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Graphical abstract 
During my PhD studies, I focused on three different aspects of drug resistance in melanoma, as 

graphically outlined below, which resulted in two published papers, a review article and a 

manuscript in preparation. 

 

Articles: 

1) “ROS production induced by BRAF inhibitor treatment rewires metabolic processes 

affecting cell growth of melanoma cells” (Cesi et al., Mol Cancer, 2017) 

2) “Impact of BRAF kinase inhibitors on the miRNomes and transcriptomes of melanoma cells” 

(Kozar et al., BBA, 2017) 

3) a) “Overexpressed ALK transported by extracellular vesicles confers drug resistance to 

sensitive melanoma cells: a novel mechanism of acquired resistance” (Cesi et al., in 

preparation);  

b) “Transferring intercellular signals and traits between cancer cells: extracellular vesicles 

as “homing pigeons”” (Review Cesi et al., Cell Communication and Signaling, 2016).
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Chapter 1 Introduction 

In my thesis, I elucidated several aspects of melanoma biology, all related to the influence of 

targeted therapies in both responding and resistant cells. To better understand the MAPK signalling 

pathway, the impact of BRAF inhibitors on metabolic alterations as well as the connection between 

BRAF inhibitors and the onset of drug resistance was investigated. This introduction is focused on 

four topics: i) melanoma, ii) cancer metabolism, iii) miRNAs and iv) extracellular vesicles. First, 

melanoma biology including incidence rates, etiology, canonical and altered signalling pathways, 

therapies and resistance mechanisms will be introduced. The second part of the introduction will 

concentrate on metabolic alterations in the context of cancer and their implication on proliferation 

and survival. Thirdly, miRNAs and extracellular vesicles will be illustrated providing insights into 

their role in cancer development and especially drug resistance. 

1.1 Melanoma biology 

1.1.1 Molecular basis of carcinogenesis 

Cancer is one of the major causes of mortality throughout the world and despite the remarkable 

efforts in understanding the biology of cancer, and the amount of money devoted over the past 

several decades, successful eradication and control of advanced disease is still to come (Siegel et 

al., 2016). Indeed, the cellular complexity of the disease, its dynamic and evolutionary character 

challenge successful cancer therapies. Carcinogenesis is a multi-step process characterized by the 

dysfunction of the mechanisms involved in the control of cell proliferation. The disease develops in 

three stages:  

1) Initiation: cells acquire irreversible genetic damage due to external carcinogens or inherited 

genetic lesions. These mutations mostly affect oncogenes and tumour suppressor genes 

that normally are key regulators of physiological processes such as proliferation, cell death, 

differentiation and senescence. The activation of an oncogene generally involves “a gain of 

function”, which it is dominant; on the contrary mutations in tumour suppressor genes 

which determine “a loss of function” are generally recessive (Lodish et al., 2000). Some 

types of cancers occur early in life and are associated with mutations in a single gene. 

Retinoblastoma, for example, a childhood form of retinal cancer, is caused by mutations in 

the tumour suppressor RB1. However, more often, cancer is a multistep process and single 
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mutations are generally not sufficient to transform a cell. Several mutations in different 

genes are needed for a cell to lose control on its own cell cycle (Paige, 2003).  

2) Promotion: this stage is characterized by the selective clonal expansion of “initiated cells”. 

Within this period, the process can be altered by chemotherapeutic agents that can affect 

growth rates. Promotion is the phase between a pre-malignant lesion and the development 

of invasive cancer. Despite their monoclonal origin, tumours tend to become 

heterogeneous masses where cells accumulate different mutations that best fit the specific 

microenvironment (Weston and Harris, 2003).  

3) Progression: cells acquire further genetic and epigenetic alterations which confer more 

aggressive features and a more invasive behavior leading to metastasis (Weston and Harris, 

2003).  

Further, genome instability during this multistep development induces cancers to acquire six 

biological characteristics. They include sustaining proliferative signalling, evading growth 

suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis and 

activating invasion and metastasis (Hanahan and Weinberg, 2011). In the last decade, two 

additional cancer hallmarks have been identified: metabolic reprogramming and evading immune 

responses. Moreover, in addition to cancer cells, the tumour microenvironment has been gradually 

recognized as a key contributor for cancer progression enhancing the complexity of neoplastic 

diseases (Hanahan and Weinberg, 2011). 

1.1.2 Cancer metastasis and tumour microenvironment 

In spite of significant advances in cancer treatment, metastatic disease still remains incurable and 

responsible for the great majority of cancer-associated deaths (Chaffer and Weinberg, 2011). 

Metastasis is the result of a multistep process, where cells from the primary tumour spread to 

distant organs.  The acquisition of genetic and epigenetic alterations can drive cancer cells to: i) 

break down the surrounding extracellular matrix and locally invade, ii) intravasate into the blood 

vessels, iii) survive the transport through the vasculature, iv) arrest at distant organ sites, v) 

extravasate into the parenchyma of distant tissues, vi) initially survive and proliferate in a foreign 

microenvironment in order to form micrometastases (Valastyan and Weinberg, 2011). This process, 

collectively named the “metastatic cascade”, is extremely inefficient. Fortunately, most cancer cells 

fail to undergo metastasis and less than 0.01% of tumour cells entering the bloodstream acquire all 

the properties necessary to ultimately develop into metastasis (Valastyan and Weinberg, 2011). 

According to Stephen Paget’s hypothesis, postulated in 1889, metastasis is not a random 

colonization of a secondary tumour site but is mostly dependent on the cross-talk between the cells 
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(the seeds) and the host microenvironment (the soil). In particular, many studies demonstrated 

that tumour-secreted factors and tumour shed extracellular vesicles are responsible for the 

generation of a suitable microenvironment in distant organs often called the “pre-metastatic niche” 

(Peinado et al., 2017).  

The tumor microenvironment (TME) has been increasingly recognized as a key factor at multiple 

stages of cancer progression, particularly in drug resistance, immune escape and distant metastasis 

(Chen et al., 2015). The TME consists of extracellular matrix as well as myofibroblasts and other 

cellular players, such as fibroblasts, adipose cells, immune-inflammatory cells, and the blood and 

lymphatic vascular networks (Chen et al., 2015). These components can influence malignant cell 

growth by releasing extracellular matrix proteins, growth factors and cytokines. At the same time, 

cancer cells themselves secrete growth factors, vesicles and proteases that are able to modify the 

local microenvironment making it more permissive for cell motility and adhesion (Finger and 

Giaccia, 2010). In addition, a key microenvironmental factor associated with tumor progression is 

hypoxia. When cells are exposed to a lower oxygen tension, Hypoxia Inducible Factors (HIFs) induce 

transcriptional programs involved in the adaptation of cells to the lack of oxygen but also in many 

different processes, including angiogenesis, glucose metabolism, and autophagy (Semenza, 2012). 

Furthermore, hypoxia has been reported to play a key role in protecting tumour cells from immune 

cell attack either by promoting immune suppression, or by inducing many other oncogenic events 

and/or resistance mechanisms in cancer cells, allowing the tumour to escape from immune cell 

attack (reviewed in Noman et al., 2015). 

1.1.3 Melanocytes in human skin 

Human skin is the largest organ of the body with a range of functions that support survival. It is 

organized in three main layers: the outer epidermis, the dermis and the subcutaneous fat. The 

epidermis itself is divided in layers such as the stratum corneum, the granular cell layer, the spinous 

cell layer, and the basal cell layer. Keratinocytes, the most abundant cell type of the epidermis, are 

characterized by the presence of keratin and by the formation of desmosomes and tight junctions 

with each other to form a physico-chemical barrier against environmental damage (Hirobe, 2014). 

The epidermis also contains dendritic (Langerhans) cells, which are antigen presenting cells 

important for first line defense against exogenous pathogens. Only a small percentage of the 

epidermis is represented by melanocytes (Hirobe, 2014). Melanocytes are the cells responsible for 

the production of a complex mixture of pigments, which exert protective functions against UV rays 

and which determine the skin color. Melanocytes together with neurons, glial cells, cardiac cells, 

cartilage, connective tissues and bone morrow originate from embryonic neural crest cells and are 
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present not only in the basal layer of the epidermis and hair follicles but also in the inner ears, eyes, 

nervous system and the heart (Mort et al., 2015). In the skin, melanocytes provide neighboring 

keratinocytes with melanin pigment, which is synthesized within specific organelles called 

melanosomes. The production of melanin is triggered by UV radiation-induced DNA damage to 

keratinocytes, which consequently produce pro-opio-melanocortin (POMC) in a p53-dependent 

manner (Figure 1). POMC is further processed and secreted as α-melanocyte stimulating hormone 

(α-MSH), which binds to the melanocortin 1 receptor (MC1R), expressed on neighboring 

melanocytes resulting in a signal cascade that enhances the levels of MITF transcription factor 

(microphthalmia-associated transcription factor). MITF, then, regulates the expression of genes 

required for melanin synthesis (tyrosinase and tyrosinase-related protein). In addition to increased 

pigmentation, α-MSH also stimulates melanocyte proliferation, a process which is supposed to 

enhance photoprotection (Shain and Bastian, 2016). Although sun exposure has positive effects on 

human health triggering vitamin D synthesis, frequent and intense exposure to UV radiation 

represents a major risk factor for the development of skin cancer, notably melanoma. 

 

Figure 1. UV radiation triggers the production of melanin pigments.  

In keratinocytes, UV rays induce DNA damage and p53 activation. P53 induces the transcription of pro-opio-

melanocortin (POMC), which is post-translationally processed and secreted as two bioactive peptides, α-

melanocyte-stimulating hormone (α-MSH) and β-endorphins. α-MSH binds to the melanocortin 1 receptor 

(MC1R) located in the plasma membrane of melanocytes inducing a cyclic AMP-mediated signalling that 

stimulates MITF to induce pigment synthesis within melanosomes. Melanosomes are then transferred from 

melanocytes to keratinocytes where they become positioned in the perinuclear area of each keratinocyte, 

providing protection against further DNA damage. Image taken from Schadendorf et al., 2015. 
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1.1.4 Cutaneous melanoma 

The malignant transformation of melanocytes into cancer cells requires a complex synergy of both 

environmental (exogenous) and genetic (endogenous) factors (Bandarchi et al., 2010). Due to the 

presence of melanin pigment, cutaneous melanoma can often be accurately diagnosed earlier than 

other malignancies and surgically resected. However, advanced stages of the disease are generally 

associated with poor patient survival.  Melanoma is classified according to the thickness, the depth 

of penetration, and the degree to which the melanoma has spread (Balch et al., 2009; Vultur and 

Herlyn, 2013) (Figure 2). The stage is most often determined using the TNM system. It is based on 

the combination of three factors: 1) tumour depth (T), described by Breslow's thickness (expressed 

in millimeters), 2) lymph node status (N) and 3) distant metastasis (M).  

 

Figure 2. Stages of melanoma. 

The stage is based on the results of physical and histological examination and it depends on the size or 

thickness of the tumour, whether it has spread to the lymph nodes or other organs, and other characteristics, 

such as growth rate. Picture A taken from Mescher, 2009, picture B taken from www. 

skindermatologists.com/melanoma.html. 
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Their combination defines four stages. Early melanomas (stages 0 and I) are localized; stage 0 

tumours are in situ, meaning that they are non-invasive and have not penetrated below the surface 

of the skin, while stage I tumours have invaded the skin but are small and are growing at a slow 

mitotic rate. Stage II tumours, though localized, are larger (generally over 1 mm thick) and/or may 

be ulcerated or have a faster mitotic rate; they are considered intermediate melanomas. More 

advanced melanomas (stages III and IV) have spread (metastasized) to other parts of the body such 

as lymph nodes, liver, brain and lungs.  The staging is used to determine treatment. For stage 0, I 

and II patients, surgical excision represents the first line treatment. Stage III and IV patients are 

often hard to cure; however, in recent years, the treatment of melanomas has changed as newer 

forms of immunotherapy and targeted drugs have been shown to be more effective than 

chemotherapy (Luke et al., 2017) (See 1.1.7 and 1.1.11).  

1.1.5 Epidemiology and risk factors 

Melanoma but also non-melanoma skin cancers are the most common types of cancer in 

Caucasians (Schadendorf et al., 2015) with an increasing incidence rate worldwide but a stable or 

decreasing mortality rate (Schadendorf et al., 2015). Although melanoma accounts for only 1% of 

all skin cancers, it is responsible for the majority of skin cancer-related deaths (American Cancer 

Society) (https://www.cancer.org/research/cancer-facts-statistics). According to the US National 

Cancer Institute, the estimated number of new cases of melanoma in 2016 was 76.380, which 

represented 4.5% of all new cancer cases. Cutaneous melanoma mainly affects the light skinned 

population whereas more pigmented populations, which are less prone to develop the disease, 

mostly suffer from acral and mucosal melanoma (Schadendorf et al., 2015). Australia and New 

Zealand have reported the highest incidence rate worldwide with 60 cases per 100.000 inhabitants 

per year (Schadendorf et al., 2015). Compared to other solid cancers, melanoma exhibits an 

extremely high prevalence of somatic mutations (Alexandrov et al., 2013), which is almost entirely 

attributable to UV light (UV mutational signature). Sun-derived UV rays, a mixture of UV-A and UV-

B, may exert deleterious effects on cells, damaging the DNA and causing genetic mutations (Brenner 

and Hearing, 2008). UV-B rays, for example, strongly induce the formation of thymine dimers, with 

two adjacent pyrimidines forming a double covalent bond (Zaidi et al., 2012). The typical “UV-B 

signature mutation” is characterized by cytosine to thymine (C to T) and cytosine-cytosine to 

thymine-thymine (CC to TT) transitions. On the other hand, UV-A rays generate reactive oxygen 

species (ROS) responsible for the formation of photodimers in the genome. Oxidation of 

nucleotides promotes mispairing and therefore mutagenesis (Zaidi et al., 2012). In addition to UV 

light, mutations in specific genes contribute to the onset of melanoma. A familiar background 
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occurs in 10% of all melanoma patients (Tsao et al., 2012) and of those, 40% harbor high-penetrance 

germline mutations within the cyclin-dependent kinase inhibitor 2A (CDKN2A) (Schadendorf et al., 

2015), a gene which encodes two distinct tumour-suppressor genes: p16 and p14ARF. The most 

common type of melanoma in Caucasians arises in areas chronically exposed to the sun, such as the 

head, ears, neck and lower extremities (Shain and Bastian, 2016). Signs of cumulative exposure to 

UV light, typically solar elastosis, are often associated with this type of melanoma which develops 

in > 60 year old people. Melanomas from chronic sun damage are usually characterized by high 

mutation rates affecting genes such as neurofibromin NF1, KIT, BRAFnonV600E (Bastian, 2014). In 

contrast, melanomas associated with intermittent sun exposure do not show solar elastosis and are 

more common in younger people. In this case, the disease is very aggressive and it is characterized 

by a moderate mutation rate with BRAFV600E being the most frequent alteration (Bastian, 2014).  

1.1.6 The Mitogen-Activated Protein Kinase signalling pathway 

The Mitogen-Activated Protein Kinase (MAPK) signalling pathway is currently the most oncogenic 

cascade in melanoma. Its high therapeutic relevance arises from the fact that it plays a fundamental 

role in many key cellular processes such as proliferation, survival, differentiation and metabolism 

(Plotnikov et al., 2011). The MAPK pathway can be activated through receptor tyrosine kinases 

(RTKs). Ligands induce RTK dimerization and in trans receptor autophosphorylation on tyrosine 

residues, resulting in receptor activation. These phosphorylated tyrosine residues hook adaptor 

proteins, such as Shc (Src Homology 2 Domain-Containing proteins), which contain the Src 

(sarcoma) homology 2 (SH2) domain. Shc proteins, in turn, recruit the Growth Factor Receptor-

Bound 2 (Grb2) together with the guanine nucleotide exchange factor (Son of Sevenless) leading to 

the conversion of inactive RAS-GDP to active RAS-GTP. Subsequently, RAS-GTP interacts with and 

activates the serine/threonine RAF kinase family (Roskoski, 2010). The RAF kinase family includes 

three isoforms: ARAF, BRAF and CRAF. The three RAF isoforms share three conserved regions (CR) 

(Figure 3). The CR1 contains the RAS-binding domain and the cysteine-rich domain which are 

important for RAF membrane recruitment, CR2 connects CR1 and CR3 and contains binding sites 

for the dimer 14-3-3 protein and CR3, which contains the catalytic domain. In absence of RAS-GTP, 

the closed and inactive conformation of RAF is stabilized by a 14-3-3 dimer binding to 

phosphorylated serine residues (in CR2 and CR3). Dephosphorylation of these residues at the cell 

membrane by specific protein phosphatases (PP2A, PP1) releases the protein 14-3-3 and allows a 

conformational change, which enables RAS binding and membrane recruitment. RAS promotes RAF 

dimerization and activation via phosphorylation of serine residues present in the negatively charged 

N region (located N-terminal to the kinase domain) and in the activation segment. SRC family 
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kinases seem to be responsible for serine phosphorylation in the N region while it is unclear which 

kinase is responsible for the phosphorylation in the activation domain. However, recently, cis-

autophosphorylation has been proposed (Lavoie and Therrien, 2015). Fully activated RAF proteins 

can then phosphorylate and activate MEK1 and MEK2, which in turn phosphorylate their targets 

ERK1 and ERK2 (Figure 4). Activated ERK phosphorylates and activates a variety of nuclear and 

cytoplasmatic substrates that mediate the pleiotropic effects of the pathway. ERK signalling also 

activates a very important negative feedback loop phosphorylating several inhibitory sites in RAF 

and causing a release from RAS and the disruption of RAF dimers, which terminate the signalling. 

1.1.7 The BRAFV600E mutation 

The MAPK signalling pathway is hyperactivated in 30% of human cancers (Burotto et al., 2014). 

Mutations in the Ser/Thr-kinase BRAF have been found in 10% of all human cancers with the highest 

prevalence observed in melanoma patients (> 50%), making BRAF one of the most mutated cancer-

associated genes (Davies et al., 2002; Holderfield et al., 2014). In the inactive BRAF conformation, 

the phenylalanine side chain of the conserved DFG motif (aspartate, phenylalanine, and glycine) 

present in the activation segment of the kinase domain occupies the nucleotide binding pocket 

preventing ATP binding in the catalytic cleft (refer to Figure 5). In addition, the LAT motif residues 

(leucine, alanine and threonine) directly adjacent to the DFG, are engaged in hydrophobic 

interactions with the P-loop (glycine-rich ATP-phosphate-binding loop). Interestingly, the P-loop 

and the activation segment form two clusters of mutations (Figure 3). Thus, the interference with 

these interactions plays an important role in oncogenic BRAF activation. 

 

 

 

Figure 3. Schematic representation of RAF protein and frequent mutations.  

The glycine-rich loop and the activation segment can be frequently mutated. The most common amino acid 

substitutions are reported in red above the sequences. The frequency of the different mutations is indicated 

by the red lines above the protein structure. V600 is the most frequent mutated site in BRAF. The 

phosphorylation sites present in the activation segment of BRAF (T599 and S602) are highlighted in yellow 

while V600 is in blue. The DFG motif is underlined. The top panels contain details about nucleotide position, 

codon and amino acid change of the most recurrent mutations at V600 position. Modified from Wellbrock et 

al., 2004. 
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Physiologically, to switch into its active form, BRAF must form dimers and be phosphorylated at two 

key residues (T599 and S602) located in the BRAF activation segment. Phosphorylation of the 

activation segment results in the destabilization of these hydrophobic interactions by introducing a 

negative charge, resulting in a conformational change of the DFG segment into its active state and 

allowing access to the catalytic cleft. Although more than 40 different mutations have been 

identified in the BRAF gene, in 90% of the cases, BRAF mutations involve a thymine to adenine 

single-base change at position 1,799 which results in an amino acid change from valine (V) to 

glutamic acid (E) at residue 600 (p.V600E) (Figure 3) (Davies et al., 2002). Glutamic acid is a 

negatively charged amino acid, which mimics phosphorylation of the activation segment by RAS, 

destabilizing the conformation that normally maintains the inactive orientation of the DFG motif. 

This mutation renders BRAFV600E constitutively active with increased and constitutive kinase activity 

(Figure 4). Opposed to BRAF, mutations within ARAF and CRAF are rather rare. This is probably due 

to the fact that these two proteins require additional phosphorylation of residues present in the N 



Introduction  

 
14 

 

region of the kinase domain for full activation while BRAF already contains negative charges in its 

N region (Roskoski, 2010). Hence, a single mutation is sufficient to activate BRAF while at least two 

distinct events would be necessary to constitutively activate ARAS and CRAS (Wellbrock and 

Arozarena, 2016). 

 

 

Figure 4. The BRAFV600E mutation constitutively activates the MAPK signalling pathway. 

(A) Under physiological conditions, the binding of a ligand to the receptor tyrosine kinase induces its 

activation and consequently the activation of the RAF-MEK-ERK pathway. The pathway is switched off by 

negative regulators such as NF1, SPRY and DUSP. (B) Mutant BRAF is constantly active and leads to the 

overexpression of ERK target genes promoting proliferation and survival. 

1.1.8 Targeting the BRAFV600E mutation in metastatic melanoma 

The identification of mutations in the BRAF gene and the development of a targeted therapy for it 

revolutionized the treatment of patients with advanced melanoma. The principle behind targeted 

therapy is the interference with specific molecules necessary for tumour growth and progression. 

Traditional cytotoxic chemotherapies usually kill all rapidly dividing cells in the body by blocking cell 

division with severe side effects (McKnight, 2003). A primary goal of targeted therapies, on the 

other hand, is to selectively target proteins, which are mutated in cancer cells but not in normal 

surrounding cells, with potentially fewer side effects. Initial therapeutic strategies to inhibit 

oncogenic BRAF used sorafenib, which targets multiple tyrosine kinases with poor efficacy in BRAF-

mutated melanomas (Eisen et al., 2006; Hauschild et al., 2009). For this reason, a second generation 

of inhibitors was developed to specifically target only BRAFV600E. Vemurafenib (also known as 
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PLX4032) and Dabrafenib (also known as GSK2118436) are two small molecules designed through 

a crystallographic approach. Both inhibitors bind to the ATP-binding pocket and are classified as 

type I kinase inhibitors because they favor the active conformation of the protein, induced by the 

mutation (Holderfield et al., 2014) (Figure 5).  

 

 

Figure 5. Structure of BRAF kinase domain bound to BRAF inhibitor PLX4032 (Vemurafenib). 

The inhibitor binds the kinase in its active conformation interacting with the ATP binding site by forming 

hydrophobic bonds in and around the adenine regions where the adenine ring of ATP usually binds. Image 

taken from Rahman et al., 2014. 

 

These inhibitors bind with high affinity to the mutated form of BRAF (V600E and the less common 

BRAF mutations V600K, V600D, V600R and V600M where valine at position 600 is replaced by 

lysine, aspartic acid, arginine or methionine respectively) (Menzies et al., 2012; Rubinstein et al., 

2010). The drugs have been approved by the Food and Drug Administration (FDA) in 2011 for clinical 

use and have successfully been administered as monotherapy in a subset of late stage melanoma 

patients showing impressive results at first (Flaherty et al., 2010) (Figure 6). However, despite the 

initial promising results, most patients relapse and develop drug resistance within six months 

(Hartsough et al., 2014). Drug resistance is often achieved by bypassing BRAF inhibition through 

downstream activation of MEK (Trunzer et al., 2013). Therefore, a combination therapy targeting 

BRAF V600 mutations (Dabrafenib or Vemurafenib) together with MEK (Trametinib or Cobimetinib) 

has been approved in 2015 for use in stage III and stage IV melanoma patients (Garbe et al., 2016; 
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Spain et al., 2016). Overall, median survival has increased with the combination therapy from 18.7 

months to 25.1 months (Garbe et al., 2016; Spain et al., 2016).   

 

 

Figure 6. BRAF inhibitors are effective in late stage melanoma patients harboring BRAFV600E.  

Comparison of patient PET scans after Vemurafenib treatment. Considerable tumour shrinkage is visible after 

2 weeks of treatment suggesting effective response. Unfortunately, drug resistance and further tumour 

progression is often observed after 6 months. Image from Finn et al., 2012. 

1.1.9 The BRAF inhibitor paradox 

As mentioned above, BRAF inhibitors profoundly contributed to extended survival of patients with 

BRAFV600E metastatic melanoma (Chapman et al., 2011; Menzies et al., 2012; Song et al., 2015). 

These drugs do not inhibit wild-type BRAF but rather confer a paradoxic growth advantages to those 

cells (Halaban et al., 2010; Joseph et al., 2010). The so called “BRAF inhibitor paradox” was 

extensively investigated in the past few years. Biochemical evidence suggests that the effects of 

BRAF inhibitors strongly depend on both the mutational status of BRAF and on the levels of RAS-

GTP. In wild-type BRAF cells, elevated RAS-GTP promotes the dimerization and the membrane 

localization of RAF proteins. The presence of non-saturating concentrations of BRAF inhibitor bound 

to one molecule of the dimer induces an allosteric change that transactivates the other drug-free 

molecule of the dimer, which can then activate the ERK pathway (Hatzivassiliou et al., 2010; 

Poulikakos et al., 2010). In cells expressing mutant BRAF, RAS-GTP levels are insufficient to induce 
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dimer formation and RAF proteins mostly exist as monomers. In addition, unlike wild-type BRAF, 

monomeric BRAFV600E is hyperactive and capable of activating the ERK pathway by itself. BRAF 

inhibitors efficiently bind and inhibit monomeric BRAFV600E, suppressing downstream signalling 

(Freeman et al., 2013; Poulikakos et al., 2011) (Figure 7). This model suggests that any mutation 

able to increase RAS-GTP (RAS mutation or activation of RTKs), can enhance RAF dimerization and 

promote drug resistance against BRAF kinase inhibitors (Poulikakos et al., 2010). 

 

Figure 7. The effects of BRAF inhibitors depend on the mutational status of BRAF and on the levels of RAS-

GTP.  

(A) In BRAF wild-type cells, when the levels of RAS-GTP are low, RAF proteins are inactive monomers. (B) 

Elevated levels of RAS-GTP promote RAF dimerization. BRAF inhibitor, at non-saturating concentration, binds 

to one monomer which in turn transactivates the other member of the dimer. (C) At saturating concentrations 

of the inhibitor, both monomers are inhibited and RAF activity is inhibited. (D) In BRAF V600E cells, when the 

levels of RAS-GTP are low, all RAF isoforms mostly exist as hyperactive monomers. (E) BRAF inhibitor 

efficiently binds and suppresses monomeric RAF suppressing its activity and downstream pathway. Modified 

from Samatar and Poulikakos, 2014. 

1.1.10 Drug resistance in cancer: a clinical challenge 

The recent development of targeted therapies represents one of the most important steps forward 

in cancer treatment. Many targeted cancer therapies have been approved by the FDA to treat 

different types of cancer (such as skin, lung, colorectal and breast cancer, lymphoma, leukemia 

etc.). Others are in clinical trials, and many more are in preclinical testing. Unfortunately, the 

positive effects of targeted therapy are often challenged by the emergence of rapid drug resistance. 

There are two categories of drug resistance: intrinsic and acquired. Intrinsic resistance refers to the 

lack of drug responsiveness probably due to the presence of pre-existing factors in the tumour, 

which make a certain therapy an unavailing attempt (Holohan et al., 2013). Acquired resistance, on 

the other hand, develops during the treatment, which was previously effective and it could be 
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interpreted as a protective adaptation mechanism of the cancer cell to get rid of the cytotoxic agent 

(Friedman, 2016). Additional mutations acquired during the treatment affecting alteration of drug 

transport, drug metabolism, cell death and DNA repair as well as the activation of alternative 

compensatory signalling pathways are behind the onset of this type of resistance (Holohan et al., 

2013) (Figure 8).  

Figure 8. Mechanisms that can promote drug resistance in human cancer cells. 

These mechanisms might act independently or in combination resulting in drug tolerance and drug resistance. 

In addition, tumours are highly heterogeneous, thus drugs could select for intrinsically resistant 

subpopulations present in the original tumours (Swanton, 2012). Strategies targeting multiple 

pathways and/or combination of different therapeutic approaches (targeted therapy, 

immunotherapy) will probably be necessary to successfully eliminate these subpopulations and to 

obtain sustained drug responses (Rebecca and Smalley, 2011). 

1.1.11 Resistance to BRAF inhibitors 

Several mechanisms of acquired resistance to BRAF inhibitors have already been characterized and 

in most cases the re-activation of the MAPK pathway enables the cells to bypass BRAF inhibition 

and to resume proliferation (Villanueva et al., 2011; Winder and Virós, 2017). For instance, a subset 

of BRAF inhibitor-resistant melanoma cells can restore the MAPK activity by expressing truncated 

forms of BRAF or by overexpressing BRAF, CRAF, or COT1 (Corcoran et al., 2010; Johannessen et al., 

2010; Montagut et al., 2008; Poulikakos et al., 2011). Similarly, activating mutations in NRAS 

(Q61K/R) and MEK1 (C121S) trigger and stimulate the MAPK signaling in BRAF inhibitor–resistant 

cell lines and clinical samples (Nazarian et al., 2010; Wagle et al., 2011). Moreover, the upregulation 
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of other receptor tyrosine kinases (RTKs) is another common mechanism of resistance to targeted 

inhibitors. The RTK platelet-derived growth factor receptor-β (PDGFRβ) and the Insulin Like Growth 

Factor 1 Receptor (IGF-1R) confer BRAF inhibitor resistance in a MAPK-independent manner that 

activates the phosphatidylinositol 3-kinase (PI3K)/AKT pathway (Nazarian et al., 2010; Shi et al., 

2014; Villanueva et al., 2011) (Figure 9). In addition, intrinsic resistance to BRAF inhibitors in cells 

harboring a BRAF mutation is often due to the loss or inactivation of genes implicated in the 

regulation of proliferation and survival pathways such as the negative regulator of the PI3K-AKT 

pathway, PTEN (phosphatase and tensin homolog), the recessive tumour suppressor CDKN2A and 

the negative regulator of RAS, NF1 (Palmieri et al., 2015). 

 

Figure 9. Selection of possible mechanisms of resistance to BRAF inhibitors.  

(A) Acquired resistance to BRAF inhibitors can be due to mutations in NRAS and/or upregulation of receptor 

tyrosine kinases, which enhance RAS activity and activation of CRAF. The re-activation of the MAPK pathway 

can also occur via upregulation of the kinase COT. In parallel, PTEN loss can induce the upregulation of the 

PI3K/AKT pathway. Together these pathways promote proliferation and survival by promoting expression of 

the anti-apoptotic protein, Mcl-1, as well as by down-modulating levels of the pro-apoptotic BH3-only 

proteins, Bim-EL, and Bmf. (B) Intrinsic resistance is mostly due to the loss of tumour suppressors PTEN and 

NF1. Picture A from Aplin et al., 2011. 
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1.1.12 Immunotherapy in melanoma 
 
Immune-based therapies, which are used regardless of the tumour genotype, represent another 

breakthrough in cancer and also in melanoma therapeutics. Immunotherapy aims to help the 

immune system to identify and attack cancer cells and in melanoma it could be used as a first-line 

therapy, particularly for patients with wild-type BRAF melanoma or NRAS mutant and as a second-

line treatment if kinase inhibitors are not effective or once patients become resistant (Johnson et 

al., 2015). Immune checkpoints inhibitors are monoclonal antibodies targeting negative regulators 

of T cell immune responses resulting in increased activation of the immune system response 

towards the cancer cells. In particular, ipilimumab (anti-cytotoxic T lymphocyte antigen 4 (CTLA4)) 

and nivolumab (anti-programmed death receptor 1 (PD1)) used as monotherapy or combined 

provide survival benefits in a subset of melanoma patients (Larkin et al., 2015). Despite encouraging 

results obtained with immunotherapies, responses to such treatments are quite heterogeneous: 

the immune response is dynamic and changing in each patient depending on environmental and 

genetic factors as well as on previous clinical treatment (Sharma et al., 2017). The majority of 

patients do not benefit (intrinsic resistance) or develop drug resistance after initial response. 

Resistance mechanisms are mostly due to the lack of T cell recognition of tumour cells, which might 

not express tumour antigens or might display alterations in the antigen-presenting machinery or 

develop escape mutation variants (Luke et al., 2017; Sharma et al., 2017). Combinations of BRAF 

inhibitors and immunotherapies, especially for patients with very high disease burdens, are 

currently under investigation (Luke et al., 2017). 

 

1.2 Cancer metabolism 

In the past decade, cancer metabolism has become a topic of renewed interest. Understanding 

mechanisms and functional consequences of tumour-associated metabolic alterations in different 

cancers, have expanded current knowledge on the physiology of the disease and it will progressively 

support the development of new strategies to treat human cancer. To study metabolic alterations 

under selective pressure, the impact of BRAF inhibitors on metabolic pathways in melanoma has 

been explored. 

1.2.1 Metabolic reprogramming in cancer 

The connection between cancer cells and altered metabolism has become a cancer hallmark ever 

since many studies reported the observation of recurring metabolic changes in several types of 

cancers. The first observation that cancer cells alter their metabolism was made in 1924 by Otto 
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Warburg. He noticed that cancer cells, unlike most other cells, predominantly depend on aerobic 

glycolysis and produce large amounts of lactate. The reason why cancer cells would prefer a less 

efficient strategy to produce energy, was long debated. Initially, it was thought that this metabolic 

switch was a consequence of mitochondrial dysfunction. Nowadays, it is recognized that cancer 

cells primarily need to enhance glycolysis to produce metabolic intermediates for nucleotide 

synthesis and to produce NADPH for antioxidant defense. Most of the ATP in cancer cells is still 

produced by oxidative phosphorylation driven by e.g. glutamine anaplerosis into the TCA cycle. 

The term “metabolic reprogramming” is used to describe a change occurring in a classical metabolic 

pathway which results in its increased or inhibited activity (DeBerardinis and Chandel, 2016). 

Generally, these metabolic alterations fulfil the needs of fast proliferating cells, such as cancer cells, 

supporting rapid ATP generation to fuel biochemical reactions, increased biosynthesis of 

macromolecules and maintenance of a balanced redox status (Cairns et al., 2011). Although it was 

initially thought that these metabolic alterations were the result of an adaptive process that was 

trying to keep the pace with a high proliferation rate, it became clear that many metabolic changes 

are instead driven by oncogenes or due to the loss of tumour suppressors. The PI3K/AKT pathway, 

for instance, is very often altered in cancers. In addition to survival advantages, the activated 

pathway has also effects on cellular metabolism. AKT stimulates glycolysis by increasing the 

expression of glucose transporters and by phosphorylating important glycolytic enzymes such as 

hexokinase and phosphofructokinase 2 (Elstrom et al., 2004; Robey and Hay, 2009). AKT also 

activates mTOR which, in turn, stimulates protein and lipid biosynthesis in response to sufficient 

nutrients and energy (Guertin and Sabatini, 2007). Another example of metabolic reprogramming 

is mediated by HIF1. In addition of being activated under hypoxia, HIF1 can also be activated by 

oncogenes under normoxic conditions (Courtnay et al., 2015; Hudson et al., 2002). Activated HIF1 

induces the transcription of glucose transporters and activates the pyruvate dehydrogenase kinases 

(PDKs) which, in turn, inactivate the pyruvate dehydrogenase complex slowing down the 

tricarboxylic acid cycle (TCA) and thereby reducing oxidative phosphorylation (Kim et al., 2006). 

Furthermore, many cancer cells show a dysregulation of the AMP-activated protein kinase (AMPK) 

signalling. Normally, in response to decreased ATP, AMPK inhibits cell proliferation counteracting 

the effects triggered by AKT and inhibiting mTOR (Kuhajda, 2008; Shackelford and Shaw, 2009). 

LKB1, the upstream kinase important for AMPK activation is often mutated in some cancers (Ji et 

al., 2007; Wingo et al., 2009). Besides, the loss of p53 might also induce the acquisition of a 

glycolytic phenotype. Indeed, p53 inhibits the glycolytic pathway by upregulating the expression of 

TP53-induced glycolysis and apoptosis regulator (TIGAR), which acts as a negative regulator of 

glycolysis by lowering intracellular levels of Fructose-2,6-bisphosphate, resulting in the pentose 
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phosphate pathway (PPP) activation and NADPH production (Bensaad et al., 2006). P53 also 

promotes oxidative phosphorylation inducing the activation of SCO2, involved in the biogenesis of 

cytochrome c oxidase subunit II (Matoba et al., 2006). Mutant KRAS and BRAF, often present in 

melanoma as well as in colorectal, thyroid and pancreatic cancer cells, have also been associated 

with an enhanced expression of glucose transporters and glycolytic enzymes such as hexokinase 1 

and 2 and phosphofructokinase 1 (Parmenter et al., 2014; Yun et al., 2009). Together, these 

alterations favor an increased glucose uptake and glycolytic activity (Figure 10). 
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Figure 10. Signalling pathways reprogram cancer cell metabolism. 

