√
t0)
−1
κ we get ∫ T

0
[M ]tdt ≤ εq1(2t0 + 1).
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Now, since [M ]t is an increasing process, for any γ ≤ T we have

γ[M ]T−γ < (2t0 + 1)εq1 ,

and hence [M ]T < γ−1(2t0 + 1)εq1 +γε−2r. Choosing γ = (2t0 + 1)
1
2 ε

q1
2 , we obtain [M ]T < ρ2

(since ε < 1). Since ω /∈ B2, we get

sup
0≤T
|Mt| < δ2 = εq2

Recall that
∫ T

0 Y 2
t < εq, so by Tchebychev’s inequality,

λ1
(
t ∈ [0, T ] : |Ys(ω)| ≥ ε

q
3

)
≤ ε

q
3

(here, λ1 is the Lebesgue measure on R.) Then

λ1
(
t ∈ [0, T ] : |y +At(ω)| ≥ ε

q
3 + εq2

)
≤ ε

q
3 .

Now, as long as C(κ, ν) ≤ 1
2 , we have ε

q
3 ≤ ε ≤ t0

2 . This means that for each t ∈ [0, T ], there
exists s ∈ [0, T ] such that |s− t| ≤ ε

q
3 and |y +As| < ε

q
3 + εq2 . It follows that

|y +At| ≤ |y +As|+ |
∫ t

s
ardr| < (1 + ε−r)ε

q
3 + εq2 .

In particular (setting t = 0), we have |y| < (1 + ε−r)ε
q
3 + εq2 , and for all t ∈ [0, T ] we have

|At| ≤ 2
(

(1 + ε−r)ε
q
3 + εq2

)
≤ 6εq2 ,

because q2 <
q
3 − r. This implies that

[Q]T =

∫ T

0
A2
t |γt|2dt < 36t0ε

2q2−2r = ρ3.

So since ω /∈ B3, we have

|QT | = |
∫ T

0
|At|2|γt|2dt < 36t0ε

2q2−2r = ρ3.

Finally, by Itô’s formula, we obtain:∫ T

0
(a2
t + |ut|2)dt =

∫ T

0
atdAt + [M ]T

= aTAT −
∫ T

0
Atβtdt−

∫ T

0
Atγi(t)dW

i
t + [M ]T

≤ (1 + t0)6εq2−r + εq3 + 2
√

2t0 + 1ε−2r+
q1
2 < ε,

as long as ε ≤ 17−
1
κ ≤ ((1 + t0)6 + 1 + 2

√
2t0 + 1)−

1
κ , since q2 − r, q3,−2r + q1

2 > 1 + κ.
It follows that the theorem holds for

C(ν, κ) = min{17−
1
κ , C̄(κ, ν), 3

−1
κ , 72

−1
κ ,

1

2
} = min{C̄(κ, ν), 72

−1
κ }

i.e.

ε ≤ ε0 = min{C̄(κ, ν), 72
−1
κ }t0.

�



CHAPTER 3

Foundational Lemmas

Here we introduce suitable versions of lemmas that are fundamental to the study the behaviour
of SDE and multi-dimensional Brownian motion, which are the main building blocks of any proof
of upper bounds.

3.1. Linearisation

Here we show why we can always assume that F is linear.

THEOREM 3.1.1. Let (x, σ, F ) be a system, with F, σ having derivatives up to order o + 1
at x. We have, for all α ∈ Multi({0, 1, . . . , d}) with #(α) ≤ o,

(∗σ)[α] = ∗σ[α].

In particular, the weak or strong Hörmander constants of the systems

(x, σ, F ) and ((x, F (x)), (σ, F (σ)), F̃ ),

where (x, F (x)), (σ, F (σ)) ∈ Rm+n ' Rm ⊗ Rn and F̃ denotes projection on the last n compo-
nents, coincide at any point.

PROOF. This is a straightforward consequence of the Schwartz theorem. We prove the result
by induction. The result is clear for #(α) = 1. Next, we suppose that α = (ᾱ, i) for some
ᾱ ∈ Multi({0, 1, . . . , d}) and some i ∈ {0, 1, . . . , d}. We have

(∗σ)[α] =
∂dF.σi

∂(∗σ)[ᾱ]
− ∂dF.(∗σ)[ᾱ]

∂σi

= dF.
∂σi

∂(∗σ)[ᾱ]
+ d2F (σi, (∗σ)[ᾱ])− dF.∂(∗σ)[ᾱ]

∂σi
− d2F ((∗σ)[ᾱ], σi)

= dF.
∂σi

∂(∗σ)[ᾱ]
+−dF.∂(∗σ)[ᾱ]

∂σi
(by Schwartz’s theorem)

= dF.
∂σi

∂ ∗ σ[ᾱ]
+−dF.∂ ∗ σ

[ᾱ]

∂σi
(by the induction hypothesis)

= ∗σα,

as expected. �

The following proposition shows that so far as the tension is concerned, when proving Gauss-
ian bounds in terms of the Euclidean distance, we can suppose that F is linear:

PROPOSITION 3.1.1. Let (x, σ, F ) be an (L, g,G)-tense system. Let F̃ : Rm ⊗ Rn → Rn be
the projection onto the last n components. There exists a proper constant G̃ such that the system
((x, F (x)), (σ, dF.σ), F̃ ) is (L, g, G̃)-tense.

PROOF. This is a straightforward verification. �

26
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3.2. Bounds on the norms of the solution and the Jacobian process

Here we show bounds on the Malliavin derivatives of the solution process and the Jacobian
process. The main ingredient is our Gronwall-type Lemma 2.3.1.

The following is a generalisation of Proposition A.2 in [42]:

THEOREM 3.2.1. Let A = (x, F, σ) be a system such that

KN = sup
|v|=1

d∑
k=0

‖〈σk, v〉‖2∂,N ≤ G

uniformly for some G ≥ 1 and for all N ≤ o+ 3 for some o ∈ N. We have the following bounds
on the Malliavin derivatives of X and its Jacobian: There exist constants C1

o,p, C
2
o,p, C

3
n,p and

β1
o,p, β

2
o,p, β

3
o,p (for o ≤ N − 3) such that for any s1, s2, . . . , so ∈ R,

sup
|w1|,|w2|,...,|v|=1

‖ sup
s≤t

Dw1
s1 D

w2
s2 . . . D

wo
so (Xv

s )‖p ≤ C1
o,pe

β1
o,pt,

sup
|w1|,|w2|,...,|v1|,|v2|=1

‖ sup
s≤t

Dw1
s1 D

w2
s2 . . . D

wo
so (Xv1,v2

0→s )‖p ≤ C2
o,pe

β2
o,pt,

sup
|w1|,|w2|,...,|v1|,|v2|=1

‖ sup
s≤t

Dw1
s1 D

w2
s2 . . . D

wo
so (Xv1,v2

s→0 )‖p ≤ C3
o,pe

β3
o,pt,

sup
|v|=1
v∈Rm

(
sup
s≤t

E(|vT (X0→s − Id)|p)
) 1
p

≤M1
o,pt

1
2 eβ

4
o,pt,

sup
|v|=1
v∈Rm

(
sup
s≤t

E(|vT (Xs→0 − Id)|p)
) 1
p

≤M2
o,pt

1
2 eβ

5
o,pt.

Here the supremum is over any combination of unit vectors w1, w2, . . . , wo ∈ Rd, and any unit
v, v1, v2 ∈ Rm, and the norm is the Lp norm in expectation. In the last two inequalities, the
matrix norm is the operator norm. Furthermore, the constants C1

o,p, C
2
o,p, C

3
o,p and β1

o,p, β
2
o,p, β

3
o,p

depend only on o, p and G, and not on m,n, d. Furthermore, for fixed o and p, the constants
C1
o,p, C

2
o,p, C

3
o,p and β1

o,p, β
2
o,p, β

3
o,p are polynomial in G.

PROOF. The proof is mostly made of straightforward and ‘classic’ calculations. Because the
assumption does not change up to a proper constant if we change the system into an Itô system
rather than a Stratonovich one, we can work with Itô integrals.

First inequality. Differentiating the SDE formally and using standard Malliavin calculus, we
have:

Xv
t = Xv

0 +

d∑
k=0

∫ t

0
σk,v(Xs)dW

k
s ,

Dw1
s1 X

v
t =

d∑
k=1

σ(Xs1)k,v(w1)k +
d∑

k=0

∫ t

0
〈∂σ(Xs)

k,v, Dw1
s1 Xs〉RmdW k

s

= σw1,v
s1 +

d∑
k=0

∫ t

0
〈∂σk,vs , Dw1

s1 Xs〉RmdW k
s ,

where we have used the natural notations

σw1,v
s1 = σ(Xs1)w1,v =

d∑
k=1

σ(Xs1)k,v(w1)k,

σs = σ(Xs),
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〈∂σk,v, v̄〉 =
m∑
i=1

∂σk,v

∂xi
v̄i,

etc.

For the next two degrees, we also obtain similarly:

Dw1
s1 D

w2
s2 X

v
t = 〈∂σk,vs1 , D

w2
s2 Xs1〉+

∫ t

0

d∑
k=0

〈∂σk,vs , Dw1
s1 D

w2
s2 Xs〉dW k

s

+

∫ t

0

d∑
k=0

〈∂2σk,vs , Dw1
s1 Xs, D

w2
s2 Xs〉dW k

s and

Dw1
s1 D

w2
s2 D

w3
s3 Xt = 〈∂σw1,v

s1 , Dw2
s2 D

w3
s3 Xs1〉+ 〈∂2σw1,v

s1 , Dw2
s2 Xs1 , D

w3
s3 Xs1〉

+

∫ t

0

d∑
k=0

〈∂σk,vs , Dw1
s1 D

w2
s2 D

w3
s3 Xs〉dW k

s

+

∫ t

0

d∑
k=0

〈∂2σk,vs , Dw1
s1 Xs, D

w2
s2 D

w3
s3 Xs〉dW k

s

+

∫ t

0

d∑
k=0

〈∂2σk,vs , Dw1
s1 D

w2
s2 Xs, D

w3
s3 Xs〉dW k

s

+

∫ t

0

d∑
k=0

〈∂2σk,vs , Dw2
s2 Xs, D

w1
s1 D

w3
s3 Xs〉dW k

s

+

∫ t

0

d∑
k=0

〈∂3σk,vs , Dw1
s1 Xs, D

w2
s2 Xs, D

w3
s3 Xs〉dW k

s .

For a subsetH of 1, 2, . . . , o, we writeDHXs forD
wH̃1
sH̃1

D
wH̃2
sH̃2

. . . D
wH̃#H
sH̃#H

, where H̃ is the ordered
set obtained by ordering H according to the natural order relation on 1, 2, . . . , o. Now, for the
general order, we get:

D1,2,3,...,oXv
t =

∑
∪i
j=1

Ij

={2,3,...,o}

〈∂iσw1,v
s1 , DI1Xs1 , D

I2Xs1 . . . , D
IjXs1〉(3.2.1)

+

∫ t

0

d∑
k=0

∑
∪i
j=1

Ij

={1,2,3,...,o}

〈∂iσk,vs , DI1Xs, D
I2Xs . . . , D

IjXs〉dW k
s .

We can now prove the (first) claim by induction using Theorem 2.3.1: For the initial case,
recall that

Xt = X0 +

d∑
k=0

∫ t

0
σk(Xs)dW

k
s .

This equation is of the form of the assumptions of Theorem 2.3.1, with S0 = X0, E = 0, F =
σ(Xs), which satisfy the assumptions of Theorem 2.3.1 with β = 0, C2 = G and all other
constants being null. Therefore we can deduce that

‖X‖p ≤ C0,pe
β0,pt,

with C0,p = (2p(2p− 1))
1
p and β0,p = 0.

For the induction step, suppose that the inequality holds for o ≤ N − 1, we must check that it
holds for o = N . Separating the only term that involves N th order derivatives, and observing that
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D.
s1Xs2 = 0 unless s2 ≥ s1, Eq. (3.2.1) becomes:

D1,2,3,...,NXt =
∑
∪i
j=1

Ij

={2,3,..N}

〈∂iσw1
s1 , D

I1Xs1 , D
I2Xs1 . . . , D

IjXs1〉

+

∫ t

max(si)

d∑
k=0

∑
∪i
j=1

Ij={1,2,..N}
i≥2

〈∂iσks , DI1Xs, D
I2Xs, . . . , D

IjXs〉dW k
s

+

∫ t

max(si)

d∑
k=0

〈∂σks , D1,2,...,NXt〉.

This is an equation of the form of the assumptions of Theorem 2.3.1, started at max(si) (instead
of 0), with

Eks . = 〈∂σks , .〉,

F k =
∑

∪i
j=1

Ij={1,2,3,..N}
i≥2

〈∂iσks , DI1Xs, D
I2Xs, . . . , D

IiXs〉 and

SsN−1 =
∑
∪i
j=1

Ij

={2,3,..N}

〈∂iσw1
s1 , D

I1Xs1 , D
I2Xs1 . . . , D

IiXs1〉.

Now by the assumption on the tension, we have that
∑d

k=0〈Ek, v〉2 ≤ Ḡ for any |v| = 1 and for
some (strongly) polynomial G. Furthermore, again by this assumption, we have:

|SsN−1 |
2 =

∑
∪i
j=1

Ij

={2,3,..N}

〈∂iσw1
s1 , D

I1Xs1 , D
I2Xs1 . . . , D

IiXs1〉

≤ G
∑
∪i
j=1

Ij

={2,3,..N}

i∏
j=1

|DIjXs1 |2,

using the induction hypothesis, we get

‖|SsN−1 |
2‖p ≤ G

∑
∪i
j=1

Ij

={2,3,..N}

(CN−1,p)
ieβN−1,pG

2(maxu su)i

≤ 2N−2G(CN−1,p)
N−1eβN−1,pG

2(maxu su)(N−1),

and for s ≥ maxu(su),

‖Fs‖p ≤ 2N−1G(CN−1,p)
N−1eβN−1,pG

2N(s−maxu(su)).

We are now in a position to apply Theorem 2.3.1, to obtain directly:

‖|S|2‖p ≤ CN,peβN−1,pG
2(maxu su)(N−1)emax(K2,βN−1,pG

2(N−1))(t−maxu su)

≤ CN,pemax(K2,βN−1,pG
2(N−1))t

with

CN,p =
(
(2N−2G(CN−1,p)

N−1)p + 2p(2p− 1)
) 1
p

≤ 2 max(2N−2G(CN−1,p)
N−1, (2p(2p− 1))

1
p and

K2 = 2(2G+ 1) + 8(p− 1)(4G2 + 1) + 2(2p− 1)2N−1G(CN−1,p)
N−1.

The first result follows at once.
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Second inequality: We have

Xv, .
0→t = v +

∑
0≤k≤d
1≤i≤m

∫ t

0

(
∂σk(Xs)

∂ei

)(
Xv,i

0→s

)
dW k

s

= v +
∑

0≤k≤d

∫ t

0
〈∂σk(Xs), X

v, .
0→s〉dW

k
s .

This is an equation of the form of the assumptions of Theorem 2.3.1, with Ek = 〈∂σk, .〉,
F k = 0 and S0 = v. The second inequality follows for o = 0.

For o = 1, formally differentiating the above equation yields:

Dw
s1X

v, .
0→t = 〈σw(Xs1), Xv, .

0→s1〉+
d∑

k=0

∫ t

s1

〈∂2σk(Xs), D
w
s1Xs, X

v, .
0→s〉dW

k
s

+

∫ t

s1

〈∂σk, Dw
s1(Xv, .

0→s)〉dW
k
s .

Again, this satisfies the assumptions of Theorem 2.3.1, with:

Eks = 〈∂σk(Xs), .〉
Ss = 〈σw(Xs), X

v, .
0→s〉

F ks =
d∑

k=0

∫ t

s1

〈∂2σk(Xs), D
w
s1Xs, X

v, .
0→s〉dW

k
s .

Therefore, the result for o = 1 follows by using the first inequality for o = 1 and the second
inequality for o = 0

For greater o, we also proceed by induction. First note that the development above for the first
inequality actually shows that we an inequality of the same form for |D1,2,...,N (σw(Xt))|p for any
w ∈ Rd, any (w1, s1), (w2, s2), . . . (wN , sN ).

Next, observe that

D1,2,...,o(Xv,.
0→t) = D2,...,N (〈∂σw1(Xs1), X0→s1〉)

+

∫ t

s1

d∑
k=0

D1,2,...,N (〈∂σk(Xs), X
v, .
0→s〉)dW

k
s

=
∑

I∪J={2,...,o}

(〈DI∂σw1(Xs1), DJX0→s1〉)

+
∑

I∪J={1,...,o}

∫ t

s1

d∑
k=0

D1,2,...,N (〈DI∂σk(Xs), D
JXv, .

0→s〉)dW
k
s .

This fits the setting of Theorem 2.3.1 with

Ss1 =
∑

I∪J={2,...,o}

〈DI∂σw1(Xs1), DJX0→s1〉 (initial condition)

F ks =
∑

I∪J={1,...,o},J 6=∅

〈DI∂σk(Xs), D
JXv, .

0→s〉

Eks = 〈D1,2,...,o∂σk(Xs), .〉.

This allows us to perform the induction step by using both the first inequality for differentiation
indices less than o and the second inequality for differentiation indices less than o − 1. It is clear
that at each step, the constants stay polynomial (p,o-dependent) functions of G.
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Third inequality: This is again very similar to the above. We have

Xv, .
t→0 = v −

d∑
k=1

∫ t

0
〈∂σk(Xs), X

v, .
s→0〉dW

k
s

−
∫ t

0
〈∂σ0(Xs)−

d∑
k=1

〈∂σk(Xs), ∂σ
k(Xs)〉, Xv, .

s→0〉ds.

This is indeed a setting for applying Theorem 2.3.1 with

S0 = v,

Eks = −〈∂σk(Xs), .〉 for k 6= 0,

E0
s = −∂σ0(Xs) +

d∑
k=1

〈∂σk(Xs), ∂σ
k(Xs)〉,

F = 0.

This allows us to conclude the case o = 0 for the third inequality.
For higher derivatives, the situation is the same as above with the matrix function of Xs given

by ∂σk(Xs) replaced by −∂σ0(Xs) +
∑d

k=1〈∂σk(Xs), ∂σ
k(Xs)〉 for k = 0 and with just the

sign changed for k 6= 0:
Writing

µk : Rm → Rm × Rm, ξ 7→ µk(ξ) = −∂σk(ξ) if k 6= 0

ξ 7→ µ0(ξ) = −∂σ0(ξ) +

d∑
k=1

〈∂σk(ξ), ∂σk(ξ)〉 for k = 0,

we can apply Theorem 2.3.1 with

Ss1 =
∑

I∪J={2,...,o}

〈DIµω1(Xs1), DJX0→s1〉 (initial condition)

F ks =
∑

I∪J={1,...,o},J 6=∅

〈DIµk(Xs), D
JXv, .

0→s〉

Eks = 〈D1,2,...,oµk(Xs), .〉.

Because it is as easy to bound the sums over k of the operator norms of µk as those of σk, we
can, again conclude using the induction hypothesis for step less than o − 1 and using the first
inequality for step less than o. Again, it is clear that at each step, the constants stay (p,o-dependent)
polynomial functions of G. �

We can now prove a similar development for the Ornstein-Uhlenbeck operator L applied toX ,
and its Malliavin derivatives. We will need a stricter result, involving a factor of t

1
2 , for the zeroth

order derivative. This is the analogue of Corollary A.1 in [42], merged together with point ‘(4)’ of
the proof of Theorem 4.1 in the same paper.

THEOREM 3.2.2. Let A = (x, F, σ) be a system such that

KN = sup
|v|=1

d∑
k=0

‖〈σk, v〉‖2∂,N ≤ G

uniformly for some G ≥ 1 and for all N ≤ o + 3 for some o ∈ N. Let L denote the Ornstein
Uhlenbeck operator: for v1 ∈ Rd and v2 ∈ Rm,

Lv1,v2 = Lv1(Xv2) = −
d∑
i=1

(v1)iδ
i(Di(Xv2))
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Lk,v = Le
k,v2

Lv =
∑
k

Lk,v = −δ(D(Xv)),

for all p ∈ N, there exist constants M ,γ, Co, and Ko, depending only on o, p,G, and polyno-
mial in G for fixed o, p, such that for any combination of unit vectors w1, w2, . . . , wo ∈ Rd, any
s1, s2, . . . , so ∈ R, and any unit v ∈ Rm,

sup
|w1|,|w2|,...,|v|=1

sup
0≤s1,s2,...,so≤t

‖ sup
s≤t

Dw1
s1 D

w2
s2 . . . D

wo
so (Lvs)‖p ≤ CoeKot, and

sup
|v|=1
‖ sup
s≤t

Lvs‖p ≤Mt
1
2 eγt.

PROOF. By the same remark as in the Proof of 3.2.1, we can suppose w1, . . . , v are fixed as
long as all calculations on the norms of E, F are uniform over that choice. We have that

Lt =
d∑

k=1

∫ t

0
σk(Xs)dW

k
s +

d∑
k=0

∫ t

0

(
〈∂σk, Ls〉 − 〈∂2σk(Xs), DXs, DXs〉

)
dW k

s .

This puts us in the situation of Theorem 2.3.1 with

S0 = 0,

F ks = σk(Xs)1k 6=0 − 〈∂2σk(Xs), DXs, DXs〉,

Ek = ∂σk(Xs).

The assumptions on the system, along with the first inequality of Theorem 3.2.1, shows that
the assumptions of Theorem 2.3.1 are satisfied, and since S0 = 0, we can even apply the second
part of Theorem 2.3.1. It follows immediately that ‖Lv‖p ≤ Mt

1
2 eγt for appropriate proper

constants M,γ.
Now, for the induction case, differentiating Eq. (3.2.2), we get, using the same notations as in

the proof of Theorem 2.3.1 (write N = o)

Dw1
s1 D

w2
s2 . . . D

wo
so (Lvt )

= D2,...,Nσω1(Xs1) +
∑
I∪J=
{2,...,N}

〈DI∂σω1(Xs1), DJLs1〉

−
∑
I∪J∪Q

={2,...,N}

〈DI∂2σω1(Xs1), DJ(Xs1), DQ(Xs1)〉

+

∫ t

s1

d∑
k=0

D1,...,Nσk(Xs)dW
k
s +

∫ t

s1

d∑
k=0

∑
I∪J=
{1,...,N}

〈DI∂σk(Xs), D
JLs〉dW k

s

−
∫ t

s1

d∑
k=0

∑
I∪J∪Q

={1,...,N}

〈DI∂2σk(Xs), D
J(Xs), D

Q(Xs)〉dW k
s

= D2,...,Nσω1(Xs1) +
∑
I∪J=
{2,...,N}

〈DI∂σω1(Xs1), DJLs1〉

−
∑
I∪J∪Q

={2,...,N}

〈DI∂2σω1(Xs1), DJ(Xs1), DQ(Xs1)〉

+

∫ t

s1

d∑
k=0

D1,...,Nσk(Xs)dW
k
s +

∫ t

s1

d∑
k=0

∑
I∪J={1,...,N};

I 6=∅

〈DI∂σk(Xs), D
JLs〉dW k

s
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−
∫ t

s1

d∑
k=0

∑
I∪J∪Q

={1,...,N}

〈DI∂2σk(Xs), D
J(Xs), D

Q(Xs)〉dW k
s

+

∫ t

s1

d∑
k=0

〈∂σk(Xs), D
1,2,...,NLs〉dW k

s .

This fits the setting of Theorem 2.3.1 with:

Ss1 = D2,...,Nσω1(Xs1) +
∑
I∪J=
{2,...,N}

〈DI∂σω1(Xs1), DJLs1〉

−
∑
I∪J∪Q

={2,...,N}

〈DI∂2σω1(Xs1), DJ(Xs1), DQ(Xs1)〉,

F ks = D1,...,Nσk(Xs) +
d∑

k=0

∑
I∪J={1,...,N}

I 6=∅

〈DI∂σk(Xs), D
JLs〉dW k

s

−
∑
I∪J∪Q

={1,...,N}

〈DI∂2σk(Xs), D
J(Xs), D

Q(Xs)〉,

Eks = ∂σk(Xs).

Similarly to the proof of Theorem 3.2.1, the conditions of Theorem 2.3.1 are satisfied with suitable
constants (polynomial in G and depending only on o, p,G), by the induction hypothesis and by
the first inequality of Theorem 2.3.1.

The last two inequalities are derived similarly using the last part of Theorem 2.3.1. This
concludes the proof. �

3.3. Bounds on the inverse Malliavin covariance matrix.

Here we show the invertibility of the Malliavin covariance matrix and prove upper bounds
for the expected norms of the inverse. The main ingredient in the weak Hörmander case is our
generalisation of the Norris Lemma 2.4.1.

We need the following classic lemma. The proof is inspired from [49] and from the explicit
expansion on page 45 of [2], cf. also Lemma 4.2 page 23 in [50].

LEMMA 3.3.1. Let γ be a symmetric non-negative definite n× n matrix. We assume that, for
fixed p ≥ 2, E(‖γ‖p+1

Fr ) <∞ where ‖·‖Fr denotes the Frobenius norm, and that ∃ ε0, C1, C2 > 0
such that ∀ε ≤ ε0,

sup
ξ=1

P (〈γξ, ξ〉 < C1ε) < C2ε
p+1+2n.

Then we have:

E(λ∗(γ)−p) ≤ C−p1 C2

(
1 + p(2

√
n)n + pE(‖γ‖p+1

Fr )
)
ε−p0

where λ∗(γ) denotes the smallest eigenvalue of γ. This immediately gives:

E((γ−1)pij) ≤ C
−p
1 C2

(
1 + p(2

√
n)n + pE(‖γ‖p+1

Fr )
)
ε−p0 .

PROOF. The proof is essentially the same as the proof in [49]. We assume that C1, C2 = 1,
the more general case is a straightforward modification.

First, we will need the following elementary result:

LEMMA 3.3.2. For any µ < 1/2, a unit sphere in a space of dimension n can be covered by

at most
(

2
√
n

µ

)n
balls or radius µ with centres on the sphere.
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PROOF. Consider the grid of points whose coordinates are multiples of µ√
n(1+ε)

, for some
small positive ε. For each grid point x ∈ X(where X is the set of points within µ√

n
distance of

the sphere), pick the point s(x) on the sphere closest to x. The balls centered at the s(x) and
with radii µ

2 cover the unit sphere. Indeed, by the triangle inequality, B(s(x), µ) ⊂ B(x, µ2 ),
and since the balls B(x, µ2 ) for x in the the grid cover the while space, those which intersect the
sphere (precisely the ones with x ∈ X) cover the sphere. The cardinality of X is clearly less than(

2
√
n(1+ε)
µ

)n
. Making (1 + ε) tend to zero gives the result. �

Now, we proceed as in [49] (for simplicity, we write λ for λ∗(γ)). Fix ε < 0, let v1, v2, . . . , vN
be a finite set of points on the sphere satisfying the condition of the lemma above with µ = ε2

2 .
Here N = (4

√
n)nε−2n. Then we have:

P(λ < ε) = P
(

inf
|v|=1

vTγv < ε

)
≤ P

(
inf
|v|=1

vTγv < ε, ‖γ‖Fr ≤ ε
)

+ P (‖γ‖Fr ≥ ε) .

Suppose that ‖γ‖Fr ≤ ε, and that |vTk γvk| ≥ 2ε for all k, then for any unit vector v we have
(choosing k such that vk is closest to v, and in particular within ε2

2 of v)

vTγv ≥ vTk γvk − |vTγv − vTk γvk|
≥ 2ε−

(
|vTγv − vTγvk|+ |vTγvk − vTk γvk|

)
≥ 2ε− 2‖γ‖Fr|v − vk|
≥ ε.

This means that if inf |v|=1 |vTγv| < ε, then vTl γvk < ε for all k. Therefore, we have:

P(λ < ε) ≤ P(∃k, |vTk γvk| < 2ε) + P(‖γ‖Fr > ε)

≤ (4
√
n)nε−2n(2ε)p+1+2n + εp+1E(‖γ‖p+1

Fr )

≤
(

(4
√
n)n2p+1+2n + E(‖γ‖p+1

Fr )
)
εp+1.

Now,

E(λ−p) =

∫ ∞
0

E(λ−p > y)dy

=

∫ ε−p0

0
1dy +

∫ ∞
ε−p0

P(λ−p > y)dy

≤ ε−p0 +

∫ ε−p0

0

(
(4
√
n)n2p+1+2n + E(‖γ‖p+1

Fr )
)
εp+1ε−p−1(p− 1)dε

≤ εp0
(
p((4
√
n)n2p+1+2n + E(‖γ‖p+1

Fr )) + 1
)
.

For the last part, observe that

|γ−1
ij | = 〈γ

−1
ij ej , ei〉 ≤ |γ

−1
ij ej | ≤ λ∗(γ)−1.

�

PROPOSITION 3.3.3. Let (x, σ, F ) be a (1, g,G)-tense (g ≥ 3), uniformly H-elliptic system.
Let Γi,jt denote the Malliavin covariance matrix (of Yt = F (Xt)) at time t. For any 1 ≤ p there
exist strongly polynomial constants Cp and Mp such that for any t ≤Mp,

E
(
λ∗(Γ)−p

)
≤ Cpt−p,

where for a symmetric matrix A, λ∗(A) denotes the minimum eigenvalue of A.
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PROOF. First note that by linearisation as in 3.1.1, we can suppose that F is linear. For any
unit v ∈ Rn, we have

vTγtv =

∫ t

0

d∑
k=1

(vT ∗X0→tX
−1
0→sσ

k(Xs))
2ds.

From this we obtain further,

E(|vTΓtv|p+1) ≤ E

(∫ t

0

d∑
k=1

|vT ∗X0→tX
−1
0→sσ

k(Xs)|2ds

)p+1


≤ Gp+1E

((∫ t

0
|vT ∗X0→tX

−1
0→s|

2ds

)p+1
)

≤ Gp+1Cpe
βpt

where Cp is a strongly polynomial constant and we have used Proposition 3.2.1. Therefore, for
t ≤Mp = 1

βp
(Mp being a strongly polynomial), we do have that E(|γt|p+1) is bounded above by

a proper constant.
Fix ε > 0. Define for any ε the following event

Ω = Ωε,ε,v = {∃s : t− ε ≤ s ≤ t : (|vT ∗(Xt−ε→t − Id)| ≥ ε ∨ |vT ∗(Xs→t−ε − Id)| ≥ ε)}
where ε is some fixed constant to be fixed later. the matrix norm used is the operator norm (the
constants would no longer be proper if we used the Frobenius norm). Outside Ω, we have for any
t− ε ≤ s ≤ t,

d∑
k=1

|vT ∗Xs→tσ
k(Xs)|2

=
d∑

k=1

|vT ∗σks + vT ∗(Xs→t − Id)σks |2

=
d∑

k=1

|vT ∗σks |2 +
d∑

k=1

(vT ∗σks )(vT ∗(Xs→t − Id)σks ) +
d∑

k=1

|vT ∗(Xs→t − Id)σks |2

≥ H

2
−

√√√√| d∑
k=1

vT ∗σks |2

√√√√| d∑
k=1

vT ∗(Xs→t − Id)σks |2

(Cauchy Schwarz)

≥ H

2
−
√
|vT ∗|2G

√
(|vT ∗(Xs→t − Id)|2G)

≥ H

2
−
√
G33ε

√
G3.

(Note that if |vT ∗(Xt−ε→t − Id)|, |vT ∗(Xs→t−ε − Id)| ≤ ε, then |vT ∗(Xs→t − Id)| ≤ 3ε).
Therefore, we pick ε = H

15G3 (ε is still a proper constant).
For this choice of ε, we now have, outside Ω, for any unit vector v ∈ Rn:

vTΓv =

∫ t

0

d∑
k=1

|vT ∗σks + vT ∗(Xs→t − Id)σks |2ds

≥
∫ t

t−ε

d∑
k=1

|vT ∗σks + vT ∗(Xs→t − Id)σks |2ds

>
H

4
ε.
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This implies that P(λ∗(Γ) < ε) ≤ P(Ω).
Now, note that for any 1 ≤ q ≤ g and any ε ≤ t,

P(Ω) ≤ P
(

sup
t−ε≤s≤t

|vT ∗(Xt−ε→s − Id)| ≥ ε
)

+ P
(

sup
t−ε≤s≤t

|vT ∗(Xs→t−ε − Id)| ≥ ε
)

≤ ε−qE
(

sup
t−ε≤s≤t

|vT ∗(Xt−ε→s − Id)|q
)

+ ε−qE
(

sup
t−ε≤s≤t

|vT ∗(Xs→t−ε − Id)|q
)

= ε−q
∫

E
(

sup
t−ε≤s≤t

|vT ∗(Xt−ε→s − Id)|q|Xt−ε = z

)
dµ(z)

+ ε−q
∫

E
(

sup
t−ε≤s≤t

|vT ∗(Xs→t−ε − Id)|q|Xt−ε = z

)
dµ(z)

≤ Cqε
q
2 eβqε ≤ Cqε

q
2 eβqt

for some strongly polynomial constants βq and Cq. Here µ( .) denotes the probability measure as-
sociated to the random variableXt−ε, and we have used the fact that the results in Proposition 3.2.1
involve only proper constants, and are therefore independent of the starting point assuming uni-
formity.

Pick q = 3 + p Set

Mp = min(
1

βq
,
1

2
)

(this is a strongly polynomial constant). Now we have that for any t ≤Mp,

P(Ω) ≤ Cqeε
q
2 .

To summarise, for any ε ≤ ε0 := t, we have that for any v ∈ Rn,

P(vTΓv ≤ ε) ≤ P(Ω) ≤ Cqeε
q
2 .

Using Lemma 3.3.1 over all unit v ∈ Rn, and using the fact that E(|Γ|p+1) is a strongly polynomial
constant, we get that

E(λ∗(Γ)−p) ≤ Kpt
−p

for some strongly polynomial constant Kp, as expected. �

We now proceed to the proof of our estimate on the Malliavin covariance matrix in the weak
Hörmander case. This proof requires some of the notation and facts of Part 2.

PROPOSITION 3.3.4. Let (x, σ, F ) be a uniformly (L, g,G)-tense (g ≥ 3), uniformly (L,HL)-
weak Hörmander system. Let Γi,jt denote the Malliavin covariance matrix (of Yt = F (Xt)) at time
t. For any 1 ≤ p, there exist polynomial constants Mp and Cp, such that for any t ≤Mp,

E
(
λ∗(Γ)−p

)
≤ Cpt−p2

4(L−1)+1
,

where for a symmetric matrix A, λ∗(A) denotes the minimum eigenvalue of A.

PROOF (with constants depending polynomially on m and faster than exponentially on d). We
fix 0 < ρ < 2−4L−1, and fix ` > 24(L+1) > 2

ρ .

Claim 1: Let as usual τ denote the truncation operation on multi-indices. Let

s ∈ span#(α)≤`
α#α 6=0

eα

be such that ∑
#(α)≤`
α#α 6=0

(sα)2 ≥ K
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for some polynomial K. For any p ≥ 1, there are polynomial constants Cp and Dp such that for
any ε ≤ Dp, we have

P

∫ ερ

0
(
∑

#(α)≤`
α 6=(0)

sαW τ(α))2ds ≤ ε

 ≤ Cpεp.
Proof of the Claim 1.
The proof of this is similar to classical proofs of the Hörmander theorem. Sketch of proof:

Define the sets

Ej =


∫ t

t−ερ

( ∑
#(α)≤`
α6=(0)

sαW τ j+1(α)

)2

ds ≤ εm(j)

 ,

m(j) = 2−4(j−1),

F = E1 ∩ E2 ∩ . . . ∩ E`,

Ωfree =

{
sup

s∈[t−ερ,t]
sup

#(α)≤`
|Wα| ≥ 1

}
.

On the event F ∩ Ωc
free, we have

(L+ 1)εm(L) > K̄ερ

where K̄ is a polynomial constant depending linearly on K coming from Stratonovich-Itô trans-
formations.

In other words, for ε ≤ ε0 = min

((
H

4(L+1)

) 1
m(L)−ρ

, t
1
ρ

)
, we have that Ωc

free ∩ F = ∅. An

application of the Norris Lemma 2.4.1 with ν = 1
2 , r = 1

18 , q = 15 shows

P(Ei ∩ Eci+1 ∩ Ωc) ≤ Ce−ε−ν ,

for some polynomial C, as long as

ε ≤ min
(

(d+ 1)−(L+1)240×24(L−1)
, t

1
ρ , (d+ 1)−(L+1)240×24(L−1)

)
.

An application of Theorem 2.1.1 shows, that there exist polynomial Dfree,p an Cfree,p such that for
any ε ≤ Dfree,p, we have

P(Ωfree) ≤ Cfree,pε
p.(3.3.1)

Claim 1 follows.

Claim 2: Let
ΩJ = { sup

t−ερ≤s≤t
|Xs→t−ερ |, |Xt−ερ→s| ≥ 1/2}.

There exist polynomial constants CJ,p and DJ,p such that for any ε ≤ DJ,p,

P(ΩJ ≥ 1/2) ≤ CJ,pεp.(3.3.2)

Proof of Claim 2. For any fixed unit vectors u, v ∈ Rm, Theorem 2.3.1 and Markov’s
inequality ensures that (for some proper constants Dp, Cp and for all ε ≤ Dp), we have

P
(

sup
t−ερ≤s≤t

|Xu,v
s→t−ερ |, |X

u,v
t−ερ→s| ≥ ε

)
≤ Cpεp.

The claim follows upon bounding the operator norm by the Frobenius norm and taking ε = 1
2m2 .

We now continue with the Proof of Proposition 3.3.4.
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Let us write the following backwards stochastic Taylor expansion:

Xs→0V (Xs) =V (X0) +

d∑
k=1

∫ s

0
Xu→0[σk, V ](Xu)dW k

u

+

∫ s

0
Xu→0

(
[σ0, V ](Xu) +

1

2

d∑
k=1

[σk, [σk, V ]](Xu)

)
du

= V (X0) +
d∑

k=1

∫ s

0
Xu→0[σk, V ](Xu) ◦ dW k

u

+

∫ s

0
Xu→0

(
[σ0, V ](Xu)

)
ds

and similarly,

Xt−s→0V (Xt−s) =V (Xt) +
d∑

k=1

∫ t−s

t
Xu→t[σ

k, V ](Xu)dW k
u

+

∫ t−s

t
Xu→t

(
[σ0, V ](Xu) +

1

2

d∑
k=1

[σk, [σk, V ]](Xu)

)
du

= V (Xt) +
d∑

k=1

∫ s

0
Xt−u→t[σ

k, V ](Xu)dW̃ k
u

+

∫ s

0
Xt−u→t

(
[−σ0, V ](Xt−u) +

1

2

d∑
k=1

[σk, [σk, V ]](Xt−u)

)
du

= V (Xt) +
d∑

k=1

∫ s

0
Xt−u→t[σ

k, V ](Xu) ◦ dW̃ k
u

+

∫ s

0
Xt−u→t

(
[−σ0, V ](Xt−u)

)
du,

where W̃u = Wt−u −Wt (which is distributed like a Brownian motion).
Now, using the above iteratively, writing σ̃0 = −σ0 and σ̃i = σi for each i 6= 0, we obtain for

any unit v ∈ Rn,

|vTΓv| ≥
∫ ερ

0

d∑
k=1

(vT ∗Xt−s→tσ
k(Xt−s))

2ds(3.3.3)

=

∫ ερ

0

d∑
k=1

(
vT ∗σk(Xt) +

d∑
i=1

∫ s

0
vTXt−u→tσ

[i,k](Xt−u)dW̃ i
u

+

∫ s

0
vTXt−u→t

(
σ̃[0,k](Xt−u) +

1

2

d∑
i=1

σ̃[i,[i,k]](Xt−u)
)
du

)2

ds

. . .

≥
∫ ερ

0

( ∑
α#α 6=0

#(α)≤`

W̃ [α]
s vT ∗σ̃[α](Xt)

+
∑
α#α 6=0

#(α)=`+1

∫ s

0
. . .

∫
vT ∗Xt− .→tσ̃[α](Xt− . ) ◦ dW̃ [τ(α)].

)2

ds.
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We can now write:∫ ερ

0

( ∑
α#α 6=0

#(α)≤`

W̃ [α]
s vT ∗σ̃[α](Xt)

+
∑
α#α 6=0

#(α)=`+1

∫ s

0
. . .

∫
vT ∗Xt− .→tσ̃[α](Xt− . ) ◦ dW̃ [τ(α)].

)2

ds

=

∫ ερ

0

( ∑
α#α 6=0

#(α)≤`

W̃ [α]
s vT ∗σ̃[α](Xt)

)2

ds

+
∑

#(α)≤`,#(β)=`+1
α#(α),β#(β) 6=0

∫ ερ

0

(
vT ∗σ̃[α](Xt)W̃

[τ(α)]
s

)

×
(∫ s

0
. . .

∫
vT ∗Xt− .→tσ̃[β](Xt− . )dW̃ [τ(β)].

)
ds

+
∑

#(α),#(β)=`+1
α#(α),β#(β) 6=0

∫ ερ

0

(∫ s

0
. . .

∫
vT ∗Xt− .→tσ̃[α](Xt− . )dW̃ [τ(α)].

)

×
(∫ s

0
. . .

∫
vT ∗Xt− .→tσ̃[β](Xt− . )dW̃ [τ(β)].

)
ds.

We now define, for any multi-indices α, β with α#(α), β#(β) 6= 0,

Aαs = W̃ [τ(α)]
s ,

Bβ
s =

(∫ s

0
. . .

∫
vT ∗Xt− .→tσ̃[β])(Xt− . ) ◦ dW̃ [τ(β)].

)
,

aα(Xt) = vT ∗σ̃[α](Xt).

With this notation, Eq. (3.3.3) can be rewritten as

|vTΓv| ≥
∫ ερ

0

( ∑
α#α 6=0

#(α)≤`

W̃ [α]
s vT ∗σ̃[α](Xt)

)2

ds(3.3.4)

+
∑

#(α)≤`,#(β)=`+1
α#(α),β#(β) 6=0

∫ ερ

0
Aαs a

α(Xt)B
β
s ds

+
∑

#(α),#(β)=`+1
α#(α),β#(β) 6=0

∫ ερ

0
Bα
s B

β
s ds.

Now, by Claim 1, for each unit v ∈ span#(α)≤` e
[α] and for any Brownian motion W , for

K = #({α : #(α) ≤ `}), we can find Cv,p such that

P

 ∑
#(α)≤`

vα
∫ ερ

0
(W [τ(α)])2 ≤ ε

 ≤ Cv,pεp+1+2K .

Let

Ωabsolute =

∃ unit v ∈ span#(α)≤` e
[α] :

∑
#(α)≤`

vα
∫ ερ

0
(W̃ [τ(α)])2 ≤ ε

 .
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Using Lemma 3.3.1 and the above with p being replaced by p + 1 + 2K where in the second
expression, p is the required value of p in the proposition, we obtain that there is a proper constant
Cp, such that

P (Ωabsolute,ε) ≤ Cabsolute,pε
p.(3.3.5)

Note that we have

Ωc
absolute,Kabsolute

∩

{∫ ερ

0

( ∑
α#α 6=0

#(α)≤`

W̃ [α]
s vT ∗σ̃[α](Xt)

)2

ds ≤ 2ε

}
= ∅.(3.3.6)

We now use Eq. (3.3.4) to obtain, for any ε smaller than a polynomial quantity, and for any
unit v ∈ Rn

P(|vTΓv| ≤ ε) ≤ P
(∫ ερ

0

( ∑
α#α 6=0

#(α)≤`

W̃ [α]
s vT ∗σ̃[α](Xt)

)2

ds ≤ 2ε

)
(3.3.7)

+ P
( ∑

#(α)≤`,#(β)=`+1
α#(α),β#(β) 6=0

∫ ερ

0
Aαs a

α(Xt)B
β
s ds

+
∑

#(α),#(β)=`+1
α#(α),β#(β) 6=0

∫ ερ

0
Bα
s B

β
s ds ≥ ε

)

≤ +P(Ωabsolute,Kabsolute
) + P(Ωfree) + P((ΩJ))

+ P(Ωc
absolute,Kabsolute

∩
∫ ερ

0

( ∑
α#α 6=0

#(α)≤`

W̃ [α]
s vT ∗σ̃[α](Xt)

)2

ds ≤ 2ε)

+
∑

#(α)≤`,#(β)=`+1
α#(α),β#(β) 6=0

P
(

Ωc
free ∩ (ΩJ)c ∩ {

∫ ερ

0
Aαs a

α(Xt)B
β
s ds ≥

ε

(d+ 1)2`
}
)
.

Using Theorem 2.1.1 and the fact that ` > 2
ρ , we have that

P
(

Ωc
free ∩ (ΩJ)c ∩ {

∫ ερ

0
Aαs a

α(Xt)B
β
s ds ≥

ε

(d+ 1)2`
}
)
≤ Crest,pε

p(3.3.8)

for some polynomial Crest,p.
Finally, combining all the estimates (3.3.2), (3.3.1), (3.3.8), (3.3.5) and (3.3.6), we obtain

that for

ε ≤
min(DJ,p, Dfree,p, Drest,p, Dabsolute)

2(d+ 1)2`+2
,

we can continue the calculation (3.3.7) as follows:

P(|vTΓv| ≤ (CJ,p + Cfree,p + Crest,p + Cabsolute)((d+ 1)2(`+1)ε)p.

Since the above is valid for any p ≥ 1 and any ∈ N, we can apply it for p being p+ 2n+ 1 where
p is the p from our proposition, so that we can apply Lemma 3.3.1. This concludes the proof. �

3.4. Bounds on the derivatives of the inverse Malliavin covariance matrix

PROPOSITION 3.4.1. Let (x, σ, F ) be a (1, g,G)-tense (g ≥ 3), uniformly H-elliptic system.
Let Γi,jt denote the Malliavin covariance matrix (of Yt = F (Xt)) at time t. For any 1 ≤ p and any
N ≤ g − 3, there exist strongly polynomial constants Cp,N such that for any t ≤ Mp, any 1 ≤ p,
and any s1, s2, . . . , sN ,

sup
s1,s2,...sN≤t

E
(
|DN

s1,s2,...,sN
Γ−1|p

)
≤ Cpt−p,
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where |·| denotes the operator norm on the space of linear maps from Rm⊗N to Rn.

PROOF. A similar limiting argument to the proof of Lemma 2.1.6 in [49] shows that we can
write symbolically calculations such as D(Γ−1Γ) = D(Γ−1)Γ + Γ−1D(Γ) even though Γ is only
almost surely invertible.

Now, note that by Proposition 3.2.1, we have that

sup
s1,...,sN

E(|DN
s1,...,sN

Γ|p) ≤ Ctp

for some proper constant C. Next we write

DN
s1,...,sN

(Γ−1) = −
∑

a∪b={1,2,...,N}

D#a
sa (Γ−1)D#b

sb
(Γ)Γ−1.

The result follows by induction using Proposition 3.3.3 as the initial case. �

PROPOSITION 3.4.2. Let (x, σ, F ) be a uniformly (L, g,G)-tense, uniformly (L,HL)-weak
Hörmander system. Let Γi,jt denote the Malliavin covariance matrix (of Yt = F (Xt)) at time t.
For any 1 ≤ p and any N ≤ g − 3, there exist polynomial constants Cp,N such that for any
t ≤Mp, any 1 ≤ p, and any s1, s2, . . . , sN

sup
s1,s2,...sN≤t

E
(
|DN

s1,s2,...,sN
Γ−1|p

)
≤ Cpt−p2

4(L−1)+1
,

where |·| denotes the operator norm on the space of linear maps from Rm⊗N to Rn.

PROOF. The proof is almost exactly the same as that of Proposition 3.4.1, except we take
Proposition 3.4.2 as the initial case. �

3.5. Alternative characterisation of uniform hypoellipticity and tenseness

LEMMA 3.5.1 (Alternative characterisation of uniform hypoellipticity and tenseness). Let
v1, . . . , vd ∈ Rn satisfy span(vi) = Rn. Let

β1 = inf
|x|=1

(
∑
i

〈vi, x〉2) > 0,

β2 = sup
|v|=1

(
inf

λ:
∑
i λivi=v

(|λ|2)

)
.

