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Abstract

Nowadays, the External Markup Language (XML) is the most commonly used

technology in web services for enabling service providers and consumers to ex-

change data. XML is also widely used to store data and configuration files that

control the operation of software systems. Nevertheless, XML suffers from sev-

eral well-known vulnerabilities such as XML Injections (XMLi). Any exploita-

tion of these vulnerabilities might cause serious and undesirable consequences,

e.g., denial of service and accessing or modifying highly-confidential data. Fuzz

testing techniques have been investigated in the literature to detect XMLi vul-

nerabilities. However, their success rate tends to be very low since they cannot

generate complex test inputs required for the detection of these vulnerabilities.

Furthermore, these approaches are not effective for real-world complex XML-

based enterprise systems, which are composed of several components including

front-end web applications, XML gateway/firewall, and back-end web services.

In this dissertation, we propose several automated security testing strategies for

detecting XML-based vulnerabilities. In particular, we tackle the challenges of

security testing in an industrial context. Our proposed strategies, target vari-

ous and complementary aspects of security testing for XML-based systems, e.g.,

test case generation for XML gateway/firewall. The development and evaluation

of these strategies have been done in close collaboration with a leading finan-

cial service provider in Luxembourg/Switzerland, namely SIX Payment Services

(formerly known as CETREL S.A.). SIX Payment Services processes several

thousand financial transactions daily, providing a range of financial services, e.g.,

online payments, issuing of credit and debit cards.

The main research contributions of this dissertation are:

• A large-scale and systematic experimental assessment for detecting vulner-

abilities in numerous widely-used XML parsers and the underlying systems

using them. In particular, we targeted two common XML parsers vulner-

abilities: (i) XML Billion Laughs (BIL), and (ii) XML External Entities

(XXE).



• A novel automated testing approach, that is based on constraint-solving

and input mutation techniques, to detect XMLi vulnerabilities in XML

gateway/firewall and back-end web services.

• A black-box search-based testing approach to detect XMLi vulnerabilities in

front-end web applications. Genetic algorithms are used to search for inputs

that can manipulate the application to generate malicious XML messages.

• An in-depth analysis of various search algorithms and fitness functions, to

improve the search-based testing approach for front-end web applications.

• Extensive evaluations of our proposed testing strategies on numerous real-

world industrial web services, XML gateway/firewall, and web applications

as well as several open-source systems.
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Chapter 1

Introduction

1.1. Context

Nowadays, web applications have a significant impact on our daily life, providing various

services (e.g., e-commerce, mobile banking, social networking) and serving millions of users.

On the downside, the growing usage of web technologies makes web services an attractive

target for attackers. In 2012, the Web Application Vulnerability Statistics Report [1] revealed

that 99% of web applications (within a sample of 5000 applications) had, at least, one

vulnerability while 82% had, at least, one critical vulnerability. A later study by Berry and

Niv [2] revealed that web applications experience, on average, 27 attacks per hour. The

WhiteHat Security Report [3] found an average of 79 serious vulnerabilities per web site per

year. The Open Web Application Security Project (OWASP) lists the top 10 most frequent

web application security vulnerabilities. According to the ranking, injection attacks (e.g.,

XML, SQL, LDAP) are the most dangerous web attacks and their impact is severe. Injection

attacks exploit the validation procedures for user inputs to inject malicious code that can

cause the application to disclose sensitive information or behave in an unintended way.

This dissertation focuses on XML-based vulnerabilities that typically affect web services

and applications as well as XML parsers. An XML-based web service or application relies

on XML parsers to correctly parse the XML messages that it receives. Attacks on such

web services or applications may target the application/service itself or the associated XML

parser. As depicted in Figure 1.1, we identified and investigated three well-known vulner-

abilities related to XML-based systems. The first vulnerability, XML Billion Laugh (BIL),

is used to launch a denial of service attack on the parser with the aim of undermining the
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Figure 1.1: Vulnerabilities in XML-based System

availability of the system. The second vulnerability, called XML External Entity (XXE ),

also uses the XML parser to disclose sensitive information affecting the confidentiality of

the system. The third XML-based vulnerability, namely XML Injection (XMLi), is aimed

at compromising the integrity of the web service or application by injecting malicious code

into XML messages. Among these three XML-based vulnerabilities, the dissertation mainly

focuses on XMLi , which is the most critical one according to the OWASP ranking.

In particular, we investigate the challenges of security testing for XML-based vulnera-

bilities in an industrial context. We explore the prevalence of these vulnerabilities in web

services and applications, and develop several security testing strategies to automatically

and effectively detect them. The development and the evaluation of such strategies have

been done in close collaboration with SIX Payment Services (formerly known as CETREL

S.A.), which is a leading financial service provider in Luxembourg and Switzerland. The

company provides services to its clients (e.g., banks/merchants) through a range of web

services accessible via the Internet. Such financial data (e.g., credit card details) have to

be properly protected to avoid attackers disclosing and manipulating them. Therefore, SIX

Payment Services has a strong interest in thoroughly testing their web services. XML is

the core part of SIX’s IT infrastructure since it is used for both (i) providing services to

their clients and (ii) for internal communication between sub-systems. Although the testing

strategies developed in this dissertation mainly target the SIX Payment Services, they are

meant to be general and can be applied to other systems. Indeed, our strategies have been
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also evaluated with several open-source systems as well as a real-world web application 1

having millions of registered users.

1.2. Research Problem and Motivation

Several XML-based vulnerabilities have been discovered and reported over the years [4, 5].

They provide opportunities for denial of service attacks or malicious data access and manip-

ulation. As a consequence, systems that rely on XML are at risk if they are not designed

and tested properly against such attacks. Such systems include (i) XML parsers, (ii) web

services/applications , and (iii) other systems that read XML input data or configurations.

Despite the research and development efforts devoted to secure software and systems, XML-

based vulnerabilities are still widely common [6, 7]. The presence of such vulnerabilities and

their successful exploitation can be due to the lack of secure coding practices, incompetence

or unawareness of developers, and incomplete/inappropriate security testing due to time and

resource constraints.

In the following, we list the key challenges to face when dealing with XML-based vulner-

abilities and the solutions we propose to address them.

Insecure use and configuration of XML parsers: Due to the lack of security expertise

and development time pressures, many XML parsers are not configured securely before

they are deployed within web services and applications. As a result, such systems become

susceptible to vulnerabilities like BIL and XXE that may result in denial of service and

information leakage. While these types of vulnerabilities have been identified and discussed

in the literature [4, 5, 8], no prior work assessed, in a systematic and rigorous manner, to

study BIL and XXE vulnerabilities in XML parsers and the associated open-source systems.

In the first part of this dissertation, we perform a systematic and large-scale exploratory

study to test most popular XML parsers that are widely used in open-source systems. We

also propose a testing approach that detects attacks affecting XML parsers by measuring

their impact on CPU time and memory consumption. This approach will be discussed in

Chapter 3.

Security Testing for XML Injections in Industrial Context: Enterprise systems used

in industry are composed of several components (e.g., SOAP web services, web applications).

Figure 1.2 depicts a typical three-tiered XML-based business application [9]. It consists of

1The name of the application/company cannot be disclosed to preserve confidentiality.
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different components that work in a harmonized fashion: front-end systems (typically web

applications), an XML gateway/firewall, and the back-end web services or databases. In a

typical scenario, the front-ends receive user inputs and generate XML messages, which are

forwarded to the XML gateway/firewall. At this stage, malicious XML messages are filtered

out while the benign ones are sent to the back-end web services (or databases). Attackers

may exploit XML-based vulnerabilities at any tier, e.g., targeting the front-end system or

the XML gateway/firewall. Therefore, it is important to effectively test all components of

such a multi-tiered enterprise system, for vulnerabilities.

1. Testing the front-end systems (web applications):

The security of front-end web applications is paramount as an attacker can directly

interact with them via web forms. As depicted in Figure 1.2, these applications re-

ceive user inputs, produce XML messages, and send them to back-end web services

for processing (e.g., as part of communications with SOAP and RESTful web ser-

vices [10, 11]). If such user inputs are not properly validated, malicious XML messages

can be generated that can further compromise the back-end web services where these

messages are consumed. In practice, there exist approaches based on fuzz testing (e.g.,

ReadyAPI [12], WSFuzzer [13]), that try to send some XML meta-characters (e.g.,

<) and seek for abnormal responses from the systems under test (SUTs), i.e., front-

end web applications in this case. These approaches might be able to detect simple
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XMLi vulnerabilities for small applications where the user inputs are used in the gener-

ated XML messages without any modifications. However, they typically fail to detect

subtler vulnerabilities, especially for complex web applications where user inputs go

through various transformation procedures (e.g., encoding, sanitization) before they

are utilized in generating XML messages.

To address the challenges described above, we propose an automated testing approach

based on Genetic Algorithm (GA) [14] to search for effective test cases (user input-

s/attacks patterns) that can circumvent the security of the front-end web applications.

We first identify a set of malicious XML messages, that are known to affect the back-

end. Then, we develop a strategy to determine whether such XML messages can be

generated starting from the input forms of the web application in the front-end. In

other words, we test the input sanitization of the front-end, as malicious input should

be sanitized before generating the complete XML message. This approach will be

discussed in Chapters 5 and 6.