Compared to normal cells (a), the activation of oncogenic pathways in cancer cells leads to a shift towards 

aerobic glycolysis (b). Activated AKT stimulates glycolysis by both regulating glycolytic enzymes and by 

activating mTOR, which enhances the activity of HIF1. HIF1 increases the expression of glucose transporters, 

glycolytic enzymes and pyruvate dehydrogenase kinase 1 (PDK1) that blocks the entry of pyruvate into the 

TCA cycle. MYC cooperates with HIF1 and enhances glycolytic enzymes and mitochondrial metabolism. The 

loss of p53 leads to a reduction of TIGER and SCO2 promoting aerobic glycolysis. Figure from Cairns et al., 

2011. 

1.2.2 Glucose and glutamine in cancer metabolism 

In normal cells, glucose is oxidized to pyruvate, which can be further converted to acetyl-CoA to 

fuel the TCA cycle. The TCA cycle generates ATP as well as both NADH and FADH2 which provide the 

mitochondrial respiratory chain with electrons for energy production. This is an efficient system to 

produce energy since each glucose molecule can provide up to 36 ATP molecules, mostly coming 

from mitochondrial respiration. In normal cells, anerobic glycolysis takes place only when oxygen 

supply is limited. In cancer cells, despite the presence of oxygen, glycolysis is increased and pyruvate 

is rather converted into lactate (Cairns et al., 2011). This process referred to as aerobic glycolysis 

(or Warburg effect) severely limits the amount of ATP formed. Although it was initially hypothesized 

that the aerobic glycolysis was a consequence of mitochondrial impairments, this hypothesis has 

been disproven: many tumours still retain a fully operational TCA and a functional oxidative 

phosphorylation (Coller, 2014; Lu et al., 2015) (Figure 11).  

 

 

 

Figure 11. The Warburg effect. 

In the presence of oxygen, non-proliferating (differentiated) cells first convert glucose into pyruvate via 

glycolysis. Most of the pyruvate is completely oxidized in the mitochondria to CO2 during the process of 

oxidative phosphorylation. The final electron acceptor to completely oxidize the glucose is oxygen, which is 

essential for this process. When oxygen is low, pyruvate is converted into lactate (anaerobic glycolysis), 

resulting in lower ATP production compared to the oxidative phosphorylation. On the contrary, cancer cells 

as well as fast proliferating cells convert the majority of pyruvate into lactate, despite the presence of oxygen 

and functional mitochondria (aerobic glycolysis). Picture from Vander Heiden et al., 2009. 
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Aerobic glycolysis very efficiently fuels rapid proliferative cells. Importantly, glycolysis provides 

cancer cells with not only energy but also intermediate metabolites for biosynthesis and reduction 

equivalents for antioxidant defense. Therefore, several glycolytic metabolites are diverted into 

other metabolic pathways. For instance, glucose-6-phosphate and fructose-6-phosphate are often 

consumed by the pentose phosphate pathway to synthesize nucleotides and NADPH (a major 

reducing agent important for redox homeostasis and drug detoxifying reactions) (X. Chen et al., 

2015). 3-phosphoglycerate can feed the serine biosynthesis pathway. In addition, serine and glycine 

(which is produced from serine) are precursors for glutathione synthesis and donate one-carbon 

units to the folate cycle, which is essential for de novo synthesis of adenosine, guanosine and 

thymidylate and can contribute to NADPH production (Yang and Vousden, 2016). Glutathione and 

NADPH are important defense strategies against the deleterious effects of reactive oxygen species. 

Taken together, glycolysis can be considered as an important source of “building blocks” required 

for fast proliferating cells and especially for cancer cells (Vander Heiden et al., 2009). Furthermore, 

the high amounts of lactate produced during aerobic glycolysis are not simply a waste product. 

Experimental evidence suggests that lactate is a real “oncometabolite” with pro-tumourigenic 

functions (Hirschhaeuser et al., 2011). Lactate is secreted into the tumour microenvironment via 

MCT4 transporter and it might fuel other cancer cells in the tumour microenvironment (Whitaker-

Menezes et al., 2011). Besides, secreted lactate reduces the extracellular pH. Acidic pH can both kill 

healthy cells and activate pH-sensitive metalloproteinases, which breakdown the extracellular 

matrix promoting tumour invasion (Li et al., 2016). Lactate might as well have immune-suppressive 
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functions by interfering with the metabolism of cytotoxic T cells, which strongly rely on glycolysis 

(Fischer et al., 2007).  

Apart from glucose, cancer cells display an increased dependence on glutamine (Wise and 

Thompson, 2010). Glutaminolysis is a series of biochemical reactions catabolizing glutamine into 

downstream metabolites such as glutamate and α-ketoglutarate. Glutamine is an anaplerotic 

substrate; indeed, the products of glutaminolysis provide carbon to maintain pools of the TCA cycle 

intermediates. These intermediates are used for the synthesis of lipids, cholesterol, amino acids 

and other essential metabolites. In addition, glutamine can also provide cancer cells with NADPH 

through the activity of malic enzyme which catalyses the oxidative decarboxylation of malate to 

pyruvate, with the concomitant release of CO2 and conversion of NADP+ to NADPH (DeBerardinis et 

al., 2007), which is essential in maintaining redox homeostasis.  

1.2.3 The pyruvate dehydrogenase complex 

The pyruvate dehydrogenase complex (PDH) is a key regulatory enzyme in cellular metabolism as it 

links glycolysis with the TCA cycle and subsequent oxidative phosphorylation. It is a multi-enzyme 

complex localized in the mitochondrial matrix, catalyzing the conversion of pyruvate, the end-

product of the glycolysis, to acetyl coenzyme A (acetyl-CoA). Acetyl-CoA then feeds the TCA, 

resulting in the formation of citrate. The PDH complex is constituted of three catalytic subunits: the 

pyruvate dehydrogenase (E1), the dihydrolipoamide aceryltransferase (E2) and the 

dihydrolipoamide dehydrogenase (E3). An additional component is present in eukaryotes, the E3 

binding protein (E3BP) (Patel et al., 2014). Since the PDH is an important interface with a central 

role in cellular energy regulation and the supply of intermediates for many biosynthesis processes, 

its activity is tightly regulated. A reduction of PDH activity occurs through reversible 

phosphorylation of the PDH-E1α subunit on any of the three serine residues S293, S300 or S232 by 

kinases of the pyruvate dehydrogenase kinase (PDKs) family (PDK1, PDK2, PDK3, PDK4) 

(Korotchkina and Patel, 1995; Patel and Korotchkina, 2001), which show a tissue-specific expression 

pattern and differential regulation of their activity (Patel and Korotchkina, 2006; Sugden and 

Holness, 2006). The re-activation of PDH is achieved through de-phosphorylation of the PHD-E1α 

subunit, catalyzed by the pyruvate dehydrogenase phosphatases (PDP1 and PDP2), which also 

display differences regarding their tissue distribution, regulation and activity (Huang et al., 1998; 

Patel and Korotchkina, 2006). In the last few years, PDH has received much attention especially 

because its misregulation could contribute to several diseases (Patel et al., 2012). In cancer cells, 

for instance, PDK inhibition and PDH activation trigger mitochondrial oxidative phosphorylation and 

consequently ROS production which, if excessive, causes cell death. The aerobic glycolysis gives the 

http://www.biology-online.org/dictionary/Oxidative
http://www.biology-online.org/dictionary/Decarboxylation
http://www.biology-online.org/dictionary/Pyruvate
http://www.biology-online.org/dictionary/Carbon_dioxide
http://www.biology-online.org/dictionary/NADPH
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cancer cells the possibility to avoid cellular oxidative stress that would be produced by 

mitochondrial oxidative phosphorylation for glucose metabolism. 

1.2.4 Reactive oxygen species in cancer 

For a long time, reactive oxygen species (ROS) have been considered to be lethal by-products of the 

cellular metabolism. However, in recent years, several studies have revealed an unexpected role 

for ROS as signaling molecules (Sabharwal and Schumacker, 2014). ROS are intracellular chemical 

species which contain oxygen: the superoxide anion (O2
-), hydrogen peroxide (H2O2) and the 

hydroxyl radical (OH.) (Murphy, 2009). The main sources of their production are both the 

mitochondria and the membrane-bound NAPDH oxidases (NOXs) (Reczek and Chandel, 2017). In 

mitochondria, electrons flow through the electron transport chain to finally react with oxygen and 

protons to form water. The leakage of electrons during this process might cause the reaction of 

these electrons with O2 to produce O2
-. O2

- is released into the mitochondrial matrix and converted 

into H2O2 by superoxide dismutase 2 (SOD2). In addition, H2O2 can also be produced in the 

cytoplasm from both NOX- and mitochondria-derived superoxide by the cytosolic SOD. H2O2 can 

subsequently be detoxified to water by cytosolic and mitochondrial antioxidant scavengers. In 

particular, peroxiredoxins undergo H2O2-mediated oxidation of their active site cysteines (Reczek 

and Chandel, 2017). Oxidized peroxiredoxins are then reduced by thioredoxins, thioredoxin 

reductases and NADPH. Glutathione peroxidases also convert H2O2 to water by oxidizing reduced 

glutathione to glutathione disulfide. The latter is reduced back to glutathione by glutathione 

reductases and NADPH. High levels of ROS, if not properly neutralized, can cause oxidative damage 

and cell death. Compared to normal cells, cancer cells have higher rates of ROS production most 

probably due to oncogene activation, tumour suppressor loss, increased metabolic activity or 

limited nutrients or oxygen (Schieber and Chandel, 2014). To maintain ROS homeostasis, cancer 

cells must increase their antioxidant capacity (Gorrini et al., 2013). For instance, cells activate the 

transcription factor NRF2 (nuclear factor erythroid 2-related factor-2) which, in turn, induces the 

transcription of antioxidant proteins such as SODs, peroxiredoxins, glutathione peroxidases and 

enzymes that increase cytosolic NADPH (DeNicola et al., 2011; Gorrini et al., 2013). NADPH is also 

produced in multiple pathways such as the pentose phosphate, folate metabolism and by malic 

enzyme. By neutralizing excess ROS, cancer cells manage to maintain ROS at sustainable levels that 

allow for the activation of protumourigenic downstream effects (Figure 12).  
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Figure 12. Levels of ROS are tightly regulated in cancer cells.  

Activation of oncogenes, loss of tumour suppressor genes, metabolic reprogramming and hypoxia induce 

higher levels of ROS, which are counteracted by an upregulation of antioxidant genes and cofactors. By 

increasing their antioxidant capacity, cancer cells can survive potential oxidative damage. 

 

It has been shown that low levels of ROS, especially H2O2, oxidize cysteine residues of proteins 

involved in cellular proliferation. For instance, H2O2 activates the PI3K/AKT/mTOR pathway by 

oxidizing and inactivating the negative regulator PTEN (Lee et al., 2002). ROS also oxidize and 

inactivate MAPK phosphatases causing an extended duration of MAPK activities (Son et al., 2011). 

An hypoxic microenvironment, often found in highly proliferating tumours, promotes ROS that can 

stabilize the HIF1 subunit, allowing its dimerization with the HIF1 subunit. The complex can then 

translocate into the nucleus and activate the transcription of genes involved in survival and 

angiogenesis (Reczek and Chandel, 2017). Tumour invasion can also be stimulated by ROS, 

promoting the formation of invadopodia (Diaz et al., 2009). Overall, ROS levels are tightly regulated 

in cancer cells since they are a double-edged sword: low and controlled levels of ROS provide 

beneficial effects for tumour growth, however once a certain threshold is reached, ROS can become 

fatal and induce cancer cell death. This delicate balance exclusively depends on their amount.  

 

1.3 MiRNAs 

MiRNAs have been shown to play an important role in key cellular processes and are therefore also 

implicated in almost all diseases including cancer. Furthermore, their potential as biomarkers has 

become an intense area of research. To better understand their potential role in the context of drug 

resistance, miRNA expression profiles in both sensitive and resistant melanoma cell lines have been 

investigated. 
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1.3.1 MiRNA biogenesis and function 

MiRNAs are small non-coding RNA molecules, ~22 nucleotides long that play key roles in the 

regulation of gene expression. Acting at the post-transcriptional level, these molecules fine-tune 

the expression of ~60% of protein-coding genes in the human genome (Friedman et al., 2009). 

MiRNA biogenesis is a complex and tightly regulated process which takes place both in the nucleus 

and in the cytoplasm (Figure 13). In humans, most of miRNA sequences are encoded by introns of 

different coding and non-coding transcripts; some are also located in exonic regions (Y. Lee et al., 

2002). MiRNA transcription is generally carried out by RNA polymerase II, although in some cases 

miRNAs can also be generated by RNA polymerase III (Borchert et al., 2006; Lee et al., 2004). 

Following transcription, the primary miRNA (pri-miRNA) which is 5’capped and 3’ polyadenylated, 

undergoes cleavage by a microprocessor complex (formed by RNA-binding protein DiGeorge Critical 

Region 8 (DGCR8) and the type III RNAse Drosha) forming a stem-loop structure called precursor 

miRNA (pre-miRNA). Thereafter, the pre-miRNA is exported from the nucleus to the cytoplasm by 

Ran/GTP/Exportin 5 complex where it is cleaved by Dicer into a small RNA duplex which is 

subsequently loaded onto an Argonaute (AGO) protein to form the pre-RNA-induced silencing 

complex (pre-RISC). The passenger strand of the miRNA duplex is quickly degraded whereas the 

guide strand is selected to be part of the functional RISC complex. Strand selection depends on the 

stability of the 5’ terminal ends and on the nucleotide sequence: strands with an uracil at position 

1 and with an unstable 5’ terminus seem to be preferentially selected as guide strands (Hu et al., 

2009; Schwarz et al., 2003). However, in some cases, both strands can be active (MacFarlane and 

Murphy, 2010). 

 

 

 

Figure 13. MiRNA biogenesis pathway.  

The pri-miRNA is transcribed by RNA Polymerase II in the nucleus. The microprocessor (Drosha and DGCR8) 

processes the pri-miRNA into a pre-miRNA by cleaving the 5’ and 3’ extremities. The pre-miRNA translocates 

from the nucleus to the cytoplasm via exportin-5 where it is cleaved by Dicer in a short miRNA duplex. The 

functional strand of the mature miRNA (in black) is loaded together with Argonaute (Ago2) proteins into the 

RNA-induced silencing complex (RISC). This complex then binds to target mRNAs and induces cleavage, 

translational repression or deadenylation, while the passenger strand (in red) is degraded. Adapted from Lin 

and Gregory, 2015. 
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In addition to the canonical biogenesis pathway, alternative pathways exist as well. For instance, 

the so called “mirtrons” can bypass the Drosha-mediated processing step by direct splicing from 

intronic sequences (Berezikov et al., 2007). In addition, a Dicer-independent mechanism has been 

observed for miR-451. The precursor miRNA escapes Dicer and is directly loaded into the RISC 

complex (Cifuentes et al., 2010). It has been estimated that human cells express nearly 2000 

miRNAs, each one potentially capable of binding to hundreds of messenger RNAs (mRNAs) 

(Friedländer et al., 2014). Nevertheless, only a small fraction of these interactions has 

experimentally been validated. In general, a specific “seed region” located between nucleotide 2 

and 7 at the 5’end of the mature miRNA binds to the 3’ untranslated region (3’UTR) of a target 

mRNA and induces its degradation (in case of perfect complementarity) or inhibits its translation 

(partial complementarity) (Winter et al., 2009). However, Helwak et al. recently demonstrated that 

less than 40% of miRNA-mRNA interactions follow these canonical binding rules. They identified 

additional non-canonical interactions, which are independent of the miRNA seed region by using a 

method called CLASH (crosslinking and sequencing of hybrids) (Helwak et al., 2013). By applying this 

technique, interacting miRNAs and mRNAs are cross-linked and co-precipitated with AGO and 

finally sequenced. Regardless of the interaction complexity, miRNAs seem to play a role in many 

biological processes, including development, cell proliferation and metabolic regulation (Ameres 

and Zamore, 2013). Dysregulation of miRNA expression levels has been associated with several 

pathological conditions including cancer (Mendell and Olson, 2012). 
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1.3.2 MiRNAs in cancer 

Considerable evidence indicates that miRNAs and their biogenesis machinery are involved in the 

development of cancer. Several miRNAs can act either as oncomiRs or as tumour suppressor 

miRNAs and depending on which gene or pathway they regulate, miRNAs can enhance or limit 

cancer development (Svoronos et al., 2016). OncomiRs mostly inhibit tumour suppressor genes and 

thus, they are generally overexpressed in cancer. On the contrary, tumour suppressor miRNAs 

target oncogenes resulting in their downregulation. In some cases, the classification of a certain 

miRNA as oncomiR or tumour suppressor has led to conflicting reports. However, given the large 

number of genes influenced by an individual miRNA, it is not surprising that some miRNAs can 

function as oncomiRs or as tumour suppressors in different scenarios or cell types (Svoronos et al., 

2016). Aberrant expression of miRNAs can originate from several mechanisms including genomic 

amplification, deletion and/or translocation, epigenetic factors as well as alterations in some 

components of the miRNA biogenesis pathway (Lee and Dutta, 2009). Interestingly, modifications 

of the biogenesis pathway can affect many miRNAs resulting in a dramatic change of the whole 

miRNome of cancer cells (Hesse and Arenz, 2014).  

An example of a widely studied oncomiR, which is upregulated in different cancers is miR-21 (Chan 

et al., 2005; Schetter et al., 2008) whose tumourigenic potential has been demonstrated in vitro 

and in vivo (Medina et al., 2010; Yan et al., 2008). Well characterized targets of miR-21 are the 

programmed cell death protein 4 (PDCD4), a protein involved in apoptosis and metastasis and often 

downregulated in several cancers (Asangani et al., 2008) and the tumour suppressor PTEN (Peralta-

Zaragoza et al., 2016). Among the miRNAs downregulated in cancer, the miR-34 family has received 

considerable attention. This miRNA family is transcriptionally regulated by the tumour suppressor 

p53 during the DNA damage response, and p53 and the DNA damage response are often altered in 

cancer cells (Chang et al., 2007; Okada et al., 2014). Loss of miR-34 family members seems to block 

apoptosis and to drive cancer cell proliferation (Chang et al., 2007).  

Tissue-specificity of miRNA effects is illustrated by miR-105. In endothelial cells, which normally 

express low levels of miR-105, breast cancer-derived miR-105 effectively reduced tight junction ZO-

1 protein expression and disrupted the barrier function of these cells, thereby promoting metastasis 

both in vitro and in animal models (Zhou et al., 2014). Interestingly, augmented levels of miR-105 

in the serum of breast cancer patients correlated with increased metastasis. In contrast, Honeywell 

et al. (Honeywell et al., 2013) described miR-105 to act as a tumour suppressor in prostate cancer 

indicating that tissue-specific mechanisms controlling the function of miRNAs might also be 

involved (Zhou et al., 2014). 
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The high stability and the tissue/disease-specific expression patterns of miRNAs suggested that 

their expression levels could harbor diagnostic, prognostic, and therapeutic potential as biomarkers 

(Iorio and Croce, 2009). It has been demonstrated that miRNAs can be passively released from 

broken cells and apoptotic bodies or be actively secreted as RNA-protein complexes or via cell-

derived microvesicles (Turchinovich et al., 2011). The presence of regulatory miRNAs within 

extracellular vesicles has raised a strong interest ever since Valadi et al. showed for the first time 

that miRNAs in mast cell-derived extracellular vesicles can be transferred to other mast cells and 

be functional (Valadi et al., 2007). In contrast to protein-associated miRNAs (the uptake of which 

might be feasible but was never really demonstrated), those contained within microvesicles can be 

transferred to recipient cells, modulate gene expression and trigger functional effects (Stoorvogel, 

2012). Interestingly, Melo and colleagues recently demonstrated that extracellular vesicles display 

a cell-independent capacity to process precursor miRNAs to their mature form: extracellular 

vesicles derived from breast cancer cells contained pre-miRNAs, along with Dicer and AGO2, and in 

a time-course experiment the six pre-miRNAs examined were inversely proportional to their 

corresponding mature form, suggesting an ongoing maturation process (Melo et al., 2014). This 

finding suggests that AGO-associated miRNAs might directly be functional in recipient cells. 

In addition, recent reports provide evidence that miRNAs delivered by extracellular vesicles can 

regulate target gene expression in recipient cells. In an elegant study, Zhuang et al. found that the 

tumour-derived miR-9 transported by extracellular vesicles was functionally active in recipient cells: 

exogenous miR-9 effectively enhanced the JAK/STAT pathway by reducing SOCS5 levels, a negative 

regulator of the pathway (Zhuang et al., 2012). The so up-regulated signalling cascade then 

promoted endothelial cell migration and tumour angiogenesis. Albeit existing evidence of the 

importance of secreted miRNAs, it remains uncertain whether such miRNAs are really functional in 

a physiological environment and whether the concentration of secreted individual miRNAs would 

be sufficient to mediate measurable endocrine effects. Furthermore, it is still unclear how widely 

this process occurs in vivo and whether it is restricted to certain cell types, physiological conditions 

or diseases or whether it is a ubiquitous way of cell-to-cell communication. 

1.3.3 MiRNAs in drug resistance 

Despite significant progress has been made in cancer therapies, drug resistance often prevents full 

recovery of patients. Several studies have reported that aberrant miRNA expression is strongly 

implicated in the onset of drug resistance in several cancers (Fattore et al, 2017). Many miRNAs 

have been identified as important regulators of drug transporter genes in cancer cells. For instance, 

miR-451 was found to be downregulated in breast cancer cells resistant to doxorubicin. The authors 
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showed that this miRNA regulates the expression of the multi-drug resistance 1 gene (mdr1), a 

crucial mediator of drug resistance (Kovalchuk et al., 2008). In another context, Liu et al. have shown 

that, in small-cell lung cancer (SCLC), low levels of miR-7 were closely correlated with chemotherapy 

resistance, in addition to shorter overall survival. They demonstrated that miR-7 mediates 

chemoresistance by repressing drug efflux MRP1/ABCC1 genes (Liu et al., 2015). Apart from 

modulating the expression of transporters, miRNAs can also modulate specific signaling pathways. 

Stark et al. showed that miR-514a modulates the sensitivity to BRAF inhibitors in melanoma by 

regulating the tumour suppressor neurofibromin 1 (NF1). NF1 negatively regulates RAS activity and 

therefore the MAPK pathway. Consequently, increased levels of miR-514a inhibit the expression of 

NF1, which correlates with the increased survival of BRAFV600E cells treated with Vemurafenib (Stark 

et al., 2015). Another example is miR-214, which was recently shown to be associated with ovarian 

cancer cell survival and cisplatin resistance by regulating PTEN levels and consequently activating 

the AKT pathway (Yang et al., 2008). Furthermore, researchers have started to explore the 

possibility that miRNAs packaged in extracellular vesicles can also contribute to the maintenance 

and onset of drug resistance.  MiRNAs loaded in these vesicles might be transferred to recipient 

cells to exert genome-wide regulation of gene expression (reviewed in (Cesi et al., 2016)). Although 

more and more studies have highlighted their functional role in in vitro studies, it still remains to 

be shown how these secreted miRNAs can contribute to the development of drug resistance in the 

context of the tumour microenvironment. 

1.4 Extracellular vesicles 

Extracellular vesicles have been shown to be vehicles for transfer of miRNAs, proteins, DNA 

between cells and to partake in intercellular communication in physiological and pathological 

conditions. To examine whether drug resistance could be transferred from resistant to sensitive 

cells, the content and the functions of extracellular vesicles released by resistant cells have been 

studied here.  

1.4.1 Extracellular vesicle biogenesis and function 

Extracellular vesicles (EVs) are a heterogeneous group of membrane-surrounded vesicles secreted 

from all types of cells of many different organisms, from prokaryotes to eukaryotes (Colombo et al., 

2014). Considered at the beginning simply as “garbage bins” to remove unwanted molecules from 

secreting cells (Harding and Stahl, 1983; Pan and Johnstone, 1983), it turned out that these tiny 

vesicles play a role in cell-to-cell communication carrying a real “message in a bottle”. Generally, 

EVs are classified according to their biogenesis pathway and their size (Abels and Breakefield, 2016). 
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There are three main classes of EVs: i) Apoptotic bodies: generally large vesicles ranging between 

50–5000 nm produced exclusively from cells undergoing cell death by apoptosis. These large 

vesicles are characterized by the presence of organelles (Elmore, 2007). In addition, smaller vesicles 

(50–500 nm) probably coming from membrane blebbing, are also released during this process 

(Coleman et al., 2001). Most apoptotic bodies are cleared up by macrophages, which recognize 

specific changes in the composition of the apoptotic cells’ membrane such as phosphatidylserine 

which is translocated to the outer leaflet of the lipid layer (Martínez and Freyssinet, 2001). ii) 

Microvesicles: 50–1000 nm vesicles, which originate from direct outward budding of the plasma 

membrane (Akers et al., 2013). Membrane budding occurs following the interaction between 

specific phospholipids and cytoskeletal proteins. In a first step, phosphatidylserine is translocated 

to the outer-membrane leaflet (Hugel et al., 2005). Then, the budding process is completed through 

the contraction of cytoskeletal structures by actin-myosin interactions (Muralidharan-Chari et al., 

2009). iii) Exosomes: generally defined as small vesicles, ~30 -120 nm in size, with an endosomal 

origin. Their biogenesis starts when endocytic vesicles fuse with early endosomes which 

incorporate their content. Early endosomes mature into late endosomes also known as 

multivesicular bodies (MVBs), which are characterized by small intraluminar vesicles following the 

inward budding of the limiting membrane. Many MVBs fuse with lysosomes for content 

degradation. Some can fuse with the plasma membrane releasing the vesicular content in the 

extracellular space (Colombo et al., 2014). The best characterized mechanism for MVB formation is 

mediated by the endosomal sorting complex required for transport (ESCRT). Moreover, other 

ESCRT-independent mechanisms have been described. Edgar et al. observed that CD63 molecules 

were sufficient to generate intraluminal vesicles within the MVB (Edgar et al., 2014). In addition, 

two lipid metabolic enzymes (neutral sphingomyelinase and phospholipase D2) have been shown 

to induce inward budding of the MVB and thus formation of intraluminal vesicles (Ghossoub et al., 

2014; Trajkovic et al., 2008) (Figure 14). 

Despite this theoretical classification, current isolation methods do not allow such a precise 

separation of vesicle groups. Some vesicles share a similar size and morphology but once they have 

been released their origin cannot be tracked anymore because unique markers for the different 

vesicle types have not been defined yet (Raposo and Stoorvogel, 2013). Because of the difficulties 

to experimentally classify isolated vesicles, the International Society of Extracellular Vesicles 

suggested to use the generic term “extracellular vesicles (EVs)” to describe vesicles isolated from 

the extracellular milieu (Lötvall et al., 2014). 
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Figure 14. Different biogenesis pathways give rise to different populations of extracellular vesicles. 

(1) Exosomes derive from the endocytic pathway. Endocytic vesicles mature into early endosomes and then 

into late endosomes or MVBs. MVBs can either be sorted for lysosomal degradation or they can fuse with the 

plasma membrane and be released as exosomes. Neutral sphingomyelinase (nSMase2) is an important factor 

in the formation of the intraluminal vesicles within early endosomes. Rab GTPases regulate MVB fusion with 

the plasma membrane and release of exosomes. (2) Microvesicles derive from the outward budding of plasma 

membrane, which is controlled by regulatory proteins and cytoskeleton elements that promote membrane 

curvature at ceramide-enriched domains. (3) Cells undergoing apoptosis produce large membrane blebs, 

known as apoptotic bodies. (4) EVs can transfer their contents to target cells through different mechanisms. 

Figure taken from Fujita et al., 2015. 

1.4.2 Uptake of EVs 

The possibility of transferring molecules to recipient cells strongly depends on the capability of EVs 

to interact with target cells. Depending on the recipient cell, EV uptake might occur through 

different mechanisms. The mode of EV entry into cells will determine their functional effects. Direct 

fusion of EVs would cause the direct release of the content into the cytoplasm of the recipient cell. 

However, some forms of endocytosis seem to be more frequent (Mulcahy et al., 2014). In 
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particular, actin polymerization-dependent phagocytosis (Feng et al., 2010); receptor-mediated 

endocytosis (Morelli et al., 2004); clathrin-dependent endocytosis (Frühbeis et al., 2013); 

cholesterol- and lipid raft-dependent endocytosis (Svensson et al., 2013); or caveolae-dependent 

endocytosis (Nanbo et al., 2013) have been described. If EVs enter the endocytic pathway, their 

cargo must find a way out as MVBs either fuse with lysosomes or with the plasma membrane (Abels 

and Breakefield, 2016). Although many studies clarified the mechanisms behind the release and the 

uptake of EVs in vitro, it is still quite difficult to translate these findings to in vivo settings and to 

understand the fate of EVs once released by specific cells. EVs are found in many biological fluids 

such as saliva, blood and urine suggesting their frequent release in the body. Moreover, some 

studies tried to elucidate potential destinations for EVs once injected in animals. Melanoma-derived 

EVs were found in lung, liver and bone marrow (Peinado et al., 2012; Takahashi et al., 2013) and 

EVs from a pancreatic adenocarcinoma cell line were recovered in pancreas, lung, and kidney (Rana 

et al., 2013) suggesting that EVs from different origins specifically target different organs in vivo. 

1.4.3 Content of EVs 

Many studies have attempted to elucidate the content of EVs. However, due to the lack of standard 

protocols for their isolation, variations in culture conditions and different cell types used for 

profiling, it remains technically difficult to exactly determine EV content. Overall, the content of EVs 

mostly depends on their “parental cells” of origin. Generally, EVs from different cell types contain 

proteins associated with their biogenesis mechanism such as endosome-associated proteins (e.g., 

Rab GTPase, SNAREs, Annexins, flotillin or Alix and Tsg101) (Van Niel et al, 2006). Membrane 

proteins including tetraspanins (e.g., CD63, CD81, CD82, CD53, CD37 and CD9), heat shock proteins, 

MHC complexes, growth factors and many others are also present (Tickner et al., 2014). How 

exactly proteins are sorted into EVs is still under investigation. The lipid composition of EVs has also 

been studied. EVs carry lipids of a similar composition than found in the plasma membrane of the 

parental cells (such as cholesterol, ceramide and sphingomyelin) (Kharaziha et al., 2012). The RNA 

content of EVs is enriched in small RNAs especially miRNAs (Kharaziha et al., 2012). Although the 

sorting mechanisms are not fully understood, recent evidence suggests that the composition of 

miRNAs present in EVs differs from the one of the cell of origin suggesting that mRNA are not 

randomly secreted into EVs but that a selective sorting mechanism exists. In this context, Villarroya-

Beltri et al. (Villarroya-Beltri et al., 2013) identified the presence of a four nucleotide motif (GGAG) 

enriched in miRNAs present in EVs. They hypothesized that the unique sequence could prone 

miRNAs for sorting into EVs. They also demonstrated that the sumoylated heterogeneous nuclear 

ribonucleo-protein A2B1 binds miRNAs through their “EXO-motifs” and controls their loading into 
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EVs, thus providing an explanation for the specific sorting of certain miRNAs into EVs. On the 

contrary, interesting findings from Squadrito et al. (Squadrito et al., 2014) suggest a passive 

mechanism for miRNA sorting modulated by cell activation-dependent changes of miRNA target 

levels. EV miRNA secretion might be a mechanism by which cells remove unwanted miRNAs, which 

are overexpressed compared to their corresponding targets to re-establish miRNA/mRNA 

homeostasis. Additionally, posttranscriptional modifications of the 3’end of miRNAs appear to 

contribute to direct miRNA sorting into EVs. In particular, uridylated miRNAs seem to be enriched 

in EVs whereas the adenylated miRNAs are more abundant in cells (Koppers-Lalic et al., 2014). Last 

but not least, EVs can contain single-stranded DNA and transposable elements (Balaj et al., 2011). 

1.4.4 EVs in cancer 

One of the most studied aspects of EVs is their pathological role in tumour biology. Emerging 

evidence suggests that tumour-derived EVs are implicated in many aspects of tumourigenesis by 

promoting tumour growth, angiogenesis, metastasis and immune cell escape (Tkach and Théry, 

2016). Cancer EVs differ from those released by healthy cells in terms of their quantity and content. 

An increased secretion of EVs has been reported in different cancer cell lines and cancer patients 

(King et al., 2012; Logozzi et al., 2009). Acidic pH (Federici et al., 2014; Parolini et al., 2009) and 

hypoxia (King et al., 2012; Wang et al., 2014) often present in tumours, might be responsible for 

the intensification of EV production. In this context, leukemia cells seem to secrete more EVs under 

hypoxic versus normoxic conditions and this affected angiogenesis as exemplified by enhanced tube 

formation of endothelial cells (Tadokoro et al., 2013). Furthermore, an increased expression of 

miRNA-210 was detected, which down-regulated the receptor tyrosine kinase ligand, Ephrin-A3 

(EFNA3) and thereby also contributed to tube formation. It has been recently shown that hypoxic 

stress increases the formation of EVs in a HIF- dependent manner in breast cancer cell lines. The 

increased EV secretion was strictly correlated with HIF-dependent expression of RAB22A. Indeed, 

RAB proteins, which are membrane-bound GTPases, play a key role in vesicle formation, trafficking 

and membrane fusion and seem to be direct HIF-1α and HIF-2α target genes (Wang et al., 2014).  

Cancer-derived EVs deliver their pathogenic components to their microenvironment (other cancer 

cells, fibroblasts, immune cells, endothelial cells) to support tumour growth but also to distant cells 

to prepare niches that support metastasis. For instance, glioblastoma-derived EVs can transfer the 

epidermal growth factor receptor variant III (EGFRvIII, a truncated and oncogenic form of EGFR) to 

cancer cells lacking EGFRvIII. The horizontal propagation of this oncogene promotes the progression 

of the malignancy (Al-Nedawi et al., 2008). Peinado et al. reported that EVs from highly metastatic 

melanoma cells increased the metastatic behavior of primary tumours by permanently “educating” 
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bone marrow progenitor cells toward a pro-vasculogenic and pro-metastatic phenotype via the 

MET receptor (Peinado et al., 2012). Interestingly, EVs can also modulate cancer cell metabolism. 

In particular, Zhao et al. showed that EVs isolated from prostate cancer patient-derived cancer-

associated fibroblasts (CAFs) were able to reprogram prostate cancer cells by inhibiting oxidative 

phosphorylation and by upregulating glucose metabolism and increasing reductive glutamine. In 

addition, they identified within the EVs a pool of metabolite cargo such as TCA cycle metabolites, 

amino acids and lipids (Zhao et al., 2016).  

Taken together, a better understanding of the resistance mechanisms against different therapeutic 

agents will be helpful to identify second line treatments. In this context, cancer-derived EVs might 

provide useful information. Currently, there are three frequently described EV-mediated drug 

resistance mechanisms: EV-mediated drug export, EV-mediated miRNA export, EV-mediated efflux 

pump transport (reviewed in Cesi et al., 2016, see chapter 4.4).
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Chapter 2 Aims 

Although considerable progress in the field of melanoma biology has been made in the last decade, 

advanced disease is still associated with poor outcome for patients. Therapies blocking the MAPK 

signalling pathway by targeting both BRAF and MEK, have improved overall survival and about 90% 

of patients experience tumour regression at first (Winder and Virós, 2017). However, despite 

encouraging clinical results, most patients acquire drug resistance, which leads to rapid tumour 

progression. As a result, many studies have tried to elucidate the molecular mechanisms driving 

acquired forms of resistance. Surprisingly, not much attention has been given to what happens 

during the early phase of treatment, when patients still respond to the treatment with inhibition of 

the MAPK pathway. In addition, new escape mechanisms as well as post-transcriptional changes by 

non-coding RNAs that can lead to drug resistance are in the focus of attention. Considering this 

background, the main objectives of this thesis can be divided into three main parts (Figure 15): 

1) Impact of BRAF inhibitors on metabolic pathways in melanoma. 

Mutant BRAF has been associated with altered cellular metabolism. In this part, the effects 

of BRAF and MEK inhibitors on metabolic proteins at early time points after treatment have 

been analyzed in mutant and wild-type BRAF cell lines providing evidence of adaptive 

metabolic responses taking place under selective pressure. 

 

2) Analysis of the miRNome and transcriptome in both sensitive and resistant melanoma 

cells. 

The implication of deregulated miRNAs in BRAF inhibitor resistance has not been studied 

thoroughly. In this study, the expression patterns of miRNAs that might play a role in drug 

resistance or could be used as biomarkers have been investigated in different cell lines. 

Despite heterogeneous responses to long term treatment with BRAF inhibitors in the 

different cell lines, several miRNAs and genes were differentially expressed in drug-

resistant versus drug-sensitive cell lines.  