Then we have
β1β2 ≥ 1.

Furthermore, if
β3 = sup

|x|=1
(
∑
i

〈vi, x〉2),

we have:
β1β2 ≤ β3.

PROOF. Fix any unit x ∈ Rn. We can write x =
∑d

i=1 λivi for some λwith
∑d

i=1 |λi|2 ≤ β2.
This gives

1 = 〈x, x〉 =

d∑
i=1

λi〈vi, x〉

≤

√√√√ d∑
i=1

|λi|2
√∑

i

〈vi, x〉2 ≤
√
β2

√∑
i

〈vi, x〉2.

Since x was arbitrary, the first part of the result follows.
For the second part, letM = (v1, v2, v . . . , vd) be the matrix formed by the vectors v1, . . . , vd.

Consider the Moore-Penrose pseudo-inverse of M , defined as N = MT (MMT )−1. For any unit
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v ∈ Rn, we can define λ = Nv, which ensures Mλ = v as expected. The problem therefore boils
down to proving that the operator norm of P : Rn → Rd, v 7→ M t(MMT )−1 is bounded above
by β3

β2
. To show this, note that MMT is symmetric, and therefore diagonalisable. Then we have

that the smallest eigenvalue of MMT must be larger than β1. It follows that the operator norm
of v 7→ (MMT )−1v is bounded above by 1

β1
. Furthermore, the operator norm of w → MTw is

bounded above by β3. The result follows. �



CHAPTER 4

Proof of Euclidean Bounds

Here we piece together the results from the previous chapters to arrive at a proof of our Eu-
clidean bounds.

4.1. Integration by parts

The following is an adaptation of classics of Malliavin calculus (cf. [2], [49]).

THEOREM 4.1.1. Let Ft be a random variable in Dg,23nP (Rn) (P being a fixed integer) and
letG be a random variable in Dg,23nP ([0, 1]). Suppose thatE is an event such that 1EcG = 0. Let
Γ be the Malliavin covariance matrix of F . Writing λ∗( .) for the lowest eigenvalue of a symmetric
matrix, suppose that we have λ∗(Γ)−11E ∈ Dg,23n

(R). because Γ is invertible on E, we can write
down expressions such as Γ−1G etc without problems of definition.

Suppose that for some parameter 0 < t < 1 and for some constants C,K > 0, we have the
following bounds on the operator norms of the derivatives of F1E , G, Γ−11E etc: For all N ≤ g,
for some given a > 0, g ≥ n, and for all p ≤ 22n+1P ,

|DN (F1E)|p ≤ Ct
N
2 ,

|DN (LF1E)|p ≤ Ct
N
2 ,

|LF1E |p ≤ Ct
1
2 ,

|DNΓ−11E |p ≤ Ct
N
2
−a,

|DNG|p ≤ Ct
N
2 ,

where |·|p denotes Lp norm in expectations. For i = 0, 1, . . . and for given vectors v1, v2, . . . ∈
Rm, define the Malliavin weights Hi(F,G) inductively by:

H0(F,G) = G,

H1(F,G) = δ(Γ−1DF v1G),

Hi+1(F,G) = δ(Γ−1DF vi+1Hi(F,G)),

where δ denotes the Skorohod integral, adjoint of the Malliavin derivative operator.
We have that there exists a constant K ′, i, j, depending only on K, and a constant C ′ depend-

ing on n,C, p, and polynomial in C, such that for any i, j with i+ j ≤ g, and for any p ≤ P ,

E(|DjHi(F,G)|p) ≤ Kt
j−i(2a−1)

2

√
P(E).

PROOF. We proceed by induction.
For i = 0, the result follows immediately from the assumptions:

E(|DjG|p) = E(|DjG|p1pE) ≤ E(|DjG|2p)E(12p
E ) ≤ Cpt

pj
2

√
P(E).

Supposing the result true for fixed i, we prove the result for i+ 1: We have first

Hi+1(F,G) = δ(Γ−1DF vi+1Hi(F,G))

= 〈DF vi+1 , DΓ−1〉Hi(F,G) + Γ−1〈DHi(F,G), DF vi+1〉
+ Γ−1Hi(F,G)LF.

43
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Then for the derivatives, for j ≤ g − i− 1.

DjHi+1(F,G) = Djδ(Γ−1DF vi+1Hi(F,G))

=
∑

k+l+m=j

〈Dk+1F vi+1 , Dl+1Γ−1〉DmHi(F,G)

+
∑

k+l+m=j

DmΓ−1〈Dk+1Hi(F,G), Dl+1F vi+1〉

+
∑

k+l+m=j

DmΓ−1DkHi(F,G)DlLF.

Now we can calculate, where Cp,g denotes a constant depending only on p, g.

E(DjHi+1(F,G)p)

≤
√

E(DjHi+1(F,G)p)

√
E(12p

E )

≤
√
P(E)Cp,g

∑
k+l+m=j

E(|Dk+1F vi+1 |8p)pE(|Dl+1Γ−1|8p)pE(|DmHi(F,G)|8p)p

+
√

P(E)Cp,g
∑

k+l+m=j

E(|DmΓ−1|8p)pE(|Dk+1Hi(F,G)|8p)pE(|Dl+1F vi+1 |8p)p

+
√
P(E)Cp,g

∑
k+l+m=j

E(|DmΓ−1|8p)pE(|DkHi(F,G)|8p)pE(|DlLF |8p)p

≤ Cp,g
√
P(E)

∑
k+l+m=j

Ctp
k+1

2 Ctp
l+1−2a

2 tp
m−i(2a−1)

2

+ Cp,g
√

P(E)
∑

k+l+m=j

Ctp
m−2a

2 Ctp
k+1−i(2a−1)

2 tp
l+1
2

+ Cp,g
√

P(E)
∑

k+l+m=j

Ctp
m−2a

2 Ctp
k−i(2a−1)

2 tp
l+1
2

≤
√
P(E)3g3Cp,gC

3tp
j−i(2a−1)

2 ,

for some K1,K2,K3 depending only on K, as required. �

4.2. Concentration inequality for Euclidean bounds.

Let v = (v1, v2, . . . , vn) ∈ Rn we write 1[v,∞)(.) for the function such that 1v≤(y) = 1 if and
only if for i = 1, 2, . . . , n, |vi| ≤ yi and sign(vi) = sign(yi).

We have the following result:

PROPOSITION 4.2.1. Let A = (x, σ, F ) be a (1, 1, G)-tense system. We have, for t ≤ 1,

E([1[v,∞)(Yt)]) ≤ 2e exp

(
−|∗x− v|2

8tG

)
.

PROOF. Without loss of generality, ∗xi ≤ vi for all i. Let E = {i : |vi−∗xi|
2
√
G
≤ t}.

Note that

Yt = x+

∫ t

0
∗σ0(Xs)ds+

d∑
i=1

∫ t

0
∗σi(Xs)dW

i
s

and ∣∣∣∣∫ t

0
∗σ0(Xs)ds

∣∣∣∣ ≤ √Gt.
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Then we have, by the classic exponential martingale inequality,

E([1[v,∞)(Yt)]) ≤ 2 exp

(
−
∑
i/∈E

|vi − ∗xi|2

8Gt

)

≤ 2 exp

(
−
∑
i/∈E

|vi − ∗xi|2

8Gt

)
exp

(
−
∑
i∈E

|vi − ∗xi|2

8Gt

)
exp(t#(E))

≤ 2 exp

(
−|∗x− v|2

8Gt

)
et ≤ 2e exp

(
−|∗x− v|2

8Gt

)
.

�

4.3. Euclidean Integrable upper bound for an Elliptic system

THEOREM 4.3.1. Let (x, σ, F ) be a system that is (1, g,G) tense (g ≥ n+ 3) and H-elliptic
uniformly in a compact K. Suppose that G is a random variable in Dg,23n+1P ([0, 1]). Suppose
that E is an event and K′ ⊂ K a compact, such that 1EcG = 0 and x ∈ K′ whenever E holds.
If the distance between the exterior of K and the interior of K′ is a proper constant, there exists a
proper constants M and strongly polynomial constants C,D such that for any t ≤ D, Yt admits a
density pt(x, .) and, the density of Yt perturbed by G,

E(δ(Yt(y))G),

satisfies the following for any N ≤ g − 3− n and any unit v1, v2, . . . , vN ∈ Rn:∣∣∣∣ ∂NpGt (x, y)

∂v1∂v2 . . . ∂vN

∣∣∣∣ ≤ C exp
(
−|∗x−y|2

Mt

)
t
n+N

2

√
P(E).

PROOF. The existence of the density follows immediately from the invertibility 3.3.3 of the
Malliavin covariance matrix. By the usual limiting arguments, we can perform integration by parts
symbolically with a delta function inside the expectation. Then we have immediately, using the
Malliavin IBP formula with weights defined as in Theorem 4.1.1 with v1, . . . vN taken from the
assumptions of the present theorem, and vN+i = ei for i = 1, 2, . . . n, where ei are the Euclidean
basis vectors:

| ∂NpGt (x, y)

∂v1∂v2 . . . ∂vN
| = | ∂

NE(δy(Yt)G)

∂v1∂v2 . . . ∂vN
| = |E((∂v1,...vN δy)(Yt)G)|

= |E(δy(Yt)HN (F,G))| = |E(1[y,∞)(Yt)(−1)ξHN+n(F,G))|

≤
√

E(1[y,∞)(Yt)2)
√
E(HN+n(F,G)2).

Here ξ = #(i : yi < ∗xi).
Note that the conditions of Theorem 4.1.1 are satisfied by using Propositions 3.2.1, 3.3.3

and 3.4.1 to Xtφ(sup0≤s≤t |Xt|) where φ is a smooth bump function equal to 1 on K′ and 0
outside K. We have a = 1, and C is a strongly polynomial constant. It follows that we can use
Theorem 4.1.1, and Proposition 4.2.1, to write further:∣∣∣∣ ∂NpGt (x, y)

∂v1∂v2 . . . ∂vN

∣∣∣∣ ≤√E(1[y,∞)(Yt)2)
√

E(HN+n(F,G)2)

≤
√

2e exp(
−|∗x− v|2

16tG
)Kt−

n+N
2

√
P(E)

which is the required inequality with C =
√

2eK (a proper constant) and M = 16G ( a proper
constant). �

In particular, setting G = 1, and K = K′ = Rm, we have the following result, which is the
easiest of the five main results of this thesis:
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THEOREM 4.3.2 (Integrable Euclidean upper bounds with strongly polynomial constants for
uniformly elliptic system). Let (x, σ, F ) be a uniformly (1, g,G) tense (g ≥ n+ 3), uniformly H-
elliptic system. There exist strongly polynomial constants C,M,D such that for any t ≤ D,
Yt admits a density pt(x, .) satisfying the following for any N ≤ g − 3 − n and any unit
v1, v2, . . . , vN ∈ Rn:

| ∂Npt(x, y)

∂v1∂v2 . . . ∂vN
| ≤ C

exp
(
−|∗x−y|2

Mt

)
t
n+N

2

.

Work is ongoing in providing a more careful proof of the following extension:

THEOREM 4.3.3 (Integrable Euclidean upper bounds with proper constants for uniformly el-
liptic system). Define the strong tension of a (linear) system as

G = sup
v∈Rm,|v|=1

sup
o≤g

∑
w∈(Rm)⊗o
wi∈B

d∑
k=0

〈 ∂
oσk

Π∂wi
, v〉2 + |dF |2,

where B is an orthonormal basis of (Rm)⊗o (This definition only uses one ‘order parameter’ g
rather than two order parameters L and g.) Let (x, σ, F ) be a strongly uniformly (g,G) tense
(g ≥ n+ 3), uniformly H-elliptic system. There exist proper constants C,M,D such that for any
t ≤ D, Yt admits a density pt(x, .) satisfying the following for any N ≤ g − 3 − n and any unit
v1, v2, . . . , vN ∈ Rn:

| ∂Npt(x, y)

∂v1∂v2 . . . ∂vN
| ≤ C

exp
(
−|∗x−y|2

Mt

)
t
n+N

2

.

SKETCH OF PROOF. First, verify that there exists a proper constant Ḡ such that for all i ≤ g,
the operator norm of the map

∂iσ : (Rd)⊗i → Rm

(viewing (Rd)⊗i as a free id-dimensional vector space) is bounded above by Ḡ.
Then we can apply Lemma 2.3.1 to obtain a version of Theorem 3.2.1 that controls the operator

norm of 〈DiXt, v〉Rm for any fixed unit v ∈ Rm and for similar quantities such as LXt etc. with
proper constants. Here the value ofm used in Theorem 2.3.1 to control 〈DiXt, v〉Rm for any fixed
unit v ∈ Rm is di. Then, as usual, further calculations (application of Theorem 4.1.1) are all done
directly in the target space.

�

REMARK 4.3.1. The ‘mixed tension’ defined below (cf. 7.1.12) is properly controlled by the
strong tension as defined above, which means only one definition is required.

4.4. Euclidean upper bound for systems satisfying the weak Hörmander condition

THEOREM 4.4.1. Let (x, σ, F ) be a system that is (L, g,G) tense (g ≥ n + 3) and (L,HL)
weak Hörmander, uniformly in a compact K. Suppose that G is a random variable in the space
Dg,23n+1P ([0, 1]). Suppose that E is an event and K′ ⊂ K a compact, such that 1EcDG = 0 and
x ∈ K′ whenever E holds. If the distance between the exterior of K and the interior of K′ is a
proper constant, there exist polynomial constants D,M and C such that for any t ≤ D, Yt admits
a density pt(x, .) and the density of Yt perturbed by G,

E(δ(Yt(y))G),

satisfies the following estimate for any N ≤ g − 3− n and any unit v1, v2, . . . , vN ∈ Rn:∣∣∣∣ ∂NpGt (x, y)

∂v1∂v2 . . . ∂vN

∣∣∣∣ ≤ C exp
(
−|∗x−y|2

Mt

)
t(n+N)24L

√
P(E).
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PROOF. With all the same remarks as in the proof of 4.3.1, we can write, after killing off the
diffusion outside K, applying Propositions 3.2.1, 4.1.1 etc. (C is still a proper constant but this
time a = 24(L−1)+1),

| ∂NpGt (x, y)

∂v1∂v2 . . . ∂vN
| ≤

√
E[1[y,∞)(Yt)]2

√
E(HN+n(F,G)2)

≤
√

2e exp

(
−|∗x− v|2

16tG

)
Kt−

(n+N)(2.24(L−1)+1−1)
2

√
P(E)

≤ C
exp

(
−|∗x−y|2

Mt

)
t(n+N)24L

√
P(E),

for some proper constants C and M , as expected. �

Again, setting G = 1, K = K′ = Rm, we get the following global result:

THEOREM 4.4.2 (Euclidean upper bounds for weak Hörmander systems, with proper con-
stants). Let (x, σ, F ) be a uniformly (L, g,G) tense (g ≥ n + 3), uniformly (L,HL)-weak
Hörmander system. There exist polynomial constants D,M and C such that for any t ≤ D,
Yt admits a density pt(x, .) satisfying the following estimate for any N ≤ g − 3− n and any unit
v1, v2, . . . , vN ∈ Rn: ∣∣∣∣ ∂Npt(x, y)

∂v1∂v2 . . . ∂vN

∣∣∣∣ ≤ C exp
(
−|∗x−y|2

Mt

)
t(n+N)24L .

4.5. Localisation

The aim of this section is to show that systems whose vector fields are well-behaved inside a
compact set can be proved to have densities (with associated bounds etc.) on a smaller compact
set. The arguments are classic (see [36]).

THEOREM 4.5.1. Let (x, σ, F ) be a system that is (1, g,G) tense (g ≥ n+ 3) and H-elliptic
uniformly for y ∈ K = B(∗x,R) ⊂ Rn (R > 0). There exist strongly polynomial constants
D,M and C (dependent on R) such that for any t ≤ D, Yt admits a density pt(x, .) inside
B(∗x,R/4) and, the density of Yt satisfies the following estimate for any N ≤ g− 3− n and any
unit v1, v2, . . . , vN ∈ Rn:

pt(x, y) ≤ C
exp(−|∗x−y|

2

Mt )

t
n
2

.

PROOF. Let φ : K → [0, 1] be a smooth bump function with derivatives bounded by some K
such that φ(u) = 0 for u /∈ B(x,R) and φ(u) = 1 for u ∈ B(0, 3R/4). K can be taken chosen
as a proper constant. Consider the random variable Gt = φ(sup0≤s≤t |Yt|). By Proposition 3.2.1,
G is in Dg−3,∞ and for fixed p, the Dg−3,p norm of G is a proper constant.

LetE denote the boundary of the ball of radiusR/2 around x. Consider the following stopping
times:

τ1 = inf(s ∈ [0, t] : ∃s1 ≤ s : |Ys1 | > 3R/4 ∧ |Xs| ≤ R/2)

τ2 = inf(s ∈ [τ1, t] : ∃s1 ∈ [τ1, s] : |Ys1 | > 3R/4 ∧ |Xs| ≤ R/2)

. . .

∀N, τN = inf(s ∈ [τN−1, t] : ∃s1 ∈ [τ1, s] : |Ys1 | > 3R/4 ∧ |Ys| ≤ R/2).

We define the following random variable:

N = inf(n : τi =∞)− 1.

Define also the following localizing random variables:

Gτit = φ

(
sup
τi≤s≤t

|Ys|
)
.
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We have the following calculation, where Ez,s denotes expectation conditionally given that
Xs = z.

pt(x, y) = E(δ(y)1N=0) + E(δ(y)1N=1) + . . .

≤ E(δ(y)G) + P(N ≥ 1) sup
z∈E
s∈[0,t]

Ez,s(Gτ1) + P(N ≥ 2) sup
z∈E
s∈[0,t]

Ez,s(Gτ2) + . . .

≤ C
exp

(
− |y−∗x|

2

Mt

)
tn

(P(N ≥ 0) + P(N ≥ 1) + P (N ≥ 2) + . . .).

For some strongly polynomial constants C,M and for all t ≤ D for some strongly polynomial
constant D. Here we have used the fact that for any z ∈ E and any y ∈ B(∗x,R/4), |z − y| ≥
|∗x− y|, and D is picked so that exp

(
− R2

16Mt

)
/tn is increasing for t ≤ D.

Now we have for all i,

P(N ≥ i) ≤ exp

(
− iR2

16Mt

)
for some proper constant M . Thus (P(N ≥ 0) + P(N ≥ 1) + P (N ≥ 2) + . . .) is bounded by a
proper constant, and the result follows. �

Using exactly the same method of proof, the result for weak Hörmander systems follows:

THEOREM 4.5.2. Let (x, σ, F ) be a system that is (L, g,G) tense (g ≥ n + 3) and (L,HL)-
weak Hörmander uniformly for y ∈ K = B(∗x,R) ⊂ Rn (R > 0). There exist polynomial
(dependent on R) constants D,M and C such that for any t ≤ D, Yt admits a density pt(x, .)
inside B(∗x,R/4) and, the density of Yt satisfies the following estimate for any N ≤ g − 3 − n
and any unit v1, v2, . . . , vN ∈ Rn:

pt(x, y) ≤ C
exp

(
−|∗x−y|2

Mt

)
tn24L .



Part 2

From Euclidean bounds to integrable control
bounds via auxiliary objects.



CHAPTER 5

Properties of ‘distances’ defined as the pushforwards of homogeneous
norms

In this section, inspired by the ideas in [37, 39], we introduce a general framework for studying
certain objects similar to control distances. This framework will be the main tool used to go
from Gaussian bounds on the densities of auxiliary objects satisfying a form of scaling to local
control bounds on the densities of the Kusuoka-Stroock Taylor approximation. The much more
advanced and broad theory of regularity structures (cf. [26]) also uses graded spaces to model
Taylor expansions but our basic approach is designed purely for proving control-type bounds on
the densities of certain SDE locally, in particular, we usually only consider the Taylor expansion
at one point.

It is worth noting that for application to systems satisfying the Progressive Hörmander condi-
tion (i.e. some of the most interesting aspects of this thesis), it is enough to use the versions of the
theorems below where F is assumed linear, which are also much less technical.

REMARK 5.0.1. The set of notation of this chapter is distinct from that of the rest of the thesis.

5.1. Models

Our setting in this subsection is as follows: Let V = Rn and U =
⊕I

i=1 Ui be a finite
dimensional space and let bik be an orthonormal basis for Ui for all i. Let νi = dim(Ui) and
ν =

∑I
i=1 νi. On U , define the‘homogeneous norms’ by

|u|U,t = |u|U =

√√√√t+
I∑
i=1

(| prUi(u)|)
2
i =

√√√√t+
I∑
i=1

(|ui|)
2
i .

In general, we will write ui for prUi(u). Let Ft : [0, T ]×U → V be a time dependent function
with derivatives of any order in any unit direction being uniformly bounded by K. We suppose
that the quantity β, defined by

β = β(0) = det(JFt(0)JF Tt (0)),

is strictly positive. We call the triple (U, V, Ft) a model. We define the time-dependent ‘homoge-
neous distance’1 on V by |v|t = infFt(u)=v |u|U . We may use the notation o(U i) = i or o(v) = i
for v ∈ Ui.

REMARK 5.1.1. In applications, U is some suitable finite-dimensional or proper-dimensional
snapshot of path space.

The main theorem will be Theorem 5.1.1 below.

LEMMA 5.1.2. ∀u1, u2 ∈ U , we have that

1

2
(|u1|2U + |u2|2U ) ≤ |u1 + u2|2U ≤ 4(|u1|2U + |u2|2U ).

1Note that this ‘distance’ is a peculiar object: if Ft(0) 6= 0 (which is the case when the original problem to model
has non-trivial drift), it is possible to have 0 /∈ B||t(0,

√
t) (the ‘centre’ of B||t(0,

√
t) is Ft(0) which varies with t.)

50
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PROOF. Upper bound. First note that for a, b ∈ R, we have |a+ b|2/i ≤ 22/i(|a|2/i + |b|2/i).
Indeed, without loss of generality, b = 1 and a ∈ [0, 1], then clearly (1 + a)2/i ≤ 22/i ≤
22/i(12/i + a2/i). Now, for i ≤ I , we have 22/i ≤ 4. This allows us to conclude that

|u1 + u2|2U ≤ t+
∑
i

(prU i(u1 + u2))2/i

= t+
∑
i

(prU i(u1) + prU i(u2))2/i

≤ t+ 4
∑
i

(prU i(u1)2/i + prU i(u2)2/i)

≤ 4(|u1|2U + |u2|2U ).

Lower bound. Similarly, we have |a + b|2/i ≥ 1
2(|a|2/i + |b|2/i): without loss of generality,

b = 1 and a ∈ [0, 1], then we have (1 + a)2/i ≥ 12/i ≥ 1
2(12/i + a2/i), which allows to conclude

(|u1|2U + |u2|2U ) ≤ t+
∑
i

(prUi(u1) + prUi(u2))2/i)

≤ t+ 2
∑
i

(prUi(u1))2/i + (prUi(u2))2/i)

= 2|u1 + u2|2U .
�

Let D = dFt|0 be the Jacobian of Ft at 0 and F̄t be the first order Taylor approximation of
F at 0 (F̄t(u) = Ft(0) + Du). Let Λ =

∑I
i=1 dim(Ui), ν =

∑I
i=1 i.dim(Ui). Furthermore, let

e1, e2, . . . , eκ ∈ Ker(D) (κ = Λ − dim(V )), and eκ+1, . . . , eΛ ∈ U be such that e1, . . . , eΛ is
an orthonormal basis for U , and JF Tt (0)JFt(0), expressed with respect to that basis, is diagonal.
We denote this new matrix byM = diag(0, 0, . . . , λ1, λ2, . . . , λΛ−κ).

We pick 0 < ε < 1
2 and fix it for the rest of this section. Let α = 1

1−ε .

Let r = min(1/2, εK ,
β

4n!K2n ), and ρ̄ = I−I/2r
I

3 (for future reference).

LEMMA 5.1.3. For u ∈ B(0, r), we have

det(JFt(u)JF Tt (u)) >
β

2
.

PROOF. This is a routine computation. Let

N(u)i,j =
∑
k

∂Fi
∂ek

∂Fj
∂ek

.

We have, for u ∈ B(0, r), that |N(u)| ≤ K2. By the Leibniz differential rule, we also get
|∂N∂ū (u)| ≤ 2K2 for any unit vector ū. It follows that for any permutation σ, we have

Πi 6=jNiσ(i)

∂Njσ(j)

∂ū
≤ 2K2n.

Then we have
∂ det(N)

∂ū
≤ 2n!K2n.

Integrating on the straight line to u yields the result, since r ≤ β
4n!K2n . �

PROPOSITION 5.1.4. Define β(u) =
√
λ∗(JFt(u)JF Tt (u)). We have β ≥ β1/2n.

PROOF. The claim follows from the fact that β is the product of the eigenvalues of

JFt(u)JF Tt (u)).

�
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PROPOSITION 5.1.5. For u ∈ B(0, r), we have

β(u) ≤ K2n,

where by definition, β(u) = det(JFt(u)JF Tt (u)).

PROOF. Observe that by Cauchy-Schwarz,

|(JFt(0)JTFt(0))ij | ≤ K2.

Now, the matrix (JFt(0)JTFt(0))ij is symmetric and therefore diagonalisable by an orthonormal
matrix. We can deduce that if λi are the eigenvalues, ∀i,

|λi| ≤ K2.

Now, note that we also have

β = det(M) =

n∏
i=1

λi.

From the two equations above, we can deduce that

β ≤ K2n

as expected. �

LEMMA 5.1.6. For all ξ ∈ U with |ξ|+
√
t < 1, we have

|ξ| ≤ |ξ|U ≤ (I + 1)(I−1)/2I
√
|ξ|2 + t

1/I
≤
√

2(I + 1)(|ξ|
1
I + t

1
2I ).

PROOF. For the left hand side, we have

|ξ|2 =
I∑
i=1

|ξi|2 ≤
I∑
i=1

|ξi|2/i ≤ |ξ|U .

For the right hand side, we have, by Jensen’s inequality,

|ξ|2IU = (t+

I∑
i=1

|ξi|2/i)I ≤ (I + 1)I−1(tI +

I∑
i=1

|ξi|2I/i) ≤ (I + 1)I−1(t+

I∑
i=1

|ξi|2).

�

LEMMA 5.1.7. For |u| ∈ B(0, r), we have the following control on the operator norm of
Du −D, where Du is the Jacobian of Ft at u

|Du −D|2 ≤ ε.

PROOF. We have for any unit v ∈ U

(Du −D)v =
Λ∑
i=1

∫ 1

0

∂2Ft(us)

∂v∂ei
〈u, ei〉ds ≤ |u|K ≤ rK.

Since this is uniform over v, we can write:

|Du −D|2 ≤ r2K2 ≤ ε2,

from where the lemma follows. �

DEFINITION. We say that the model (U, V, Ft) is regular if there exist constants

0 < ρ1, ρ̄1, ρ2 < ρ3, 0 < γ,Γ

and functions
R1, R2 : B(0, ρ3)→ U
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such that R2 : F−1
t ({Ft(u)}) ∩ B(0, ρ3) → U is differentiable with a differentiable inverse and

for any u ∈ B(0, ρ3),

F0(R2(u)) = F0(0),

Ft(R1(u)) = Ft(u),

Ft(u1) = Ft(u2) =⇒ R1(u1) = R1(u2) ∀u1, u2 ∈ B(0, ρ),

γ−1|Ft(u)|2V ≤ |R1(u)|2U ≤ γ|Ft(u)|2V ,
γ−1(|R1(u)|2U + |R2(u)|2U ) ≤ |u|2U ≤ γ(|R1(u)|2U + |R2(u)|2U ),

Γ−1mF−1
0 ({0})(R2(u)) ≤ mF−1

t ({Ft(u)})(u) ≤ ΓmF−1
0 ({0})(R2(u)) and

|u|+
√
t ≤ ρ1 =⇒ |R1(u)|U , |R2(u)|U ≤ ρ2,

|R1(u)|U , |R2(u)|U ≤ ρ2 =⇒ |u| ≤ ρ̄1,

where for a manifold M and a point x on M , mM (u) denotes the volume element on M at x.

DEFINITION. Let (U, V, Ft) be a regular model, for any 0 < ρ < min(ρ2, ρ̄), we define the
following subset of U

Et(ρ) = {u ∈ U : |R1(u)|U < ρ, |R4(u)|U < ρ}.
We also define the quantity:

Mt(M,ρ) =

∫
F−1

0 ({F0(0)})∩E

exp
(
− |u|

2
U

Mt

)
t
ν
2

dmF−1
0 ({F0(0)}(u).

PROPOSITION 5.1.8. Let (U, V, Ft) (t ∈ [0, 1]) be a model such that (∀t ∈ [0, 1], ∀u ∈ U )
Ftu = φ(t) +Du for some matrix D. The model (U, V, Ft) is regular.

PROOF. Pick ρ3 = ∞ and R1 such that |R1(u)|U = |Ft(u)|V . There isn’t necessarily a
unique choice, but there is one by compactness. Alternatively, consider the alternative homoge-
neous norm ||Ũ on U defined by

|u|Ũ =

(
tI +

I∑
i=1

|Pri(u)|2I/i
) 1

2I

and define R1 by |R1(u)|Ũ = infFt(ū)=Ft(u) |ū|Ũ . In this case, R1 is defined uniquely by convex-
ity. Then, let R2(u) = u − R1(u). This yields the result with Γ = 1, γ = 4.2 Indeed for the last
inequalities, note that if |R1(u)|U , |R2(u)|U ≤ ρ, then |u|2U ≤ 4(|R1(u)|2U + |R2(u)|2U ) ≤ 4ρ2,
which implies by Lemma 5.1.6 that |u| ≤ 2ρ. On the other hand if |u|,

√
t ≤ ρ2 for some ρ2, then

|R1(u)| ≤ |R1(u)|U ≤ |u|U ≤ 2
√

2(I + 1)ρ
1/I
2 ,

and then by the triangle inequality, |R2(u)| ≤ ρ2 +2
√

2(I + 1)ρ
1/I
2 . Then applying Lemma 5.1.6

again yields

|R2(u)|U ≤
√

2(I + 1)
(

(ρ2 + 2
√

2(I + 1)ρ
1/I
2 )1/I + ρ

1/I
2

)
≤ 3× 2(I + 1)ρ

1/I2

2 = 6(I + 1)ρ
1/I2

2 .

So we can pick ρ̄1 = 2ρ and ρ2 = ( ρ
6(I+1))I

2
. �

PROPOSITION 5.1.9. Let Xt be a random variable in Eρ for some ρ ≤ ρ2/2 with density pt
satisfying

pt(u) ≤
IdE C2 exp

(
− |u|

2
U

M2t

)
tν/2

,

2If taking the alternative definition of R1, γ is a constant depending on the νi’s.
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resp.,
IdE C1 exp

(
− |u|

2
U

M1t

)
tν

≤ pt(u).

Let Yt = Ft(Xt), we have that Yt has a density p̄t satisfying

p̄t(v) ≤ Id|v|t<ρMt(0,M
′
2, 2ρ)C ′2 exp

(
− |v|

2
t

M ′2t

)
,

resp.

Id|v|t<ρC
′
1 exp

(
− |v|

2
t

M ′1t

)
Mt(0,M

′
1, ρ) ≤ p̄t(v),

with C ′1 = Γ−1K−2nC1, M ′1 = M2γ
−2, C ′2 = Γ

√
2
βC2, and M ′2 = M2γ

2.

PROOF. Upper bound. By formula 2.2.1, we have that

p̄t(v) =

∫
u∈E,Ft(u)=v

det(JF T (u)JF (u))−
1
2 p(u) dmF−1

t (v)(u)

≤
∫
u∈E,Ft(u)=v

√
2

β
p(u) dmF−1

t (v)(u)

≤
∫
u∈E,Ft(u)=v

√
2

β

C2e
− |u|

2
U

M2t

t
ν
2

dmF−1
t (v)(u)

≤
∫
ū∈E,F0(ū)=F0(0)

Γ

√
2

β
e
− |R1(u)|2U

γM2t
C2e

− |ū|
2
U

γM2t

t
ν
2

dmF−1
0 (F0(0))(u)

(By the change of variable ū = R2(u))

≤
∫
ū∈E,F0(ū)=F0(0)

Γ

√
2

β
e
− |v|2V
γ2M2t

C2e
− |ū|

2
U

γM2t

t
ν
2

dmF−1
0 (F0(0))(u)

≤ Γ

√
2

β
C2e

− |v|2V
γ2M2tM(γ2M,ρ)

as expected.

Lower bound. Similarly, by the formula 2.2.1, we have that By formula 2.2.1, we have that

p̄t(v) =

∫
u∈E,Ft(u)=v

det(JF T (u)JF (u))−
1
2 p(u) dmF−1

t (v)(u)

≥
∫
u∈E,Ft(u)=v

K−2np(u) dmF−1
t (v)(u)

≥
∫
u∈E,Ft(u)=v

√
2

β

C1e
− |u|

2
U

M2t

t
ν
2

dmF−1
t (v)(u)

≥
∫
ū∈E,F0(ū)=F0(0)

Γ−1

√
2

β
e
− γ|R1(u)|2U

M2t
C1e

− γ|ū|
2
U

M2t

t
ν
2

dmF−1
0 (F0(0))(u)

(By the change of variable ū = R2(u))

≥
∫
ū∈E,F0(ū)=F0(0)

Γ−1K−2ne
− γ

2|v|2V
M2t

C1e
− γ|ū|

2
U

M2t

t
ν
2

dmF−1
0 (F0(0))(u)

≥ Γ−1K−2nC2e
− γ

2|v|2V
M2t M(γ−2M,ρ),
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as expected. �

PROPOSITION 5.1.10. Let b ≤ ρ2/t, ρ̄ ≤ ρ/2, there exist constants ∆1 and ∆2, depending
only on o,K, β, ν1, ν2, . . . , νI , I, ρ, b,M, γ,Γ (but not on the specific form of the function F ), such
that ∀u ∈ E, we have ∀t ≤ T ,

∆1

|Bt(
√
bt)|
≤Mt(0,M, ρ) ≤ ∆2

|Bt(
√
bt)|

.

PROOF. Upper bound. Let ξ be a random variable supported on E(ρ) with density

Q

t
ν
2

exp

(
−
|ξ|2U
Mγ2t

)
Idξ∈Ē

for some appropriately chosen (time dependent) constant Q. Here

Ē = E ∩ {ξ ∈ U : |ξ|2U ≤ bt}.
Note that

Q ≥ Q1 :=

(∫
δ√ 1

Mγ2t

(Ē)
e−|ξ|

2
Udξ

)−1√
1

Mγ2

ν

.

Let Ft(ξ) = ζ. Let qt(v) be the density of ζ. We have, by Proposition 5.1.9, for |v|t ≤ tb (recall
bt ≤ ρ2),

qt(v) ≥ C ′1 exp

(
−|v|2t
Mt

)
Mt(M,ρ)

≥ Q1Γ−1K−2n exp

(
−|v|2t
Mt

)
Mt(M,ρ)

≥

(∫
δ√ 1

Mγ2t

(Ē)
e−|ξ|

2
Udξ

)−1√
1

Mγ2

ν

Γ−1K−2nCe−b/MMt(M,ρ).

Integrating the above inequality over the ball Bt(bt) yields:(∫
δ√ 1

Mγ2t

(Ē)
e−|ξ|

2
Udξ

)−1√
1

Mγ2

ν

Γ−1K−2ne−b/MMt(M,ρ)|Bt(
√
bt)| ≤ 1.

It follows that

Mt(M,ρ) ≤

Mν/2γνΓK2neb/M

(∫
δ√ 1

Mγ2t

(Ē) e
−|ξ|2Udξ

)
|Bt(
√
bt)|

=
∆2

|Bt(
√
bt)|

.

So we have the upper bound with ∆2 = Mν/2γνΓK2neb/M

(∫
δ√ 1

Mγ2t

(Ē) e
−|ξ|2Udξ

)
.

Lower bound. Let ξ be a random variable supported on E with density

Q

t
ν
2

exp

(
−
γ2|ξ|2U
Mt

)
Idξ∈Ē

for some appropriately chosen constant Q (Q clearly only depends on M, b, νi,Λ, E). Here

Ē = E ∩ {ξ ∈ U : |ξ|2U ≤ bt}.
Let Ft(ξ) = ζ. Let qt(v) be the density of ζ. Note that similarly to the upper bound,

Q ≤ Q1 :=

(∫
δ√

γ2

Mt

(Ē)
e−|ξ|

2
Udξ

)−1√
γ2

M

ν

.
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We have, by Proposition 5.1.9, for |v|t ≤ tb,

qt(v) ≤Mt(M,ρ)Q

√
2

β
Γ exp

(
−|v|

2
t

Mt

)
≤Mt(M,ρ)Q

√
2

β
Γ.

Now, we integrate the above inequality over the ball Bt(0,
√
bt) (note that by construction

of Ē, this is the whole support of qt(v), law of ζ). This yields:

1 ≤Mt(M,ρ)Q

√
2

β
Γ|Bt(

√
bt)|.

From this, it follows that

Mt(M,ρ) ≥
Γ−1

√
β
2

1
Q

|Bt(
√
bt)|
≥ Γ−1

√
β

2

(∫
δ√

γ2

Mt

(Ē) e
−|ξ|2Udξ

)√
M
γ2

ν

|Bt(
√
bt)|

.

We therefore have the lower bound with

�∆1 = Γ−1

√
β

2

(∫
δ√

γ2

Mt

(Ē)
e−|ξ|

2
Udξ

)√
M

γ2

ν

.

We are now in a position to prove the following key theorem:

THEOREM 5.1.1. Let (U, V, Ft) be a regular model. Let X1
t a stochastic process in U , and let

Gt ∈ [0, 1] be a localising random variable.
Assume that, for some constants C,M, β, ε (not dependent on t), and for any t ≤ 1,

(1) |Gt|n+3,23n+1 , |X1
t |n+3,23n+1 ≤ C;

(2) X1
t , localised by Gt, has a density that satisfies

p
φ(Gt)

X1
t

(u) = E(δu(X1
t )φ(Gt)) ≤

Ce−
|u|2U
Mt

t
ν
2

,

where ν is the homogeneous dimension of U ;
(3) P

(
sups≤t(|X1

t |U ) ≥ r
)
≤ e−

Mr
t (∀r, t > 0);

(4) P(|Gt| ≥ 1) ≤ Ce−
1
Mt , ∀t ≤ T ;

(5) det(|JFt(0)JTFt(0)|) ≥ β, ∀t ≤ T , where T in the exponent denotes matrix transposition.

Let X2
t = F (X1

t ). There exist constants C ′, C ′1, C
′
2, ω,M

′, ρ, depending only on o,K,C,M ,
β, νi, γ,Γ, and such that C ′2 doesn’t depend on M , and a time dependent localising random vari-
able 0 ≤ Ḡt ≤ 1, such that that X2

t , localised by Ḡt, admits a density, and

(1) E(1− Ḡ) ≤ C ′e−
ω
t and ∀|v|t ≤ ρ,

(2) E(δ(X2
t = v)Ḡt) ≤

C′1 exp

(
− |v|

2
t

M′t

)
|B||t (0,

√
t)| ,

(3) E(δ(X2
t = v)Ḡt) ≤

C′2 exp

(
− |v|

2
t

M′t

)
|B||t (0,

√
tM ′)|

.

If M is an absolute constant, we can choose the second formula. If the dependence of M on
other parameters is difficult to control, we can chose the last formula for a bound that is properly
locally integrable in space-time even if M is not proper.
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PROOF. First, let Ḡt = Gtφ(
4X1

t
ρ1

) with Eρ defined as above. Note that Ḡt = 0 whenever
X1
t /∈ Eρ By by the fourth and fifth assumptions, as well as the regularity of the model, we have

that

P(Ḡt = 0) ≤ Ce−
1
Mt + Ce−

ρ1
Mt ≤ 2Ce−

ρ1
Mt = C ′e−

ω
t

with C ′ = 2C and ω = ρ1/M , as required. Now, recall that by assumption

E(Ḡtδ(X
1
t = ũ)) ≤ E(φ(G)δ(X1

t = ũ)) ≤ C e
− |ũ|

2
U

Mt

tν/2
.

Now, by Proposition 5.1.9, we have that

E(Ḡδ(X2
t = v)) ≤Mt(M

′
2, ρ)C ′2 exp

(
−
|ũ|2U
M ′2t

)
= Mt(Mγ−2, ρ)CΓ

√
2

β
exp

(
−
γ2|ũ|2U
Mt

)
.

Then, by Proposition 5.1.10, we have

E(Ḡδ(X2
t = v)) ≤Mt(Mγ−2, ρ)CΓ

√
2

β
e−

γ2|ũ|2U
Mt

≤ CΓ

√
2

β
e−

γ2|ũ|2U
Mt

∆2(Mγ−2)

|Bt(
√
bt)|

.

Hence we have on the one hand (for b = 1)

E(Ḡδ(X2
t = v)) ≤ CΓ

√
2

β
e−

γ2|ũ|2U
Mt

Mν/2ΓK2neγ
2/M

(∫
δ√

γ2

Mt

(Ē) e
−|ξ|2Udξ

)
|Bt(
√
t)|

,

and on the other hand (b = M/γ2)

E(Ḡδ(X2
t = v)) ≤ CΓ

√
2

β
e−

γ2|ũ|2U
Mt

Mν/2ΓK2ne

(∫
δ√

γ2

Mt

(Ē) e
−|ξ|2Udξ

)
|Bt(

√
Mt/γ2)|

as expected. �

Furthermore, note that we also have a similar results for lower bounds (we don’t worry about
dependence of the constants on anything here):

THEOREM 5.1.2. Let (U, V, Ft) be a regular model. Let X1
t and Gt be two stochastic pro-

cesses in U . Let δs be the family of dilations defined by

∀u ∈ U, prUi(δs(u)) = si prUi(u), δs(t, u) = (ts, δs(u)).

Let φ : U → R+ be a localising function such that φ(u) = 0 whenever |u| ≥ 2 and φ(u) = 1
whenever |u| ≤ 1 Assume that, for some constants C,M, β, ε (not dependent on t), and for any
t ≤ 1, we have:
(1) |φ(G)|n+3,23n+1 , |X1

t |n+3,23n+1 ≤ C;

(2) X1
t , localised by φ(Gt) has a density that satisfies pφ(Gt)

X1
t

(u) ≥ Ce−
M|u|2U

t ;

(3) P(sups≤t(|X1
t |U ) ≥ r∀i ≤ C)e−

Mr
t (∀r, t > 0);

(4) P(|G| ≥ 1) ≤ Ce−
M
t ,∀t ≤ T ;

(5) det(|JFt(0)JTFt(0)|) ≥ β,∀t ≤ T , where T in the exponent denotes matrix transposition.
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Let X2
t = F (X1

t ). There exist constants C ′, C ′1, ω,M
′, ρ depending only on o,K,C,M, β, νi,

Γ, γ, and a time dependent random variable Ḡt, such that that X2
t Ḡt admits a density and

(1) E(1− φ(G)) ≤ C ′e−
ω
t and ∀|v|t ≤ ρ

(2) E(δ(X2
t = v)Ḡt) ≥

C′1e
−
M′|v|2t

t

|B||t (0,
√
t)| .

PROOF. First, like in the proof of the upper bound, let Ḡt = φ(Gt)φ(
4X1

t
ρ̄1

). By the fourth and
fifth assumptions, we have that

P(Ḡ) ≤ Ce−
1
Mt + Ce−

ρ̄1
Mt ≤ C ′e−

ρ1
Mt .

Then, still similarly to the proof of the upper bound, recall that our density satisfies

E(Ḡδ(X1
t = ũ)) ≥ C e

− |ũ|
2
U

Mt

tν/2
.

Now, by Proposition 5.1.9, we have that

E(Ḡδ(X2
t = v)) ≥Mt(0,M

′
1, ρ)C ′1

e
− |ũ|

2
U

M′1t

tν

= Mt(0,M1γ
−2, ρ)CΓ−1K−2ne

− γ
2|ũ|2U
M1t

≥ ∆1(M ′1)

|Bt(
√
bt)|

CΓ−1K−2ne
− γ

2|ũ|2U
M1t , by Proposition 5.1.10.

Plugging in b = 1, we obtain the required result. �

We finish this subsection with the following doubling conditions. One important remark is
that the constant appearing in the theorem below only depends on other constants involved in the
definition of the problem. In particular, when we apply this to the situation where our point models
are modeling control distances, we will immediately get uniformity with respect to the centre.

PROPOSITION 5.1.11. Let (U, V, F ) be a regular model satisfying the usual conditions. There
exist constantsD,∆ ≥ 0 , depending only on n, β, T,K, I, νi, n,Λ, γ,Γ such that ∀d ≤ ∆, t ≤ T .

|Bt(2d)| ≤ D|Bt(d)|

PROOF. From Proposition 5.1.10, we set ∆ = ρ
2 . Apply Proposition 5.1.10 with, on the right,

b = 4d2

t , and on the left, b = d2

t , we obtain that for d ≤ ρ/2 and for any M ,

|Bt(2d)| ≤ |Bt(d)|∆
b= 4d2

t
2

∆
b= d2

t
1

= D|Bt(d)|.

Replacing the values of ∆
b= 4d2

t
2 and ∆

b= d2

t
1 , we obtain:

D =

Mν/2γνΓK2ne4d2/tM

∫
δ√ 1

Mγ2t

(Ē) e
−|ξ|2Udξ


Γ−1

√
β
2

∫
δ√

γ2

Mt

(Ē) e
−|ξ|2Udξ

√M
γ2

ν

.
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We see that a good choice for M would be M = d2

t . This leaves us with, for b smaller than a
constant only depending on ρ,

D =
γ2νΓ2K2ne4

(∫
δ1/dγ(Ē) e

−|ξ|2Udξ
)

√
β
2

(∫
δγ/d(Ē) e

−|ξ|2Udξ
)

≤ γ2νΓ2K2ne4

√
2

β

(∫
|ξ|U≤2/γ e

−|ξ|2Udξ
)

(∫
|ξ|U≤γ e

−|ξ|2Udξ
) .

�

We also have the following result, also providing an alternative proof of doubling conditions.

LEMMA 5.1.12. Let (U, V, F ) be a model satisfying the usual conditions. Let (U, V, F̃ ) =
(U, V, JF ) be the model obtained by replacing F by its first order Taylor approximation JF .
Denote by ||V,t and ||Ṽ ,t the corresponding ‘distances’ on V . There exist constants κ and δ,
depending only on I, n, β,K, νi, γ,Γ, such that for any s, t ≤ δ,

κ−1|BṼ (s)| ≤ |BV (s)| ≤ κ|BṼ (s)|,

where |BṼ (s)| denotes the volume (in V ) of the ball of radius s with respect to the ’metric’ ||V,t.

PROOF. Suppose x, y ∈ BU (0, R) for some R < ρ/4. Let z = PrKer F̃ (y) + PrKer F̃⊥(x).
We have first, by Lemma 5.1.2, R2 ≥ |x|2U ≥

1
2(|PrKer F̃⊥(x)|2U + |PrKer F̃ (x)|2U ), and therefore

|PrKer F̃⊥(x)|2U ≤ 2R2. Similarly |PrKer F̃ (y)|2U ≤ 2R2. and finally, another application of
Lemma 5.1.2 ensures that |z|2U ≤ 4(2R2 + 2R2) = 8R2.

It follows that

PrPr
ker F̃⊥ (x)+ker F̃ (F−1({F (x)}) ∩BU (0, R)) ⊂ F̃−1({F̃ (x)}) ∩BU (0, 4R)

Then we have

Vol(F−1({F (x)}) ∩BU (0, R)) ≤ Γ Vol(F̃−1({F̃ (x)}) ∩BU (0, 4R))

Now, the disintegration formula 2.2.1 ensures:

Vol(BV (0, R)) =

∫
x∈BU (0,R)

√
JFxJF Tx

Vol(F−1({F (x)}) ∩BU (0, R))
dx

≥
√
β/2

Γ

∫
x∈BU (0,R)

1

Vol(F̃−1({F̃ (x)}) ∩BU (0, 4R))
dx

≥
√
β/2

KnΓ

∫
x∈BU (0,R)

√
F̃ F̃ T

Vol(F̃−1({F̃ (x)}) ∩BU (0, 4R))
dx

=
4ν
√
β/2

KnΓ
Vol(BṼ (0, R)).