2. Testing the XML gateway/firewall and back-end web services:

Testing back-end web services or databases that are protected by an XML gateway/-

firewall is another security challenge that state-of-the-art tools [12, 13] fail to address.

The XML gateway/firewall is configured using XML schema and security policies de-

fined by the organization to ensure that the received messages are well-formed and

valid. Since state-of-the-art tools only generate simple test cases by inserting XML

meta-characters (e.g., <) in the messages, they can be easily detected and blocked by

the XML gateway/firewall when checking for validity of these messages. Therefore,

techniques that generate more complex attacks able to bypass the XML gateway/fire-

wall are needed.

To this aim, we propose a novel automated testing approach that covers a wide range

of XMLi attacks. Our approach makes use of a constraint solver to automatically

generate well-formed and valid XML messages with respect to the domain constraint

(e.g., security policies used in the XML gateway/firewall), that also contain malicious

content. This ensures that the generated XML messages are not easily detected by the

XML gateway/firewall and have higher chances to access and compromise the back-end

web services. This approach will be presented in Chapter 4.

The testing strategies, that will be presented in this dissertation, together provide a

holistic approach for the automatic and effective detection of XML-based vulnerabilities.
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1.3. Research Contributions and Organization

This dissertation presents several complementary security testing approaches to automati-

cally and effectively detect XML-based vulnerabilities in web services and applications.

Specifically, we make the following contributions:

• A large-scale systematic experimental assessment of widely-used XML parsers and a

large number of underlying systems using those parsers with respect to two common

XML-based vulnerabilities: (i) BIL and (ii) XXE. We develop a testing approach

based on various performance measurements (e.g., memory consumption, CPU time)

to detect these two vulnerabilities. Our results provide a clear and solid scientific

evidence about the extent of the threat associated with these vulnerabilities. In turn,

this can help raise awareness among software developers regarding security measures

for XML parsers. This contribution has been published in a conference paper [6] and

is discussed in Chapter 3.

• A novel automated testing approach and tool, namely SOLMI, to detect XMLi vul-

nerabilities in XML gateways/firewalls and back-end web services. The approach uses

constraint-solving and input-mutation techniques to generate valid but malicious XML

messages (test cases) that correspond to potential injection attacks. Test cases (at-

tacks) generated with this approach, have a higher chance of bypassing XML gate-

ways/firewalls to reach the back-end web services. We also present a taxonomy of

XMLi attacks, leading to the definition of XML mutation operators to be used for

testing purposes. This contribution has been published in a conference paper [7] and

is discussed in Chapter 4.

• A black-box testing technique for front-end systems (web applications), based on

Search-Based Testing (SBT) [15], to search for sophisticated and effective test cases (at-

tacks) to detect XMLi vulnerabilities. The approach first utilizes SOLMI to generate

malicious XML messages that have a higher chance of bypassing the firewall. A Genetic

Algorithm (GA) is then used to search for inputs for the front-end web application,

in an attempt to generate XML messages matching the malicious ones, i.e., previously

created using SOLMI. A fitness function based on string edit distance is used to guide

the search towards the generation of malicious XML messages. This contribution has

been published in a conference paper [16] and is discussed in Chapter 5.

• A technique to improve the search-based testing approach targeting front-end systems

(web applications). We investigate four different search algorithms and two fitness

6
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functions and provide an in-depth analysis by comparing all possible combinations

of these fitness functions and search algorithms to determine the most effective and

efficient combination for detecting XMLi vulnerabilities. This contribution has been

submitted to IEEE Transactions on Software Engineering journal and is currently

under review. Chapter 6 presents this approach.

• Extensive evaluation on real-world industrial web services, XML gateway/firewall, and

web applications. The presented approaches in this dissertation have been evaluated

on SIX’s Payment Services and also on one real-world web application having millions

of registered users. For generalizability, we have also carried out the evaluation of our

approaches on many popular XML parsers and open source systems.

1.4. Dissemination

The research work presented in this dissertation has led to the following publications:

Published papers

• Jan, Sadeeq; Nguyen, Duy Cu; Briand, Lionel (2015). “Known XML Vulnerabilities

Are Still a Threat to Popular Parsers and Open Source Systems.” In Proceedings of

IEEE International Conference on Software Quality, Reliability and Security (QRS),

Vancouver, BC, 2015, pp. 233-241.

This paper is the basis for Chapter 3.

• Jan, Sadeeq and Nguyen, Cu D. and Briand, Lionel C. “Automated and Effective Test-

ing of Web Services for XML Injection Attacks.” In Proceedings of the 25th Interna-

tional Symposium on Software Testing and Analysis (ISSTA), Saarbrucken, Germany,

2016, pp. 12-23.

This paper is the basis for Chapter 4.

• Jan, Sadeeq; Nguyen, Duy Cu; Briand, Lionel. “A Search-Based Testing Approach for

XML Injection Vulnerabilities in Web Applications.” In Proceedings of IEEE Inter-

national Conference on Software Testing, Verification and Validation (ICST), Tokyo,

2017, pp. 356-366.

This paper is the basis for Chapter 5.
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Submitted papers (under review)

• Jan, Sadeeq; Annibale, Panichella; Briand, Lionel. “Automatic Generation of Tests

to Exploit XML Injection Vulnerabilities in Web Applications”. This paper has been

submitted to IEEE Transactions on Software Engineering and is currently under re-

view.

This paper is the basis for Chapter 6.
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Chapter 2

Background on XML-based

Vulnerabilities

This section describes the three well-known XML-based vulnerabilities that we target in

this dissertation. First, we introduce the two vulnerabilities related to XML parsers: (i)

XML Billion Laughs (BIL) and (ii) XML External Entities (XXE ). Next, we describe XML

Injection (XMLi) vulnerabilities, which target XML-based web applications and services.

2.1. Vulnerabilities in XML Parsers

Standardised by the W3C [17], Document Type Definition (DTD) is a mechanism to define

legal building blocks (e.g., elements, types, or content) of XML documents [18]. Many XML

parsers support DTD. However, when these parsers are used improperly or the developers are

unaware of such a DTD support feature, the resulting software systems might be vulnerable

to DTD-based attacks. XML Billion Laughs (BIL) and XML External Entities (XXE) are

two such attacks to exploit vulnerabilities in XML parsers.

2.1.1 XML Billion Laughs (BIL)

BIL, also known as ‘XML Bomb’, uses the concept of XML entity reference to launch denial

of service attacks. An XML entity is a variable defined for creating a reference to some

content in the document or external data. In this type of attack, a block of XML is created

9
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<?XML version="1.0"?>

<!DOCTYPE lolz [

<!ELEMENT lolz (#PCDATA)>

<!ENTITY lol "lol">

<!ENTITY lol1 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">

<!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;">

<!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">

<!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">

<!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">

<!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">

<!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">

<!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">

<!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">

]>

<lolz>&lol9;</lolz>

Figure 2.1: Example of an XML Bomb, an attack that uses the reference mechanism in XML.

that is well-formed (conforms to W3C syntax rules for XML) [17] but forces a target parser

to consume a large amount of resources (Memory or CPU).

Figure 2.1 depicts an example that can be used for this kind of attack. In this example, 10

entities (‘lol’-‘lol9’) are created where each entity contains 10 references to the previous entity.

The XML parser has to parse the entity ‘&lol9;’ that is encountered in the root element ‘lolz’,

which further contains several entity references ‘&lol8;’. Because of this recursion, when the

parser resolves all entity references found in those 10 entities in this XML document, it

expands to one billion copies of the first entity, occupying a very large amount of memory.

The target of BIL is a denial of service attack on XML parsers that may lead to the

unavailability of systems that use such parsers. The impact of this vulnerability can be very

dramatic. With a very small XML file (a few hundred bytes) an attacker can occupy several

gigabytes of memory and can also keep the CPU busy for a long time, effectively preventing

legitimate traffic from being processed. In order to ensure the availability of web services

and systems using XML Parsers, it is very important to test the parsers for the presence of

BIL vulnerabilities.

10
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2.1.2 XML External Entities (XXE)

XML External Entities allow the inclusion of data dynamically from a given resource (local

or remote) at the time of parsing. This feature can be exploited by attackers to include

malicious data from external URIs or confidential data residing on the local system. If XML

parsers are not configured to prevent or limit external entities, they are forced to access the

resources specified by the URI [19].

Consider the following simple XML:

<?XML version="1.0"?>

<!DOCTYPE myFile [

<!ELEMENT myFile ANY >

<!ENTITY xe SYSTEM "file:///etc/passwd">

]>

<myFile>&xe;</myFile>

This is a well-formed XML document. During parsing, the parser will replace the external

entity ‘&xe;’ with the content of the system file ‘/etc/passwd’, which contains confidential

information and might be disclosed. Another example, if the URI ‘file:///etc/passwd’ is

replaced by a link to a malicious server that never responds, the parser might end up waiting,

thus causing delays in the subsequent processes.

Successful exploitation of this vulnerability may result in sensitive data disclosure, denial

of service, or gaining unauthorized access to the system resources. If an XML parser does not

block external entity expansion and is able to access the referred content, one user may be

able to gain unauthorized access the data of other users, leading to a breach of confidentiality.