 

3) Role of extracellular vesicles in melanoma drug resistance. 

Extracellular vesicles have been identified as new messengers in transferring drug 

resistance to still sensitive cells contributing to tumour progression. To better explore this 
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phenomenon in the context of melanoma, this project part was focusing on the functional 

properties of extracellular vesicles and on their capability of transferring drug resistance. 

 

 

Figure 15. Project overview. 

Summary of the different subparts of the thesis and corresponding publications. 
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Chapter 3 Materials and Methods 

All methods used in the scope of the three project parts are extensively explained in the 

corresponding manuscripts (Cesi et al., 2017 in chapter 4.1; Kozar et al., 2017 in chapter 4.2; Cesi 

et al, in prep in chapter 4.3). The following section only includes materials and methods, which were 

used to obtain additional results. 

3.1 Total RNA extraction from extracellular vesicles and quality control 

Total RNA from 200 l of EV suspension was extracted using the miRNeasy serum/plasma kit 

(Quiagen) according to the manufacturer’s instructions. As an internal calibrator, a mix of C. elegans 

miRNAs cel-39, cel-54 and cel-238 exogenous controls were spiked into the samples. RNA was 

eluted with 14 l of RNAse-free water. Quality control of extracted RNA was performed by RT-qPCR 

using primers for: 

 Cel-39, Cel-45 and Cel-238 spikes to control for variations in recovery and amplification

efficiency between samples

 miRTC which is an internal miRNA reverse transcription control provided in the kit

Briefly, 4 l of eluted total RNA were reverse transcribed in a 10 l reaction volume with the 

miScript RT II kit (Qiagen) following the supplied protocol using Hispec buffer, which specifically 

amplifies mature miRNAs. Real time PCR detection of the above-mentioned controls was carried 

out on a CFX96 Detection System (Bio Rad) using 1 l of 1:10 diluted cDNA, 2x iQ SYBR Green 

Supermix (Bio-Rad) and 10x miRNA-specific primer assay (Qiagen) as described previously (Margue 

et al., 2015). 

3.2 miRNA profiling of extracellular vesicles by qPCR arrays 

MiRNAs extracted from extracellular vesicles were profiled with human whole miRNome miScript 

miRNA qPCR arrays (Qiagen, v16, 1066 miRNAs). The 1:5 diluted cDNA was pre-amplified with the 

miScript PreAmp PCR kit (Qiagen) using the corresponding primer mixes (whole miRNome primer 

mix for whole miRNome qPCR arrays). Pre-amplification control experiments were performed by 

RT-qPCR using primer assay for cel-39 and miRTC. Quality-controlled pre-amplified cDNA was 

diluted 1:5 and further used for miScript whole miRNome according to the supplied protocol. Real-

time PCR detection on the qPCR arrays was carried out on a CFX384 Detection System (Bio-Rad). 

Specificity of the qPCR primers was assessed by qPCR melting curve analysis. 
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3.3 Quality control of qPCR melting curves 

To assess the quality of melting curves from the whole miRNome qPCR, our lab has previously 

developed a Support Vector Machine-based program within  the R package (Margue et al., 2015). 

The tool is able to predict “good” and “bad” curves, based on their shapes and curve feature such 

as Cq values, the melting temperature, the peak height and the starting and ending temperatures. 

The script also calculates the probability that the prediction is reliable (the closer to 1, the more 

reliable). If this probability is closer to 0, the label of the curve becomes questionable meaning that 

the curve had to be inspected manually. Good melt curves mean specific product amplification 

whereas bad melt curves mean non-specific or non-product amplification. The tool was applied to 

all RT-qPCR array amplifications and only high-quality amplifications were kept. 

3.4 Data analysis 

For qPCR array data analysis, baselines and thresholds were adjusted as recommended by the 

supplier and Cq values were exported for analysis. Cq values obtained with the cel-39 primers were 

used to calibrate the data sets: the Cq mean for cel-39 for each sample was calculated, the highest 

Cq mean of all samples was determined and the difference (correction factor) with the other 

samples was established. This correction factor was added to all Cq values of a sample. Calibrated 

Cq values greater than 30, as well as primers with bad melting curves were considered as not 

detected (N/A). These lower cut-off Cq values, recommended by the supplier, are due to the 

additional 12 PCR cycles during pre-amplification. Because of the lack of established house-keeping 

genes for extracellular vesicles for data normalization, we used means of commonly expressed 

miRNAs (for whole miRNome qPCR arrays). 

3.5 Microarray analysis 

For microarray analysis, cells were seeded for 48 hours in the presence or absence of 30 g of 

extracellular vesicles. Total RNA was extracted with miRNeasy kit (Qiagen) in triplicates following 

the manufacturer’s instructions. RNA quality was further assessed using the Agilent 2100 

Bioanalyzer (Agilent Technologies). Microarray analyses were performed at the Luxembourg 

Institute of Health (LIH) in Luxembourg. The Affymetrix miRNA 4.0 and Affymetrix HuGene 2.0 ST 

platforms were used for miRNA and mRNA microarrays, respectively. The commercial software 

Partek Genomic Suite was used for data pre-processing using Robust Multiarray Analysis (RMA) 

with GC-content correction. The Log2-transformed intensities were imported into the R 

environment. Differential expression of genes and miRNAs in the drug-resistant cell lines, as 

compared to the drug-sensitive, was determined using the R/Bioconductor package limma, which 
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adopts a linear modeling approach with empirical Bayesian statistics. The multiple correction was 

performed using the Benjamini-Hochberg’s FDR (false discovery rate or adjusted P-value). Genes 

and miRNAs with FDR<0.01 and at least 1.5-log fold change were considered as differentially 

expressed.
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Chapter 4 Results 

4.1 Impact of kinase inhibitor treatment on cellular metabolism of 

melanoma cells 

4.1.1 Preamble 

Reactive oxygen species (ROS), initially considered to be harmful side products of cellular 

respiration, are now recognized as novel signal mediators involved in growth, differentiation, 

progression, and death of the cell (DeBerardinis and Chandel, 2016). Cancer cells exhibit higher 

levels of ROS compared to normal cells, mostly due to genetic and metabolic alterations. Since the 

redox equilibrium plays a crucial role in cell survival, increased ROS levels are compensated by an 

elevated antioxidant defense (Gorrini et al., 2013), which works as salvage mechanisms avoiding 

ROS to reach toxic levels.  

In this first project part, we focused on early adaptive responses to BRAF kinase inhibitor treatment 

in melanoma cells. In particular, we have demonstrated that BRAF inhibition in melanoma cells 

induces ROS upregulation both in mitochondria and in the cytosol within hours of treatment. The 

link between MAPK pathway and ROS are multiple: activating BRAF mutations have been associated 

with enhanced glycolytic activity (Parmenter et al., 2014). Therefore, BRAF inhibition suppresses 

glycolysis and NADPH production influencing the flux of pyruvate through the TCA cycle and 

ultimately the flux through the electron transport chain. Interestingly, every disturbance to the 

steady state of the electron transport chain generates ROS (Schieber and Chandel, 2014). Thus, 

inhibition of BRAF might enhance ROS by altering the flux through the TCA and the electron 

transport chain. In addition, the MAPK and the PI3K/AKT pathway have been described to activate 

the transcription of genes involved in antioxidant defense (Espinosa-Diez et al., 2015). Accordingly, 

BRAF inhibition should increase ROS by suppressing the transcription of these antioxidant genes.  

In this part of the thesis, we could show that: i) MAPK pathway suppression by BRAF inhibition, 

MEK1 inhibition or ERK1/2 knock-down leads to phosphorylation of PDH in BRAFV600E mutant cells; 

ii) BRAF inhibition in melanoma cells induces ROS upregulation both in mitochondria and in the

cytosol; iii) inhibition of PDK1 (with a recently described inhibitor used at micromolar 

concentration) caused growth retardation in BRAF mutant and BRAF inhibitor- resistant melanoma 

cells. These data have implications for a combined inhibition of the BRAF/MEK/ERK signalling 

pathway together with inhibiting specific metabolic features. 

Authors' contributions are explained at the end of the article. 
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Abstract

Background: Most melanoma patients with BRAFV600E positive tumors respond well to a combination of BRAF kinase
and MEK inhibitors. However, some patients are intrinsically resistant while the majority of patients eventually develop
drug resistance to the treatment. For patients insufficiently responding to BRAF and MEK inhibitors, there is an ongoing
need for new treatment targets. Cellular metabolism is such a promising new target line: mutant BRAFV600E has been
shown to affect the metabolism.

Methods: Time course experiments and a series of western blots were performed in a panel of BRAFV600E and BRAFWT/
NRASmut human melanoma cells, which were incubated with BRAF and MEK1 kinase inhibitors. siRNA approaches
were used to investigate the metabolic players involved. Reactive oxygen species (ROS) were measured by confocal
microscopy and AZD7545, an inhibitor targeting PDKs (pyruvate dehydrogenase kinase) was tested.

Results: We show that inhibition of the RAS/RAF/MEK/ERK pathway induces phosphorylation of the pyruvate
dehydrogenase PDH-E1α subunit in BRAFV600E and in BRAFWT/NRASmut harboring cells. Inhibition of BRAF, MEK1
and siRNA knock-down of ERK1/2 mediated phosphorylation of PDH. siRNA-mediated knock-down of all PDKs or
the use of DCA (a pan-PDK inhibitor) abolished PDH-E1α phosphorylation. BRAF inhibitor treatment also induced
the upregulation of ROS, concomitantly with the induction of PDH phosphorylation. Suppression of ROS by MitoQ
suppressed PDH-E1α phosphorylation, strongly suggesting that ROS mediate the activation of PDKs. Interestingly, the
inhibition of PDK1 with AZD7545 specifically suppressed growth of BRAF-mutant and BRAF inhibitor resistant melanoma
cells.

Conclusions: In BRAFV600E and BRAFWT/NRASmut melanoma cells, the increased production of ROS upon inhibition of
the RAS/RAF/MEK/ERK pathway, is responsible for activating PDKs, which in turn phosphorylate and inactivate PDH. As
part of a possible salvage pathway, the tricarboxylic acid cycle is inhibited leading to reduced oxidative metabolism and
reduced ROS levels. We show that inhibition of PDKs by AZD7545 leads to growth suppression of BRAF-mutated and
-inhibitor resistant melanoma cells. Thus small molecule PDK inhibitors such as AZD7545, might be promising drugs for
combination treatment in melanoma patients with activating RAS/RAF/MEK/ERK pathway mutations (50% BRAF, 25%
NRASmut, 11.9% NF1mut).
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Background
Mutations in the Ser/Thr-kinase BRAF have been found
in 10% of all human cancers with the highest prevalence
observed in melanoma patients (>50%), making BRAF
one of the most mutated cancer-associated genes [1, 2].
The increased kinase activity of BRAF is due to somatic
point mutations, such as V600E, which result in the con-
stitutive activation of the MAP kinase signaling pathway
[3]. The mutation dysregulates cellular proliferation and
confers survival advantages to cancer cells. In melanoma,
activating mutations in the RAS/RAF/MEK/ERK pathway
are found in many patients (50% BRAF, 25% NRASmut,
11.9% NF1mut) while only a small part are “triple WT” and
do not present one of the aforementioned hotspot mu-
tations. Small molecule inhibitors (such as Vemurafenib
also known as PLX4032 or Dabrafenib also known as
GSK2118436), which bind with high affinity to the mu-
tated form of BRAF have been successfully used as mono-
therapy in melanoma patients [4, 5]. However, despite the
initial promising results, most patients relapse and de-
velop drug resistance within 6 months [6]. The onset of
drug resistance is often achieved by bypassing BRAF in-
hibition through downstream activation of MEK [7].
Therefore, a combination therapy targeting BRAF V600
mutations (Dabrafenib or Vemurafenib) as well as MEK
(Trametinib or Cobimetinib) has been approved in 2015
for use in stage III and stage IV melanoma patients [8, 9].
Overall, median survival has increased with the combin-
ation therapy from 18.7 to 25.1 months [8, 9]. Thus, there
is a need for novel therapies that can target melanoma ef-
ficiently as a monotherapy or delay resistance mechanisms
to occur as part of a combination therapy.
Metabolic reprogramming can contribute to cancer

cell survival and it is often driven by activated oncogenes
or inactivated tumor suppressors such as c-Myc, HIF1α,
TP53, AMPK, PI3K/AKT as well as Ras-related genes
[10]. It has been shown that mutations of proteins in the
RAS/RAF/MAPK pathway promote glycolysis [11] and
the expression of cell surface glucose transporter 1
(GLUT1) in both colorectal cancer cell lines [12] and in
melanoma [13] indicating that glucose metabolism
might be important for BRAF-driven tumourigenesis.
The pyruvate dehydrogenase complex (PDH) is the gate-
keeper enzyme connecting glycolysis and the tricarb-
oxylic acid (TCA) cycle. It is a multi-enzyme complex
localised in the mitochondrial matrix, catalyzing the
conversion of pyruvate, the end-product of the glycoly-
sis, to acetyl coenzyme A (acetyl-CoA). Acetyl-CoA then
feeds the TCA, resulting in the formation of citrate.
Since the PDH is an important interface with a central
role in cellular energy regulation and the supply of inter-
mediates for many biosynthesis processes, its activity is
tightly regulated. A reduction of PDH activity occurs
through reversible phosphorylation of the PDH-E1α

subunit on any of the three serine residues S293, S300
or S232 by kinases of the pyruvate dehydrogenase kinase
(PDKs) family (PDK1, PDK2, PDK3, PDK4) [14, 15],
which show a tissue-specific expression pattern and dif-
ferential regulation of their activity [16, 17]. The re-
activation of PDH is achieved through de-phosphorylation
of the PHD-E1α subunit, catalyzed by the pyruvate de-
hydrogenase phosphatases (PDP1 and PDP2), which also
display differences regarding their tissue distribution,
regulation, and activity [16, 18]. In cancer cells, PDK in-
hibition and PDH activation trigger mitochondrial oxida-
tive phosphorylation (Oxphos) and consequently ROS
production which, if excessive, causes cell death. The aer-
obic glycolysis (also known as Warburg effect) gives the
cancer cells the possibility to avoid cellular oxidative stress
that would be produced by mitochondrial Oxphos for glu-
cose metabolism.
In this study, we investigate the effects of BRAF and

MEK inhibitors on metabolic proteins at early time
points after treatment and analyse how BRAF-mutant
cells attempt to survive under selective pressure. In par-
ticular, we demonstrate that the treatment of BRAF mu-
tant melanoma cells with BRAF kinase inhibitors
(PLX4032 or GSK2118436) increases the phosphoryl-
ation of the PDH-E1α subunit, while this is not the case
in cells harboring BRAFWT/NRASmut, a process which is
facilitated by PDKs. PDH phosphorylation was also in-
duced following inhibition of MEK1 and knock-down of
Erk1/2 suggesting that downstream targets of mutant
BRAF are responsible rather than off target effects of the
BRAF inhibitor. In addition an activation of AMP-
activated protein kinase (AMPK) was observed. Interest-
ingly, PDH phosphorylation correlated with the appear-
ance of an altered redox state in both mitochondria and
the cytosol and was also inducible by H2O2 treatment.
Finally, we show that a new PDK1 inhibitor, AZD7545,
leads to efficient suppression of cell growth in cells har-
boring BRAFV600E mutation suggesting itself as potential
combination treatment with BRAF-and MEK targeting
kinase inhibitors.

Methods
Reagents and antibodies
Selective BRAF inhibitors PLX4032 (Vemurafenib) and
GSK2118436 (Dabrafenib) were purchased from
Selleckchem. BRAF inhibitors were dissolved in DMSO
according to the manufacturer’s instructions and stored
at −80 °C. Working aliquots were diluted in 100% etha-
nol at a concentration of 1 mM for PLX4032 and
100 μM for GSK2118436 and stored at −20 °C. The MEK
inhibitor GSK1120212 (Trametinib) was purchased from
Selleckchem and was dissolved in DMSO at a concentra-
tion of 10 mM and stored at −20 °C. Dichloroacetic acid
(DCA) was purchased from Sigma-Aldrich and dissolved
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in distilled water before use. AZD7545 was purchased
from Selleckchem and was dissolved in 100% ethanol ac-
cording to the manufacturer’s instructions. 10 mM work-
ing aliquots were stored at −20 °C. Mitoquinone mesylate
(MitoQ) was purchased from Medkoo Biosciences, dis-
solved in DMSO according to the manufacturer’s instruc-
tions and stored at −20 °C. The following antibodies were
used for western blot detection: anti phospho-PDH E1α
(Merck Millipore); anti PDK1 (Enzo Life Sciences); anti
phospho-ERK1/2 (Cell Signaling); anti ERK1/2 (Santa
Cruz); anti cleaved-PARP (Cell Signaling); anti PARP (Cell
Signaling); anti α-tubulin (Santa Cruz); anti HIF1α
(Abcam); anti phospho- AMPK (Cell Signaling).

Cell lines and cell culture
All melanoma cells were purchased from ATCC while
501Mel was obtained from Dr. Ruth Halaban (Dermatol-
ogy department, Yale School of Medicine, USA). All cell
lines were cultured in RPMI 1640 medium containing
ultraglutamine (Lonza BioWhittaker), supplemented
with 10% FCS (Foetal Calf Serum, GIBCO) and 1% PS
(10′000 U/ml Penicillin and 10′000 U/ml Streptomycin,
Lonza BioWhittaker) and grown at 37 °C in a humidified
atmosphere at 5% CO2. Cells were regularly tested to be
mycoplasma free. Drug-resistant cells were generated by
culturing parental A375 cells in presence of 1 μΜ
PLX4032 for 4–6 weeks. Twenty surviving clones were
picked and then combined in equal proportions to ob-
tain an heterogeneous pool of resistant cells.

Plasmids
The plasmid encoding the cytosolic (cyto)-human glutare-
doxin 1 (Grx1)-roGFP2 was obtained by amplifying the
cDNA Grx1-roGFP2 sequence without the Peroxisomal
Targeting Sequence 1 (PTS1) from the plasmid encoding
the peroxisomal (po)-Grx1-roGFP2 vector [19] by PCR
(primers; pCyto-EcoRI-5′ 5′-gga gga gga tca gga gga gaa
ttc gtg agc aag ggc gag gag-3′ (forward) and pCyto-XbaI-
3′ 5′-ctc gac tta tct aga tta ctt gta cag ctc gtc-3′ (reverse))
and subcloned into PCR2.1-TOPO (Invitrogen). The
resulting plasmid was digested with EcoRI and XbaI, prior
to subcloning into the EcoRI/XbaI digested pcDNA3.1-
Grx1-roGFP2-PTS1 vector to obtain the p-cyto-Grx1-
roGFP2. The plasmid was verified by DNA sequencing.

Small interfering RNAs and transfection
The ERK1/2 siRNAs were obtained from GE Dhar-
macon (siGenome Human). siRNA transfections were
performed using 3 μL HiPerfect transfection reagent
(Qiagen) per reaction according to the manufacturer’s
instructions. The final concentration of siRNA was
50 nM for each ERK1/2 and 100 nM for scrambled
control. ERK1 and ERK2 siRNA transfections were

performed 48 h prior to the 24 h incubation with
PLX4032 (1 μM) and/or Trametinib (3 nM).
The PDK 1–4 siRNAs were obtained from GE Dharma-

con (ON-TARGETplus Human). siRNA transfections
were performed using 1.5 μL Lipofectamine RNAiMAX
(Invitrogen) per reaction according to the manufacturer’s
instructions. The final concentration of siRNA was 25 nM
for each PDK (PDK1–4) and 100 nM for scrambled con-
trol. PDK1–4 siRNA transfections were performed 24 h
prior to 24 h incubation with PLX4032 (1 μM).

Western blot analysis and antibodies
Cell lysis was performed at 4 °C using ice cold buffers.
Cells were lysed on the dish with lysis buffer containing
30 mM Tris/HCl pH 6.7, 5% glycerol, 2.5% mercap-
toethanol, 1% SDS. Protein extracts were further ana-
lysed by SDS-PAGE and Western blotting. ECL signals
were detected as described before [20]. Before re-
probing, blots were stripped as described before [21]. All
experiments were performed in three biological repli-
cates and one representative replicate is shown. Western
blot quantification of ECL signals was performed using
both the Image Lab 4.0.1 software from Bio-RAD and
Bio1D analysis package (Vilber).

Quantitative PCR procedure
Total RNA was extracted using the Quick-RNA™ mini-
prep kit (Zymo Research) according to the manufac-
turer’s instructions and the concentration and quality
was determined using a NanoDrop Spectrophotometer.
250 or 500 ng of total RNA was reverse-transcribed
with the miScript II RT kit (Qiagen) in a volume of
10 μL, according to the manufacturer’s instructions.
Quantitative real time PCR (qPCR) was carried out on
a CFX96 Detection System (BioRad) in a total volume
of 10 μL (10 pmol of each primer and containing cDNA
corresponding to 50 ng RNA template). The house-
keeping genes PPIA, HPRT and the target genes were
assayed in parallel for each sample. Melting curve ana-
lysis was performed to guarantee the specificity of the
qPCR primers as previously described [22]. All samples
were run in biological triplicates each consisting of
three technical replicates.
Gene-specific qPCR primers for PDK1, PDK3, PDK4

and HIF1a were purchased from Eurogentec (Belgium).
For the detection of PDK2 a RT2 qPCR primer assays
from Qiagen were used. The geometric mean of two
housekeeping genes was calculated and a normalization
factor for each sample was generated using geNorm
(VBA add-in for Microsoft Excel). The normalization
factor was used to calculate the relative amount of each
target mRNA in each sample. Each sample was normal-
ized to the untreated control.
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Detection of ROS by confocal microscopy
Cells were transfected with a plasmid coding for Grx1-
roGFP2 or mitochondrial (mito)-roGFP2 (pMF1762) as
previously described [23], using Lipofectamine LTX2000
(Invitrogen). Two days post transfection the cells were
either subjected to a 1 h pretreatment with mitoQ
(150 nM), a treatment with PLX4032 (3 h for A375; 10 h
for 501 Mel or IGR37) or a combination thereof. roGFP2
is a genetically engineered GFP, which contains two cyst-
eine residues that can be oxidized. Depending on the
oxidation state, roGFP changes its excitation spectrum
(reduced: 488/530 nm; oxidized: 400/530 nm). By meas-
uring the ratio (400/488 nm) of the fluorescence emitted
by the two excitation states of the roGFP2, the redox
status of a subcellular compartment can be monitored
[24, 25]. The higher this ratio, the higher is the redox
state. The analysis was performed using the ImageJ soft-
ware on pictures taken using an Andor Revolution W1
spinning disc confocal microscope, mounted on a Nikon
Ti microscope (60× oil objective). Between 10 and 20
ROIs (regions of interest) were analysed per cell with a
minimum of 12–20 cells analysed for each condition.
The excitation record time was set to 250 msec or
300 msec for the 400 nm channel and 50 msec or
60 msec for the 488 nm channel for the Grx1-roGFP2
or mito-roGFP2 respectively. Two independent experi-
ments were performed.

Real-time proliferation assays
50 × 103 cells/well of 5 melanoma cell lines were seeded
in 12-well plates and 24 h later stimulated with 10 μM
of AZD7545. Cellular growth was monitored in the
IncuCyte ZOOM live cell microscope (Essen BioScience)
and images were taken in phase contrast every 3 h for a
total of 90 h. Proliferation assay were carried out for
three biological replicates and for each figure one repre-
sentative replicate is shown.

Preparation of the A375-iRFP cell line
A375 cells were plated in 12 well plates in complete
medium and allowed to adhere overnight. Cells were
transduced with lentiviral particles (LV-iRFP-P2A-Puro)
containing near-infrared fluorescent protein (iRFP)
linked to the puromycin resistance gene (Puro) via a
P2A cleavage peptide (Imanis Life Sciences). Virus was
prepared in serum-free medium and added to the cells
with a multiplicity of infection (MOI) of 10. To increase
transduction efficiency, the plate was centrifuged at
300 g for 30 min and placed in the incubator. Four
hours after transduction, complete medium was added
to the cells. Forty-eight hours after transduction, cells
were checked on the Odyssey Infrared imaging system
(LI-COR Bioscience) for iRFP expression and selection
with puromycin (Invivogen) at 1 μg/ml was initiated.

After several rounds of puromycin selection, cells were
analysed on the Odyssey Infrared imaging system (LI-
COR Bioscience) and on a FACSCanto II flow cytometer
using FACSDiva (BD Bioscences) software to confirm
that 100% of the cell population is expressing iRFP.

Long term proliferation assay
The A375-iRFP cells were used to test the combination
of 1 μM PLX4032 and 10 μM AZD7545 versus PLX4032
alone. 10,000 cells were seeded per well (6 well plates)
and were treated with the inhibitors for 3 weeks.
Medium was changed twice a week. After 3 weeks of
treatment, cells were scanned and the intensity of the
iRFP signal was measured using the LI-COR Odyssey in-
strument (LI-COR Biosciences). The iRFP signal was
quantified using the Image Studio lite version 4.0 soft-
ware (LI-COR Biosciences).

3D spheroid growth assay
A375 cells were plated in round-bottom ultra-low attach-
ment 96-well plates in 90 μl of serum-free DMEM-F12
supplemented with B-27 (1X; Invitrogen), Insulin (4 U/L;
Sigma), Heparin (4 μg/ml; Sigma), EGF (20 ng/ml;
Biomol); bFGF (20 ng/ml: Miltenyi Biotec), and penicillin/
streptomycin (1X, Lonza). After 2 days of sphere for-
mation, drugs were added. Sphere growth was monitored
in the IncuCyte ZOOM live cell microscope (Essen
BioScience) by measuring four different spheroid diame-
ters after 3 days. Spheroid assays were carried out in three
biological replicates.

Results
BRAF inhibitors lead to an increase of PDH
phosphorylation in BRAF mutant (V600E) but not in BRAF
wild-type melanoma cells
In the wake of recent publications investigating the role of
the BRAF oncogene on metabolic processes, we wanted to
explore the effects of BRAF inhibitors on melanoma cells.
To this end, time course experiments were performed in a
panel of BRAFV600E and BRAFWT/NRASmut human
melanoma cells, which were incubated with two BRAF
kinase inhibitors, PLX4032 and GSK2118436, for the indi-
cated time points (Fig. 1). As expected, BRAF inhibition
caused the down-regulation of phosphorylated ERK in the
BRAFV600E positive cell lines A375, IGR37 and 501Mel
already after 30 min (Fig. 1a). On the contrary and as
previously described [26, 27], PLX4032 and GSK2118436
lead to an upregulation of ERK phosphorylation in cells
expressing BRAFWT/NRASmut (Fig. 1b). Total PARP and
cleaved PARP detections were performed to assess the
induction of apoptosis which seems to occur only 48 and
72 h after treatment of the BRAFV600E positive cells. Inter-
estingly, we found an increased phosphorylation of PDH-
E1α on S300 from around 7 h post inhibitor treatment in
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the BRAFV600E positive cell lines A375, IGR37 and 501
Mel (Fig. 1a and c), increasing at 24 h and generally peak-
ing at 48 h. In the BRAFWT/NRASmut cells, the situation

was again different and no change in the phosphorylation
of PDH was observed over time. Phosphorylation of PDH-
E1α at S300 is associated with an inhibition of the activity

Fig. 1 BRAF inhibitors induce upregulation of PDH-E1α phosphorylation in BRAFV600E melanoma cells but not in wild-type BRAF melanoma cells.
Western blot analysis of A375, IGR37 and 501 Mel cells (BRAFV600E) (a) and MelJuso, IPC298 and SKMel30 cells (BRAFWT/NRASmut) (b) treated with
1 μM of PLX4032 and 100 nM of GSK2118432 for the indicated time points. α-Tubulin was used as loading control; representative blots of three
biological replicates are shown. c Quantification of pPDH and PDK1 levels for A375, IGR37 and 501Mel, normalized to the untreated control. Error
bars represent the standard deviation of three biological replicates. Statistical significance was determined using one-way ANOVA coupled with
Dunnett’s multiple comparisons tests. *p > 0.05, **p > 0.01, ***p > 0.001

Cesi et al. Molecular Cancer  (2017) 16:102 

50



of the pyruvate dehydrogenase complex (PDH), which
converts pyruvate into acetyl-CoA and thus regulates the
entry of metabolites from glycolysis into the TCA cycle.
Our data suggest that treatment with BRAF inhibitors in-
duces changes in the metabolism of cells harboring the
BRAFV600E mutation in a different way than in cell ex-
pressing BRAFWT.

PDH phosphorylation is mediated by Erk
To rule out that the PDH phosphorylation is an off
target effect of the BRAF inhibitor and since

BRAFV600Eare known to activate ERK1/2 via MEK1, we
investigated the involvement of ERK1/2 and MEK1 in
mediating PDH-E1α phosphorylation in A375 cells.
Using an siRNA approach targeting both ERK1 and
ERK2 in combination with PLX4032 we could show
that a knock-down of ERK1/2 induces an upregulation
of PDH-E1α phosphorylation, comparable to what was
achieved with PLX4032 (Fig. 2a). In addition, the same
upregulation was obtained when the cells were treated
with a MEK1 inhibitor (Trametinib), which also leads
to the down-regulation of pERK. Of note, neither of the

b

a

Fig. 2 Knock-down of ERK1/2 by siRNAs and treatment with a MEK1 inhibitor induces pS300PDH. a A375 cells were transfected with siRNA against
ERK1/2 (50 nM each siRNA) or a scrambled control (100 nM) for 72 h. 48 h prior to collection, the cells were incubated with either PLX4032 (1 μM) or
Trametinib (3 nM) or both drugs. One representative of three biological replicates is shown. b Western blot analysis of A375 (BRAFV600E),
MelJuso, IPC298 and SKMel30 cells (NRASmut) treated with 5 nM of Trametinib for the indicated time points. α-Tubulin was used as loading
control; representative blots of three biological replicates are shown. 1: Untransfected; 2: scrambled; 3: ERK1/2 siRNA
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effects could be increased by combination treatment
with both BRAF and MEK inhibitor. To further explore
the link between RAS/RAF/MEK/ERK pathway and
PDH phosphorylation we used NRASmut cells (SKMel30,
MelJuso, IPC298) (which did not upregulate pPDH
upon BRAF inhibitor treatment) and treated them with
Trametinib for the indicated time points. As expected,
MEK inhibition caused a down-regulation of ERK phos-
phorylation already after 30 min (Fig. 2b) also in
NRASmut cells. Phosphorylation of PDH-E1α on S300
was observed in those cells from around 24 h onwards.
These results suggest that the phosphorylation of PDH
is a specific effect mediated by the BRAF/MEK/ERK
pathway and not an off target effect of BRAF inhibitors
and that it occurs in all melanoma cells presenting acti-
vating mutations in this pathway.

Pyruvate dehydrogenase kinase (PDK) mRNA levels are
upregulated upon BRAF inhibitor treatment
Since PDKs are known to be responsible for PDH phos-
phorylation [14, 15], we next analysed mRNA levels of
the four PDK isoforms in three BRAFV600E cell lines.
HIF1α was included in the study since this transcrip-
tion factor induces PDK1 expression and has been
shown to be upregulated by conditions other than
hypoxia [28], notably also by activation of the RAS/
MAPK pathway [29]. Furthermore, constitutive HIF1α
activity has been described in malignant melanoma
[30]. Surprisingly, an upregulation of the mRNA levels
of PDK1 and HIF1α was detected in all cell lines at 12
and 24 h after PLX4032 treatment (Fig. 3). However,
validation of these results showed that although HIF1α
mRNA was upregulated upon treatment, this effect was
not detectable at the protein level (Additional file 1:
Figure S1). This finding was corroborated by the fact
that PDK1 protein levels, which are regulated by HIF1α
protein, were also not upregulated upon BRAF inhibi-
tor treatment. Interestingly, the mRNAs of the other
PDK family members PDK3 and PDK4 were upregu-
lated upon BRAF inhibitor treatment, while PDK2 was
not detected in any cell line. The protein levels of
PDK3 and PDK4 could not be investigated since the
available antibodies were not specific for these proteins
(data not shown). Thus, mRNA levels of the PDKs are
upregulated following BRAF inhibitor treatment, al-
though for PDK1 no increase in protein levels was
detectable.

PDKs are crucial for the observed PDH-E1α
phosphorylation
The activity of PDKs can also be regulated by al-
ternative post-translational mechanisms [31], and for
enzymes the regulation of their activity is often more
important than their mere expression level. Therefore,

we investigated the importance of PDKs in our
inhibitor-mediated PDH-E1α phosphorylation by
knocking down all four PDK isoforms using an siRNA
approach. The down-regulation of mRNAs for all iso-
forms ranged between ~10–40% compared to both

Fig. 3 PLX4032 treatment induces upregulation of PDK mRNA in
BRAFV600E melanoma cells. Quantitative RT-PCR of PDKs and HIF-1α
mRNA. The fold change was calculated relative to untreated controls.
Error bars represent the standard deviation of three biological replicates.
PDK2 was not detectable in tested cell lines (Cq ≥ 30) while PDK4
(Cq ≥ 30) was not detectable in IGR37 cells only. Error bars represent the
standard deviation of three biological replicates. Statistical significance
was determined in comparison to the untreated control using paired
Student’s t-tests. *p > 0.05, **p > 0.01, ***p > 0.001
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untreated and scrambled controls (Fig. 4a). As for
PDK1 protein levels, a strong reduction following the
siRNA treatment could be observed too (Fig. 4b). Fol-
lowing the knock-down of the PDKs, a drastic decrease
in the phosphorylation levels of PDH-E1α at serine 300
residue in A375 cells was detected, despite the presence
of PLX4032 (Fig. 4b). To further support these results,
we used dichloroacetic acid (DCA), a pan-PDK inhibi-
tor, which also resulted in a decreased phosphorylation
level of PDH-E1α in A375 (Fig. 4c). In summary, these
data indicate that PDK isoforms mediate the PLX4032/
GSK118436-induced phosphorylation of PDH-E1α.

BRAF inhibitors also trigger the phosphorylation of AMP-
activated protein kinase (AMPK)
AMPK phosphorylation and its subsequent activation
upon BRAF inhibitor treatment has previously been de-
scribed in melanoma and colorectal cancer cells [32, 33].
Since AMPK has indirectly been implicated in mediating
PDH phosphorylation [34], we explored the phosphoryl-
ation status of AMPK in our setting. In accordance with

previous publications [32, 33], we also observed an up-
regulation of AMPK phosphorylation on T172 following
inhibition of BRAFV600E with both PLX4032 and
GSK2118436 (Fig. 5). However, the phosphorylation oc-
curred generally at later time points (24 or 48 h after
treatment) compared to the onset of PDH phosphoryl-
ation. For this reason, we exclude the possibility that the
observed PDH phosphorylation following BRAF inhibi-
tor treatment was indirectly induced by AMPK.

Reactive oxygen species (ROS) are upregulated upon
PLX4032 treatment and correlate with PDH
phosphorylation
Mitochondrial ROS production after PLX4032 exposure
has recently been described [35]. Since we and others
have previously demonstrated that the induction of ROS
can stimulate the phosphorylation of PDH [34, 36], we
investigated a possible connection between ROS and
pPDH after PLX4032 treatment in the context of melan-
oma. In order to measure the redox state in both mito-
chondria and the cytosol after PLX4032 treatment,

a

b c

Fig. 4 PDKs are crucial for PDH phosphorylation. A375 cells were transfected with siRNA against all four PDK isoforms (PDK1–4; 25 nM siRNA for
each isoform) or 100 nM of scrambled control; after 24 h cells were incubated with PLX4032 (1 μM) for another 24 h. a qPCR analysis of PDK1–4
mRNA levels to show the efficiency of the siRNA knock-down of each siRNA and (b) corresponding western blot analysis. c Western blot analysis
of A375 treated with PLX4032 (1 μM for 24 h), DCA (20 mM for 48 h) or both drugs. Error bars represent the standard deviation of three biological
replicates. For each western blot experiment, one representative of three biological replicates is shown. Statistical significance was determined
using paired Student’s t-tests. *p > 0.05, **p > 0.01, ***p > 0.001. 1: Untransfected; 2: scrambled; 3: PDKs siRNA
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A375, IGR37 and 501Mel cells were transfected with a
plasmid expressing either the mito-roGFP2 or the Grx1-
roGFP2, which can be used to monitor the mitochon-
drial and the cytosolic redox state, respectively. Both
redox states after PLX4032 treatment were compared to
untreated controls. In particular, we treated A375 cells
with the BRAF inhibitor for 3 h whereas IGR37 and
501Mel were tested for 10 h. The time points were
chosen according to the onset of pS300PDH after
PLX4032 treatment, in particular just before the phos-
phorylation was becoming prominent. Furthermore, we
also used a mitochondria-targeted antioxidant (mitoQ)
in order to prevent or decrease oxidative stess induced
by PLX4032. Melanoma cells were pre-treated with
150 nM of the antioxidant, mitoquinone mesylate
(MitoQ), followed by PLX4032 treatment. For all cell
lines, both the mitochondrial and the cytosolic redox
status was significantly increased after exposure to
PLX4032 and decreased in case of mitoQ pre-treatment
(Fig. 6a). We could also observe a decreased phosphoryl-
ation of PDH-E1α on S300 when the cells were pre-
incubated with MitoQ suggesting that ROS are activat-
ing PDKs, which in turn leads to inhibition of PDH by
phosphorylation (Fig. 6b). As an additional confirmation,
cells were treated with 100 μM H2O2, which also in-
duced an upregulation of PDH-E1α phosphorylation
(Fig. 6c).