The other inequality is proved analogously.
An alternative proof is to use Proposition 5.1.10 and the fact that the constants only depend on

the constants β, γ, . . . from the assumptions, which can be left unchanged after switching to the
distance ||V . �

5.2. Equivalences between models

The next lemma begins to hint at the link between the quantity β involved in Lemma 2.2.1
and the hypoellipticity constant of a system, usually denoted β, but in this section, denoted β to
distinguish it from the former.
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LEMMA 5.2.1. Let F : Rm → Rn be a function withCo constant bounded byK. For x ∈ Rm,
let βF (x) = det(JF (x)JTF (x)) and let

β =
√

inf
|w|=1, w∈Rn

|wJF |2

(β corresponds to some sort of ’hypoellipticity constant’). We have the following inequality:

K ≥ β ≥
√
β

K(n−1)

PROOF. The left hand side is trivial.
For the right hand side, begin by observing that the matrix JF (x)JTF (x) is symmetric, and

therefore diagonalisable by an orthonormal matrix. Now, let us write the eigenvalues λ1, . . . , λn.
Since the diagonalising matrix is orthogonal, we have that |λi| ≤ K2 for each i. Since β = Πiλi
and β2 = infi |λi|, the lemma follows. �

Recall also that 1√
β

is an upper bound on the operator norm of any inverse function to the first

order expansion of F .
The following proposition is a simpler but more explicit version of the implicit functions the-

orem. We include it both because it is for our problems to know on what quantities the radii
involved depend (we eventually need a parametrised version of it), and because we want to high-
light the beautiful similarities between this theorem the fact that Hörmander’s condition implies
the existence of a path between two points.

PROPOSITION 5.2.2 (Inverse functions theorem.). Let F : Rm → Rn be a function with all
derivatives bounded in operator norm by K and βF (0) = det(JF (0)JF T (o)) > 0. Let 0 < ε <

(β/2)1/2n/2, where as usual, β is the square root of the smallest eigenvalue of JF (0)JF T (0).
Let

ρ1 =
1

2
min

(
ε

K

β

4n!K2n

)
.

Let ρ2 = (β/2)1/2nρ1. For any y ∈ Rm such that |y − F (0)| ≤ ρ2, there exists an x ∈ Rm such
that F (x) = y.

Furthermore, |x| ≤ 4|y|
(β/2)1/2n , and if m = n, f has a uniquely defined and differentiable

inverse f−1 : B(0, ρ2)→ B(0, ρ1) with derivative satisfying

Df−1(y) = (Df(f−1(y))−1.

In particular, iteratively differentiating the above equation shows that F−1 is smooth.

PROOF. Similarly to the above subsections, we observe that ∀x ∈ B(0, 2ρ1), we have:

|DFx −DF0| ≤ ε
and

β(x) ≥ β(0)−
∑

σ permutation of {1,...,n}

2(K2)n−1(K2) ≥ β(0)

2
.

Now, we fix D = DF0 ( an n×m matrix)3 we can find x1 ∈ Rm with Dx1 = y and |x1| ≤ |y|
β(0) .

We define the xi’s iteratively by

x0 = 0,

D(xi − xi−1) = y − F (xi−1), and

|xi − xi−1| ≤
|F (y)− F (xi−1)|

(β/2)1/2n
.

3it it perhaps slightly unnatural to fix the Jacobian at zero but we do it this way to simplify the calculations and to
stay in line with the analogous theorems below
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The sequence (xi) is a Cauchy sequence. Indeed, using first the qualitative part of the induction
relation, we have

|y − F (xi)| = |y − F (xi−1) + F (xi−1)− F (xi)|
= |D(xi − xi−1) + F (xi−1)− F (xi)|

≤ |
∫ 1

0
JF

xi−1+s
xi−xi−1
|xi−xi−1|

xi − xi−1

|xi − xi−1|
ds|

≤ ε|xi − xi−1|.

Now, using the quantitative part of the induction relation, we have:

|xi+1 − xi| ≤
|y − F (xi)|
(β/2)1/2n

≤ ε|xi − xi−1|
(β/2)1/2n

≤ |xi − xi−1|
2

.

Now, since (xi) is a Cauchy sequence, it has a limit, which we call x. Now, observe that

|y − F (xi)| <ε|xi − xi−1| ≤ ε
(

ε

(β/2)1/2n

)i−1

< ε

(
1

2

)i−1

.

Letting i tend to infinity, we get that F (x) = y as expected. Finally, observe that

|xi| = |x1 +

i∑
k=2

(xk − xk−1)|

< |x1|

(
1 +

∞∑
k=0

(
ε

(β/2)1/2n
)k

)

< 2|x1| <
2|y|

(β/2)1/2n

as expected.
For uniqueness, suppose that x1, x2 ∈ B(0, ρ1) and f(x1) = f(x2) ∈ B(0, ρ2). We have

immediately, for φ : [0, 1]→ B(0, ρ1), t 7→ (1− t)x1 + tx2,

|f(x2)− f(x1)| = |Df.(x2 − x1) +

∫ 1

0
φ′′(t)dt|(5.2.1)

≥ (β/2)1/2n|x2 − x1| −K|x2 − x1| ≥ ((β/2)1/2n − ε/2)|x2 − x1|.

For the differentiability, we have for any y1, y2 ∈ B(0ρ2), using Eq. (5.2.1),

lim
y2→y1

|y2 − y1 − (Df(f−1(y1)))−1(y2 − y2)|
|y2 − y1|

≤ lim
y2→y1

K

((β/2)1/2n − ε/2)

|Df(f−1(y1))(f−1(y2)− f−1(y1))− (y2 − y2)|
|f−1(y2)− f−1(y1)|

= 0.

�

We have the following simple but occasionally useful result (similar results have been proved
directly for control distances in [37], [13], [47] etc.):

LEMMA 5.2.3. Let (U, V, Ft) be a model such that the first derivative of Ft is uniformly
bounded by some K, and with β > 0 There exists a constant C, depending only on I and β, such
that for any v ∈ V with |v| ≤ 1

K , we have

C−1|v|It ≤ |v| ≤ C|v|t.
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PROOF. For the upper bound, note that for any u ∈ U , we immediately have |u| ≤ |u|U , the
upper bound follows immediately with C = K.

For the lower bound, note that by Theorem 5.2.2, there exists a u ∈ U with |u| ≤ 4 |v|β . Then
we have

|v|t ≤ |u|U ≤
√
I|u|

1
I ≤

(
4

|v|
(β/2)1/2n

) 1
I

.

�

We now introduce a few technical lemmas that are useful to show local equivalences between
‘distances’ defined by models. The final result, Proposition 5.2.6, is already in a general form
amenable to applications in Part 3: the particular case where φjk = 0 for all j, k is enough to prove
the upper bounds in Part 2.

DEFINITION 5.2.4. LetU = U1⊕U2⊕. . .⊕UI be a graded space with as usual dim(Ui) = νi,
ν =

∑I
i=1 νi. Let f : U → Rn be a function. We say that f is k-scaled, for some k ∈ N, if for

any u ∈ U, s ∈ R+, we have f(δs(u)) = sif(u).

LEMMA 5.2.5. Let U = U1 ⊕ U2 ⊕ . . . ⊕ UI be a graded space and let f be a k- scaled
function for some k. Suppose that there exist K,M (with M ≥ 1) such that for any v ∈ U with
|v|2eucl = 1, and for any x with |x|eucl ≤M , we have

|∂f
∂v

(x)| ≤ K.

There exists a constant C, depending only on K,M, I such that, for any i ∈ {1, . . . , I}, x ∈ U
with |x|U ≤ 1, and for any yi ∈ Ui with |yi|eucl = 1,

| ∂f
∂yi

(x)| ≤ C|x|k−iU

In particular, if z ∈ U and for all i, |zi| ≤ C̄|x|m+i
U and |zi| ≤ C̃|x|iU for some m ≥ 0 and

some C̄, C̃ ≥ 1, then for any x with |x| ≤ 1, we have

|f(x+ z)− f(x)| ≤ CC̄I(4(1 + C̃
√
I))I |x|k+m

U

PROOF. For any x ∈ U , let ω(x) := 1
inf(s:|δs(x)|eucl≥1) There exists a constant C depending

only on I such that for any x ∈ U , C−1|x|U ≤ ω(x) ≤ C|x|U .
We also write φ(x) for the point of the sphere {ξ : ξ ∈ U, |ξ|eucl = |x|eucl} that can be obtained

as δs(x) for s = ω(x)−1. We express the derivative ∂f
∂yi

(x) in a curvilinear coordinate system with
components (ω(x), φ(x)).

Using the chain rule, we see that (using the notation xi for PrUi(x), and writing C for a
constant dependent only on K,M, I that changes from line to line)∣∣∣∣ ∂f∂yi (x)

∣∣∣∣ =

∣∣∣∣ ∂f

∂ω(x)

∂ω(x)

∂yi
+

∂f

∂φ(x)

∂φ(x)

∂yi

∣∣∣∣
=

∣∣∣∣∣∣kω(x)k−1
2
i |xi|

2−i
i
∂|xi|
∂yi

2ω(x)
+

∂f

∂φ(x)

∂φ(x)

∂yi

∣∣∣∣∣∣
≤ Cω(x)k−1ω(x)

2−i
i
.iω(x)−1 +Kω(x)kω(x)−i

≤ Cω(x)k−i ≤ C|x|k−iU ,

which concludes the proof of the first part.
For the second part, we integrate the first part along the line x+ tz (t ∈ [0, 1]). Note first that

by Lemma 5.1.2, we have |x+ tz|U ≤ 4(|x|U + C̃
√
I|x|U ). Then we have

|f(x+ z)− f(x)| = |
∫ 1

0

∂f

∂yi
(x+ zt)zdt|
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≤ C(4(1 + C̃
√
I))I

I∑
i=1

|x|k−iU C̄|x|m+i
U

= CC̄(4(1 + C̃
√
I))I

I∑
i=1

|x|k+m
U

= CC̄I(4(1 + C̃
√
I))I |x|k+m

U ,

as expected. �

The following proposition is the main tool for proving results about progressive Hörmander
and separated progressive Hörmander systems:

PROPOSITION 5.2.6 (Main tool for deterministic study of ‘progressive’ structures). Let
U = U1 ⊕ U2 ⊕ . . . ⊕ UI and V = V1 ⊕ V2 ⊕ . . . ⊕ VJ (I ≥ J) be two graded spaces with
dimensions ν =

∑I
i=1 νi and ν̄ =

∑J
j=1 ν̄j , and let F : U → V be a function which can be

expressed for some N in the form

F (u) =
J∑
j=1

Mjuj +
J∑
j=1

ψj(u) +
J∑
j=1

N∑
k=j+1

φjk(u),

where for each j and k, φjk : U → Vj ' Rν̄j is a k-scaled function, Mj is a ν̄j × νj matrix, and
(for each j ≤ J) ψj is a j-scaled function of u1, u2, . . . , ui−1.

Suppose also that, uniformly over j, k, u with |u|eucl = 1, we have

|
∂φjk(u)

∂u
| ≤ K,

|∂ψ
j(u)

∂u
| ≤ K and

|vTMjM
T
j v| ≥ H−2 ∀v ∈ Rν̄j with |v| = 1,

for some K,H (here |·| denotes the operator norm, and ∂φjk(u)

∂u should be seen as a Jacobian
matrix).

There exist constants M and G, depending only on I, J,K,N such that for any v ∈ V with
|v|V ≤M , there exists a u ∈ U such that

F (u) = v and |u|U ≤ G|v|V .

REMARK 5.2.7. Because there clearly exist constants M,G depending only on I, J,K,N
such that for any |u|U ≤M , |F (u)|V ≤ G|u|U , the above theorem is an ‘equivalence theorem’.

PROOF. In the calculations below, unless otherwise stated, | .| denotes the Euclidean norm.
Note that we can work equivalently with either | .|U and | .|V or the homogeneous norm ω(y) =
(inf |δs(y)|=1(s))−1 (which can be defined in either U or V ). For any element u of U (resp. v of
V ), we will write ui (resp. vi) for PrUi(u)(resp. PrVi(v)). We will use suffixes to denote steps in
our iterative construction procedure.

For a non square matrix M ∈ Rn ⊗Rm (m ≥ n), such that the smallest eigenvalue of MMT

is strictly positive, by abuse of notation, we define, for any x ∈ Rn, y = M−1(x) to be the unique
element of Rm such that My = x and y is orthogonal to the kernel of the linear map represented
by M , i.e. M−1 is used to denote the Moore-Penrose inverse.

We will use the following notation: ξni = (un1 , . . . , u
n
i−1, u

n−1
i , un−1

i+1 , . . .).
Using this notation, we now define the iterative procedure that will converge to our inverse

element u:
We set u−1, u0 = 0 and then ∀n ≥ 1,∀1 ≤ j ≤ J, ∀k ≥ j + 1, we set:

unj = un−1
j +M−1

j (vj − PrVj (F (ξnj ))) and unk = 0
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Set Γ = NCI(4(1 +
√
I))I + 1. For |v|V ≤M = Γ−J

2 , we will show by induction the following
three identities:

|unj − un−1
j | ≤ Γ(n−1)J+j−1|v|n+j−1

V ≤ |v|jV
|unj | ≤ 2Γj |v|jV

|vj − PrVi(F (un))| ≤ H−1ΓnJ |v|n+j
V .

First, note that the second inequality follows immediately from the first one:

|unj | ≤
n∑
k=1

|ukj − uk−1
j | ≤

n∑
k=1

Γ(k−1)J+j−1|v|k+j
V ≤ 2|v|jV Γj−1 ≤ 2|v|jV Γj .

This means we only need to prove the first and last inequalities. For this, we proceed by induction
over n.

First note that for n = 0, the result is clear. We now suppose it holds for n, and prove it for
n + 1. In all the calculations below, we will make much use of the fact that the operator norm of
M−1
j is bounded above by H .

We prove the first inequality by induction over j. For j = 1, we have

|un+1
1 − un1 | ≤ H|v1 − PrV1(F (un))| ≤ HH−1ΓnJ |v|n+j

V

= ΓnJ |v|n+j
V = ΓnJ+1−1|v|n+1+1−1

V

as required. Then for the induction step (over j), we have:

|un+1
j − unj+1| ≤ H|vj+1 − PrVj+1(F (ξn+1

j+1 ))|

≤ H
(
|vj+1 − PrVj+1(F (un))|+ |PrVj+1(F (un))− PrVj+1(F (ξn+1

j+1 ))|
)

≤ H

(
H−1ΓnJ |v|n+j+1

V +

j∑
k=1

|PrVj+1(F (ξn+1
k+1 ))− PrVj+1(F (ξn+1

k ))|

)
Now, we see that

|ξn+1
k+1 − ξ

n+1
k | = |un+1

k+1 − u
n+1
k | ≤ ΓnJ+k|v|n+k

V ≤ 1|v|kV Γk.

Note also that for k ≤ j, trivially ΓnJ+k|v|n+k
V ≤ ΓnJ+k|v|n+j

V . This allows one to apply
Lemma 5.2.5 on ψj+1, with C̄ = ΓnJ+j and C̃ = 1, giving, where C is the constant from
Lemma 5.2.5 (relative to the K appearing in this theorem),

|un+1
j − unj+1| ≤ H

(
H−1ΓnJ |v|n+j+1

V +

j∑
k=1

|PrVj+1(F (ξn+1
k+1 ))− PrVj+1(F (ξn+1

k ))|

)
≤ H

(
H−1ΓnJ |v|n+j+1

V + CC̄I(4(1 + C̃
√
I))I |v|j+1+n

U

)
= H

(
H−1ΓnJ |v|n+j+1

V + CΓnJ+jI(4(1 +
√
I))I |v|j+1+n

U

)
≤ H

(
H−1ΓnJ+j |v|n+j+1

V +H−1CΓnJ+jI(4(1 +
√
I))I |v|j+1+n

U

)
≤ |v|j+1+n

U ΓnJ+j+1,

as expected. (Recall that Γ ≥ CI(4(1 +
√
I))I + 1, by definition.) This concludes the induction

step for the first inequality.
Now we only have to complete the induction step for the third inequality. We have immedi-

ately, using the first inequality and Lemma 5.2.5 on the φjk for k = j + 1, . . . , N (recall ψj(un+1)

only depends on un+1
1 , un+1

2 , . . . un+1
j−1 ), for any 1 ≤ j ≤ J :

|vi − PrVj (F (un+1))| = |vj − PrVi(F (ξn+1
j+1 )) + PrVj (F (ξn+1

j+1 ))− PrVj (F (un))|
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= 0 + |PrVj (F (ξn+1
j+1 ))− PrVj (F (un+1))|

≤
N∑

k=j+1

ΓnJ+J−1CI(4(1 +
√
I))I |v|k+n

V

≤ NCI(4(1 +
√
I))IΓnJ+J−1|v|n+j+1

V

≤ |v|n+j+1
V Γ(n+1)J ,

as expected. (Recall that by definition, Γ ≥ NCI(4(1 +
√
I))I .) This concludes the proof of the

three inequalities.
To show the theorem, observe that the first inequality shows that for any j, (unj )n∈N is a

Cauchy sequence. Define its limit as uj . Now taking the limit as n tends to infinity in the third
and last inequality yields vj − PrVj (F (u)) = 0. Since this is valid for each j, this implies v =
F (u), as required. Finally, taking the limit as n tends to infinity in the second inequality yields:
|uj | ≤ 2Γj |v|jV , which implies |u|U ≤

√
I2IΓ|v|V , which is our required second inequality with

G =
√
I2IΓ. �

To finish this section, we note the following trivial fact about families of non centred semi-
norms:

PROPOSITION 5.2.8. Let V = Rn, and suppose that we are given two families of non centered
seminorms |·|1,t and |·|2,t (i.e. |v|t = |v − vt|∗t where vt ∈ V is a smooth curve starting at 0 and
|·|∗t is a family of seminorms.) Suppose that |·|1,t satisfies a doubling condition in the sense that
there exist constants ∆1, T and D1 such that

∀d ≤ ∆1, |B1,t(2d)| ≤ D1|B1,t(d)|.
Suppose also that the families of non centred seminorms are locally equivalent in the sense that
there exist constants ∆̄ and D̄ such that

∀v ∈ V,∀t ≤ T such that |v|1,t ≤ ∆̄, we have |v|2,t ≤ D̄|v|1,t.
Then we have that there exist constants ∆2 and D2 such that

∀d ≤ ∆2, we have |B2,t(2d)| ≤ D2|B2,t(d)|.

Explicitly, D2 = D
1+2d log(D̄)

log(2)
e

1 , and ∆2 = min(∆̄,∆1)

2
d log(2D̄2)

log(2)
e
.

PROOF. Fix d ≤ min(∆̄,∆1)

2
d log(2D̄2)

log(2)
e
. Set d̄ = d

D̄2 and K = 2D̄2

|B2,t(2d)| = |B2,t(Kd̄)| ≤ |B1,t(KD̄d̄)|

≤ |B1,t(2
d log(K)

log(2)
e
D̄d̄)| ≤ D

d log(K)
log(2)

e
1 |B1,t(D̄d̄)|

= D
1+2d log(D̄)

log(2)
e

1 |B1,t(D̄d̄)|.
�



CHAPTER 6

Auxiliary systems and objects

Here we introduce some of the auxiliary objects that will be used to prove our bounds.

6.1. Truncated signatures

Here we recall one of the basic objects of rough path theory, the truncated signature, and some
of its basic properties. We begin by a recalling the theory for a general d-dimensional path. We
refer to [22], [44], [43], [40], [31], [11] or [21] for more details.

REMARK 6.1.1. Note that it is possible to prove upper bounds whose space-time integrals are
polynomial constants without any understanding of the algebraic structure of the objects below.
Indeed, controlling the equivalence constant between homogeneous and control norms could be
avoided by using the homogeneous norm both in the ball (in the denominator) and inside the
exponential, which would not change the space-time integral of our upper bound. It does no
harm to simply see the log-signature as the projection of the signature onto the tangent space of its
intrinsic space at 0 and see the exponential map as the inverse of that transformation. The logarithm
is just an orthogonal projection from a manifold in a Euclidean vector space to a subspace of that
Euclidean vector space (for a proof see [52]).

Recall from rough path theory the tensor space

T l(Rd) =
l⊕

k=0

(Rd)⊗k,

which we will call the truncated signature space of order l and generator of size d. The dimension
of that space is

∑l
i=0 d

i.
We will always work with the following basis for T l(Rd+1):
Let e1, . . . , ed be the canonical basis for Rd. An orthonormal basis for the vector space

T l(Rd+1) is given by:

e1, . . . , ed, . . . , ei ⊗ ej , . . . , ei1 ⊗ ei2 ⊗ ...⊗il , ...

We also use the short-cut ei,j for ei ⊗ ej and e[i,j] for ei ⊗ ej − ej ⊗ ei, and more generally,
we define iteratively ei,α = ei ⊗ eα and e[i,α] = [ei, eα] = ei ⊗ eα − eα ⊗ ei.

DEFINITION 6.1.2. If v = (vi)i=0,1,2,...,d is collection of d + 1 vector fields, for any multi-
index α, we define higher order derivatives (vα) and brackets (v[α]) by the induction relations
v(i) = vi, vi,α = ∂vα

∂vi
and v[i,α] = [vi, vα]. In fact, it will sometimes be useful to view v. as

a linear map from the tensor space T l(Rd+1) to Rd+1 which makes the operation of directional
derivation correspond to the tensor product and the two operations of taking brackets correspond
to each other (brackets on the tensor space are defined via the formula [e1, e2] = e1⊕ e2− e2⊕ e1

and linear extension).

From this perspective, the above definition of vα corresponds to using the shorthand vα for
v
⊕#α
k=1 eαk .
It is a non-trivial fact that the iterative definition of v[α] coincides with the definition of ve

[α]

(this result goes back to Kusuoka-Stroock [37]):

66
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LEMMA 6.1.3. For any r + 1 differentiable family of vector fields σ0, σ1, . . . , σd on Rm and
any multi-index α with |α| ≤ r, we have

σ[α] = σe
[α]
.

PROOF. Claim: for any multi-index α, if we write α =
∑

β σ
(β) (uniquely), then we have for

any i ∈ {0, 1, . . . , d},

σ[α](σi) =
∑
β

λβσ
(β,i).

Proof of Claim:
We proceed by induction on the length of α: If #(α) = 1 and α = (j), then indeed σα(σi) =

σj(σi) = σ(j, i).
For the induction step, if α = (j, γ), then if we write σ[γ] =

∑
β λ

γ
βσ

β , we have

σ[α](σi) = (σj(σ[γ]))(σi)

=
∑
β

λγβ(σj(σβ))(σi)−
∑
β

λγβ(σβ(σj))(σi)

=
∑
β

(σ(j,β,i))− ∂2σi

∂σj∂σβ
)−

∑
β

(σ(β,j,i) − ∂2σi

∂σj∂σβ
)

=
∑
β

λγβ(σ(j,β,i) − σ(β,j,i)).

Since
∑

β λ
γ
β(σ(j,β)−σ(β,j)) is the expansion of σ(j,γ) in our orthogonal basis of T l(Rd+ 1), this

concludes the proof of the claim.
Proof of the theorem: Again, we proceed by induction over the length of α. If α = (i) then

the result is clear.
For the induction step, suppose α = (j, γ), we have immediately:

σ[j,γ] = σj(σ[γ])− σ[γ](σj)

= σj(σe
[γ]

)− σe[γ]
(σj)

= σe
(j,[γ]) − σe[γ]

(σj)

= σe
(j,[γ]) − σe([γ],j)

= σe
[(j,γ)]

,

where at the last next to last line, we have used the definition of iterated derivatives only, and at
the last line, we have used the claim proved above. This concludes the proof. �

REMARK 6.1.4. The order of bracketing is not relevant: for instance, if α is a Lyndon word
and [[α]] is the standard bracketing of α, it can be shown similarly that σ[α] = σe

[[α]]
.

REMARK 6.1.5. It can be shown by induction using the Jacobi identity that the space of
arbitrary bracketings of words is the space

span|α|≤L e
[α] = spanα∈L({0,1,...,d}

|α|≤L)

e[[α]].

We can now use expressions such as σ[α] or σe
[α]

and σα or σe
α

interchangeably.
Recall that for a sufficiently regular1 path γ : [0, T ] → Rd we define iteratively the iterated

integrals of γ by

γα,it =

∫ t

0
γαs dγ

i
s.

1For instance, a deterministic path of bounded variation, or an Itô process.
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If γ is a deterministic path of bounded variation, the integral above is standard Lebesgue
integration. If γ is an Itô process, the integral above is to be interpreted as a Stratonovich integral.
Formally, this means we suppose we are already given a geometric rough path lift of the path γ
(otherwise we would formally need to change the probability space to make sure both γ and its
integrals are well defined random variables on that same probability space).

DEFINITION 6.1.6. The truncated signature (of order l) of the path γ at time t is the the highly
degenerate object

(s(γ)αt )#(α)≤l ∈ T l(Rd).

LetGl(Rd) be the free nilpotent group of degree l, that is, the group defined by the exponential
of Lie polynomials up to degree l in T l(Rd).

It can be shown that the truncated signature s, as a function of time, of a path of bounded
variation, as well as the rough path lift of Brownian motion (which is the same as considering the
the process together with its Stratonovich integrals), lie in the space of geometric rough paths, that
is st ∈ Gl(Rd) and for any u, t, st = su ⊗ st−u.

Note that Gl(Rd) is a special manifold in the tensor space T l(Rd), endowed with a Carnot
group structure.

The signature is a very exciting tool that can be used in a variety of contexts including ge-
ometry ( [16], where the tool was defined for the first time), rough path theory, control theory,
character recognition ( [23]), improved Monte Carlo simulations ( [45], [41]), filtering [19], time
series analysis/machine learning ([18],[25]) and of course (like the present thesis) applications to
SDE ( [37], [32]).

We note from [22] the following full characterisation of the algebraic relations that an element
of the tensor space T l(Rd) must satisfy to be the signature of a path:

THEOREM 6.1.1 (Shuffle product formula). A tensor element

a = (1, a1, · · · , al) ∈ T l(Rd)

belongs to G(Rd) if and only if

am ⊗ an =
∑

σ∈S(m,n)

P(am+n), ∀m,n ≥ 1,

where S(m,n) denotes the set of (m,n) shuffles in the permutation group of order m + n and
Pσ : V ⊗(m+n) → V ⊗(m+n) is the permutation operator given by

Pσ(v1 ⊗ ...⊗ vm+n) = vσ(1) ⊗ ...⊗ vσ(m+n).

We define also the log-signature space Ll(Rd) to be the Lie algebra associated with the Lie
group Gl(Rd). More explicitly:

Ll(Rd) =
⊕

#(α)≤l

e[α].

The log-signature of the path γ is the orthogonal projection log(S(γ)) of the signature on the
log-signature space.

We note (cf. [44]) that the log signature determines the signature uniquely and the map that
associates the signature to the log signature and its inverse have the series expansions of the expo-
nential and logarithm functions respectively:

We write S = 1 + 1S + 2S... for the expression of the signature in the space T l(Rd). iS is an
element of (Rd)⊗i and 1S + 2S...+ lS is an element of

⊕l
k=1(Rd)⊗k

log(S) = (1S + 2S...+ lS)− (1S + 2S...+ lS)2

2
+ ...
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(in this formula, multiplication must be interpreted as the operation ⊗ described above), and for
the exponential, if R ∈ Ll(Rd),

exp(R) =
l∑

k=0

Rk

k!
.

REMARK 6.1.7. In both of the formulae above, because we are looking at truncated signatures
rather than the full signature, we must use the convention that eα ⊗ eβ = 0 if #α+ #β > l.

6.2. Truncating at order rather than length.

The above objects can also be defined for the tensor space

T∞(Rd+1) =
l⊕

k=0

(Rd+1)⊗k,

where we use the notation

e0, e1, . . . , ed, . . . , ei ⊗ ej , . . . , ei1 ⊗ ei2 ⊗ ...⊗ eil , ...

for the basis vectors (for i, j, i1, i2, . . . , il ∈ {0, 1, . . . , d}).
Recall that for a multi-index α ∈ Multi({0, 1, . . . , d}), the order |α| of α is defined as

2o0(α) + o1(α) where o0(α) and o1(α) denote the number of zero and non-zero indices in α
respectively.

We now define the following subspaces of T∞(Rd+1) for any fixed l:
The truncated signature space

T l(Rd,R) = span|α|≤l e
α,

and the truncated log-signature space

Ll(Rd,R) = span|α|≤l e
[α].

Warning Those notations may vary from the standard rough path literature.
One key observation as that the Formulae 6.1 and 6.1 show that for s1 ∈ T∞(Rd+1), s2 ∈

L∞(Rd), PrLl(Rd,R)(log(s1)) and PrT l(Rd,R)(exp(s2)) are uniquely determined by PrT l(Rd,R)(s2)

and PrLl(Rd,R)(s1) respectively.
For a path γ ∈ Pd+1

T , we will denote by s(γ) ∈ T l(Rd,R) its signature, truncated at order l.
When considering a system, we will use the notation S = s(∗W ) ∈ T l(Rd,R) for the truncated
signature of the path (s,W 1

s ,W
2
s , . . . ,W

d
s ) (s ∈ [0,∞]). As usual, the integrals are interpreted

in the Stratonovich sense, which is equivalent to supposing that we are already given a (length 2)
geometric rough path lift of the driving Brownian motions.

6.3. The standard KST approximation for a general system

Let A be a system, the Kusuoka-Stroock-Taylor (KST) approximation of Yt of order l is

T lt = y +
∑
|α|≤l

(∗σ)α(0)Wα
t .

REMARK 6.3.1. Note that (∗σ)α is not the same thing as ∗σα (unless F is linear). The latter
is used in the definition the weak Hörmander condition, whilst the former is used in the KST
approximation. If F is not linear, the KSTA written with ∗σα would not be close enough to the
actual solution.* However, any system can be turned into a system where F is linear by just adding
n components to the background space equal to the solution Yt = F (Xt), and replacing F by the
projection onto that space. So this is not a particularly interesting point.
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Similarly to the definition of Yt(γ) for a deterministic driving path, we also have that for any
driving deterministic smooth driving path Γ in Rd+1,

T lt (Γ) = y +
∑
|α|≤l

(∗σ)α(0)(∗γ)α.

For a path γ ∈ Rd, we denote by ∗γ the path in Rd+1 such that, ∀s ∈ [0, 1], ∗γ0
s = s and ∗γis = γis,

∀i = {1, 2, .., d}.
We need the following definition of homogeneous length for a path in Rd+1 whose first com-

ponent must be given different scaling:

DEFINITION 6.3.2. For a curve (τ, γ)s ∈ R ⊕ Rd parametrised over 0 ≤ s ≤ T , we define
the following homogeneous metric:

|(τ, γ)|L2,1 =

√∫ T

0
T |∂γ
∂s
|2 + |∂τ

∂s
|ds

|(τ, γ)|L2 =

√∫ T

0
|∂γ
∂s
|2 + |∂τ

∂s
|ds.

PROPOSITION 6.3.3. The definition of |(τ, γ)|L2,1 is independent of parametrisation.

PROOF. Trivial. �

PROPOSITION 6.3.4. If (1τ, 1γ) and (2τ, 2γ) are two smooth curves in Rd+1, we have

|(1τ, 1γ)⊗ (2τ, 2γ)|L2,1 ≤ |(1τ, 1γ)|L2,1 + |(2τ, 2γ)|L2,1 and

|(1τ, 1γ)⊗ (2τ, 2γ)|L2 ≤ |(1τ, 1γ)|L2 + |(2τ, 2γ)|L2 .

PROOF. Follows immediately from the fact that
√
a+ b ≤

√
a +
√
b for any positive real

numbers a, b. �

LEMMA 6.3.5. Let Γ : [0, 1] → Rd+1 be a smooth driving path with Γ = (τ, γ) with τs ∈ R
and γs ∈ Rd. Let As be a functional from [0, 1] to Rn. Define the iterated integrals (AΓ)α =∫ ◦α

A(dΓ)α of A with respect to Γ by (AΓ)i =
∫ 1

0 Ad(Γs)
i and

(AΓ)α,i =

∫ 1

0
((AΓ)α)sd(Γs)

i.

Suppose that As ≤ K,∀s ∈ [0, 1] (without loss of generality K ≥ 1), we have that:

sup
0≤s≤1

|(AΓ)αs |L2 ≤ |(AΓ)ᾱ|L2 |γ|L2 if b 6= 0

≤ |(AΓ)ᾱ|L2 |τ |L2 if b = 0

where as usual, ᾱ is the multi-index composed of the first #(α) − 1 indices of α, such that α =
(ᾱ, b) for some b ∈ {0, 1, . . . d}.

This means in particular that

sup
0≤s≤t

|(AΓ)αs | ≤ K(|γ|L2)o1(α)|τ |o0(α)
L2 ≤ K(|Γ|L2)|α|,

where |Γ|L2 denotes the homogeneous metric defined above.
More precisely, if we have real processes Aαs for each α, then we have:

sup
0≤s≤1

|
∑
|α|=L

(AΓ)αs | ≤ C

√√√√∑
|α|=L

∫ 1

0
(Aαs )2ds|Γ|LL2

for some constant C dependent only on L.

PROOF. We prove the first result by induction on #α (not |α|).
For #α = 1,
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(1) if α = (0) then

sup
0≤s≤1

|(AΓ)αs | = sup
0≤s≤1

|
∫ s

0
As1dτs1 | ≤ (

∫ 1

0
A2
sds)

1
2 (

∫ 1

0
|∂τs
∂s
|2ds)

1
2 ≤ K|τ |L2 .

(2) if α = (j) for some j ≤ d then

sup
0≤s1≤1

|(AΓ)α| = sup
0≤s1≤1

|
∫ s1

0
Asdγ

j
s | ≤ K|

∫ 1

0
1dγjs | ≤ K|γ|L2 .

For the induction step, we have:
(1) If α = (ᾱ, 0) for some ᾱ, then

sup
0≤s1≤t

|(AΓ)α)s1 | ≤ t sup
0≤s1≤t

|(AΓ)ᾱs1 |

≤ Kt|γ|o1(ᾱ)to0(ᾱ) ≤ Kto0(α)|γ|o1(α)

≤ K(|Γ|)|α|,

as expected.
(2) If α = (ᾱ, j), then

sup
0≤s1≤t

|(AΓ)αs1 | = sup
0≤s1≤t

|
∫ s1

0
(AΓ)ᾱdγjs | ≤ |γj | sup

0≤s≤t
|((AΓ)ᾱ)s|

≤ |γ|K|γ|o1(ᾱ)to0(ᾱ)

≤ K|γ|o1(α)to0(α) ≤ K(|Γ|)|α|,

as expected.
For the last, more precise part, we write r(α) for the multi-index obtained by replacing every

non zero component of α by 1. We also write τ(α) for the multi-index obtained by deleting the
last component of α.

We first perform the following inductive calculation, for any δ ∈ Multi({0, 1}, L)∑
r(α)=δ

sup
0≤s≤1

|(AαΓ)αs |

≤
∑

i∈{1,2,...,d},r(α)=δ
α=(β,i)

Idr(α)#α=1 sup
0≤s≤1

|
∫ 1

0
(AαΓ)βs

∂Γis
∂s

ds|

+ Idr(α)#α=0 sup
0≤s≤1

|
∫ 1

0
(AαΓ)βs

∂Γ0
s

∂s
ds|

≤

√√√√√ ∑
i∈{1,2,...,d},r(α)=δ

α=(β,i)

∫ 1

0
((AαΓ)βs )2ds|Γ|L2 Idr(α)#α=1

+

√√√√√ ∑
r(α)=δ
α=(β,0)

∫ 1

0
((AαΓ)βs )2ds|Γ|2L2 Idr(α)#α=0

≤ (
∑

i∈{1,2,...,d},r(α)=δ
α=(β,i)

sup
0≤s≤1

|(AαΓ)βs |)|Γ|L2 Idr(α)#α=1

+ sup
0≤s≤1

(|
∑

i∈{1,2,...,d},r(α)=δ
α=(β,i)

∫ 1

0
((AαΓ)βs |)|Γ|2L2 Idr(α)#α=0

≤ . . .
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≤

√√√√ ∑
r(α)=δ

∫ 1

0
(Aαs )2ds|Γ||α|.

Using this, we finally obtain:

sup
0≤s≤1

|
∑
|α|=L

(AΓ)αs | ≤
∑
|δ|=L

|
∑
r(α)=δ

(AΓ)αs |

≤
∑
|δ|=L

√√√√ ∑
r(α)=δ

∫ 1

0
(Aαs )2ds|Γ|LL2

≤ 2L|Γ|LL2

√√√√∑
|α|=L

∫ 1

0
(Aαs )2ds.

This concludes the proof. �

REMARK 6.3.6. We cannot make l tend to∞ in the theorem below: the aim, as in [37], is to
use the expansion for a given sufficiently large l.

THEOREM 6.3.1. Let A = (x, σ, F ) be an (L,HL)-weak Hörmander, (L′, g,G)-tense sys-
tem, with g, L′ ≥ 2 + l with l ≥ L
(1) If Γ is a smooth driving path in Rd+1, we have ∀i = 1, 2, . . . , n

|Yt(Γ)− T l(Γ)| ≤ C|Γ|l+1
L2,1

for some C dependent only on G and l, and polynomial in G.
(2) Writing as usual Yt for the solution to the system, for R ≥ 1 we have that there exist constants

C,C2, dependent only on G, l, R, d, and polynomial in G, d, such that

P(|Yt − T lt | ≥ R) ≤ C1e
−(R/C2)

2
l+1

8t

PROOF. For the deterministic part, using Lemma 6.3.5 yields the result immediately with

C ≤ 2l+3( sup
|v|=1;v∈Rn

∑
l+1≤|α|≤l+2

〈σα, v〉2)1/2

≤ 2l+3G1/2.

For the random part, observe that

|Yt − T lt | = |
∑
α∈A

∫ ◦α
(∗σ)α(◦dW )α|(6.3.1)

where the iterated integrals are understood as Stratonovich integrals and the set A is defined by
A = ∪|α|=l ∪di=0 (i, α).

We convert the above integrals into Itô integrals so that we can apply Theorem 2.1.1.
We will use the following notation:

A = ∪|α|=l ∪di=0 {(i, α)}

A2 = ∪|α|=l ∪di=1 {(i, i, α)}.
We will denote by c : A→ P(Multi({0, 1, . . . , d})), α 7→ c(α) the function such that where c(α)
is the set of all multi-indices that can be obtained from α by successively replacing consecutive
repeated indices by 0 any number of times. We will denote by

c̄ : A2 → P(Multi({0, 1, . . . , d})), α 7→ c̄(α),

the function such that c̄(α) is the set of all multi-indices that can be obtained from α by succes-
sively replacing consecutive repeated indices by 0 any number of times, with the constraint that
the first two indices (which are equal and non -zero since α ∈ A2), must be replaced. For β ∈ c(α)
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or β ∈ c̄(α), we will write ε(α, β) for the number of such replacements required to go from α to
β. here are some examples to clarify the definitions:

c((1, 2, 2, 5, 0, 0, 9, 9)) = {(1, 2, 2, 5, 0, 0, 9, 9), (1, 2, 2, 5, 0, 0, 0),

(1, 0, 5, 0, 0, 9, 9), (1, 0, 5, 0, 0, 0)}
c((1, 1, 1, 1)) = {(0, 1, 1), (1, 1, 0), (0, 0), (1, 0, 1)}

c̄((5, 5, 4, 3, 0, 1, 1)) = {(0, 4, 3, 0, 1, 1), (0, 4, 3, 0, 0)}
ε((5, 5, 4, 3, 0, 1, 1), (0, 4, 3, 0, 1, 1)) = 1

ε((5, 5, 4, 3, 0, 1, 1), (0, 4, 3, 0, 0)) = 2

ε((1, 2, 2, 5, 0, 0, 9, 9), (1, 2, 2, 5, 0, 0, 0)) = 1

ε((1, 2, 2, 5, 0, 0, 9, 9), (1, 0, 5, 0, 0, 0)) = 2.

We now have the required notation to convert Eq. (6.3.1) into Itô form:

|Yt − T lt | =
∑
α∈A

∫ ◦α
(∗σ)α(◦dW )α(6.3.2)

=
∑
β∈A

∑
α∈c(β)

∫ α

σβ(dW )α2−ε(α,β)

+
∑
β∈A2

∑
α∈c̄(β)

∫ α

σβ(dW )α2−ε(α,β).

Now note that

sup
|v|=1;v∈Rn

∑
l+1≤|α|≤l+2

|
∑
β∈A:
α∈c(β)

〈σβ, v〉2−ε(α,β) +
∑
β∈A2:
α∈c̄(β)

〈σβ, v〉2−ε(α,β)|2(6.3.3)

≤
∑

l+1≤|α|≤l+2

2l+2(
∑
β∈A2:
α∈c̄(β)

|〈σβ, v〉|2 +
∑
β∈A:
α∈c(β)

|〈σβ, v〉|2)

≤
∑

l+1≤|β|≤l+2

22(l+2)|〈σβ, v〉|2

≤ 22(l+2)G.

Using Eqs. (6.3.2) and (6.3.3) and applying Theorem 2.1.1, we immediately obtain the result with
C2 = 22(l+2)G and C1 = 22l+4. �

6.4. Comparing the densities of the KSTA and the original process

There are two possible related ways to obtain a fixed given sufficiently large order of approx-
imation l such that the density of T l is close enough to the density of Y l for the purposes of the
proof of our upper bounds.

Informally, we have two random variables which are both unlikely to be far away from each
other (cf. 6.3.1) and reasonably smooth, and we show that their densities must be close to each
other.

We could either (re-) use Malliavin smoothness directly, or use the smoothness of the density
and derivatives in the form of Gaussian bounds on the densities and their derivatives (in terms of
the Euclidean distance, obtained with Malliavin calculus), coupled with Fourier Analysis.

The first approach is the approach used in the modern Bally-Pigato-Caramellino literature
(see Theorem 2.4, Lemma 2.7 etc in [50], Theorem 2.1 in [7] then its use in [4] etc.), the sec-
ond approach is the one used in the original Kusuoka-Stroock article [37]. We adopt the second
approach.
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6.4.1. Using Fourier Analysis to qualify the precision of the KSTA. The following is in-
spired from the main arguments in the proof of Proposition 4.6 on page 423 of [37]:

PROPOSITION 6.4.1. Let

p : [0, 1]× Rn → R+, (t, y) 7→ pt(y) and q : R+ × Rn → R+, (t, y) 7→ qt(y)

be the perturbed densities, perturbed by the localising function φ(U), (φ smooth, U ∈ D∞,
φ(U) ≤ 1 a.s.) of two processes Pt and Qt on Rn satisfying, uniformly over (t, y) ∈ [0, T ]× Rn:∣∣∣∣∂kpt(y)

πki=1∂zi

∣∣∣∣ ≤ C exp
(
−M |y−x|2

t

)
tµ

,

∣∣∣∣ ∂kqt(y)

πki=1∂zi

∣∣∣∣ ≤ C exp
(
−M |y−x|2

t

)
tµ

P(|Pt −Qt| ≥ R) ≤ C exp

(
−
(
R

Mt

) 2
m

)
and

P(φ(U) < 1) ≤ Ce−
c
t ,

for some fixed constants C, c,M, µ,m (with m ≥ 2(n + 1)(µ − n)), for some fixed x ∈ Rn, and
for all |zi| = 1, i ∈ {0, 1, . . . k}, k ≤ n+ 1, and for all R > 0.

There exists a constant C1, depending only on C,M, n, such that

|pt(y)− qt(y)| ≤ C1t
m

2(n+1)
−µ+n

.

PROOF. Let us define the following Fourier transforms of p and q:

p̂t(ξ) =

∫
Rn
e−i〈ξ,y〉pt(y)dy

q̂t(ξ) =

∫
Rn
e−i〈ξ,y〉qt(y)dy.

First note that by using the first two conditions, we obtain:

|p̂t(ξ)− q̂t(ξ)| ≤ |p̂t(ξ)|+ |q̂t(ξ)|

≤ 1

|ξ|n+1
(|
∫
Rn
e−i〈ξ,y〉

∂n+1pt(y)

πn+1
i=1 ∂zi

dy|

+ |
∫
Rn
e−i〈ξ,y〉

∂n+1qt(y)

πn+1
i=1 ∂zi

dy|)

≤ 2C̄

|ξ|n+1tµ−n
,

for some constant C̄ dependent only on C and n.
Furthermore,

|p̂t(ξ)− q̂t(ξ)| = |E
(

(ei〈ξ,Pt〉 − ei〈ξ,Qt〉)φ(U)
)
|

≤ E(|1− φ(U)|) + E(|ei〈ξ,Pt〉 − ei〈ξ,Qt〉|)

≤ E(|1− φ(U)|) + E(|ei〈ξ,Pt−Qt〉 − 1|)

≤ e−
c
t + E(|ei〈ξ,Pt−Qt〉 − 1|)

≤ Ktm/2 + E(|ei〈ξ,Pt−Qt〉 − 1|)

≤ Ktm/2 + E(|ξ||Pt −Qt|)

≤ K(1 + |ξ|)tm/2,
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where K is some constant changing at each line that only depends on C, n, µ,m,M . Here at the

last line we have used the condition P(|Pt −Qt| ≥ R) ≤ Ce−( R
Mt

)
2
m , integrated over R.

Next we write, for any R > 0,

|pt(y)− qt(y)| ≤ 1

2π
‖p̂t(ξ)− q̂t(ξ)‖L1

≤
∫
|ξ|≤R

K(1 + |ξ|)tm/2dξ +

∫
|ξ|≥R

2C̄

|ξ|n+1tµ−n
dξ

≤ K1R
n+1tm/2 +K2t

−µ+nR−1

for some constants K1,K2, dependent only on C, n, µ,m,M .

Now set R = t
−m+2(µ−n)

2(n+2) . This gives

|pt(y)− qt(y)| ≤ (K1 +K2)t
m−2(µ−n)(n+1)

2(n+2)

≤ (K1 +K2)t
m

2(n+1)
−(µ−n)

.

�

As a consequence, we have the following very useful result:

THEOREM 6.4.1. Let A = (x, σ, F ) be a uniformly (L, g,G)-tense, (L,HL)-weak Hörman-
der system. Let plt denote the density of the lth order Kusuoka-Stroock-Taylor approximation Ȳt
of Yt, localised by the localising function U ∈ [0, 1] such that U = 0 when | logsig(∗W )| ≥ 1/2,
and write pt for the density of the actual solution Yt, also localised by U . Suppose that g ≥
(2n+ 2)224L + 3. For any l ≥ (2n+ 2)224L, if g ≥ l + n+ 3, we have for some constant C2:

|pt(y)− plt(y)| < Ct
l+1

2(n+1)
−(2n+1)24L+n

.

In particular, for l = (2n+ 2)224L we have

|pt(y)− plt(y)| < Ct.

PROOF. Let as usual w be the free vector fields in T l(Rd+1), the system (0, w, FST ), re-
stricted to | logsig(∗W )| ≥ 1/2, is uniformly (L,HL/2) weak Hörmander and (L, g,min(G,Cfree))-
tense, where we have used the fact that g ≥ l+n+33, and where Cfree is the tension of the system
(0, w, Id) which we know to be an absolute constant from Lemma 8.1.1. Therefore, we can apply
Theorem 4.4.1 to obtain ∣∣∣∣∂kpt(y)

πki=1∂zi

∣∣∣∣ ≤ C e−M|y−x|
2

t

t(n+k)24L

for any k ≤ n+1. A very important observation is that the quantity µ = (n+k)24L ≤ (2n+1)24L
does not depend on l. In our proof this is because the weak Hörmander constant of the system
(0, w, FST ) is L rather than l(even though the weak Hörmander order of the system (0, w, Id) is
of course l). In [37], the proof of this fact is done more specifically and directly by controlling the
effect of the rest on the density.