2.2. Vulnerabilities in Web Applications and Services

In this section, we give an overview of XML injection vulnerabilities and their impact on the

web services and applications.

2.2.1 XML Injections (XMLi)

XML Injection (XMLi) attacks are carried out by injecting pieces of XML code along with

malicious content into user inputs in order to produce harmful XML messages. The aim

11
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Figure 2.2: The typical service communication scenario.

of this type of attacks is to compromise the system or system component that receives

user inputs, making it malfunction (e.g. crash), or to attack other systems or subsequent

components that process those injected XML messages.

The malicious content embedded in XMLi are called “nested” attacks. They can be SQL

injection, Cross-site Scripting, or Privilege Escalation [20]. Because XMLi is often a vehicle

to carry other attacks, the direct impact caused by XMLi , apart from its potential to crash

a target, is negligible but the secondary impact caused by nested attacks can be very serious

(e.g. SQLi can lead to data breaches). Therefore, XMLi is often discussed in combination

with other types of attacks.

Figure 2.2 illustrates the typical information flow between a service consumer and a ser-

vice provider. The service consumer takes user inputs (strings), generates XML messages,

and sends them to the service provider. At the provider’s end, XML messages are often

checked by a so-called XML gateway1 for validity and security concerns before being for-

warded to other service components. Following this scenario, an attacker can inject XML

code and malicious content via inputs of the service consumer, which can then be injected

into XML messages (XMLi attacks) produced by the service consumer. Such messages, if

not identified and blocked by the XML gateway or the service provider, can cause a security

breach.

1E.g., Axway’s API Gateway
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Figure 2.3: The user registration web form having three input fields: User Name, Password,

and Email.

<?xml version="1.0"?>

<users>

<user>

<username>David</username>

<password>Lux-230</password>

<userid>300</userid>

<mail>david@uni.lu</mail>

</user>

....

....

</users>

Listing 2.1: An example of an XML database for storing user registration.

Consider a concrete example in which users can register themselves through a web portal

to a central service1. Once registered, a user can access different functionalities offered by

the service. User registration data are stored in the XML registration database depicted

in Listing 2.1. Notice that inside the XML message, each user element has a single child

element, called userid, that is inserted by the application to assign privileges, users are not

allowed to modify it.

The web portal has a web form (shown in Figure 2.3) with three user input fields user-

1This example is inspired by the example given by the Open Web Application Security Project (OWASP).
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Figure 2.4: An example of an injected SOAP message.

name, password, and email. Each time a user submits a registration request, the application

invokes the following piece of JAVA code to create a XML SOAP message and sends it to

the central service. Notice that the getNewUserId() method is invoked to create a new user

identifier and no user modification of userid is expected.

1 soapMessage = "<soap:Envelope><soap:Body>"

2 + "<user>"

3 + "<username>"+r.getParameter("username")+"</username>"

4 + "<password>"+r.getParameter("password")+"</password>"

5 + "<userid>"+getNewUserId() + "</userid>"

6 + "<mail>"+r.getParameter("mail")+"</mail>"

7 + "</user>"

8 + "</soap:Body></soap:Envelope>";

9 validate(soapMessage);

14
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Even though there is a validation procedure at line 9, the piece of code remains vulnera-

ble to XML injection attacks because user inputs are concatenated directly into the variable

soapMessage without validation. Let us consider the following malicious inputs:

Username = Tom

Password = Un6Rkb!e</password><!--

E-mail = --><userid>0</userid><mail>admin@uni.lu

These inputs result in the XML message in Figure 2.4. The userid element is replaced

with a new element having the value of “0”, which we assume is reserved to the Admin-

istrator. In this way, the malicious user Tom can gain administration privilege to access

all functionalities of the central service. The message is well-formed and valid according to

the associated XML schema (i.e., the XSD). Therefore, the validation procedure does not

mitigate this vulnerability.

Similarly, by manipulating XML to exploit XMLi vulnerabilities, attackers can inject

malicious content that can carry other types of attacks. For instance, they can replace the

value “0” above with “0 OR 1=1” for an SQLi attack. If the application directly concatenates

the received parameter values into a SQL Select query, the resulting query is malicious and

can result in the disclosure of confidential information when executed:

Select * from Users where userid = 0 OR 1=1

15



Chapter 3

Testing XML Parsers for BIL and

XXE Vulnerabilities

XML parsers are used to parse the XML messages before they can be processed by a web

service or application. Various XML-based attacks on parsers have been discovered and

published [4, 5, 8], however they are often overlooked in practise. Successful exploitation of

such attacks can result in sensitive information leakage or denial of services.

In this chapter, we test popular XML parsers for two of the most common XML-based

vulnerabilities, XML Billion Laughs (BIL) and XML External Entities (XXE). First, among

publicly available parsers, 13 of them were picked that are widely used by projects hosted at

GitHub and Google Code, the two most popular open source repositories. We then submitted

to each parser a set of XML files carefully selected according to a systematic test strategy.

These test files can detect if the parser is vulnerable to the two XML-based attacks. Finally,

we observed the behaviour of the parsers in terms of memory consumption, CPU time, and

parsing results in order to assess their vulnerability. Moreover, we also investigated, based on

628 open source projects that use a vulnerable parser, whether developers properly configured

the parser to thwart these XML-based attacks or adopted other mitigation measures. The

obtained results are very alarming: most of the selected parsers are vulnerable to BIL and

XXE attacks, and no measures are taken to prevent such attacks to harm the systems using

these parsers.

The key contribution of this chapter includes a large-scale, systematic experimental as-

sessment of widely-used and well-known XML parsers and a large number of systems that
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use those parsers, with respect to two common XML-based attacks. The obtained experi-

mental results provide an unbiased and extensive evidence of the lack of mitigation for such

attacks. In turn, this can help raise awareness among software developers that appropriate

security measures are required for using such vulnerable XML parsers.

The remainder of the chapter is structured as follows. Section 3.1 describes our study:

procedure, results, and discussion. Section 3.2 discusses the related work and Section 3.3

concludes the work.

3.1. Experimental Study

This section describes our study about the security of the most popular parsers and open

source software systems that use them, with respect to XML-based attacks. First, we intro-

duce our research questions and justify our selection of subject parsers and systems. Second,

we discuss the procedure that we follow to conduct the experiments. Finally, we discuss the

implications of the findings and provide recommendations for developers.

3.1.1 Objectives

We investigate two research questions:

• RQ1: To which extent are BIL and XXE attacks successful in modern XML parsers?

• RQ2: Do software systems, which use one of the vulnerable parsers, apply mitigation

techniques for BIL and XXE attacks?

We scoped our research by focusing on parsers that are integrated with modern pro-

gramming languages and are popular in open source systems. We expect such parsers to

be widely used in practice. We focus on parsers since, when XML inputs are submitted to

a system, an XML parser used in the system needs to treat those inputs first. And if the

parser is vulnerable, the impact can be escalated to its encompassing system. In fact, there

exist many other proprietary parsers. These parsers can potentially also be vulnerable to

BIL and XXE if their developers lack knowledge about such attacks. However, they are out

of the scope of our study.
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Table 3.1: List of 13 popular XML parsers selected for our assessment.

No Parser Language Version Short Description

1 JDOM2 Java 2.0 An XML library built specifically for Java, available at www.jdom.org

2 NanoXML Java 2.2 A small non-validating parser for Java, available at nanoxml.sourceforge.net/orig

3 NanoXML-LITE Java 2.2 A successor NanoXML built for performance

4 Std-DOM Java 1.7 The standard DOM parser built in Sun/Oracle Java

5 Std-SAX Java 1.7 The standard SAX parser built in Sun/Oracle Java

6 Std-STAX Java 1.7 The standard STAX parser built in Sun/Oracle Java

7 WOODSTOX Java 4.2 A high-performance XML processor, available at woodstox.codehaus.org

8 XERCES-JDOM Java 2.11 The Apache Xerces2 DOM parser, available at xerces.apache.org/xerces2-j/dom.html

9 LXML-ETREE Python 3.3.5 A Python XML parser available at lxml.de

10 Std-ETREE Python 2.7.6 The standard XML parser built in Python

11 PERL(XML::LibXML) Perl 5.18.2 A Perl Binding for libxml2, tested in OSX 10.9

12 PHPDOM PHP 5.5.9 The standard DOM parser built in PHP

13 MSXML (DOMDocument) C#, Javascript,... 8.0.0 The Microsoft XML parser (MSXML) widely used in Windows

3.1.2 Subject Selection

We first selected the parsers that come with modern programming languages, including Java,

Python, PHP, Perl, C#. Then, we expanded our selection to widely-used, open-source XML

parsers. In total, we selected the 13 most commonly used parsers, e.g., the standard Java

DOM, Python ETree, Microsoft XML parser (MSXML). Table 3.1 lists these parsers, their

current versions and languages, and provides short descriptions.

We evaluated the adoption of the selected parsers in GitHub1 and Google Code2 to assess

how widely they are used in practice. GitHub and Google Code are highly popular open

source hosting systems. Though there exists a few more project hosting systems, such as

sourceforge.net, we focused on GitHub and Google Code since they do index source code

very well, thus making it easier to query for the use of XML parsers in the source code of

hosted projects.