AZD7545 (PDK inhibitor) leads to efficient growth
suppression in cells harboring BRAF and NRAS mutations
as well as in inhibitor-resistant melanoma
Generally a metabolic shift from glycolysis to glucose
oxidation has been associated with an increase in the
electron transport chain activity and ROS production
[37] and oxidative stress in form of increased ROS levels
drives cells into apoptosis [38]. Based on this, we
hypothesize that the inhibition of PDKs during acute
BRAF inhibitor treatment and during early development
of resistance might be beneficial for patients as such that
sufficient levels of ROS could be generated, which might
drive cancer cells into apoptosis and thus delay or prevent
resistance. In this context, it has previsouly been shown
that the PDK inhibitor DCA negatively affects the growth
of melanoma cells, which are sensitive or resistant to
BRAF inhibition by suppressing glycolysis [39]. First we
tested a PDK inhibitor with low micromolar cellular po-
tency, AZD7545, as single treatment on both BRAFV600E

and BRAFWT/NRASmut human melanoma cells. Interest-
ingly, we detected a 30–40% decrease in cell growth in
BRAFV600E A375 and IGR37 cell lines (Fig. 7a). Interest-
ingly the AZD7545-mediated suppression of growth could
also be observed in BRAF/NRASmut cells, although, at
later time points. This might be attributed to the slower
growth of those cell lines (Fig. 7b), which also signal via
the MAPK pathway. These data suggest that AZD7545,

Fig. 5 PLX4032 and GSK2118436 induce upregulation of AMPK phosphorylation in BRAFV600E melanoma cells. Western blot analysis of A375,
IGR37 and 501 Mel cells (BRAFV600E) treated with 1 μM of PLX4032 and 100 nM of GSK2118432 for the indicated time points. α-Tubulin was used
as loading control, and one representative blot is shown
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which we used at 10 μM, might be a valid alternative to
Dichloroacetate (DCA), another PDK inhibitor used at
millimolar concentrations. To investigate if AZD7545
could delay or influence the occurrence of BRAF inhibitor
resistance we tested the combination of the two inhibitors
on melanoma cell growth. A375 melanoma cells were
transduced with lentiviral particles containing iRFP and
were treated for 3 weeks either with 1 μM of PLX4032 or

with 1 μM of PLX4032 in combination with 10 μM
AZD7545. By measuring the intensity of the iRFP signal,
we observed that cells treated with both inhibitors showed
a more pronounced reduction in cellular growth (Fig. 8a).
This drug combination was also tested on sphere models
with similar results (Fig. 8b). It is tempting to speculate
that the targeting of PDKs in combination with BRAF in-
hibitors could be a promising strategy to more efficiently

a

b

c

Fig. 6 ROS are induced after PLX4032 treatment of melanoma cells. a A375, 501 Mel or IGR37 cells were transiently transfected with plasmids
encoding Grx1-roGFP2 or mito-roGFP2. Two days post transfection the cells were either subjected to a 1 h pretreatment with mitoQ (150 nM), a
treatment with PLX4032 (3 h for A375; 10 h for 501Mel or (IGR37) or a combination thereof. Following this, the redox status was measured in the
cytosol or mitochondria. Data were normalized to untreated cells, followed by one-way ANOVA coupled with Dunnett’s multiple comparisons
tests. Representative graphs of two biological replicates are shown. b Western blot analysis of A375, IGR37 and 501Mel pre-treated for 1 h with
mitoQ (150 nM) followed by 24 h of 1 μM PLX4032 treatment. Results are shown for one representative of three biological replicates. c Western
blot analysis of A375, IGR37 and 501 Mel treated with hydrogen peroxide (H2O2; 100 μM) for the indicated time points. Results are shown for one
representative of three biological replicates. *p > 0.05, **p > 0.01, ***p > 0.001
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Fig. 7 AZD7545 mediated growth suppression of BRAFV600E mutant and NRASmut melanoma cells. Twenty-four hours after plating, both A375 and
IGR37 cell lines (BRAFV600E) (a) and SKMel30, IPC298 and MelJuso cell lines (NRASmut) (b) were treated with 10 μM of AZD7545. The plates were imaged
using an IncuCyte ZOOM live cell microscope (Essen BioScience) and images were taken every 3 h for a total of 90 h (BRAFV600E) and 120 h (NRASmut).
Results are shown for one representative of three biological replicates

a

b c

Fig. 8 Combination of AZD7545 and PLX4032 more efficiently suppresses melanoma growth compared to each compound alone. a Represenative
experiment of A375 melanoma cells expressing iRFP treated either with 1 μM of PLX4032 or with 1 μM of PLX4032 in combination with 10 μM AZD7545
for 3 weeks. The intensity of red fluorescence was quantified and the bar diagram represents three biological replicates with their standard deviation.
b Spheroid cultures of A375 melanoma cells were treated with DMSO control, with 1 μM of PLX4032 or with 1 μM of PLX4032 in combination with
10 μM AZD7545. After 3 days sphere diameters were measured and represented as bar diagrams. Error bars represent the standard deviation of a
minimum of four technical replicates of one representative experiment of three biological replicates. c Twenty-four hours after plating, BRAFi-resistant
A375 melanoma cell (A375-R) were stimulated with 10 μM of AZD7545. The plates were imaged using an IncuCyte ZOOM live cell microscope (Essen
BioScience) and images were taken every 3 h for a total of 90 h. Results are shown for one representative of three biological replicates. Statistical
significance was determined using paired Student’s t-tests. *p > 0.05, **p > 0.01, ***p > 0.001
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hit melanoma cells or to delay the onset of drug resist-
ance. In addition BRAFi-resistant A375 melanoma cells
also showed reduction of growth upon AZD7445 treat-
ment (Fig. 8c).

Discussion
Metabolic reprogramming, often driven by activated on-
cogenes, is a well known feature of cancer cells. Recent
studies have shown a link between oncogenic BRAF sig-
naling and metabolic reprogramming in melanoma (for
a comprehensive review see [40]), making the targeting
of metabolic pathways a potentially interesting therapeutic
strategy. Melanoma has been described to be highly glyco-
lytic, due to upreguation of glucose transporters and lac-
tate dehydrogenase-A (LDH-A) [41–43]. Inhibition of
BRAFV600E suppresses GLUT1/3 and Hexokinase 2 pro-
tein levels leading to reduced levels of lactate and ATP,
thus showing that BRAF inhibition counteract the War-
burg effect [13]. In the present study, we demonstrate that
administration of BRAF inhibitors induces phosphoryl-
ation of proteins involved in the cellular metabolism, not-
ably via PDH. Furthermore, inhibition of MEK1 alone or
in combination with BRAF inhibitors as well as siRNA
knock-down of ERK1/2 also mediated phosphorylation
of PDH, indicating that it is not an off target effect of
the BRAF inhibitor but an effect mediated by the RAS/
RAF/MEK/ERK pathway (Figs. 1, 2a and b). PDH is the
key enzyme linking glycolysis to the TCA. PDH-E1α
phosphorylation at the serine residues 293, 300, and
232 is known to be responsible for the down-regulation
of its activity. Thereby, conversion of pyruvate to
acetyl-CoA is prevented, which contributes to a down-
regulation of the TCA and Oxphos.
We demonstrate that PDKs are required for the ob-

served effect since siRNA-mediated knock-down of the
PDKs clearly impairs the inhibitor-mediated upregulation
of phosphorylation. Administration of the PDK inhibitor
DCA had the same effect. Interestingly, the expressed
PDK1, PDK3 and PDK4 proteins are regulated either by
HIF-mediated transcription (PDK1), increasing ATP levels
(PDK3) or amino acid starvation (PDK4). Here, we did
not observe changes in HIF1α or PDK1 protein levels.
ATP has been described to be decreased upon BRAF in-
hibition [13] and it is thus unlikely to account for PDK2
activation. In our short term 2D cell culture (the effect is
seen from 7 h post inhibitor treatment) experiment, nutri-
ent deprivation can hardly be responsible for PDK4 activa-
tion [44]. Thus alternative activation mechanisms have to
be taken into account. Protein kinases can be redox-
sensitive [45] and can either be activated or inactivated by
ROS. We have recently shown that PDKs were activated
by ROS in the first hours of hypoxic conditions [36] and
that PDH phosphorylation can be mediated by ROS-
dependent activation of PDKs [34, 36]. In the current

study, we detected an increased mitochondrial and cy-
tosolic redox state upon administration of PLX4032 in
BRAF-mutant positive melanoma cells and we also ob-
served that exogenously applied H2O2 was sufficient to
increase PDH phosphorylation in melanoma cells, indicat-
ing that ROS might indeed be responsible for the observed
effect. In the presence of a mitochondria-targeted ROS
scavenger, MitoQ, the BRAF inhibitor failed to induce
PDH phosphorylation, which strongly points to an activa-
tion of PDKs by ROS.
Cancer cells produce higher levels of ROS compared

to nontransformed cells, due to metabolic reprogram-
ming or to changing fluxes of metabolites or to nutrient
and oxygen fluctuations in the tumour microenviron-
ment. Interestingly, any disturbance of the steady state
of the electron transport chain (ETC.) seems to generate
ROS [46, 47]. As one example, increasing and decreasing
oxygen levels both induce the production of more ROS
by the ETC. In the same way, activation of BRAF by mu-
tation in melanoma should lead to the induction of
genes involved in antioxidant defence, since MAPK acti-
vation was described to induce such a response [48]. As
a consequence, inhibition of BRAF might increase ROS
levels by suppressing the transcription of these antioxi-
dant genes. In addition NRF2, a transcription factor
regulating antioxidant defence, is known to be activated
by ERK, other MAPKs and Akt. Thus, BRAF mutations
also activate antioxidant defence downstream of the
NRF2 pathway. Again, BRAF inhibitor treatment might
also lead to increases in ROS by this mechanism.
Melanoma cells have been discussed to have a highly

oxidative metabolism and thus treatment with BRAF or
MEK inhibitors, increase oxidative stress within the can-
cer cell by upregulating ROS (as we show here). The in-
creased phosphorylation of PDH by PDKs that we
describe can be interpreted as a protective response of the
cancer cells to prevent further ROS production. The oxi-
dative activation of PDKs, due to increasing ROS levels,
prevent pyruvate from entering the TCA and the ETC.
(which is the major source of ROS) and stop ROS from
reaching toxic levels. PDK inhibitors thus release the block
on pyruvate entry into the TCA and consequently lead to
an increase in ROS levels that can be toxic to cells and
contribute to cancer cell death (Fig. 9). BRAF inhibitor
treatment inhibits the TCA cycle and contributes to the
decrease in ATP production, which was recently reported
by several studies [13, 49] and by our preliminary mea-
surements (data not shown). Interestingly, we observed
that in PLX4032-resistant melanoma cells the PDH phos-
phorylation upregulation was overcome (Additional file 2:
Fig. S2) suggesting a metabolic adaptive process occurring
during drug treatment (Fig. 9).
This ROS-mediated regulation of kinases is an inter-

esting emerging field in cancer cell biology. It seems that
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ROS can either activate or inactivate kinases by oxida-
tion. Interestingly, ROS regulate some kinases directly
involved in metabolic processes, which are also involved
in regulation of ROS itself. One such mechanism we
now describe in this paper: The ROS-mediated activa-
tion of PDKs lead to phosphorylation of PDH, which in
turn limits influx of pyruvate into the TCA and the
Oxphos (or the ETC.). This represents a negative regula-
tory loop limiting the generation of more ROS. In the
same way, ROS inhibit PKM2 (a cancer-expressed iso-
form of pyruvate kinase), leading to accumulation of
glycolytic intermediates, which feed into the pentose
phosphate pathway to generate NADPH. NADPH in
turn plays an essential role in ROS detoxification [50].

Along the same lines, ROS have been described to acti-
vate AMPK, a kinase regulating mitophagy/autophagy,
which can be interpreted as a pathway restricting further
ROS production [51, 52].
Interestingly, the BRAFV600E oncogene signaling regu-

lates PDH phosphorylation in very different ways in
Oncogene Induced Senescence (OIS) [53] and in BRAF
inhibitor resistance (this paper and [13]), which occur in
different steps of oncogenesis or treatment (see also
Fig. 9). In a melanoma mouse model, OIS in BRAFV600E

positive cells was mediated by down-regulation of the
TCA and Oxphos. In this system, PDH down-
regulation by phosphorylation was mediated by PDK1
down-regulation and PDP2 upregulation at the protein

Fig. 9 Model summarising metabolic changes in sentitive versus resistant melanoma cells upon BRAF inhibition. a BRAFV600E, in addition to its
well known effects on the cell cycle and anti-apoptosis, leads to upregulation of glucose uptake and LDH-A, promoting aerobic glycolysis and cell
growth. Moreover, activation of BRAF, leads to the induction of genes involved in antioxidant defense. b Upon treatment with BRAF inibitors, or
other MEK/ERK pathway inhibitors, glycolysis is inhibited. Changes in metabolic fluxes through the TCA cycle together with the inhibition of the
transcription of antioxidant genes, induce ROS. The increasing levels of ROS activate PDKs, which in turn inactivate PDH, thus reducing pyruvate
use in the TCA cycle, which in a negative regulatory loop, inhibit further ROS production. c In BRAF inhibitor resistance, the MAPK pathway is
reactivated by compensatory mechanisms and as a consequence glycolysis and antioxidant-defence genes are reactivated. Glycolysis produces
ATP, nucleotides (via the pentose phosphate pathway (PPP)), NADPH (for antioxidant defense via PPP) and amino acids. The cells become addicted to
an oxidative metabolism with glutamine (Gln) feeding anaplerotically into the TCA cycle to produce NADH, amino acids, ATP (via Oxphos), fatty acids
(via AcetylCoA) and ROS. These ROS can be kept in check by NADPH, which is produced by the PPP and by antioxidant gene transcription downstream
of the RAS/RAF/MEK/ERK pathway. At need, PDKs are activated by ROS and PDH is inhibited. This prevents pyruvate from entering the TCA and ROS to
reach toxic levels. d In BRAF inhibitor resistance of melanoma, pharmacological inhibition of PDKs releases the brake on pyruvate entry into the TCA
and causes unchecked pyruvate use, associated with an increase in ROS production. This increase in ROS tilts the balance towards cell death. Thus
potent nonomolar PDK inhibitors could efficiently reduce the viability of BRAFi-resistant cells or might prevent or delay BRAFi resistance
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level. Loss of OIS, characteristic of progression to can-
cer leads to a reversal of these effects [53].
DCA has been tested in multiple cell culture and ro-

dent models of cancer, and PDK1 knock-down has been
described to enhance the sensitivity of BRAFV600E posi-
tive melanoma to BRAF inhibitors. We tested a pan-
PDK inhibitor, AZD7545, which interferes with the
lypoyl binding pocket of PDKs for its capacity to inhibit
the growth of BRAFV600E and NRASmut positive cells.
We observed that AZD7545 suppressed growth of
BRAFV600E positive cells and kinase inhibitor-resistant
cells when applied in μM concentrations. Interestingly,
AZD7545 had no effect on keratinocytes (HaCaT) and
normal fibroblasts, cell types which constitute the
cutaneous microenvironment of melanoma tumors
(data not shown), indicating selective effects on BRAF/
NRAS-mutated or resistant cancer cells. Finally, we
show that the combination of BRAF inhibitors with
PDK inhibitors is more efficient in tumor growth
suppression than the single treatment suggesting that
the simultaneus targeting of metabolic pathways might
indeed be beneficial for melanoma patients.

Conclusions
Current guidelines for advanced stage melanoma foresee
the use of targeted therapy followed by immunotherapy
if kinase inhibitor treatments are not effective or once
patients become resistant. Appropriate first line treat-
ments are selected based on specific features of the
patient, including BRAF mutation status. For BRAF-
mutated melanoma patients, targeted combination ther-
apy with BRAF and MEK inhibitors is recommended, a
treatment line, which has been approved in 2015. Until
then, BRAF inhibitors were given alone but combined
BRAF and MEK inhibition was shown to improve the
overall survival [54]. Despite these encouraging results,
double drug resistance is likely to occur in some pa-
tients [55]. Triple target therapy approaches are cur-
rently under investigation, especially those targeting
pathways other than the RAS/RAF/MEK/ERK. Further-
more, about 50% of patients do not carry the BRAF
mutation and not all of those might be suitable candi-
dates for immunotherapy. Finally, intrinsic resistance
exists in a group of melanoma patients carrying BRAF
mutations but not responding to BRAF and MEK inhib-
itors. For this large group of melanoma patients, al-
ternative therapeutic targets need to be identified. A
deeper understanding of metabolic changes under se-
lective pressure may contribute to the identification of
such novel target lines.
In this study, we report that RAS/RAF/MEK/ERK

pathway inhibition induces increased ROS levels, which
activate PDKs. PDKs then phosphorylate and thereby in-
hibit PDH, which reduces further ROS production by

the TCA cycle. Consequently, PDK inhibitors should in-
crease ROS production significantly by preventing block-
ade of pyruvate entry into the TCA cycle. The use of a
specific PDK inhibitor combined with BRAF inhibition
or with BRAF and MEK inhibitors might thus increase
ROS production to levels, which initiate cell death and
in this way delay or prevent BRAF inhibitor resistance.
Given the early onset of resistance to BRAF inhibitors in
virtually all treated patients together with the still lim-
ited success rates of immune therapy [56], there is a
pressing need for efficient therapies in late stage melan-
oma patients, which either prevent or considerably delay
drug resistance by targeting other aberrant signaling
pathways. More potent PDK inhibitors with nanomolar
cellular potency targeting the lipoyl- or the ATP-binding
pockets of the kinase domains, might be a promising in-
hibitor to add in combination with BRAF and/orMEK
kinase inhibitors.

Additional files

Additional file 1: Figure S1. PLX4032 and GSK2118436 do not induce
up-regulation of HIF-1α protein in BRAFV600E melanoma cells. Western
blot analysis of A375, IGR37 and 501Mel cells (BRAFV600E) treated with
1 μM of PLX4032 and 100 nM of GSK2118432 for the indicated time
points. HIF-1α protein was not detectable in all three cell lines. Positive
control: A375 short term hypoxia. (PDF 155 kb)

Additional file 2: Figure S2. BRAF inhibitors do not induce
phosphorylation of PDH in resistant melanoma cells. Western blot
analysis of untreated A375, A375 cells resistant to Vemurafenib (A375-R)
and under constant presence of 1 μM of PLX4032 and A375 cells stimulated
with 1 μM of PLX4032 for 24 h. α-Tubulin was used as loading control;
representative blots of three biological replicates are shown. (PDF 102 kb)
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4.2 Impact of BRAF kinase inhibitor treatment on the miRNomes and 

transcriptomes of resistant melanoma cells 

4.2.1 Preamble 

Acquired resistance to BRAF inhibitors represents a significant obstacle to the successful control of 

melanoma. Usually, acquired resistance is characterized by the reactivation of the MAPK pathway 

(Trunzer et al., 2013). Furthermore, the scenario might be complicated by the paradoxical 

development of secondary skin tumours, arising from the BRAF inhibitors-induced activation of 

MAPK pathway in wild-type BRAF cells present in same tumour (Gibney et al., 2013). For these 

reasons, the gold standard therapy for BRAF mutated melanoma patients has recently become a 

combination of BRAF and MEK inhibitors (Garbe et al., 2016; Spain et al., 2016). This combination, 

although it significantly increases the overall survival of patients, does not prevent the onset of 

resistance and thus is not an appropriate long term treatment for most patients (Eroglu and Ribas, 

2016).  

Many studies have elucidated several key genetic changes responsible for acquired resistance; 

nevertheless, in some cases, new mutations have not been found (Shi et al., 2014), suggesting a 

potential involvement of epigenetic and post transcriptional changes. MiRNAs are important post 

transcriptional regulators of gene expression, often dysregulated in many tumours (Svoronos et al., 

2016). So far, not much is known about the implication of miRNAs in BRAF inhibitor-resistant 

melanomas. 

In the scope of this article, we aimed at a better understanding of the mechanisms underlying the 

resistance to BRAF inhibitors, with a special focus on the potential role of miRNAs. We used in vitro 

melanoma cell models consisting of drug-sensitive and drug-resistant cells, which have been 

generated in our laboratory. We performed microarray analyses with the aim to describe changes 

in the transcriptome and the miRNome that might play a role in resistance. On the whole, this study 

provides insights into a complex and very heterogeneous response to BRAF inhibitors. 

Nevertheless, several genes and miRNAs were differentially regulated in the drug-resistant versus 

-sensitive cell lines, which might be considered as prognostic and/or diagnostic resistance

biomarkers in melanoma drug resistance.  

Kozar et al. is a joint first author paper and authors' contributions are explained at the end of the 

article. 

Supplementary tables can be found at the following address:  

http://www.sciencedirect.com/science/article/pii/S0304416517301307?via%3Dihub 

http://www.sciencedirect.com/science/article/pii/S0304416517301307?via%3Dihub
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A B S T R A C T

Background: Melanoma is an aggressive skin cancer with increasing incidence worldwide. The development of
BRAF kinase inhibitors as targeted treatments for patients with BRAF-mutant tumours contributed profoundly to
an improved overall survival of patients with metastatic melanoma. Despite these promising results, the
emergence of rapid resistance to targeted therapy remains a serious clinical issue.
Methods: To investigate the impact of BRAF inhibitors on miRNomes and transcriptomes, we used in vitro
melanoma models consisting of BRAF inhibitor-sensitive and -resistant cell lines generated in our laboratory.
Subsequently, microarray analyses were performed followed by RT-qPCR validations.
Results: Regarding miRNome and transcriptome changes, the long-term effects of BRAF inhibition differed in a
cell line-specific manner with the two different BRAF inhibitors inducing comparable responses in three
melanoma cell lines. Despite this heterogeneity, several miRNAs (e.g. miR-92a-1-5p, miR-708-5p) and genes
(e.g. DOK5, PCSK2) were distinctly differentially expressed in drug-resistant versus -sensitive cell lines. Analyses
of coexpressed miRNAs, as well as inversely correlated miRNA-mRNA pairs, revealed a low MITF/AXL ratio in
two drug-resistant cell lines that might be regulated by miRNAs.
Conclusion: Several genes and miRNAs were differentially regulated in the drug-resistant and -sensitive cell lines
and might be considered as prognostic and/or diagnostic resistance biomarkers in melanoma drug resistance.
General significance: Thus far, only little information is available on the significance and role of miRNAs with
respect to kinase inhibitor treatments and emergence of drug resistance. In this study, promising miRNAs and
genes were identified and associated to BRAF inhibitor-mediated resistance in melanoma. This article is part of a
Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka
Heinemann and Dr. Patrick O’Donoghue.

1. Introduction

Melanoma is an aggressive malignancy, which has a poor prognosis
once the tumour has metastasized [1,2]. Together with lung cancer,
melanoma is one of the most unstable and highly mutated tumours with
approximately 200 non-synonymous mutations per lesion and an average
mutation rate of 16.8 mutations/Mb [3–5]. In spite of this high genetic
heterogeneity,> 50% of melanoma patients harbour activating mutations

in the B-Raf proto-oncogene serine/threonine kinase (BRAF), with V600E
being the predominant amino acid change [4,6]. Mutated BRAF leads to a
constitutive activation of the Mitogen Activated Protein Kinase (MAPK)
pathway, impairs normal cell proliferation and triggers sustained cell
survival [7,8]. Consequently, BRAF kinase inhibitors (e.g. vemurafenib/
PLX4032 and dabrafenib/GSK2118436) were developed as targeted
treatment options for patients with BRAF-mutant tumours. These drugs
are in widespread clinical use since 2011 (vemurafenib) and 2013
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(dabrafenib) and contributed profoundly to the increase of the overall
survival of patients with metastatic melanoma [9–12]. Despite these
promising results, the rapid emergence of resistance to BRAF inhibitor-
mediated targeted therapy remains a serious clinical issue. Consequently,
research has extensively focused on the identification and description of
components and pathways involved in drug resistance. Various mechan-
isms contributing to resistance to BRAF inhibition have been described,
ranging from reactivation of the MAPK pathway through activating MEK
mutations, activation of alternative signalling pathways to the overexpres-
sion of tyrosine kinase receptors on the cell surface [13–16]. In order to
suspend the MAPK-mediated acquired resistance to BRAF inhibition, BRAF
inhibitors are now combined with MEK inhibitors (e.g. vemurafenib/
cobimetinib, dabrafenib/trametinib), which is reported to delay the onset
of resistance and to increase the progression-free survival by ~3 months
as well as the overall survival by 20% when compared to BRAF inhibitor
monotherapy [17–21].

Large-scale analyses of resistance mechanisms have revealed a tremen-
dously heterogeneous response to kinase inhibitors and triggered an interest
in alternative approaches to study resistance including epigenetic and post-
transcriptional drug-induced changes [22,23]. As a result, miRNAs have
been associated with the development of resistance to targeted therapy
[23]. miRNAs are small non-coding RNA molecules that play an important
role in post-transcriptional gene regulation [24]. As miRNAs exhibit tissue-
specific as well dynamic expression patterns over time [25] and many
tumours show aberrant miRNA levels [26,27], these small RNA molecules
are considered promising biomarkers to predict disease progression,
response and emerging resistance to treatment [28–31]. Moreover, miRNAs
can modulate the sensitivity to BRAF inhibitors in melanoma. As an
example, the overexpression of miR-514a inhibited the expression of the
negative regulator of the MAPK pathway, neurofibromin 1 (NF1), which
correlated with increased survival of BRAF-mutant cells treated with
vemurafenib [32]. Also, the inhibition of CCL2-induced miR-34a, miR-
100, and miR-125b was shown to bypass resistance to vemurafenib in
melanoma cell lines and might be used as prognostic factors [33]. Apart
from this, not much is known about the implication of miRNAs in BRAF
inhibitor-resistant melanomas. To further elucidate the expression patterns
and the role of miRNAs in drug-resistance, we used melanoma cell lines as
in vitro models consisting of parental BRAF inhibitor-sensitive cell lines
A375, IGR37, and 501Mel, and the corresponding vemurafenib- and
dabrafenib-resistant cells. MiRNA and mRNA microarrays were generated
and changes in the miRNome and transcriptome of drug-sensitive versus
-resistant cell lines were analysed, followed by RT-qPCR validations of
interesting candidates. This study shows that responses to long-term BRAF
inhibition occur mainly in a cell-line specific manner, and that the BRAF
inhibitors vemurafenib and dabrafenib induced a similar response in
melanoma cell lines. Regardless of the discernible heterogeneity, we
identified miRNAs and genes that were predominantly up- or down-
regulated in most of the resistant cell lines as compared to their parental
counterpart (e.g. miR-708-5p, PCSK2), hence they might be considered as
potential prognostic/diagnostic biomarkers in melanoma drug resistance.

2. Methods

2.1. BRAF inhibitors

The BRAF-mutant specific inhibitors vemurafenib (PLX4032) and
dabrafenib (GSK2118436) were purchased from Selleck Chemicals.
They were dissolved in DMSO according to the manufacturer's instruc-
tions and stored at −80 °C. Working aliquots were diluted in 100%
ethanol at a concentration of 1 mM for PLX4032 and 100 μM for
GSK2118436 and stored at −20 °C.

2.2. Cell lines

The BRAF-mutant melanoma cell lines (Fig. S1) A375 and IGR37
were purchased from ATCC and DSMZ respectively, and 501Mel was

obtained from Dr. Ruth Halaban (Dermatology department, Yale School
of Medicine, USA). All cell lines were cultured in RPMI 1640 medium
containing ultraglutamine (Lonza BioWhittaker), supplemented with
10% FCS (Foetal Calf Serum, GIBCO) and 1% PS (10,000 U/mL
Penicillin and 10,000 U/mL Streptomycin, Lonza BioWhittaker) and
grown at 37 °C in a humidified atmosphere at 5% CO2. Cells were
regularly tested to be mycoplasma free. Drug-resistant melanoma cell
pools were generated from parental A375, IGR37, and 501Mel cells by
long-term culturing under continuous presence of 5 μM vemurafenib
(PLX4032) or 100 nM dabrafenib (GSK2118436). Inhibitor-containing
media were exchanged three times a week. Pools resistant to vemur-
afenib or dabrafenib were denoted _XP or _GP, respectively.

2.3. RNA extraction and quality control

Total RNA was extracted with the AllPrep DNA/RNA kit (Qiagen)
from 5 × 106 cells in triplicates and per cell line, following the
manufacturer's instructions. For qPCR validations of the microarray
data, total RNA was extracted in three biological replicates each
consisting of three technical replicates using the Quick-RNA™ Mini-
Prep Kit (ZYMO Research Corp). Briefly, 106 cells were collected in
triplicates and lysed in 600 μL RNA-Lysis Buffer. RNA purity and
quality were assessed using the NanoDrop2000 Spectrophotometer
(Thermo Scientific).

2.4. Microarray data analysis and visualization

For the microarray analyses, RNA quality was further assessed using
the Agilent 2100 Bioanalyzer (Agilent Technologies). Microarray
analyses were performed at the Luxembourg Institute of Health (LIH)
in Luxembourg. The Affymetrix miRNA 4.0 and Affymetrix HuGene 2.0
ST platforms were used for miRNA and gene microarrays, respectively.
The raw microarray data are accessible in the ArrayExpress database
(https://www.ebi.ac.uk/arrayexpress/) under the accession numbers E-
MTAB-5510 (miRNA dataset) and E-MTAB-5511 (gene expression
dataset). The commercial software Partek Genomic Suite was used for
data pre-processing using Robust Multiarray Analysis (RMA) with GC-
content correction at the Luxembourg Institute of Health. The log2-
transformed intensities were imported into the R environment.
Differential expression of genes and miRNAs in the drug-resistant cell
lines, as compared to the drug-sensitive, was determined using the R/
Bioconductor package limma, which adopts a linear modeling approach
with empirical Bayesian statistics. The multiple correction was per-
formed using the Benjamini-Hochberg's FDR (false discovery rate or
adjusted P-value). Genes and miRNAs with FDR < 0.01 and at least
1.5-log fold change were considered as differentially expressed. The
data were filtered and further analysed using the R packages dplyr and
tidyr. Most figures were generated using functions from the R package
ggplot2, Fig. 1 was generated using the R package UpSetR, and the
correlation matrix (function: http://sablab.net/scripts/xCorrMatrix.r)
was visualized using the function heatmap.2 from the gplots package.

2.5. Coexpression analysis

The coexpression patterns of miRNAs and mRNAs across the
samples were examined using CoExpress, a software tool for concurrent
expression analysis of miRNA and mRNA microarray data (available at
www.bioinformatics.lu/CoExpress). The expression is determined by
computing the Pearson coefficient, thus a positive or negative coex-
pression coefficient (CE) indicate a positive correlation or inverse
correlation, respectively. The input for CoExpress is a tab-separated
text file with log2 expression values. First, a coexpression matrix is
calculated for both the miRNA and gene expression datasets. Next, a
network analysis was perfomed based on coexpression. Only coexpres-
sion events with a correlation coefficient higher than 0.9 (positive
correlation) or lower than −0.9 (inverse correlation) were taken into
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A

B

Fig. 1. Differentially expressed miRNAs and genes across drug-resistant melanoma cell lines. The number of significantly differentially expressed (FDR < 0.01, at least 1.5-log fold
change) miRNAs (A) and genes (B) is illustrated by the horizontal bars. Vertical bars illustrate the number of significantly differentially expressed miRNAs or genes that appear in one or
more drug-resistant cell lines. Bars highlighted in orange show the number of candidates that are exclusively differentially expressed in the resistant cell lines originating from the same
parental drug-sensitive cell line. Blue bars indicate the number of genes or miRNAs differentially expressed in four out of six cell lines, green bars indicate those present in five out six
resistant cell lines, and the red bar marks candidates present in all six resistant cell lines. Red and blue arrows indicate up- or downregulated candidates, respectively, and the black up and
down arrows signify that the expression varies from cell line to cell line.
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consideration. Finally, a comparison with predicted miRNA-mRNA
targets was performed. The databases used for target prediction were
TargetScanHuman (predicted miRNA-target interactions) [34] and
miRTarBase (experimentally validated miRNA-target interactions)
[35]. Gene set enrichement analysis was performed using Enrichr [36].

2.6. Quantitative PCR

Briefly, 500 ng of total RNA were reverse-transcribed using the
miScript kit (Qiagen) in a total reaction volume of 10 μL, according to
the manufacturer's instructions. Quantitative real time PCR (qPCR) was
carried out on a CFX96 Detection System (Bio-Rad) in a total volume of
10 μL (10 pmol of each primer and cDNA corresponding to 5 ng and
50 ng RNA template for miRNA and mRNA, respectively). The reference
miRNAs (RNU1A, RNU5A, SCARNA17) and genes (HPRT, TBP, PPIA),
as well as the target miRNAs and genes were assayed in parallel for each
sample. All samples were run in triplicates.

miRNA-specific primers were purchased from Qiagen and qPCR primers
for gene amplification were purchased from Eurogentec (Belgium).
Gene amplification qPCR primers used herein: AXL (F: 5′ GAGA-
CCCGTTATGGAGAAGTGT 3′; R: 5′ CTGATGCCCAGGCTGTTCAAG 3′),
CTLA4 (F: 5′ AGGCTGATGAGTGGTGCAAA 3′; R: 5′ CCAGTGGCCA-
GTAAGTCAGG 3′), DOK5 (F: 5′ GCAGTTAGTTCGGGGTTGT 3′; R:5′
CACATTCTGGCTCTGTTGGG 3′), EDIL3 (F: 5′ CCAGTTCGGC-
AAAGGTGATA 3′; R: 5′ AGGGACCAACCTCCACAA3′), NF1 (F: 5′
ATAAGCCCTCACAACAACCA 3′, R: 5′ ACTCGGTGCCATTCGTATT 3′),
PCSK2 (F: 5′ CCTCCAACTATAATGCCGA 3′; R: 5′ AACCAGT-
CATCTGTGTACCG 3′). The geometric mean of three reference genes was
calculated and a normalization factor for each sample was generated using
geNorm (VBA add-in for Microsoft Excel [37]) for each sensitive-resistant
cell line pair separately. The normalization factor was used to calculate the
relative amount of each target miRNA and mRNA in each sample. Statistical
significance between the resistant cell lines and their corresponding parental
drug-sensitive cell line was determined using a two-tailed, unpaired
Student's t-test (GraphPad Prism).

2.7. Western blot analysis

Cell lysis was performed at 4 °C using ice cold lysis buffer containing
30 mM Tris/HCl pH 6.7, 5% glycerol, 2.5% mercaptoethanol, and 1%
SDS. Protein extracts were analysed by SDS-PAGE and Western blotting.
ECL signals were detected as described before [38]. All experiments
were performed in three biological replicates, of which one representa-
tive replicate is shown. The following antibodies were used for western
blot: anti-AXL C89E7 (Cell Signaling), anti-MITF C5 (Sigma), anti-PC2
D1E1S (Cell Signaling) and anti-α-tubulin (Santa Cruz).

2.8. Growth assay

5000 A375, A375_XP, A375_GP, 501Mel, 501Mel_XP, 501Mel_GP
cells, and 8000 IGR37, IGR37_XP, and IGR37_GP cells were seeded in a
96-well plate in complete medium. The BRAF inhibitors vemurafenib
and dabrafenib were serially diluted at a ratio of 1:3, starting at 10 μM
and 300 nM, respectively, and supplemented to the cells in a total
reaction volume of 100 μL. A blank control (medium only), as well as an
untreated control for each cell line, were included. Upon 72 h, cell
viability was assessed using PrestoBlue® cell viability reagent
(ThermoFisher Scientific) and fluorescence was measured using the
microplate reader CLARIOstar (BMG-LABTECH). Growth was expressed
as percentage of living cells upon BRAF inhibitor treatment as
compared to the untreated control (relative cell viability (%)). The
experiment was performed in technical and biological triplicates.