Of course, because g ≥ n + 3, we can also use Theorem 4.4.1 to immediately obtain the
equivalent bound for the density of the actual process Yt.

Furthermore, Theorem 6.3.1 now ensures that the last condition of Proposition 6.4.1 is also
satisfied.

The result now follows immediately by applying Proposition 6.4.1 with µ = (2n+1)24L. �

2The constant is proper but we shall not use that fact
3We need g ≥ l for the KSTA to be even well defined. We need g ≥ l + 2 to be able to control the remainder. In

fact as long as g ≥ l + 3, the system (0, w, FST ) is (Lg,Gg)-tense for any g, with the precise value of Gg coming
from the exponential map.



CHAPTER 7

Application of models to an auxiliary object: deterministic results

In this section, we show the meaning of the abstract setting described above in terms of appli-
cation to systems.

Let A = (X,σ, F ) be a (L, g,G)-tense (L,HL)-Weak Hörmander system. We define the
following generalisations of the control distance:

DEFINITION 7.0.1. Let Pd[0,t] be the set of smooth paths in Rd parametrised on the interval
[0, t] such that γ0 = 0. For y ∈ B, we define the following distance, which (for F = Id) is the
same as the distance dt defined in [39]:

d̃t(y) = inf
γ∈Pt,Yt(∗γ)=y

|γ|L2,1 = inf
γ∈Pt,Yt(∗γ)=y

|γ|.

Here |γ| denotes the length of γ, and Yt(∗γ) denotes the solution to the ODE corresponding to
the system driven by γ instead of Brownian motions. The equivalence between the two definitions
comes from the fact that the condition Yt(∗γ) = y is invariant by reparametrisation.

We call it the Léandre distance.

DEFINITION 7.0.2. Let Pd+1
[0,t] be the set of smooth paths in Rd+1 parametrised on the interval

[0, t] such that γ0 = 0. For y ∈ B, we define the following distance, which is the one we shall be
working with for our upper bounds.

dt(y) = inf
Γ∈Pt,Yt(Γ)=y

Γ0
t=t

|Γ|L2,1 = inf
Γ∈P1,Yt(Γ)=y

Γ0
1=t

|Γ|L2,1
∀s
= inf

Γ∈Ps,Ys(Γ)=y

Γ0
s=t

|Γ|.

Here |Γ| denotes the homogeneous length of Γ:

|Γ| = |Γ|Rd,R =

∫ T

0

√√√√|Γ̇0
s|+

d∑
i=1

(Γ̇is)
2,

and as usual Yt(Γ) denotes the solution to the ODE corresponding to the system driven by Γ.
Again, the last identity comes from the possibility of reparametrizing the curve optimally.

DEFINITION 7.0.3. Let us define the following functions:

FSTl : T l(Rd)→ Rn, S 7→ F (x) +
∑
|α|≤l

Sα(∗σ)α(x)

and

F
log(S)T
l : Ll(Rd,R)→ Rn, S 7→ F (x) +

∑
|α|≤l

exp(S)α(∗σ)α(x).

Let S be the space obtained by ignoring the component in α = (0) of elements in Ll(Rd,R):

S := span |α|≤l
α6=(0)

e[α].

We have R⊕ S = Ll(Rd,R). We use the following notational shorthand:

F
log(S)T
t,l (·) = F

log(S)T
l (t, ·).

For any bounded variation path in Rd parametrised over [0, t], we write logsig−(∗γ) for the pro-
jection of the log-signature of ∗γ on S. We can give (S, F log(S)T

t,l ,Rn) the structure of a model by

76
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assigning to any linear combination of σ[α] with |α| fixed the homogeneous degree components
|α|. We call the homogeneous ’distance’ associated to this model dlt.

For [0, t], we write logsig−(γ) for the projection of the log-signature of γ on S .
The following is immediate:

PROPOSITION 7.0.4. We have the following equivalent description of dt: Let Pd+1
1 be the set

of paths Γ ∈ Rd+1 indexed over [0, 1], with Γ0 = 0. For Γ ∈ P d+1
1 , we write Solx,t(Γ) or simply

Solx(Γ) for the solution to the following ODE

X0 = x,(7.0.1)

dXs = σ{1,2,...d}(Xs)dΓ{1,2,...d}s + tσ0(X)dΓ0
s.

Then we have:

dt(y) = inf
Γ∈Pd+1

1

F (Solx(Γ))=y;Γ
(0)
1 =1

|Γ|L2 ,

and

d̃t(y) = inf
γ∈Pd1

F (Solx(∗γ))=y

|γ|L2 .

REMARK 7.0.5. If the drift is null, and Ft is the identity (we have an SDE instead of a system),
then both d̃t(y) and dt(y) reduce to the Carnot-Carathéodory distance.

We note the following trivial properties of dt:

PROPOSITION 7.0.6. Let A = (x, σ, F ) be a uniformly (L, g,G)-tense, uniformly (L,HL)-
weak Hörmander system, for any 0 = s0 ≤ s1 ≤ s2 ≤ . . . ≤ sN = t and any x1, x2, . . . , xN , we
have

dt(x, ∗xN ) ≤
N∑
i=0

dsi+1−si(xi, ∗xi+1).

PROPOSITION 7.0.7. Let A = (x, σ, F ) be a uniformly (L, g,G)-tense, uniformly (L,HL)-
weak Hörmander system, we have, for any x ∈ Rm, y ∈ Rn and any t,

dt(x, y) ≥ |∗x− y|G−
1
2 (1− t).

Note that dt and d̃t depend on the complete local behaviour of the vector fields, whilst dlt only
depends on the iterated derivatives of σ up to order l, evaluated at 0.

Aim. In this section, we aim to show some local equivalence between the distances dlt and dt.

REMARK 7.0.8. Locally, we can morally view the trio (solution map, space of driving paths,
target space) as a model whose associated homogeneous distance is the control distance. The
equivalence of dlt and dt is therefore locally an infinite dimensional version of Proposition 5.2.6
But since the space is infinite dimensional, we must be more careful. However, while the infinite
dimensionality of the model forces us to prove things independently, the idea of the proof is still
guided by the above remark and remains similar to another declension of the proof of the inverse
functions theorem.

We will prove the theorems step by step with a few preliminary propositions.
The following proposition shows the link between the quantity β defined for models, and the

hypoellipticity constant HL defined for systems.

PROPOSITION 7.0.9. LetA = (x, σ, F ) be a system that is (L′, g,G)-tense and (L,HL)-weak
Hörmander at x (with L′ ≥ L). For any l ≤ L′, there exist constants B1

l and B2
l , depending only

on l, such that √
Hl

B1
l

≤ β
FST
≤

√
Hl

B2
l

,
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where β
FST

is the square root of the smallest eigenvalue of JFST (JFST )T .
In particular, since HL ≤ Hl ≤ G, we have that β

FST
is a proper constant.

PROOF. We prove the theorem for the case of zero drift (i.e. multi-indices are over the set
{1, 2, . . . , d}), the general case is very similar. The key is to observe that if α and ᾱ are two multi-
indices which are not exactly a reordering of each other, then eα and eᾱ are orthogonal. Clearly
this means the same is true of e[α] and e[ᾱ].

Let J(l0, l1, l2, . . . , lκ) where 2l0 +
∑κ

k=1 = l̄ ≤ l be the multi-set of cardinality l̄ − l0
with elements in {0, 1, 2, 3, . . . , κ} containing k exactly lk times for all 0 ≤ k ≤ κ. Note that
there are only as many such multi-sets as there are choices of numbers 1 ≤ l1, l2...lκ and l0 such
that 2l0 +

∑κ
k=0 = l̄ ≤ l. The exact number is not relevant: what matters is getting rid of the

dependence on d. That being said, since
bl/2c∑
i=0

2l−2i = b2
l+2 − 1

3
c,

that there are b2l+2−1
3 c follows from the fact that there are 2l choices with l0 = 0, and that fact can

be proved in two ways:
Proof 1: For fixed κ and fixed l̄, we can view the choice as picking the li − 1 such that∑

i li − 1 = l̄ − κ, which is a choice of a way of dividing a set of l̄ − κ elements into κ types.
There are (

l̄ − κ+ κ− 1
κ− 1

)
=

(
l̄ − 1
κ− 1

)
such choices. Summing over κ, we get 2l̄−1 choices if l̄ ≥ 1 (otherwise we get one choice).
Summing over l̄, we get 2l choices.

Proof 2: There is a bijection between the choices of J and the set of subsets of {1, 2, . . . , l}:
Let H be a subset of {1, 2, . . . , l}. Set k0 = min(a : a ∈ H), k1 = min(b : b /∈ H, b ≥ k0), then
similarly,

ki = min(b : b ∈ H, b ≥ ki−1) if ki−1 /∈ H and

ki = min(b : b /∈ H, b ≥ ki−1) if ki−1 ∈ H.
Then set li = ki − ki−1 for all i.

For each such J we now consider an orthonormal basis {hJk}k∈{1,2,...,K} (for some K ≤
#(J)!) of the space1

spanα∈PJ e
[α],

where PJ denotes the set of multi-indices which contain the same indices, and the same number
of times, as J . Let λαJ,k be numbers such that ∀J, k,

∑
α∈PJ λ

α
J,ke

α = hJk , minimising
∑

α(λαJ,k)
2

(i.e. take the |λJ,k| orthogonal to the kernel of the linear map that sends a vector µ ∈ spanα∈PJ e
[α]

to
∑

α∈PJ µ
αe[α]).

Let I be a multi-set of elements of {0, 1, 2, . . . , d}. Let ι be the function that renames ’1’ the
smallest non-zero element of I , ’2’ for the second smallest, etc. We take as an orthonormal basis
of spanα∈PI (e

[α]) the vectors hIk defined by:

hIk =
∑
α∈PI

λ
ι(α)
ι(I),ke

[α].

This is the fixed orthonormal basis of the log-signature space that we will always assume we
are working with.

Let P̃ be the matrix whose columns are the expressions of the eα’s, where α runs over multi-
indices with elements in {1, 2, . . . , l}, in the basis formed by the hJ(l1,l2,...,lk)

k (for all values of

1Note that for some choices of J , the space is {0}, and the basis is empty. For instance J(), J(j) and J(0, i) (for
any i, 2j ≤ l) each satisfy spanα∈PJ

eα = {0}
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(l1, l2, . . . , lk)) Let P be the matrix whose columns are the expressions of the e[α]’s in the basis
formed by the hIk for all multi-sets I .

P is a block diagonal matrix (elements are in the same block if they correspond to multi-
indices that are exact reorderings of each other), and the block that corresponds to I has the same
entries as the block that corresponds to ιI . So there are only 2l different blocks. We can also group
all the blocks into bigger blocks each of which is identical to P̃ . Let B1

l and B2
l respectively be

inverses of the largest and smallest eigenvalues of P̃ P̃ T . Those are in fact also the smallest and
largest eigenvalues of PP T .

The theorem follows upon observing that Hl is the minimum eigenvalue of the matrix

JFSTPP T (JFST )T

whilst β
FST

is the square root of the minimum eigenvalue of JFST (JFST )T . This concludes the
proof. �

REMARK 7.0.10. If polynomial dependence inside the exponential is not required, we do
not need polynomial dependence of Bl and we can simply observe that it is a positive constant
depending only (at most) on l, β and d. In this case we could simply pick any orthonormal basis
of S.

LEMMA 7.0.11. Let l ≥ 1. There exists a polynomial constant Ml such that for any S ∈
Ll(Rd), there exists a Γ ∈ Pd such that

logsigl(Γ) = S

|Γ|L,1 ≤ C|S|Ll(Rd),

where ||Ll(Rd) denotes the homogeneous norm in Ll(Rd) assigning the same degree for all indices.

PROOF. This is a well known and standard application of the BCH formula: By reparametris-
ing, we can work with lengths rather than the norm ||L,1.

Claim: There exists a polynomial C1 such that for any λ ∈ R and for any multi-index α of
length less than l, there exists a path Γ of length |Γ| ≤ λ

1
lCl and logsigl(Γ) = λe[α].

Proof of the Claim: The claim is obvious for l = 1 by taking a linear path. For the induction
case, suppose that the result is true for l− 1, we prove that it is true for l. Suppose that α = (a, β)
for some a ∈ {0, 1, . . . , d}. By the induction hypothesis, there is a path γe[β] of length less than
Cl−1 such that logsig(γ) = e[β], and rescaling, there is a path of γ

(λ/2)
l−1
l e[β]

of length less than

Cl−1(λ2 )
1
l such that logsig(γ) = (λ/2)

l−1
l e[β]. We then consider the following concatenation:

γ̃ = γ
(λ/2)

1
l ea
⊗ γ

(λ/2)
l−1
l e[β]

⊗ γ
−(λ/2)

1
l ea
⊗ γ
−(λ/2)

l−1
l e[β]

By the BCH formula, logsigl(γ̃) = λe[α]. By the induction hypothesis,

|γ̃| ≤ 2(
λ

2
)

1
l (1 + Cl−1).

This proves the claim.
Proof of the theorem: We also prove this theorem by induction. Similarly to the claim, the

case l = 1 is trivial. WritingM for the constant involved.
For the induction step, suppose that S = ζ + ξ with ζ ∈ Ll−1(Rd) and ξ ∈ span|ᾱ|=l e

[ᾱ].
By the induction hypothesis, we have a path γζ with length less thanMl−1|ζ|Ll−1(Rd) whose

log signature coincides with ζ on the space Ll−1(Rd). Being projections of multiple integrals of
γζ , the components of logsig(γζ) in span|ᾱ|=l e

[α] are all bounded above by (Ml|ζ|Ll−1(Rd))
l. So

if we fix a way of writing logsig(γξ) =
∑

ᾱ µᾱe
[ᾱ], we have |µ[ᾱ]| ≤ 2l(Ml|ζ|Ll−1(Rd))

l.
We also fix a way of writing ξ =

∑
|ᾱ|=l e

[ᾱ]ξᾱ.
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Now let {a1, a2, . . . , adl} be any ordering of {ᾱ : |ᾱ| = l}, consider the following concatena-
tion

Γ = γζ ⊗d
l

i=1 γξai−µai

We indeed have that
logsigl(Γ) = ξ + ζ.

Furthermore,

|Γ| ≤Ml−1|ζ|Ll−1(Rd) +
∑
|ᾱ|=l

(
(2Ml−1|ζ|Ll−1(Rd))

l + C llξ[ᾱ]|
) 1
l
.

The result follows. �

We now formulate the following easy generalisation of Lemma 7.0.11:

LEMMA 7.0.12. Let l ≥ 1. There exists a polynomial constant Ml such that for any S ∈
Ll(Rd,R), there exists a (τ, γ) ∈ Pd+1 such that

logsigl((τ, γ)) = S

|(τ, γ)| ≤Ml|S|Ll(Rd+1),

where |·|Ll(Rd,R) denotes the homogeneous norm in Ll(Rd,R) assigning double degree to zero
indices, and similarly || is the homogeneous length.

PROOF. The proof is almost identical to that of Lemma 7.0.11:
Claim: There exists a polynomial Cl such that for any λ ∈ R and for any multi-index α

of order less than l, there exists a path (τ, γ) of homogeneous length |(τ, γ)| ≤ λ
1
|α|Cl and

logsigl((τ, γ)) = λe[α]

Proof of claim: The claim is obvious for l = 1 and for l = 2 and γ = 0, by taking a linear
path. For the induction case, suppose that α = (a, β) for some a ∈ {0, 1, . . . , d}. By the induction
hypothesis, there is a path γe[β] of homogeneous length less than Cl−1 such that logsig(γ) = e[β].
We then consider the following concatenation:

If a 6= 0:

γ̃ = γ
(λ/2)

1
|α| ea

⊗ γ
(λ/2)

|α|−1
|α| e[β]

⊗ γ
−(λ/2)

1
|α| ea

⊗ γ
−(λ/2)

|α|−1
|α| e[β]

.

and if a = 0:

γ̃ = γ
(λ/2)

2
|α| ea

⊗ γ
(λ/2)

|α|−2
|α| e[β]

⊗ γ
−(λ/2)

2
|α| ea

⊗ γ
−(λ/2)

|α|−2
|α| e[β]

.

By the BCH formula, logsigl(γ̃) = λe[α]. By the induction hypothesis, and by Lemma 6.3.4, its

homogeneous length is less than 2(λ2 )
1
|α| (1 + Cl−1). This proves the claim.

Proof of the theorem: We also prove this theorem by induction over the order, which we write l
here, not the length. Similarly to the claim, the case l = 1 is trivial.

For the induction step, suppose that S = ζ+ξ with ζ ∈ span|ᾱ|≤l−1 e
[ᾱ] and ξ ∈ span|ᾱ|=l e

[ᾱ].
By induction hypothesis, we have a path γζ with homogeneous length less than Ml−1|ζ|Ll−1(Rd,R)

whose log signature coincides with ζ on the space span|ᾱ|=l e
[ᾱ]. Being projections of mul-

tiple integrals of γζ , the components of logsig(γζ) in span|ᾱ|=l e
[α] are all bounded above by

(Ml−1|ζ|Ll−1(Rd,R))
l. This means that if we fix a way of writing

Prspan|ᾱ|=l(e
[ᾱ])(γζ) =

∑
|ᾱ|=l

e[ᾱ]µᾱ,

we have |µᾱ| ≤ 2l(Ml−1|ζ|Ll−1(Rd,R))
l.

We fix a way of writing ξ =
∑
|ᾱ|=l e

[ᾱ]ξ[ᾱ].
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Choose any ordering a1, a2, . . . , aK of the set {ᾱ : |ᾱ| = l}. (Here K = #({ᾱ : |ᾱ| = l}).)
We can consider the following concatenation:

Γ = γζ ⊗Ki=1 γξai−µa1
.

Now we indeed have logsigl(Γ) = ξ + ζ. Furthermore, by Lemma 6.3.4,

|Γ| ≤Ml−1|ζ|Ll−1(Rd,R) +

∑
|ᾱ|=l

2l(Ml−1|ζ|Ll−1(Rd,R))
l + C ll |ξ[α]|

 1
l

.

The result follows. �

We will need the following lemma:

THEOREM 7.0.1. LetA = (x, σ, F ) be an (L, g,G)- tense, (L,Hl)-weak Hörmander system.
Fix l ≥ L. Suppose that g ≥ l + 3. There exist polynomial constants C1, C2 and C3 such that for
all y ∈ Rn such that max(dt(y),

√
t) < C1, we have

dlt(y) +
√
t ≤ C2dt(y),

and for all y ∈ Rn such that max(dlt(y),
√
t) < C1,

dt(y) ≤ C3(dlt(y) +
√
t).

PROOF. First inequality Let Γ ∈ Pd+1
t be a path such that Yt(Γ) = y, Γ

(0)
t = t and |Γ| ≤

dt(y)(1 + ε) where as usual ε is a fixed quantity greater than 1
2 . Let S = logsig−(Γ).

From the usual Taylor expansion, and Theorem 6.3.1, we have the following, where M1 is a
constant depending only on G,n,HL:

|Yt(Γ)− T lt (Γ)| ≤M1|Γ|l+1
L2,1

(7.0.2)

≤M1(dt(y)(1 + ε))l+1.

We also have

|S| ≤ |(t, S)|Ll(Rd,R) ≤M2(dt(y)(1 + ε) +
√
t)

for some polynomial constant M2. Let ρ be the ρ obtained from our development on Models, rel-
ative to the model (S, F log(S)T

t ,Rn). As long as t ≤ 1/2, this is clearly a polynomial quantity (in
fact, it is proper, as can be seen from Proposition 7.0.9 and the definition of the weak Hörmander
constant HL) We know that for any S ∈ S such that |s| ≤ ρ, we have

β
F

log(S)T
t (S+ .) ≥

β
F

log(S)T
t

2
.

Also, ρS = ρ(Ll(Rd+1), F
log(S)T
t (S + .),Rn) ≥ Θ for any S with |S| ≤ ρ and for some polyno-

mial quantity Θ.
Now, by Theorem 5.2.2, we know that for any v ∈ Rn such that |v| ≤ β(S)ρS , there exists an

s ∈ S with |s| ≤ 4|v|
β(S) such that

(7.0.3) F
log(S)T
t (S + s) = T l(Γ) + v.

Therefore, we set C1 = min( ρ0

2(1+ε)M2
,

Θβ(0)

2M1
, 1/
√

2). This implies M2(dt(y)(1 + ε) +
√
t) < ρ0

and M1dt(y)(1 + ε) <
β

0
Θ

2 < β
S

Θ. By Eq. (7.0.2), this ensures that we can apply the above with
v = Yt(Γ)− T l(Γ). With

|s| ≤ 4|Yt(Γ)− T lt (Γ)|
β(S)

≤M3dt(y)l+1

for some polynomial constant M3.
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By Lemma 5.2.3, this implies that |s|Ll(Rd+1) ≤ M4dt(y)
l+1
l (for some polynomial constant

M4). Then by Lemma 5.1.2, we have that |S+s|Ll(Rd+1) ≤ 2dt(1+ε+M4). Again from (7.0.3),
this allows us to conclude that

dlt(y) ≤ (2M4 + 2)dt(y).

Noting that trivially,
√
t ≤ dt(y), we get our inequality with C2 = (2M4 + 2). Since our constant

is polynomial in β, β etc., it is polynomial in G,d, Hl.
Second inequality.
The spirit of the proof is the same, but the infinite dimensionality of path space means that we

must actually repeat and adapt the steps of the proof of our inverse functions Theorem 5.2.2. We
use the representation given in Eq. (7.0.1) from Proposition 7.0.4. The requirement Γ1 = 1 when
Γ is parametrised over [0, 1] will be achieved by making sure that the first iteration has 1Γ0

1 = 1

and all the other iterations have 0 as e(0) components of their log signatures.
First note that there clearly exists a polynomial R such that for any x′ ∈ Rm and t1 ∈ [0, t]

such that |x′ − x| ≤ R, we have HL(x′) > HL(x)
2 , which will imply that ρ(x′), β(x′), β(x′) (i.e.

the ρ, β and β relative to the model (S,Rn, F log(S)T
x′,t1

)) are controlled by polynomial quantities.
There is also a R̄, uniform over all x′ such that |x′ − x| ≤ R, such that for any y ∈ Rn such that
|y − F (x′)| ≤ R̄, we can apply Lemma 5.2.2 to obtain an s such that F log(S),T

x′,t1
(s) = y.

Let CPLR be the constant from Theorem 5.2.3, involved in the application of the implicit
functions theorem.

LetD be such that the original systemA is (g, g,D)-tense. This clearly a polynomial constant.
Let Cconstr be the constant from Lemma 7.0.11.
Let y ∈ Rn with min(t, dlx,t(y)) ≤ C1 for

C1 = min(
R

2DCconstr
,

R̄

2D(1 + ε)l+1Cconstr
, C−1

constr,
D−1+l

2C lPLR

(1 + ε)−1−lC−1−2l
constr ).

Here, K = sup|s|≤1 supN∈N |∂NF
log(S)T
x,t |, where || denotes the operator norm. This is clearly a

polynomial quantity by the assumptions on the system, and the (polynomial) form of the exponen-
tial function restricted to the truncated signature space.

Let 1S ∈ spanα 6=(0),|α|≤l(e
[α]) ⊂ Sl be such that F log(S),T

x,t (S) = y and | 1S|S ≤ (1+ε)dlt(y).
(1S exists by the finiteness of C1). By Lemma 7.0.11, there exists a path 1Γ = (1τ, 1γ) ∈ Pd+1

1
such that

logsig(1Γ) = (1, δ 1
t
,1(1S)),

where δ 1
t
,1 denotes the (linear) dilation such that δ 1

t
,1(eα) = eα

to0(α) for each α, and

| 1Γ|L2,1 ≤ Cconstr max(t, dt(y)).

Now we have, again by the usual Taylor expansion and the results of the previous section:

|F (Solx,t(
1Γ))− y| ≤ D| 1Γ|l+1

L2,1
(7.0.4)

≤ D(1 + ε)l+1C l+1
constr max(

√
t, dlt(y))l+1

|Solx,t(
1Γ)− x| ≤ D| 1Γ|L2,1

≤ DCconstr max(
√
t, dlt(y))

for some polynomial M , and where Cconstr is the constant from Proposition 7.0.12.
We define x1 = x and x2 = Solx,t(

1Γ).
Now, the second equation in (7.0.4) ensures that

|x1 − x| ≤ DC1Cconstr ≤
R

2
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and the first part ensures that |F (x1) − y| ≤ D(1 + ε)l+1CconstrC1 ≤ R̄
2 and there exists an

2S ∈ Sl such that

F
log(S),T
x1,t

(2S) = y,

and then a path 2Γ ∈ Pd+1
1 with

logsig(2Γ) = (0, δ 1
t
,1(2S)).

Continuing in this way, we define and obtain, using Lemma 5.2.3:

xn − xn−1 = Solxn−1,t(
nΓ)

logsig(nΓ) = (0, δ 1
t
,1(nS)) for n > 1

y = F
log(S),T
xn,t (nS)

| nS|Sl ≤ CPLRD
1
l (1 + ε)

l+1
l C

1+l
l

constr| n−1S|
l+1
l
S

≤ 1

2
| n−1S|S for n > 1

| nΓ|L2,1 ≤ CconstrDCPLRD
1
l (1 + ε)

l+1
l C

1+l
l

constr| n−1Γ|L2,1

≤ 1

2
| n−1Γ|L2,1 for n > 1

where at the last lines, we have used the facts that C
1
l

1 CPLRD
1
l (1 + ε)

l+1
l C

l+1
l

constr < 1
2 and

C
1
l

1 CPLRD
1
l (1 + ε)

l+1
l C

l+1
l

constrDCconstr <
1
2 .

Note that we have∑
n

|xn − xn−1| ≤ D
∑
n

| nΓ|L2,1 ≤ 2DCconstrC1 ≤ R and

|y − F (xn)| ≤ |y − F (x)| ≤ R̄,

which means we can indeed apply our implicit functions Theorem 5.2.2 at each step.
Now, we set:

Γ = ⊗∞n=1
nΓ.

We have |Γ|L2,1 ≤ 2Cconstr max(
√
t, dlt(y)) and if we reparametrise Γ so that it is parametrised

over [0, 1], we get that Solx,t(Γ) = y, and Γ0
1 = 1 this concludes the proof.

REMARK 7.0.13. In fact, it is easy to convince oneself that the constants involved in the
proof of the first inequality can be made proper at the cost of assuming that the original system
is (g, g,G)-tense. The constants in the second inequality are only polynomial because of the
construction in the proof of Proposition 7.0.11.

�

COROLLARY 7.0.14. Fix l ≥ L. Let A = (x, σ, F ) be a (g, g,G)-tense, (L,HL)-weak
Hörmander system. Suppose g ≥ l + 3. There exist proper constants D, D̄,K and a polynomial
constant K̄ such that for any t ≤ D and any y such that |∗x− y| ≤ D̄, we have:

|dlt(x, y)| ≤ K| ∗ x̄t − y|
1
l and

|dt(x, y)| ≤ K̄(| ∗ x̄t − y|
1
l +
√
t).

PROOF. This is a consequence of Theorems 7.0.1 and 5.2.2. Indeed, the inverse operator norm
of the Jacobian of F log(S),T is a proper constant (uniformly in t), we also know from the Taylor
series expansion of the exponential function on L(Rd+1) and the algebraic structure (similarly to
Proposition 7.0.9)that the derivatives in any direction are bounded by a proper constant:
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For v ∈ Ll(Rd,R) and x ∈ Ll(Rd,R) with |x| ≤ 1, we have

∂F log(S),T

∂v
(x) = JFST

∂ exp(x)

∂v
(x).

We will show that the RHS is bounded by a proper constant for |x|, |v| ≤ 1. By abuse of
notation, we will write x for (t, x) and x(0) = t. This means that in articular we are assuming that
t ≤ 1, which is not a problem as 1 is a proper constant. It suffices to prove this for v ∈ HL our
basis of Ll(Rd,R). Since any b ∈ HL can be expressed in T l(Rd+1) as a linear combination of
elements of the form eα with the number of terms being less than a proper constant, it is enough to
show the bound where the exponential function is replaced by its formal extension (via the Taylor
series) on the whole of T l(Rd+1), and for v = eα for some α ∈ Multi({0, 1, . . . , d}). Since
JFST is bounded by proper constants, it is enough to bound ∂ exp(x)

∂v (x)
We now have the following calculation (from the series expansion of the exponential):

∂ exp

∂eα
(x)

=

l∑
n=1

1

n!
PrT l(Rd,R)

 n∑
i=1

∑
β1,...,βi−1,βi+1,...,βn
∈Multi({0,1,...,d})

Πi−1
j=1x

βjΠn
j=i+1x

βje(β1,...,βi−1,α,βi+1,...,βn)

 .

For multi-indices α, γ and for any natural number n, let K(n, α, γ) be the set of (n − 1)-
tuples of natural numbers that can be written (κ1, . . . , κi−1, κi+1, . . . κn) in such a way that if we
set κi = #(α), then

∑n
j=1 κj = #(γ) and

(γ∑i−1
j=1 κj+1, γ

∑i−1
j=1 κj+2, . . . , γ

∑i−1
j=1 κj+#(α)) = α

The maximal cardinality of K(n, α, γ) when |α|, |γ| ≤ L is a combinatorial function of L
only, which we write KL.

Write also β(κ, γ, j) for the multi-index composed of the components of γ with positions∑j−1
k=1 κk + 1, . . . ,

∑j
k=1 κk. We have e(β(κ,γ,1),...,β(κ,γ,n)) = eγ .

Now, we have, for any γ,

〈∂ exp(x)

∂eα
(x), eγ〉

=
∑

κ∈K(n,α,γ)

(Πj 6=i(κ)x
β(κ,γ,j)).

Finally, we have

|∂ exp(x)

∂eα
(x)|2

=
∑
γ

(
∑

κ∈K(n,α,γ)

(Πj 6=i(κ)x
β(κ,γ,j)))2

≤ K2
L

∑
γ

∑
κ∈K(n,α,γ)

(Πj 6=ix
β(κ,γ,j))2

≤ K2
LL

L∑
n=1

∑
∑n−1
j=1 kj+#(α)≤L

Πn−1
j=1 (

∑
#(β)=kj

(xβ)2)

≤ LK4
L|x|2 ≤ LK4

L

where at the last lines, we have used the fact that∑
#(β)=kj

(xβ)2 ≤ |x|2 ≤ 1.
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It follows that the model (0,PrLl(Rd,R)(vf ), F log(S),T ) (where vf denote the vector fields defined

by v(α,i)
f (x) = xα) satisfies the standard boundedness and degeneracy assumptions with proper

constants. We can therefore use Theorem 5.2.2 to deduce that there exist proper constants D̄ and
A such that for any y such that |∗x − y| ≤ D̄, there exists an element s ∈ Ll(Rd,R) such that
F log(S),T (s) = y and |s| ≤ A|∗x− y|. Since |s|Ll(Rd,R) ≤ |s|

1
l , we immediately deduce the first

inequality.
The second inequality now follows from Theorem 7.0.1 (the constant D is comes from the

application of that theorem). �

There is an alternative way of constructing a continuously defined version of dlt:

DEFINITION. We define the dt,l,∞ distance as follows:

dt,l,∞(y) = inf(| logsig(Γ)|Ll(Rd,R)|Yt(Γ) = y).

We note the following important consequence of the above corollary:

PROPOSITION 7.0.15. LetA = (x, σ, F ) be a uniformly (L′, g,G)-tense, uniformly (L,HL)-
weak Hörmander system. Fix l ≥ L and suppose that L′ ≥ l + 2, g ≥ l + 3. There exists a
polynomial constant C and a proper constant M such that we have, for any y ∈ Rn:

dt(x, y) ≤ C(|∗x− y|+ 1)

d∞t (x, y) ≤M(|∗x− y|+ 1).

PROOF. Let N = d|∗x − y|Ke, where K is the constant from Corollary 7.0.14. Then for
i = 0, 1, 2, . . . , N , define yi = ∗x + i|∗x−y|

N . By Corollary 7.0.14, we can iteratively construct
xi such that dt(xi, yi+1) ≤ C|xi, xi+1|

1
L ≤ C for some polynomial constant C. Then we have

dt(x, y) ≤ CN ≤ C(|∗x − y| + 1). The second inequality is proved similarly. (The only
real source of non-proper dependence in the first inequality comes from the construction of a
control with given log signature(and the calculation of its homogeneous length), which is no longer
required when defining the distance directly in terms of homogeneous norms in the log signature
space.) �

We finish with the following doubling condition:

PROPOSITION 7.0.16. Let A = (x, σ, F ), F linear, be a uniformly (L, g,G)-mixed tense,
uniformly (L,HL) weak Hörmander system with g ≥ L+ 3. There exist constants D and M such
that for any t ≤ D any r > 0 and any x̄ ∈ Rm,

|Bdt(x, 2r)| ≤M |Bdt(x, r)|.

PROOF. This follows from, Theorem 7.0.1, and Propositions 5.1.11, 5.2.8, and 7.0.15. �

Using a similar method of proof to Theorem 7.0.1, and using Proposition 7.1.6, we can show
the following:

THEOREM 7.0.2. LetA = (x, σ, F ) be an (L′, g,G)- tense, (L,Hl)-weak Hörmander system.
Fix l ≥ L. Suppose L′ ≥ l + 2, g ≥ l + 3. There exist proper constants C1, C2 and C3 such that
∀y ∈ Rn s.t. max(dt(y),

√
t) < C1, we have

dt,∞,l(y) ≤ C2d
l
t(y)

and ∀y ∈ Rn s.t. max(dlt(y),
√
t) < C1

dt,∞,l(y) ≤ C3(d∞t (y))

Because all the dlt for L ≤ l ≤ L2 are properly equivalent (for fixed L2, this follows from our
inverse functions Theorem 5.2.2), and the only choices for l that we are interested in are l = L
and l = (2n+ 2)224L, we can pick l = L and write dt,∞ for dt,∞,l.
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7.1. Systems satisfying the Progressive Hörmander condition

DEFINITION. The system A = (x, F, σ) satisfies the Progressive Hörmander condition (at
x) with constants (L,HL) if for any unit u ∈ LL(Rd,R) and for any unit v ∈ Rn, there exist
λα,β ∈ R and λv,β such that ∑

|β|≤|α|
β 6=[0]

λα,β ∗ σ[β] = ∗σu and

∑
|β|≤L
β 6=[0]

λv,β ∗ σ[β] = v

and for any unit u ∈ LL(Rd,R) and for any unit v ∈ Rn∑
|β|≤|α|

λ2
v,β ≤ HL and

∑
|α|≤L

(
∑
|β|≤L

λα,βuβ)2 ≤ H−1
L

REMARK 7.1.1. Note that by Proposition 7.0.9, the requirement∑
|α|≤L

(
∑
|β|≤L

λα,βuβ)2 ≤ H−1
L

is, up to a proper constant, equivalent to requiring that∑
|α|≤L
β∈H

〈λα, . , u〉2 ≤ H−1
L ,

where H denotes the basis of S defined in Proposition 7.0.9.

REMARK 7.1.2. Up to a strongly polynomial constant, this definition is equivalent to the
following:

• The Hörmander condition holds with constant H , and
• for any multi-index α containing non zero indices and with |α| ≤ L there exist real

numbers λα,β such that∑
|β|≤|α|
β 6=[0]

λα,β∗σ[β] = ∗σα and
∑
β

(λα,β)2 ≤ H−1

REMARK 7.1.3. Proposition 3.5.1 shows that the progressive Hörmander condition implies
the Hörmander condition.

For the whole of this section, we will use the following notation:

x̄t = x+
∑

α∈Multi({0})
|α|≤L

σα(x)
t|α|/2

(|α|/2)!
.

The following ‘log-homogeneous distance’ can be defined for any system, but is meaningful
(i.e. equivalent to the some control distance) only under the progressive Hörmander condition.

DEFINITION 7.1.4. Let A = (x, F, σ) be a system, the log-homogeneous distance d( ., .) :
Rm ⊗ Rn → R is defined by

dt,log(x, y) = inf(

√√√√∑
i≤L

(
∑
β∈H

β 6=[0];|β|=i

λ2
β)

1
i :
∑
β∈LL

λβσ
β = y − x̄t).
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REMARK 7.1.5. By Proposition 7.0.9, the above is equivalent, up to a proper constant, to the
following definition:

dt,log,⊥(x, y) = inf(

√∑
i≤L

(PrUi(λ))
1
i :
∑
β∈LL

λβσ
[[β]] = y − x̄t),

where Ui = span|α|=1;α 6=(0) e
α. Here LL is the set of Lyndon words2 of order less than L, and for

a Lyndon word α, [[α]] denotes the standard bracketing of α.

7.1.1. The compensated signature. LetA = (x, σ, F ) be a (L,HL)-progressive Hörmander
system. Let

FSRr : TL(Rd,R)→ (Rn)⊗L, s 7→ ⊗Li=1(
∑
|α|=i
α6=(0)

σαsα)

For each α ∈ TL(Rd+1) with |α| ≤ L and α 6= (0), pick λα, . ∈ S such that

〈λα, . , (∗σ)
. 〉 = ∗σα,

Prspan|β|≥|α|+1 e
[β](λα, . ) = 0 and

PrKer(FSRr )(λα, . ) = 0.

Here λα, . is the Moore-Penrose pseudo-inverse of ∗σα by the map

FSRr : TL(Rd,R)→ (Rn)⊗L, s 7→
∑
|β|≤|α|
β 6=(0)

σβsβ.

We can then extend linearly to obtain a function

Ψ : TL(Rd+1)/ span(e(0))→ S/Ker(FSRr),

(where S/Ker(FSRr) denotes the orthogonal complement of /Ker(FSRr) in S) such that, writ-
ing H for the orthonormal basis of S from Proposition 7.0.9, for any s ∈ TL(Rd,R)/ span(e(0)),
we have ∑

h∈H
Ψh(s)σh =

∑
|α|≤L

σαsα

|Ψ(s)|2 ≤ H−1
L |s|

2 and∀i ≤ L

s ∈ span |α|≤i
α 6=(0)

eα =⇒ Ψ(s) ∈ span |α|≤i
α6=(0)

e[α].

We now define the following function:

Ψ1 : TL(Rd,R)/ span(e(0))→ S/Ker(FSRr), s 7→ PrS/Ker(FSRr )(s) + Ψ(s− PrS(s))

Note that Ψ1 and Ψ depend on the initial point x and on the tensor σ . .
Now, by the progressive Hörmander condition, we can also define the following function:

Ψ2 : Rn → S/Ker(FSRr), v 7→ Ψ2(v),

such that ∑
h∈H

Ψh
2(v)σh = y − x̄t,

and Ψ2 is bounded in operator norm by HL.
Writing S for the lth order signature, we can now define the lth order (finite order) compen-

sated signature Rl by

S̃ := PrTL(Rd+1)/ span(e(0))(S)

Rl := Ψ1(S̃) + Ψ2(FST (S − S̃)− x̄t),

2For an excellent explanation of the relevance of this concept to log-signatures, see [51]



7.1. SYSTEMS SATISFYING THE PROGRESSIVE HÖRMANDER CONDITION 88

and the compensated signature R∞ by

R∞ := Φ1(S̃) + Ψ2(Xt − FST (S̃)).(7.1.1)

We write F for the reduced signature space spanα6=(0)
|α|≤L

e[α]/Ker(FSRr), and FRT for the

restriction of FST to F .
Since the quantity R∞ only depends on X and log(S), we can define the function

F log(S)X,R∞ : (log(S), X)→ R∞

as the function giving the reduced signature as a function of the log signature and the solution
process evaluated at time t. We can define FS,X,R∞ : (S,X)→ R∞ similarly.

The above definitions of R∞ and Rl ensure that

FRT (R∞) = Yt.

and

FRT (Rl) = Ȳt = x̄t +
∑
|α|≤l

σασα.

7.1.2. A continuously defined version of the log homogeneous distance. In this section,
we assume that the progressive Hörmander condition holds uniformly.

We begin with a few notational simplifications.
We write, throughout this Part of the manuscript, B = ∪i,k{hik} for the orthornormal basis of

Ll(Rd,R) that we have defined in Proposition 7.0.9, and H for B \ {e(1)}.
In this section we will write a1, a2, ∆1, ∆2... for elements ofLl(Rd,R). Then∆ = (∆1, ...∆o)

is a vector in (Ll(Rd,R))⊗
o
.

We write |a| = i if a = hij , || is the homogeneous degree. We will also write |∆| =∑o
i=1 |∆o|.

PROPOSITION 7.1.6. Let U = ⊕Ii=1Ui, where Ui = Rνi be a graded space and let us define
ν =

∑I
i=1 νi.

Suppose we are given the natural orthonormal basis B = {b1, b2 . . . , bν} of U such that
{b1, b2, . . . , bν1} is an orthonormal basis of U1, etc. Furthermore, for any smooth path γ ∈ PU[0,1],
we define the following homogeneous energy:

|γL2,U | = (

I∑
i=1

(

∫ 1

0
|∂γ

Ui
t

∂t
|2)

1
i )

1
2 .

Write Multi(B) for the set of multi-indices on B. For a multi index ∆ = (∆1,∆2, . . . ,∆o) ∈
Multi(B), we define the homogeneous degree |∆| =

∑o
k=1 |∆k| where by definition |∆k| = i for

∆k ∈ Ui. Write Multi(B, l) for the set of multi-indices in Multi(B) of homogeneous degree less
than l.

Let A : [0, 1]o ⊗Multi(B, l)→ Rm, (t, u) 7→ A∆
t be a smooth process. Suppose also that

G := max

 sup
t̃∈[0,1]o

sup
|v|=1
v∈Rm

∑
∆∈Multi(B,l)

〈A∆
t̃
, v〉2Rm , 1

 <∞.

As usual, for any process B ∈ U parametrised over [0, 1]o and any ∆ ∈ Multio(B), we define the
iterated integrals

∫ ∆
B(dγ)∆ iteratively by

(

∫ b

B(dγ)b)t2,...,to =

∫ 1

0
Bt1,...,todγ

b
t1∫ (∆,b)

(dγ)(∆,b) =

∫ 1

0
(

∫ ∆

(dγ)∆)todγ
b
to .
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(dγ)(∆,b) =

∫ t

0
(

∫ ∆

(dγ)∆)todγ
b
to .

Then there exists a constant C, dependent only on I ,l, but not on the νi’s or m, such that∣∣∣∣∣∣∣
∑

∆∈Multi(B)
|∆|=l

∫ ∆

A∆(dγ)∆

∣∣∣∣∣∣∣
Rm

≤ CG|γ|lL2,U

(explicitly, C = I
l
2 ).

PROOF. For any ∆ ∈ Multi(B), we define r(∆) ∈ Multi({1, 2, . . . , I}) to be the multi-index
in Multi({1, 2, . . . , I}) obtained by replacing each index ∆k of ∆ by |∆k|. Fix i1 ∈ {1, 2, . . . , I}
and v ∈ Ui1 and δ ∈ Multi({1, 2, . . . , I}, l).

Claim: If E∆ is a process in Rm defined for each ∆, parametrised over [0, 1], and such that
r(∆) = δ and

sup
t̃∈[0,1]|δ|

∑
r(∆)=δ

〈E∆
t̃
, v〉2 ≤ K

for some K ≥ 1, for any δ of length less than o,∣∣∣∣∣ ∑
r(∆)=δ

∫ ∆

〈E∆, v〉(dγ)∆

∣∣∣∣∣ ≤ K|γ||∆|L2,U

(here 〈 ., .〉 denotes the Euclidean inner product).
Proof of claim: We proceed by induction over the length o of δ = (δ1, . . . , δo) (not the order).
For o = 1 we have, by Cauchy-Schwarz,∣∣∣∣∣ ∑

∆∈B∩Uδ

∫ 1

0
〈E∆

t , v〉dγ∆
t

∣∣∣∣∣ ≤
( ∑

∆∈B∩Uδ

∫ 1

0
〈E∆

t , v〉2dt

) 1
2
(∫ 1

0

∑
∆∈B∩Uδ

|∂γ
∆
t

∂t
|2dt

) 1
2

=

( ∑
r(∆)=δ

∫ 1

0
〈E∆

t , v〉2dt

) 1
2
(∫ 1

0
|∂γ

Uδ
t

∂t
|2dt

) 1
2

≤

( ∑
r(∆)=δ

∫ 1

0
〈E∆

t , v〉2dt

) 1
2

|γ||∆|
L2,U

=

( ∑
r(∆)=δ

∫ 1

0
〈E∆

t , v〉2dt

) 1
2

|γ||δ|
L2,U

≤
√
K|γ||δ|

L2,U
≤ K|γ||δ|

L2,U
.

Now for the induction step, suppose that consider the multi-indices ∆ = (∆1,∆2, . . . ,∆o) =
(∆̄,∆o) in Multi(B, l) such that r(∆) = δ.

We have:∣∣∣∣∣∣
∑

r(∆)=δ

∫ ∆

〈E∆, v〉(dγ)∆

∣∣∣∣∣∣
=

∑
∆o∈B∩Uδo

∫ 1

0

∑
r(∆̄)=δ̄

∫ ∆̄,to

〈E∆̄,∆o

t̃
, v〉(dγ)∆̄dγ∆o

to

≤
∑

∆o∈B∩Uδo

(∫ 1

0

( ∑
r(∆̄)=δ̄

∫ ∆̄,to

〈E∆̄,∆o

t̃
, v〉(dγ)∆̄

)2

dto

) 1
2
(∫ 1

0
|∂γ

Uδo
t

∂t
|2dt

) 1
2
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(by Cauchy-Schwarz)

≤
∑

∆o∈B∩Uδo

 sup
to∈[0,1]

∣∣∣∣∣ ∑
r(∆̄)=δ̄

∫ ∆̄,to

〈E∆̄,∆o

t̃
, v〉(dγ)∆̄

∣∣∣∣∣|γ||∆o|
L2,U


= |γ||δo|

L2,U

∑
∆o∈B∩Uδo

 sup
to∈[0,1]

∣∣∣∣∣ ∑
r(∆̄)=δ̄

∫ ∆̄,to

〈E∆̄,∆o

t̃
, v〉(dγ)∆̄

∣∣∣∣∣
 |γ||δo|

L2,U

≤ |γ||δo|
L2,U

∑
∆o∈B∩Uδo

|γ||δ̄|
L2,U

max

( ∑
r(∆̄)=δ̄

sup
t̃∈[0,1]o

〈E∆̄,∆o

t̃
, v〉2, 1

)
(by the induction hypothesis)

≤ |γ||δo|
L2,U
|γ||δ̄|

L2,U
max

( ∑
r(∆)=δ

sup
t̃∈[0,1]o

〈E∆
t̃
, v〉2dt, 1

)
≤ K|γ||δ|

L2,U
,

as expected. This proves the claim.
Proof of the theorem:
We have immediately:∣∣∣∣∣ ∑

∆∈Multi(B)
|∆|=l

∫ ∆

A∆(dγ)∆

∣∣∣∣∣
2

Rm
=

∣∣∣∣∣ ∑
|∆|=l

∫ ∆

A∆(dγ)∆

∣∣∣∣∣
2

≤
∑
|δ|=l

∣∣∣∣∣ ∑
r(∆)=δ

∫ ∆

A∆(dγ)∆

∣∣∣∣∣
2

≤
∑
|δ|=l

|γ|2|δ|
L2,U

( sup
t̃∈[0,1]o,|δ|=l
v∈Rm,|v|=1

∑
r(∆)=δ

〈A∆
t , v〉2)2

≤
∑
|δ|=l

|γ|2lL2,UG
2 = I l|γ|2lL2,UG

2.

This is the required inequality with C = I l/2. �

We define the following continuous global version of the log homogeneous distance:

DEFINITION. Let Px,y be the set of smooth paths

θ : [0, 1]→ Ll(Rd+1), t 7→ θt,

such that the solution xt ∈ Rn of the following ODE:

x0 = x,(7.1.2)

dxt =
∑
a∈B

(∗σ)a(xt)
∂θat
∂t

dt

=
∑
a∈B
∗σa(xt)

∂θat
∂t

dt,

satisfies F (x1) = y.
Since Ll(Rd,R) is a Euclidean space with a homogeneity structure, we can define, as in

Lemma 7.1.6, the homogeneous energy of θ:

|θ|2L2,Ll(Rd,R) =
L∑
i=1

(

∫ 1

0
|∂θ

Ui
t

∂t
|2dt)

1
i

where Ui = spank h
i
k = span|α|=i σ

[α].
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We also write P [0]=ts
x,y for the set of paths θ ∈ Px,y such that

θ[0]
s = ts ∀ 0 ≤ s ≤ 1.