On GitHub, for the Java parsers we used its search feature to query for the XML parsing

classes. For the other parsers, the queries are conjunctions of the name of the corresponding

XML processing classes or libraries and the names of the methods that parse XML inputs,

e.g., “xml.etree.ElementTree” AND “parse”. On Google Code, we used Google Search3 with

a site directive to narrow the search to solely code.google.com, and the queries were similar to

those for GitHub. For both repositories, we filtered the results to the specific language that

a parser supports. Table 3.2 shows the frequency with which these parsers on GitHub and

Google Code were adopted. These numbers might be over-approximated since the search

1https://github.com
2https://code.google.com
3http://google.com
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Table 3.2: The use of the parsers in open source systems, data collected from GitHub and

Google Code as of August 12th, 2014.

Parser Query GitHub Google Code

JDOM2 org.jdom2.input.SAXBuilder 2,861 9,380

NanoXML net.n3.nanoxml.IXMLParser 1,410 291

NanoXML-LITE nanoxml.XMLElement 6,057 4,380

Std-DOM javax.xml.parsers.DocumentBuilder 112,638 58,900

Std-SAX javax.xml.parsers.SAXParser 43,307 11,200

Std-STAX javax.xml.stream.XMLStreamReader 84,826 4,840

WOODSTOX org.codehaus.stax2.XMLStreamReader2 252 251

XERCES-JDOM org.apache.xerces.parsers.DOMParser 3,444 1,440

LXML-ETREE “lxml import etree” + parse 16,012 21,200

Std-ETREE “xml.etree.ElementTree” + parse 27,905 43,100

PERL(XML::LibXML) “XML::LibXML” + parse file 1,024 990

PHPDOM DOMDocument + loadXML 71,217 32,300

MSXML (DOMDocument) MSXML.DOMDocument + load 24,671 565

Total 395,624 188,837

can return code that was commented out or unused (discussed in Section 3.1.5). The total

number of adoptions of the parsers in both repositories goes above half a million. Except

WOODSTOX, which is adopted about 500 times, the others are much more frequently used,

ranging from a few thousand to a hundred thousand times. This clearly shows that the

selected parsers are widely used.

3.1.3 Experimental Procedure

Our experimental procedure consisted of the following steps: (i) writing code to invoke each

parser and pass XML files as input, (ii) preparing representative XML input files that can

apply BIL and XXE attacks, and (iii) running each parser to parse every prepared XML

input files and analysing CPU time, memory used, and the outputs to determine whether

the parser is vulnerable to BIL or XXE. We define a parser as XXE -vulnerable if it attempts

to expand the content of an XML input file to include a system file, a user file, or an external

resource (such as from a URL to a web page). We consider a parser as BIL-vulnerable if it

requires exceptionally high CPU time and memory when parsing XML Bombs in comparison

to parsing regular XML files (inputs that a system expects) of a similar size.
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For each parser we wrote code that invokes the parser and gives a file path as input to

the parser. We made sure that such code is minimal: all it does is to instantiate the parser

class and invoke a parsing method, without changing any default property of the parser.

We observed that this is a common usage pattern of developers when they adopt a parser,

keeping every property to default. Following is an excerpt of code that we wrote to invoke

Std-DOM:

...

try {

df= DocumentBuilderFactory.newInstance();

docBuilder= df.newDocumentBuilder();

docBuilder.parse(inputFile);

} catch (Exception e){

...

For the BIL category, we wrote a simple tool that can generate XML files (XML bombs)

of desired size to reveal BIL vulnerabilities. Each XML bomb is characterised by the number

of recursive reference loops and the number of references per loop. The example in Section

2.1.1 has a size of 10x10. In our experiments, we prepared a set of 10 XML bombs of sizes

5x10, 6x10, ..., 15x10.

For the XXE category we selected three XML files, called XXE attacks, for the parsers:

the first one has an entity that points to a UNIX system file (/etc/passwd), the second one

points to a user file in the same directory of the XML files (user.txt), and the last one points

to a Windows system file (c:\\ Windows \win.ini). These files represent user and system

files of the Linux, Mac OSX, and Windows operating systems.

It is important to note that this testing methodology can be reused to test new parsers

for BIL and XXE attacks.

3.1.4 Results on the Parsers

XXE

Concerning XXE, we manually inspected the results obtained from each parser when they

were fed with the three XXE attacks. We found that the vulnerable parsers attempt to

expand the parsing results to include the content of the referred files, specified in the XXE

attacks. If the expansion is successful, the content of the referred file (e.g., /etc/passwd) is
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Figure 3.1: An output example of Microsoft Internet Explorer that uses a XXE-vulnerable

parser. The browser expands the content of a text file referred to by the XXE attack and

displays it.

included in the parsing result. Otherwise, an exception stating an access permission error is

returned. Nevertheless, both cases indicate an XXE vulnerability because the parsers try to

access the content of the referred file. The other non-vulnerable parsers blocked the entity

expansion and returned an error reporting the issue.

As a concrete example, Figure 3.1 depicts the parsing result of a vulnerable parser where

the parser was able to acquire the content of the file referred to by the entity in the XML

file. In this example, this content has been included within the tag <foo>.

BIL

Regarding BIL, we observed the CPU time and memory consumption of each parser when

parsing each of the generated XML bombs. The size of each of these XML bombs was

less than 1KB. Since regular XML files of size ranging from 1KB to 10KB require a small

amount of memory (less then 1Mb in most cases) and a second of CPU time, the generated

BIL attacks with similar size should result in similar behaviour if a parser is not vulnerable.

Moreover, a non-vulnerable parser should be able to detect malicious entity reference loops

in input XML files and raise an exception. Otherwise, when a parser exhibits significant

deviation in terms of memory consumption and CPU time, it is regarded as BIL vulnerable.

As an example, Figure 3.2 represents the parsing output of an XML bomb file where the

parser detected an entity reference loop. This is considered to be the desirable behaviour

of the parser. However, some parsers could not detect these entity reference loops in our

experiment, thus, making them vulnerable to BIL attacks. As an example, Figure 3.3 shows
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Figure 3.2: An output example of Google Chrome that recognises an input XML Bomb and

raises an exception.

Figure 3.3: An output example of Microsoft Internet Explorer that uses a BIL-vulnerable

parser. The browser expands recursively the content of an XML Bomb, occupies the system’s

CPU and memory, and renders the system irresponsive.

the parsing result of the same XML bomb file by a vulnerable parser where it could not

detect the entity reference loops and kept expanding the entity “lol”.

Figures 3.4 and 3.5 depict the memory and CPU time required for the eight BIL-

vulnerable parsers to parse XML bombs of different sizes. We observe that the amount
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Figure 3.4: Memory consumption of the parsers when parsing XML Bomb files of different

sizes (specified in MxN , M is the number of recursive reference loops; N is the number of

references per loop).

of memory required to parse XML bombs increases exponentially, for all the vulnerable

parsers. For the XML bomb of size 6x10, the parsers require at least 33Mb RAM to parse

the input. When the size is equal or greater than 7x10, the amount of memory consumed

increases significantly, from 200Mb up to 8Gb, which is the limit we set for each run.

Comparing to the memory consumption, the results with respect to CPU time differ

slightly. Std-ETREE and Perl (XML:LibXML) require less than 2 minutes to parse BIL

files up to size 9x10 thanks to their fast underpinning XML processing library1. The others

demand much more CPU time, from 51 minutes with BIL 7x10, up to a few hundred of

minutes. The CPU time and memory consumption of the Java parsers were measured on a

Linux node (2.4GHz, 1024 Gb RAM) of the UL HPC platform [21]. For the others, we used

a Mac (3.5GHz, 16Gb RAM). This clearly shows the overwhelming cost in terms of CPU

time and memory consumption when a vulnerable parser undergoes BIL attacks.

1libxml2, available at http://xmlsoft.org
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Figure 3.5: CPU time required for the parsers to parse XML Bomb files of different sizes

(specified in MxN , M is the number of recursive reference loops; N is the number of references

per loop).

Table 3.3 summarises the results that we obtained. Out of 13 parsers of different lan-

guages, 8 (61.53%) are vulnerable to BIL and 7 (53.85%) are vulnerable to XXE. It is

surprising that more than half of the parsers (most of them are extensively used, see Table

3.2) neglect these vulnerabilities. If the adopters of the parsers remain unaware of their

presence, it is highly likely that their systems will be at risk due to BIL or XXE attacks.

Since Std-DOM and Std-SAX are very popular, we have investigated further and found

out that they are vulnerable from version 1.5 backward1. From version 1.5 to 1.7, these

parsers are vulnerable only when the original implementation of XML processing library,

Apache Xerces2, is present in Java Classpath. Thanks to its dynamic binding feature, Java

uses Apache Xerces for parsing XML instead of its internal implementation, making Std-

DOM and Std-SAX vulnerable.

1http://docs.oracle.com/javase/1.5.0/docs/guide/xml/jaxp/JAXP-Compatibility_150.html
2http://xerces.apache.org
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Table 3.3: Summary of BIL and XXE vulnerabilities in the parsers. We report which parsers

are vulnerable to BIL and XXE.