2.9. Sanger sequencing

BRAFV600, NRASG13, and NRASQ61 were Sanger sequenced at GATC

Biotech (Konstanz, Germany) using the following primers: BRAFV600 (F: 5′
CATCCTAACACATTTCAAGCC 3′; R: 5′ GTAACTCAGCAGCATCTCAGG
3′), NRASG13 (F: 5′ ACTATGGCCTGTGTTTCTCATGTA 3′; R: 5′
AATCCGGTGTTTTTGCGTTC 3′), and NRASQ61 (F: 5′ TTCCAAGTCATT-
CCCAGTAGCA 3′; R: 5′ CAGCACAAATAAAACAGTCCAGT 3′).

3. Results

3.1. Responses to BRAF inhibition are mainly cell line-specific

miRNA and gene expression analysis has been performed on the
BRAF-mutant drug-sensitive (A375, IGR37, 501Mel), vemurafenib–re-
sistant (A375_XP, IGR37_XP, 501Mel_XP) and dabrafenib–resistant
(A375_GP, IGR37_GP, 501Mel_GP) cell lines (Fig. S1). A correlation
matrix was calculated and visualized for the miRNA and gene expres-
sion datasets, showing a perfect correlation for duplicate samples (Fig.
S2A, S2B). There was no clear segregation between the drug-sensitive
(green) and drug-resistant (red) cell lines with only few obvious
differences. The highest similarity was observed between the resistant
cells and their corresponding parental drug-sensitive cell line.
Additionally, the principle component analysis (PCA) showed that
vemurafenib and dabrafenib have a comparable impact on melanoma
cell lines. Therefore, most observed differences responsible for the
emergence of resistance appear to be cell line-specific rather than being
influenced by different BRAF inhibitor treatments (Fig. S1 J–O, Fig.
S2C, S2D). Interestingly, the cell line-specific response was more
pronounced in the transcriptome as compared to the miRNA data.

In order to investigate the global impact of BRAF inhibition on
miRNomes and transcriptomes, the number of differentially expressed
candidates (FDR < 0.01, at least 1.5-log fold change) as well as the
most common miRNAs and genes emerging in the resistant versus
sensitive cells, were examined (Tables S1, S2). Overall, resistant IGR37
and 501Mel cell lines had much higher numbers of differentially
expressed miRNAs than resistant A375 (Fig. 1A). Changes on the
miRNome level were heterogeneous with only miR-3621 being con-
sistently upregulated in all resistant cell lines (red box). Additionally,
miR-3195 and miR-504-5p were differentially expressed in five out of
six resistant cell lines (green box), however, the overall expression of
miR-504-5p varied between up- and down-regulation events in the
different resistant cell lines. Also, miR-100-5p, which has previously
been described to be involved in melanoma drug resistance [33], was
upregulated in resistant IGR37 cells.

On gene level, the resistant IGR37 cell lines had also much higher
numbers of differentially expressed genes compared to resistant 501Mel
and A375 cell lines. Four genes were consistently upregulated in five
out of six resistant lines (green boxes, Fig. 1B): the proprotein
convertase subtilisin/kexin type 2 (PCSK2), asparagine synthetase
(ASNS), the ChaC cation transport regulator homolog 1 (CHAC1), and
sestrin 2 (SESN2).

Interestingly, the vast majority of events scored under drug
resistance were clear upregulation of genes and miRNAs, with much
fewer downregulations (Tables S1, S2). Also, based on the intersection
size (Fig. 1A, B), the number of differentially expressed analytes that
are unique to each cell line, or to resistant cell lines originating from the
same parental drug-sensitive cell line was much higher than the amount
of analytes that commonly appear in the majority of resistant cell lines.
This observation once again supports the notion that the miRNA and
gene expression responses to BRAF inhibition are mainly cell line-
specific.

Since BRAF inhibitor-mediated changes were mostly cell-line spe-
cific, we decided to focus on the top significantly differentially
expressed (highest up- or downregulation) miRNAs (Fig. 2) and genes
(Fig. 3). MiR-509-3p was significantly increased (~3–5 log fold change)
in four of six resistant cell lines (Fig. 1) and was also among the top
upregulated miRNAs in A375_XP, A375_GP, 501Mel_XP and 501Mel_GP
(Fig. 2A, B). MiR-708-5p was distinctly upregulated in both resistant
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501Mel and IGR37 cells (~2–9 log fold change). Moreover, miR-92a-1-
5p was downregulated in 501Mel_GP, IGR37_XP and IGR37_GP (~3 log
fold change). The expression levels of miR-509-3p, miR-708-5p and
miR-92a-1-5p measured by microarrays (Fig. 2C) were confirmed by
RT-qPCR (Fig. 2D). Also, miR-512-3p, miR-516b-5p, miR-517a-3p, and
miR-517b-3p were significantly downregulated (~3 log fold change) in
A375_XP and A375_GP, and their expression levels were also low in
501Mel_XP and 501Mel_GP. Finally, among the differentially expressed
miRNAs in the resistant IGR37 cell lines, miR-182-5p, which has
previously been described to be involved in melanoma metastasis,
and miR-100-5p, which was linked to melanoma drug resistance,
showed increased expression levels (~4 log fold change) [33,39,40].
The expression of miR-100 has previously been described to be induced
by the chemokine C-C motif ligand 2 (CCL2), which conferred
resistance to vemurafenib in melanoma patients [33]. The upregulation
of CCL2 (~3 log fold change) and miR-100-5p was confirmed in the
resistant cell line IGR37_GP (Figs. 2, 3). Table 1 lists the miRNAs that
have so far been described in connection with melanoma drug
resistance: miR-100, -514, -192, and 509-3p were upregulated in
resistant cells in previous as well as in our study whereas for miR-
34a, miR-200c and miR-125b we found opposing results.

Considering the gene expression analysis, PCSK2 was remarkably
upregulated between 14 and 22 fold (~4 log fold change) in
501Mel_GP and 501Mel_XP and between 5 and 20 fold (~2–4 log fold
change) in A375_GP and A375_XP as compared to the corresponding
sensitive cell lines (Fig. 3A, B). Strongly increased expression of PCSK2
from the microarray analysis (Fig. 3C) was confirmed by RT-qPCR
(Fig. 3D) and western blot (PC2 (protein convertase 2) encoded by the
PCSK2 gene, Fig. 3E). Also, docking protein 5 (DOK5), which was
shown to enhance the metastatic potential of melanoma cells [41],
displayed augmented expression (~3 log fold change) in resistant
IGR37 and 501Mel cells (Fig. 3A, B). Furthermore, resistant A375 cells
had higher levels (~2.5 log fold change) of Dopachrome Tautomerase
(DCT), an enzyme that is involved in melanin synthesis and that has
been associated with drug and radiation therapy resistance [42].
Additional interesting candidates were differentially expressed in the
resistant IGR37 cell lines, namely WAP four disulfide core 1 (WFDC1)
(~5 log fold change), EGF-like repeats and discoidin I-like domains 3
(EDIL3) (~4.5 log fold change), and cysteine-rich angiogenic inducer
61 (CYR61) (~5 log fold change). WFDC1 was shown to play a tumour
suppressive role in melanoma cell lines [43–45], but has not yet been
linked to drug-resistance in melanoma. EDIL3 is involved in epithelial-
mesenchymal transition (EMT) and was shown to play a role in
metformin-resistance of prostate cancer cells [46]. Furthermore, in-
creased levels of CYR61, which were also detected in resistant IGR37
cell lines, appear to be associated to PLX4032-resistance in melanoma
cell lines [47].

3.2. Coexpression analysis

Next, a coexpression analysis was performed with the aim to
identify co-regulated groups of miRNAs as well as inversely correlated
miRNA-mRNA pairs, indicative of a potential interaction between
miRNAs and their target genes (Tables S3 and S4). MiRNAs with
similar expression trends across the different cell lines (Fig. 4A) and
their common target genes (pie charts, Fig. 4B) as well as biological
processes where they might be implicated in (Fig. 4C) were investigated
using CoExpress, TargetScanHuman [34], and Enrichr [36], respec-
tively. Members of the miRNA-506-514 cluster [48–50], located on

chromosome X, were coexpressed. Among those was miR-509-3p, one
of the top differentially expressed miRNAs present in most resistant cell
lines. Members of this cluster have 217 target genes in common, which
are implicated in hematopoietic cell differentiation, nitric oxide
biosynthesis, or negative regulation of receptor activity (Gene Ontology
Biological Processes, Fig. 4C). Moreover, miR-1228-5p, miR-3621, miR-
4467, miR-6805-5p and miR-6816-5p were not only highly upregulated
(~2 log fold change) in the resistant cell lines but they also shared
remarkably similar expression patterns. The subsequent analysis re-
vealed 49 common target genes, indicating that indeed, these miRNAs,
although not expressed in one genomic cluster or transcription unit,
might be co-regulated to work in concert on a shared set of target genes.
Additionally, a chromosome 19-linked set of miRNAs (miR-512-3p,
miR-516b-5p, miR-517-3p, miR-525-5p, miR-526b-5p, miR-1323) with
an overall lower expression but downregulated in most resistant cell
lines also had a strikingly similar expression pattern across the different
samples. This group of miRNAs had 39 common target genes that were
predominantly implicated in post-transcriptional gene regulation. Fi-
nally, another group of similarly down-regulated miRNAs across the
resistant cell lines (miR-3911, miR-4298, miR-4459, miR-4669, miR-
6831-5p, miR-7107-5p, miR-8060) had only four common target genes,
indicating a rather coincidental co-regulation, which might not result in
a shared functional output.

Plotting inverse correlations of miRNA and gene expression levels
(CoExpress) can provide first insights into functional interactions
between miRNAs and potential target genes. Fig. 5 shows examples of
inverse expression patterns (Fig. 5A–D) and co-expressed miRNA-gene
pairs (Fig. 5D–E). An interesting candidate pair was miR-92a-1-5p
(Fig. 2) and DOK5 (Fig. 3), which were down- and upregulated,
respectively (Fig. 5A) and confirmed by RT-qPCR (Fig. 2D, Fig. S3).
According to standard target gene prediction algorithms, DOK5 had no
binding site for miR-92a. However, miR-92a has recently been shown to
not follow canonical binding rules as it can also bind the target mRNAs
in a non-complementary manner (absence of seed sequence), hence
most target genes of this miRNA are not predicted by current methods
[51]. DOK5 and miR-92a-1-5p could be an example of such a non-
canonical interaction.

Consequently, we also focused on miRNA-gene pairs that have not
necessarily been predicted to interact directly, but that might still be
functionally relevant. Levels of cytotoxic T-lymphocyte associated
protein 4 (CTLA4), which is mainly expressed on the surface of
CD4+ and CD8+ T cells [52] where it is a target of immunotherapy
against melanoma and also lung cancer, were inversely correlated with
miR-3180-3p (Fig. 5B). Interestingly, IGR37 and 501Mel moderately
expressed CTLA4 at mRNA level (Fig. S3), although it was thought to be
exclusively present on T cells. Furthermore, CTLA4 was downregulated
in the corresponding cell lines resistant to vemurafenib and dabrafenib.
Several histones showed an obvious inverse correlation with miR-509-
3p (Fig. 5C), although only HIST1H3A has predicted binding sites for
this miRNA. Moreover, the expression of the negative regulator of the
MAPK pathway, NF1, was inversely correlated with three miRNAs, and
positively correlated with miR-296-3p (Fig. 5D); downregulation of
NF1 was confirmed by RT-qPCR (Fig. S3). NF1 is frequently mutated in
melanoma patients and loss of function mutations or absence of NF1
expression due to post-transcriptional downregulation by miRNAs is an
alternative way to activate canonical MAPK signalling [4,50,53]. NF1
showed significant inverse correlation with WFDC1, which was one of

Fig. 2. Top differentially expressed miRNAs. Differentially expressed miRNAs (FDR < 0.01 and at least 1.5-log fold change) in vemurafenib (XP)- (A) and dabrafenib (GP)- (B) resistant
cell lines. Upregulated and downregulated miRNAs are shown in red and blue, respectively. (C) Log2 expression values of selected miRNAs from microarray data. (D) Validation of
selected miRNA expression levels by RT-qPCR. Error bars represent the standard deviation of three biological replicates. The expression threshold for the microarray data was set to 5,
thus all candidates with a log2 expression below 5 were considered as not expressed. Statistical significance was determined in comparison to the sensitive cells using two-tailed unpaired
t-test and p-values < 0.05 were regarded as significant (p-value < 0.05*, p-value < 0.01**, p-value < 0.001***).
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the top upregulated genes in the resistant IGR37 cell lines, and
described to have a tumour suppressive role in melanoma [43–45].
WFDC1 displayed similar expression patterns as miR-542-5p and miR-
346 but was inversely correlated with miR-296-3p (Table S4). Although
these candidates have distinct chromosomal localisations and are
involved in different biological processes, their expression patterns
suggest a potential co-regulation in IGR37_XP and IGR37_GP. Finally,
the expression patterns of the receptor tyrosine kinase oncogene AXL
correlated strongly with that of miR-100-5p, and both were upregulated
in IGR37_XP and IGR37_GP (Figs. 2, 3, 5F).

3.3. MITF/AXL ratio potentially fine-tuned by miRNAs

A low microphthalmia-associated transcription factor/AXL (MITF/
AXL) ratio has recently been reported to predict the development of
resistance to targeted therapy in melanoma [54], and cells within
melanoma tumours seem to display either high MITF or high AXL
expression levels [55]. As AXL was upregulated in the resistant
IGR37_XP and IGR37_GP (Fig. 3), the expression of MITF on mRNA
(Fig. 6A, B) and protein level (Fig. 6C) was examined. Based on the
microarray (Fig. 6A) and RT-qCPR results (Fig. 6B), MITF was not
differentially expressed in the resistant cell lines. Interestingly, this was
not reflected on protein level (Fig. 6C), which largely varied between
cell lines and between sensitive and resistant lines in case of IGR37,
indicating that MITF levels might be regulated post-translationally.
However, MITF and AXL protein levels showed indeed perfect inverse
expression patterns in almost all samples (Fig. 6C). Additionally, a

positive correlation was detected between miR-100-5p and the tyrosine
kinase AXL in IGR37_XP and IGR37_GP (Fig. 5E) in microarrays and by
RT-qPCR (Fig. 6A, B). As expected, a potential interaction between AXL
and miR-100-5p was not predicted by common tools (e.g. TargetScan,
miRTarBase), hence, we hypothesise that either miR-100-5p targets and
down-regulates an AXL inhibitor, or that AXL leads directly or
indirectly to the overexpression of miR-100-5p. Furthermore, miR-
182-5p, which is known to target MITF [39], was upregulated in
IGR37_XP and IGR37_GP (Fig. 6A, B). Interestingly and as mentioned
before, the MITF protein levels in the same samples were strikingly low.
Consequently, the high levels of miR-182-5p might indeed cause the
downregulation of the MITF protein in IGR37_XP and IGR37_GP. On the
whole, our data support the hypothesis that the MITF/AXL ratio plays a
role in the response to targeted therapy in melanoma, and we propose
that this ratio might be fine-tuned by miR-182-5p and miR-100-5p in
IGR37_XP and IGR37_GP (summarised in Fig. 6D). Additional experi-
ments will have to be implemented in order to investigate their exact
role in resistance and to elucidate the interactions in a potential
network consisting of miR-182-5p, miR-100-5p, MITF, and AXL.

4. Discussion

Advances in immunotherapy and targeted therapy triggered a
substantial progress in clinical treatment of melanoma patients [56].
The introduction of immune checkpoint inhibitors (PD-1 [57] and
CTLA4 [58]), as well as BRAF kinase inhibitor monotherapy (vemur-
afenib [9] and dabrafenib [10]) or in combination with MEK inhibitors

Fig. 3. Top differentially expressed mRNAs. Differentially expressed mRNAs (FDR < 0.01 and at least 1.5-log fold change) in vemurafenib (XP)- (A) and dabrafenib (GP)- (B) resistant
cell lines. Upregulated and downregulated mRNAs are shown in red and blue, respectively. (C) Log2 expression values of PCSK2 from the microarray data. (D) Relative expression
determined by RT-qPCR as described in Fig. 2D. Statistical significance was determined as compared in Fig. 2. (E) Protein levels of PC2 (encoded by the gene PCSK2) were determined by
western blot and α-tubulin was used as loading control. One representative western blot experiment of three biological replicates is shown. The expression threshold for the microarray
data was set to 5, thus all candidates with a log2 expression below 5 were considered as not expressed. Statistical significance was determined in comparison to the sensitive cells using
two-tailed unpaired t-test and p-values < 0.05 were regarded as significant (p-value < 0.05*, p-value < 0.01**, p-value < 0.001***).

Table 1
List of miRNAs described to be involved in melanoma drug resistance. Red and blue arrows represent up- and downregulated miRNAs as reported in literature as well as in our study.
miRNAs that were differentially expressed in drug-resistant melanoma cell lines based on literature, but were not differentially expressed in our resistant melanoma cell lines, are marked
with an x. The lower part of the table shows miRNAs potentially associated to melanoma drug resistance that were derived from our study, and which, to our knowledge, have not
previously been described regarding resistance in melanoma [68–73].

miRNAs involved in melanoma drug resistance

miRNA Expression in resistant
cells

Drug Model Target/effect Ref. Our study

Previously described miRNAs involved in
melanoma drug resistance

miR-200c Vemurafenib Cell lines BMI-1, acquisition of EMT
features

[68,69]

miR-7 Vemurafenib Cell lines EGFR, IGF-1R, CRAF [60] x
miR-193b Vemurafenib Cell lines,

Patients
Mcl-1 [70] x

miR-132 Vemurafenib Patients / [23] x
miR-579-3p Vemurafenib,

Trametinib
Cell lines,
Patients

BRAF, MDM2, E3
ubiquitin ligase

[71] x

miR-222 Ipilimumab Patients ICAM1 [72] x
miR-3151 Vemurafenib Cell lines TP53 [73] x
miR-100 Vemurafenib Cell lines,

Patients
CCL2-induced [33]

miR-514 Vemurafenib, Cisplatin Cell lines NF1 [32,60]
miR-192 / Cell lines prognostic factors/no

before after
[23]

miR-509-3p Vemurafenib Cell lines / [60]
miR-34a Vemurafenib Cell lines,

Patients
CCL2-induced [33]

miR-125b Vemurafenib Cell lines,
Patients

CCL2-induced [33]

New miRNAs miR-92a-1-5p, miR-517a-3p, miR-517a-3b, miR-512-3p, miR-4458, miR-526b-5p, miR1323, miR-3911, miR-4669, miR-
8060
miR-708-5p, miR-182-5p, miR-497-5p, miR-4467, miR-3621, miR-1228, miR-183-5p, miR-187-5p, miR-127-3p
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(vemurafenib/cobimetinib [17] and dabrafenib/trametinib [19]), con-
tributed profoundly to an improved overall survival of patients with
metastatic melanoma. However, despite the initial response to treat-
ment, the efficacy of these drugs is limited by the rapidly emerging
resistance to therapy, which remains a serious clinical issue [16].

Here, we investigated different mechanisms that may contribute or
confer resistance to targeted treatment with BRAF inhibitors, with a
focus on miRNAs, as their role in the emergence of drug resistance has
not been studied thoroughly. We generated drug-resistant melanoma
cell lines and performed miRNA and mRNA microarray analyses to
obtain insights into the changes occurring upon BRAF inhibitor
resistance.

Our data show that the responses to BRAF inhibition mainly occur
in a cell line-specific manner, as the resistant cell lines were more
similar to their parental sensitive lines than to other resistant cell lines
(Fig. 1, Fig. S2). In addition, vemurafenib and dabrafenib, both of
which are routinely given to metastatic melanoma patients in clinical
settings had comparable effects by inducing differential expression of
the same miRNAs and genes (Figs. 2, 3) and only few changes appeared
to be drug-specific.

The highest number of differentially expressed miRNAs and genes
was found in resistant IGR37 cell lines, followed by resistant 501Mel.
The relatively few changes on miRNome and transcriptome level in
resistant A375 cells as compared to resistant IGR37 and 501Mel cell
lines might be explained by the fact that A375_XP and A375_GP
harboured acquired activating heterozygous NRAS mutations
(NRASG13R and NRASQ61K respectively), which we confirmed by
Sanger sequencing (Fig. S1). Consequently, the emergence of resistance
in A375 could possibly be explained by NRAS-mediated reactivation of
the MAPK or alternative pathways. To obtain a more dynamic view on
the genetic and gene regulatory events, we have started to collect data
on short-term BRAF inhibitor treatment.

The top differentially expressed miRNAs in most resistant cell lines

were miR-509-3p, miR-708-5p, and miR-92a-1-5p (Fig. 2). miR-509-3p
is known to be highly expressed in late stage melanoma [49,50,59], and
was also shown to be upregulated in vemurafenib-resistant melanoma
cell lines (Table 1, [60]). Furthermore, several members of the
chromosome X-linked miR-506-514 cluster, including miR-509-3p,
were co-expressed. Streicher and colleagues [49] have shown that
members of this cluster can trigger oncogenesis. Therefore, these
miRNAs are particularly interesting for follow-up validation experi-
ments to elucidate their role in drug resistance. Another potentially
promising candidate is miR-708-5p, which has not been connected to
drug resistance yet. Interestingly, in a previous study we have detected
high levels of both miR-708-5p and miR-509-3p in whole blood of stage
III and IV melanoma patients [27], making these miRNAs potentially
promising biomarkers for melanoma drug-resistance.

Finally, miR-92a-1-5p, which was downregulated in half of the
BRAF inhibitor-resistant cell lines, had reduced expression levels in late
stage melanoma patient-derived cell populations under hypoxia [61].
Qin et al. have recently demonstrated the involvement of hypoxia in
BRAF inhibitor-mediated resistance in melanoma [62], while Cao et al.
have shown that drug treatment can trigger the expression of hypoxia-
inducible factor 1α (HIF-1α) even under normoxia [63]. Furthermore,
PCSK2, one of the herein top upregulated candidates in drug-resistant
cells, contains two hypoxia-response elements (HRE) in its regulatory
region and was inducible by HIF-1α upregulation [64]. It is tempting to
speculate that HIF-1α-mediated upregulation of PCSK2 might contri-
bute to acquired resistance to vemurafenib and dabrafenib of melanoma
cell lines.

A low MITF/AXL ratio has been connected to the emergence of
drug-resistance in melanoma [54]. Inverse expression levels of AXL and
MITF were observed in all sensitive and resistant cell lines, which
confirms the two previously described distinct expression states: (1)
high AXL—low MITF expression, or (2) high MITF—low AXL expres-
sion [55]. Additionally, several of our resistant cell lines displayed a
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Fig. 5. Coexpressed miRNA-gene pairs. (A–E) Genes and miRNAs with inverse (CE < −0.9) or positive (CE > 0.9) correlations. Shown are the mean log2 expression
values ± standard deviation. Correlation analysis with the CoExpress software predicts potential functional interactions between miRNAs and target genes based on expression
patterns. See also Table S4.Coexpressed miRNA-gene pairs. (A–E) Genes and miRNAs with inverse (CE < −0.9) or positive (CE > 0.9) correlations. Shown are the mean log2
expression values ± standard deviation. Correlation analysis with the CoExpress software predicts potential functional interactions between miRNAs and target genes based on
expression patterns. See also Table S4.
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low MITF/AXL ratio, which was strongly connected to the high
expression of miR-100-5p and miR-182-5p (Fig. 6). These observations
suggest that the MITF/AXL ratio might be fine-tuned by miRNAs and
support its implication in the development or persistence of BRAF
inhibitor-induced resistance.

Classic target gene prediction failed to identify promising miRNA-
mRNA pairs supported by expression patterns in our data sets. In this
context, a recent study demonstrated that< 40% of miRNA-mRNA
interactions followed canonical binding rules, with 7 matching or
almost matching seed nucleotides in the 3′ UTR sequence of targets
[51]. Helwak and colleagues developed the CLASH technology (cross-
linking and sequencing of hybrids), relying on the simultaneous
identification of miRNAs crosslinked to their target sequence, which
could be mRNAs, rRNAs, tRNAs, lncRNAs, other miRNAs and pseudo-
genes [51,65]. Control experiments revealed that targets lacking a
canonical seed match were only regulated half as efficiently as the seed-
containing targets, nevertheless such interactions were frequent and not
predicted by currently available target gene prediction software tools

[66]. There is accumulating evidence that such “seed-less” miRNA-
mRNA interactions are functionally relevant and the vast majority of
them has so far been missed as they are not predicted by widely applied
algorithms, which search for seed pairing, conservation or energy
interaction scores [67]. Here, we first applied standard prediction tools
(Targetscan, miRTarBase) to identify potential targets of miRNAs that
were differentially regulated in drug-resistant versus -sensitive mela-
noma cells. Only few interactions were predicted, therefore we also
analysed miRNA-mRNA pairs with statistically significant inverse
correlation, i.e. miRNAs or groups of miRNAs with coregulated expres-
sion levels and mRNAs with a correspondingly low or inverse expres-
sion pattern. We found several interesting pairs that all lack a canonical
binding sequence in the target 3′ UTRs but might nevertheless be
functionally connected (Figs. 4 and 5, Tables S3 and S4).

In summary, our data provide an overview of the changes in the
miRNome and transcriptome of different BRAF inhibitor-resistant
melanoma cells. We found that (i) changes are mostly cell line-specific
rather than treatment-dependent, (ii) both BRAF inhibitors had a

A

B

C D

Fig. 6. Potential involvement of the MITF/AXL ratio in melanoma drug resistance. (A) Log2 expression values of AXL, MITF, miR-100-5p and miR-182-5p genes from the microarray data.
(B) Confirmation of relative expression levels by RT-qPCR where error bars represent the standard deviation of three biological replicates (n.d.: not detected). Statistical significance was
determined as compared in Fig. 2. (C) Protein levels of AXL and MITF in sensitive and resistant melanoma cell lines. For each western blot experiment, one representative of three
biological replicates is shown. (D) Schematic representation of potential fine-tuning of the MITF/AXL ratio by miR-100-5p and miR-182-5p in resistant IGR37 cell lines. Prolonged BRAF
inhibitor treatment leads to the upregulation of AXL, miR-100-5p and miR-182-5p as well as to the downregulation of MITF, which altogether could trigger the activation of the MAPK
and/or PI3K/AKT signalling cascade leading to persistent cell proliferation and survival.
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comparable impact on miRNome and transcriptome levels, (iii) few
miRNA-mRNA pairs were characterised by canonical seed binding but
rather by inverse correlations, which might be indicative of functional
interactions; their exact way of binding and interaction will have to be
elucidated in future, (iv) several of our BRAF inhibitor-resistant cell
lines displayed a low MITF/AXL ratio, which seems to be regulated by
miR-100-5p and miR-182-5p, suggesting their implication in the
development of drug-resistance, and (v) several interesting miRNAs
and mRNAs, which could either serve as biomarkers of drug resistance
(miR-708-5p, miR-509-3p, miR-3621) or be functionally involved in
development of resistance have been identified (PCSK2, DOK5, AXL,
miR-92a-1-5p, miR-100-5p) and will be further followed up experi-
mentally in melanoma patient samples.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbagen.2017.04.005.
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Figure S1. Sanger sequencing chromatograms and drug dose response curves. Screening

of the BRAFV600E mutation in the BRAF-mutant cell lines showing a homozygous BRAF mutation

in A375 (A) and a heterozygous BRAF mutation in IGR37 (B) and 501Mel (C). Screening of the

NRASG13R (D-F) and NRASQ61K (G-I) in A375, A375_XP, and A375_GP showing the acquisition,

upon development of drug resistance, of a heterozygous NRASG13R and NRASQ61K mutation in

A375_XP and A375_GP, respectively. WT = wild-type. Vemurafenib (J-L) and dabrafenib (M-O)

dose response curves in the parental and BRAF inhibitor-resistant cell lines showing the cell viability

relative to the untreated control (%) upon increasing drug concentrations. Illustrated are the mean

Âś standard deviation of one representative biological replicate out of three.
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Figure S2 
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Figure S2. Correlation matrix and principle component analysis (PCA). Correlation matrix 

and PCA for miRNA (A, C) and mRNA (B, D) datasets. Duplicate samples were analysed. The 

BRAF inhibitor-sensitive and -resistant cell lines are marked in green and red, respectively.
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Figure S3 MICROARRAYS RT-qPCR 

Figure S3. RT-qPCR validations of selected candidates from the mRNA microarray dataset.

(A) Log2 expression values of DCT, DOK5, EDIL3, CTLA4, and NF1 from the microarray data in

duplicates, and (B) relative expression in three biological replicates determined by RT-qPCR.
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4.2.3 Additional results 

Transcriptional changes induced by short-term BRAF inhibition 

Having investigated the long-term adaptation to vemurafenib treatment in fully resistant cell lines, 

we asked whether this long-term adaptive response could be compared to the short-term response. 

To gain insights into the changes induced by a short-term BRAF inhibition, we treated A375 

melanoma cells with Vemurafenib for 48 hours. Already after this short period of time, an 

enormous number of differentially expressed mRNAs and miRNAs was observed (Figure 16 and 17). 

Although some of the differentially expressed mRNAs or miRNAs were also identified in the 

resistant cell lines (such as PCSK2, DCT, TGF2, miR4497, miR-1909-3p and miR92a-1-5p), we could 

identify a distinct expression profile after short-term treatment possibly due to a BRAF inhibition-

induced early adaption phase. For instance, the cell adhesion molecule ALCAM (activated leukocyte 

cell adhesion molecule) has been found to be upregulated upon BRAF inhibitor treatment. Donizy 

and colleagues demonstrated that high ALCAM expression in primary tumour cancer cells is strongly 

correlated with unfavourable prognosis as compared with patients with lower ALCAM and it may 

indicate a more invasive phenotype of cancer cells (Donizy et al., 2015). As another example, 

TP53INP1 protein (Tumour Protein P53 Inducible Nuclear Protein 1) was also upregulated. This 

protein is a key stress protein with antioxidant-associated tumour suppressive function (Saadi et 

al., 2015). As for miRNAs, miR-3185 was upregulated. Misra et al. described an increased expression 

of hsa-miR-3185 upon induction of the oxidation state (Misra et al., 2014). In this context, validation 

of some candidates in time course experiments in more cell lines will follow. Along these lines, 

Lunavat et al. have very recently show that short-term vemurafenib treatment induces 

upregulation of several miRNAs in melanoma cells, notably miR211, which in turn reduces the 

sensitivity of cells to BRAF inhibition (Lunavat et al., 2017). 

These data suggest the presence of adapting changes in melanoma cells under selective pressure. 

In addition, the early and late responses to BRAF inhibition share some alterations that might play 

a role in the development of drug resistance. 
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Figure 16. Top differentially expressed genes. 

Vulcano plot illustrating the top differentially mRNAs with an FDR<0.01 and ads (logFC)>1.5 in A375 

upon 48 hours treatment with PLX4032. Upregulated and downregulated mRNAs and miRNAs are 

shown in red and blue respectively. ALCAM and TP53INP1, among others are upregulated 
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Figure 17. Top differentially expressed miRNA. 

Vulcano plot illustrating the top differentially microRNAs with an FDR<0.01 and ads (logFC)>1.5 in A375 upon 

48 hours treatment with PLX4032. Upregulated and downregulated mRNAs and miRNAs are shown in red and 

blue respectively. Among others, miR-3185 is upregulated. 



Results  

84 

Additional validation for CTLA4 

To further explore the role of CTLA4 on melanoma cells, we validated its presence by western blot 

analysis. The presence of CTLA4 on melanoma cells was unexpected since this protein is normally 

expressed on T cells where it plays a negative regulatory role on T cell activation. Interestingly, 

Laurent et al. observed that patient-derived melanoma cells and tissues constitutively express the 

CTLA-4 molecule, which can interact and respond to ipilimumab (Laurent et al., 2013). In particular, 

ipilimumab is able to trigger an antibody dependent cellular cytotoxicity engaging the receptor 

FcγRIIIA on primary NK cells. In our datasets, we could find CTLA4 mRNA present in the sensitive 

cells, which was generally reduced in resistant cells with some discrepancies between microarray 

and qPCR validation probably due to higher sensitivity of the qPCR technique and to primer design 

(Figure S3, page 73). In the paper, we also showed that the levels of CTLA4 were inversely correlated 

with miR-3180-3p (Figure 5B), suggesting a potential interaction which requires further 

investigation. We additionally validated CTLA4 at the protein level (Figure 18) where CTLA4 was 

slightly reduced only in the resistant IGR37-GP cells. Long half-life and/or increased protein stability 

might explain the lack of correlation between mRNA and protein levels. To further investigate this 

discrepancy, CTLA4 expression will be followed up in a detailed time course experiment. Moreover, 

the specificity of the antibody will be tested by using an siRNA approach. Given the ability of 

ipilimumab to interact with CTLA4 present on melanoma cells and to trigger cellular cytotoxicity 

(Laurent et al., 2013), the potential downregulation of CTLA4 in resistant melanoma cells might be 

considered as an additional mechanism favouring the survival of resistant melanoma cells. 

A
3

7
5
 

A
3

7
5

-X
P
 

A
3

7
5

-G
P
 

IG
R

3
7
 

IG
R

3
7

-X
P
 

IG
R

3
7

-G
P
 

5
0

1
M

el
 

5
0

1
M

el
-X

P
 

5
0

1
M

el
-G

P
 

-tub

CTLA4

Figure 18: CTLA4 expression in melanoma cells. 

Western blot analysis of CTLA4 in parental and corresponding resistance cells lines. -Tubulin was used as 

loading control. 
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4.3 A novel mechanism of BRAF kinase inhibitor drug resistance in 

melanoma cells involving ALK transported by extracellular vesicles 

(manuscript in preparation) 

4.3.1 Preamble 

Recent studies have shown an increased complexity of melanoma tumours formed by different 

subclones, which respond differently to BRAF inhibition therapies (Tirosh et al., 2016) with drug-

resistant subclones present before the treatment or emerging as a result of targeted therapies.  

Another pressing issue in clinical care of melanoma and other cancer patients is the lack of 

biomarkers that can reliably predict the onset of drug resistance or biomarkers that could help to 

tailor targeted therapies in a more efficient way (Samatov et al., 2016). There is evidence to suggest 

that extracellular vesicles (EVs) might be a useful source of biomarkers because they contain unique 

proteins and non-coding RNAs reflecting the phenotype of the secreting cells (Barile and Vassalli, 

2017).  

In the previous paper, we used pools of resistant cells to mimic the cellular heterogeneity also 

present in human tumours. Here, and in order to get a clearer picture of important mechanisms 

driving resistance to BRAF inhibitors, we focused on a particular clone that exhibited the fastest 

growth rate under kinase inhibitor treatment. 

In the scope of this project, microarray analyses were performed with the aim to describe the 

changes in the transcriptome that might play a role in resistance and we identified, among others, 

a novel isoform of the Anaplastic Lymphoma Kinase (ALK) to be upregulated. This finding was 

corroborated by the fact that ALK has been already identified in melanoma patients (Wiesner et al., 

2015). Next, the molecular impact of this upregulated ALK was investigated. Finally, we asked 

whether the resistant phenotype could be transferred between cells through soluble factors. Co-

culture experiments have been performed to understand the potential involvement of resistant EVs 

in the “spreading” of drug resistance.  

Interestingly, we could show that sensitive melanoma cells acquire the drug resistant phenotype if 

co-cultured with EVs released by resistant cells. Proteomic analysis performed on EV populations 

revealed a panel of proteins enriched in the “resistant EVs” compared to “sensitive EVs”, and again 

ALK was identified to be upregulated. Our results suggest that “resistant EVs” have functional 

properties capable of making sensitive melanoma cells more resistant to BRAF inhibitors through a 

mechanism involving the transport of ALK.  
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Currently, we are further investigating the functional consequences of the upregulated ALK in 

melanoma and we are in the process of stably transducing several ALK-negative melanoma cells 

lines with the herein identified ALK isoform to confirm that ALK is indeed conferring drug resistance. 

Additionally, we plan to perform in vivo experiments injecting those cells into immunocompromised 

mice: the ability of ALK-positive cells to form tumours compared to ALK-negative cells and in vivo 

therapeutic responses to pharmacological inhibition of ALK in combination with BRAF inhibitors will 

be tested. We plan to finish these additionally experiments by the end of the year and submit the 

paper beginning of 2018. 