Then the continuously defined log-homogeneous distance dt,log,∞ is:

dt,log,∞(x, y) = inf
θ∈P [0]=ts

x,y

(|θ|L2,Ll(Rd+1)),

where as usual ||Ll(Rd+1) denotes the homogeneous norm on the space Ll(Rd+1).

REMARK 7.1.7. If the system Ā = (x, σ, Id) also satisfies the progressive weak Hörmander
condition, then

dt,log,∞(x, y) = inf
z∈Rm,F (z)=y

(dt,log,∞(x, z)).

We note the following trivial properties of dt, similar to Propositions 7.0.6 and 7.0.7:

PROPOSITION 7.1.8. Let A = (x, σ, F ) be a uniformly (L, g,G)-tense, uniformly (L,HL)
weak progressive Hörmander system, for any 0 = s0 ≤ s1 ≤ s2 ≤ . . . ≤ sN = t and any
x1, x2, . . . , xN , we have

dt,log,∞(x, ∗xN ) ≤
N∑
i=0

dsi+1−si,log,∞(xi, ∗xi+1).

PROPOSITION 7.1.9. Let A = (x, σ, F ) be a uniformly (L, g,G)-tense, uniformly (L,HL)
weak progressive Hörmander system, we have, for any x ∈ Rm, y ∈ Rn and any t,

dt,log,∞(x, y) ≥ |∗x− y|G−
1
2 (1− t).

And the next important consequence:

PROPOSITION 7.1.10. Let A = (x, σ, F ) be a uniformly (L, g,G)-tense, uniformly (L,HL)-
weak progressive Hörmander system, there exists a proper constant C such that we have, for any
y ∈ Rn:

dt(x, y) ≤ C(|∗x− y|+ 1).

PROOF. The proof is the same as the proof of Proposition 7.0.15 except that the constant is
proper because the constant from Proposition 7.1.1 is proper. �

The following intuitive definition gives the idea of the detailed-Progressive Hörmander condi-
tion. The precise definition will come in 7.1.2.

DEFINITION (Intuitive definition). We say that the systemA = (x, σ, F ) satisfies the detailed-
Progressive Hörmander condition, with constants (L,H) is for any vector v obtained as the image
by F of a composition of the vector fields σ with any order of differentiation and no more than k
terms can be expressed as

v =
∑
|α|≤k

λ[α]σ
[α] with

∑
|α|≤k
α 6=(0)

λ2
[α] ≤ H

−1.

REMARK 7.1.11. This is slightly stronger than the Progressive Hörmander condition, but rea-
sonable examples that satisfy the Progressive Hörmander condition will also satisfy the detailed-
Progressive Hörmander condition.

For the detailed-Progressive Hörmander condition, we must also include elements such as

v = (σ1σ2)(σ3) =
∂σ3

∂ ∂σ
2

∂σ1

=
∑
i,j

σ1
i

∂σ2
j

∂xi

∂σ3

∂xj
and
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w =
∂2σ3

∂σ2∂σ1
=
∑
i,j

σ1
i σ

2
j

∂2σ3

∂xi∂xj
,

not just elements of the form

V = σ(1,2,3) = σ1(σ2(σ3)) =
∂ ∂σ

3

∂σ2

∂σ1
=
∑
i,j

σ1
i

∂σ2
j

∂xi

∂σ3

∂xj
+ σ1

i σ
2
j

∂2σ3

∂xi∂xj

= σ1
i σ

2
j

∂2σ3

∂xi∂xj
+

∂2σ3

∂σ2∂σ1
= v + w.

The natural indexing set over which to consider such derivatives is the set of rooted trees, as
has been described before in slightly different contexts (cf. [48, 24, 14] etc.)

Let T (Rm ⊗ {0, . . . , d}, k) be the set of rooted trees with less than k vertices in Rm ⊗
{0, 1, . . . , d} (possibly repeated), there is a natural way of associating a mixed multiple deriva-
tive of order less than k to each element α ∈ T (Rm ⊗ {0, . . . , d}, k). For instance, v and w
from above correspond to the figures A and B below (respectively), and the following is what
corresponds to the tree from figure C:

∂2σ1(x)

∂σ3(z)∂ ∂σ
2(y)

∂σ4(u)

=
∑
i,j

∂σ1

∂xi∂xj
(x)σ3

i (z)
∑
k

∂σ2
j

∂xk
(y)σ4

k(u).

For instance, v = (σ1σ2)(σ3) = ∂σ3

∂ ∂σ
2

∂σ1

=
∑

i,j σ
1
i

∂σ2
j

∂xi
∂σ3

∂xj
corresponds to the following:

(x, 1) (x, 2) (x, 3)

w = ∂2σ3

∂σ2∂σ1 =
∑

i,j σ
1
i σ

2
j
∂2σ3

∂xi∂xj
corresponds to the following:

(x, 1)

(x, 2)

(x, 3)

And this formula corresponds to the picture below it:

∂2σ1(x)

∂σ3(z)∂ ∂σ
2(y)

∂σ4(u)

=
∑
i,j

∂σ1

∂xi∂xj
(x)σ3

i (z)
∑
k

∂σ2
j

∂xk
(y)σ4

k(u)

(u, 4) (y, 2)

(x, 1)

(z, 3)

For any multi-index α = (α1, α2, . . . , α#(α)) ∈ Multi(Rm ⊗ {0, 1, . . . , d}), we define T (α)
to be the set of rooted trees whose vertices are the indices in α, and such that for any i, j with
i ≤ j, αj is not a leaf of αi.
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It is easy to convince oneself that

σα =
∑

τ∈T (α)

στ .

Since the cardinality of T (α) is a proper constant, we see that the detailed-Progressive Hörmander
condition implies the progressive Hörmander condition with the same constant up to a properly
constant multiplicative factor.

It is possible to define analogously quantities such as στ for τ ∈ T (∆) for ∆ ∈ Multi(Rm ⊗
Ll(Rd,R)).

DEFINITION 7.1.12. The mixed tension G, defined when F is linear, of order (L, g) and
localisation parameter r of the system A = (x, σ, F ) (F is assumed to be linear as usual in this
part of the thesis) is defined as

G = sup
x∈Rm

sup
o≤g

sup
v∈Rm
|v|=1

sup
w∈(Rm)⊗o
∀i,|wi|=1

∑
α∈Multi(BEucl(x,r)⊗{0,1,...,d});

|α|≤L

∑
τ∈T (α)

〈 ∂
oστ

Π∂wi
, v〉2 + |F |.

DEFINITION. Let EL be the free vector space over rooted trees of order less than L and L be
the set of Lyndon words of order less than L. We say that the system A = (x, σ, F ) is (HL, L)-
detailed weak progressive Hörmander if it is (L,HL)-progressive Hörmander and, in addition,
there exists a function Ψ : EL → S such that for any τ ∈ EL and any u ∈ S,

∗στ (x) =
∑
|β|≤|α|

β 6=(0),β∈LL

∗σΨ[[β]](τ)(x) and

∑
|β|≤|α|

β 6=(0),β∈LL

〈Ψ[[β]], u〉2 ≤ H−1
L ,

and for any |β| ≤ L, Ψ(e[[β]]) = e[[β]]. By Proposition 7.0.9, this definition is equivalent, up to a
proper constant, to the definition obtained by replacing e[β] with b ∈ LL by eb with b ∈ H .

REMARK 7.1.13. Up to a strongly polynomial constant, this definition is equivalent to the
following:

• The Hörmander condition holds with constant H , and
• for any rooted tree τ containing non zero indices and with |τ | ≤ L there exist real

numbers λτ,β such that∑
|β|≤|τ |
β 6=[0]

λτ,β∗σ[β] = ∗στ and
∑
β

(λτ,β)2 ≤ H−1

DEFINITION. We say that the vector fields σ0, σ1, . . . , σd 3 on Rm are (L,HL)-uniformly
progressively finitely generated (UPFG)4 in the set U ∈ Rm if there exists a function Ψ : EL → S
such that for any τ ∈ EL and any u ∈ S,

στ (x) =
∑
|β|≤|α|

β 6=(0),β∈LL

σΨ[β](τ)(x) and

∑
|β|≤|α|

β 6=(0),β∈LL

〈Ψ[β], u〉2 ≤ H−1
L

and for any |β| ≤ L, Ψ(e[β]) = e[β].

3The definition depends on which vector field is called ‘v0’
4The non progressive equivalent of this condition, namely the ”Uniformly Finitely Generated” (UFG) condition is

the standard condition to use when proving gradient bounds. See [35]
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THEOREM 7.1.1. Let A = (x, σ, F ) (with F linear), be a (r, 2L, g,G)-mixed tense, (HL, L)-
detailed weak progressive Hörmander system. Suppose that g ≥ L + 1. There exists a proper
constant C (i.e. depending only on G, H ,g,L,n and not on m, d, polynomial in G, H) such that
for all x ∈ Rm, y ∈ Rn and t ≤ 1 such that

dt,log,∞(x, y), dt,log(x, y) ≤ 1/2,

we have:

max(dt,log(x, y),
√
t) ≤ Cdt,log,∞(x, y).(7.1.3)

Furthermore, if the σ’s are (L,HL)-uniformly detailed-Progressively finitely generated on
a ball of radius r around x, then there are proper constants C2, C3 (i.e. depending only on G,
H ,g,L,n,r, and not on m,d, polynomial in G, H) such that for all y ∈ Rm such that

dt,log,∞(x, y), dt,log(x, y) ≤ C3,

we have

dA,t,log,∞(x, y) ≤ C2 max(dĀ,t,log(x, y),
√
t).(7.1.4)

In particular, for all x ∈ Rm, y ∈ Rn, (with dA,t,log,∞(x, y), dA,t,log(x, y) ≤ C3),

dt,log,∞(x, y) ≤ C2 max(dt,log(x, y),
√
t).

PROOF. Proof of inequality (7.1.4):
Note first that we have the following expansion where ∆ is a multi-index with indices in B:

y = ∗x+
∑
|∆|≤L

∆=(∆1,∆2,...,∆o)

∗σ∆
∫ 1

0

∫ to−1

0
...

∫ t2

0

∫ t1

0
dθ∆1
t1
dθ∆2
t2
. . . dθ∆oto

+
∑
∆∈ε

∫ 1

0

∫ to−1

0
...

∫ t2

0

∫ t1

0
∗σ∆(xto)dθ

∆1
t1
dθ∆2
t2
. . . dθ∆oto

for some set ε such that ∆ ∈ ε =⇒ L+ 1 ≤ |∆| ≤ 2L.
Using the progressive Hörmander condition, some simplifying notation, and projecting on the

space Ui = span |α|=i
α/∈Multi({0})

e[α], we see that if we define the following µ ∈ S:

µUi = θUi1 +
∑
|∆|≤L

∆=(∆1,∆2,...,∆o),o≥2

ΨUi
x0

(∆)

∫ ∆

(dθ)∆

+ ΨUi
x0,L

(
∑
∆∈ε

∫ ∆

∗σ∆(x . )(dθ)∆),

we will certainly have that:

y = ∗x+
∑
β∈LL
|β|≤L

µ[β] ∗ σ[β]
x +

∑
α∈Multi({0})
#(α)≤bL2 c

σαx
t#(α)

(#(α))!
.

Now, Proposition 7.1.6 applied to
∑

∆∈ε
∫ ∆ ∗σ∆(x . )(dθ)∆ ensures that

|
∑
∆∈ε

∫ ∆

∗σ∆(x . )(dθ)∆| ≤ CF(L)G|θ|L+1
L2,S ,

for some proper constant C, and a combinatorial function F(L). Then note that Lemma 3.5.1 and
the assumption on the tension guarantee that there exists a function Ψx0,L : Rn → S such that for
any unit u ∈ S and v ∈ Rn, 〈Ψ(v), u〉2 ≤ H−1

L G. Therefore the above implies further that

|ΨUi
x0,L

(
∑
∆∈ε

∫ ∆

∗σ∆(x . )(dθ)∆)| ≤ (CG2F(L)H−1
L )1/2|θ|L+1

L2,S .(7.1.5)
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Proposition 7.1.6, applied to ∑
|∆|≤L

∆=(∆1,∆2,...,∆o),o≥2

ΨUi
x0

(∆)

∫ ∆

(dθ)∆,

together with the progressive Hörmander condition, ensures that∣∣∣∣∣ ∑
|∆|≤L

∆=(∆1,∆2,...,∆o),o≥2

ΨUi
x0

(∆)

∫ ∆

(dθ)∆

∣∣∣∣∣
2

≤ C|θ|iL2,S ,(7.1.6)

for some proper constant C. Here we have identified ∆ with the element of E2L obtained by
decomposing ∆ into rooted trees. As usual, by the symmetry of the scalar product in the tensor
space with respect to relabelling of the indices (cf. Proposition 7.0.9), the decomposition of ∆
contains a proper number of terms in E2L each multiplied by proper constants, and conversely
each term appears only in the decomposition of a proper number of compound multi-indices ∆.

Combining Eqs. (7.1.5) and (7.1.6) yields that

|µ|S =

( L∑
i=1

|µUi |
2
i

) 1
2

≤ (
L∑
i=1

()C|θ|iL2,LL(Rd,R))
2
i )

1
2

≤
√
LC|θ|L2,LL(Rd,R)

for some proper constant C.

Proof of inequality (7.1.3):
We will write, as above, H for our basis of LL(Rd,R) defined in Proposition 7.0.9. We

can define a function Ψ̄x0,L : Rn → S such that for any v ∈ Rn, FST (t, Ψ̄x0,L(v)) = v and
|Ψ̄x0,L(v)|2S = inf(|u|2S : FST (t, u) = v).

Then we set

µ1 = Ψ̄x0,L(y − F (x̄t)) +

bL
2
c∑

i=1

e⊗
i(0) t

i

i!
,

µs = δs(µ1) ∀s ≤ 1,

xs = FSTĀ (µs) ∀s ≤ 1,

where δt is the homogeneous dilation on LL(Rd,R) and Ā = (x, σ, Id).
Set C3 small enough that |x − xs| ≤ r

2 for any s ∈ [0, 1]. This can clearly be done whilst
keeping C3 a proper constant.

Note that, since µUis = s
i
2µUi1 , writing U = S̄ = LL(Rd,R)⊗ (spani≤bL

2
c e
⊗i(0)), we have

|µ|2L2,S̄ =
L∑
i=1

(

∫ 1

0
|∂µ

Ui
s

∂s
|2ds)

1
i

=
L∑
i=1

(|µUi1 |
2

∫ 1

0

i

2
s
i−2

2 dt)
1
i

=

L∑
i=1

(|µUi1 |
2)

1
i = |µ1|2U .
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Now, for any 0 ≤ s ≤ 1, we have the following Taylor expansion for σ0:

σa1
0 = σa1

s +
∑
a2

∫ 0

s
σ((a2,0),(a1,v))dµa2

v

= σa1
s +

∑
a2

σ((a2,s),(a1,s))

∫ 0

s
dµa2

v +
∑
a3,a2

∫ 0

s

∫ v

s

∂2σ(a1,u)

∂σ(a2,s)∂σ(a3,0)
dµa3

u dµ
a2
v

+
∑
a3,a2

∫ 0

1

∫ s

1

∂σ(a1,v)

∂ ∂σ
(a2,u)

∂σ(a3,0)

dµa3
u dµ

a2
v

= . . .

=
∑

∆=((∆1,s),...,(∆o,s))∈Multi(H⊗{s})
∆o=a1;|∆|≤L

σ∆

∫ ∆̄

t1,...,to−1∈[0,s]#(∆̄)

ξt1,...,to−1dµ
∆̄
t1,...,to−1

+

∫ ∆̄

[s,0]#(∆̄)

∑
∆=((∆1,t1),...,(∆o,to))∈Multi(H⊗[0,s])

∆o=a1;t1=0;∆∈ε⊗[0,s]#(∆)

∑
τ∈T (∆)

στφt1,...,to−1dµ
∆̄
t1,...,to−1

for some φt2,...,to , ξt2,...,to taking values in {−1, 0, 1}. Here ∆̄ means the multi-index obtained by
deleting the last index of ∆.

This motivates the following choice of θ:

θa1
s =

∑
∆∈Multi(H)
|∆|≤L

Ψa1
xs(∆)

∫ ∆

t1,...,to∈[0,s]#(∆)

ξ̃t1,...,todµ
∆
t1,...,to

+ Ψa1
xs,L

(

∫ ∆

[0,s]#(∆)

∑
∆=((∆1,t1),...,(∆o,to))∈Multi(B⊗[0,t])

t1=0;∆∈ε⊗[0,s]#(∆)

∑
τ∈T (∆)

στt1,...,to φ̃t1,...,todµ
∆
t1,...,to)

= µa1
s +

∑
∆∈Multi(H)
|∆|≤L;#(∆)≥2

Ψa1
xs(∆)

∫ ∆

t1,...,to∈[0,t]#(∆)

ξ̃t1,...,todµ
∆
t1,...,to

+ Ψa1
xs,L

(

∫ ∆

[0,s]#(∆)

∑
∆=((∆1,t1),...,(∆o,to))∈Multi(B⊗[0,s])

t1=0;∆∈ε⊗[0,s]#(∆)

∑
τ∈T (∆)

στ φ̃t1,...,todµ
∆
t1,...,to)

and θ(0)
s = µ

(0)
s = st. For some ξ̃, φ̃ taking values only in {−1, 0, 1}

Rewriting this over the whole space Ui, we get:

θUis = µUis +
∑

∆∈Multi(B)
|∆|≤L;#(∆)≥2

ΨUi
xs(∆)

∫ ∆

t1,...,to∈[0,s]#(∆)

ξ̃t1,...,todµ
∆
t1,...,to

+ ΨUi
xs(

∫ ∆

[0,s]#(∆)

∑
∆=((∆1,t1),...,(∆o,to))∈Multi(H⊗[0,s])

t1=0;∆∈ε⊗[0,s]#(∆)

∑
τ∈T (∆)

στ φ̃t1,...,todµ
∆
t1,...,to).

This still ensures that θ satisfies the ODE (7.1.2):

x0 = x,

dxt =
∑
a∈B

σa(xt)
∂θat
∂t

dt.
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Define a linear operation δ on the free vector space over rooted trees with indices in

T ({0, 1, . . . , d})

by requiring that for τ a rooted tree with vertices in T ({0, 1 . . . , d}),

δ(τ) =
∑

τ̃∈G(τ)

eτ̃

where G(τ) is the set of rooted trees with vertices in {0, 1, . . . , d} obtained by gluing the root of
each vertex τi of τ to one of the vertices of τj where τi is a leaf of τj . Then we have

σ∆ =
∑

τ∈T (∆)

σδ(τ).

We can extend the above operation to rooted trees with vertices in B ⊗ [0, 1] similarly.
Each vertex ∆i ∈ B2L ⊗ [0, 1] can be written as a sum of rooted trees

∑
ι(τ)=O(∆) λτ,∆e

τ ,
where ι(τ) denotes the multi-set composed of the vertices of τ , O(∆i) is a fixed multi-set depend-
ing only on ∆i, and |λτ,∆| ≤ (2L)!22L.

It follows that for any unit v ∈ Rn, writing T 2(∆) for the set of rooted trees belonging to
G(τ) for some τ being a rooted tree with root in T (∆#(∆)) and other vertices in T (∆i) for
i = 1, 2, . . . ,#(∆)− 1, ∑

∆=((∆1,t1),...,(∆o,to))∈Multi(H⊗[0,s])

t1=0;∆∈ε⊗[0,s]#(∆)

∑
τ∈T (∆)

〈στ , v〉2

=
∑

τ∈Multi({0,1,...,d}⊗[0,1])
|τ |≤2L

〈στ λ̄τ , v〉2

≤ sup
τ

(|λ̄τ |2)G,

for some λ̄τ less than some combinatorial function of L in absolute value. In other words, the
expression above is a proper constant.

Next, applying Theorem 7.1.6 to∫ ∆

[0,s]#(∆)

∑
∆=((∆1,t1),...,(∆o,to))∈Multi(H⊗[0,s])

t1=0;∆∈ε⊗[0,s]#(∆)

∑
τ∈T (∆)

στ φ̃t1,...,todµ
∆
t1,...,to

ensures that ∣∣∣∣∣
∫ ∆

[0,s]#(∆)

∑
∆=((∆1,t1),...,(∆o,to))∈Multi(H⊗[0,s])

t1=0;∆∈ε⊗[0,s]#(∆)

∑
τ∈T (∆)

στ φ̃t1,...,todµ
∆
t1,...,to

∣∣∣∣∣
2

≤ K|θ|2(L+1)

L2,LL(Rd,R)

for some proper constant K. By the weak Hörmander condition, it then follows that∣∣∣∣∣ΨUi
xs(

∫ ∆

[0,s]#(∆)

∑
∆=((∆1,t1),...,(∆o,to))∈Multi(H⊗[0,s])

t1=0;∆∈ε⊗[0,s]#(∆)

∑
τ∈T (∆)

στ φ̃t1,...,todµ
∆
t1,...,to)

∣∣∣∣∣
2

≤ K|θ|2(L+1)

L2,LL(Rd,R)

for some proper constant K.
As in the proof of the other side of the inequality, we also have, using the progressive Hörman-

der condition, the symmetry of the inner product on the tensor space with respect to relabelling,
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and Theorem 7.1.6,∣∣∣∣∣ ∑
∆∈Multi(B)
|∆|≤L;#(∆)≥2

ΨUi
xs(∆)

∫ ∆

t1,...,to∈[0,s]#(∆)

ξ̃t1,...,todµ
∆
t1,...,to

∣∣∣∣∣
2

≤ K|θ|2iL2,LL(Rd,R)

for some proper constant K.
Similarly to the proof of the inequality (7.1.4):
Note first that we have the following expansion where ∆ is a multi-index with indices in B:

y =∗x+
∑
|∆|≤L

∆=(∆1,∆2,...,∆o)

∗σ∆
∫ 1

0

∫ to−1

0
...

∫ t2

0

∫ t1

0
dθ∆1
t1
dθ∆2
t2
. . . dθ∆oto

+
∑
∆∈ε

∫ 1

0

∫ to−1

0
...

∫ t2

0

∫ t1

0
∗σ∆(xto)dθ

∆1
t1
dθ∆2
t2
. . . dθ∆oto

for some set ε such that ∆ ∈ ε =⇒ L+ 1 ≤ |∆| ≤ 2L.
Using the progressive Hörmander condition, some simplifying notation, and projecting on the

space Ui = span |α|=i
α/∈Multi({0})

e[α], we see that if we define the following µ ∈ S:

µUi = θUi1 +
∑
|∆|≤L

∆=(∆1,∆2,...,∆o),o≥2

ΨUi
x0

(∆)

∫ ∆

(dθ)∆

+ ΨUi
x0,L

(
∑
∆∈ε

∫ ∆

∗σ∆(x . )(dθ)∆),

we will certainly have that:

y = ∗x+
∑
β∈LL
|β|≤L

µ[β] ∗ σ[β]
x +

∑
α∈Multi({0})
#(α)≤bL2 c

σαx
t#(α)

(#(α))!
.

Now, Proposition 7.1.6 applied to
∑

∆∈ε
∫ ∆ ∗σ∆(x . )(dθ)∆ ensures that∣∣∣∣∣∑

∆∈ε

∫ ∆

∗σ∆(x . )(dθ)∆

∣∣∣∣∣ ≤ CF(L)G|θ|L+1
L2,S ,

for some proper constant C, and a combinatorial function F(L). Then note that Lemma 3.5.1 and
the assumption on the tension guarantee that there exists a function Ψx0,L : Rn → S such that for
any unit u ∈ S and v ∈ Rn, 〈Ψ(v), u〉2 ≤ H−1

L G. Therefore the above implies further that∣∣∣∣∣ΨUi
x0,L

(∑
∆∈ε

∫ ∆

∗σ∆(x . )(dθ)∆
)∣∣∣∣∣ ≤ (CG2F(L)H−1

L )1/2|θ|L+1
L2,S .(7.1.7)

Proposition 7.1.6, applied to ∑
|∆|≤L

∆=(∆1,∆2,...,∆o),o≥2

ΨUi
x0

(∆)

∫ ∆

(dθ)∆,

together with the progressive Hörmander condition, ensures that∣∣∣∣∣∣∣
∑
|∆|≤L

∆=(∆1,∆2,...,∆o),o≥2

ΨUi
x0

(∆)

∫ ∆

(dθ)∆

∣∣∣∣∣∣∣
2

≤ C|θ|iL2,S ,(7.1.8)

for some proper constant C. Here we have identified ∆ with the element of E2L obtained by
decomposing ∆ into rooted trees. As usual, by the symmetry of the scalar product in the tensor
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space with respect to relabelling of the indices (cf. Proposition 7.0.9), the decomposition of ∆
contains a proper number of terms in E2L each multiplied by proper constants, and conversely
each term appears only in the decomposition of a proper number of compound multi-indices ∆.

Combining Eqs. (7.1.7) and (7.1.8) yields that

|µ|S = (
L∑
i=1

|µUi |
2
i )

1
2

≤ (
L∑
i=1

C|θ|iL2,LL(Rd,R))
2
i )

1
2

≤
√
LC|θ|L2,LL(Rd,R).

for some proper constant C.
Proof of inequality (7.1.3):
We will write, as above, H for our basis of LL(Rd,R) defined in Proposition 7.0.9. We

can define a function Ψ̄x0,L : Rn → S such that for any v ∈ Rn, FST (t, Ψ̄x0,L(v)) = v and
|Ψ̄x0,L(v)|2S = inf(|u|2S : FST (t, u) = v).

Then we set

µ1 = Ψ̄x0,L(y − F (x̄t)) +

bL
2
c∑

i=1

e⊗
i(0) t

i

i!

µs = δs(µ1) ∀s ≤ 1

xs = FSTĀ (µs) ∀s ≤ 1

where δt is the homogeneous dilation on LL(Rd,R) and Ā = (x, σ, Id).
Set C3 small enough that |x − xs| ≤ r

2 for any s ∈ [0, 1]. This can clearly be done whilst
keeping C3 a proper constant.

Note that, since µUis = s
i
2µUi1 , writing U = S̄ = LL(Rd,R)⊗ (spani≤bL

2
c e
⊗i(0)), we have

|µ|2L2,S̄ =
L∑
i=1

(

∫ 1

0
|∂µ

Ui
s

∂s
|2ds)

1
i

=
L∑
i=1

(|µUi1 |
2

∫ 1

0

i

2
s
i−2

2 dt)
1
i

=
L∑
i=1

(|µUi1 |
2)

1
i = |µ1|2U .

Now, for any 0 ≤ s ≤ 1, we have the following Taylor expansion for σ0:

σa1
0 = σa1

s +
∑
a2

∫ 0

s
σ((a2,0),(a1,v))dµa2

v

= σa1
s +

∑
a2

σ((a2,s),(a1,s))

∫ 0

s
dµa2

v +
∑
a3,a2

∫ 0

s

∫ v

s

∂2σ(a1,u)

∂σ(a2,s)∂σ(a3,0)
dµa3

u dµ
a2
v

+
∑
a3,a2

∫ 0

1

∫ s

1

∂σ(a1,v)

∂ ∂σ
(a2,u)

∂σ(a3,0)

dµa3
u dµ

a2
v

= . . .

=
∑

∆=((∆1,s),...,(∆o,s))∈Multi(H⊗{s})
∆o=a1;|∆|≤L

σ∆

∫ ∆̄

t1,...,to−1∈[0,s]#(∆̄)

ξt1,...,to−1dµ
∆̄
t1,...,to−1
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+

∫ ∆̄

[s,0]#(∆̄)

∑
∆=((∆1,t1),...,(∆o,to))∈Multi(H⊗[0,s])

∆o=a1;t1=0;∆∈ε⊗[0,s]#(∆)

∑
τ∈T (∆)

στφt1,...,to−1dµ
∆̄
t1,...,to−1

for some φt2,...,to , ξt2,...,to taking values in {−1, 0, 1}. Here ∆̄ means the multi-index obtained by
deleting the last index of ∆.

This motivates the following choice of θ:

θa1
s =

∑
∆∈Multi(H)
|∆|≤L

Ψa1
xs(∆)

∫ ∆

t1,...,to∈[0,s]#(∆)

ξ̃t1,...,todµ
∆
t1,...,to

+ Ψa1
xs,L

(∫ ∆

[0,s]#(∆)

∑
∆=((∆1,t1),...,(∆o,to))∈Multi(B⊗[0,t])

t1=0;∆∈ε⊗[0,s]#(∆)

∑
τ∈T (∆)

στt1,...,to φ̃t1,...,todµ
∆
t1,...,to

)

= µa1
s +

∑
∆∈Multi(H)
|∆|≤L;#(∆)≥2

Ψa1
xs(∆)

∫ ∆

t1,...,to∈[0,t]#(∆)

ξ̃t1,...,todµ
∆
t1,...,to

+ Ψa1
xs,L

(∫ ∆

[0,s]#(∆)

∑
∆=((∆1,t1),...,(∆o,to))∈Multi(B⊗[0,s])

t1=0;∆∈ε⊗[0,s]#(∆)

∑
τ∈T (∆)

στ φ̃t1,...,todµ
∆
t1,...,to

)

and θ(0)
s = µ

(0)
s = st. For some ξ̃, φ̃ taking values only in {−1, 0, 1}.

Rewriting this over the whole space Ui, we get:

θUis = µUis +
∑

∆∈Multi(B)
|∆|≤L;#(∆)≥2

ΨUi
xs(∆)

∫ ∆

t1,...,to∈[0,s]#(∆)

ξ̃t1,...,todµ
∆
t1,...,to

+ ΨUi
xs(

∫ ∆

[0,s]#(∆)

∑
∆=((∆1,t1),...,(∆o,to))∈Multi(H⊗[0,s])

t1=0;∆∈ε⊗[0,s]#(∆)

∑
τ∈T (∆)

στ φ̃t1,...,todµ
∆
t1,...,to).

This still ensures that θ satisfies the ODE (7.1.2):

x0 = x,

dxt =
∑
a∈B

σa(xt)
∂θat
∂t

dt.

Define a linear operation δ on the free vector space over rooted trees with indices in

T ({0, 1, . . . , d})

by requiring that for τ a rooted tree with vertices in T ({0, 1 . . . , d}),

δ(τ) =
∑

τ̃∈G(τ)

eτ̃

where G(τ) is the set of rooted trees with vertices in {0, 1, . . . , d} obtained by gluing the root of
each vertex τi of τ to one of the vertices of τj where τi is a leaf of τj . Then we have

σ∆ =
∑

τ∈T (∆)

σδ(τ).

We can extend the above operation to rooted trees with vertices in B ⊗ [0, 1] similarly.
Each vertex ∆i ∈ B2L ⊗ [0, 1] can be written as a sum of rooted trees

∑
ι(τ)=O(∆) λτ,∆e

τ ,
where ι(τ) denotes the multi-set composed of the vertices of τ , O(∆i) is a fixed multi-set depend-
ing only on ∆i, and |λτ,∆| ≤ (2L)!22L.
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It follows that for any unit v ∈ Rn, writing T 2(∆) for the set of rooted trees belonging to
G(τ) for some τ being a rooted tree with root in T (∆#(∆)) and other vertices in T (∆i) for
i = 1, 2, . . . ,#(∆)− 1, ∑

∆=((∆1,t1),...,(∆o,to))∈Multi(H⊗[0,s])

t1=0;∆∈ε⊗[0,s]#(∆)

∑
τ∈T (∆)

〈στ , v〉2

=
∑

τ∈Multi({0,1,...,d}⊗[0,1])
|τ |≤2L

〈στ λ̄τ , v〉2

≤ sup
τ

(|λ̄τ |2)G,

for some λ̄τ less than some combinatorial function of L in absolute value. In other words, the
expression above is a proper constant.

Next, applying Theorem 7.1.6 to∫ ∆

[0,s]#(∆)

∑
∆=((∆1,t1),...,(∆o,to))∈Multi(H⊗[0,s])

t1=0;∆∈ε⊗[0,s]#(∆)

∑
τ∈T (∆)

στ φ̃t1,...,todµ
∆
t1,...,to

ensures that ∣∣∣∣∣
∫ ∆

[0,s]#(∆)

∑
∆=((∆1,t1),...,(∆o,to))∈Multi(H⊗[0,s])

t1=0;∆∈ε⊗[0,s]#(∆)

∑
τ∈T (∆)

στ φ̃t1,...,todµ
∆
t1,...,to

∣∣∣∣∣
2

≤ K|θ|2(L+1)

L2,LL(Rd,R)

for some proper constant K. By the weak Hörmander condition, it then follows that∣∣∣∣∣ΨUi
xs(

∫ ∆

[0,s]#(∆)

∑
∆=((∆1,t1),...,(∆o,to))∈Multi(H⊗[0,s])

t1=0;∆∈ε⊗[0,s]#(∆)

∑
τ∈T (∆)

στ φ̃t1,...,todµ
∆
t1,...,to)

∣∣∣∣∣
2

(7.1.9)

≤ K|θ|2(L+1)

L2,LL(Rd,R)

for some proper constant K.
As in the proof of the other side of the inequality, we also have, using the progressive Hörman-

der condition, the symmetry of the inner product on the tensor space with respect to relabelling,
and Theorem 7.1.6,∣∣∣∣∣ ∑

∆∈Multi(B)
|∆|≤L;#(∆)≥2

ΨUi
xs(∆)

∫ ∆

t1,...,to∈[0,s]#(∆)

ξ̃t1,...,todµ
∆
t1,...,to

∣∣∣∣∣
2

≤ K|θ|2iL2,LL(Rd,R)(7.1.10)

for some proper constant K.
Similarly to the proof of inequality (7.1.3), using inequalities (7.1.9) and (7.1.10), we obtain

dA,t,log,∞(x, y)2 ≤ |θ|2L2,LL(Rd,R) ≤ K|µ|
2
L2,S̄ = K(|µ1|2U + t)

≤ K max(dA,t̃,log(x, y)2, t),

for some proper constant K changing from line to line. �

We finish with the following doubling condition:

PROPOSITION 7.1.14. Let A = (x, σ, F ), F linear, be a uniformly (r, L, g,G)-mixed tense,
uniformly (H,L) detailed weak progressive Hörmander system. There exist proper constants D
and M such that for any t ≤ D any r > 0 and any x̄ ∈ Rm,

|Bdt,log,∞(x, 2r)| ≤M |Bdt,log,∞(x, r)|.
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PROOF. This follows from Proposition 5.1.11, Theorem 7.1.1 and the Propositions 5.2.8
and 7.1.10. �

7.2. Comparisons between distances

Here we compare the Léandre, homogeneous, and Carnot-Carathéodory distances in certain
cases. This type of results are well known in both the classical situation (cf. [1]) and in geometric
settings.

DEFINITION. LetA = (x, σ, F ) be a (L, g,G)-tense, (L,HL)-weak Hörmander system. The
Carnot-Carathéodory distance is defined by

dc(y) = inf
(
|γ|L2 : Yt((τ, γ)) = y, γ ∈ Pd1 , τs = 0 ∀s

)
.

First, we note the following trivial facts:

PROPOSITION 7.2.1. Let A = (x, σ, F ) be a (L, g,G)-tense, (L,HL)-weak Hörmander sys-
tem. For any y, we have

dt(y) ≤ d̃t(y).

PROPOSITION 7.2.2. Let A = (x, σ, F ) be a (L, g,G)-tense, (L,HL)-weak Hörmander sys-
tem with σ(0) = 0 uniformly. For any y, we have

dt(y) = d̃t(y) =
√
dc(y)2 + t.

Now we consider the link between the distances in slightly less trivial cases.

PROPOSITION 7.2.3. Let A = (x, σ, F ) be a uniformly (L, g,G)-tense, (L,HL)-weak Hör-
mander system such that there exist functions λi (for i = {1, . . . , d}) and a fixed constant H̄ such
that we have, uniformly in x:

σ(0)(x) =

d∑
i=1

λi(x)σi(x) and
∑
i

|λi(x)|2 ≤ H̄2.

(This implies the strong Hörmander condition.)
Then there exists a polynomial constant C such that for any y ∈ Rn, t ∈ R+ such that

dt(y), dc(y), t ≤ 1/2,

C−1dc(y) ≤ dt(y) ≤ C(dc(y) +
√
t).

PROOF. For the left hand side, following the characterisation from Proposition 7.0.4, let Γ ∈
Pd+1

1 be a control such that Solx,t(Γ) = y. Write Xs (s ∈ [0, 1]) for the solution curve, so that
X1 = Sol(Γ). We begin by re-parametrising Γ so that for all s,√√√√|Γ̇0|+

d∑
i=1

|Γ̇is|2 = dt(y).

Pick γ ∈ Pd1 such that for all s ∈ [0, 1], i = 1, 2, . . . , d,

dγis = dΓis + λi(Xs)dΓ0
s.

This ensures that the solution to the SDE

X0 = x,

dXs =

d∑
i=1

σi(Xs)dγ
i
s

satisfies F (X1) = y. Since dt(y) ≤ 1/2, we have that |Γ̇0
s| < 1. Therefore,

dc(y)2 ≤ |γ|2L2 ≤
d∑
i=1

∫ 1

0
(Γ̇is + λisΓ̇

0
s)

2ds



7.2. COMPARISONS BETWEEN DISTANCES 103

≤ 2
d∑
i=1

∫ 1

0
(Γ̇is)

2 + (λisΓ̇
0
s)

2ds

≤ 2

∫ 1

0
H̄2(Γ̇0

s)
2 +

d∑
i=1

(Γ̇is)
2ds

≤ 2H̄2

∫ 1

0

d∑
i=0

(Γ̇is)
2ds

≤ 2H̄2

∫ 1

0
|Γ̇0
s|+

d∑
i=1

(Γ̇is)
2ds

≤ 2H̄2dt(y)2.

The proof of the right hand side is very similar. �

PROPOSITION 7.2.4. Let A = (x, σ, F ) be a uniformly (L, g,G)-tense system (with g ≥ 2)
such that the vector fields σ are uniformly (L,HL)-weakly progressively finitely generated, and
such that there exist functions λα and a fixed constant H̄ such that we have, uniformly in x:

σ0(x) =
∑

|α|=#(α)≤2

λα(x)σ[α](x)(7.2.1)

∑
|λα|2 ≤

1

H̄
.

There exist a constants D1, D2, C1, C2, polynomial in G,HL, H̄, d, such that or any y, t ∈ R+

such that max(
√
t, dt,log,∞(y)) ≤ D1,

dc(y) ≤ C1(dt,log,∞(y) +
√
t),

and for any y, t ∈ R+ such that max(
√
t, dc(y)) ≤ D2,

dt,log,∞(y) ≤ C1(dc(y) +
√
t).

PROOF. By applying Theorem 7.1.1 to the systemB obtained by replacing σ(0) by 0 uniformly
inA, we know that dc(y) is polynomially locally equivalent to the ’distance’ dc,log,⊥,L(y), defined
as the homogeneous ’distance’ associated to the system B.

This means we only need to show

dc,log,⊥,L(y) ≤ C2(dt,log,⊥,L(y) +
√
t)

and
dlt,log,⊥,L(y) ≤ C3(dc,log,⊥,L(y) +

√
t).

Proof of the second inequality
We use as usual the notation H for the basis of

S1 = spanα∈Multi({0,1,...,d})
|α|≤L,α 6=(0)

e[α]

constructed in Proposition 7.0.9. We will use the notation H1 for the set obtained similarly for

S2 = spanα∈Multi({1,...,d})
|α|≤L,

e[α].

Let u ∈ H1 be such that ∑
h∈H1

uhσh = y − x

|u|LL(Rd) ≤ dc,log,⊥,L(y)(1 + ε),

for some small ε > 0.
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By differentiating the condition (7.2.1), we get that there exists a polynomial constant H̃ and
some λiξ (i ∈ {1, . . . bL/2c}, ξ ∈ H1) such that

σ⊗
i(0) =

∑
ξ∈H1
|ξ|≤2i

λiξσ
ξ,

∑
ξ∈H1
|ξ|≤2i

|λiξ|2 ≤ H̃.

Then we set, for h ∈ H1,

ūh = uh −
∑

i≤bL/2c

λih
ti

i!
.

This ensures that FST (ūh) = y. Now note that for h ∈ H1 ⊂ H ,

|ūh|2 ≤ 2

|uh|2 +

 ∑
i≤L,h∈H1
|h|≤2i

|λih|
ti

i!


2

≤ 2
(
|uh|2 + H̃

√
t
2|h|)

≤ 4H̃ max(|u|S2 ,
√
t)2|h|

for some polynomial constant M . Summing the contributions of the constant degree spaces to
calculate the homogeneous norm, we get

|ū|S2 ≤M max(|u|S2 ,
√
t)

≤M(1 + ε) max(dc,log,⊥,L(y),
√
t),

for some polynomial constant M . Taking for instance ε = 1 gives the right hand side.
Proof of the first inequality
The proof is very similar. We write H0 for the set ∪i≤bL/2c{e⊗

i(0)}. By differentiating con-
dition 7.2.1, we obtain a polynomial constant H̃ and some λζξ (with ζ ∈ H \ H1, ξ ∈ H1) such
that

σζ =
∑

ξ∈H1,|ξ|≤|ζ|

λζξσ
ξ

∑
ξ∈H1,|ξ|≤|ζ|

|λζξ |
2 ≤ H̃.

That allows one to define ũ ∈ S2 by

ũh = uh +
∑

ζ∈H\∪(H1,H0)
|ζ|≥|h|

λζhu
ζ +

∑
ζ∈H0
|ζ|≥|h|

λζh

√
t
|ζ|

( |ζ|2 )!
.

This ensures that F log(S),T
B (ũ) = y.

Then we note

|ũh| ≤ |uh|+
∑

ζ∈H\∪(H1,H0)
|ζ|≥|h|

|λζh||u
ζ |+

∑
ζ∈H0
|ζ|≥|h|

|λζh|
√
t
|ζ|

( |ζ|2 )!

≤ |uh|+
∑

ζ∈H\∪(H1,H0)
|ζ|≥|h|

|λζh||u|
|h|
S1

+
∑
ζ∈H0
|ζ|≥|h|

|λζh|
√
t
|h|

≤M2 max(|u|S1 ,
√
t)|h|,
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for some polynomial constant M2. Again, summing contributions from each constant degree
spaces, we get

dc,log,⊥,L(y) ≤ |ũ|S2

≤M3 max(|u|S1 ,
√
t)

≤M3(1 + ε) max(dt,log,L,
√
t)

for some polynomial M3. �

7.3. Symmetrisation and integrability of upper bounds

PROPOSITION 7.3.1. Let dt : Rm → R+ be a continuous time-dependent function with t ∈
[0, T ] for some fixed T ≤ 1, such that there exist x̃ ∈ Rm and a constant K such that for any
y ∈ Rm,

dt(y) + 1 ≥ K2|x̃− y|,
and satisfying a doubling condition with constant D. For any C,M , the function

Et(x, y) = C
e−

Mdt(y)2

t

|Bdt(
√
t)|

is space-time integrable and we have∫
t∈[0,T ]

∫
y∈Rm

Et(x, y) ≤ U

for some constant U that depends only on K,C,M,D, but not x̃ or m

PROOF. This is simple calculation. �

We note the following classical result from [13] (or [47], [37] etc.):

LEMMA 7.3.2. Let σ1, σ2, . . . , σd be some smooth vector fields on Rn, and let d be the control
distance associated to those vector fields. For every β′, β > 0 there exists c(β, β′) such that

e−
βd(x,y)2

t

|Bd(x,
√
t)|

< c(β, β′)
e−

β′d(x,y)2

t

|Bd(y,
√
t)|
.

The following corollary follows immediately:

COROLLARY 7.3.3. Let σ1, σ2, . . . , σd be some smooth vector fields on Rn, and let d be the
control distance associated to those vector fields. We have for any β > 0,∫

t∈[0,T ]

∫
y∈Rn

e−
βd(x,y)2

t

|Bd(y,
√
t)|
dy <∞.

This is shows that in the case of trivial drift, the upper bounds are integrable in both y and x.
It is integrability in y that is relevant to some applications such as generalisations of Löcherbach’s
theorem.

We cannot do this in the case of non trivial drift because our ’distance’ is not symmetric.
However, we can do the following:

LEMMA 7.3.4. Suppose that we are given a sufficiently smooth function F : Rm → Rn, and
a time dependent function dt : Rm ⊗ Rm → R+, continuous in t. For x ∈ Rm and y ∈ Rn, we
write dt(x, y) for min x2∈Rm

F (x2)=y

d(x, x2). Balls Bt(x, r) are always taken as sets in Rn. Suppose

that for some constants D and M , we have

∀t, r ≤ D,∀x, |Bt(x, r)| ≤M |Bt(x, 2r)|
∀s ≤ t, ∀x1, x2, x3 ∈ Rm, dt(x1, x3) = ds(x1, x2) + dt−s(x2, x3)

∀s, r, t ≤ D,∀x ∈ Rm, |Bs(x, r)| ≤M |Bt(x, r)|.
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Then the following holds: For any x1, x2 ∈ Rm and t, r ≤ D such that dt(x1, x2) < r,

M−2|Bt(x1, r)| ≤ |Bt(x2, r)| ≤M2|Bt(x1, r)|.

PROOF. Note that by continuity of d in t, there exists an ε > 0 such that dt−ε(x1, x2) < r.
Clearly if Rn 3 y ∈ Bε(x2). Then there exists an x3 ∈ Rm such that dε(x2, x3) ≤ r and
F (x3) = y. Then we have

dt(x1, y) = dt(x1, x3) ≤ dt−ε(x1, x2) + dε(x2, x3) < r + r = 2r,

from which it follows that y ∈ Bt(x1, 2r).
This means that Bε(x2, r) ⊂ Bt(x1, 2r). Then we have

|Bt(x2)| ≤M |Bε(x2, r)| ≤M |Bt(x1, 2r)| ≤M2|Bt(x1, r)|.
The other inequality is proved similarly. �

DEFINITION. For such a time dependent ’distance’ as in Lemma 7.3.4, we define the back-
wards balls around x, by

←−
BRm
t,x (r) = {y ∈ Rm : dt(y, x) < r},

B−t,x(r) =
←−
B t,x(r) =

←−
BRn
t,x(r) = F (

←−
BRm
t,x (r)).

PROPOSITION 7.3.5. LetA = (x, σ, F ) be a uniformly detailed weak progressive Hörmander
system such that the σ’s are uniformly mixed finitely progressively generated in the background
space. There exist proper constants D and M such that for any t ≤ D and for any x1, x2 ∈ Rm
such that dt(x1, x2) ≤ D

√
t, we have

|Bt(x2,
√
t)| ≤M |Bt(x1,

√
t)|,

|B−t(x2,
√
t)| ≤M |Bt(x1,

√
t)|.

PROOF. First, note that by simple integration theory, the coarse log-homogeneous distance
dlt,log satisfies all the requirements of Lemma 7.3.4 with proper constants.

It follows that for t, dlt,log(x1, x2) ≤ D1 (D1 proper), we have for some proper M1,

|Bdlt,log
(x2,
√
t)| ≤M1|Bdlt,log

(x1,
√
t)|.

Now, using Theorem 7.1.1, which has proper constants, we can write, for C being a proper
constant from Theorem 7.1.1 and D̄ being the doubling constant for the dt,log,∞ distance, and for
t, dlt,log(x1, x2) ≤ D1

C :

|Bdt,log,∞(x2,
√
t)| ≤ |Bdlt,log

(x2,
√
tC)| ≤ |Bdlt,log

(x2,
√
t)|D̄log2(C)

≤M1D̄
log2(C)|Bdlt,log

(x1,
√
t)|

≤M1D̄
log2(C)|Bdt,log,∞(x1, C

√
t)|

≤M1D̄
2 log2(C)|Bdt,log,∞(x1,

√
t)|.