Parser Vul. to BIL Vul. to XXE

JDOM2 Yes Yes

NanoXML Yes Yes

NanoXML-LITE No No

Std-DOM Yes Yes

Std-SAX Yes Yes

Std-STAX No No

WOODSTOX No No

XERCES-JDOM Yes Yes

LXML-ETREE No No

Std-ETREE Yes No

PERL(XML::LibXML) Yes Yes

PHPDOM No No

MSXML (DOMDocument) Yes Yes

Total 8 7

To summarize, regarding research question RQ1 we found that:

BIL and XXE attacks are successful in many modern XML parsers. Among the
ones selected for experimentation, more than half are vulnerable.

3.1.5 Results on Open Source Systems

In the previous section, we reported that many parsers, including the most adopted one

(Std-DOM), are vulnerable to BIL and XXE attacks. During our study, we also experienced

many applications that crashed or hung when opening an XML bomb file, such as Microsoft

Visual Studio Express 20131. Therefore, we extended our study to investigate the research

question RQ2 to see whether software systems that use vulnerable parsers properly prevent

BIL and XXE attacks.

Specifically, we picked a large number of open source systems that adopt Std-DOM and

are hosted on GitHub. Std-DOM is the most used parser as Table 3.2 has shown, and GitHub

1http://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
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Table 3.4: A sample of 99 open sources projects among those selected in our study. The

projects are accessible by appending these names to github.com, as of August 2014.

/godfreynolan/AndroidBestPractices /AuScope/MDU-Portal /v5developer/maven-framework-project

/970815940/desginModel /kozakvoj/PPM /0x17/Pecker

/jack2w/microcard /jab416171/Android-Battleship-Client /mmpp/amazon-rest-api

/dippe/RooGo /bobfreitas/http-client-tester /rkday/jsipp

/mavenlab/jetset /khassen/JavaCollectionFichierJaxBInitiation /lshain-android-source/external-robolectric

/iambus/xquery-b /eyupdalan/edalanxmlgettersaver /xpavlic4/skgaAndroid

/cpliakas/solr-config-validator /bohdantan/task 3 /mindblender/uPortal-old

/RamKancharla/2012 R3 /leandersabel/uPortal /mltech/mlt-lib

/rlm33/TPV-RASS /tsaikd/KDJLib /renatoathaydes/OsgiMonitor

/brooklyncentral/brooklyn /Gawkat/TimeWarpEngine /ImpressiveCode/ic-depress

/Emmsii/Dungeon-Crawler /screamconjoiner/jPath /BBK-PiJ-2012-88/PSO

/guzziye/test /amitkapps/pocs /protocol7/Artemisa

/leveluplunch/levelup-java-examples /nemrioff/NemerovCommonTest /juphich/toolab

/sci4me/NSAClicker /Albaniusz/java mkyong /nerotech1989/ServerMonitor

/jirrick/Superfarmar /Koziolek/kursynbp /TechnicPack/LauncherCore

/gongchangxing/Test /redmoo84/PPS ITSM /GMOD/Apollo

/zeng233/myproject /tefreestone/myBYU /panipsilos/seerc-email-service

/smeza/srv client /AuScope/C3DMM /escidoc/srw-repository

/tomtrath/homecan /Rembau/xmlTest /mkimberlin/sencha-touch-experiments

/wbssyy/DPminingFromCode /antouk/rstext /julieklein/ProteasixDatabase PMAP

/chandrasekharab/mongoexp /bulain/zk-demo /icplayer/icplayer

/Bert89/luca perilongo /faramde/Harar-Emmanuel /HemanandRajamani/RJUnit

/rodmidde/confluence-citation-plugin /unja66/PK300 /bharcode/TwitterScraper

/garbray/SOA /himadri77/SCRadioListener /geoserver/geoserver-history

/brandom-iava/iava-dp /minsler/by.minsler.xml /chuntakli2/DriverApp

/stestaub/entityLoadingBug /jlamandecap/saml-assertion-tools /benbenedek/j2ee-homework

/gaohoward/jbm-to-hornetq /angusws/tcx2nikeplus /YusukeNumata/Training

/RasThomas/MedArt /jost125/MI-W20-FLICKER /JoelJ/JCss

/BretonJulien/GamePlayerXML /net900621/owl-eye /web-builder/mdr

/Lewuathe/HD /Rakurai/dip /ArnaldoTrujillo/Comercial Suit

/sklay/njztsm /berk/banksystem example /gbhl/bhl-europe

/powerbush/mtk75m /rohitkochar/FlickrSync /tadayosi/larvae

/clem87/RSSAgregat /EstarG/JavaWeb /irina-andreevna-ivanova/ivanova p01

enables us to quickly search and download source code for analysis. We used the same query

as used in Table 3.2 for Std-DOM:“javax.xml.parsers.DocumentBuilder” on GitHub. Among

the results, we selected the first 1000 Java source files that contained the query keyword.

We then further filtered all files that did not actually parse XML inputs (e.g., some classes

import “javax.xml.parsers.DocumentBuilder” but do not use it) and thus obtained 749 Java

classes belonging to 628 open source projects. Table 3.4 shows a sample of 99 of them

for references. All these classes together with other artefacts used in our experiments are

available at http://people.svv.lu/sadeeq/bilxxe.
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Going back to the over-approximation concern that we mentioned in Section 3.1.2 about

the number of adoptions of our selected parsers by software developers, our inspection of

the 1000 Java source files demonstrates that approximately 75% (749 out of 1000) of these

classes actually use the Std-DOM parser, while the remaining 25 % do not. Assuming 25%

is an accurate estimate for the remaining parsers in Table 3.1, the total number of source

classes that use our selected parsers should still number more than 400,000. Also, note that

our search results are based on only two repositories (GitHub and Google Code) among other

repositories where these selected parsers could be used. This increases the number of their

adoptions. Therefore, we are certain that our selected parsers are widely used by software

developers.

Our assessment on whether a system that makes use of Std-DOM deals appropriately

with BIL and XXE vulnerabilities is based on the application of known fixes, i.e., properly

setting the attributes of the parser (through the DocumentBuilderFactory class) before using

it to parse an XML input. For example:

dbf = DocumentBuilderFactory.newInstance();

dbf.setFeature("http://apache.org/xml/features/

disallow-doctype-decl", true);

In our assessment, we seek for the presence of any of the following attributes and their

values in the source code of the selected Java classes.

Attribute Value

“http://apache.org/xml/features/-

disallow-doctype-decl”

true

“http://xml.org/sax/features/-

external-general-entities”

false

“http://xml.org/sax/features/-

external-parameter-entities”

false

“JDK ENTITY -

EXPANSION LIMIT”

a numeric value

“FEATURE SECURE -

PROCESSING”

true

Out of 749 selected Java source files (belonging to 628 GitHub projects) that use Std-

DOM to parse XML inputs, we found only one file that properly sets one of the above prop-

erties to avoid being attacked through BIL and XXE vulnerabilities. Among the remaining

files, 735 classes (98,13%) are clearly vulnerable. The other 14 classes cannot be confirmed
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Table 3.5: Tested applications that are vulnerable to BIL and XXE.

Application Description

websphere-portal-

plugin

A plugin for WebSphere Portal for deploying WAR,

EAR, PORTLETS, EXPORT/IMPORT XMLACCESS.

https://github.com/JuanyongZhang/websphere-portal-plugin

File-Archiver-Main An application to combine a number of files together into one

archive file. https://github.com/DymaKulia/FileArchiverMain

AppDF A Project to facilitate easy uploading of an android application

along with its supporting files to several appstores by creating a

single archive AppDF file. https://github.com/onepf/AppDF

source2XMI Convert the Java source code to XMI file.

https://github.com/wbssyy/source2XMI

jbm-to-hornetq A tool to facilitate migration from JBM1 to HornetQ2 messag-

ing platform. HornetQ is an open source asynchronous messag-

ing project from JBoss. https://github.com/gaohoward/jbm-to-

hornetq

fastcatsearch An open source distributed search engine.

https://github.com/fastcatsearch-/fastcatsearch

bimoku Crawler A web crawler.

https://github.com/cncduLee/bbks-

crawer/tree/master/crawler/bimoku/crawler

blog A Java blog engine. https://github.com/IgorInger/blog

to be vulnerable with certainty since they use a DocumentBuilder object created elsewhere

in their corresponding projects and security properties might be set from there. Neverthe-

less, these results indicate that developers (at least the owners of the selected projects) have

neglected to address these vulnerabilities.

In addition, speculating that there could be workarounds to deal with vulnerabilities, we

downloaded eight random systems (Table 3.5) and analysed their entire source code. We

found that one of them had a vulnerable Java class which used the parser but the class was

not used elsewhere in the project (i.e., orphan code), and the others seven were vulnerable:

there was no mitigation along the control flow from reading XML inputs until they are

parsed. Therefore, we conclude it is unlikely that developers made use of other methods to
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deal with BIL and XXE vulnerabilities.

Regarding research question RQ2 we found that:

It is highly likely that systems that use a BIL- or XXE-vulnerable XML parser do
not apply any proper mediating measure and are hence vulnerable.