The following manuscript is in preparation and for better readability, figures have been inserted in 

the text where they thematically belong. 
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Abstract 

For melanoma patients, drug resistance is an unsolved clinical issue. Despite the promising 

initial results obtained with BRAF kinase inhibitors (vemurafenib and dabrafenib), it soon 

became evident that these specific inhibitors were not able to provide durable responses, as 

resistance to treatment develops within months in virtually all patients. Often resistance 

results from re-activation of the MEK/ERK signalling pathway due to acquired mutations in 

genes such as NRAS, COT, CRAF. Here, we report a novel mechanism of acquired drug 

resistance, which involves the activation of a truncated form of the anaplastic lymphoma 

kinase (ALK). ALK knock down and inhibitors targeting ALK re-sensitized resistant cells to BRAF 

inhibition and induced apoptosis. Interestingly, overexpressed ALK was secreted into 

extracellular vesicles (EVs) and we show that EVs were the vehicle for transferring drug 

resistance: sensitive melanoma cells acquired the drug resistant phenotype if co-cultured with 

extracellular vesicles released by resistant cells, which carried ALK to sensitive cells. To our 

knowledge, this is the first report to demonstrate the functional involvement of EVs in drug 

resistance by transporting a truncated but functional form of ALK, which activated the MAPK 

signalling pathway in target cells. This novel mechanism in acquired drug resistance adds 

potential as clinical target (ALK) and as potential biomarkers for emerging drug resistance 

(EVs). 
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Introduction 

Melanoma is an aggressive and highly metastatic cancer, associated with poor outcome once 

advanced stages have been reached. Compared to other solid cancers, melanoma exhibits an 

extremely high prevalence of somatic mutations [1, 2], which is almost entirely attributable to 

UV light exposure. Despite this high genetic heterogeneity, more than 50% of melanoma 

patients carry mutations in the Ser/Thr-kinase BRAF (most often V600E), which renders the 

BRAF kinase and the downstream MAPK signalling pathway constitutively active [3]. The 

introduction of specific kinase inhibitors for melanoma patients carrying this BRAF mutation 

has revolutionized melanoma care. In 2011, specific BRAF inhibitors were FDA-approved 

showing convincing results at first [4, 5] and since 2015 a combined inhibition of BRAF and 

MEK kinases is recommended [6, 7], which has increased median survival from 18.7 to 25.1 

months [8, 9]. However, despite these unprecedented clinical responses, drug resistance 

arises rapidly within 3-12 months [10, 11] leaving very little treatment options. Most of the 

time acquired resistance is driven by secondary mutations which re-activate the MAPK 

signalling pathway resuming proliferation.  

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase, that is normally involved in 

the development of the nervous system [12]. In differentiated tissues, ALK can be activated 

by translocations or mutations becoming an oncogene in a variety of malignancies, such as 

non-small cell lung cancer, anaplastic large cell lymphoma, neuroblastoma and many more 

[13]. Additionally, in 2015, Wiesner and colleagues identified in 11% of melanoma tissues a 

truncated ALK transcript starting from intron 19 and resulting in a smaller protein, which was 

shown to be oncogenic [14].  

Here, we identified the overexpression of another truncated form of ALK as a new mechanism 

driving acquired drug resistance in melanoma cells. In particular, we demonstrate that the 

treatment of the ALK-expressing resistant melanoma cells with siRNA or ALK inhibitors in 

combination with either BRAF or MEK inhibitors, leads to efficient cell growth suppression and 

apoptosis suggesting this combination to be an interesting clinical option for patients 

harboring both BRAFV600E and expressing ALK. Moreover, we show for the first time that the 

overexpressed ALK is secreted into extracellular vesicles (EVs) and transferred to sensitive, 

ALK-negative melanoma cells. There, ALK is functional in activating the MAPK signalling 

pathway and thus mediating the transfer of drug resistance. In addition, the presence of ALK 
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within EVs could be further explored as biomarker for monitoring resistance mechanisms 

against BRAF kinase inhibitors. 

Experimental procedures 

Reagents and antibodies 

All inhibitors used in this study were purchased from Selleckchem and were dissolved in DMSO 

at a concentration of 10 mM and stored at -20°C. The following antibodies were used for 

western blot: anti-ALK (Cell signaling), anti phospho-ERK1/2 (Cell Signaling), pAKT (Cell 

Signaling), anti-ERK1/2 (Santa Cruz), tot-AKT (Santa Cruz), anti �-tubulin (Santa Cruz), CD9 

(System Biosciences), CD81 (System Biosciences), TSG101 (Abcam). 

Cell lines and cell culture 

A375 melanoma cells were purchased from ATCC and cultured in RPMI 1640 medium 

containing ultraglutamine (Lonza BioWhittaker), supplemented with 10% FCS (Foetal Calf 

Serum, GIBCO) and 1% PS (10’000 U/ml Penicillin and 10’000 U/ml Streptomycin, Lonza 

BioWhittaker) and grown at 37°C in a humidified atmosphere at 5% CO2. Cells were regularly 

tested to be mycoplasma free. Drug-resistant clones were generated by culturing parental 

A375 cells in presence of 1μM PLX4032 for 4-6 weeks. 20 different clones were picked and 

grown independently under constant PLX4032 treatment. A375X1 was selected for further 

experiments. 

Microarray analysis 

Total RNA was extracted with the miRNeasy kit (Qiagen) in triplicates following the 

manufacturer’s instructions. RNA quality was further assessed using the Agilent 2100 

Bioanalyzer (Agilent Technologies). Microarray analyses were performed at the Luxembourg 

Institute of Health (LIH) by using the Affymetrix HuGene 2.0 ST platform. The commercial 

software Partek Genomic Suite was used for data pre-processing using Robust Multiarray 

Analysis (RMA) with GC-content correction. The log2-transformed intensities were imported 

into the R environment. Differential expression of genes in the drug-resistant cell line, as 

compared to the drug-sensitive, was determined using the R/Bioconductor package Limma, 

which adopts a linear modeling approach with empirical Bayesian statistics. A multiple 

correction was performed using the Benjamini-Hochberg’s FDR (false discovery rate or 
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adjusted P-value). Genes with FDR<0.01 and at least 1.5-log fold change were considered 

differentially expressed. 

5’RACE and sequencing of amplified products 

5’RACE was performed according to the manufacturer’s instructions using the GeneRacerTM 

kit (Invitrogen) and ALK specific primers binding to exon 21 and to the junction between exon 

24 and 25 were designed. Reverse21: 5’ AGGGGGCTTGGGTCGTTGGGCATT 3’ and Reverse24-

25: 5’ TGTCTCGGTGGATGAAGTGGTTTTCC 3’. The final product was sequenced at GATC 

Biotech (Konstanz, Germany).  

In addition, ALK was fully sequenced using the following primers. ALK-Forward1: 5’ 

TGATGGAAGGCCACGGG 3’and ALK-Reverse1: 5’ TCAGGCAGCGTCTTCACA 3’, ALK-Forward2: 5’ 

CCTCATTCGGGGTCTGG 3’ and ALK-Reverse2: 5’ CCCTTTCTATAGTAGCTCGCC 3’, ALK-

Forward3: 5’ AACTGCCTCTTGACCTGTCC 3’ and ALK-Reverse3: 5’ TTTTGCCTGTTGAGAGACCA 

3’, ALK-Forward4: 5’ GGAAGAGAAAGTGCCTGTGAG 3’ and ALK-Reverse4: 5’ 

AAGAGAAGTGAGTGTGCGACC 3’. 

PCR 

ALK was amplified using the following primers. ALK-CTRL-Forward21: 5’ 

GGGGAGGTGTATGAAGGC 3’ and ALK-CTRL-Reverse24: 5’ CGGTGGATGAAGTGGTTTT 3’. The 

fusion between MMLV and ALK was amplified using MMLV-Forward: 5’ 

CAGGCAGTGATGGAAGGC 3’ and ALK-CTRL-Reverse24: 5’ CGGTGGATGAAGTGGTTTT 3’. 

Quantitative PCR procedure 

Total RNA was extracted using the Quick-RNA™ miniprep kit (Zymo Research) according to the 

manufacturer’s instructions and the concentration and quality was determined using a 

NanoDrop Spectrophotometer. 250 or 500 ng of total RNA was reverse-transcribed with the 

miScript II RT kit (Qiagen) in a volume of 10 μL, according to the manufacturer’s instructions. 

Quantitative real time PCR (qPCR) was carried out on a CFX96 Detection System (BioRad) in a 

total volume of 10 μL (10 pmol of each primer and containing cDNA corresponding to 50 ng 

RNA template). The housekeeping genes PPIA, HPRT and the target genes were assayed in 

parallel for each sample. Melting curve analysis was performed to guarantee the specificity of 
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the qPCR primers as previously described [15]. The following primers were used to amplify 

ALK: Forward 5’ GCATTGTGTCACCCACCC 3’ and Reverse 5’ CATGGCTTGCAGCTCCTG 3’. 

ALK immunoprecipitation 

ALK was precipitated from lysates of A375X1 cells. Cells were lysed in RIPA buffer and 

incubated with an anti-ALK antibody (Cell Signalling) overnight at 4° on an overhead shaker. 

The next day, lysates were incubated with protein G sepharoseTM (GE Healthcare), which was 

previously washed with the lysis buffer for 1 hour at 4° on an overhead shaker. After three 

washing steps, the protein was released by heat treatment in 2x Laemmli buffer and separated 

by SDS-PAGE. 

Small interfering RNAs and transfection  

Three different ALK siRNAs were obtained from GE Dharmacon (ON-TARGETplus Human). 

siRNA transfections were performed using 1.5 μL Lipofectamine RNAiMAX (Invitrogen) per 

reaction according to the manufacturer’s instructions. The final concentration of both ALK 

siRNA and scrambled control was 100 nM. siRNA transfections were performed 24 hours prior 

to 48 or 72 hours incubation with PLX4032 (1μM), Trametinib (5nM) or MK2206 (1μM). 

Real-time proliferation assays 

25 X 103 cells/well of A375X1 melanoma cells were seeded in 24-well plates and 24 hours later 

treated with both scrambled and ALK siRNA. Next, cells were incubated with PLX4032 (1μM), 

Trametinib (5nM) and MK2206 (1μM). Cellular growth was monitored in the IncuCyte ZOOM 

live cell microscope (Essen BioScience) and images were taken in phase contrast every 3 hours 

for a total of 90 hours.  

Western blot analysis and antibodies 

Cell lysis was performed at 4°C using ice cold lysis buffer containing 30 mM Tris/HCl pH6.7, 5% 

glycerol, 2.5% mercaptoethanol, and 1% SDS. Protein extracts were analysed by SDS-PAGE and 

Western blotting. ECL signals were detected as described before [16]. All experiments were 

performed in three biological replicates, of which one representative replicate is shown.  
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Dose-response analysis 

Black 96-well plates with transparent bottom were used. In case of ALK inhibitors, 5000 

cells/well of resistant A375X1 cells have been seeded in RPMI medium. In order to determine 

the dose response, the kinase inhibitors were serially diluted at a ratio of 1:3, starting at 10μM, 

in a total reaction volume of 100μl. We included a blank control (RPMI 1640 medium only), as 

well as an untreated control for each cell line. After 72 hours, cell viability was measured. For 

dose-response to vemurafenib, 3500 cells/well of resistant A375X1 cells were seeded and 

treated with 1μM of ALK inhibitors. Twenty-four hours after the pre-treatment, Vemurafenib 

was serially diluted at a ratio of 1:3, starting at 10 μM and added to the cells in a total reaction 

volume of 100 μl for 72 hours. 

For drug resistance transfer, 1000 cells/well of sensitive A375 were seeded in RPMI medium. 

The day after, EVs at a concentration of 10 μg/ml were added to the cells. 24 hours later, 

Vemurafenib was serially diluted at a ratio of 1:3, starting at 10 μM, in a total reaction volume 

of 100 μl. A blank control and untreated control were included as well. Cell viability was 

measured 72 hours later. 

For all experiments, cell viability was measured using the CyQuant proliferation assay. 

Fluorescence intensity was measured using the microplate reader CLARIOstarR (BMG-

LABTECH). The blank corrected values were exported as Microsoft Excel files and analysed. 

Experiment were performed in technical and biological triplicates. Dose-response curves were 

generated using GraphPad Prism 5. 

Caspase-3 activity assay 

To measure apoptosis in A375 cwlls, 10000 cells/well were seeded in black 96-well plates with 

a transparent bottom and treated with 1μM of single inhibitors (PLX4032 or ALK inhibitors) or 

combined. Cells treated with etoposide (50nM) were included as internal positive control for 

apoptosis. 24 hours later, cells were lysed with a lysis buffer containing dithiothreitol (6mM) 

and DEVD-AFC substrate (AFC: 7-amino-4-trifluoromethyl coumarin) (Alfa Aesar) for 30 

minutes at 37°. Upon cleavage of the substrate by caspases, free AFC emits fluorescence, 

which can be quantified using a microplate reader (400nm excitation and 505nm emission). 

Additionally, we included a blank control (RPMI 1640 medium only), an untreated control as 

well as a negative control represented by cells treated with DEVD-CHO (Alfa Aesar), a synthetic 

tetrapeptide inhibitor for Caspase-3. 
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Extracellular vesicles isolation 

Donor cells (both A375 and A375X1) were slowly adapted to serum-free medium 

(UltraCulture, Lonza BioWhittaker). Culture supernatants (100ml) were harvested, centrifuged 

2x10 minutes at 400g, followed by 20 minutes at 2000g to remove cells and cell debris. 

Extracellular vesicles were isolated by ultracentrifugation (70 minutes at 110000g, 4°C) by 

using a MLA-55 fixed rotor followed by flotation on an Optiprep cushion (Axis-Shield, 17%) for 

75 minutes at 100000g at 4°C using a swinging MLS-50 rotor. After a PBS wash (110000g, 70 

minutes), extracellular vesicles were re-suspended in PBS and frozen at -80°C. 

 

Extracellular vesicle labelling 

To label extracellular vesicles, culture supernatants were processed as mentioned above. 

After ultracentrifugation at 110000g, the pellet was resuspended in 250μl of PBS and stained 

with 5μl of PKH67 (Sigma) for 30 minutes at 37°. To remove excess dye, this suspension was 

loaded on the Optiprep cushion which was followed by a PBS washing step.  

 

Visualization of EVs 

For electron microscopy, a drop of extracellular vesicles suspended in PBS was deposited on 

Formvar-carbon-coated electron microscopy grids. The samples were fixed with 2% PFA, 

labelled with anti-CD63 (Abcam) and immunogold-labelled using protein A coupled to 10nM 

gold (PAG10). 

 

Preparation of the Exosome Proteome 

An exosome sample containing 100 µg of protein was reduced with 10 mM DTT in the 

presence of 1% sodium deoxycholate (SDC) (100 mM Tris buffer, pH8) for 1 hour at 37°C. After 

reduction, proteins were alkylated with 25 mM iodoacetamide for 1hour at 37°C, in the dark, 

until quenched by 10 mM N-acetyl cysteine for 30 min, at room temperature, in the dark. 

Then, protein extraction was performed using a methanol/chloroform precipitation method. 

Briefly, 150 µL of exosome sample were mixed with 1 mL of a methanol:chloroform:water 

(2:1:2) solution, and vortexed before centrifugation for 5 min, at 5000 g. The upper layer of 

the solution was removed and 600 µL methanol were added. After vortexing followed by 

centrifugation for 30 min at 20000 g, the supernatant was removed to recover the protein 

pellet. The air-dried pellet was reconstituted for trypsin digestion in 1% SDC (100 mM Tris 
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buffer, pH 8.8) for 16 hrs, at 37 °C. After trypsin digestion, SDC was precipitated by acidification 

using 1% formic acid (FA). The white pellet formed after acidification was removed by 

centrifugation, for 20 min at 20000 g. The supernatant was cleaned up using a C18 cartridge 

(Sep-Pak®, 1cc, Waters Corporation) and dried in a speedvac concentrator (Savant SPD 111V, 

Thermo Fischer Scientific). The dried peptide mixture was reconstituted with 100 µL of 0.1% 

FA / 5% acetonitrile (ACN) for LC-MS analysis. 

 

LC-MS/MS Analysis 

The reconstituted sample was further diluted (5 times) and mixed with 7.5 fmol of a peptide-

retention-time calibration mixture (Thermo Fisher Scientific) for retention time control of the 

data. Peptides were separated with a reverse-phase liquid chromatography (LC) system using 

an Ultimate 3000 RSLCnano (Thermo Fisher Scientific) equipped with an Acclaim PepMap RSLC 

column (15 cm × 75 µm, C18, 2 µm, 100 Å) (Thermo Fisher Scientific). 1 µL of each sample was 

used for proteomic analysis. Peptide elution was performed by applying a mixture of solvents 

A and B to the LC system. Solvent A was an aqueous solution with 0.1% FA, and solvent B was 

ACN with 0.1% FA. A linear gradient of 2–35% solvent B at 300 nL/min was applied over 48 

min followed by a washing step (5 min at 90% solvent B) and an equilibration step (10 min at 

2% solvent B). Mass spectrometry analysis was performed using a Q-Exactive Plus mass 

spectrometer (Thermo Scientific, Bremen, Germany) equipped with a nano-electrospray 

source. For ionization, uncoated SilicaTips (12 cm, 360 μm o.d., 20 μm i.d., 10 μm tip i.d.) were 

used with application of 1500 V of liquid junction voltage and 250 °C of capillary temperature. 

For MS/MS analysis, data dependent acquisition (DDA) was employed with a top-12 mode at 

a resolving power of 17500 (at 200 m/z). A target automatic gain control (AGC) value of 1e6, 

and a maximum fill time of 60 ms were used. 

 

Protein Identification  

For protein identification of LC-MS/MS files, a protein database search was performed using 

the MASCOT search engine with 1% FDR. Carbamidomethylcysteine was set as fixed 

modification. Methionine oxidation, deamidation, and N-terminal pyroglutamate were set as 

variable modifications. Proteome Discoverer (version 1.4, Thermo Scientific) was used for 

database search and data analysis. 
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EV transfer experiments    

For the transfer assays, 25000 cells in 24 well plates were seeded in RPMI medium. The day 

after, following 1 hour pre-treatment with 1μM of PLX4032, increasing concentrations of 

resistant EVs were added to the cells. After 7 hours, cells were collected for western blot 

analysis.  

Immunofluorescence 

For immunofluorescence, A375 or A375X1 cells grown on glass coverslips were treated with 

10μg of EVs for 24 hours. Cells were washed with PBS and fixed with 4% paraformaldehyde in 

PBS for 10 minutes at room temperature. The coverslips were washed three times in PBS-

Tween (0.05 % Tween 20). Then, cells were permeabilized with PBS 0.5% Triton X-100 for 10 

minutes at room temperature, and blocked in PBS 2% bovine serum albumin (BSA) for 15 

minutes. Cells were incubated with anti-ALK antibody (Cell Signalling), diluted in PBS 2% BSA, 

for 1 hour at room temperature. Coverslips were washed 3 times with PBS and treated with 

Alexa Fluor 4681 donkey anti-rabbit IgG (Invitrogen) for 1 hour at room temperature. 

Coverslips were washed and mounted with Gold antifade reagent with DAPI (Invitrogen). The 

cells were visualized by Andor Revolution Spinning Disk confocal microscopy. 

Protein extraction and quantification 

EV pellets were lysed in RIPA buffer (50mM Tris-HCl, 150mM NaCl, 1% sodium deoxycholate, 

1% NP40) in presence of protease inhibitor cocktail (Sigma). Bovine serum albumin (BSA) 

diluted in RIPA buffer were prepared as protein standards (4, 2, 1, 0.5, 0.25, 0 μg/ml). Protein 

quantification was performed using Pierce™ BCA Protein Assay Kit (Termo Fisher) in 96 well 

plates according to the manufacturer’s instructions. The absorbance was read at 562 nm with 

the microplate reader CLARIOstarR (BMG-LABTECH). 
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Results 
Characterization of vemurafenib-sensitive and -resistant A375 melanoma cells 

BRAFV600E A375 cells were made resistant to 1μM PLX4032 over a period of six weeks with 

constant exposure to the drug. Twenty different resistant clones were isolated in order to 

investigate new mechanisms of resistance. The fastest growing clone under PLX4032 

treatment, named A375X1, was selected for further experiments. The resistance of the 

established cell clone was examined by dose-responses analysis (Fig 1A) and by growth assays 

(Fig 1B) showing that resistant cells have similar growth rates under PLX4032 compared to 

untreated parental cells. The resistant cells also displayed an increased pAKT compared to 

parental cells suggesting an activation of the Pi3K/AKT pathway (Fig 1C).  

To elucidate underlying mechanisms of resistance, we first performed gene expression 

analysis on drug sensitive and resistant A375 cells. Differentially expressed candidates 

emerging in the resistant versus sensitive cells (FDR<0.01, at least 1.5-log fold change) were 

plotted (Fig 2A). In accordance with our previous data [17], several genes were upregulated in 

the resistant A375X1 such as the Proprotein Convertase Subtilisin/Kexin type 2 (PCSK2), the 

Dopachrome Tautomerase (DCT), the Matrix Metallopeptidase 8 (MMP8) (Fig 2B). 

Surprisingly, we also identified the Anaplastic Lymphoma Kinase (ALK). As ALK has recently 

been described to be present in an oncogenic form in melanoma patients [14], we focused 

our attention of this gene. 
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Fig 1. Characterization of resistant melanoma cells. (A) Vemurafenib dose-response analysis 
in sensitive A375 (black) and resistant A375X1 cells (grey). (B) Growth comparison between 
untreated sensitive cells versus resistant cells under constant PLX4032 treatment (1μM). (C) 
Western blot analysis of A375 and A375X1. α-Tubulin was used as loading control; 
representative blots of three biological replicates are shown. 
 
Characterization of ALK 

ALK is known to be rearranged or mutated in several malignancies [13]. ALK was validated by 

western blot (Fig 2C), which showed the presence of a smaller protein (multiple bands around 

70 KDa) compared to ALK full size (200 KDa). On the wake of the novel ALK isoform (ALKATI) 

identified in melanoma patients, to better characterize this protein, we performed 5′-rapid 

amplification of cDNA ends (5′-RACE) followed by Sanger sequencing. Results identified a 

truncated ALK starting from exon 18 (Fig 2D) fused to a sequence aligning to murine leukemia 

virus (MMLV). ALK was additionally fully sequenced confirming the presence of a transcript 

starting from exon 18 to exon 29 (Fig S1). PCR amplification confirmed the presence of ALK in 

our resistant cells. EML4-ALK positive lung cancer cells were used as positive control (Fig 2E). 

The amplification of this unusual fusion gave a positive signal exclusively in A375X1 (Fig 2F). 
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Next, several melanoma cells lines were screened for ALK, which was identified exclusively in 

the resistant A375X1 (Fig 2G). The ORF finder software predicted one possible ORF starting 

with the first methionine in the exon 18 of ALK. Furthermore, we also performed 

immunoprecipitation (Fig 2H) followed my mass spectrometry and we could confirm the 

absence of any viral protein fused to ALK. Taken together, these data suggest the existence of 

an unusual fusion between the C-terminus of ALK and a MMLV sequence at the mRNA level 

but not at the protein level. In addition, the ALK antibody detected two bands on western 

blots. Mass spectrometry confirmed that both correspond to ALK suggesting the possible 

presence of two different isoforms. Treatment of the immunoprecipitated ALK with 

glycosidases, especially PNGaseF, showed the presence of glycosylation residues present in 

the transmembrane domain (Fig 2H).  

 

 

 

 

 

 

 

 

 

Fig 2 (on next page). Differentially expressed genes in drug-resistant A375X1 melanoma cells. 
(A) Vulcano plot showing differentially expressed genes in resistant compared to sensitive 
melanoma cells (FDR<0.01, at least 1.5-log fold change). (B) Top differentially expressed 
mRNAs in resistant cells. (C) Western blot analysis detecting ALK only in resistant A375X1 cells. 
α-Tubulin was used as loading control; representative blots of three biological replicates are 
shown. (D) Alignment after Sanger sequencing of the 5′-RACE-cDNA fragments confirming the 
starting of ALK from exon 18 (red arrow). The asterisks indicate a perfect match with the 
reference sequence present in the NCBI database. (E) PCR amplification of ALK in sensitive and 
resistant cells. EMLA4-ALK positive cell line was used as positive control. (F) PCR amplification 
of the fusion MMLV-ALK present exclusively in the resistant cells. (G) Quantitative RT-PCR of 
ALK mRNA in different melanoma cell lines. Error bars represent the standard deviation of 
three technical replicates.  (H) ALK immunoprecipitation pulls down two different proteins, 
both corresponding to ALK, probably two different isoforms. The shift of the upper band after 
PNGaseF treatment reveals the presence of a transmembrane domain in one of the isoform.  
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ALK can confer acquired resistance to melanoma cells 

Many driving mutations have already been described in melanoma drug resistance [18]; but 

so far, ALK has not been implicated. Therefore, we investigated the involvement of ALK in 

mediating drug resistance by knocking down ALK using an siRNA approach. Western blot 

analysis and growth assays were performed in cells treated with both scrambled and ALK 

siRNA in the absence or presence of PLX4032.  

Strong reduction of ALK expression levels following the siRNA treatment could be observed 

(Fig 3A). Following the down regulation of ALK, a decrease in pERK was detected in presence 

of PLX4032 while no change was observed in absence of the drug. In addition, lower levels of 

pAKT were detected under both conditions (Fig 3A). No change in growth behavior was 

observed in the absence of PLX4032 whereas growth reduction was detected when cells were 

treated with ALK siRNA in combination with PLX4032 (Fig 3A). Similar results were obtained 

when cells were treated with a MEK inhibitor (Fig 3B). Interestingly, the concomitant down 

regulation of ALK and pAKT did not influence growth of A375X1 cells (Fig 3A and B) suggesting 

that the observed growth inhibition is mostly due to the down regulation of pERK after BRAF 

or MEK inhibitor treatment. To confirm these observations, cells were additionally treated 

with ALK siRNA in combination with an AKT inhibitor (MK2206). As expected, although pAKT 

was reduced when cells were treated with both siRNA alone and MK2206 (Fig 3C), no effects 

were observed on cellular growth (Fig 3C).  Altogether, these results indicate that ALK is 

mediating acquired resistance by activating the MAPK pathway. In the absence of ALK, cells 

respond again to both BRAF and MEK inhibitors. 

 

 

 

 

Fig 3 (on next page). Knock down of ALK re-sensitizes resistant cells to BRAF inhibition. A375X1 
cells were transfected with three different siRNAs against ALK or scrambled control (100nM) 
for 72 hours. 48 hours prior to collection, the cells were incubated with either PLX4032 (1μM) 
(A) or Trametinib (3nM) (B) or MK2206 (1μM) (C). α-Tubulin was used as a loading control and 
one representative of three biological replicates is shown. (A-C) Corresponding growth assays 
on the right. The plates were imaged every 3 hours using an IncuCyte ZOOM live cell 
microscope (Essen BioScience) and images were taken for a total of 90 hours. Results are 
shown for one representative of three biological replicates. 
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Combination of ALK inhibitors with Vemurafenib induces apoptosis in resistant melanoma 

cells 

To determine whether the dependence of A375X1 melanoma cells on ALK could be exploited 

to overcome BRAF inhibitor resistance, we treated the cells with three different ALK inhibitors 

(Crizotinib, Ceritinib and ASP3026) alone or in combination with PLX4032. Dose-response 

analysis showed that ALK inhibitors combined with the BRAF inhibitor were much more 

efficient in suppressing cellular proliferation (Fig 4A) compared to single treatments. In 

addition and importantly, by pre-treating the cells with 1μM of ALK inhibitors, resistant cells 

regained sensitivity to PLX4032 (Fig 4B). 

To further explore whether the combination of inhibitors was exclusively inhibiting growth or 

whether it could also induce cell death of resistant melanoma cells, apoptosis assays were 

carried out. As expected, no apoptosis was scored when the resistant cells were treated either 

with PLX4032 alone or with the three ALK inhibitors. However, combination treatment with 

both types of inhibitors induced a significant increase in apoptosis (Fig 4C). 
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These data clearly indicate that the combination of BRAF and ALK inhibitors could be a 

promising strategy to overcome drug resistance in patients carrying both BRAFV600 and 

expressing ALK. 

 

 
Fig 4. The combination of ALK and PLX4032 inhibitors is efficient in resistant melanoma cells. 
(A) ALK inhibitors (Crizotinib, Ceritinib and ASP3026) dose-response in resistant A375X1 cells 
cultured in the absence or presence of 1μM of PLX4032. (B) PLX4032 dose-response in 
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resistant cells cultured with or without 1μM of ALK inhibitors. (C) Apoptosis assays showing 
the activity of caspase-3 in resistant cells treated either with single inhibitors or with a 
combination of ALK and BRAF inhibitors, normalized to the untreated control. Error bars 
represent the standard deviation of three technical replicates of three biological replicates. 
Statistical significance was determined with a one-way ANOVA coupled with Tukey’s multiple 
comparison tests. *p > 0.05, **p > 0.01, ***p > 0.001 
 

Characterization of EVs secreted from vemurafenib-sensitive and -resistant A375 melanoma 

cells 

EV-mediated intercellular communication has recently been described as an important 

mechanism to propagate drug resistance [19]. To investigate such a potential transfer of drug 

resistance in our model, EVs were isolated from A375 parental and A375X1 resistant cell 

supernatants. The purity of isolated EVs was assessed by western blot analysis to detect the 

presence of generic and well known EV markers. As expected, CD9, CD81 and TSG101 were 

enriched in EV preparations (Fig 5A). Electron microscopic visualization of EVs revealed their 

characteristic and artificial cup-shaped morphology. Furthermore, immunogold labelling was 

positive for CD63 (Fig 5B). To study vesicle uptake by melanoma cells, purified EVs from 

resistant cells were labeled with a green fluorescent dye (PKH67) and incubated with sensitive 

A375 melanoma cells for 24 hours illustrating that sensitive A375 take up resistant EVs (Fig 

5C). 

 

 

 

 

 

Fig 5 (on next page). Characterization of extracellular vesicles isolated from both sensitive and 
resistant melanoma cells. (A) Western blot analysis of 20μg lysates from sensitive A375 and 
resistant A375X1 cells and corresponding EVs. Results are shown for one representative of 
two biological replicates. (B) Transmission electron microscopy pictures of CD63 immunogold 
labelled EVs isolated from both cell lines. Results are shown for one representative of two 
biological replicates. (C) Resistant EVs were labeled with PKH67 before OptiPrep cushion 
separation. A375 cells were co-cultured with 10μg of labeled EVs and fixed after 24 hours. 
Upper panel, untreated sensitive A375 cells; Lower panel, sensitive A375 co-cultured with 
“resistant EVs”. Images are shown for one representative of two biological replicates. Blue: 
nucleus; red: actin; green: EVs 
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Drug resistance can be transmitted by EVs 

To study the capability of EVs isolated from resistant cells to transfer the acquired drug 

resistance to sensitive ones, we first determined the dose response to PLX4032 following EV 

uptake (Fig 6A). 50% cell growth inhibition (IC50) was calculated to assess differences in drug 

response between A375 cells, A375 cells pre-incubated with EVs isolated from the same A375 

cells or pre-incubated with EVs isolated from resistant A375X1 cells. We did not observe any 

significant difference when sensitive cells were incubated with their own EVs while 

significantly higher IC50 were observed when cells were incubated with resistant-EVs (Fig 6A 

and 6B). Taken together, these results show that the uptake of resistant EVs makes the 

sensitive cells more resistant to PLX4032 suggesting a transfer of the drug resistance 

phenotype. 

 
Fig 6. EVs can transfer functional properties. (A) Sensitive A375 melanoma cells were co-
cultured with both EV-A375 and EV-A375X1 (10μg/ml). After 24 hours, Vemurafenib dose-
response analysis was performed to calculate the IC50. Error bars represent the standard 
deviation of three biological replicates. (B) Representative dose-response curves of sensitive 
A375 (black), sensitive A375 plus EV-A375 (grey) and sensitive A375 plus EV-A375X1 (dotted 
line). Statistical significance was determined using paired Student’s t-tests. *p>0.05, **p>0.01, 
***p>0.001. 
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Overexpressed ALK in resistant cells is present in corresponding EVs 

Next, we characterized the protein content of EVs to identify potential shuttled players, 

including ALK, involved in transferring drug resistance. Proteomic analysis of sensitive and 

resistant EVs, isolated from the supernatants of the corresponding cell lines identified about 

1400 proteins. Of these, 962 were common in both, 254 were unique for sensitive-EVs and 

196 were unique for resistant-EV (Fig 7A). Interestingly, overexpressed ALK was exclusively 

detected in the resistant-EVs (Fig 7B). We confirmed its presence by western blotting in both 

resistant cells and the corresponding EVs (Fig 7B) while it was not detectable in sensitive cells 

and theirs EVs.  

 

Fig 7. Proteomic profiling of EVs. (A) Venn diagram showing unique and shared proteins 
identified by mass spectrometry inEVs isolated from both sensitive A375 and resistant A375X1 
cells. (B) Scatter plot on protein intensities identified in both populations of EVs. Anaplastic 
lymphoma kinase (ALK) was exclusively present in EVs isolated from resistant cells. Red dots 
indicate proteins listed in the top 100 proteins found in EVs according to the ExoCarta 
database. (C) ALK western blot analysis of 20μg lysates from sensitive and resistant cells and 
corresponding EVs.  
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ALK can be transferred through EVs 

EVs are known to promote horizontal transfer of different molecules to recipient cells. 

However, the transfer of phenotypic traits and functional properties by EVs and their content 

is often difficult to establish. Given the importance of ALK in mediating drug resistance in our 

cells, we asked whether ALK could be transferred through EVs and remain functional in 

recipient cells. In this regard, confocal microscopy pictures of immunofluorescence staining 

for ALK showed its presence in sensitive cells after 24 hours treatment with resistant EVs (Fig 

8A) suggesting the successful transfer of ALK between cells. To investigate whether 

transferred ALK is functional, we analysed whether the addition of ALK-containing resistant-

EVs could activate the MAPK pathway. Sensitive A375 melanoma cells were initially treated 

with 1μM of PLX4032 to reduce their basal level of pERK. Next, increasing concentration of 

resistant-EVs were added to the cells over 6 hours.  Increasing levels of pERK in accordance 

with increased concentration of EVs could be detected (Fig 8B and C) suggesting an activation 

of ERK by EV-transferred ALK. 

 

 

 

 

 

 

 

 

Fig 8 (on next page). ALK is transferred to sensitive cells via EVs where it is functional. (A) 
Sensitive A375 melanoma cells were co-cultured with 10μg of both EV-A375 and EV-A375X1. 
After 24 hours, untreated A375 cells, resistant A375X1 cells and A375 co-cultured with both 
types of EVs were fixed and stained for ALK. Images were captured by fluorescence confocal 
microscopy. Representative images of two biological replicates. Scale bar, 20mm. Blue: 
nucleus; red: ALK. (B) Sensitive A375 cells were treated with 1μM of PLX4032. After 1 hour, 
increasing concentrations of resistant EVs were added to the cells for additional 6 hours. α-
Tubulin was used as a loading control; representative blots of three biological replicates are 
shown. (C) Quantification of pERK levels, normalized to the untreated control. Error bars 
represent the standard deviation of three biological replicates. Statistical significance was 
determined using one-way ANOVA coupled with Dunnett’s multiple comparisons tests. *p > 
0.05, **p > 0.01, ***p > 0.001 
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In vivo experiments are planned.   

 

Discussion 

The use of serine/threonine-protein kinase BRAF inhibitors (as monotherapy) or in 

combination with MEK inhibitors in the treatment of BRAF-mutant melanoma is limited by 

both acquired and intrinsic drug resistance [11]. The re-activation of the MAPK signalling 

pathway following a secondary mutation is one of the key mechanisms driving acquired 

resistance. Nevertheless, melanoma treatments are rapidly changing and improving. Current 

efforts aim for an improved efficacy of the existing treatments and/or for delaying the onset 

of drug resistance. However, a lack of second line treatments for patients who have developed 

drug resistance urgently requires the introduction of new strategies. Promising new drugs that 

are effective in both intrinsically and acquired resistant cells and xenografts have recently 

been identified [20-22]. In our previous publication, we also identified a new PDK1 inhibitor 

AZD7545 to be effective in resistant melanoma cells [23]. A deeper understanding of the re-

activation mechanisms of the MAPK pathway will aid the selection of appropriate therapies to 

improve survival. Importantly, different mechanisms of drug resistance can coexist 

simultaneously making tumours extremely heterogeneous [24]. Single tumour cell studies in 

melanoma patients revealed the presence of subclones, which express molecular patterns 

that make them less likely to respond to therapy and prone to selection during disease 

progression [25]. 

In this study, we report ALK as a new mechanism driving resistance in a subclone of BRAF-

resistant cells. Translocations, mutations or amplifications make ALK oncogenic in different 

cancer types [13]. So far, 22 different genes have been described to be fused with the C-

terminal part of ALK making the ALK locus particularly prone to activating translocations [13]. 