All constants involved are proper. This proves the first inequality.
For the second one, note that the reverse distance d−t is just the ’distance’ associated to the

vector fields −σi (i 6= 0) and σ0, which doesn’t affect the progressive Hörmander constants. In
fact even for negative values of s, t, we have:

∀s, r, t with, r, |s|, |t| ≤ D, ∀x ∈ Rm, |Bs,log,∞(x, r)| ≤M |Bt,log,∞(x, r)|,
so the proof works similarly. �

PROPOSITION 7.3.6. Let A = (x, σ, F ) be a uniformly (L,HL) weak Hörmander, uniformly
(L, g,G)-tense system (g ≥ L+ 1). There exist constants D,M,C, such that for any x1, x2 such
that
√
t ≤ D, dt(x1, x2) ≤

√
tD,

|Bl
t(x2,

√
t)| ≤ C|Bl

t(x1,
√
t)|
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|Bl
−t(x2,

√
t)| ≤ C|Bl

t(x1,
√
t)|

|B∞t (x2,
√
t)| ≤ C|Bl

t(x1,
√
t)|

|B∞−t(x2,
√
t)| ≤ C|Bl

t(x1,
√
t)|

|Bt(x2,
√
t)| ≤ C|Bt(x1,

√
t)|

|B−t(x2,
√
t)| ≤ C|Bt(x1,

√
t)|.

PROOF. Again, by observation of the Jacobian of the function F log(S),T
t for different values

of t (including negative ones, note that the reverse distance d−t is just a forward distance asso-
ciated to the reversed vector fields σi(−1)1i6=0 etc.), we have that the distance dlt satisfies all the
requirements of Lemma 7.3.4 (with bad constants from doubling).5 The result follows. �

THEOREM 7.3.1. Let A = (x, σ, F ) be a uniformly (L,HL) weak Hörmander, uniformly
(L, g,G)-tense system. For any β > 0, there exist constants c(β), D and m(β) such that

e−
βdt(y,x)2

t

|Bdt(y,
√
t)|

< c(β)
e−

m(β)dt(y,x)2

t

|
←−
B dt(x,

√
t)|
.

PROOF. For the case d(y, x) ≤ D
√
t (D being the constant relative to dt,∞ from Proposi-

tion 7.3.6), we have by Proposition 7.3.6:

e−
βdt(y,x)2

t

|Bd,t(y,
√
t)|
≤ C e

−m(β)dt,∞(y,x)2

t

|
←−
B dt(x,

√
t)|

where C is the constant from Proposition 7.3.6.
For the case d(y, x) ≥ D

√
t, we have first:

Bt(x,
√
t) ⊂ B2t(y,

√
t+ d(y, x))

which gives, using Proposition 5.1.11, for some constants M and ν,

|Bt(x,
√
t)| ≤ |B2t(y,

√
t+ d(y, x))| ≤M |Bt(y,

√
t+ d(y, x))|

≤M(

√
t+ d(y, x)√

t
)ν |Bt(y,

√
t)|.

This allows us to conclude, when d(y, x) ≥ D
√
t,

e−
βdt(y,x)2

t

|Bd,t(y,
√
t)|
≤M

(√
t+ d(y, x)√

t

)ν
e−

βdt(y,x)2

t

|Bd,t(x,
√
t)|

≤M2

(√
t+ d(y, x)√

t

)ν
e−

βdt(y,x)2

t

|
←−
B d,t(x,

√
t)|

≤M2

(
1 +

1

D

)(
d(y, x)√

t

)ν e−
βdt(y,x)2

t

|
←−
B d,t(x,

√
t)|

≤ c(β)
e−

m(β)dt(y,x)2

t

|
←−
B dt(x,

√
t)|
.

�

5The same observation is related to the following similar result from [39]: up to a constant C uniform in x, balls
of radius

√
t around x behave like

∑
|A|≤2L,

A1,A2,...∈Multi({0,1,...,d})

√
t
|A|

det(σ[A1]σ[A2] . . . σ[A#(A)])
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Now, for systems satisfying the progressive Hörmander condition, we have the following anal-
ogous result (the proof is the same, replacing the distances, constants become proper because
doubling condition constants are proper):

THEOREM 7.3.2. Let A = (x, σ, F ) be an (L, g,G)-mixed tense, (L,HL) weak detailed-
Progressive Hörmander system (g ≥ L+ 1). For any β > 0, there exist proper constants c(β), D
and m(β) such that

e−
βdt,log,∞(y,x)2

t

|Bdt,log,∞(y,
√
t)|

< c(β)
e−

m(β)dt,log,∞(y,x)2

t

|
←−
B dt,log,∞(x,

√
t)|
.

REMARK 7.3.7. Note that the coarse log-homogeneous distance has the following nice sym-
metry property, which follows directly from the linearity of the model function FRT :

←−
d lx,t,log(x̄t + v) = dlx,t,log(x̄−t + v)

where
←−
d lx,t,log denotes the coarse log homogeneous distance associated to the time reversed equa-

tion, v ∈ Rm, and as usual, for any s ∈ R (here s = t or −t),

x̄t = x+
∑

α∈Multi0(L)
|α|≤L

σα(x)
s#(α)

#(α)!
.

In fact, we even have, more generally, for any s, t such that |s|, |t| ≤ D for some proper
constant,

dlxs,log(x̄s + v) = dlxt,log(x̄t + v).



CHAPTER 8

Application of models to an auxiliary object: probabilistic results

8.1. Some Lemmas and preliminary estimates

To prove our results, we need a more flexible and general version of the scaling argument in
the proof of Theorem (3.12) on page 411 of [37].

THEOREM 8.1.1 (Scaling). Let U =
⊕I

i=1 Ui be a Euclidean space endowed with the follow-
ing homogeneous norm:

|u|U = |u|U,t =

(∑
i

(|ui|)2/i

)1/2

.

where for u ∈ U , ui is the projection of u onto the space Ui. Let ν =
∑

i(idim(Ui)). We
introduce the family of dilations δs defined by:

prUi(δs(u)) = uisi/2.

Suppose that ∀t ≤ T , ξt is a random variable in U , such that there exist T ≤ 1, K ≤ 1, k ∈ N,
C ≥ 1 and M ≤ 1 such that

∀s, t ∈ R, u ∈ U such that s, t ≤ T, s ≥ 1, |u|eucl ≤ K,

P(δs(ξt) = u) ≤ C

(st)k
exp

(
−
|u|2eucl
st

)
.

Then, there exist C1 ≥ 1, M1 ≤ 1 such that ∀t ≤ T , ∀u ∈ U with |u|eucl ≤ 1,

P(ξt = u) ≤ C1

t
ν
2

exp

(
−
M1|u|2U

t

)
.

Furthermore, M1 depends only on M and I , and the constant C1 is polynomial in C,M and only
depends on C,M, ν, T .

PROOF. For the sake of this proof, we also introduce the following alternative homogeneous
norm:

ω(u) = (sup(s : |δs(u)| ≤ 1))−
1
2 .

For I a natural number, we write

DI =

(
max

(
sup

a∈Ri,a 6=0

∑
i a

2
i∑

i |ai|2/i
, sup
a∈Ri,a6=0

∑
i |ai|2/i∑
i a

2
i

))1/2

.

We first note the following crucial fact: ∀u ∈ U , we have:

D−1
I ω(u) ≤ |u|U ≤ DIω(u).

We can now begin the proof per se:
Case 1 t

ω(u)2 ≤ T . We can set s = 1
ω(u)2 , then st ≤ T and s ≥ 1. Furthermore, |δs(u)| ≤ 1,

so we can use our first assumption to obtain:

P(ξt = u) =
1

s
ν
2

P(δs(ξt) = δs(u))

≤ 1

s
ν
2

C
e−

M|δs(u)|2
st

(st)k

109



8.1. SOME LEMMAS AND PRELIMINARY ESTIMATES 110

= ω(u)νC
e
− M

t
ω(u)2

( t
ω(u)2 )k

≤ Cω(u)2ν

t
ν
2

e
− M

t
ω(u)2

( t
ω(u)2 )k−

ν
2

≤ CKkω(u)2ν

Mk− ν
2 t

ν
2

e−
M1ω(u)2

t

≤ CKk

Mk− ν
2 t

ν
2

e−
Mω(u)2

2t

≤ CKk

Mk− ν
2 t

ν
2

e−
MD−1

I
|u|2U

2t

≤ CKk

Mk− ν
2 t

ν
2

e−
M1|u|

2
U

2t .

We have the following justifications:
1. at the first line we have used the change of variables v = δs(u);
2. at the second line, we have used the first assumption;
3. at the third line, we have used the expression of our choice of s and the fact that by definition

of ω(u), we have |δs(u)| = 1;
4. at the fifth line, we have defined a constant Kk, dependent on k only, as follows: Kk =

maxx≤1( e
− 1

2x

xk
);

5. at the sixth line, we have used the fact that ω(u) ≤ 1;
6. at the last line, we have defined M1 = MD−1.

I

Case 2 t
ω(u)2 ≥ T . We set s = T

t Then we have:

P(ξt = u) =
1

s
ν
2

P(δs(ξt) = δs(u))

≤ 1

s
ν
2

C
e−

M|δs(u)|2
st

(st)k

≤ t
ν
2
e−

M|δs(u)|2
T

T k

≤ 1

t
ν
2 T k

≤ eMT

t
ν
2 T k

e−
Mω(u)2

t

≤ eMT

t
ν
2 T k

e−
M1|u|

2
U

t

where we have the following justifications:
1. at the first line we have used the change of variables v = δs(u);
2. at the second line, we have used the first assumption;
3. at the fourth line, we have used the fact that t ≤ T ≤ 1;
4. at the fifth line, we have used the fact that t

ω(u)2 ≥ T ;

5. at the last line, we have used the fact that M1 =
MD−1

I
2 ≤MD−1

I

Conclusion Combining both of the above cases, we see that the result is true with

C1 = max(
eMT

T k
,
CKk

Mk− ν
2

) and M1 =
MD−1

I

2
.
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�

THEOREM 8.1.2. Let (x, σ, F ) be a uniformly (L, g,G)-tense with g ≥ n + 3, uniformly
(L,HL) weak Hörmander system, set l = L, there exist polynomial constants C,D,M , and ν,
such that for any y ∈ Rn with dt,∞(x, y) ≤ D and any t ≤ D,

pt(x, y) ≤ C e
−Mdt(x,y)2

t

tν
.

PROOF. Define q(x, y, ξ) for ξ ∈ Rn to be the following variation of the Fourier transform of
pt(x, y):

p̂t(ξ) =

∫
Rn
e−i〈ξ,y〉pt(x, y)φ((y − ξ)t−L)dy

where φ is a fixed localizing function with arbitrary derivatives bounded by a proper constant, such
that for any y ∈ Rn, φ(y) ≤ 1 and for any y ∈ Rn with |y| ≤ 1, φ(y) = 0 .

Note that we have already proved in the previous part of the thesis that for any N ≥ 0 there
exists a polynomial constants D > 0,M,C, µ such that for any t ≤ D and

pt(x, y) ≤ C e
−M |∗x−y|

2

t

tµ
.

Using that, we can conclude, similarly to the proof of Theorem 6.4.1, that; (for any t ≤ D),

p̂t(ξ) ≤
1

|ξ|n+1
|
∫
Rn
e−i〈ξ,y〉

∂n+1pt(y)

πn+1
i=1 ∂zi

dy|

≤ K

|ξ|n+1tµ−n

for some polynomial constant K.
Next, we have for any R > 0

pt(x, y) ≤ 1

2π
|p̂t(x, .)|L2

≤
∫
B0(R)⊂Rn

p̂t(x, ξ)dx+

∫
B0(R)C

p̂t(x, ξ)dx

≤ K(RnP(|Yt − y| ≤ tL) +R−1 1

tµ−n
)

for some (other) polynomial constant K.
Setting R = t−

µ−n
n+1 P(|Yt − y| ≤ tL)−

1
n+1 , we get

pt(x, y) ≤ Kt−
(µ−n)n
n+1 P(|Yt − y| ≤ tL)

1
n+1 .

Hence, we only need to check that there exist polynomial constants C,M such that for any t ≤ D,

P(|Yt − y| ≤ tL) ≤ Ce−
Mdt(x,y)2

t .

To do that, we use Corollary 7.0.14 as follows:
Let Ȳt denote the KST approximation (X̄t its background space counterpart), and letK denote

the minimum of the constant from Corollary 7.0.14.
First note that if dlx,t(y) ≤ 3Kt

1
2 , we have

P(|Yt − y| ≤ tL) ≤ 1 ≤ 1.e−
dt(x,y)2

9K2t .

Therefore, forcing C ≥ 1 and M ≤ 1
9K2 ensures we only need to worry about the case dx,t(y) ≥

3Kt
1
2 . In that case we have first

|Yt − y|
1
L ≥ |Yt − y|

1
l ≥ 1

K
d t−tl+1

2

(Xt, y)
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≥ 1

K
(dt(x, y)− d t−tl+1

2

(x, Ȳt)− dtl+1(X̄t, Yt)).

Set D small enough that t ≤ D implies 4G−1Kt
1
2 ≤ D̄ where D̄ is the constant from

Corollary 7.0.14. Then

d t−tl+1

2

(x, z) ≤ K =⇒ |∗x− z| < 2G−1Kt
1
2 =⇒ |z − y| < 4G−1Kt

1
2 ≤ D̄.

For z ∈ Rm, write Rls(z) = z +
∑

#(α)≤ l2
@i:αi 6=0

σαz
s#(α)

#(α)! . Then (because t ≤ 1), writing S for the

signature, and using Theorem 2.1.1, as well as Corollary 7.0.14 and Theorem 7.0.1,

P(|Yt − y| ≤ tL)

≤ P(d t−tl+1

2

(x, Ȳt) > dt(x, y)/3)

+ P(dtt+1(X̄t, Yt) > dt(x, y)/3 ∨ d t−tl+1

2

(x, Ȳt) ≤ Kt
1
2 )

≤ P(d t−tl+1

2

(x, Ȳt) > Bdt(x, y)/3)

+ P(dtt+1(X̄t, Yt) > dt(x, y)/3 ∨ d t−tl+1

2

(x, Ȳt) ≤ Kt
1
2 )

≤ P(|Slog
t−tl+1

2

|S > Bdt(x, y)/3) + P(|∗Rltl+1(X̄t)− Yt| ≥ (dt(x, y)/(3K))l)

≤ KL exp

(
−(Bdt(x, y))2

72tL

)
+ P(|∗Rltl+1(X̄t)− Yt| ≥ (dt(x, y)/(3K))l)

(by Theorem 2.1.1).

Now note that

|∗Rltl+1(X̄t)− ∗X̄t| < LGtl+1 ≤ LG

(3K)l+1
(dlt(x, y))2(l+1).

Then we can continue the above calculation to obtain, using Theorem 6.3.1 (consequence of
Theorem 2.1.1):

P(|Yt − y| ≤ tL)

≤ KL exp

(
−(Bdt(x, y))2

72tL

)
+ P

(
|∗X̄t − Yt| ≥ (dt(x, y)/(3K))l − LG

(3K)l+1
(dt(x, y))2(l+1)

)
≤ KL exp

(
−(Bdt(x, y))2

72tL

)
+ E exp(−Ēdt(x, y)

2l
l+1

t
)

for some polynomial constants E and Ē. The result follows. �

THEOREM 8.1.3. Let (x, σ, F ) be a uniformly (L, g,G) mixed-tense (g ≥ n + 3), uniformly
(L,HL) detailed weak progressive Hörmander system, set l = L, there exists polynomial con-
stants C,D,M and ν such that for any y ∈ Rn with dt,∞,log(x, y) ≤ D and any t ≤ D,

pt(x, y) ≤ C e
−
Mdt,log,∞(x,y)2

t

tν
.

PROOF. The proof is exactly the same as the proof of Theorem 8.1.2. �

We note the following, which is interesting in itself:

LEMMA 8.1.1. Let d ∈ N. Consider the following vector fields in T l(Rd,R): for i =
0, 1, 2, . . . d, for z ∈ T l(Rd,R), wiz =

∑
|(α,i)|≤l z

α ∂
∂z(α,i) (with the convention that z∅ = 1)

The tension G of order (l̄,∞) of the SDE driven by w, restricted to a Euclidean ball of radius R
(R > 0), is bounded above by a constant that depends on l̄ and R only.
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PROOF. We have, by Cauchy-Schwarz:

G ≤
∑
N≥0

sup
v∈Tl(Rd,R)
|v|=1

sup
x∈B(0,R)

sup
v1,v2...vN∈Tl(Rd,R)

|v1|,|v2|,...|vN |=1

∑
γ∈Multi({0,1,...,d})

|γ|≤l̄

〈 ∂wγx
∂v1∂v2 . . . ∂vN

, v〉2

≤
∑
N≥0

sup
v∈Tl(Rd,R)
|v|=1

sup
x∈B(0,R)

∑
|αk|≤l∀k

α∈Multi({0,1,...,d})

∑
γ∈Multi({0,1,...,d})

|γ|≤l̄

〈 ∂wγx

∂eα1∂eα2 . . . ∂eαN
, v〉2.

Now, observe the following crucial fact:

∂wγz
∂eβ

=
∂

∂z(β,γ)
,

so we can continue the above calculation as follows:

G ≤
∑
N≥0

sup
v∈Tl(Rd,R)
|v|=1

sup
x∈B(0,R)

∑
∀k,|αk|≤l

∑
γ∈Multi({0,1,...,d})

|γ|≤l̄

〈 ∂wγx

∂eα1∂eα2 . . . ∂eαN
, v〉2

≤
∑
N≥0

sup
v∈Tl(Rd,R)
|v|=1

sup
x∈B(0,R)

 ∑
γ∈Multi({0,1,...,d})

|γ|≤l̄

〈
∑
β

xβ∂

∂x(β,γ)
, v〉2 +

∑
γ∈Multi({0,1,...,d})

|γ|≤l̄

∑
β

〈 ∂

∂x(β,γ)
, v〉2


≤ l̄|v|2|x|2 + l̄|v|2 = l̄ + l̄|x|2 ≤ l̄(1 +R2).

�

LEMMA 8.1.2. Let d ∈ N. Consider the following vector fields in Ll(Rd,R): for i =
0, 1, 2, . . . d, for z ∈ T l(Rd,R), wiz =

∑
#(α)≤l−1 z

α ∂
∂z(α,i) (with the convention that z∅ =

1). The weak Hörmander constant Hl, restricted to a Euclidean ball of radius R (R > 0) in
Ll(Rd,R), is bounded below by a proper constant (depending on l and R only, not on d).

PROOF. By Lemmas 3.5.1 and 8.1.1, is equivalent to prove that any vector v in Ll(Rd,R)

there exist some λα such that
∑
|α|≤l λαw

[α] = v. It is equivalent to prove the result over Ll(Rd)
rather than Ll(Rd,R), indeed, it follows from the orthogonality of multi-indices that are not a
reordering of each other that if

v ∈ Ll(Rd,R) ⊂ Ll(Rd+1)

and ∑
#(α)≤l

α∈Multi({0,1,...,d})

λαw
[α] = v,

then ∑
|α|≤l

α∈Multi({0,1,...,d})

λαw
[α] = v

(identifying Ll(Rd,R) and its corresponding subset of Ll(Rd+1))
We prove this result by induction over l. The result is clearly true for l = 1. Now suppose the

result is true for l. There is a constant Cl such that for any unit v ∈ Ll(Rd) and any z ∈ Ll(Rd)
with |z| ≤ R, there exist λ such that ∑

#(α)≤l

λαw
[α] = v,
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and
∑

α λ
2
α ≤ C−1

l Now, for fixed z ∈ Ll+1(Rd), let u ∈ Ll+1(Rd) be a unit vector. Set
v = PrLl(Rd)(u) and apply the induction hypothesis. We now have a λ ∈ Ll(Rd) such that∑

#(α)≤l λ
2
α ≤ C−1

l and

PrLl(Rd)(u) = PrLl(Rd)(
∑

#(α)≤l

λαw
[α]).

Recall the explicit formula for w[α]: w[α] =
∑

β zβ
∂

∂z(β,[α]) . In particular, |w[α]| ≤ R. It
follows that

|Prspan#(α)=l+1(e[α])(
∑

#(α)≤l

λαw
[α])|2 ≤ R2C−1

l .

Now note that for #α = l + 1, w[α] = ∂
∂z[α] . Therefore, using also Proposition 7.0.9, we see

that there exist some λα (with #(α) = l + 1) such that∑
#(α)=l+1

w[α] = Prspan#(α)=l+1 e
[α](u)− Prspan#(α)=l+1 e

[α](
∑

#(α)≤l

λαw
[α]),

and ∑
#(α)=l+1

|λα|2 ≤ 2(R2C−1
l +R2)Bl,

where Bl is the constant from Proposition 7.0.9. Clearly this implies∑
#(α)≤l+1

λαw
[α] =u and

∑
#(α)≤l+1

|λα|2 ≤ 2(R2C−1
l +R2)Bl + C−1

l .

We can therefore set Cl+1 = (2(R2C−1
l +R2)Bl +C−1

l )−1, which concludes the proof. �

8.2. Global upper bound for a weak Hörmander system with drift

Here we prove the analogue the result in [37] for systems with drift, with constants which are
still independent of m, but exhibit fast dependence in d. The key, local part of the estimate was
already achieved in the SDE case in [39]. The difference is that our estimate is global (we use
Theorem 8.1.2), but that is at the cost of using the distance dt instead of d̃t (as in [39]). Of course,
no lower bound could hold with the distance dt in general1. Still, our global bound is space-time
integrable.

LEMMA 8.2.1. Let (x, σ, F ) be a uniformly (L, g,G)-tense, uniformly (L,HL) weak Hörman-
der system. For l ≥ L, if g ≥ l + 3 the model (S,Rn, F log(S)T

t ) is regular, and the corresponding
constants γ,Γ, ρ1, ρ2, ρ3, ρ̄1 only depend on the constants from the assumptions, and in particular,
do not depend on the initial point x.

PROOF. Similar results have been proved, in a different formulation, in the drift-free case
in [37] and in the general case in [39]. Our proof is similar but we work on (projections of) log-
signatures rather than signatures. Our notation is closer to [37] (cf. Lemmas (3.15) and (3.23))
than [39], but our result, like [39] but unlike [37], is general enough to apply to systems with non
trivial drifts.

Let r1 = 1
2 min

(
ε
K

β
4n!K2n

)
. For u ∈ B(0, r1) ⊂ Sl, consider the map

fu : B(0, r1)→ Rn, ξ 7→ F
log(S),T
0 (u+ (JF

log(S),T
0 |u)T ξ).

We have βfu ≥ β/2, and the derivatives of f are uniformly bounded by a (proper) constant
independent of u and x. In particular, applying Lemma 5.2.2, we see that there are proper constants
r2, r3 < r1 and C (not dependent on u) such that there exists an open subset Wu of B(u, r2)

1For specific cases where it is possible, see the separated weak Hörmander condition defined later
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such that fu : Wu → B(fu(u), r3) is diffeomorphic, and for any y ∈ Rn, setting gu(y) =

u+ (JF
log(S),T
0 |u)T f−1

u (y), we have

|y − fu(u)| ≤ r3 =⇒ |gu(y)| ≤ C|y − fu(0)|.(8.2.1)

For u ∈ B(0, r2), similarly to the proof of the regularity of linear models (cf. 5.1.8) we define
R1(u) such that

|R1(u)|U = min(|ū|U : Ft(ū) = Ft(u)).

For a continuously differentiable curve h in Rd+1 we will write sol(x, h) for the solution to
the differential equation

X0 = x

dXs =
d∑
i=0

σi(Xs)dh
i
s.

Note that for any x1, x2 ∈ Rm and any smooth curve h,

| sol(x1, h)− sol(x2, h)| ≤ eG|x1 − x2|.(8.2.2)

Now, let h1 be a smooth curve in Rd+1, parametrised over [0, 1] such that logsig(h1) = (t, u).
Let also h2 be a curve in Rd+1 (also parametrised over [0, 1]) such that logsig(h2) = (t, R1(u))−1,
where (t, R1(u))−1 denotes the group inverse of (t, R1(u)). We can ensure |h2|2L2 ≤ C(t+ |u|2U )

and |h1|2L2 ≤ C(|u|2U + t) for some new constant C still not dependent on x or u. Note that if we
write h̄2 for the curve that satisfies h̄2

s = h2
1−s for all s, then logsig(h̄2) = (t, R1(u)).

Let
v = PrSl

(
(t, u)⊗ (t, R1(u))−1

)
.

In the calculations that follow, C, r1, r2 is are constants that can change in each line but only
depends on the constants in the original assumptions, and in particular does not depend on u or x.

We have on the one hand:

| sol(x, h̄2)− F log(S),T
x,t (u)| = | sol(x, h̄2)− F log(S),T

x,t (R1(u))| ≤ C|R1(u)|l+1
U .

and on the other hand

| sol(x, h1)− F log(S),T
x,t (u)| ≤ C|u|l+1

U

Combining both of the above, we have

| sol(x, h1)− sol(x, h̄2)| ≤ C(|u|l+1
U + |R1(u)|l+1

U ),

and therefore, using Eq. (8.2.2),

|x− sol(x, h1 ⊗ h2)| = | sol(x, h̄2 ⊗ h2)− sol(x, h1 ⊗ h2)|

≤ C(|u|l+1
U + |R1(u)|l+1

U ).

But we also have

|F log(S),T
x,0 (v)− sol(x, h1 ⊗ h2)| ≤ C(|u|l+1

U + |R1(u)|l+1
U ).

Therefore, combining the above, we obtain

|F log(S),T
x,0 (v)− x| ≤ C(|u|l+1

U + |R1(u)|l+1
U ) ≤ C|u|l+1

U .

Using (8.2.1), it follows (after making r1 smaller, but still not dependent on x or u) that for
|u|U ≤ r1, we have

|gv(F log(S),T
x,0 (v)− x)− v| ≤ C|u|l+1

U .(8.2.3)

We therefore define

R2(u) = gv(F
log(S),T
x,0 (v)− x).
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Equation (8.2.3), and Lemmas 5.1.2, Lemma 14 and Proposition 6.3.4 ensure that

|R2(u)|U ≤ C|v|U + C|u|(l+1)/l
U ≤ C(|R1(u)|U + |u|U + |u|(l+1)/l

U ) ≤ C|u|U ,

and we can set γ = C for the C from the above equation. Note that the use of Proposition 6.3.4 is
a crucial step of the proof.

The smoothness and differentiability of R2|F−1
t ({u}) follow from the corresponding prop-

erties of gu, and the comparison between the volume forms on the fibers F−1
t ({Ft(u)}) and

F−1
0 ({F0(0)}) follows from the bounds on the determinant of gu and its inverse.

Finally, similarly to the the proof of the regularity of linear models 5.1.8, if

|u|,
√
t ≤ (2(I + 1))−I/2(r1/2)I ,

then |u|U ≤ r1, so we can set ρ3 = (2(I + 1))−I/2(r1/2)I . Then setting ρ2 = ρ3/2, we
certainly have again that |u|,

√
t ≤ ρ1 := ( ρ2

2C
√

2(I+1)
)I implies |R1(u)|U ≤ |u|U ≤ ρ2/C

and |R2(u)| ≤ ρ2, as required. �

REMARK 8.2.2. It is interesting to see how simple addition of vectors in the proof of 5.1.8
replaces approximate Lie group multiplication in the proof of 8.2.1. This is related to the intuitive
idea, explained in the introduction, that the definition of dt,log,∞ obtained from a definition of the
control distance through getting rid of the exponential function in the RDE

dz = ∂f.dγ = ∂f.d exp(log(γ))

for the control.

THEOREM 8.2.1. Let (x, σ, F ) be a uniformly (L, g,G)-tense, uniformly (L,HL) weak Hör-
mander system, with g ≥ (2n + 2)224L + n + 3. There exist constants D,C and M , depending
only on d, n,HL, L,G, such that for any x, y and any t ≤ D,

pt(x, y) ≤ C e−
dt(x,y)2

Mt

|Bdt(x,
√
t)|
.

PROOF. Let l = (2n + 2)224L. Let S denote the projection of the log signature of W on S
as a random variable. Consider the system (0,PrS(wi), Id), where as usual, wi denote the free
vector fields in T l(Rd+1). Consider a smooth localising function ξ such that ξ(S) = 1 if |S| ≤ ρ

2
and ξ(S) = 0 when |S| ≥ ρ, where ρ is taken small enough to ensure

det(JFSTt,S (JFSTt,S )T ) >
HL

2
.

Note that JFST and its derivatives are bounded above by some constant K for any t ≤ 1 (because
g ≥ (2n+ 2)224L + n+ 3 and l = (2n+ 2)224L).

Note that because ST is the solution at time T of the system (0,PrS(wi), Id), and this system
(for any T ≤ ρ), restricted to a ball of radius ρ, is uniformly tense and weak Hörmander for some
fixed constants depending only on d, n,HL, L,G, we can apply Theorem 4.4.1 with the localising
function ξ(S) to obtain (for any T ≤ ρ):

E (ξ(ST )δ(ST = u)) ≤ C e
− |u|

2

MT

T k
,

for some constants C,M, k.
Now, for T ≤ ρ (for instance, T = ρ), for any t ≤ T , consider the random variable R =

δ√
T/t

(St). Because of Brownian scaling, Rt is distributed in the same way as ST . As a result,

E (ξ(RT,t)δ(RT,t = u)) ≤ C e
− |u|

2

MT

T k
.
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Thus we can apply Theorem 8.1.1 to obtain:

E (ξ(RT,t)δ(St = u)) ≤ C e
− |u|

2
S

Mt

t
ν
2

(8.2.4)

where ν is the homogeneous dimension of S .
Further localisation, and further use of scaling, would yield the global equivalent of the above

estimate without a localising function, as is performed in [37] (cf. Theorem 3.12). This is not
strictly necessary to obtain the final estimate however, and to stay in line with the proof of our
other theorems, we don’t go in this direction, and stop at the estimate (8.2.4).

Now, we can use the disintegration argument from our theory on models, more specifically,
Theorem 5.1.1, to obtain the following:

E
(
ξ(RT,t)δ(Ȳt = y)

)
≤ C e−

dlt(x,y)2

Mt

|Bdlt(x,
√
t)|

≤ C e−
dt(x,y)2

Mt

|Bdt(x,
√
t)|
,

for some (different) C,M changing between the two expressions after an application of Theo-
rem 7.0.1.

Now, we can compare the (ξ(RT,t)-perturbed) density of the KSTA Ȳt to that of the actual
solution Yt using Theorem 6.4.1 to get:

E (ξ(RT,t)δ(Yt = y)) ≤ C e−
dt(x,y)2

Mt

|Bdt(x,
√
t)|

+Mt,

for some (different) C,M,D and for any t, dt(x, y)2 ≤ D.
Now, because the Malliavin derivative of ξ(RT,t) is bounded regardless of whether |St| ≤ ρ,

1 − ξ(RT,t) = 0 whenever |St| > ρ
2 and the system ((x), (σ), F ) is uniformly tense and weak

Hörmander, we can use Theorem 4.4.1 with localising function (1− ξ(RT,t)) to obtain:

E ((1− ξ(RT,t))δ(Yt = y)) ≤ C e
− |∗x−y|

2

Mt

tk

√
P(|St| ≥

ρ

2
)

≤ C e
− |∗x−y|

2

Mt

tk
e−

Q
t

≤ Ce−
Q
t ≤ Ct,

for some C,M,Q, k changing from line to line and for any t ≤ D for some constant D.

Fix a constant M1 ≤ D (for instance, M1 = D). For t ≤ e−
dt(x,y)2

2νMt , where ν is the constant
in Theorem 8.1.2, using the above estimates, we get the following (where C,M,Q are constants
that are allowed to depend on M1 and to change from line to line):

E (δ(Yt = y)) = E (ξ(RT,t)δ(Yt = y)) + E ((1− ξ(RT,t))δ(Yt = y))(8.2.5)

≤ C e−
dt(x,y)2

Mt

|Bdt(x,
√
t)|

+Mt+ Ct

≤ C e−
dt(x,y)2

Mt

|Bdt(x,
√
t)|

+ (M + C)e−
dt(x,y)2

2νMt

≤ C e−
dt(x,y)2

Mt

|Bdt(x,
√
t)|
.
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Now, for t ≥ e−
dt(x,y)2

2νMt , using Theorem 8.1.2, we get (for some constant ν and some constants
C,M that can change from line to line, M coming from the application of Theorem 8.1.2), for
any x, y, t such that t, dt(x, y)2 ≤ D (for some constant D)

E (δ(Yt = y)) ≤ C e
− dt(x,y)2

Mt

tν
(8.2.6)

≤ Ce−
dt(x,y)2

2Mt
e−

dt(x,y)2

2Mt

tν

≤ C e−
dt(x,y)2

2Mt

|Bdt(x,
√
t)|
.

Note that by 7.0.6 and 7.0.14, we have that dt(x, y) ≤ K(1 + |∗x − y|) for some constant
K. Noting also that for dt(x, y)2 ≥ D there is a constant D′ such that |∗x − y| ≥ D′ (by
Proposition 7.0.7), it follows that dt(x, y) ≤ K(|∗x−y|) for some (otherK) whenever dt(x, y)2 ≥
D. Finally, if dt(x, y)2 ≥ D, we conclude (by Theorems 4.4.2 and the above remarks) that for
some ν,

E(δ(Yt = y)) ≤ C e−
dt(x,y)2

Mt

|Bdt(x,
√
t)|

(8.2.7)

for some constants C,M .
Putting together the estimates (8.2.5), (8.2.6) and (8.2.7) yields the desired estimate. �

8.2.1. Time-dependent SDE. As a particular case of the above theorem, we can obtain a
full generalisation to time-dependent coefficients of the main upper bound in [39], and a partial
generalisation of the upper bound result in [37].

Let X be the solution to the following SDE:

X0 = x0 ∈ Rn

dXt =
d∑
i=1

σi(t,Xt) ◦ dW i
t + σ0(t,Xt)dt.

Define iterated brackets (in Rn) of the σi’s via the following iterative formula:

σ[i] = σi and∀α ∈ Multi({0, 1, . . . , d})

σ[i,α] =
∂σ[α]

∂σi
− ∂σi

∂σ[α]
if i 6= 0 and

σ[0,α] =
∂σ[α]

∂σ0
+
∂σ[α]

∂t
− ∂σ0

∂σ[α]
.

We assume that the vector fields σi are in C∞ for each i, and satisfy the weak Hörmander
condition uniformly in the following sense:

There exist constants L,HL such that for all x ∈ Rn, for all t ∈ R+ and for all unit v ∈ Rn,∑
|α|≤L
α 6=(0)

〈σ[α](t, x), v〉2 ≥ HL.

The distances dt and d̃t from the rest of this thesis have the following definition in this particular
context: dt(x, y) is the minimum of∫ 1

0

√√√√|γ̇0
s|+

d∑
i=1

|γ̇is|2ds
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over all the possible smooth curves γ ∈ Rd+1 ⊗ [0, 1] such that

γ0
1 = t,

and y is the solution to the following SDE:

X0 = x

dXs =
d∑
i=1

σi(γ0
s , Xs)dγ

i
s + σ0(γ0

s , Xs)dt.

d̃t is the minimum of ∫ 1

0

√√√√t+
d∑
i=1

|γ̇is|2ds

over all the possible smooth curves γ ∈ Rd ⊗ [0, 1] such that y is the solution to the following
SDE:

X0 = x

dXs =
d∑
i=1

σi(s,Xs)dγ
i
s + σ0(s,Xs)dt.

Now, applying Theorem 8.2.1, we obtain:

THEOREM 8.2.2 (General integrable upper bound for time-dependent SDE). Let X be the
solution to the following SDE:

X0 = x0 ∈ Rn

dXt =
d∑
i=1

σi(t,Xt) ◦ dW i
t + σ0(t,Xt)dt,

where the σi’s are supposed to satisfy the C∞ and weak Hörmander conditions from above. There
exist constants D,C,M > 0 such that for all t ≤ D, Xt admits a density pt(x, y) satisfying the
following inequality:

pt(x, y) ≤ C e−
dt(x,y)2

Mt

Bdt(x,
√
t)
,

where dt is the distance defined above.

In particular, the above implies the following two theorems:

THEOREM 8.2.3 (Time dependent version of Léandre’s result from [39]). Let X be the solu-
tion to the following SDE:

X0 = x0 ∈ Rn

dXt =
d∑
i=1

σi(t,Xt) ◦ dW i
t + σ0(t,Xt)dt,

where the σi’s are supposed to satisfy the C∞ and weak Hörmander conditions from above. There
exist constants D,C,M > 0 such that for all t ≤ D, Xt admits a density pt(x, y), and for all
xy ∈ Rn such that d̃t(x, y) ≤

√
t, we have

pt(x, y) ≤ C

|Bd̃t(x,
√
t)|
,

where d̃t is the distance defined above.
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For vector fields satisfying the analogue of the Kusuoka-Stroock condition:

THEOREM 8.2.4. Let X be the solution to the following SDE:

X0 = x0 ∈ Rn

dXt =

d∑
i=1

σi(t,Xt) ◦ dW i
t + σ0(t,Xt)dt.

We assume that
(1) The σi’s are C∞

(2) For any t ≥ 0, the time-frozen vector fields σ1(t, .), σ2(t, .), . . . , σd(t, .) satisfy the (strong)
Hörmander condition uniformly.

(3) There exists a constant Λ such that for any x ∈ Rn, there exist some real numbers λ1, . . . , λd
such that

d∑
i=1

λi(x)σi(x) = σ0(x) and

d∑
i=1

|λi(x)|2 ≤ Λ.

Define the distance dt as the minimum of∫ 1

0

√√√√|γ̇0
s|+

d∑
i=1

|γ̇is|2ds

over all the possible smooth curves γ ∈ Rd+1 ⊗ [0, 1] such that

γ0
1 = t,

and y is the solution to the following SDE:

X0 = x

dXs =
d∑
i=1

σi(γ0
s , Xs)dγ

i
s.

Then there exist constantsD,C,M such that for any t ≤ D,Xt admits a density that satisfies,
for all x, y ∈ Rn:

pt(x, y) ≤ C e−
dt(x,y)2

Mt

|Bdt(x,
√
t)|
.

8.3. Polynomial integrable upper bound for progressive Hörmander systems

We now have everything in place to prove the main result of the thesis:

THEOREM 8.3.1. LetA = (x, σ, F ), be a uniformly (r, 2L+ 1, g,G)-mixed tense2, uniformly
(L,HL)-progressive Hörmander system such that the σ are (L,HL)-detailed-Progressively uni-
formly finitely generated. Suppose that g ≥ 2L + 3 + nL. There exist polynomial constants
C,M,D such that for any t ≤ D,

pt(x, y) = Ex(δ(Yt = y)) ≤ C e−
dt,log,∞(x,y)2

Mt

|Bdt,log,∞(x,
√
t)|
.

2In particular, F is assumed to be linear
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If A is only (r, L, g,G)-mixed tense and (H,L)-detailed weak progressive Hörmander locally3

inside a Euclidean ball B(∗x,R) ⊂ Rn, there are proper constants C,M such that the above
estimate holds for y ∈ B(∗x, R2 ).

REMARK 8.3.1. The proof has the following advantages:
• It works directly with the log-homogeneous distance, and takes advantage of the pro-

gressive Hörmander structure of the problem.
• There is no need to use the density of a Kusuoka-Stroock-Taylor approximation to ap-

proximate the density of the target random variable, or to use the corresponding Fourier
argument from [37] or the corresponding Malliavin calculus argument from [6, 50, 8].
• Assuming a proof of the strongly polynomial equivalent of Theorem 4.4.1, this proof

would yield strongly polynomial constants. (This also applies to the proof of Theo-
rem 8.6.1)

PROOF. The main differences with the proof of Theorem 8.2.1 are that
• We have to be more careful about scaling, and use the full power of Theorem 5.2.6, rather

than the obvious scaling-invariance of Brownian motion
• All constants are polynomial because the previous propositions we are using have poly-

nomial constants
• The main ‘auxiliary random variable’ of interest is now the compensated signature, but

the localising random variable is still composed of a function involving the log signature,
as well as other components4.
• Thanks to the full construction of the compensated signature, we don’t need the Taylor

approximation Ỹt and we can work directly on the actual solution Yt. This means we
don’t need to us Theorem 6.4.1 or any Fourier argument, and is also the reason why we
can have a boundedness assumption as weak as controlling the mixed tension of orders
(2L+ 1, g) rather than ((2n+ 2)224L + L+ 1, g).

We fix l = L (we truncate signatures at order L).
Step I [A computational lemma] The first thing to see is that, for | log(S)| ≤ ρ (for some fixed

ρ ≤ 1
2 ), norm of the projection PrT\L(S) of the signature S = exp(log(S)) on the orthogonal

complement of the log-signature space Ll(Rd,R) is bounded by a proper constant.
Indeed, by the series expansion for the exponential, and writing U = log(S), we have

PrT\L(exp(U)) = PrT\L

(
L∑
k=2

U⊗k

k!

)
.

Furthermore, distributing the products shows that the Euclidean norm |U⊗k| in T l(Rd,R) of
U⊗k is bounded by a proper constant times |U |k.

Step II [Defining an auxiliary system]
Consider the systemR defined as follows:

(S,X,Z) ∈ (TL(Rd,R))⊕ Rm ⊕ ((TL+1(Rd,R)⊗ TL(Rd,R))⊗ Rm)

(S0, X0, Z0) = (0, x, 0)

dS(α,i)
s = Sαs ◦ dW i

s

dXs =
d∑
i=0

σi(Xs) ◦ dW i
s

3It is admittedly quite a strict requirement that the boundedness assumptions must hold for any x̄ such that F (x̄) ∈
B(∗x,R), but it is satisfied for instance in the case of a composite system with core SDE satisfying conditions locally
but with the conditions on λ being uniform over the background space.

4Assuming a larger value of g, we could work with the Taylor approximation first, in which case the localising
random variable is just a function of the log signature.
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dZβ,(i)s = σβ(Xs) ◦ dW i
s

dZβ,(α,i)s = Zβ,αs ◦ dW i
s

R = FSR∞((Ss, Xs, Zs))

where R is the compensated signature defined in (7.1.1). This means (from the construction of the
compensated signature), that FSR∞ takes the following form

PrFi(F
SR∞(s, S, x, z)) =

∑
|α|=i

ciαS
α +

∑
|α|=i+1

ci+1
α Sα + . . .

+
∑
|α|=L

cLαS
α +

∑
|α|=L+1

cL+1
α Zα,α

where for j = i, i+ 1, . . . , L+ 1, the cjα’s are column vectors in

Fi = span |α|=i
α6=(0)

e[α]

coming from the construction of the compensated signature and are such that FSR∞ is a properly
bounded linear operator and

∑
|α|=i c

i
αs
α has a properly bounded pseudo-inverse.

By straightforward generalisations of step I and Lemma 8.1.2, there is a proper constant ρ
such that the systemR, restricted to |(s, S)| ≤ ρ is uniformly (L,H)-weak Hörmander, for some
proper constant H . Furthermore, a straightforward generalisation of Lemma 8.1.1 ensures that
the background space component of R (still restricted to restricted to |(s, S)| ≤ ρ) is uniformly
(L, g,G)-tense for some proper constant G:

Indeed, write

Ω = (TL(Rd,R))⊕ Rm ⊕ ((TL+1(Rd,R)⊗ TL(Rd,R))⊗ Rm)

= spanα e
α ⊕ spani ei ⊕ spanα,β,i e

α,β
i ,

M = Multi({0, 1, . . . , d}),

∀v ∈ Ω, ᾱ = (α, β, γ) ∈M⊗ (M⊗M), v̄ᾱ = eα +
∑
i

v̄iei +
∑
i

v̄β,γi eβ,γi ,

write (with some notational shortcuts)

wi =
∑
α,i

zα
∂

∂z(α,i)
+
∑
i

σi(Prspani ei(z)) .
∂

∂z .

+
∑
α,β,i

zβ,α
∂

∂zβ,(α,i)
+
∑

σβ(Prspani ei(z)) .
∂

∂z
β,(i).

for the vector fields driving the above equation, E for the standard basis of Rm, and write com-
ponents of elements of Ω as zα = zα,∅∅ , zi = z∅,∅i , zα,βi for α, β ∈ Multi({0, 1, . . . , d}),
i ∈ {0, 1, . . . , d}. Using vector field notation, and notational shortcuts such as ∂

∂zα,β
for
∑

i
∂

∂zα,βi

,

writing γ̄ for the truncation of the multi-index γ so that γ = (γ̄, γ#(γ)), for any v ∈ Ω with |v| = 1

any x ∈ B(0, R) ⊂ Ω, and any v1, v2 . . . , vN ∈ Ω with |v1|, |v2|, . . . , |vN | = 1, then we have∑
0≤N≤g

∑
γ∈M
|γ|≤L

〈 ∂Nwγx
∂v1∂v2 . . . ∂vN

, v〉2(8.3.1)

≤
∑

0≤N≤g

∑
∀k,|αk|≤l

αk∈M⊗(M⊗M)

∑
γ∈M
|γ|≤L

〈 ∂Nwγx

∂v1
α1∂v2

α2
. . . ∂vN

αN

, v〉2

≤
∑
γ∈M
|γ|≤L

〈
∑
δ

xδ∂

∂x(δ,γ)
, v〉2 +

∑
γ∈M
|γ|≤L

∑
δ

〈 ∂

∂x(δ,γ)
, v〉2
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+
∑
γ∈M
|γ|≤L

〈 ∂Nσγ

∂ Prspani ei(v
1)∂ Prspani ei(v

2) . . . ∂ Prspani ei(v
N )

∂

∂x .
, v〉2

∑
0≤N≤g

∑
γ∈M
|γ|≤L

∑
|β|=L+1

〈
∑
α

xβ,α∂

∂xβ,(α,γ)
, v〉2 +

∑
γ∈M
|γ|≤L

∑
|β|=L+1

∑
α

〈 ∂

∂xβ,(α,γ)
, v〉2

+
∑

0≤N≤g

∑
γ∈M
|γ|≤L

∑
|β|=L+1

〈 ∂Nσ(β,γ̄)

∂ Prspani ei(v
1)∂ Prspani ei(v

2) . . . ∂ Prspani ei(v
N )

∂

∂xβ,γ#(γ)
, v〉2

≤ (L|v|2|x|2 + L|v|2) + G + (L|v|2|x|2 + L|v|2) + G
∑
β

∑
γ

|vβ,(γ#(γ)). |2

≤ 2G + 2L(|x|2 + 1) ≤ 2G + 2L(R2 + 1).

Since the progressive Hörmander condition ensures that the operator norm of FSR∞ (which is
linear) is bounded above by a proper constant, this ensures that the auxiliary system is (L, g,G)-
tense for some proper constant G.

Next, note that for any |α| ≤ L, we have

w
[α]
0 =

∂

∂z
[α],∅
∅

,

from which it follows, using Proposition 8.1.2, that the weak Hörmander constant of the auxiliary
system, evaluated at 0, is a proper constant. Finally, the above calculation (8.3.1), together with
Proposition 7.0.9, ensures also that the derivative of the weak Hörmander constant in any unit
direction of

(TL(Rd,R))⊕ Rm ⊕ ((TL+1(Rd,R)⊗ TL(Rd,R))⊗ Rm),

is bounded by a proper constant.
It follows that there is a proper constant ρ such that the systemR, restricted to |(S,X,Z)| ≤ ρ,

is uniformly (L, g,G)-tense and (L,H) weak Hörmander for proper constants G,H .
Step III [Scaling and local estimate]
Recall that the compensated signature space F is equipped with a graded structure, and a

family of dilations. For T ≤ ρ (ρ being defined in step II), and for t ≤ T , we define the random
variable

Ξt,T = δ√
T/t

(FSR∞((t, St, Xt)))

We write W̃s for WsT/t. By Brownian scaling,

W̃s 'Ws

√
T/s.