3.1.6 Discussion and Recommendations

Our extensive study has demonstrated that BIL and XXE attacks are in most cases neglected

by the developers of XML parsers and software systems that adopt them. Since these attacks

are well-known and applying them is straightforward (it is easy to create XML test files

and send them to a target system), leaving them unaddressed before deployment might

have severe consequences. As demonstrated from our results, a vulnerable XML parser can

consume a huge amount of memory and CPU time as the result of an attack. This typically

renders the system running the XML parser unavailable for legitimate users. Similarly, the

confidentiality of information residing on the system running the vulnerable XML parser is

at risk. Exploiting XXE, an attacker can get access to such information.

Recommendations for Software Developers

Because software systems that improperly use vulnerable parsers are also vulnerable, we

recommend that developers of such systems should pay special attention to preventing such

attacks if they decide to adopt a third-party XML parser, even if it is provided by a high-

profile vendor, such as Oracle or Microsoft. In order to block BIL and XXE attacks, software

developers should gain full understanding of the XML parser that they are considering to

adopt and avoid its insecure features (e.g., using Schema instead of DTD). If external entity

references are required, they should refer to trusted sources only. Known vulnerabilities of

the parser and their fixes should be investigated and input sanitisation should be done before

parsing XML content. Adequate security testing of the parser should also be performed.

Recommendations for Parser Developers

Developers of XML parsers need to be fully aware of all potential XML-based attacks and

should be able to provide countermeasures wherever possible. It was observed, during our

experiment, that some vulnerabilities can be exploited because of the features allowed in

the default configurations of XML parsers. Parser developers should provide Secure Default
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Configurations and provide alerts when any potentially insecure feature is enabled via making

changes to the default configurations. Parser developers should perform security testing of

their parsers. They should also provide better documentation including the potential risks of

enabling any feature. This would guide software developers in using their parser in a secure

way.

Threats to Validity

Regarding the validity related to whether or not experimental results can be considered

generalisable and representative, we have selected a large number of parsers from various

programming languages and domains, and considered in our study their latest versions.

Furthermore, we evaluated also their adoption on GitHub and Google Code, the two most

popular open source repositories, to make sure that the selected parsers are used in practice.

As a result, we are fairly confident that the vulnerabilities we detected both in parsers and

the systems using them suggest a worrying but representative state of practice.

Moreover, although we consider only one parser in the evaluation of 628 open source

projects, it is the most popular one; and given the clear results we obtained - only one of the

projects properly deals with BIL and XXE attacks, it is unlikely that mitigation techniques

are implemented in other projects adopting other vulnerable parsers.

3.2. Related Work

There is a large research body investigating the potential exploits in web services, e.g.,

[5, 22, 23, 24, 25, 26, 27]. Tiwari and Singh [27] described various attacks on atomic as well

as composite web services, including denial of service and injection attacks (SQL/XML/X-

PATH) along with their impacts and countermeasures. Similarly, Gupta and Thilagam [5]

provided insights about various forms of XML-based attacks on web services and possible

countermeasures. XML oversize payload (here referred to as BIL) and XXE attacks are two

out of 18 attacks against web services described in the paper. Their descriptions are limited

and no wide scale experiment on parsers and systems is performed to assess the impact of

these vulnerabilities in practice. Orrin [28] discussed the SOA/XML Threat Model and the

new XML/SOA/Web 2.0 attacks and threats in detail. XML attacks are classified into four

main categories: Payload/Content Threats, XML Misuse/Abuse, XML Structure Manip-

ulation, and Infrastructure Attacks. BIL and XXE attacks are discussed under the XML

Structure Manipulation category.
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Automated approaches to detecting vulnerabilities in web service frameworks (contain-

ers) have been investigated, e.g., [29, 30, 31, 32, 33]. Mainka et al. [31] described their

approach to automated penetration testing of web services frameworks. They implemented

a tool called WS-Attacker. It is extensible with additional plugins for web service specific

attacks. Evaluation has been performed on some web services frameworks, e.g., Apache

Axis21 and JBoss2, to detect two web service specific attacks: WS-Addressing spoofing3 and

SOAPAction4. Oliveira et al. [33] developed a similar penetration testing tool, WSFAggres-

sor, for security testing of web services frameworks. In fact, this tool is an extension of the

WS-Attacker using a small set of its functionality but providing more web service specific

attacks. Chang et al. [34] proposed a fuzz testing approach to vulnerability identification

and analysis in web service architecture.

Prevention and detection approaches to XML Denial of Service (XDoS) Vulnerabilities

in web services have been investigated. Falkenberg et al. [8] discussed some techniques

for targeting XML-based message formats using various XML properties and developed an

approach to XDoS penetration testing of web services. The approach is based on measuring

deviations in response time of a web service between original (unchanged) and tampered

requests. Suriadi et al. [35] investigated the XDoS vulnerabilities in few web services plat-

forms and described the corresponding effects on CPU and memory consumption of the

target. Other similar work on XDoS can be found in [36, 37, 38].

In summary, existing work has discussed various XML vulnerabilities, their impact, and

how to detect them in web services and their containers. However, no work has been carried

out to study, in a systematic and rigorous manner, the presence of XXE and BIL vulnera-

bilities in modern XML parsers and open-source systems, which is the goal of this chapter.

3.3. Summary

In this chapter, we study the potential of two major types of XML-based attacks: XML

Billion Laughs (BIL) and XML External Entities (XXE ) that may undermine today’s XML

parsers and systems making use of those parsers. We conducted a systematic and large-scale

experiment to test the most popular XML parsers for these attacks by measuring their impact

on CPU time and memory consumption. Our main objective is to provide representative,

1http://axis.apache.org
2http://www.jboss.org
3http://www.ws-attacks.org/index.php/WS-Addressing_spoofing
4http://ws-attacks.org/index.php/SOAPAction_spoofing
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3.3 Summary

unbiased results of the extent of the problem in popular parsers and open source systems.

We designed our experiment to achieve these objectives and reported the results in great

detail.

We have studied 13 XML parsers that are widely used in open source systems hosted

on GitHub and Google Code. Each was tested against BIL and XXE test cases. Executing

these tests on the vulnerable parsers took exceptionally high amounts of CPU time and

memory that could not have been efficiently carried out without our HPC platform [21].

The obtained results show that most of the selected parsers are vulnerable to BIL and XXE

exploits. Furthermore, we extended our experiment to evaluate more than 700 classes from

628 open source systems that use a vulnerable XML parser and found that all but one

of them are vulnerable as well, thus showing that parsers’ vulnerabilities are not properly

addressed by the systems using them.

Such alarming results call for software developers to take appropriate security measures

before using these vulnerable XML parsers in their software development projects. Moreover,

parser developers need to fix the problems and/or provide better documentation to help

developers configure such parsers to secure their usage.
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Chapter 4

Testing XML Gateway and Back-end

Web Services for XML Injections

XML Injection (XMLi) attacks aim at manipulating XML messages that are processed by a

target system in order to compromise it. They may be as simple as malformed XML messages

to crash a target but they can also be more sophisticated and dangerous by carrying nested

attacks, aiming at obtaining sensitive information or changing the underlying business logic

of the target.

Existing approaches and tools for the detection of XMLi vulnerabilities in web services

are based on fuzz testing [12, 13]. They inject XML meta-characters (e.g., >, <), aiming at

altering the structure of XML messages to detect if a service under test (SUT) is vulnerable.

These meta-characters are often rejected by protection mechanisms (e.g., XML gateway)

or the SUT itself when they parse and validate the XML messages. As a result, and as

confirmed by our empirical results, these approaches are largely ineffective, especially if the

goal is to detect subtle vulnerabilities in the way XML messages are processed.

In this chapter, we propose an automated testing approach and tool for XMLi , called

SOLMI1. SOLMI covers a wide range of XMLi attacks. More importantly, it makes use

of a constraint solver to automatically generate well-formed and valid XML messages with

respect to given domain constraints, which are also carrying malicious content. By doing

this, we make sure that the generated XML messages are not easily recognised, and hence,

are more likely to penetrate into the SUT to exploit vulnerabilities.

1SOLMI is available for download upon request
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The key contributions of this chapter include:

• The taxonomy of XMLi attacks, leading to the definition of XML mutation operators

to be used for testing purposes.

• We propose a novel approach and tool called SOLMI, relying on the defined mutation

operators to manipulate XML messages and a constraint solver to generate valid though

malicious XML messages, which are test cases in our context.

• SOLMI has been evaluated on a financial system including 44 complex web services at

the back-end that are protected by an XML gateway (firewall). Results are promising

as SOLMI is much more effective in generating successful attacks that can bypass the

gateway (78.86% of all generated tests) as compared to a state-of-the-art tool based

on fuzz testing, which did not manage to generate any malicious, bypassing attack.

In our experimental setting, the 44 web services connect to the same XML gateway at

the front-end, each of them has an independent interface at the gateway, and incoming input

messages to each service are treated differently. Although we consider only a single gateway,

such an industrial setting with many web services is rather hard to set up. Further, since

there currently exist only a few industry-strength XML gateways with a sizeable market

share (IBM DataPower Gateway1, Axway2), obtaining experimental results even with one

of them can provide useful insights.