The various translocations normally produce constitutively activated ALK fusion proteins, 

which can signal through the MAPK signalling pathway, the PI3K/AKT pathway or the JAK/STAT 

pathway contributing to cell proliferation and survival [12]. ALK fusion proteins have been, for 

instance, identified in non-small cell lung cancer (EMLA4-ALK), diffuse large cell lymphoma 

(NPM-ALK) and inflammatory myofibroblastic tumour (TPM3-ALK). In addition, a new ALK 

transcript consisting of a fragment of intron 19 followed by exons 20–29 that resulted from an 

alternative transcription initiation was identified in 11% of melanoma patients [14]. In our 

model, we observed an activating translocation with a murine leukemia viral sequence, which 
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leads to a truncated protein lacking the N-terminal part (exons 1-17). We assume that this 

MMLV was stably inserted in our A375 cells and currently whole genome sequencing of the 

cells is being performed to establish the presence of the sequence in the genome. The 

identification of MMLV has been reported for many cancer cell lines, including melanoma, 

across several laboratories [26, 27] suggesting MMLV as a regular resident in cancer cells. 

However, the activation of ALK by a murine retrovirus suggests that other sequences from 

human retroviruses or their closely related human retrotransposons could activate this 

oncogene in human settings. 

Most of the ALK variants described so far (overexpressed wild-type ALK, EML4-ALK, NPM-ALK, 

ALKATI, ALKR1275Q, ALKF1174L) were shown to trigger proliferation and tumorigenesis and to be 

sensitive to ALK inhibitors [14, 28-30]. To determine therapeutic responses, we tested three 

different ALK inhibitors: crizotinib (first-generation inhibitor) and ceritinib and ASP2036 

(second-generation) in combination with BRAF inhibitor. Interestingly, both ALK knock down 

and ALK inhibition did not have any effect per se on the growth of resistant cells, only the 

combination with BRAF inhibition were able to suppress growth and induce apoptosis. Taken 

together, our data show that ALK modulates sensitivity to BRAF inhibition: the re-activation of 

the MAPK pathway due to the overexpression of ALK makes melanoma cells resistant to BRAF 

inhibitors (Fig 9A); however, the inhibition of ALK restores sensitivity to BRAF inhibition (Fig 

9B). This drug combination could be of clinical relevance for patients who acquired secondary 

mutations within ALK or for those who carry BRAFV600E and overexpress ALK simultaneously 

and show intrinsic resistance to BRAF inhibitor monotherapy.  

Interestingly, the presence of ALK in resistant cells was reproduced in the corresponding EVs, 

providing further evidence that circulating vesicles can be used as a diagnostic tool to monitor 

resistance mechanisms. Furthermore, we also showed a critical role for ALK in the transfer of 

drug resistance to sensitive recipient cells (Fig 9C). The transfer of drug resistance through EVs 

is an emerging and interesting field of research. Peinado and colleagues showed that 

melanoma-derived EVs could transfer the MET receptor tyrosine kinase to bone marrow 

progenitors [31]; Al-Nedawi et al. provided evidence that EGFRvIII can be transferred by EVS 

between glioma cells [32]. Here, we describe a functional transfer of a kinase being involved 

in the propagation of the drug resistance phenotype by EVs.  

To achieve more effective and personalized treatments of melanoma, understanding the 

individual mechanisms of drug resistance is crucial. Our findings describe a novel mechanism 
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driving resistance in melanoma, which has significant consequences in the spread of the drug 

resistant phenotype. To the best of our knowledge, this is the first study demonstrating: i) the 

association of ALK with drug resistance; ii) the presence of a functional kinase within EVs, 

which mediates the transfer of drug resistance; iii) the transfer of drug resistance in the 

context of melanoma. 

 

 
 

Fig 9. Model summarizing the ALK mediated drug resistance. (A) Despite the presence of BRAF 
inhibitors, A375X1 cells are resistant to it. ALK is mediating resistance, activating the MAPK 
signalling pathway. (B) By knocking down ALK or by targeting ALK with specific inhibitors, BRAF 
inhibitors are effective again and can shut down the MAPK pathway. (C) Overexpressed ALK is 
additionally secreted into extracellular vesicles which, in turn, can be taken-up by sensitive 
cells. Once in sensitive cells, ALK is functional and can activate the MAPK pathway mediating 
drug resistance transfer.   
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Figure S1 

ALK MEGHGEVNIKHYLNCSHCEVDECHMDPESHKVICFCDHGTVLAEDGVSCIVSPTPEPHLP 60 
X1 MEGHGEVNIKHYLNCSHCEVDECHMDPESHKVICFCDHGTVLAEDGVSCIVSPTPEPHLP 60 

************************************************************ 

ALK LSLILSVVTSALVAALVLAFSGIMIVYRRKHQELQAMQMELQSPEYKLSKLRTSTIMTDY 120 
X1 LSLILSVVTSALVAALVLAFSGIMIVYRRKHQELQAMQMELQSPEYKLSKLRTSTIMTDY 120 

************************************************************ 

ALK NPNYCFAGKTSSISDLKEVPRKNITLIRGLGHGAFGEVYEGQVSGMPNDPSPLQVAVKTL 180 
X1 NPNYCFAGKTSSISDLKEVPRKNITLIRGLGHGAFGEVYEGQVSGMPNDPSPLQVAVKTL 180 

************************************************************ 

ALK PEVCSEQDELDFLMEALIISKFNHQNIVRCIGVSLQSLPRFILLELMAGGDLKSFLRETR 240 
X1 PEVCSEQDELDFLMEALIISKFNHQNIVRCIGVSLQSLPRFILLELMAGGDLKSFLRETR 240 

************************************************************ 

ALK PRPSQPSSLAMLDLLHVARDIACGCQYLEENHFIHRDIAARNCLLTCPGPGRVAKIGDFG 300 
X1 PRPSQPSSLAMLDLLHVARDIACGCQYLEENHFIHRDIAARNCLLTCPGPGRVAKIGDFG 300 

************************************************************ 

ALK MARDIYRASYYRKGGCAMLPVKWMPPEAFMEGIFTSKTDTWSFGVLLWEIFSLGYMPYPS 360 
X1 MARDIYRASYYRKGGCAMLPVKWMPPEAFMEGIFTSKTDTWSFGVLLWEIFSLGYMPYPS 360 

************************************************************ 

ALK KSNQEVLEFVTSGGRMDPPKNCPGPVYRIMTQCWQHQPEDRPNFAIILERIEYCTQDPDV 420 
X1 KSNQEVLEFVTSGGRMDPPKNCPGPVYRIMTQCWQHQPEDRPNFAIILERIEYCTQDPDV 420 

************************************************************ 

ALK INTALPIEYGPLVEEEEKVPVRPKDPEGVPPLLVSQQAKREEERSPAAPPPLPTTSSGKA 480 
X1 INTALPIEYGPLVEEEEKVPVRPKDPEGVPPLLVSQQAKREEERSPAAPPPLPTTSSGKA 480 

************************************************************ 

ALK AKKPTAAEISVRVPRGPAVEGGHVNMAFSQSNPPSELHKVHGSRNKPTSLWNPTYGSWFT 540 
X1 AKKPTAAEVSVRVPRGPAVEGGHVNMAFSQSNPPSELHKVHGSRNKPTSLWNPTYGSWFT 540 

********:*************************************************** 

ALK EKPTKKNNPIAKKEPHDRGNLGLEGSCTVPPNVATGRLPGASLLLEPSSLTANMKEVPLF 600 
X1 EKPTKKNNPIAKKEPHDRGNLGLEGSCTVPPNVATGRLPGASLLLEPSSLTANMKEVPLF 600 

************************************************************ 

ALK RLRHFPCGNVNYGYQQQGLPLEAATAPGAGHYEDTILKSKNSMNQPGP 648 
X1 RLRHFPCGNVNYGYQQQGLPLEAATAPGAGHYEDTILKSKNSMNQPGP 648 

************************************************ 

Fig S1. ALK sequencing results. The protein sequence of ALK expressed in A375X1 cells (blue) 
was aligned to the NCBI Reference Sequence (NM_004304.4). The amino acidic substitution 
at position 489 is reported as a SNP (https://www.ncbi.nlm.nih.gov/projects/SNP/ 
snp_ref.cgi?geneId=238). 
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4.3.3 Additional results 

Mutations in ALK and BRAF can co-exist 

In the manuscript in preparation, we identified ALK as a novel mechanism of resistance and we 

showed that the double treatment with ALK and BRAF inhibitors is effective in vitro. As previously 

mentioned, a truncated form of ALK has been identified in 11% of melanoma patients (Wiesner et 

al., 2015). Moreover, ALK can also be activated by somatic mutations (Hallberg and Palmer, 2013). 

To broaden the scope of our findings and to better understand if the proposed drug combination 

could be of clinical relevance for patients, we looked for ALK somatic mutations in melanoma 

patients. Especially, we wanted to determine the simultaneous presence of mutations in ALK and 

BRAF in melanoma patients. 467 melanoma patients present in the TCGA database were screened 

and 17 patients were found to have somatic missense mutations in both ALK and BRAF (Figure 19). 

Although none of the identified mutations in ALK seem to occur in the kinase domain, they might 

still activate the protein. This observation requires further investigation, nevertheless it suggests 

that pharmacological inhibition of ALK combined with BRAF inhibitors might represent an 

interesting therapeutic opportunity for a subset of melanoma patients. 
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Figure 19. Somatic missense mutations present in both ALK and BRAF genes in melanoma patients.  

Table made using R, R studio and ggplot2 package. 
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Comparison of miRNAs secreted in sensitive versus resistant EVs 

As previously mentioned, EVs contain miRNAs. Apart from monitoring the protein content, we also 

analyzed miRNAs present in both sensitive and resistant EV populations in order to find potential 

players in drug resistance. The miRNA content of EVs was analyzed by qPCR arrays (method 

described on page 34). The heatmap in Figure 20A shows an overview of whole miRNome data sets 

for sensitive and resistant melanoma EVs. The two EV populations have remarkably similar 

expression patterns with only few exceptions. The Figure 20B shows the top-upregulated miRNA in 

resistant EVs compared to sensitive. Interestingly, the most upregulated miRNA was let-7g. This 

miRNA belongs to the let7 family which has been described to act as crucial tumour suppressor able 

to inhibit diverse oncogenes such as RAS (reviewed in Lee et al., 2016). It is tempting to speculate 

that resistant cells selectively export this miRNA out. Moreover, miRNA-509-3p was also identified 

in the resistant EVs. This miRNA was previously identified in several resistant cell lines (Kozar et al, 

2017) suggesting its potential use as diagnostic resistance biomarker. 

In this context, further experiments are planned to investigate the functional involvement of such 

miRNAs in the onset of drug resistance and in the transfer of it. 
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Figure 20. miRNA profiling of EVs.  

A) Heatmap of whole miRNome qPCR array data of the two EV populations normalized by global plate mean 

(miRNAs absent across all samples are not depicted). B) Top upregulated miRNAs in resistant EVs. 

 

MiRNA microarray analysis after EV treatment 

In order to study the EV-mediated transfer of miRNAs, microarray analysis was performed on drug-

sensitive A375, drug-resistant A375X1, A375 co-cultured for 48 hours with 30g of EVs isolated 

from sensitive A375 and with EVs isolated from resistant A375X1. The number of differentially 

expressed candidates (FDR < 0.01, 1-log fold change) in the resistant versus sensitive cells and in 

sensitive cells co-cultured with resistant EVs versus cells co-cultured with sensitive EVs were 

examined. Interestingly, we could confirm the presence of miR-509-3p in resistant cells which was 
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significantly increased (~3 log fold change) compared to sensitive cells (Kozar et al., 2017) (Figure 

21). However, when we compared the sensitive cells treated with the different populations of EVs, 

we could not identify any differentially expressed miRNAs, therefore no heatmap could be 

generated. Although some miRNAs were enriched in resistant-EVs by qPCR arrays (Figure 20), 

microarrays analysis revealed that there was no difference between the treatment. While this 

finding requires further confirmation and validation, it nevertheless provides a first indication that 

the quantity of EV-transferrable miRNAs might not be sufficient to possibly detect differences. 

 

 

Figure 21. Top differentially expressed miRNAs. 

Differentially expressed miRNAs (FDR < 0.01 and 1 log fold change) in vemurafenib X1-resistant cells 

compared to sensitive A375. 
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4.4 Transferring intercellular signals and traits between cancer cells: 

extracellular vesicles as “homing pigeons” (Review) 

4.4.1 Preamble 

The topic of extracellular vesicles was new in our laboratory. Given the emerging evidence on the 

involvement and importance of EVs in several aspects of cancer biology, especially intercellular 

communication, we began with a thorough literature review on the topic. In addition, we wanted 

to gain some expertise in the field of EVs in order to study their content and investigate their 

potential ability to “ship” ALK to ALK-negative cells and mediate drug resistance. 

Therefore, in this review, we summarized findings on the involvement of EVs in transferring traits 

of cancer cells to their surroundings. As mentioned already, a pressing issue in cancer treatment is 

the onset of resistance to many initially efficient drug therapies. Here, we review studies 

investigating the role of EVs in this phenomenon together with a summary of the technical 

challenges that this new field is still facing. Finally, emerging areas of research such as oncosomes 

(a larger type of vesicle), the analysis of the lipid composition on EVs, and cutting-edge techniques 

to visualize the trafficking of these small vesicles are discussed. 

Authors' contributions are at the end of the article. 
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Transferring intercellular signals and traits
between cancer cells: extracellular vesicles
as “homing pigeons”
Giulia Cesi, Geoffroy Walbrecq, Christiane Margue and Stephanie Kreis*

Abstract

Extracellular vesicles are cell-derived vesicles, which can transport various cargos out of cells. From their cell of
origin, the content molecules (proteins, non-coding RNAs including miRNAs, DNA and others) can be delivered
to neighboring or distant cells and as such extracellular vesicles can be regarded as vehicles of intercellular
communication or “homing pigeons”. Extracellular vesicle shuttling is able to actively modulate the tumor
microenvironment and can partake in tumor dissemination. In various diseases, including cancer, levels of
extracellular vesicle secretion are altered resulting in different amounts and/or profiles of detectable vesicular
cargo molecules and these distinct content profiles are currently being evaluated as biomarkers. Apart from
their potential as blood-derived containers of specific biomarkers, the transfer of extracellular vesicles to
surrounding cells also appears to be involved in the propagation of phenotypic traits. These interesting
properties have put extracellular vesicles into the focus of many recent studies.
Here we review findings on the involvement of extracellular vesicles in transferring traits of cancer cells to their
surroundings and briefly discuss new data on oncosomes, a larger type of vesicle. A pressing issue in cancer
treatment is rapidly evolving resistance to many initially efficient drug therapies. Studies investigating the role of
extracellular vesicles in this phenomenon together with a summary of the technical challenges that this field is
still facing, are also presented. Finally, emerging areas of research such as the analysis of the lipid composition
on extracellular vesicles and cutting-edge techniques to visualise the trafficking of extracellular vesicles are discussed.

Keywords: Extracellular vesicles, Intercellular communication, Imaging, Cancer, Drug resistance

Background
According to an advanced PubMed search, “exosome”
has become the most cited term in publications describ-
ing any kind of vesicle [1]. However, the term exosome
only refers to vesicles generated by the inward budding
of the endosomal compartments, of which several are
forming so-called multivesicular bodies (MVBs). Many
MVBs fuse with lysosomes whereas others may fuse with
the plasma membrane, resulting in secretion of their
intraluminal vesicles [2]. Exosomes are generally distin-
guished from microvesicles by size and by origin: exo-
somes are ~30 -120 nm in size, with an endosomal origin
whereas microvesicles are >100-1000 nm and originate
from the plasma membrane (Fig. 1a). Current purification

methods unfortunately do not allow to precisely discrim-
inate between the two populations as it is very likely that
microvesicles with a size of 30–120 nm exist as well. Pro-
tein aggregates and lipoproteins might also contaminate
and confound the sample preparation. Furthermore, once
the vesicles have been released, their origin cannot be
identified as unique markers for the different vesicle types
have not been defined yet [3–5]. Because of the difficulty
to specifically discriminate exosomes from other circu-
lating vesicles, the International Society of Extracellular
Vesicles suggested to use the generic term “extracellu-
lar vesicles (EVs)” to describe vesicles isolated from the
extracellular milieu [1]. For clarity, in this review, the
term exosome mentioned in the majority of the cited
publications, will be replaced by the term “extracellular
vesicles” to be in accordance with the new guidelines.* Correspondence: stephanie.kreis@uni.lu
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Although various isolation methods exist, differential
ultracentrifugation followed by density gradient separ-
ation, electron microscopy together with protein com-
position analysis is generally considered the best so far
available workflow to isolate and characterise EVs [6].
Nevertheless, some studies where EVs were isolated by

using the less accepted “precipitation method” are also
cited here, in order to provide a complete overview of
the different topics covered in this review.
EVs were initially thought to be an expedient for cells

to remove unwanted components [7, 8]. However, recent
findings have shown that these nano-vesicles are surely

a

b

c

Fig. 1 a EV repertoire. Cells secrete distinct sub-populations of EVs and although of different origins, they overlap in size or density and often co-purify.
Exosomes are vesicles generated by the inward budding of the endosomal compartments (endocytic vesicles), which become early endosomes (EE),
several of which are forming so-called multivesicular bodies (MVBs). MVBs either fuse with lysosomes or with the plasma membrane, which results in
their secretion. In addition, cancer cells can produce larger vesicles named “large oncosomes”. Together with exosomes and microvesicles, oncosomes
contain abundant bioactive molecules, which can transfer cancer traits or be used as biomarkers. b Relative to the general EV content of normal cells
(tetraspanins, MHC molecules, proteins involved in the MVB biogenesis, heat shock proteins), cancer EVs are often enriched in specific miRNAs
or proteins. Furthermore, the membrane of cancer EVs is characterised by specific lipid species localised in lipid rafts. c Cancer cells secrete
more EVs than the corresponding healthy cells. Acidic pH and hypoxia, which often characterise the tumor microenvironment, stimulate an increased
secretion of EVs and influence the EV content, which in turn supports angiogenesis and metastasis. Additional references not previsouly cited in the
text: KRAS [99], Annexin A3 [100], TGFβ [101], Glypican 1 [102]
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more than just garbage bins. As EVs can be released by
“donor” cells and taken up by “recipient” cells, it has
been hypothesised that these vesicles broaden the cells’
repertoire to communicate and exchange signals. Several
studies have already confirmed that EVs are important
players in influencing both physiological and pathological
conditions by delivering molecules such as cytokines,
growth factors, proteins, mRNAs, miRNAs and other
non-coding RNAs to other tissues and cells [3]. The dis-
covery that EVs have a wide range of regulatory functions
and carry various endogenous cellular components made
them the most studied vesicles in recent years [9] and sev-
eral reviews covering different aspects of extracellular
vesicle biology and function have been published [9–13].
The current review focuses on new developments in

EV characterisation (lipid profiling of cancer-derived EVs)
and visualisation (imaging of EV traffic) as well as on the
potential involvement of EVs in propagating tumorigenic
properties, in particular drug resistance. Finally, technical
limitations that impede a full understanding of EV biology
and functions will be summarised.

Characterisation of EVs
Cargo and composition of EVs
The content profiles of EVs depend mainly on their par-
ental cells. The ExoCarta database (www.exocarta.org)
provides information about the EV content in different
organisms and cell types. Generally, EVs from different
cell types contain endosome-associated proteins (e.g.
Rab GTPase, SNAREs, Annexins, and flotillins), some of
which are involved in the biogenesis of MVBs (e.g. Alix
and Tsg101) [14]. Membrane proteins including tetra-
spanins (e.g. CD63, CD81, CD82, CD53, CD37 and CD9),
heat shock proteins, MHC complexes, growth factors and
many others are also present [15]. How exactly proteins
are sorted into EVs is still under investigation. The role of
ubiquitination seems controversial: in most cases, ubiqui-
tination targets the proteins destined for degradation
(upon fusion of the MVB with lysosomes) while proteins
to be exported show no ubiquitination [16]. In some other
cases, EV proteins appear to be highly ubiquitinated [17].
EVs have also been shown to contain single-stranded
DNA and transposable elements [18] as well as double-
stranded genomic DNA which might reflect the muta-
tional status of the parental tumor cell [19, 20].
The RNA content of EVs is enriched in small non-coding

RNAs including miRNAs [2]. Although the sorting mecha-
nisms are not fully understood, recent evidence suggests
that the composition of EV miRNAs differs from the one of
the cell of origin suggesting a selective sorting of miRNAs
into EVs. In this context, Villarroya-Beltri et al. [21] identi-
fied the presence of unique sequence motifs that could
prone miRNAs for sorting into EVs or for intracellular
localisation. They also demonstrated that the sumoylated

heterogeneous nuclear ribonucleoprotein A2B1 binds
miRNAs through their “EXO-motifs” and controls their
loading into EVs, thus providing an explanation for the
specific packing of certain miRNAs into EVs. In con-
trast, interesting findings from Squadrito et al. [22]
suggest a passive mechanism for miRNA export modu-
lated by cell activation-dependent changes of miRNA
target levels: EV miRNA secretion might be a mechanism
by which cells remove miRNAs in excess of their corre-
sponding targets to re-establish miRNA/mRNA homeo-
stasis. More recently McKenzie and collegues identified
Ago2 protein as a possible major player in miRNA sorting.
Indeed, they demonstrated that phosphorylation of Ago2
promoted by KRAS suppressed its secretion into EVs and
thereby the sorting of specific miRNAs [23].
The presence of regulatory miRNAs within EVs has

raised a strong interest ever since Valadi et al. [24] showed
for the first time that miRNAs in mast cell-derived EVs can
be transferred to other mast cells and be functional. Since
then, fascinating examples of intercellular communication
via miRNAs between cells in culture have been provided
[25–28]. Albeit accumulating evidence for the importance
of miRNAs in EVs, it remains uncertain whether such
miRNAs are really functional in a physiological environ-
ment and whether the concentration of secreted individual
miRNAs would be sufficient to mediate measurable endo-
crine effects. Furthermore, it is still unclear how widely this
process occurs in vivo and whether it is restricted to certain
cell types, physiological conditions or diseases or whether it
is a ubiquitous way of cell-to-cell communication. For
Williams et al. [29] the concentration of miRNAs in
biological fluids is significantly lower than in the surround-
ing cells and might be below the threshold for triggering
any significant function in vivo. The work of Chevillet et al.
[30] argues along these lines. By using a stochiometric
approach, they performed quantitative assessments of
miRNAs within EVs isolated from five different sources.
Less than one copy of a given miRNA per EV was observed
by absolute quantification through real time PCR. These
data would suggest that standard EV preparations might
not carry biologically significant numbers of miRNAs. In
accordance with this, we made a similar observation. After
successful transfer of detectable levels of miR-211-5p via
EVs isolated from melanoma patient serum samples to
miR-211-5p-negative melanoma recipient cells, we could
not detect any down-regulation of previously confirmed
target genes (unpublished data). Interestingly, in the
same cellular model 5 nM of miR-211 mimic was able
to effectively down-regulate those target genes (RAB22A,
AP1S2, M6PR) [31] suggesting that amounts of transferred
miRNAs isolated from patient sera were not sufficient to
evoke downstream effects. Moreover and apart from
quantities, other factors play a role: it is still difficult to
clearly discriminate between secreted miRNAs indicative
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of malignant processes from “contaminating” miRNAs de-
rived from platelets, erythrocytes, lymphocytes or nor-
mal cell death [32]. Among all the components of EVs,
miRNAs are one of the most controversial but also in-
teresting players in intercellular signaling and tumor
progression and their potential involvement in acquisition
and transfer of cancer cell resistance to drug treatments is
discussed in more detail below.
EVs carry lipids of a similar composition as found in

the plasma membrane of the parental cells (such as
cholesterol, ceramide and sphingomyelin) [2]. An emer-
ging field in vesicle research and more specifically in
the context of cancer, is “lipidomics” which, apart from
general lipid profiling, also studies alterations in lipid
compositions. Changes in lipid metabolism and in par-
ticular activation of de novo lipogenesis have already
been described for several cancers [33–35]. Recently,
Marien and colleagues identified a distinct lipid signa-
ture in non-small cell lung cancer. By using a mass
spectrometry-based phospho-lipidomics approach, the
authors identified 91 phospholipid species differentially
expressed in cancer versus normal tissues [36]. The dis-
tinct lipid composition of EVs coupled with the capability
of EVs to travel in biological fluids, puts lipid profiling on
the list for novel biomarker discovery. Interestingly, an en-
richment in certain lipid species in the membrane of EVs
has been reported in several publications. In this context,
Llorente et al. [37] observed a specific sorting of lipids into
EVs compared to the secreting cells. Lipid composition
analysis of metastatic prostate cancer cells and corre-
sponding EVs revealed an enrichment in glycosphingoli-
pids, cholesterol, sphingomyelin and phosphatidylserine in
EVs compared to parental cells. However, the authors did
not compare the lipid composition of these EVs to those
released from normal prostate cells. The enrichment of
specific lipids within the membrane of EVs has also been
described in colorectal cancer cells [38]. Furthermore,
Schlaepfer and colleagues observed that hypoxia triggered
triglyceride accumulation in prostate cancer cells and
corresponding EVs due to the activation of lipogenesis-
related enzymes [39]. Overall, lipidomics of EVs has
gained attention in recent years but to this day, it remains
controversial which lipids are involved in EV-mediated
cell-to-cell communication [40], also because it is a
challenge to produce pure EV preparations and to avoid
cellular lipoparticle contaminations, potentially leading
to misinterpretations. Nevertheless, standardised and
well-controlled lipid profiling of EV membranes might
be useful for the identification of new biomarkers and for
a better understanding of the biology of EV secretion.

Visualisation of EVs and EV traffic
The most common methods used to detect and charac-
terise EVs are electron microscopy (EM), dynamic light

scattering (DLS), nanoparticle tracking analysis (NTA),
fluorescence microscopy and flow cytometry (FCM). Two
standard methods are used to assess the quality of the EV
preparation: EM and either DLS or NTA. EM has the ad-
vantage that it provides the highest resolution compared
to the other methods. In addition, EM combined with
immuno-gold labeling allows for recognition of protein
markers on the surface of EVs. DLS and NTA both meas-
ure the size of particles using Brownian molecular move-
ment but NTA has, additionally, a camera documenting
the movement and light scattering of the samples [41].
Unlike previous methods, which only enable physical
characterisation of EVs in fixed samples, fluorescence mi-
croscopy visualises labelled EVs in live cell conditions/as-
says. Several fluorescent membrane dyes are used to label
purified EVs such as the PKH-67 (green) or PKH-26 (red)
linker dyes. One disadvantage of the labelling dyes is their
long half-life in vivo (from 5 to >100 days), which hinders
the dynamic tracking of EVs in vivo [42].
An alternative to labelling the membranes of EVs is to

link their protein content to TAMRA-NHS (carboxyte-
tramethylrhodamine succinimidyl ester, Biotum) [43]. In
order to label EVs released by the cells in vitro and in
vivo, EV protein marker or membrane localisation tags
(e.g. palmitoylation signal) have been fused to fluores-
cent proteins [44, 45]. Moreover, EVs from melanoma
cells were visualised in vivo using multiphoton microscopy
in orthotopic tumors using Gaussia luciferase (Gluc) [46].
Gluc was also fused to biotin (GlucB) on the surface of the
EVs, facilitating the conjugation of labeled streptavidin in
order to see the labeled EVs in vivo using fluorescence me-
diated tomography (FMT) [42]. In addition to FMT, GlucB
can also be visualised using magnetic resonance imaging
(MRI) or positron emission photography (PET) [47]. Fi-
nally, advances in flow cytometry (FCM) enhanced the
sensitivity of this technique to detect EVs. A recent, im-
proved method allows for detection of PKH-67-labelled
EVs with a comparable detection threshold as compared
to NTA [48]. FCM can also be coupled with a camera in
order to discriminate the EVs from false positive results
[49, 50] and has been applied to characterise EVs released
by mesenchymal stromal cells (MSC) using antibodies
against MSC marker proteins [51].
Lai et al. have recently succeeded to show the dynamics

of EV-mediated communication by taking advantage of
the different combination possibilities offered by fusing
enhanced green fluorescent protein (eGFP) and tandem
dimer Tomato (td Tomato) to a palmitoylation signal
(PalmGFP, PalmtdTomato) and GlucB [52]. First, EV
exchange between 2 populations of cancer cells was
visualised by labelling one with PalmGFP and the other
with PalmtdTomato [52]. Then, by combining Gluc-
labelled EV [42] and PalmtdTomato, EV uptake and EV-
mRNA translation was tracked in the recipient cells [52].
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Next, EV-packaged mRNA was monitored by tagging the
transcripts encoding PalmtdTomato to a MS2 RNA bind-
ing sequence fused with eGFP, allowing to simultaneously
visualise EV-packaged mRNA and EVs themselves. Finally,
by combining PalmtdTomato and EV-GlucB, the dynam-
ics of EV uptake and EV-mRNA translation were moni-
tored [52]. Applying completely different systems to track
EV traffic, several elegant studies by two different groups
have visualised EV uptake in living cells using both β-
galactosidase and the Cre/LoxP system. Ridder et al. used
LacZ gene as reporter gene and β-galactosidase expression
was induced in recipient cells by EV transfer. This transfer
was demonstrated in mouse tumor models and between
hematopoietic system and brain in vivo [53, 54]. This
method was the first approach to analyse the physiological
transfer of EVs in vivo and represents a step forward in
avoiding potential artifacts introduced by submitting cells
to an excess amount of isolated and labelled EVs [55]. By
using a similar approach, the expression of green fluores-
cent protein (GFP) was triggered in cells, which took up
EVs produced by tumor cells expressing the Cre recom-
binase [55, 56]: Cre-expressing melanoma cells injected
into mice were releasing EVs containing Cre mRNA,
which were then transferred to non-tumour cells in vivo
[56]. In the target cells, Cre mRNA was translated into
Cre protein and induced the expression of GFP [56]. How-
ever, this method cannot be used to assess the precise
quantification of the uptake of EVs in recipient cells [56]
as it does not allow for characterisation of transferred EVs
or the uptake mechanism of EVs [57].
Taken together, the visualisation and tracking of EV

movements has seen rapid and promising developments
in recent years. Nevertheless, all these advances will need
appropriate controls and to some degree standardisation
of protocols in order to substantiate new findings on EV
dynamics, characteristics and transfer of oncogenic traits
in physiologic contexts and their potential clinical applica-
tions. As such, these novel imaging techniques could be
combined with gene deletion or mutation strategies in
order to better understand the role of specific molecules,
which are transferred into EVs or are involved in the
loading of cargo into EVs or in the uptake of EVs by
target cells.

EVs in cancer
Cancer EVs differ from those released by healthy cells in
terms of content and quantity. An increased secretion of
EVs has been reported for different cancer cell lines and
patients [58, 59]. Some typical proteins, miRNAs and
other molecules described to be augmented in EVs re-
leased from cancer cells are presented in Fig. 1b. Acidic
pH [60, 61] and hypoxia [59, 62], hallmark properties of
many solid tumors, might be responsible for the intensi-
fication of EV production and for their altered content.

Several recent studies have investigated this phenomenon
under hypoxic conditions. An enhanced secretion of
microvesicles from mesenchymal stem cells in response to
hypoxia was reported by Zhang et al. [63]. Along these
lines, Kucharzewska et al. [64] showed that EVs derived
from glioblastoma cells grown under hypoxic conditions
were potent inducers of angiogenesis in vitro through
phenotypic modulation of endothelial cells: glioblastoma-
derived hypoxic EVs induced endothelial cells to secrete
several potent growth factors and cytokines and to stimu-
late the PI3K/AKT signaling pathway. In addition, EVs
from hypoxic prostate cancer cells enhanced invasiveness
and stemness of prostate cancer cells under normoxia and
promoted the cancer-associated fibroblast phenotype in
prostate stromal cells by targeting adherent junction
molecules [65]. Umezu and colleagues [66] provided
evidence that in endothelial cells, hypoxia-driven accel-
erated tube formation was attributable to miRNA-135b
in EVs shed from hypoxia-resistant multiple myeloma
cells. Interestingly, the EV transfer of miRNA-135b re-
sulted in the suppression of FIH-1, a negative regulator
of HIF-1α suggesting that the upregulation of HIF-1α
could enhance angiogenesis. More recently, Li et al. ob-
served increased levels of miR-21 in EVs isolated from
hypoxic oral squamous cell carcinoma. The transfer of
this miRNA in normoxic cells induced migration and
invasion both in vitro and in vivo [67]. Although the
mentioned studies of Umezu and Li provide solid evi-
dence for the reported biological effects, they did not
follow the generally accepted EV isolation procedures,
increasing the possibility of precipitating contaminants.
It is also worth mentioning that hypoxic, but not nor-

moxic tumor-derived EVs impaired NK cell function by
delivering both TGFβ and miRNA-23a [68]. In conclusion,
EVs secreted from hypoxic cancer cells seem to carry a
cargo, which supports angiogenesis and thus metastasis as
well as immunosuppression.
Cancer EVs are taken up by “recipient cells” but whether

this process occurs in a specific manner or at random is
poorly understood. Interesting findings by Hoshino et al.
showed that integrins inserted in the membrane of EVs
dictate their adhesion to specific cells in specific organs
[69]. Tumor-derived EVs taken up by specific cells based
on their integrin expression profile, were able to promote
pro-migratory and pro-inflammatory S100 gene upregula-
tion and by doing so, initiated the pre-metastatic niche in
vivo. More studies will be necessary to confirm a potential
specificity in the cellular uptake of EVs.
EVs are not the only vehicles to transfer oncogenic in-

formation. Recently, a new class of microvesicles named
oncosomes has been described. Oncosomes differ from
nano-sized EVs in terms of size (oncosomes are much
larger with a diameter of 1–10 μm) and in the biogenesis
pathway (oncosomes derive from the plasma membrane
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of cells that have acquired an amoebotic phenotype,
Fig. 1a). Di Vizio et al. [70] first introduced the term
“large oncosomes” to describe large vesicles originating
from amoeboid prostate cancer cells. The shedding of
these vesicles could be induced by EGF while bleb for-
mation in both normal prostate epithelial and stromal
cells was modest and unresponsive to EGF. Indeed, only
tumor cells seem to release quantifiable amounts of large
oncosomes that were directly correlated with their rate
of aggressiveness [71, 72]. Oncosomes, like EVs, contain
mRNAs, miRNAs and proteins. Caveolin 1, a serum bio-
marker of metastatic prostate cancer, was detected in onco-
somes and thus correlated with prostate tumor progression
in mice and discriminated patients with metastatic disease
from those with organ-confined disease [71]. Furthermore,
the oncosome-associated miR-1227 produced by prostate
cancer cells was able to induce migration of cancer-
associated fibroblasts [72]. Whether nano-sized EVs
and oncosomes share some of their molecular cargo is
still under investigation. Nevertheless, recent findings
from Minciacchi et al. revealed a different protein con-
tent in the two vesicle populations suggesting a specific
selection of proteins destined for both vesicle types
[73]. So far only a limited number of studies are avail-
able on oncosomes and more will be required in order
to better characterise the two vesicle classes in terms of
unique markers, content and function.

Contribution of EVs to drug resistance
Drug resistance of cancer cells represents a challenge in
most anti-neoplastic treatments. The development of a
resistant phenotype is considered to be multi-factorial
and mainly due to decreased drug accumulation, increased
efflux, increased biotransformation, drug compartmental-
isation, acquired genetic modification of drug targets and/
or defects in cellular pathways [74]. Recently, EVs have
been identified as new players in passing resistance onto
still sensitive cells [75, 76], which in turn might “gain”
drug resistance traits as illustrated in Fig. 2.

EV-mediated drug export
Apart from the up-regulation of efflux pumps, which
will be described below, in the establishment of drug re-
sistance, the direct sequestration of drugs into lysosomal
vesicles and EVs has also been reported. Safaei et al. [77]
have shown the lysosomal compartment to be notably
reduced in size in cisplatin-resistant human ovarian car-
cinoma cells with more EVs exporting cisplatin via this
route compared to sensitive cells.
Pulse-chase experiments with doxorubicin, a fluores-

cent anticancer drug, confirmed the hypothesis that drug
expulsion can occur via EVs. In MCF-7 cells, doxorubicin
localised in the nucleus immediately after the drug was ad-
ministered. Twenty-four hours later, nuclear fluorescence

was significantly decreased and most of the visible
doxorubicin was present in EVs associated with the cell
periphery indicating the active sorting of drugs into
vesicles [78]. Furthermore, Federici et al. [61] demonstrated
that EVs purified from supernatants of melanoma cells
treated with cisplatin contained detectable levels of the
drug. HPLC analysis indicated that cisplatin within EVs was
in its unmetabolised form suggesting that EVs might in-
corporate the drug immediately after the uptake by the cell.
More recently Koch et al. were able to detect anthracyclines
in EVs from diffuse large B cell lymphoma cells lines. Inter-
estingly, knocking down the ATP-transporter A3 (ABCA3)
augmented intracellular retention of the drugs, thus in-
creasing their cytostatic effects [79].