So we can now rewrite Ξt,T = δ√
T/t

(FSR∞((t, St, Xt)) as the solution at time T to the
following system:

(s, S̃,X, Z) ∈ (T l(Rd,R))⊕ Rm ⊕ ((T l(Rd,R)⊗ T l(Rd,R))⊗ Rm)

(S̃0, X̃0) = (0, x)

d(s, S̃s) =
d∑
i=0

wis((s, S̃s)) ◦ dW̃ i
s

dX̃s =

d∑
i=0

σi(X̃s)√
T/t

◦ dW̃ i
s

dZ̃β,(i) = σβ(X̃s) ◦ dW̃ i
s

dZ̃β,(α,i)s = Z̃β,αs ◦ dW̃ i
s
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Ξ̃t,Ts = φ(s, S̃s, X̃s, Z̃s)

=
∑
|α|=i

ciαS̃
α
s +

∑
|α|=i+1

1√
T/t

ci+1
α S̃αs + . . .

+
∑
|α|=L

1√
T/t

L−i c
L
αS̃

α
s +

∑
|α|=L+1

1√
T/t

L+1−i c
L+1
α Z̃α,αs .

For ξ being a smooth localising function on

(TL(Rd,R))⊕ Rm ⊕ ((TL+1(Rd,R)⊗ TL(Rd,R))⊗ Rm)

with ξ(ε) = 0 if |ε| ≥ ρ and ξ(ε) = 1 if |ε| ≥ ρ
2 , we define our localising random variable as

ζt = ξ(St, Zt). Because the above system is still (L,H)-weak Hörmander, and (L, g,G)-tense
for |(s, S, Z)| ≤ ρ, (with the same G, ρ,H as in step II) we can now apply Lemma 8.1.1 to obtain

E(δ(R∞ = z)ζt) ≤ C
e−
|z|2F
Mt

tν/2
,

valid for all |z|2F , t ≤ D, for some proper constants D,C,M . Then because FRT (R∞) = Yt, we
can apply Theorem 5.1.1 to obtain

E(δ(Yt = y)ζt) ≤ C
e−

dt,log,L(x,y)2

Mt

|Bdt,log,L
(x,
√
t)|
,

which holds for all t ≤ D and for all x, y such that dt,log,L(x, y)2 ≤ D, where D,C,M are all
polynomial constants. By Theorem 7.1.1 and the (proper) doubling condition for dl, changing the
constants, but keeping them polynomial, we have that for all t ≤ D and for all x, y such that
dt,log,∞(x, y)2 ≤ D,

E(δ(Yt = y)ζt) ≤ C
e−

dt,log,∞(x,y)2

Mt

|Bdt,log,l
(x,
√
t)|
.

Now we can proceed as in the proof of Theorem 8.2.1:
Step IV [Patching]
This step is almost exactly the same as in the proof of Theorem 8.2.1 except that the constants

are polynomial and the theorems used are the progressive equivalents of the ones used in that
proof.

Because the Malliavin derivative of ζ is (properly) bounded regardless of whether |(s, S, Z)| ≤
ρ, 1−ζ = 0 for |(s, S, Z)| > ρ

2 , and the original systemA is properly weak Hörmander and tense,
the we can apply Theorem 4.4.1 with localising function 1− ζt to obtain:

E(δ(Ξt,T = y)(1− ζt)) ≤ C
e−
|∗x−y|2
Mt

tµ

for some proper constants µ,M and a polynomial C.

Hence we can write, for t ≤ exp

(
d2
t,log,∞(x,y)

2µMt

)
where M,C are polynomial constants that

change from line to line:

E (δ(Yt = y)) = E (ζtδ(Yt = y)) + E ((1− ζt)δ(Yt = y))

≤ C e−
dt,log,∞(x,y)2

Mt

|Bdt,log,∞(x,
√
t)|

+Mt+ Ct

≤ C e−
dt,log,∞(x,y)2

Mt

|Bdt,log,∞(x,
√
t)|

+ (M + C)e
d2t,log,∞(x,y)

2µMt



8.5. LOWER BOUNDS FOR SITUATIONS WITH ZERO DRIFT 125

≤ C e−
dt,log,∞(x,y)2

Mt

|Bdt,log,∞(x,
√
t)|

Next, for t ≥ exp

(
d2
t,log,∞(x,y)

2µMt

)
, we have by Theorem 8.1.3, for some proper constants

ν,M,C changing from line to line:

pt(x, y) ≤ C
exp

(
−dt,log,∞(x,y)2

Mt

)
tν

≤ exp

(
−
dt,log,∞(x, y)2

2Mt

)
e−M1t/2

tν

≤ C
exp

(
−dt,log,∞(x,y)2

Mt

)
|Bdt,log,∞(x,

√
t)|

.

Finally, Proposition 7.0.14 and the local equivalence between dlt and dt,log,∞, there exists a
proper constant K such that dt,log,∞(x, y) ≤ K(|∗x− y|+ 1). Noting also that for dt(x, y)2 ≥ D
there is a proper constant D′ such that |∗x − y| ≥ D′ (by Proposition 7.1.9), it follows that
dt(x, y) ≤ K(|∗x− y|) for some (other, proper) K whenever dt(x, y)2 ≥ D.

Putting together those three estimates, we obtain the required result.
�

8.4. Polynomial control bounds for detailed-progressive Hörmander systems

One can also remove the UFPG condition on the background vector fields:

THEOREM 8.4.1. LetA = (x, σ, F ), be a uniformly (r, 2L+ 1, g,G)-mixed tense5, uniformly
(L,HL)-progressive Hörmander system. Suppose that g ≥ 2L+ 3 + nL. There exist polynomial
constants C,M,D such that for any t ≤ D,

pt(x, y) ≤ C e−
dt(x,y)2

Mt

|Bdt(x,
√
t)|
.

PROOF. The proof is almost exactly the same as that of Theorem 8.3.1: we only use the first
part of Theorem 7.1.1, and obtain the most local part of the estimate immediately. The mid-local
part of the estimate is known from 8.1.2 (contrary to the proof of 8.3.1, we use this estimate as it
is without changing the distance inside the exponential). And as usual, the ‘dt >> 1’ part of the
estimate follows from Euclidean bounds 4.4.2. �

8.5. Lower bounds for situations with zero drift

The result in this section is a generalisation of the lower bound in [37] to systems instead of
SDE. Unlike the result in [37], our result is only local.

We prove the result directly from the density of the log-signature, rather than attempting to
use bounds on the density of Xt in its intrinsic space.

THEOREM 8.5.1. Let A = (x, σ, F ) be a uniformly (g,G)-tense6, uniformly (L,HL) Hör-
mander system with σ0

z = 0 for any z ∈ Rm. Suppose g ≥ (2n + 2)224L + n + 3, and let
d : Rm ⊗ Rn → R+ be our ‘distance’ dt, which in this case obeys

d(x, y) = inf
x̃∈F−1({y})

dc(x, x̃)

where dc is the Carnot-Carathéodory distance in Rm (in particular, dc(x, x̃) = 0 if x, x̃ are not
on the same leaf of the foliation induced by σ).

5In particular, F is assumed to be linear
6Because we don’t aim at controlling the constants here, saying that σ is C∞ would suffice.
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Yt admits a density pt(x, y) in Rn that satisfies, for some constants C,M,D depending only
on g,G,L,HL, n,m, d, for any t ≤ D and for any x, y ∈ Rm such that d(x, y)2 ≤ Dt:

pt(x, y) ≥ C

|Bd(x,
√
t)|
.

REMARK 8.5.1.
• Note that as usual, for x ∈ Rm, Bd(x,

√
t) is a subset of Rn.

• We have written d instead of dt, because the assumption on the drift implies that dt does not
depend on t.
• The driftlessness assumption also means that the above does not apply to time-dependent SDE

PROOF. The proof is very similar to the proof of the analogous result in [37], (cf. p 426 of
said reference).

Fix l = (2n + 2)224L. Let ξt ∈ Ll(Rd) be the log-signature of W at time t. By the support
theorem, and concatenation/scaling, there exist constants C,M such that the density satisfies for
s ∈ Ll(Rd)

pt(s) ≥ C
e−
|s|2
Ll(Rd)
Mt

t
ν
2

.

(See (up to a constant change in the metric used) Theorem 3.12 in [37]) where ν is the homoge-
neous dimension of Ll(Rd).

It follows that we can use Theorem 5.1.2 to obtain the following result for the density of the
Taylor approximation Ỹt:

E(δ(Ȳt = y)) ≥ C e−
dl(x,y)2

Mt

|Bdl(x,
√
t)|
.

Then for d(x, y)2, t ≤ D for some constant D, we have (using Theorem 7.0.1):

E(δ(Ȳt = y)) ≥ C e−
d(x,y)2

Mt

|Bd(x,
√
t)|
.

Then using Theorem 6.4.1, we obtain for t ≤ D and d(x, y)2 ≤M1t for some fixed M1 ≤ D, for
C,M being constants changing from line to line:

E(δ(Yt = y)) ≥ E(δ(Ȳt = y)) +
(
E(δ(Yt = y))− E(δ(Ȳt = y))

)
≥ C e−

d(x,y)2

Mt

|Bd(x,
√
t)|
−Mt

≥ C e−
d(x,y)2

Mt

|Bd(x,
√
t)|

≥ C

|Bd(x,
√
t)|
,

as expected. �

8.6. Polynomial diagonal estimate in the general case

The main purpose of this section is to show potential for proving a proper version of The-
orem 8.2.1 with a suitably altered distance or assumptions, most likely with the dt,∞ distance7

with polynomial constants outside the exponential. The estimate we actually prove is in itself, of
course, unsatisfactory.

7Clearly dt,∞ and dt are not properly equivalent, except under much stricter assumptions For instance, proper
sparsity of the projection of the σ tensor on span#(α)>1 e

α.
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PROPOSITION 8.6.1 (Polynomial diagonal estimate). Let A = (x, σ, F ) be a uniformly
(L, g,G)-tense, uniformly (L,HL)-weak Hörmander system. Fix N ∈ N, and suppose that
g ≥ (2n + 2)224L + n + 3. There exist polynomial constants D,C such that for any t ≤ D
and any x ∈ Rm, and i ∈ {0, 1, . . . , d},

pt(x, ∗x) ≤ C

|Bdt,log,L
(x,
√
t)|
.

PROOF. As usual, without loss of generality, F is linear. Fix l = (2n + 2)224L. Because
dt,log,L and dt,log,l are locally properly equivalent (cf. Proposition 5.1.12 or 5.2.6), we can work
with the latter.

We begin with the following auxiliary (Stratonovich) system R1, where the target random
variable is Ỹ :

Xt→0 ∈ Rm×m, X0→0 = Id,

Xt ∈ Rm, X0 = x,

X̃t ∈ Rm, X̃0 = 0,

dXt =
d∑
i=0

σi(Xt) ◦ dW i
t ,

dX̃t =
d∑
i=0

Xt→0σ
i(Xt) ◦ dW i

t ,

Ỹt = F (X̃t).

Let U be the orthogonal complement in S of the kernel of the FSRr map. We will approximate
Ỹt by the random variable Ȳt, solution of the following auxiliary systemR2:

St ∈ T l(Rd,R), S0 = 0,

d(s, S̃s) =
d∑
i=0

wis((s, S̃s)) ◦ dW̃ i,

Ȳt = FS,T (PrU (St)) ∈ Rn.

We use the localising function φ(G) where φ is such that φ(z) = 0 when |z| ≥ 2ε and φ(z) = 1
when |z| ≤ ε, and G = sup0≤s≤t | Id−X0→s|, | Id−Xs→0|, |St|, for ε smaller than the (proper)
constants in Theorems 7.1.1 etc.

By a similar scaling argument to the proof of Theorem 8.2.1, and use of the disintegration
formula 5.1.1, we have for any y that

E(δ(Ȳt = y)φ(G)) ≤ C

|Bdt,log,l
(x,
√
t)|
,

for some polynomial constant C.
Next, recall that for any three times differentiable vector field V on Rm, we have (using

Stratonovich integrals)

Xt→0V (Xt) = V (x0) +

∫ t

0

d∑
k=0

Xs→0[σk, V ](Xs) ◦ dW k
s .

This shows that the Ȳt is the stochastic Taylor approximation of Ỹt. Indeed, writing as usual
LL(E) for the set of words a1a2 . . . ak over the set E which are the smallest in lexicographic
order out of all the permutations of a1a2 . . . ak obtained by switching elements inside brackets in
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the expression [a1, [a2, [. . . ak . . .]]], we have,

Ỹt =

d∑
i=0

∫ t

0
∗Xs→0σ

i(Xs)dW
i
s

=
∑

#(α)≤l

∗σ[α]Wα +
∑

#(α)=l+1

∫ α

∗Xs→0σ
[α](X . )dWα

=
∑

#(α≤l,
α∈LL({0,1,...,d})

∗σ[α]W [α] +
∑

#(α)=l+1
α∈LL({0,1,...,d})

∫ α

∗Xs→0σ
[α](X . )dW [α].

The localised rest
∑

#(α)=l+1

∫ α
φ(G) ∗Xs→0σ

[α](X . )dWα is amenable to application of Theo-
rem 2.1.1. Note first that we have for any unit v ∈ Rm,∑

#(α)=l+1

∫ t

0
〈φ(G)Xs→0σ

[α](Xs), v〉2 ≤ D,

for some polynomial D, then Theorem 2.1.1 ensures that for any R > 0,

P

∣∣∣ ∑
#(α)=l+1

∫ α

φ(G) ∗Xs→0σ
[α](X . )dWα

∣∣∣2 ≥ R
 ≤ Cl exp

(
−

( RCl )
2
l

8t

)
,

with Cl a polynomial constant.
It follows from Theorem 6.4.1 that the following holds with C a polynomial constant: for

any y,

E(δ(Ỹt = y)φ(G)) ≤ C

|Bdt,log,l
(x,
√
t)|
,

in particular,

E(δ(Ỹt = ∗x)φ(G)) ≤ C

|Bdt,log,l
(x,
√
t)|
.

Now, let γ : Rn → R+ be the following approximation of the delta function:

γε(y) =
e−
|∗x−y|2

2ε

(2πε)n/2
,

we have for any ε ≤ ε,

E(γε(Ỹt)φ(G)) = E

e− |∗x−Ỹt|22ε

(2πε)n/2
φ(G)


≤ E

e− |∗x−Yt|22(1+ε)ε

(2πε)n/2
φ(G)


≤ (1 + ε)

n
2 E

 e
− |∗x−Yt|

2

2(1+ε)ε

(2πε(1 + ε))n/2
φ(G)

 = (1 + ε)
n
2 E
(
γε(1+ε)(Ỹt)

)
.

Passing to the limit ε→ 0, we obtain:

E(δ(Ỹt = y)φ(G)) ≤ 2n/2E(δ(Yt = y)φ(G)).

Similarly, we obtain:

E(δ(Ỹt = y)φ(G)) ≥ 2−n/2E(δ(Yt = y)φ(G)).

The result follows. �
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CHAPTER 9

Some examples

9.0.1. L=2. The following theorem is a slight variation of the main result proved in [8] and
in Chapter 4 of [50] to (time-dependent) SDE that satisfy the relevant assumptions globally.

THEOREM 9.0.1. Let A = (x, σ, F ) be a uniformly (2, 4 + n,G)-tense, uniformly (2, H2)-
weak Hörmander system such that the background vector fields σ are uniformly finitely generated
(with constant H2). There exist proper constants C,M and polynomial constants C̄ and M̄ such
that for any x ∈ Rm, y ∈ Rn,

pt(x, y) ≤ C
exp

(
−dt,log,∞(x,y)2

Mt

)
|Bdt,log,∞(x,

√
t)|

and pt(x, y) ≤ C̄
exp

(
−d(x,y)2

M̄t

)
|Bd(x,

√
t)|

,

where d is the Carnot-Carathéodory distance.

PROOF. Clearly, any (L,HL)-weak Hörmander system1 is also (L,HL) detailed-Progressive
weak Hörmander, therefore, we can use Theorem 8.3.1 to obtain the first estimate. The only extra
step to get the second estimate is to use Proposition 7.2.4. Note also that for a time-dependent
SDE we can express the Hörmander of order two condition in terms of brackets of the time-frozen
coefficients, since derivatives of σi’s with respect to time are already of order three. �

9.0.2. The Pigato SDE. Consider the following SDE, considered by Pigato in [50] (Chap-
ter 3) (here m = n = 2, d = 1):

Xt ∈ R2, X0 = 0,

dXt = σ1(Xs) ◦ dWt + σ0(Xs)dt,

with the assumptions being weak Hörmander of order 3, uniform boundedness of coefficients and
the following geometric condition on the variance: there exists a uniformly bounded κ : R2 → R
such that for any unit v ∈ R2,

∂σ(x)

∂v
= κσ(x).

This is quite a strong assumption: It makes the system mono-scaled, i.e. settingEi = span|α|≤i σ
α

ensures that for all i, inf |v|=1
v∈Ei

∑
|α|≤i〈σ[α], v〉2 is bounded below by a constant H . In mono-scaled

situations, it is enough to use an auxiliary object of the same dimension as the original diffusion,
and to use the chain rule instead of the disintegration formula. This is equivalent to not using
any auxiliary objects and using a homogeneous norm on the target space Rn after picking an
appropriate basis and turning it into a graded space.

This system is progressive Hörmander, in particular, Theorem 8.3.1 applies. The ‘distance’
dt,log,∞ has similar balls of radius

√
t to those of the metric introduced in [50].

REMARK 9.0.1. As mentioned in the introduction, the estimate in [50] is sharper for t .
d2 . t ln(t), because the ‘distance’ we use is not as well tailored to the problem. Nevertheless,
our estimate is still space-time integrable.

1This includes any (L,HL)-weak Hörmander time-dependent SDE.

130
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9.0.3. Higher-dimensional Pigato type SDE’s. Consider the following SDE:

Xt ∈ Rn, X0 = 0,

dXt = σ1(Xs) ◦ dWt + σ0(Xs)dt,

assuming the uniform weak Hörmander condition of order three, that the vector fields are C∞,
and the following generalisation of the geometric condition on the variance:

There exist smooth functions λ1, λ2, . . . , λd : Rn → R and a constant Λ such that for all
x ∈ Rn,

σ(0)(x) =
d∑
i=1

λi(x)σi(x) and
d∑
i=1

|λi|2 ≤ Λ,

then the resulting vector fields are uniformly (detailed-) progressively finitely generated and the
system is progressive Hörmander. In particular, if we have fixed suitable bounds on Λ, the weak
Hörmander constant and on the tension, and F : Rn → Rk is a linear map with fixed bonds on
the operator norms of F and its Moore-Penrose pseudo-inverse, the density of F (Xt) will admit
control bounds in terms of the log-homogeneous distance with constants that do not depend on n
or d.

9.0.4. Delarue-Menozzi type chain of Differential equations. Consider, as in [50] and [20],
the following system of SDE:

X1, X2, . . . , X l ∈ Rn,

dX1
t =

d∑
i=1

σi(X1) ◦ dW i
t ,

dXi = Bi(X
i−1, Xi, . . . , X l)dt

where we assume that the vector fields σ are uniformly (L,HL) progressive Hörmander in the
space Rn (this is a weaker assumption than [20, 50] where in both cases, ellipticity was assumed),
σ and Bi (for all i) are C∞ (this is a stronger assumption than is used in [20]) and for any i ≥ 2,
the minimum eigenvalue of the matrixDxi−1Bi is greater than λ (for some fixed constant λ.). This
system is (L+2(l−1), H) progressive Hörmander for some constant H depending only on λ and
the C∞ constants in our assumptions. In particular, Theorem 8.3.1 applies.

Note that in the elliptic case (which was treated in [20] and [50]), Remark 9.0.1 applies as
well.

9.0.5. Two-sided version of Delarue-Menozzi chains. The following generalisation of the
previous section is also progressive Hörmander:

X1, X2, . . . , X l ∈ Rn,

dX1
t =

d∑
i=1

σi(X1) ◦ dW i
t ,

dXi = Bi(X
i−1, Xi, Xi+1)dt (for i = 2, 3, . . . , l − 1), and

dX l
t =

d∑
i=1

µi(X1) ◦ dW i
t ,

with the following assumptions2:
• The vector fields σ, µ,Bi are C∞.
• The vector fields σ and µ are uniformly elliptic with ellipticity constant H .

2The initial condition is irrelevant as long as we suppose that the conditions hold uniformly.



9. SOME EXAMPLES 132

• There exists a constant λ such that for i = 2, . . . , l− 1, any x and any unit v ∈ Rn, there
exist some µk and µ̄k (k = 1, . . . n) such that

v =
n∑
k=1

µk
∂Bi

∂〈xi−1, ek〉
+

n∑
k=1

µ̄k
∂Bi

∂〈xi+1, ek〉

and ∑
(µk)

2 +
∑

(µ̄k)
2 ≤ λ−2.

For elliptic situations, contrary to the previous example, this system is not mono-scaled.
The progressive Hörmander condition implies that if f is a bounded linear map from Rl×n

to Rk for some k with a bounded pseudo-inverse, and the driving vector fields satisfy sufficiently
strong conditions to make the tension fixed, the density of f(X1, X2, . . . , X l) will satisfy the
bound of Theorem 8.3.1 with constants that depend on l, d but not on n. Furthermore, if the
restriction f(X1, X2, . . . , X l1) has a bounded pseudo-inverse, then the constants in the estimate
will depend on l1 but not on l.

9.0.6. Generalised Heisenberg Groups. The following vector fields in R7 are detailed-pro-
gressively finitely generated, and uniformly so in any fixed compact set around zero (in particular,
Theorem 8.3.1 applies in any compact set around 0):

v1 = dx1 + x2dx3 + x2x6dx7

v2 = dx2 − x1dx3 − x1x6dx7

v3 = dx4 + x5dx6 − x5x3dx7

v4 = dx5 − x4dx6 + x4x3dx7

Indeed, writing (1, 2; 3) for the tree with 3 as a root and 1 and 2 as two leaves, and similar notation
for other indices, we have:

v(12) = −dx3 − x6dx7

v(21) = dx3 + x6dx7

v(13) = −x2x5dx7

v(31) = x2x− 5dx− 7

v(14) = x2x4dx7

v(41) = −x2x4dx7

v(23) = x1x5dx7

v(32) = −x1x5dx7

v(34) = −dx6 + x3dx7

v(43) = dx6 − x3dx7,

and

v(1,2;3) = 0

v((12)3) = x5dx7

v(123) = x5dx7

v(213) = −x− 5dx7

v(1,3;2) = −x5dx7

v(132) = −x5dx7

v(2,3;1) = x5dx7



9. SOME EXAMPLES 133

v(231) = x5dx7

v(213) = −x5dx7

v(321) = x5dx7

v[123] = x5dx7 − (−x5dx7)− x5dx7 + x5dx7 = 2x5dx7,

and then similarly

v[124] = −2x4dx7

v[134] = −2x2dx7

v[234] = 2x1dx7

(and for any rooted tree τ with vertices 1, 2, 4 (resp. 1, 3, 4, resp. 2, 3, 4), vτ is a small multiple of
x4dx7 (resp. x2dx7, resp. x1dx7). Also, clearly

v[[12],[34]] = −8dx7.

Another similar, but non monoscaled example is the following:

v1 = dx1 + x2dx3 + (1/3)x2x6dx7

v2 = dx2 − x1dx3 − (1/3)x1x6dx7

v3 = dx4 + x5dx6 − (1/3)x5x3dx7

v4 = dx5 − x4dx6 + (1/3)x4x3dx7

v5 = dx8 + x9dx10 + (1/3)x9x13dx7

v6 = dx9 − x8dx10 − (1/3)x8x13dx7

v7 = dx11 + x12dx13 − (1/3)x12x10dx7

v8 = dx12 − x11dx13 + (1/3)x11x10dx7

v9 = dx14

v10 = x14dx15

v0 = (1/3)x15dx7.

Higher dimensional generalisations are possible, and if L is fixed, Theorem 8.3.1 will yield es-
timates polynomial in the background dimension for the densities of low-dimensional projections
of the solutions.



CHAPTER 10

Lower bounds and the ‘separated progressive Hörmander condition’

10.1. Motivation

The following well-known example shows that under weak Hörmander, the density of the
solution can be null on large sets. Similar examples are mentioned in both [50] and [39]:

m = n = 2, d = 1, F = Id,(10.1.1)

σ0

(
x
y

)
=

(
0
x2

)
, σ1

(
x
y

)
=

(
1
0

)
.

It is clear that the density of the solution starting at zero is null at points (x, y) with y < 0.
Since this example actually does satisfy the progressive Hörmander condition, it is worth won-

dering what is different between this situation compared to situations where lower bounds exist
(such as the ones in [20, 50]). It appears the problem has to do with the positivity of polynomi-
als of even degree, and more precisely, we see that this issue is related to the existence of areas
of Ll(Rd,R) which are not in the support of ∗W , and we guess that the first (in terms of order)
potentially problematic direction is the direction e[1,[1,0]].

Indeed, a simple calculation shows the appearance of boundary conditions for the signature of
the path of ∗γ for an arbitrary path γ of bounded variation:

PROPOSITION 10.1.1. Let γ be a smooth path in R parametrised over [0, 1] with γ0 = 0. The
signature S (at time 1) of ∗γ satisfies:

S[1,[1,0]] ≥ −(S[1])2

4
.

PROOF. We have:

S(1,1,0) =

∫ 1

0

∫ s3

0

∫ s2

0
γ̇s1ds1γ̇s2ds2ds3

=

∫ 1

0

γ2
s

2
ds,

S(1,0,1) =

∫ 1

0

∫ s3

0

∫ s2

0
γ̇s1ds1ds2γ̇s3ds3

=

∫ 1

0
(γsγ1 − γ2

s )ds,

and

S(0,1,1) =

∫ 1

0

∫ s3

0

∫ s2

0
ds1γ̇s2ds2γ̇s3ds3

=

∫ 1

0
sγ̇s(γ1 − γs)ds

= γ2
1 − γ1

∫ 1

0
γsds−

γ2
1

2
+

∫ 1

0

γ2
s

2
ds

=
γ2

1

2
+

∫ 1

0

γ2
s

2
ds− γ1

∫ 1

0
γsds.
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Therefore we obtain:

S[[1,[1,0]] =

∫ 1

0
3γ2

s − 3

∫ 1

0
γsγ1 +

γ2
1

2

=

∫ 1

0
3(γs −

1

2
γ1)2 − γ2

1

4
≥ −γ

2
1

4
,

as expected. �

In the next sections, we show that one can move freely in all directions e[α] with either o1(α) ≤
1 or o0(α) = 0. The spirit of the ‘separated Hörmander condition’ is to ensure that the effect
of ’problematic’ directions such as e[1,[1,0]] or e[1,[1,[1,[1,0]]]] is relatively negligible because the
diffusion can already move freely at a faster speed along these directions thanks to terms of lower
scaling taken from ‘nice directions’ such as e[1,3] or e[0,[0,1]].

Lemma 10.2.1 below, coupled with Proposition 5.2.6, already shows the local equivalence
between the Léandre distance and the log-homogeneous distance (and by extension, the distance
dt) for systems satisfying the separated progressive Hörmander condition. It is also one of the
main steps to prove our probabilistic result.

10.2. On the support of the log signature of ∗W

The first aim of this section is to provide a linear subspace ofLl(Rd+1) such that the projection
of logsig(∗W ) on it has full support. This will be the first step to proving lower bounds under
the separated progressive Hörmander condition. We do not worry about polynomial or proper
dependence here.

We will use the following notation:

Al = span o0(α)=0
#(α)≤l

e[α]

Bl = span o0(α)≥1
o1(α)=1,#(α)≤l

e[α]

Cl = span o0(α)≥1
o1(σ)≥2,#(α)≤l

e[α]

El = Al ⊕Bl ⊕ Cl
B̄ = B ⊕ spani=1,...,d e

i

Ā = A/ spani=1,...,d e
i.

We sometimes omit the subscript l. We have that

Ll(Rd+1) = span(e[0])⊕A⊕B ⊕ C

= span(e[0])⊕ E.

LEMMA 10.2.1. Let b ∈ B (resp. b ∈ B̄), there exists a piecewise linear curve γ ∈ Pd+1
1 and

an element F (b) ∈ E such that

F (b) = logsig(∗γ)

PrA∞(F (b)) = 0 (resp. PrĀ∞(F (b)) = 0)

PrBl(F (b)) = b (resp. PrB̄l(F (b)) = b) and

〈e[0], F (b)〉 = 1.

Furthermore, there exists a constant C such that for any b ∈ B,

| ∗ γ|L2 ≤ C|b| = C|b|Ll(Rd+1),1

|F (b)|Ll(Rd+1),1 ≤ C|b| = C|b|Ll(Rd+1),1

where | .|Ll(Rd+1),t denotes the time scaled homogeneous norm on Ll(Rd+1).
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PROOF. By compactness and scaling, it is enough to find γ and F (b) satisfying the first set of
conditions, as long as F is continuous, which will clearly be the case from our construction. We
will show the statement for B̄ and Ā, as the one for B and A follows immediately. We will also
write an element b ∈ B̄ as x = (x1, x2, . . . , xl) with xi ∈ Rd so that x is the expression of b in
the basis given by the wi,j = e[0,[0,[0,...,j]]] where there are i− 1 zeros’s and one j in the bracketed
expression.

We have

B̄ = span1≤i≤l,j=1,2,...dw
i,j

In the first constructions below, for u ∈ Rd, the signature (λe[0] + u) is always achieved with the
straight path ∗γ parametrised over [0, λ] such that ∗γλ = u.

We now prove the result by induction:
Initial case. For l = 1 , one can simply take the linear path corresponding to the following

expression:

(e[0] + x) = (e[0] + x1).

Induction case. Suppose that x = (x1, . . . , xl+1) ∈ B̄l+1 is given. For any z ∈ B̄l+1, write
u = (0, z2, z3, . . . , zl+1) and consider the following element of Ll+1(Rd):

δ = δ1 ⊗ δ2 = (
e[0]

2
+ z1)⊗ (

e[0]

2
+ u).

All the terms of the form [δ1, [δ2, . . . [δ1]]] in the Baker-Campbell-Hausdorff (BCH) formula ex-
pansion for δ1 ⊗ δ2 can further be expanded so that we obtain an expression involving multiple
brackets of e[0]

2 , z1, and u only. Now, consider PrA⊕B(δ). Here all the terms in the above expan-
sion involving both z1, and u are in C. Therefore, we can write

PrĀ∞(δ) = 0 and ∀i ≤ l + 1,(10.2.1)

Prspan1≤j≤d w
i,j (δ) = zi +

1

4
zi−1 +

i−1∑
k=2

µk,izi−k =
i−1∑
k=0

µk,izi−k

with µ0,i = 1 and µ1,i = 1
4 .

Next, for our fixed x = (x1, . . . , xl+1) ∈ B̄l+1 we can turn equation (10.2.1) into the follow-
ing system of l + 1 (Rd-dimensional) equations with l + 1 (Rd-dimensional) unknowns:

∀1 ≤ i ≤ l + 1, xi =

i−1∑
k=0

µk,izi−k,

which has the recursively defined solution

z1 = x1 and ∀2 ≤ i ≤ l + 1,

zi = xi −
i−1∑
k=1

µk,izi−k.

We fix z (and therefore u) given by the solution thus obtained. Now for any ȳ ∈ B̄l, by the
induction hypothesis, there is a piecewise linear path γy such that PrB̄l⊕Ā∞(logsig(∗γy)) = ȳ.
Write y for PrĀ∞⊕Bl+1

(logsig(∗γȳ)). Because

PrĀ∞(logsig(∗γy)) = 0,

we have that

PrB̄l+1⊕Ā∞(−γy) = −y.
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The following element of Ll+1(Rd) can be obtained as the concatenation of rescaled versions of
γy and −γy:

δ̄ = δ̄1 ⊗ δ̄2 = (
e[0]

4
− y)⊗ (

e[0]

4
+ y).

Here we have written δ̄1 = ( e
[0]

4 − y) and δ̄2 = ( e
[0]

4 + y) etc for notational simplicity. We can
apply the BCH formula to expand the above expression.

All the terms of the form [δ̄1, [δ̄2, . . . [δ̄1]]]in the BCH formula expansion for δ̄1⊗δ̄2 can further
be expanded so that we obtain an expression involving multiple brackets of e

[0]

4 and y only.
All the terms of the form [y, [−y, . . . [y,−y]]] (involving only y and −y) cancel each other

from the symmetry of the BCH formula1; then any term left involving more than one y is an
element of C (its projections on A and B are zero). Indeed, any non zero such term must involve
at least one of e[0]

2 , on top of at least two of y. This means any such term is in the span of the e[α]

where o1(α) ≥ 2 and o0(α) ≥ 1.
So the only terms left are the terms involving exactly one y. All those terms involve at least

one e[0]

2 , so we have that PrĀ∞(δ) = 0.
As a conclusion and using the explicit form of the BCH formula for order up to 2, we obtain

(with the convention that yi = 0 for i ≤ 0):

PrĀ∞(δ̄) = 0 and ∀i ≤ l + 1,

Prspan1≤j≤d w
i,j (δ̄) =

1

4
yi−1 +

i−1∑
k=2

λk,iyi−k =
i−1∑
k=0

λk,iyi−k

for some fixed λk ∈ R coming from the algebraic BCH expansion only (a priori λk = 0 is
possible for k ≥ 2) and in particular, not depending on y. Here λ0,i = 0 and λ1,i = 1

4 For our any
given u2, . . . , ul+1(obtained above), we can now turn Eq. 10.2 into the following linear system of
equations with l Rd-dimensional unknowns y1, y2, . . . , yl:

∀ 2 ≤ i ≤ l + 1, ui =
i−1∑
k=1

λk,iyi−k.

This is easily solved as a triangular system with recursive solution:

y1 = 4u2 and ∀ 2 ≤ i ≤ l,

yi = 4ui+1 −
i∑

k=2

4λk,i+1yi+1−k.

It follows that the quantities y, z, u thus defined satisfy the following

PrA⊕B

((e[0]

2
+ z1

)
⊗
(e[0]

4
− y)⊗ (

e[0]

4
+ y
))

= b.

Now recall that ( e
[0]

2 + z1) can be canonically represented as a linear path ∗γ1 parametrised
over [0, 1

2 ], and by the induction hypothesis plus simple rescaling, ( e
[0]

4 + y) and ( e
[0]

4 − y) can be
represented as piecewise linear paths ∗γ2 and ∗γ3 parametrised over [1

2 ,
3
4 ] and [3

4 , 1] respectively.
Then the concatenation ∗γ1 ⊗ ∗γ2 ⊗ ∗γ3 satisfies the required conditions. �

Using this lemma, we can finally prove the following proposition, which shows that the pro-
jection onto A⊕B of the support of the log signature is the full space A⊕B.

PROPOSITION 10.2.2. Let u = a+ b ∈ A⊕B with a ∈ A and b ∈ B, there exists a piecewise
linear curve γ ∈ Pd+1

1 and an element F (b) ∈ E such that

F (b) = logsig(∗γ),

1Clearly, for any element z of the Lie algebra, z ⊗ (−z) = 0
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PrA(F (b)) = a,

PrB(F (b)) = b and

〈e[0], F (b)〉 = 1.

Furthermore, there exists a constant C such that for any u,

|∗γ|L2 ≤ C|u|Ll(Rd+1),1

|F (b)|Ll(Rd+1),1 ≤ C|u|Ll(Rd+1),1

where | .|Ll(Rd+1),t denotes the time-scaled homogeneous norm on Ll(Rd+1).

PROOF. As in the proof of Lemma 10.2.1, by compactness and scaling, it is enough to find γ
and F (b) satisfying the first set of conditions, as long as F is continuous, which will clearly be the
case from our construction.

Now, using Lemma 7.0.11, and rescaling, we can pick a path γa = γ0, parametrised over
[0, 1

l+2 ] with PrA(logsig(∗γ)) = logsig(γ) = a. Let η0 = PrB(logsig(∗γa)). For i = 1, . . . , l,
we define ηi by

(
(i+ 1)e[0]

l + 2
+ ηi) = (

ie[0]

l + 2
+ ηi−1)⊗ (

e[0]

l + 2
− PrB(ηi−1)).

Note that we have Prspani≤k,j∈{1,...,d} w
i,j (ηk) = 0, and in particular, PrB(ηl) = 0. We also have

PrA(ηi) = a for all i.
Now by a simple extension of Lemma 10.2.1, for any u ∈ B, we can find a path γu parametrised

over [ i
l+2 ,

i+1
l+2 ] with

PrA⊕B(logsig(∗γu)) =
e[0]

l + 2
+ u.

We apply this to the ( e
[0]

l+2 − PrB(ηi−1)) and find γi with PrA⊕B(γi) = ( e
[0]

l+2 − PrB(ηi−1)). We
now have that

PrA⊕B (γ0 ⊗ γ1 ⊗ . . .⊗ γl) = a.

Finally, we pick a path γl+1, parametrised over [ l+1
l+2 , 1] such that

PrA⊕B(logsig(γl+1)) = δ = (y1, y2, . . . , yl) ∈ B,
with δ = (y1, y2, . . . , yl) ∈ B solving the system

bi = yi +
i−1∑
k=1

λk,iyi−1 for i 6= 2 and

b2 +
Prspank=1,...,d e

k(a)

l + 2
= y2 +

y1(l + 1)

2(l + 2)

where the λk,i are obtained through BCH expansion of the formula

PrA⊕B

(((l + 1)e[0]

l + 2
+ a
)
⊗
( e[0]

l + 2
+ y
))

= a+ b.

(Note that this can be done because cross-brackets involving both elements of A and elements of
B cancel, being elements of C.)

We now have

PrA⊕B (γ0 ⊗ γ1 ⊗ . . .⊗ γl ⊗ γl+1) = a+ b,

as required. �

While the above is enough for purely deterministic purposes (such as proving equivalence of
pseudo-distances), more work needs to be done to produce elements of S with strictly positive
density.
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PROPOSITION 10.2.3. For any 0 ≤ t ≤ 1, there exists a function φt : A⊕ B → A⊕ B ⊕ C
such that
(1) for all u ∈ A⊕B, PrA⊕B(φt(u)) = u,
(2) φt is differentiable away from the origin,
(3) φt is scale invariant, meaning that for any 0 ≤ t ≤ 1, φt(u) = φ1(δ 1

t
(u)), where as usual δs

denotes the homogeneous dilations on Ll(Rd+1) or any of its subspaces.
(4) For anyM > 0, there exists a constant CM such that for any u ∈ A⊕B such that |u|2S ≤Mt,

we have

pt(φt(u)) ≥ CM

t
ν
2

,

where pt : S → R+ is the density function of the random variable PrS(logsig(∗W )t), S =
A⊕B ⊕ C, and ν and | .|S are the homogeneous dimension and norm on S respectively.

PROOF. By scaling, we can suppose without loss of generality that t = 1, as long as we define
φt from φ1 using the formula φt(u) = φ1(δ 1

t
(u)).

Note that the random variable PrS(logsig(∗W )t) has a smooth density in S by (a localised
version of) Hörmander’s theorem for SDE with time dependent coefficients, or similar results from
the first part of this thesis.

Step 1 [Definition of a bi-scaling invariant φ̄]. First, we prove that there exists a φ̄ : A⊕B →
A⊕B ⊕ C such that for all u ∈ A⊕B,

PrA⊕B(φ̄t(u)) = u

and
pt(φ̄t(u)) > 0.

To see this, observe first that for any u ∈ A ⊕ B, by Proposition 10.2.2, F (u) belongs
to the support of the random variable PrS(logsig(∗W )1). Because by definition, the support
is the closure of its interior, this implies that the projection of the interior of the support of
PrS(logsig(∗W )t) onto A⊕B is a dense open set.

Now, observe that for u ∈ A + B, writing pA⊕B for the density of the projected random
variable PrA⊕B(logsig(∗W )1) we have that

pA⊕B1 (u) =

∫
PrA⊕B(v)=u

v∈A⊕B⊕C

p1(v).(10.2.2)

It follows from this and the continuity of p1 that for almost every u ∈ A⊕B, pA⊕B1 (u) > 0.
We now make use of the algebraic structure of the subspaces A,B,C again: recall that for

any a1, a2 ∈ A, b1, b2,∈ B, c1, c2 ∈ C, λ, µ ∈ R+ we have

(λe[0] + a1 + b1 + c1)⊗ (µe[0] + a2 + b2 + c2) = (λe[0] + a1 + b1)⊗ (µe[0] + a2 + b2) + c3

for some c3 ∈ C. For any v, u ∈ A ⊕ B, we also have a continuous way of choosing an element
w ∈ A+B such that (1

2e
[0] + v)⊗ (1

2e
[0] +w) = e[0] + u+ c for some c ∈ C: for instance, take

the projection onA+B of the element (F 1
2
(v))−1(F1(u)) where the inverse is taken in the Carnot

group of step l with d + 1 underlying dimensions and F is the function from Proposition 10.2.2
rescaled with the time scale indicated as index). We write this element w = I(v, u). It follows
that we can use a similar argument to pA⊕B as the one used on the density of the log signature of
W (not ∗W ) in [37]: we have

pA+B
1 (u) ≥

∫
v∈A⊕B

pA+B
1
2

(v)pA+B
1
2

(I(v, u))dv.

Since pA+B
1
2

( .) is non zero almost everywhere, it follows from the above that pA+B
1 ( .) is non

zero everywhere (and by scaling, the same is true of pA+B
t ( .) for any t). Using that information

to reinterpret formula (10.2.2) above, we see that for every u ∈ A ⊕ B, there must exist a v ∈
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A ⊕ B ⊕ C such that pA⊕B⊕C1 (v) > 0. We denote that element v = φ̄1(u), and extend this
definition for other times by scaling.

Note that this construction does not yet guarantee that φ̄t is smooth away from the origin. This
is the problem we remedy in Step 2.

We now make the following observation: because for fixed t, a path of log signature te[0] + v
for some v ∈ S can be rescaled, for any s, into a path of log signature te[0] + δ̄s(v), where δ̄s
denotes the homogeneous dilation in S where the degree of e[α] is assigned to be o1(α) instead of
|α|, we can conclude that v is in the interior of the support of PrS(logsig(∗W )t) if and only if
δ̄s(v) is2. It follows that we can define φ̄t in a way that is scaling invariant both with respect to
dilations δs and to dilations δ̄s acting only on the non-time components.

Step 2 [Definition of φt, smooth away from the origin]
We now want to turn φ̄t into a smooth function φt. To do this we must readapt a certain

proportion of the construction from the previous proofs.
The first and main step is to reprove Lemma 10.2.1 for B̄ (not B), in such a way that the

log-signature (minus the time component) of the path constructed is in the interior of the support.
To do that, note that for any i, j with i + 1 ≤ l, j = 1, 2, . . . d and i ≥ 1, writing wi,j for

e[0,[0,[0,...,[0,j]]]] where there are i zero’s, we have for any s > 0 and any λ ∈ R, by the previous part
of the proof, an element φ̄s(λwi,j) ∈ Supp(PrS(logsig(∗W )s)

◦. Now for any element u ∈ B̄l,
develop via BCH the following equation (the order of concatenation is assumed to be fixed!):

x(λ) = ⊗ 1≤i≤l−1
1≤j≤d

φ̄1/(l−1)(λijw
i,j) w u,

where w means equal up to an element of C.
By definition of φ̄, we have that PrĀ(x(λ)) = 0 for any choice of λ. The above system

is a linear triangular system in λ, and therefore has a solution which is a smooth function of u.
For the λ that solves the system, we define φ(u) = logsig(x(λ)). Then φ(u) is a continuous
function of u because λ is a continuous function of u and φ̄s(λijwi,j) is continuous on the set
{(i, j) : 1 ≤ i ≤ l − 1, 1 ≤ j ≤ d} ⊗ R ⊗ R. This proves the equivalent of Lemma 10.2.1
further ensuring that φ is smooth away from the origin, and that φ(u) ∈ Supp(logsig(∗W )t)

◦ for
any u ∈ B̄l. A simple extension of Proposition 7.0.11 that there exist some numbers L(l) ∈ N,
κ1, . . . , κL(l) ∈ {1, 2, . . . , d},t0 = 0 ≤ t1 ≤ . . . , tL(l) = s such that for any element a ∈ A, and
any s, it is possible to express se[0] + a as

se[0] + a

= PrA

(
(t1 + λ1e

κ1)⊗ ((t2 − t1)e[0] + λ2e
κ2)⊗ . . .⊗ ((tL(l) − tL(l)−1) + λL(l)e

κL(l))
)
,

with the choice of λ being smooth away from the origin and respecting all the usual scaling proper-
ties. Indeed, just pick a suitable path for the initial case, and the induction case is then unchanged.
In the above concatenation, we now replace each element of the form (ti − ti−1)e[0] + λie

κi by
((ti − ti−1)e[0] + φti−ti−1(λie

κi)). This yields a smoothly defined element ψ(a) with

ψ(a) ∈ Supp(PrS(logsig(∗W )s))
◦ and PrA(ψ(a)) = a.

Now, for any u ∈ A⊕B, we can proceed through the proof of Proposition 10.2.2, using the above
constructions instead of the original piecewise linear ones, to obtain our element φ(u) which
satisfies the same properties as F does in Proposition 10.2.2, plus smoothness and the property
that φ(u) = Supp(PrS(logsig(∗W )t))

◦. Indeed, after having expressed te[0] + φ(u) ∈ S as a
concatenation ⊗Li=1(l)(sie

[0] + ui) for some fixed L(l) and some u1, . . . , uL(l) depending on the
construction, we apply again the classic integration argument that

p∑ si(u)

2For a short proof of the support theorem, see [46]
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=

∫
(s1e0+u1)⊗(s2e0+u2)⊗...⊗(sn+uN )=te0+u

ps1(u1)ps2(u2) . . . pN (uN )du1du2 . . . duN

and
∀i, psi(ui) > 0

imply
p∑ si(u) > 0.

As usual, this argument uses the continuity of the density, which is known from (the time-dependent
version of) Hörmander’s theorem, or alternatively, the previous parts of this thesis.

Because for any u, φ(u) > 0, restricting u to the compact |u|2S ≤ M (for t = 1) ensures we
have a constant CM such that

p(φ1(u)) ≥ CM ,
The required upper bound now follows by Brownian Scaling. This concludes the proof. �

10.3. Application: Lower bounds for systems satisfying the separated weak progressive
Hörmander condition

DEFINITION. We say that the systemA = (x, σ, F ) (for F linear) satisfies the separated weak
progressive Hörmander condition with constants (L,HL) if the following conditions are satisfied:

• A is (L,HL)-detailed weak progressive Hörmander
• The vector fields σ are (L,HL)-detailed weakly uniformly progressively finitely gener-

ated
• For any multi-index α such that o1(α) ≥ 2, o0(α) ≥ 1 and |α| ≤ L, there exist some λ

such that ∑
|β|<|α|

λβσ
[β] = σ[α] and

∑
β

|λβ|2 ≤ H−1
L .

First, we must slightly adapt our construction of the compensated signature to this setting.
Define, similarly to the development of showed for the compensated signature,

Ψ̄ : TL(Rd,R)/ span(e(0))→ S/Ker(FSRr)

such that ∑
h∈H

Ψ̄h(s)σh =
∑
|α|≤L

σαsα

|Ψ̄(s)|2 ≤ H̄−1
L |s|

2 and ∀i ≤ L

s ∈ span |α|≤i
α 6=(0)

eα =⇒ Ψ̄(s) ∈ span |α|≤i;α6=(0)
o1(α)≤1∨o0(α)=0

e[α]

for some constant H̄L. Then define the following function:

Ψ̄1 : TL(Rd,R)/ span(e(0))→ S/Ker(FSRr),

s 7→ PrS/Ker(FSRr )(s) + Ψ̄(s− PrS(s)).

Writing S for the lth order signature, we can now define the lth order strictly compensated signa-
ture R̄l by

S̃ := PrTL(Rd,R)/ span(e(0))(S)

R̄l := Ψ̄1(S̃) + Ψ̄2(FST (S − S̃)− x̄t).

We write F̄l (or F̄ , omitting the index l) for the strictly compensated signature space

span α 6=(0);|α|≤L
o0(α)=0∨o1(α)≤1

e[α]/Ker(FSRr),
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and F R̄T for the restriction of FST to F̄ .
We now have the following:

THEOREM 10.3.1. LetA be a uniformly (L, g,G)-tense, (L,HL)-separated weak progressive
Hörmander system. Suppose g ≥ (2n + 2)224L + n + 3. There exists a proper constant D such
that for any M > 0, there exists a constant CM such that and for any x, y and t such that
dt,log,∞(x, y) +

√
t ≤ D and dt,log,∞(x, y) ≤Mt, we have

pt(x, y) ≥ CM

|Bdt,log,∞(
√
t)|
.