Assumptions: This chapter presents one part of the dissertation in which we aim at

automated testing to uncover XMLi vulnerabilities involving user inputs and all related

systems, including the front-end web applications (service consumers) and the back-end web

services (service providers). In this chapter, we assume that the front-end web applications

are vulnerable to XMLi , and thus, that manipulated and malicious XML messages can be

created. As a result, we can focus on the back-end side and assess whether service providers

are vulnerable. We investigate an approach for generating injected XML messages that

mimic those that might be produced by the front-end web applications and test whether the

back-end services are vulnerable to XMLi attacks.

The remainder of the chapter is structured as follows. Section 4.1 provides a taxonomy

of XMLi attacks. Section 4.2 discusses the proposed mutation operators and the overall

SOLMI approach. Section 4.3 describes the architecture of our developed tool. Section 4.4

shows our evaluation results and discussions, based on real-world financial services. Section

4.5 discusses related work. Finally, Section 4.6 concludes the work.

1http://goo.gl/L8Dzs3
2https://www.axway.com/

34



4.1 Taxonomy of XMLi Attacks

Table 4.1: XML Meta-characters

Character Consequence

< Opening a tag without closing it.

& This is a character for escaping meta-

characters, which makes an XML malformed

when being used alone.

> Closing a tag without opening it.

‘ It makes the name specification syntactically

incorrect when added to an attribute name.

“ Similar to the previous one.

<!−− This sequence of characters represents the

beginning/end of a comment and is not al-

lowed in attribute values.

]] > This is a delimiter for the CDATA section

and is not allowed in values of elements.

4.1. Taxonomy of XMLi Attacks

We have surveyed the state of the art regarding XMLi attacks and propose to classify them

into four types, based on the way they change the XML structure. This classification helps

us better understand the variants and intents of XMLi attacks. Moreover, this classification

will be a basis to derive test generation strategies.

4.1.1 Type 1 - Deforming

Attack input values of Type 1 are XML meta-characters, such as <, >, ]] >, that are

introduced to compromise the structure of generated XML messages. The target service,

when processing such malformed XML messages, might crash or behave unexpectedly due

to triggered exceptions.

Table 4.1 lists the most common examples of XML meta-characters. When any of these

meta-characters is injected into an XML message, it will render the message malformed.
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4.1 Taxonomy of XMLi Attacks

4.1.2 Type 2 - Random closing tags

Attack input values of Type 2 are random XML closing tags (e.g., < /test>), aiming at

deforming the generated XML messages to reveal their structure. This type of attacks tries

to gain information from error messages triggered by the manipulated XML messages when

they are not properly treated. Specifically, when receiving a message of this kind, the XML

parsers used by the SUT often returns an error message stating that there is a mismatch

between an opening and a closing tag. The error message may also reveal the names of

two elements: the element that was just injected (< /test>) and the name of the preceding

element, thus revealing the latter. For example, if the username input receives < /test>, it

will create a SOAP message containing “. . . <username>< /test> . . .”. This might lead to

the SUT raising an error message revealing the name of the username element.

4.1.3 Type 3 - Replicating

Attack input values of Type 3 are strings of characters consisting of XML tag names and

malicious content. They aim at replicating elements of an XML message for malicious

purposes, such as to manipulate the application logic of the SUT to get access to pro-

tected data. Consider the following sample value for the E-mail input of the web portal:

“a</mail><userid>0 OR true</userid><mail>a@b.com”. When it is used, the portal

produces the SOAP message depicted in listing 4.1:

<soap:Envelope>

<soap:Body>

<user>

<username>tony</username>

<password>Un6R34kb!e</password>

<userid>500</userid>

<mail>a</mail>

<userid>0 OR true</userid>

<mail>a@b.com</mail>

</user>

</soap:Body>

</soap:Envelope>

Listing 4.1: Example of SOAP message manipulated with XMLi Type 3.
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The user element has been injected with two userid and two mail. The last userid sub-

element contains an SQL injection tautology (detailed in the next section). When parsing

XML and binding its content to business code, parsers tend to only consider the last instance

if they expect only one XML element of a type. As a result, if the user element is appended

to the registration database, such a malicious content may trigger SQL injection exploitation.

4.1.4 Type 4 - Replacing

Attack input values of Type 4 are similar to those of Type 3 but they involve multiple

input fields in order to comment out some existing XML elements and inject new ones with

malicious content. The aim is to produce not only malicious XML messages but also to make

them valid with respect to the domain constraints, as defined using XML Schema Definition

(XSD). The purpose of attacks of Type 4 is similar to that of Type 3.

In the web portal example in Section 2.2.1, we have shown one example of XMLi Type

4 with the following inputs:

Password = “Un6R34kb!e</password> <!–”

E-mail = “–><userid>0</userid><mail>a@b.com”

These inputs result in the SOAP message in Figure 2.4 in which the system-generated userid

element has been commented out and replaced by an injected one.

This type of attacks is potentially more dangerous than Type 3 ones as the injected

content will certainly be used by the target receiving the XML messages. Moreover, since it

leads to XML messages that are well-formed and valid, the malicious content has a higher

chance of interfering with the target’s business logic and causing harmful impacts.

4.2. SOLMI: A FRAMEWORK FOR XMLi TEST-

ING

We introduce SOLMI (SOLver and Mutation-based test generation for XML Injection),

a framework for testing web services against XMLi attacks. SOLMI is equipped with a

set of mutation operators that can manipulate XML in order to generate all the four types

of XMLi attacks. In particular, for Type 3 (Replicating) and Type 4 (Replacing) in which
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4.2 SOLMI: A FRAMEWORK FOR XMLi TESTING

XMLi attacks carry nested attacks in the form of XML content, SOLMI relies on a constraint

solver and attack grammars to generate the nested attacks (also called as malicious content),

making them more effective in circumventing the validation mechanisms of web services.

This section, first, discusses our proposed mutation operators for generating each type

of XMLi attacks. Then, we describe in detail how malicious content (nested attacks) are

generated for XMLi of types 3 and 4. Finally, we define the general test generation strategy

implemented in SOLMI and the oracles for the detection of successful XMLi attacks.

4.2.1 Mutation Operators

We propose five mutation operators (MO) to manipulate XML messages and generate XMLi

attacks. The first two are used to create XMLi attacks of Type 1, while each of the subse-

quent operators corresponds to attacks of Type 2 to 4, respectively. The names of the MOs

and their description are listed in Table 4.2.

Operator: MO der meta

Description:
Adds a randomly selected XML meta-character into the content of a ran-
domly selected element of the input XML message.

Rationale:
XML meta-characters such as < and > are special characters for defin-
ing the elements of an XML message (like keywords in a programming
language). This mutation operator injects those characters into XML
messages to render them malformed. When receiving a malformed XML
message, the SUT might exhibit unintended behaviours.

Operator: MO der att

Description:
Removes a double quote from the value of a randomly selected attribute
of a randomly selected element of the input XML message.

Rationale:
Double quotes are used as delimiters for containing attributes’ values.
Removing one from the value of any attribute will deform the message.

Operator: MO clo
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Description:
Adds the closing tag: </test> into the content of a randomly selected
XML element of the input XML message to mimic XMLi attacks of Type
2.

Rationale:
As explained in Section 2.2.1, adding such a closing tag to an XML mes-
sage will deform the input message. However, when encountering such tag,
XML parsers often raise an error stating that they expect other elements
of the message and reveal their names. Hence, structural information of
the message might be leaked in an unintended way to malicious users.

Operator: MO replica

Description:
Replicates an XML element to create a new one, injects malicious content
generated using constraint solving, and inserts the new element right after
the original one.

Rationale:
This operator aims at emulating XMLi attacks of Type 3. When an
element is replicated, its last instance is often the one considered by the
SUT. If that instance contains harmful content, it can lead to a security
breach.

Operator: MO replace

Description:
Replace an XML element by: (1) replicating the element with new and
malicious content like we do with MO replica, (2) commenting out the
selected element, and (3) injecting the new element at the original location
of the commented-out one.

Rationale:
This operator aims at emulating XMLi attacks of Type 4. Since the se-
lected element is commented out, the new and malicious content is certain
to be considered by the SUT. As a result, it has a high chance of impacting
the targeted service if it is vulnerable.

4.2.2 Producing Nested Attacks

The mutation operators MO replica and MO replace need malicious content to produce

XMLi attacks of Types 3 and 4 that are likely to lead to security breaches. Relying on recent

advances in constraint solving, we consider domain constraints and attack grammars in order
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Table 4.2: Summary of the proposed mutation operators for manipulating XMLs

MO name Description

Deforming

MO der meta Adds a randomly selected XML meta-character

into a randomly selected element of the input

XML message

MO der att Removes a quote from the value of a randomly

selected attribute of a randomly selected ele-

ment of the message

Random closing tags

MO clo Adds < /test> into the content of a randomly

selected XML element of the message

Replicating

MO replica Replicates an XML element, injects the new con-

tent into it and puts it at the location right after

the selected element

Replacing

MO replace Replicates an XML element, obtains a new con-

tent, comments out the selected element, and

injects the new one at its location

to generate valid and harmful content. In other words, this will ensure that the generated

content, when being embedded in XML, satisfy domain constraints and are malicious at

the same time. As a result, our final generated XMLi attacks are in a better position to

circumvent filtering mechanisms, such as input validation, and hence, have a high chance of

uncovering XMLi vulnerabilities.