EV-mediated miRNA export
In addition to the above-mentioned mechanisms, miRNAs
packaged within EVs can also contribute to the onset and
maintenance of drug resistance. Pigati et al. [80] have ob-
served that mammary epithelial cells released a different
subset of miRNAs compared to the ones which were
retained. They found that nearly 30 % of the released miR-
NAs in vitro did not reflect the cellular profile, indicating
that miRNAs are retained or released selectively. In par-
ticular, the malignant mammary epithelial cells released
most of their miRNA-451 into the environment. This con-
curs with findings from Kovalchuk et al. [81] who reported
that miRNA-451 targets the multidrug resistant gene
(mdr1), thereby down-regulating P-gp expression. Indeed,
transfection of the doxorubicin-resistant MCF-7 cells with
miRNA-451 resulted in an increased sensitivity of breast
cancer cells to the drug. It is tempting to speculate that
cancer cells have selective mechanisms to export certain
miRNAs in order to retain higher levels of P-gp necessary
to shuttle chemotherapeutic drugs out.
In this context, Chen et al. [82] showed that MCF-7

cells acquired an increased survival potential through
EVs released by corresponding docetaxel-resistant lines.
Microarray analysis revealed once again a specific subset
of miRNAs (including miRNA-222 and miRNA-452) in
the “resistant EVs”. The incubation of sensitive MCF-7
cells with resistant EVs resulted in a reduction of intra-
cellular PTEN and APC4 mRNAs known to be targeted
by miRNA-222 and miRNA-452, respectively. Although
protein levels had unfortunately not been analysed, the
authors speculated that these oncomiRs act by down-
regulating tumor suppressors. Furthermore, miRNA-21
and miRNA-155 from EVs were identified as important
players in the cross-talk between neuroblastoma cells and
monocytes. Co-culture experiments showed that miRNA-
21 released from neuroblastoma cells led to a TLR8- and
NF-кB-dependent secretion of EV-containing miRNA-155
from monocytes. Once taken up by neuroblastoma cells,
miRNA-155 targeted the telomeric repeat-binding factor 1
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Fig. 2 Drug-resistant cells can transfer the resistant phenotype through EVs. EVs released by drug-resistant cells contain proteins and miRNAs,
which partake in propagating resistance. Drug-sensitive cells become gradually resistant when they incorporate ”resistant EVs”: Resistant cells (1)
then over-express efflux pumps (P-gp) to eliminate anti-cancer drugs and produce more EVs, which again reflect the resistant phenotype of the
secreting cell. Once in the extracellular environment, these EVs can be taken up by sensitive recipient cells (2) through fusion, endocytosis or
binding to surface receptors. The released content acts on these cells, which in turn might also become drug-resistant (3). The lower part shows
example trends of dose–response curves to a cytotoxic drug, representative of drug-resistant cells (1), drug-sensitive cells (2) and the same
sensitive cells, which are becoming resistant after incubation with “resistant EVs” (3). The effectiveness of the drug to inhibit a specific biological function in
the cells (exemplified by the inhibition of cell growth) is expressed by the IC50 value. The higher this value, the more resistant the cells. The IC50 value of
cells which are acquiring the resistant phenotype would be in between the IC50 values of the other two conditions: IC50 (1) > IC50 (3) > IC50 (2)
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(TERF1) inducing an increased growth when the cells
were treated with cisplatin [83].

Drug efflux pumps
Among the different reasons for drug resistance in
malignancies, the up-regulation of efflux pumps such
as ABC transporters is often responsible for transport-
ing drugs out of cells [84]. Bebawy and colleagues [85]
demonstrated for the first time by flow cytometry that
EVs transfer functional P-glycoproteins (P-gp), well
characterised ABC transporters, from drug-resistant
to drug-sensitive human acute lymphoblastic leukemia
cells. Corcoran et al. [86] described the potential role
of EVs in transferring phenotypic changes associated
with docetaxel-resistance in prostate cancer cells: an
induced resistance in sensitive prostate cancer cells
cultured in the presence of EVs derived from resistant
cells was scored. The authors suggested P-gp to be po-
tentially involved in the newly-acquired resistance as
P-gp was expressed by both resistant prostate cells
and in corresponding EVs whereas it was undetectable
in the sensitive parental cells. Likewise, proteomic analysis
of EVs secreted from sensitive prostate cancer cells
compared to those from docetaxel-resistant cells re-
vealed a different profile, with “resistant EVs” being
once again enriched in P-gp and endophilin A [87]. The
presence of these proteins was also detected in the serum
of a small cohort of docetaxel-resistant patients. Hence,
these EV-transported proteins were proposed as predictive
biomarkers for therapeutic response or development of
drug resistance [87].
The relevance of P-gp delivery through EVs in the

process of transferring drug resistance was also confirmed
in breast cancer cells [88]. Here, P-gp was not directly
transported by EVs, but its transcription was activated by
the calcium permeable channel Transient Receptor Pro-
tein Channel 5 (TrpC5) in EVs released from adriamycin-
resistant breast cancer cells. Uptake of these vesicles
allowed the sensitive recipient cells to acquire the TrpC5
channel, leading to increased Ca2+-entry and the activation
of the Ca2+-dependent transcription factor NFATc3
(nuclear factor of activated T cells isoform c3), which in
turn was responsible for increased P-gp transcription [89].
Taken together, ABC transporters carried or induced by
EVs seem to play a prominent role in the development of
drug resistance by providing the cell with means to rid
themselves from drugs.
Several studies demonstrated the capability of EVs to

confer drug resistance; however little is known about the
role of EVs in inhibition of cancer cell proliferation dur-
ing chemotherapy. Bovy and colleagues [90] showed that
endothelial EVs taken up by breast cancer cells were able
to impair growth. In response to chemotherapeutic agents,
endothelial cells released EVs containing miRNA-503. The

presence of this miRNA within breast cancer cells induced
a reduction of their growth and invasion potential by
targeting cyclins D2 and D3. Twenty-two additional
up-regulated miRNAs were detected both in resistant
cells and corresponding EVs in the context of breast
cancer chemoresistance [91], 12 of which were signifi-
cantly up-regulated in biopsies taken after neoadjuvant
chemotherapy. Similar to miRNAs, long non coding
RNAs (lncRNAs) have also been described to transfer
drug resistance traits. The lncRNA linc-VLDLR enriched
in EVs released from HCC cells was able to modulate che-
motherapeutic response to sorafenib in recipient cancer
cells by upregulating the ABC transporters [92]. To date,
it remains to be proven whether inhibiting EV secretion
might be a therapeutic option to avoid responsive cancer
cells to become unresponsive.

Limitations of the functional analysis of EVs
Although there is little doubt that EVs and their cargo
can be transferred to be functionally active in recipient
cells, there are several, mostly technical issues which need
to be addressed to take this field one step further Standard
and generally accepted procedures and protocols should
be developed for:

� Sample preparation. EVs can be isolated by
different methods (ultracentrifugation, density
gradient ultracentrifugation and precipitation
reagents) and there is no generally accepted
procedure yet. In this context, Van Deun et al. have
clearly shown that the purification method of choice
will influence the purity of the vesicle population
and downstream results [6]. Although it is well
accepted by the community to isolate EVs through
density gradient ultracentrifugation, there is an
ongoing effort to find alternatives especially for
complex body fluids such as plasma or urine where
also the volume is a limiting factor. Moreover,
density gradient ultracentrifugation is time-consuming
and difficult to implement on a daily basis in clinical
routine. Size exclusion chromatography, ultrafiltration
and immunoprecipitation with specific antibodies
have recently been tested by several groups [93–95]
and might become convincing EV isolation methods
in future.

� Purity of the isolated EVs. The essential
requirements to define an EV population are:
i) providing a general overview of the protein
composition including proteins that should not be
present in EVs, ii) performing transmission
electron microscopy and nanoparticle-tracking
analysis and/or flow cytometry to understand the
purity of the isolates and using proper controls in
functional studies.
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� Quantification. The number of EV particles,
micrograms of proteins, nanograms of EV-RNA
need to be accurately determined.

� Sensitivity of visualisation of EV trafficking should
be further improved to allow for analysis of EV
functions under physiological conditions.

� Characterisation of EV cargos in different cellular
settings with a focus on protein, miRNA and lipid
profiles. The next task in this field will be to develop
sensitive and specific tools to overcome the above
issues. Only then will we be able to completely
understand the potential of EVs as new targets in
anti-neoplastic treatments and/or as new biomarkers
for early detection of pathological conditions.

Conclusions
The discovery of EVs as multi-component signaling com-
plexes mediating intercellular communication through the
delivery of molecules such as miRNAs and proteins has
raised a particular interest for the use of these microvesicles
as potential cancer biomarkers. Indeed, EVs present in body
fluids might represent a snapshot of the status of the cancer
cell at a specific time point providing highly sensitive and
specific cancer markers. The simultaneous production of
different subpopulations of EVs has been confirmed in
many publications [96–98]. In this context, the biggest
challenge the field is currently facing is the isolation and
precise characterisation of the different vesicle populations
and their corresponding functions. Questions such as i) dif-
ferent EV production and concentration in diseased versus
healthy cells, ii) a clear discrimination between cancer cell-
released EVs from surrounding stromal or healthy cells as
well as iii) specificity of EV uptake will all have to be ad-
dressed in future studies. Only when most of these points
are elucidated, can we begin to target certain subpopulation
of vesicles for therapeutic purposes.
Taken together in order to exploit EVs as potential

biomarkers or therapeutical targets, several technical
obstacles will have to be tackled in the near future: the
procedures for EV isolation and quantification need to
be standardised to avoid the observed discrepancies
and to dissect which other molecule classes are present
in EVs and whether they get sorted into vesicles by chance
or by targeted yet unknown processes. In addition, fur-
ther studies on lipid composition and alteration of EVs
will provide a more comprehensive understanding of
their role in the biological function of EVs and also
their potential impact on recipient cells. Nevertheless
and in support of the above reviewed evidence, EVs can
be regarded as interesting and important “homing
pigeons” carrying specific messages from one place to
the other. It remains to be shown how the cargo is
selected and sorted and whether these processes are
generally targeted or coincidental.
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Chapter 5 Discussion and perspectives 

The work in this thesis aimed to extend current knowledge on the influence of BRAF kinase 

inhibitors on several aspects of melanoma biology including early adaptive responses to the 

treatment and drug resistance mechanisms. In the following section, the main findings of the 

project parts will be briefly summarized and discussed including a short outlook on future 

experiments. However, to avoid a mere repetition of the individual papers, this discussion will 

mostly focus on three key topics, which cover the four manuscripts completed during this thesis. In 

particular, section 5.1 and 5.2 will focus on metabolic rewiring in melanoma and the tumour 

microenvironment (based on chapter 4.1); section 5.3 will focus on mechanisms of drug resistance 

(based on chapter 4.3) and section 5.4 on potential biomarkers of drug resistance (based on 

chapters 4.2, 4.3 and 4.4). Finally, I will end my dissertation, putting our main findings in a more 

clinical context (section 5.5).  

5.1 Metabolic rewiring in melanoma 

Cutaneous melanoma is the deadliest form of skin cancer that emerges from the uncontrolled 

proliferation of melanocytes (Rajkumar and Watson, 2016). Although melanoma displays an 

extreme molecular heterogeneity, the most common mutation identified in > 50% of patients is a 

single amino acid substitution at position 600 in BRAF (most often V600E), which results in a 

constitutively active kinase that drives MEK/ERK signalling leading to cellular hyper-proliferation. 

The advent of targeted therapies and immunotherapies extended progression-free and overall 

survival of melanoma patients considerably (Garbe et al., 2016; Luke et al., 2017). However, poor 

responses and/or the development of resistance to treatments represents major critical challenges. 

Nevertheless, these clinical issues leave room for developing new and more effective strategies by 

targeting, among others, metabolic pathways that are often altered in cancer cells (DeBerardinis 

and Chandel, 2016).  

The role of ROS 

Mutant proteins such as BRAFV600E have been shown to affect the metabolism by enhancing 

glycolysis and the tricarboxylic acid (TCA) cycle activity (Parmenter et al., 2014). The pyruvate 

dehydrogenase complex (PDH) is an important gatekeeper enzyme linking glycolysis to the TCA and 

oxidative phosphorylation, thereby strongly influencing the metabolic phenotype of a cell.  
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In the first publication (Cesi et al., 2017), we showed that BRAF inhibition leads to ROS production. 

We postulate that this increased ROS production is an early adaptive response, which activates a 

negative regulatory loop that limits the generation of further ROS. Indeed, we could show that ROS 

activates PDKs, which in turn phosphorylate and inactivate PDH limiting the flux of pyruvate into 

the TCA and into the oxidative phosphorylation and consequently the generation of more ROS, 

which might be lethal to the cell. In a similar way, for instance, ROS inhibits pyruvate kinase M2 

(PKM2, a cancer-expressed isoform of pyruvate kinase), leading to accumulation of glycolytic 

intermediates, which feed into the pentose phosphate pathway to generate NADPH. NADPH in turn 

plays an essential role in ROS detoxification (Anastasiou et al., 2011). As another example, ROS 

accumulation activates AMPK (Zhao et al., 2017). AMPK generally promotes a more oxidative 

metabolism and inhibits biosynthetic pathways (Zhao et al., 2017). In the context of ROS 

detoxification, AMPK also stimulates fatty acid oxidation and limits the fatty acid synthesis, thus 

also saving NADPH (used in fatty acid synthesis). AMPK inhibits AKT/mTOR activity leading to 

protein synthesis inhibition and increasing autophagy and it also promotes FOXO activity to 

maintain the redox balance through enhanced antioxidant production and glucose metabolism 

(Zhao et al., 2017) (Figure 22). 

Taken together, ROS-mediated regulation of kinases is an exciting emerging field in biochemistry as 

it appears that ROS can either activate or inactivate kinases by oxidation. Interestingly, ROS regulate 

some kinases, which are directly involved in metabolic processes and vice versa regulate ROS itself. 

 



Discussion and perspectives 

 

 

137 
 

Figure 22. Salvage mechanisms activated by ROS signalling. 

ROS themselves protect the cell against ROS damage by inducing different antioxidant responses and re-

establishing or maintaining redox homeostasis. Thicker lines represent a new regulatory mechanism in which 

increased levels of ROS (induced by BRAF inhibition) activate PDKs, phosphorylating and thus inhibiting PDH. 

Consequently, the TCA, oxidative phosphorylation and further ROS production is reduced.  

 

Given the lethal potential of ROS, inhibitors enhancing the oxidative stress might be beneficial in 

melanoma therapy. Indeed, in our study we observed that inhibition of pyruvate dehydrogenase 

kinases (PDKs) leads to reduced growth in both sensitive and resistant melanoma cells by a 

mechanism involving the generation of ROS exceeding a certain threshold. This spawns the 

hypothesis that metabolic enzymes or other proteins involved in antioxidant defense might be 

useful targets for melanoma or other cancer treatments. As NRF2 (a master regulator of antioxidant 

responses) promotes cell survival under stress, it is tempting to speculate that increased NRF2 

activity could be tumour promoting by being protective for cancer cells, especially in the context of 

melanoma drug resistance. Some studies have described an NRF2-mediated drug resistance 

mechanism in several cancer cell lines (Homma et al., 2009; Hong et al., 2010).  

In this context, we are in the process of investigating the role of the antioxidant transcription factor 

NRF2 in chemoresistance development in melanoma. We have stably knocked down NRF2 in both 

resistant and sensitive melanoma cells and we plan to test the vulnerability of the cells to several 

inhibitors, especially BRAF, MEK but also PDK inhibitors.  

 

Metabolic rewiring driven by MITF 

Metabolic rewiring has also been described to be driven by MITF. The BRAF/MEK1/ERK pathway 

inhibits MITF-mediated PGC1 transcription, a protein involved in mitochondrial biogenesis and 

ROS inhibition (Haq et al., 2013). Thus, BRAF inhibitor treatment has been associated with an 

increase in MITF and PGC1α-mediated induction of mitochondrial biogenesis and oxidative 

phosphorylation sustained by higher ATP levels when PGC1α is strongly induced by MITF. 

Accordingly, a drop in ATP has been observed in cells, which do not express MITF (Haq et al., 2013). 

The BRAFV600E positive cell lines we used in our study express intermediate levels of MITF (Margue 

et al., 2013). Taken together, different metabolic switches might be used depending on varying 

basal MITF levels in different melanoma cell lines: intermediate levels of MITF control proliferation, 

which relies on aerobic glycolysis; low or high MITF levels are associated with de-differentiation or 

differentiation-mediated senescence and utilize oxidative phosphorylation (Ahn et al., 2017).  
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Nevertheless, with the appearance of BRAF inhibitor resistance and the reactivation of MAPK 

signaling, the effects induced by BRAF inhibition are reversed. Drug resistance in melanoma has 

been associated with restored glycolysis (Parmenter et al., 2014) but also with increased glutamine 

dependency (Baenke et al., 2016). These findings can help to develop new therapeutic strategies to 

eradicate melanomas that become resistant to BRAF inhibitors. 

As previously mentioned, in BRAF inhibitor resistance, the MAPK pathway is reactivated by 

secondary mutations. In the third manuscript (Cesi et al, in preparation), we identified the 

overexpression of ALK as a possible mechanism driving acquired resistance in melanoma cells. 

Aberrant ALK is known to activate both the MAPK and the PI3K/AKT pathway (Hallberg and Palmer, 

2013) and therefore glycolysis, the pentose phosphate and antioxidant-defense genes are 

reactivated. It is likely that the acquisition of secondary mutations upon BRAF inhibition may be 

involved in metabolic rewiring. Further insights into the connection between drug resistance and 

metabolic reprogramming might help the identification of novel combination partners for use with 

BRAF and BRAF/MEK inhibitors to be used in patients who relapse on first-line targeted therapies. 

 

5.2 Acidification of tumour microenvironment 

Another interesting aspect in the context of metabolic reprogramming that we did not explore in 

this project but it is important to consider is the acidification of the tumour microenvironment. 

Metabolic alterations common in cancer cells such as upregulation of glycolysis, glutaminolysis and   

pentose phosphate pathway promotes an acidic milieu producing more lactate and CO2 (Böhme 

and Bosserhoff, 2016). Acidic pH triggers oncogenic signalling and enhances the metastatic 

potential of cancer cells. Furthermore, acidosis has been associated with poor clinical prognosis 

(Dhup et al., 2012). Peppicelli et al. showed that acidity triggers an EMT program and increases 

invasiveness of melanoma cells which, in turn, potentiates migration capacity and development of 

lung metastasis into immunodeficient cells grown in standard pH (Peppicelli et al., 2014). Robey et 

al. reported that the administration of bicarbonate to a mouse model of metastatic breast cancer 

reduces cell dissemination, providing evidence that increasing tumour pH to a physiological level is 

crucial to abrogate progression to metastasis (Robey et al., 2009). In fact, acidosis can induce the 

expression or the secretion of proteolytic enzymes leading to the degradation of the extracellular 

matrix, which is a crucial step for migration and invasion of cancer cells (Kato et al., 2005; Rofstad 

et al., 2006) and it can also promote angiogenesis triggering the expression of VEGF (Fukumura et 

al., 2001). Furthermore, an acidic tumour microenvironment has been shown to contribute to drug 

resistance by stimulating the activity of drug efflux pumps (Thews et al., 2011) and reducing the 

uptake of weak base drugs (Mahoney et al., 2003).  
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In this context, we additionally plan to test the absorbency of BRAF inhibitors in an acidic versus 

basic medium. In acidic media, the basic vemurafenib might get protonated and be poorly absorbed 

by cells and this simple fact might also play a role in melanoma drug resistance. The management 

of tumour pH would not only increase drug efficacy but also reduce metastasis formation. Pathways 

leading to acidification often produce NADPH, which is important in the antioxidant defense. 

Targeting those pathways will inhibit or reduce ROS defense and consequently extracellular 

acidification.   

To further add complexity to the metabolic reprogramming of tumour cells, a metabolic symbiosis 

among different tumour cell subpopulations, generating and using lactate, may also take place and 

contribute to tumour cell dissemination (Sonveaux et al., 2008). Numerous studies have shown that 

cancer progression is highly dependent on cancer-associated fibroblasts (CAFs), the major cellular 

stromal component in tumours. CAFs are not tumourigenic themselves, but are important in 

promoting tumour growth and metastasis.  Whitaker-Menezes and colleagues identified a cross-

talk between CAFs and breast cancer cells in which CAFs undergo aerobic glycolysis and produce 

lactate, which is utilized as a metabolic substrate by adjacent cancer cells (Whitaker-Menezes et al., 

2011). 

Overall, a better understanding of cancer metabolic reprogramming is certainly needed. Exploiting 

the unique features of tumour metabolism for cancer treatment, is a promising direction in cancer 

research. We are confident that the presented data together with the suggested follow-up 

experiments, will improve our understanding of metabolic rewiring in melanoma and may aid the 

development of novel melanoma-targeting therapeutic approaches. 

 

5.3 Mechanisms of drug resistance 

Despite the recent success stories of drugs targeting the MAPK signaling pathway and 

immunotherapy in melanoma, the majority of patients with metastatic disease still undergo disease 

progression after initial tumour shrinkage indicating a gradual development of therapy resistance. 

We and many others have identified mechanisms of resistance in melanoma involving various 

kinases (e.g. cKit, EGFR, COT, RAS and other receptor tyrosine kinases) most often resulting in the 

reconstitution of the drug-inhibited MAPK or AKT signalling pathways (Winder and Virós, 2017). 

Ongoing clinical studies worldwide currently evaluate different inhibitors or inhibiting antibodies 

alone or in combination in advanced stage melanoma patients to delay the onset of drug resistance. 

Moreover, additional and new treatments should be administered as soon as patients show signs 

of drug resistance, side effects or lack of measurable effects. 
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It has been shown that EVs contribute to the dissemination of the resistant phenotype through 

different mechanisms (Sousa et al., 2015). Understanding how often and how efficiently EV transfer 

occurs in vivo remains a technical challenge and it is still an open question as to the functional 

consequences of EV cargo in recipient cells. 

 

The role of ALK in drug resistance 

In the third manuscript (chapter 4.3, Cesi et al., in prep), we identified the overexpression of ALK as 

a potential novel mechanism responsible for drug resistance in melanoma. Interestingly, ALK was 

also found packaged and functional in EVs shed by drug resistant cells suggesting that ALK might be 

implicated in the acquisition of drug resistance traits in sensitive cells. The best described mediators 

of drug resistance transported by EVs are mostly miRNAs and drug efflux pumps (Bach et al., 2017). 

We describe here for the first time a kinase-mediated horizontal transfer of drug resistance.  

In this context, we plan to broaden the scope of this study by performing in vivo experiments and 

by validating these findings in patient samples. In particular, we will stably transduce different ALK-

negative cell lines with viral particles containing the truncated form of ALK. Next, we will test both 

in vitro and in vivo the ability of ALK to confer resistance to BRAF inhibitors but also its susceptibility 

to the combination of ALK and BRAF inhibitors. Additionally, in collaboration with our clinical 

partners, we will analyze the presence of ALK in FFPE samples from resistant melanoma patients. 

Taken together, the oncogenic kinase ALK, which is shuttled between cells by EVs appears to play a 

critical role in drug resistance. 

 

5.4  Biomarkers of drug resistance 

The term biomarker has been defined by the National Institute of Health Biomarkers Definition 

Working Group as any molecule which can be “objectively measured and evaluated as an indicator 

of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic 

intervention”(Biomarkers Definitions Working Group, 2001). The ideal biomarker should be easily 

obtained with minimum discomfort, sensitive, specific and highly reproducible among clinical 

laboratories (Strimbu and Tavel, 2010). In reality, a very large number of candidate biomarkers fail 

to reach the clinic because they lack sensitivity and specificity (Diamandis, 2012). Also, in the 

context of melanoma, several biomarkers have been suggested for disease monitoring. However, 

the majority have not been incorporated into clinical routine. The levels of lactate dehydrogenase 

(LDH) and/or S100B (calcium-binding protein B) are currently still used in clinics to monitor disease 

progression despite they both have low specificity (Verykiou et al., 2014).  
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The relative 5-year survival rate for stage II patients fluctuates between 80% (stage IIA) and 50% 

(stage IIC) (Balch et al., 2009). These differences in survival strongly suggest that in some patients 

metastatic spread has occurred and could not be detected by conventional methods (Stark, 2017). 

Although tremendous global efforts have gone into identifying biomarkers of therapy response or 

drug resistance, the search is still ongoing. In the increasing body of new therapies recently 

approved by the FDA, as well as many more under development for the treatment of melanoma, 

there is an urgent need of highly sensitive and reliable biomarkers to indicate the stage of disease 

and upcoming resistance to the applied treatment. In this context, it has been shown that 

circulating tumour DNA (ctDNA), which derives from cancer cells undergoing apoptosis or necrosis, 

allowed the assessment of therapy response in breast and colon cancer (Garcia-Murillas et al., 

2015; Murtaza et al., 2013). In plasma samples collected from advanced stage melanoma patients, 

Girotti et al. showed that ctDNA generally revealed the disease course earlier than imaging, and 

that it was more accurate at predicting responses than serum LDH (Girotti et al., 2016).  

Furthermore, in recent years, miRNAs have been studied as diagnostic biomarkers in several 

malignancies (Fattore et al., 2017). The underlying idea of measuring miRNAs in the circulation is 

that cancer might induce changes in the levels of secretion so that different amounts and profiles 

of miRNAs in circulation might be informative of the disease state or response to treatment. The 

correlation between miRNA signatures and the responses of specific therapies derives from the 

observation that miRNAs can also be involved in chemoresistance (Lei et al., 2013; Mosakhani et 

al., 2012). Whether these small non-coding RNA molecules might be used to predict responses to 

various cancer treatments is still an open question. Our group has previously shown that circulating 

miRNAs only change significantly at late stages of melanoma progression compared to controls. 

This observation has serious implications for miRNA biomarker studies in cancer and questions their 

utility as early diagnostic marker for melanoma (Margue et al., 2015). 

Another interesting source of biomarkers can be found in EVs.  The EV cargo represents a snapshot 

of the parental cell at the time of release and can change depending on the status of the cell (Cesi 

et al., 2016). This observation suggests that EV content is dynamic and mirrors the events in the 

parental cells, providing opportunities and challenges in the evaluation of EVs as biomarkers. The 

collection and analysis of EV content from blood could be considered as a “liquid biopsy”, thus 

avoiding performing surgical procedures to sample tissue for biopsies (Figure 23). As an example, 

circulating EVs from glioblastoma patients contained EGFRvIII mRNA, which can be accurately 

measured for glioblastoma diagnosis (Skog et al., 2008). Similarly, miRNA-21 and miRNA-1246 were 

significantly elevated in EVs isolated from plasma of patients with breast cancer compared to 

controls (Hannafon et al., 2016). Although this new field of EV-based biomarkers is promising, lack 
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of standard protocols to isolate a pure EV population, heterogeneity of EV populations but also of 

blood samples and the amount of recovery represent major obstacles for their clinical use. Despite 

these challenges, in order to elevate the EV research to the next level for EV utilization for cancer 

diagnosis, appropriate combined platforms including next generation sequencing of EV RNAs and 

DNAs, proteomic analysis of EV surface proteins, and immune-affinity capturing techniques have to 

be developed. 

 

 

Figure 23. Extracellular vesicles as potential sources for molecular profiling. 

EVs circulate in body fluids and they can be recovered and profiled. Profiling of proteins, miRNAs and nucleic 

acids may reveal signatures of drug resistance or disease progression. 

 

In search of further resistance mechanisms and corresponding biomarkers, we have profiled 

miRNome and transcriptome changes in melanoma cells developing resistance to BRAF kinase 

inhibitors and found several miRNAs (such as miR-509-3p, miR-708-5p) and new candidate genes 

(such as PCSK2) likely to be involved in drug resistance (Kozar et al., 2017). The identified candidates 

might also be considered as prognostic and/or diagnostic resistance biomarkers in melanoma drug 

resistance. In fact, while the majority of miRNAs are found intracellularly, a significant number of 

miRNAs as well as proteins have been observed outside of cells, in various body fluids and packaged 

in extracellular vesicles (Bach et al., 2017). Interestingly, the upregulated miR-509 and PCSK2 

identified in the resistant cell lines in our study (Kozar et al., 2017), have also been identified in 

resistant EVs isolated from the resistant A375X1 clone (Cesi et al., in prep. and additional data on 

page 113) suggesting their potential as biomarkers of drug resistance.  
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In this context, we are currently in the process of collecting plasma samples from patients before 

and after the development of drug resistance to targeted therapies and we plan to validate these 

findings in patient samples. If promising biomarkers can be identified around the point of emerging 

drug resistance, we envisage to enroll in an ISO-certified biomarker validation program at the IBBL 

(Biobank Luxembourg). 

 

5.5 Towards novel strategies for clinical treatment of melanoma patients 

In the last decade, melanoma treatment has dramatically improved. Patients affected by stage II or 

III melanoma were initially treated with interferon-alpha (INF-) adjuvant therapy. Despite the high 

toxicity, INF- showed modest efficacy (Tsao et al., 2004). For patients with late stage disease, 

chemotherapeutic drugs (such as dacarbazine and cisplatin), radiotherapy as well as interleukin-2 

have been approved by the FDA for the treatment of metastatic disease (Tsao et al., 2004) and are 

still used in some patients. 

Oncology research is currently moving towards a new era of precision medicine where therapeutic 

approaches are based on the individual genomic landscape as well as on environmental and lifestyle 

factors. Precision medicine has been fueled by the enormous progress in high-throughput 

sequencing methods, which enable clinicians to detect rapidly and by now affordably genetic 

aberrations. However, differentiating mutations that do not have any impact on cell growth and 

survival from those that do, is still a challenge (Collins et al., 2017). In order to be classified as an 

oncogene, more than 20% of the recorded mutations in that particular gene have to be at recurrent 

positions and have to be missense (Vogelstein et al., 2013). Accordingly, for a tumour suppressor 

gene, >20% of the recorded mutations in the gene have to be inactivating. Following this rule, 71 

tumour suppressor genes and 54 oncogenes have been identified (Vogelstein et al., 2013). To date, 

several oncogenes have been successfully targeted with inhibitors like Vemurafenib for the 

treatment of BRAFV600-positive melanoma, Crizotinib for ALK-positive lung cancer or Gefitinib for 

EGFR-mutant cancers. Nevertheless, large scale sequencing efforts have also revealed that some 

tumours including melanoma, are characterized by a tremendous genomic variability, which leads 

to subclonal aberrations with inter- and intratumour heterogeneity, making therapeutic strategies 

difficult (Alexandrov et al., 2013; Collins et al., 2017). In the context of melanoma, tumour 

heterogeneity is certainly considered a key factor that might lead to treatment failure or to mixed 

responses (Ahn et al., 2017). Over the past few years, the implementation of accurate screening 

programs together with major advances in melanoma treatment have vastly improved the outcome 

for advanced stage patients. A frequently observed scenario in melanoma patients treated with 
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kinase inhibitors is an initial tumour regression followed by drug resistance, which is mostly due to 

subpopulations of cells able to survive drug toxicity and to rapidly acquire new mutations (Ahn et 

al., 2017). Even when the treatment leads to complete remission, patients can relapse later and 

become irresponsive to the therapy suggesting the presence of quiescent, slow-cycling melanoma 

cells, which were drug-tolerant from the beginning (Tolk et al., 2015). Shaffer et al. recently showed 

that melanoma cells display a tremendous transcriptional variability at single cell level with a small 

percentage of cells characterized by higher levels of resistance markers and by a drug-tolerant 

phenotype (Shaffer et al., 2017). Current treatments aim to hit the bulk of a tumour but recent 

studies indicate that the slow-cycling cell populations are still aggressive and invasive (Webster et 

al., 2015). As previously mentioned, the standard care for BRAF-positive patients has shifted from 

BRAF inhibitors used as monotherapy to a combination therapy with BRAF and MEK inhibitors 

(Garbe et al., 2016). Additionally, immunotherapy has moved from cytokine-based treatment to 

antibody-mediated blockade of immune checkpoints. However, given the short-lived responses and 

side effects, new combination therapies are currently being explored to further increase clinical 

benefits in a more personalized manner. Ongoing clinical trials are testing, for instance, a triple 

therapy with BRAF, MEK and PD1 or PD-L1 inhibitors administered concomitantly or consecutively 

(Luke et al., 2017). Phase I studies have shown so far that this triple combination is well tolerated 

and effective (Eroglu and Ribas, 2016).  

Many more combinations or new drugs are currently being investigated in clinical studies 

worldwide (https://clinicaltrials.gov) including autophagy inhibitors and histone deacetylase 

inhibitors (Booth et al., 2017; Ndoye and Weeraratna, 2016). Although this might eventually lead 

to the discovery of better drug combinations or treatment regimens, the prior knowledge of the 

molecular background of each patient or the identification of specific biomarkers for therapy 

responses would facilitate a more personalized therapy with higher chances for long term remission 

(Long et al., 2016). In this context, an extensive area of cancer research is focusing on the 

identification of neoantigens, peptide epitopes bound to MHC complexes exposed on the cell 

surface of malignant cells to selectively enhance T cell reactivity (Schumacher and Schreiber, 2015). 

This would allow the development of novel therapeutic approaches such as personalized vaccines 

that could broaden the number of patients responding to immunotherapies (Wang and Wang, 

2017). 

 As previously stated, cancer metabolism has become an area of intensive research, which aims to 

identify altered metabolic pathways that could be targeted to slow down cell growth or to induce 

apoptosis of cancer cells, saving normal cells. Two populations of cells are often described in a 

tumour: slow-cycling cells, which appear senescent and prone to develop drug resistance (Roesch 

https://clinicaltrials.gov/
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et al., 2013) and which mostly rely on oxidative phosphorylation whereas proliferating melanoma 

cells utilize glycolytic pathways. The existence of a such heterogeneity within the metabolic 

pathways of different cancer types, or cancers of different tissues, or even cancer cells within the 

same tumour, makes the identification of a precise cancer metabolic signature very difficult 

(Rahman and Hasan, 2015). Nevertheless, drugs that might specifically inhibit key metabolic steps 

associated with tumour growth are currently at various stages of development. These include drugs 

that inhibit enzymes involved in glucose uptake and glycolytic pathways, amino acid, fatty acid and 

nucleotide biosynthesis as well as signaling pathways that modulate cancer metabolism such as 

TLN-232 (pyruvate kinase inhibitor) or ADI-PEG-20 (inhibitor of arginine synthesis).  Although these 

drugs are not FDA approved for clinical use in melanoma, several are in phase I or II clinical trials 

(Rahman and Hasan, 2015).  

The development of these new strategies is targeted at prolonging clinical benefits and delaying 

drug resistance. When drug resistance appears, the simplest approach currently used in clinics is to 

change a patient’s therapeutic regimen to another, or to add another compound to the regimen 

without knowing the real drug resistance drivers. Indeed, repeated biopsies to study genomic 

alterations after therapies would be invasive and difficult to obtain (Girotti et al., 2016). Moreover, 

the molecular profile of a tumour evolves dynamically over time (Siravegna et al., 2017). Again, the 

identification of circulating biomarkers, which would allow for an early assessment of drug 

resistance might represent a significant leap towards more precise therapeutic approaches. Of 

note, blood samples contain cell­free DNA, cells and vesicles that can originate from different 

tissues, including cancers. The possibility of using blood as liquid biopsy to study the molecular 

landscape of a tumour has attracted remarkable interest and many studies have already illustrated 

the potential of this method to determine the genomic profile of cancer patients, to monitor 

treatment responses, to quantify minimal residual disease, clonal evolution and to assess the 

emergence of therapy resistance (Siravegna et al., 2017). However, before this is becoming routine 

clinical practice, more sensitive, accurate and affordable methods need to be developed. 

In future, further advances in sequencing approaches able to detect low-frequency events 

occurring before and during treatment together with advances in the field of liquid biopsy, will 

enable the identification of resistance at earlier timepoints. Consequently, a better guidance will 

be available towards the choice of a more accurate second-line treatment option, which is crucial 

to improve patient outcomes in melanoma care. 

 

In summary, this PhD project provides new findings in the field of melanoma biology and treatment. 

In the first part of this project (Cesi et al., 2017), we mostly focused on drug sensitive melanoma 
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cells. We described adaptive metabolic alterations in response to BRAF inhibitors and using a PDK 

inhibitor, we reverted those alterations to induce oxidative stress and arrest cell growth. In the 

second, third and last part, we focused on melanoma drug resistance and on potential biomarkers. 

Heterogeneous changes on the miRNome and transcriptome were identified in drug-resistant 

versus drug-sensitive cells and several interesting candidates will be followed up (Kozar et al., 2017). 

Finally, we could show that EVs released from drug-resistant cells can propagate resistant traits to 

sensitive cells by transferring ALK. Therefore, we suggest a new drug combination for ALK and 

BRAFV600 positive cells and the use of EVs to track resistance mechanisms (Cesi et al, in prep). 

Combining these different approaches and data, we hope to further contribute to improved clinical 

options for clinical care of melanoma patients.
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