If the system is only (L, g,G)-tense, (L,HL)-separated weak progressive Hörmander in a
compact setK around ∗x, the same result holds for any ∗x, y in a fixed compact setK′ of non zero
distance to K.

PROOF. Fix l ≥ (2n+2)224L. Start by picking D small enough that the following conditions
are satisfied:

• F log(S),R,l, restricted to u ∈ S with |u|S ≤ 2D and any t ≤ D, has a C∞ constant
bounded by a proper constant.
• For |u|S ≤ 2D and any t ≤ D, each diagonal bloc of JF log(S),R,l(φ(u) + .), relative to

components of the same scaling has a pseudo-inverse bounded by a proper constant.
• D is small enough to apply Theorem 7.1.1.

Recall that it is a fact about the construction of F log(S),R,l for progressive Hörmander systems
that this can be done for D being a proper constant. Note that F log(S),R,l is the composition of
the exponential function with a linear (x dependent) map. Because we don’t aim to show anything
about the dependence of our constants in the final estimate apart from uniformity in space-time,
we do not need the fact that D is proper, but we do need the fact that the constant does not depend
on the initial point x.

We note the following consequence of Theorem 4.4.1:
the density pt(s) for s ∈ S of PrS(logsig(∗W )) is differentiable and for time t = 1 and |s|2S ≤M
(for any fixed M ), the derivatives of given order are bounded above by some constant C̄M .
By Brownian scaling, this immediately gives that for arbitrary t ≤ 1, |s|2S ≤ tM and α ∈
Multi({0, 1, . . . , d}) \ {e0}, we have for some fixed C̄M :

|∂pt(s)
∂eα

| ≤ C̄M

t
ν
2

+|α| .

Therefore if |s+ s′|2S ≤Mt; we have that3

|pt(s+ s′)− pt(s)| ≤
KM |s′|2S/t

t
ν
2

for someKM . Using Proposition 10.2.3, this shows that if u ∈ A⊕B, |u|2S ≤Mt, |φ(u)+s′|2S ≤
Mt and |s′|2S ≤ CM/2KM (where CM is the constant from Proposition 10.2.3), we have the
following:

pt(φ(u) + s′) >
CM

t
ν
2

−
KM |s′|2S/t

t
ν
2

≥ CM

2t
ν
2

.

Replacing CM and KM by C4M and K4M in the above statements and using Lemma 5.1.2
(triangle inequality up to constants in graded spaces with homogeneous norms) we obtain that, still
for any fixed M , there exist constants RM and KM such that for any u ∈ A⊕B with |u|2S ≤ tM ,
and any s ∈ S with |s|2S ≤ tRM , we have

pt(φ(u) + s) >
KM

t
ν
2

.

3Note expressions such as s+ s′ really mean the sum of s and s′ as elements of the vector space S, not the group
multiplication (e0 + s)⊗ (e0 + s′)
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Consider any v inside the strictly compensated signature space F̄ . The key point is that the
function F log(S),R,l ◦ φ : A ⊕ B → F satisfies the conditions of Proposition 5.2.6, as a conse-
quence of the separated progressive Hörmander condition. Indeed, theMj have good Jacobians by
construction of FS,R̄l , the ψj come from the exponential function applied to the lower components
of u, and the φik’s come from the construction of φ(u), which require all of the ui’s to construct,
but have strictly lower scaling because of the strict requirement |β| < |α| in the definition of the
separated progressive Hörmander condition. Therefore there exist proper constants D1, C1 such
that if |v|2F , t ≤ D1, there exists a u ∈ A⊕B such that |u|2S ≤ C1|v|2F and F log(S),R,l(φ(u)) = v.

Now, replace D by D̄ = min(D1, D,D/C1). We want to use the disintegration formula 2.2.1
on the neighborhood of φ(u) in the fiber (F log(S),R,l)−1({v}). Because the isoscaled diagonal
blocs of the Jacobian of F log(S),R,l continue to have good pseudo-invertibility properties (second
condition in 10.3) the area of the relevant neighborhoods in each fiber is greater than QM t

ν−ν̄
2 for

some constantQM (still proper, at this point). If it is furthermore the case that |v|2F ≤ tDM (where
DM comes from the application of Proposition 5.2.6 to make sure that |u|2S , |φ(u)|2S ≤ Mt), we
can use Eq. 10.3 and the disintegration formula 2.2.1 to finally obtain, for some new CM , D,DM ,
and for any v ∈ F with |v|2S ≤ DM t and |v|2S ≤ D and any t ≤ D,

pt(v) ≥ CM

t
ν̄
2

(Here pt(v) denotes the density at v of the random variable R̄l)
This puts us in a position to apply the results of Part 2 on Models, more specifically, Theo-

rem 5.1.2, to obtain that for plt being the density of the lth order KST approximation Ȳtof Yt, we
have for any y and t such that dt,log,∞(x, y) +

√
t ≤ D and dt,log,∞(x, y) ≤Mt,

plt(x, y) > CM
e−dlog,l,t(x,y)2

|Bdt,log,l
(x,
√
t)|

≥ CM

|Bdt,log,l
(x,
√
t)|

≥ CM

|Bdt,log,∞(x,
√
t)|
,

where CM changes from line to line, and we have used doubling conditions and Theorem 7.1.1 at
the last line.

Because the above line of reasoning obviously works exactly the same way if we replace plt
by a localised version of it, localised by ξ such that ξ = 0 whenever | logsig(∗W )| ≥ 1/2, we
can now use Theorem 6.4.1, with with the same localising function ξ, to obtain for some proper
constant C and some constants CM (depending on M but not x) that change from line to line,

pt(x, y) ≥ pξt (x, y) ≥ pl,ξt (x, y)− Ct

>
CM

|Bdt,log,∞(x,
√
t)|
− Ct

≥ CM

|Bdt,log,∞(x,
√
t)|
,

as required. The last statement is the consequence of another similar localizing argument. �

We can now concatenate the above result to show that the density of a uniformly separated
weak Hörmander system is strictly positive everywhere:

THEOREM 10.3.2. LetA be a uniformly (L, g,G)-tense, (L,HL)-separated weak progressive
Hörmander SDE (F = Id). Suppose g ≥ (2n + 2)224L + n + 3. we have, for any y, any x and
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any t,

pt(x, y) > 0.

PROOF. Let θ be a path in LL(Rd+1) such that the solution to the SDE

x0 = x

dxt =
∑
a∈H

(σ)a(xt)
∂θat
∂t

dt =
∑
a∈H
∗σa(xt)

∂θat
∂t

dt

has x1 = y. We can find times 0 < s1 < s2 < . . . sN such that xs1 , xs2 , . . . , xsN satisfy for
any i = 1, . . . , N − 1, dsi−si−1(xi−1, xi) +

√
si − si−1 ≤ D where D is the constant from

Theorem 10.3.1. Pick:

M = 2 sup
i

dsi−si−1(xi−1, xi)
2

si − si−1
.

Then, we can apply Theorem 10.3.1 to obtain the strict positivity of the density of xsi conditional
on the position of xsi−1 . The classic integration argument pt(x, y) =

∫
x1,...xN

ΠN
i=1pt(xi−1, xi),

coupled with the continuity of the density (which as usual we know even from Hörmander’s theo-
rem), allows us to conclude that pt(x, y) > 0, as expected. �

REMARK 10.3.1. Of course, the optimal possibleM to choose above is a multiple of dt(x, y),
but unlike the zero drift situation, this information isn’t very easy to make the most of because the
tail behaviour of sums of integrals of the form

∑
|α|=iW

α for o1(α) and o0(α) non fixed is more
difficult to study. In [20], indices of same order but different o1 and o0 don’t mix, which helps in
getting a global estimate.

REMARK 10.3.2. In [30] (Section 4), the authors manage to prove the strict positivity of the
density for a different specific class of examples of diffusion which does not necessarily satisfy
the separated progressive Hörmander condition.



CHAPTER 11

Examples of systems satisfying the separated weak progressive
Hörmander condition

The Pigato SDE 9.0.2 satisfies the separated weak progressive Hörmander condition. The
Delarue-Menozzi chain of differential Eqs. 9.0.4 from Chapter 9, and the two-sided version 9.0.5,
with an elliptic assumption on the σ’s also satisfies the separated weak progressive Hörmander
condition. Below are more elaborate examples.

11.1. Multiple interacting (elliptic) Delarue-Menozzi chains

A more general class of examples would be the following further extension of 9.0.4:
Let G = Gb ∪Gy ∪Gn a graph composed of a set of blue vertices Gb, a set of yellow vertices

Gy, and a set of black edges Gn, such that the following conditions are satisfied:

• each yellow vertex is of degree two
• For each yellow vertex v1, there are at least two paths of the form (v1, v2, . . . vN ) such

that for any i ≤ N , (vi−1, vi) is an edge, v1, . . . vN−1 are yellow, and vN is blue.
• For each black vertex v1, there is only one path of the form (v1, v2, . . . vN ) such that

for any i ≤ N , (vi−1, vi) is an edge, v1, . . . vN−1 are yellow, and vN is not black.
Furthermore, for the only such path, it is the case that vN is blue.

Now, let S be the set of maps from G to Rn, our state space.
For each yellow vertex v ∈ Gy, define D(v) to be the set composed of the two immediate

neighbours of v. Set also D̄(v) = D(v)
For each black vertex v, defineD(v) to be the union of the set of all vertices that can be reached

from v, but are not on the path (v = v1, v2, . . . vN ) and the set {v, v2}. Set also D̄ = {v2}.
Consider the following SDE in S:

S ∈ S
S0 = 0

∀v ∈ Gn ∪Gy, dSvt =
∑

w∈D(v)

Bv,W (S)dt

∀v ∈ Gb, dSvt = σv(S) ◦ dW v
t ,

where for any s, v, w, Bv,w, σv are matrices in Rn ⊗ Rn satisfying the following conditions:

• All operator norms of Bv,w, σv are uniformly bounded by a constant C.
• ∀v ∈ Gn ∪Gy, and for any ω ∈ Rn, there exists a λ ∈ Rn#(D̄(v)) such that |λ|2 ≤ H−1

(for some given constant H) and (where w runs over all elements of D̄(v):

(∂sw1Bv,w1∂sw2Bv,w2 . . .)λ = ω

• det(σv(σv)T ) is bounded below uniformly over s and v.

Such a system is uniformly weak separated progressive Hörmander, in particular, Theorems 10.3.1
and 10.3.2 apply.

The following graph shows an example. An arrow from a to b signifies that Ba depends on
Sb. All arrows from points F,G,H have been drawn.
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F

G

H

11.2. More specific examples

1. The following SDE is not mono-scaled, and is one of the most simple ‘completely non-
trivial’ examples of an separated weak progressive Hörmander system.

Consider the following SDE in R4: X0 = 0; dXt = σ(Xt) ◦ dWt with

σ1


x
y
z
u

 =


1
0
−y
0

 , σ2


x
y
z
u

 =


0
1
x
0

 , σ0


x
y
z
u

 =


0
0
x2

xu+ 1

 .

The non zero brackets and derivatives of order less than 5 are:

σ[12] =


0
0
2
0

 , σ(12) =


0
0
1
0

 , σ(21) =


0
0
−1
0

 ,

σ[10] =


0
0

2x
u

 , σ(01) =


0
0
0
0

 , σ(10) =


0
0

2x
u

 ,

σ[1,[1,0]] =


0
0
2
0

 , σ[0,[1,0]] =


0
0
0

1 + xu

−


0
0
0
xu

 =


0
0
0
1

 .
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We see that the separated progressive weak Hörmander condition is satisfied. In particular, Theo-
rems 10.3.1 and 10.3.2 apply.

The intuitive explanation of the separated weak Hörmander philosophy using this particular
example is: by our construction in 10.2.2 etc, ‘the diffusion moves freely’, at speed t5/2 in the

direction σ[0,[1,0]] =


0
0
0
1

. On the other hand, fourth order (=at speed t2) movement in the

direction of σ[1,[1,0]] =


0
0
2
0

 is constrained and problematic because of issues mentioned such as

the phenomenon observed in 10.1.1 and in Léandre’s example (10.1.1). However, unconstrained
movement in the same direction is occurring at speed t from σ[1,2]. Theorem 5.2.6 helps show that
the ‘free’ order two movement wins over the constrained order four movement.



Part 4

Löcherbach systems



CHAPTER 12

Introduction and first properties

The notation in the chapter on ‘composite systems’, the notation in the rest of Part 4, and
the notation in the rest of this thesis, are three independent sets of notations. For instance, here
we will use l to denote the number of particles, as in [42] and [10] not the order of any Taylor
approximation, as in the rest of the thesis and in [37].

12.1. The independent case

In [10], Bally and Löcherbach consider a finite system of branching diffusions with immigra-
tion, where the movement of each particle is independent from the others.

More precisely, the model is the following (as explained in [10], with different notation):
Write S = ∪l≥0Rn×l for the set of all configurations of particles in Rn. Write elements of S as
x = (x1, x2, . . . , xl).

We consider the following a process ηt ∈ S whose sample paths are piecewise continuous
Rn×l-valued functions, for varying l, with the following assumptions:
• During the life time of an l- particle configuration, each particle ξk ( for k = 1, 2, . . . , l) evolves,

independently of other particles, according to the following SDE:

dξkt =
d∑
i=1

σi(ξk) ◦ dWt + σ0(ξk)dt =
d∑
i=0

σi(ξk) ◦ dWt.(12.1.1)

• Particles branch at a position dependent Poisson rate κ( .) according to the reproduction law
(pk( .))k∈N0 . Each new particle then evolves according to the SDE (12.1.1).
• New particles appear at rate c > 0. The immigration measure r satisfies r(dx) = r(x)dx (other

situations are also considered in [10]).
• At time 0, the system starts at the void configuration with no particles.

The assumptions are:
• σ, κ are C∞ and bounded, and there exist constants a1, a2 such that a1 ≤ κ(z) ≤ a2 for any
z ∈ Rm;
• σ satisfies the weak Hörmander condition uniformly with constant HL;
• there exists a fixed probability measure p̄ on N0 such that

∑∞
0 p̄k < 1, and for any x ∈ Rn,

there exists a probability measure p̂ on N0 such that p ? p̂ = p̄, where ? denotes convolution of
probability measures.

We very briefly summarize the strategy used for the proof in [10], since it is useful to under-
stand the proof in the interacting case. See [10] for further details.

Following [10], we write m̄ for the invariant measure (for a Borel set A ⊂ Rn, m̄(A) is the
expected number of particles in A for a random configuration following the invariant probability
of the process in S), ∆ for the void configuration (with no particles), and R for the first return
time to ∆. For a configuration η and a Borel set A ⊂ Rn, we also write η(A) for the number of
particles in A.

Write, for x, y ∈ Rn and A ⊂ Rn:

U(x,A) = Ex
(∫ ∞

0
e−
∫ s
0 κ(ξr)dr1A(ξs)ds

)
,

K(x, dy) = U(x, dy)(κρ)(y) = Ex
(∫ ∞

0
e−
∫ s
0 κ(ξr)dr(κρ)(y)δξs(dy)ds

)
.
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Roughly speaking, U(x,A) is the expected amount of time that a particle started at x will
spend in A before death, and K(x, dy) is the expected number of first generation offspring that
will be born at y supposing we start with a configuration of one particle at x.

It is proved in [10] and [29] that

m̄(A) =
1

E∆(R)
E∆(

∫ R

0
ηs(A)ds) = c

∞∑
N=0

rKNU(A).(12.1.2)

Classical results from [36], or the rest of this thesis, show that U(x, dy) has a smooth density.
If one is to show that m̄ has a density, the main difficulties will be to show that UN also has a
density, and that the summation involved in (12.1.2) converges in a sufficiently strong sense.

Using the inverse stochastic flow φt,0( .), we can rewrite K in a form closer to the expression
of a density function: For a test function ψ,

rKψ = E
(∫ ∞

0
r(φt,0(y))e−

∫ s
0 κ(φt,s(x))dsψ(y)(κρ)(y)J(φt,0(y))dydt

)
,

where J( .) denotes the Jacobian.
Next define, for any ε > 0:

θ(r)(x) = θε(r)(x) = (κρ)(x)E
(∫ ε

0
r(φt,0(x))J(φt,0(x))e−

∫ s
0 κ(φt,s(x))drdt

)
.

Note that θ is the invariant density of a branching process with c = 1, no possibility of branching
(only death), and where death is forced to occur at time ε if it hasn’t occurred before. Because,
by classical results, E(J(φt,0(x))) is locally space-time integrable, we can pick ε so that θ is a
contraction. Then we can define:

Θ(r)(x) = Θε(r)(x) =
∞∑
N=1

θN (y)(x)

(κρ)(x)
.

Write also γt(x, .) for the density of the κ-killed diffusion started at x, and

T (x, y) = Tε = Θε(γε(x, .)κρ)(y) + γε(x, y)

Then the key formula to understand the proof in [10] is the following, where p(r, x) denotes the
density of the invariant measure m̄ (in particular, m̄ has a density):

p(r, x) = cΘε(r)(x) +

∫
p(r, y)Tε(y, x)dy.

The first term corresponds to particles arriving in the small set dx coming from a line of
descendants which all died (branched) after a life of less than ε. The existence of the density, and
the above formula, are established via dominated convergence applied to formula (12.1.2) after
changes of variables along the lines described above.

12.2. Description of the general case.

In [42], Löcherbach investigates the situation where each particle’s movement, branching rate
and distribution are influenced by the configuration of other particles. The existence of an invari-
ant density is established under assumptions that include uniform ellipticity of the driving vector
fields σ. This is in contrast with the independent situation, where only the weak Hörmander con-
dition was required. In this section, we both:
• Reproduce the result under weaker assumptions (getting rid of assumption ‘H6’ from [42]), and

in a more general situation where the rates are allowed to depend in a certain way on the path
of the process rather than only the position of other particles at time t, and
• Prove an extension of the result to a weak Hörmander situation, at the cost of imposing the so

called ‘No Degeneracy from Interaction’ (NDI) condition, and assuming a proof of a strongly
polynomial version of Theorem 4.4.1.
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Both situations will be treated simultaneously due to the similarities between the two proofs.
(In fact one could even see the elliptic case as a particular case of the NDI case)

The model is the following, and includes ‘latent particles’, meant to model path-dependence
of the branching rate and diffusion coefficients:
− The configuration space is S = ∪l∈N0Rn×l ⊗ Rn×F(l). The l first particles are the ‘real’

particles, and the F(l) others are the ‘latent particles’. F : N0 → N0 is a fixed function
satisfying F(x) ≤ CPxP for some fixed P,CP and such that

F(0) = 0.

We write a complete configuration in the form

(ηt, η̄t) = (η1, η2, . . . , ηl, η̄1, . . . , η̄F(l)) ∈ S.
− During the lifetime of each configuration, particles ξ ∈ Rn×l and ζ ∈ Rn×F(l) move according

to the following SDE

dξi =
d∑

k=0

σk(i, ξ, ζ) ◦ dW k
i,t ∀i ∈ {1, 2, . . . , l}

dζi =
d∑

k=0

Σk(i, ξ, ζ) ◦ dW k
i,t ∀i ∈ {1, 2, . . . ,F(l)},

where each value of i corresponds to an independent Brownian motion

∗Wi, . = (t,W 1
i,t,W

2
i,t, . . . ,W

d
i,t).

We will often omit the subscript i when it is clear from context.
− Real particles branch at branching rate κ according to a uniformly bounded reproduction law
p, and latent particles adapt their configuration and branch accordingly. More specifically,
• A particle xi with i ∈ {1, 2, . . . , l} which belongs to a configuration

(x, y) = (x1, x2, . . . , xl, y1, y2, . . . , yF(l)) ∈ Rn(l+F(l))

will die during interval [t, t+ h] with probability κ(i, x, y)h+ o(h).
• At its death, a particle xi is replaced by k particles, where k ∈ {0, 2, 3, . . . ,K} (for some

fixed K ∈ N) is chosen according to a probability distribution

p(i, x, y) = (p0(i, x, y), p2(i, x, y), . . . , pK(i, x, y)).

• At each branching event TN , where particle ηi branches into k new particles, the latent
particles η̄ change position according to the following equation:

η̄T+ = F̄1,l,k,i(ηT−, η̄T−),

where F̄1,l,k,i : Rn×l ⊗ Rn×F(l) → Rn×F(l+k−1) is a fixed function (no assumptions on
F̄1 are required).
• Particles enter the configuration at constant rate c > 0. Each immigrant chooses its posi-

tion according to the an immigration law π(dx) = π(x)dx. We suppose π ∈ Cb(Rn).
• At each immigration event TN , where particle ηl+1 appears at position xl+1, the latent

particles η̄ change position according to the following equation:

η̄T+ = η̄T = F̄2,l(ηT , η̄T−),

where F̄2,l : Rn×(l+1) ⊗ Rn×F(l) → Rn×F(l+1), is a fixed function (no assumptions on
F̄2 are required).

The subcriticality and boundedness assumptions are the following:
• (SC1) κ( .) satisfies a ≤ κ ≤ b for some fixed 0 < a < b.
• (SC2) The probability distribution p(i, x, y) satisfies pk ≤ p̄k for all i, x, y, k and for

some fixed (p̄0, p̄2, . . . , p̄K) such that

p̄0 + p̄2 + . . .+ p̄K < 1.
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• (BO) For each q, there exists a constant Cq, independent of l, such that for any k ∈
{0, 1, . . . , d}, i ∈ N, x ∈ Rn×l, y ∈ Rn×F(l), u, u1, u2, . . . , uq ∈ {1, 2, . . . , n},
v1, v2, . . . , vq ∈ {1, 2, . . . , l + F(l)}, and any x, y, writing z = (x, y) ∈ Rn×(l+F(l)),
we have:

| ∂
q(σk(i, x, y))u

∂zv1
u1∂z

v2
u2 . . . ∂z

vq
uq

| ≤ Cq

| ∂
q(Σk(i, x, y))u

∂zv1
u1∂z

v2
u2 . . . ∂z

vq
uq

| ≤ Cq

| ∂
q(κ(i, x, y))u

∂zv1
u1∂z

v2
u2 . . . ∂z

vq
uq

| ≤ Cq.

The non-degeneracy assumption is either one of the following:
• (Ellipticity, E) There exists a fixed constant E such that for any unit v ∈ Rn, any
l, i, x, y, we have:

d∑
k=1

〈σk(i, x, y), v〉2 > E,

or, the combination of both of the following conditions:
• (No Degeneracy from Interactions, NDI) For each l, i, there exists a function

λ : N⊗ Rn×l ⊗ Rn×F(l) → Rd×d,
a function

β : N⊗ Rn×l ⊗ Rn×F(l) → R
and d vector fields σk : Rn → Rn such that for any l, x, y, i, k, q, the derivatives, in any
axis direction, of order less than q, of σk and all the entries of λ are uniformly bounded
by Cq, and the following holds for any i, l, x, y for some fixed constant E > 0:

σ(i, x, y)k =
d∑
j=1

σ(xi)jλj,k(i, x, y) (∀k ∈ {1, 2, . . . , d}),

σ0(i, x, y) = β(i, x, y)σ0(xi),

E ≤ λ∗(λ(i, x, y)),

E < β <
1

E
.

• (Weak Hörmander condition on the underlying, H) There exist constants (L,HL) such
that for any u ∈ Rn, and any unit v ∈ Rn,∑

α∈Multi({0,1,...,d})
|α|≤L,α 6=(0)

〈σ[α](u), v〉2 > HL.

As explained in the next section, the assumptions SC1 and SC2 ensure subcriticality and that
the zero configuration ∆ is a recurrent point. Following [42], we are interested in the intensity
measure m̄ associated to this branching diffusion, i.e., writing R for the return time to the null
configuration ∆ and for any set A, writing ηt(A) for the number of (‘real’) particles in the set A
at time t:

m̄(A) =
E(
∫ R

0 ηt(A)dt)

E(R)
.

We will show that m̄ admits a continuous density in the elliptic case and that it admits a contin-
uous density in the NDI case assuming a proof of a strongly polynomial version of Theorem 4.4.1.
The first step is the recurrence of the null configuration, which was already established in [42]
and [29] (the differences between the settings in terms of non-degeneracy are not relevant to that
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aspect), then the main technical step involving density estimation will be the estimate in the next
chapter.

12.3. Consequence of subcriticality

Here we explain the point made in Lemma 4.1 from [42]. Note that this lemma does not
require any non-degeneracy assumption, and can be used in our context.

LEMMA 12.3.1. Under the subcriticality assumptions SC1 and SC2, we have that

P(Tk < R) ≤ Ce−ck,
for some constants C, c.

SKETCH OF PROOF. The idea (see [42] and [29]) is the following:
To alleviate notation, we assume there are no latent particles, and K = 2, the general case

is similar. Begin by constructing a coupled process η̄ such that at every branching event, the
probability of splitting into two particles is exactly p̄2. The immigration process stays the same.
This can be done whilst making sure that at every time, the number of particles `(η̄) in η̄ is more
than the number of particles `(η) in η.

Next, we define a process η̃ with state space N ⊗ {0} as branching diffusion where particles
do not move, in a coupled way with η̄: (taking some notational liberties) if the lifetime of a given
particle pN in η̄ and all its descendants p1, p2, . . . , pN−1 (with positions ξ1

t , ξ
2
t , . . . , ξ

n
t ∈ Rn ∪∅)

are
[T0, T1], [T1, T2], . . . , [TN−1, TN ]

respectively, then the lifetime of the corresponding particle in η̃ is

[

N−1∑
i=0

∫ Ti+1

Ti

κ(i, ξit, ξt)

a
dt,

N∑
i=0

∫ Ti+1

Ti

κ(ξit, ξt)

a
dt].

This new coupled process η̄ satisfies the following properties:
• The respective numbers of generations Ñ (for η̃) and N̄ (for η̄) before return to the zero

configuration ∆ satisfy Ñ ≤ N̄ , leading to P(N ≥ k) ≤ P(Ñ ≥ k).
• The configurations of η̃ at successive jump times are a subcritical discrete time Markov

chain on a finite state-space. (Indeed, for large enough l, alp̄2+c
al+c −

alp̄0

al+c < 0). Further-
more, the upper bound K on the number of offspring ensures the exponential decay of
the return probabilities to the zero configuration.

The result then follows from classical discrete-time Markov chain theory. �

REMARK 12.3.2. The argument above and the assumptions on the branching rate also show
that E(R) <

∑
ce−ck(1/a) <∞.



CHAPTER 13

Polynomial upper bounds for a class of systems

This chapter contains the main technical step required to prove an extension of the Löcherbach
to an NDI situation with weak Hörmander assuming a strongly polynomial version of Theo-
rem 4.4.1.

Warning: The results in this chapter assume a strongly polynomial version of Theo-
rem 4.4.1.

The notation used in this chapter is separate from the notation used in the rest of this part of
the thesis. The notion of ‘proper constant’ is also less strict, as d (but not D) is considered ‘small’
in this context.

We consider the following class of systems:

DEFINITION 13.0.1. A Kλ-composite system is a system of the following form

(X,Y ) ∈ Rn ⊗ Rm,
(X0, Y0) = (x, y),

dYt =
D∑
i=0

Σ(Xt, Yt)
i ◦ dW i

t ,

dXt =
d∑
j=1

d∑
i=1

σ(Xt)
jλ(Xt, Yt)

i
j ◦ dW i

t + b(Xt, Yt)dt,

where σi ∈ Rn, Σi ∈ Rm, b ∈ R, λ ∈ Rd×d satisfy the following condition uniformly:

K−1
λ ≤ λ∗(λ) ≤ λ∗(λ) ≤ Kλ,

K−1
λ σ(Xt, Yt)

0 ≤ b(Xt, Yt) ≤ Kλσ(Xt, Yt)
0.

DEFINITION 13.0.2. We call constants relative to aKλ-composite, (L,HL)-weak Hörmander,
(L, g,G)-tense system proper if they depend only on d, n,G, g, L,HL,Kλ, D (but notm) and are
polynomial in HL, G,Kλ, D.

We note the following result:

PROPOSITION 13.0.3. Let A = ((x, y), (σ,Σ),Pr) be a Kλ-composite, (L, g,G)-tense sys-
tem such that σ satisfies the weak Hörmander condition of order L with constant HL at x. There
is a constant H ′L, depending only on Kλ, d,G,HL, such that A is (L,H ′L)-weak Hörmander at
(x, y).

PROOF. In light of Lemma 3.5.1, it is enough to show that for any α with |α| = k ≤ L, there
exist some µβ,α such that σ[α] =

∑
|β|≤|α|(σλ)[β]µβ,α and

∑
β |µβ,α|2 ≤ (H ′L)−1. For simplicity,

we assume zero drift. The general case is similar.
We can prove the result by induction over k. For k = 1, simply pick µi,j = (λ−1)ji . Now,

assuming the result holds for a given k, any multi-index of order k + 1 can now be written in the
form (i, α) for some α of order k, and some 1 ≤ i ≤ d. Then we have

σ[i,α] = [
∑
j

(λ−1)ijσ
j ,
∑
β

µβ,α(σλ)[β]] =
∑
β,j

µβ,α(λ−1)ijσ
[i,β].
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Next, we have clearly: ∑
β,j

|µβ(λ−1)ij |2 ≤ dKλ

∑
β

|µβ,α|2.

The result follows. �

As a result of the above proposition, there is no problem, when discussing whether constants
are proper, interchanging the weak Hörmander constant relative to the σ and the weak Hörmander
constant relative to the whole system A.

We note the following preliminary results on an Taylor approximation that takes interactions
into account:

13.1. Taylor approximation for composite systems

We have the following stronger version of Theorem 2.1.1:

LEMMA 13.1.1. Suppose we are given a multi-index α, a real number a, and stochastic pro-
cesses (Ait)0≤t≤T for i = 0, 1, 2, . . . , d such that ∀j ∈ {1, 2, .., d},

sup
t∈[0,T ]

|Ajt | ≤ a

and

sup
t∈[0,T ]

|A0
t | ≤ a2.

Define the iterated integrals Jα(A, T ) by (here α = (ᾱ, αk))

J (0)(A, T ) =

∫ T

0
A0
tdt

J (k)(A, T ) =

∫ T

0
Akt dW

k
t

Jα(A, T ) =

∫ T

0
J ᾱ(A, t)AαkdWαk

t .

For C|α| as in Theorem 2.1.1, we have

P

(
sup

0≤t≤T
|Jα| > R

)
≤ 2C|α| exp

−(Ra )
2
|α|

2T

.
PROOF. The proof is the same as that of Theorem 2.1.1 except that B = a

−|ᾱ|
|ᾱ|+1R

|ᾱ|
|ᾱ|+1 . �

Of course, a composite system is a system, and we can consider the standard KST approxi-
mation on it. This, however, does not allow us to obtain polynomial dependence of the constants.
Therefore, we will also consider the Taylor expansion obtained by treating λW as a driving path
and σ as the driving vector field, rather than treating σλ as the driving vector field and W as the
driving path.

Let A be a composite system, the interactive KST approximation of Yt of order l is

T lt = y +
∑
|α|≤l

(σ)α(λW )α

PROPOSITION 13.1.2. Let A be a Kλ-composite, uniformly (L, g,G)-tense system. For R ≥
1 and for any l ≤ g − 1, there exist constants C1, C2, depending only on Kλ, G, d, g, l,D, and
depending polynomially on Kλ, G, d, g,D, such that

P(|Yt − T lt | ≥ R) ≤ C1e
−R

2/(l+1)

tC2 .
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PROOF. The theorem follows upon applying Theorem 13.1.1:

P(|Yt − T lt | ≥ R) ≤
∑
|α|=l+1

P(|σα
∫ α

d(λW )| ≥ R/dl+1)

≤
∑
|α|=l+1

2Cl+1e
− R2/(l+1)

2t(GKλ)2/(l+1)

≤ (d+ 1)l+12Cl+1e
− R2/(l+1)

2t(GKλ)2/(l+1)

≤ C1e
−R

2/(l+1)

tC2 ,

where Cl+1 denotes the constant from Lemma 13.1.1 for order l + 1. �

13.2. Proof of upper bounds

The main theorem of this chapter is the following:

THEOREM 13.2.1. Let A = ((x, y), (σ,Σ),Pr) be a uniformly (L, g,G)-tense Kλ-composite
system such that σ satisfies the weak Hörmander condition with constants (L,HL) uniformly in
the compact B(x,R) for some R > 0. Suppose g ≥ (2n + 2)224L + n + 3. There exist proper
constants C1, C2, C3 (depending on R) such that for any t ≤ C1 and any x̄ ∈ Rn, Xt admits a
density pt(x, x̄) such that

pt(x, x̄) ≤ C2
e
− dt(x,x̄)2

C3t

|Bdt(x,
√
t)|
,

where dt is the usual time-dependent distance defined for the system (x, σ, Id).

PROOF. By a standard localising argument as in 8.3.1, we can suppose that the σ’s are uni-
formly (L,HL) weak Hörmander over the whole of Rn.

Since the system A is uniformly (L, g,G)-tense and uniformly (L,HL)-weak Hörmander,
Theorems 8.1.2 and 4.5.2 apply. Since the ‘distance’ dt is trivially properly locally equivalent
(with equivalence constant Kλ) to the ‘distance’ d̄t defined for the whole system A, we already
can deduce that, for some proper constants C1, C2, C3, ν, ∀t ≤ C1, dt(x, x̄) ≤ C1,

pt(x, x̄) ≤ C2
e
− dt(x,x̄)2

C3t

tν
,

and also that for any x̄ ∈ Rn and any t ≤ C1,

pt(x, x̄) ≤ C2
e
−|x−x̄|2
C3t

tν
.

As in the proofs of Theorems 8.2.1, 8.3.1 etc., it then follows we only have to show the most local

part of the estimate, i.e. that pt(x, x̄) ≤ C2
e
− dt(x,x̄)2

C3t

|Bdt (x,
√
t)| for t ≤ e−

dt(x,x̄)2

2νC3t .

Fix l = (2n + 2)224L Now, by Theorems 13.1.2 and 6.4.1, it is enough to show the estimate
for the stochastic Taylor approximation x+

∑
|α|≤l σ

α(λW )α.
We write FST for the map T l(Rd,R)→ Rn, s 7→

∑
|α|≤l s

ασα (i.e. the FST map relative to
the system (x, σ, Id).). We also have the map F log(S)T = FST ◦ exp. Writing Sα = (λW )α, we
take PrS(log(S)) ∈ S as our auxiliary random variable. S is the solution to the following system:

S0 = 0,

log(S) = (t,PrS(S)),

S ∈ T l(Rd,R),
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dS(i,α) = Sαt λ(Xt, Yt) ◦ dW i
t ,

(X,Y ) ∈ Rn ⊗ Rm,
(X0, Y0) = (x, y),

dYt =

D∑
i=0

Σ(Xt, Yt)
i ◦ dW i

t ,

dXt =

d∑
j=1

d∑
i=1

σ(Xt)
jλ(Xt, Yt)

i
j ◦ dW i

t + b(Xt, Yt)dt.

As usual, S is endowed with a family of dilations δs. We can now write for any s, t ≤ ρ
for some fixed constant ρ, log(S̃s) = δ√

t/s
(log(S)s) as the solution at time t to the following

de-scaled system, where W̃ is a de-scaled Brownian motion W̃t =
√
t/sWt/s, with target random

variable PrS(S̃). Then

S0 = 0

log(S̃) = (u,PrS(S̃))

S̃ ∈ T l(Rd,R)

dS(i,α)
u = S̃αuλ(X

u/
√
t/s
, Y

u/
√
t/s

) ◦ dW̃u

= S̃αuλ(X̃u, Ỹu) ◦ dW̃u

(X̃, Ỹ ) ∈ Rn ⊗ Rm

(X̃0, Ỹ0) = (x, y)

dỸu =
D∑
i=0

1√
t/s

Σ(X̃u, Ỹu)i ◦ dW̃ i
u

dX̃t =
d∑
j=1

d∑
i=1

σ(X̃u)jλ(X̃u, Ỹu)ij ◦ d
1√
t/s

W̃ i
u + b(X̃u, Ỹu)

1√
t/s

du.

By our assumptions and Lemma 8.1.1, this system is (L, g, G̃)-tense for a proper constant
G̃. By Proposition 8.1.2, inside a ball of proper radius ρ, the system is also uniformly (L,H ′L)
weak Hörmander for some proper constant H ′L. It follows that we are in a position to apply
Theorem 8.1.1 to conclude that there exist proper constants C1, C2, C3 such that for any z ∈ S
and t ∈ R+ such that t, |z|2S ≤ C1,

E(φ(sup
s≤t
|S|S)δ(PrS(S) = z)) ≤ C2e

− |S|
2
S

C3t

tν/2
,

where ν is the homogeneous dimension of S and φ( .) is a localising function such that φ(z) = 0
for |z|S ≥ ρ and φ(z) = 1 for |z|S ≤ ρ/2.

Just as in the proof of Theorem 8.2.1, this now allows us to use Theorem 5.1.1 to deduce the
following bound on Xt: for all t, x̄ with t, dt(x, x̄)2 ≤ C1,

E(φ(sup
s≤t
|S|S)δ(X̄t = z)) ≤ C2

e
− dt(x,x̄)

C3t

|Bdt(x,
√
t)|

+ C4t

where X̄t is the stochastic Taylor approximation described above, and C1, C2, C3, C4 are proper
constants. As mentioned in the beginning of the proof, the result now follows using same argu-
ments as in the proof of Theorem 8.2.1. �
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We now have the immediate consequence of the above together with Theorem 7.3.1, which is
the result we will use for the proof of the Löcherbach theorem under NDI:

THEOREM 13.2.2. Let A = ((x, y), (σ,Σ),Pr) be a Kλ-composite system and G be a local-
ising random variable such that σ satisfies the weak Hörmander condition with constants (L,HL)
uniformly in the compact B(x,R) for some R > 0, and such that there exists a constant C such
that for all 0 ≤ k ≤ d, 0 ≤ k̄ ≤ D N ≤ (2n + 2)224L + n + 3, α ∈ Multi({1, 2, . . . , n}),
#(α) = N , β ∈ Multi({1, 2, . . . ,m}), #(β) = N , and for any x ∈ Rn, y ∈ Rm,

| ∂Nσk

∂xα1∂xα2 . . . ∂xαN
(x)| ≤ C

| ∂NΣk

∂yα1∂yα2 . . . ∂yαN
(y)| ≤ C, and

|DN (G)| ≤ C.
Then there exit constants C1, C2, C3, polynomial in Kλ,m,D,C, such that for any t ≤ C1,

pt(x, x̄) ≤ C2
e
− dt(x,x̄)2

C3t

|
←−
B dt(x̄,

√
t)|
.

PROOF. This result follows immediately from the previous theorem, and Theorem 7.3.1, as
the assumptions imply that the tension of order (2n+ 2)224L + n+ 3 is polynomial. �



CHAPTER 14

On the absolute continuity of m̄

Here, we use the results from the previous chapter to prove that the measure

m̄(A) =
E(
∫ R

0 ηt(A)dt)

E(R)

admits a continuous density. The method is similar to the proof in [42], with just the density
estimate being different.

Let T1, T2, . . . be the jump times of the whole configuration. We write Lit for the probability
distribution at time t of the ith particle and Lit,− for the probability distribution of the ith particle
immediately before t. We also write α(x, y) = c +

∑
i κ(i, x, y). As in [42], there are two steps

in the proof: First, we show that LiTN admits a continuous and bounded density giTN ( .) for all N
(and i), with an upper bound that is polynomial in N . Then, we use this to show that m̄ admits a
continuous and bounded density.

PROPOSITION 14.0.1. Assuming either

• the elliptic (E) version of our assumptions, or,
• the weak Hörmander version, the NDI condition, and a strongly polynomial version of

Theorem 4.4.1,

LiTN admits a continuous and bounded density giTN ( .) for allN (and i). Further more, there exists
a function G : N→ R, of polynomial growth, such that for any u ∈ Rn,

giTN (u) ≤ G(N).

PROOF. We prove the result by induction. The cases N = 0 and N = 1 are trivial. Indeed,
L1
T1

= π, and in particular, L1
T1

admits a density g1
T1

( .) = π( .), which is bounded by assumption.
Now, suppose that the result is established for some value of N , and we have giTN ≤ D for

some D polynomial in N . We have, for any u ∈ Rn, any approximation ru of the delta function
δu, and any ε > 0,

E(ru(ξiTN+1,−)) = E
(∫ ∞

0
ru(ξiTN+t)e

−
∫ t
0 α(ξTN+s,ζTN+s)dsα(ξTN+t, ζTN+t)dt

)
(14.0.1)

= E
(∫ ε

0
ru(ξiTN+t)e

−
∫ t
0 α(ξTN+s,ζTN+s)dsα(ξTN+t, ζTN+t)dt

)
+ E

(∫ ∞
ε

ru(ξiTN+t)e
−
∫ t
0 α(ξTN+s,ζTN+s)dsα(ξTN+t, ζTN+t)dt

)
.

We use the following shortcuts:

G = e−
∫ t
0 α(ξTN+s,ζTN+s)dsα(ξTN+t, ζTN+t)

Ḡ = α(ξTN+t, ζTN+t)

Now, by Theorem 13.2.2, there exist constants C1, C2, C3, polynomial in N indeed, note that
l+F(l) is a polynomial constant in N by the assumptions on F and the reproduction law p) such
that for any t ≤ C1, any u ∈ Rn and any x, y ∈ Rn×l(ηTN ) ⊗ Rn×F(l(ηTN )) the perturbed density

pGt (x, y, u) = E(x,y)(δu(ξit)e
−
∫ t
0 α(ξTN+s,ζTN+s)dsα(ξTN+t, ζTN+t)dt)

159
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satisfies both

pḠt (x, y, u) ≤ C2
e
− |x

i−u|2
C3t

tν/2

(for some constant ν independent of N, l, etc),
and either:

pGt (x, y, u) ≤ C2
e
− |x

i−u|2
C3t

tn/2
(14.0.2)

(under the ellipticity assumption E),
or:

pGt (x, y, u) ≤ C2
e
− dt(x

i,u)2

C3t

Bdt(x
i,
√
t)
.(14.0.3)

(under the assumptions NDI and H). Here dt is the time-dependent ’distance’ associated with the
vector fields σ. In particular, dt doesn’t depend on N, i, x, y, l, etc.

That means we can use Theorem 7.3.1 to turn Eq. (14.0.3) into :

pGt (x, y, u) ≤ C2
e
− dt(x

i,u)2

C3t

←−
B dt(u,

√
t)

(14.0.4)

whilst keeping the constants C1, C2, C3 polynomial in N .
Next, fix Ξ < 1 and then pick εN > 0 such that εN ≤ C1 and∫ εN

0

∫
v∈Rn

C2
e
− |v−u|

2

C3t

tn/2
dvdt ≤ Ξ/ sup

h=0,1,...,N
(h+ F(h)), and(14.0.5)

∫ εN

0

∫
v∈Rn

C2
e
− dt(v,u)2

C3t

←−
B dt(u,

√
t)
dvdt ≤ Ξ/ sup

h=0,1,...,N
(h+ F(h)).

Note that εN is still a polynomial quantity in N .
Going back to Eq. (14.0.1), we obtain:

E(ru(ξiTN+1,−)) = E
(∫ εN

0
ru(ξiTN+t)e

−
∫ t
0 α(ξTN+s,ζTN+s)dsα(ξTN+t, ζTN+t)dt

)
+ E

(∫ ∞
εN

ru(ξiTN+t)e
−
∫ t
0 α(ξTN+s,ζTN+s)dsα(ξTN+t, ζTN+t)dt

)
≤ DΞ/ sup

h=0,1,...,N
(h+ F(h))

+ E
(∫ ∞

εN

ru(ξiTN+t)e
−
∫ t
0 α(ξTN+s,ζTN+s)dsα(ξTN+t, ζTN+t)dt

)
by either (14.0.2) or (14.0.4), and by (14.0.5)

≤ D(N)Ξ + C2
1

ε
ν/2
N

∫ ∞
εN

e−ctdt

≤ D(N) +R(N).

Letting r tend to the delta function, we obtain that LiTN+1,−
has density giTN ,− such that

giTN+1,− ≤ D(N + 1) = D(N)Ξ +R(N).

Because the density of a particle ηi at time TN+1,+ is either taken from the density of ηi at time
TN+1,− (if TN+1 is a branching event), or taken from π (if TN+1 is an immigration event), we can
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conclude

giTN+1,+
≤ D(N + 1) = D(N)Ξ +R(N)(14.0.6)

whereR is a polynomial function. Iterating (14.0.6), we get, writingR(1) for D(1),

giTN+1,+
=

N∑
k=1

ΞN−kR(k) ≤
supk=1,2,...,N R(k)

1− Ξ
,

which is indeed polynomial in N . �

Using the above result, we can prove the main result of this part of the thesis:

PROPOSITION 14.0.2. Assuming either
• the elliptic (E) version of our assumptions, or,
• the weak Hörmander version, the NDI condition, and a strongly polynomial version of

Theorem 4.4.1,
the measure m̄ admits a continuous and bounded Lebesgue density g.

PROOF. Write

ḡiN = E(δu(ξiTN+1,−)) = E
(∫ ∞

0
δu(ξiTN+t)e

−
∫ t
0 α(ξTN+s,ζTN+s)ds

)
,

and picking the same εN as in the proof of 14.0.1, we have, similarly to 14.0.1,

ḡiN ≤ DΞ/ sup
h=0,1,...,N

(h+ F(h)) +R(N).

Next, we have∑
i

ḡiN ≤
DΞ

suph=0,1,...,N (h+ F(h))
sup

h=0,1,...,N
(h+ F(h)) +R(N) sup

h=0,1,...,N
(h+ F(h))

≤ ΞD(N) +R(N) sup
h=0,1,...,N

(h+ F(h))

≤
N∑
k=1

ΞN−kR(k) ≤
supk=1,2,...,N R(k)

1− Ξ
(by iterating).

Now note that, writing m̄N for the measure with density ḡiN , we have

m̄ =
1

E(R)

∞∑
N=0

P(TN < R)m̄N

<
1

E(R)

∞∑
N=0

Csubcriticalitye
−csubcriticalityNm̄N

< b

∞∑
N=0

Csubcriticalitye
−csubcriticalityNm̄N ,

where Csubcriticality, csubcriticality are the constants from Lemma 12.3.1.
Writing m̄N↑ =

∑N
h=0 P(TN < R)m̄h, we have that m̄N↑ has density

gN↑ ≤
N∑
h=0

bCsubcriticalitye
−csubcriticalityh

supk=1,2,...,N R(k)

1− Ξ
.

Because supk=1,2,...,N R(k) is polynomial in N , the above series converges as N → ∞, and
the theorem follows by dominated convergence. �
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Probabilités, XXVIII, Lecture Notes in Math., vol. 1583, Springer, Berlin, 1994, pp. 36–48. MR 1329099
47. Alexander Nagel, Elias M. Stein, and Stephen Wainger, Balls and metrics defined by vector fields i: Basic proper-

ties, Acta Mathematica 155 (1985), no. 1, 103–147.
48. Andreas Neuenkirch, Ivan Nourdin, Andreas Roessler, and Samy Tindel, Trees and asymptotic developments for

fractional stochastic differential equations, 46 pages, November 2006.
49. David Nualart, The Malliavin calculus and related topics, Probability and its Applications (New York), Springer-

Verlag, New York, 1995. MR 1344217
50. Paolo Pigato, Tube estimates for hypoelliptic diffusions and scaling properties of stochastic volatility models, PhD

Thesis (2015).
51. Jeremy Reizenstein, Calculation of iterated-integral signatures and log signatures, (2015).
52. C. Reutenauer, Free lie algebras, LMS monographs, Clarendon Press, 1993.
53. Setsuo Taniguchi, Applications of Malliavin’s calculus to time-dependent systems of heat equations, Osaka J. Math.

22 (1985), no. 2, 307–320. MR 800974