4.2.2.1 Domain Constraints

The XML messages exchanged between services usually adhere to some protocols, in which

the content of XML elements are restricted according to domain constraints. XSD is the most

popular format used for specifying such constraints on XML content. XSD specifications

can be stored into separate files or can also be included into WSDLs (Web Service Definition
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Language1) to define service interfaces, data types and constraints.

Domain constraints are defined as XSD restrictions on the length, value range, and

content pattern of XML elements. Their content must satisfy the constraints as otherwise

they are considered to be invalid, and so are the XML messages that contain them.

The listing below shows two examples of XSD constraints specified for the username

and password elements of the registration database. The first one requires that username

must have a length between four and 32 characters, and must contain only characters of the

alphabet from “a” to “Z” and numerical digits. The second requires that password must

have a length greater than or equal to eight.

<?xml version="1.0" encoding="UTF-8"?>

<schema ...>

...

<simpleType name=‘‘StringUserType’’>

<restriction base=‘‘string’’>

<minLength value=‘‘4’’ />

<maxLength value=‘‘32’’ />

<pattern value=‘‘[a-zA-Z0-9]+’’/>

</restriction>

</simpleType>

<simpleType name=‘‘StringPasswordType’’>

<restriction base=‘‘string’’>

<minLength value=‘‘8’’ />

</restriction>

</simpleType>

...

</schema>

Listing 4.2: Examples of XSD constraints.

1www.w3.org/TR/wsdl

41



4.2 SOLMI: A FRAMEWORK FOR XMLi TESTING

4.2.2.2 Attack Grammar

Given that we ensure domain constraints are satisfied for nested attacks, we ensure that the

content of XML elements are valid. However, we want them to be malicious as well.

As an example here, we use SQL injection (SQLi), which is an attack technique in which

attackers inject malicious SQL code fragments into input strings. If inputs lack proper

sanitisation, they might be concatenated into SQL queries, changing maliciously the intended

logic of the queries. We use SQLi as an example in this chapter as it is one of the most

exploited vulnerabilities. However, our approach is generic, BNF grammars of other types

of attacks, such as XSS [39], can be used in place of SQLi .

We reuse the context-free BNF grammar for SQLi strings proposed by Appelt et al. [40].

This grammar has been shown to generate effective SQLi attacks. In our context, by relying

on such an attack grammar and XSD domain constraints, we can automatically generate

content which is valid, yet malicious, for XML elements. The next section discusses in detail

how this is done.

4.2.2.3 Producing Malicious Content using Constraint Solving

Recent advances in theorem proving have given rise to a number of solvers, e.g., [41, 42, 43],

that are capable of dealing with sophisticated constraints, such as string constraints or

regular grammars.

We propose to use such constraint solvers to automatically produce content for XML

elements such that they satisfy the associated XSD constraints. Moreover, since our security

testing goal is to assess the SUT with respect to vulnerabilities, we want such content to be

malicious. Therefore, we combine and transform XSD constraints and the proposed SQLi

grammar into constraint specifications for the solver Hampi [42]. We then rely on the solver

for generating concrete values for XML elements. We selected Hampi because it is the only

solver that supports the targeted categories of XSD constraints and context-free grammars.

In addition, it has been previously used in other contexts, e.g, concolic testing [44].

Figure 4.1 shows the procedure to generate malicious string content for XML elements.

First, XML constraints and the SQLi grammar are transformed into Hampi constraints.

Then, Hampi is invoked to solve the constraints and produce string solutions that satisfy

them. Hampi is deterministic as it returns the same solution when called multiple times.

However, as the SUT should be tested with different malicious content in order to maximise
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XSD 
constraints

SQLi
grammar

Transform to
Hampi Constraints

Solve Constraints

Continue?

Update

Contents
for XMLi

Figure 4.1: Workflow for producing content using constraint solvers.

the chance of vulnerability detection, when needed, we update Hampi constraints to exclude

the previously found solutions to enforce the search for new solutions.

4.2.3 Mutation-Based Test Generation

We propose two mutation-based test generation strategies for SOLMI. The first strategy

is dedicated to the three mutation operators, MO der meta, MO der att, and MO clo. It

injects a randomly selected meta-character or a closing tag into an input XML sample
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message to create a new one at each invocation. The behaviour of the first strategy resembles

what existing “fuzzy” testing tools do, e.g., [12, 13].

The main strategy that we investigate combines a constraint solver and the two more

advanced mutation operators (MO replica and MO replace) to generate XML messages con-

taining XMLi attacks of Types 3 and Type 4. The generation procedure is provided in

Algorithm 1. The inputs for the algorithm include: a sample XML message, the XSD

schema that restricts XML messages, an attack grammar (such as SQLi), and a mutation

operator. Next, we iterate through available XML elements, apply the mutation operator

on each selected element, extract its constraints and transform them with the grammar into

Hampi constraints, and then invoke Hampi to solve the constraints. Once a new malicious

content is available, we inject the new content into the obtained mutant to create a new test

case. Finally, we add the newly generated test case that emulates an XMLi attack into the

output test suite.

The sample input messages for the strategies can be taken from existing functional test

suites if available. Otherwise, they can be derived automatically from XSD using tools such

as XMLMate [45] or Ws-taxi [46].

In Algorithm 1, the selection of XML elements (line 2 and line 19) is currently exhaustive,

meaning that each and every element is in turn considered. Further, at line 13, we update

input constraints so as to exclude previously-generated content in subsequent test cases

(depicted in Figure 4.1).

4.2.4 Test Oracle

The objective of the test oracle is to assess whether the SUT is vulnerable to malicious

content such as XMLi . To achieve this, once a test is submitted to the SUT, we analyse the

SUT’s behaviour and its response to the test to search for symptoms of vulnerabilities, for

example regarding XMLi :

1. If the SUT is protected by a security mechanism, like an XML Gateway or a Web

Application Firewall, does the test bypass that layer or not? If the test is blocked,

then the SUT is not vulnerable to that specific test. Otherwise, the test is potentially

problematic as it can circumvent one security layer. However, other symptoms need to

be considered.

2. If the test reaches the SUT and makes it crash, then the SUT is vulnerable.
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Algorithm 1 SOLMI test generation algorithm:

Require: xml: a sample XML message.
xsd: the XSD Schema of the XML messages.
attack-grammar: an attack BNF grammar, e.g. SQLi
mo: mutation operator, MO replica or MO replace.
max s: maximum number of malicious content per element.
budget: targeted number of tests.

Ensure: TS: set of output test cases.
1: TS = ∅
2: e = selectElement(xml)
3: while size(TS) ¡ budget and e is not null do
4: mu = apply(mo,e)
5: c = extractConstraint(e,xsd)
6: hampiInput = transform(c) + attack-grammar
7: counter = 0
8: while counter ¡ max s do
9: s = solve(hampiInput)

10: if s is not null then
11: t = inject(mu,s)
12: TS = TS ∪ t
13: hampiInput = updateConstraints(hampiInput, s)
14: counter = counter + 1
15: else
16: break {exit this inner loop when HAMPI fails to solve the constraint.}
17: end if
18: end while
19: e = selectElement(xml)
20: end while
21: return TS

3. If the test reaches the SUT and triggers a response with a non-sanitised error message

like parsing errors disclosing source code or data structure, then the SUT is vulnerable.

4. If the test reaches the SUT and the nested attack manifests itself (e.g., for SQLi ,

exposing or manipulating data), the SUT is vulnerable.

5. If the test reaches the SUT and the SUT successfully detects, blocks, and reports the

malicious content of the test then the SUT is not vulnerable.

6. In other cases, when it is difficult to evaluate the response of the SUT as malicious or

normal, executions must be logged and inspections are needed to make sure that no

exploitation is possible.
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4.3. TOOL SUPPORT

We developed a tool, called SOLMI, which implements all the proposed mutation operators

and relies on Hampi. The inputs of the tool include a target web service, samples of XML

messages, the associated XSD Schema, and an Attack Grammar (e.g., SQLi). The tool

generates tests which are mutated versions of the original XML messages. The tool further

submits the generated tests to the SUT and analyses its responses.

Constraint Solver

Hampi

XML 
Processor

Schema 
Processor

Injection Grammar (SQL)

Test 
Generator

Mutation 
Strategies

Test Cases
SUT

Test 
Executor

Monitor/
Oracle

Transformer

Figure 4.2: The components of SOLMI.

Figure 4.2 depicts the architecture of the tool. It contains three main components:

Constraint Solver, Test Generator and Test Executor.

• Constraint Solver. The Constraint Solver is responsible for identifying the con-

straints associated with the selected element of the XML message, invoking Hampi to

solve them and obtaining the new content of the selected element.

• Test Generator. This module generates the tests based on the proposed algorithm.

These tests are the mutated versions of the input XML messages, which are valid

according to the associated schema constraints but still contain malicious content, i.e.,

SQLi attack patterns.

• Test Executor. This module is responsible for sending the tests to the SUT and

analysing the corresponding responses according to the test oracle discussed in Section

4.2.4.
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4.4. EXPERIMENTAL EVALUATION

In this section we evaluate our proposed SOLMI framework. We compare it with ReadyAPI

[12], a state-of-the-art web service testing tool, by running both of them against 44 financial

web services1 that are protected by an XML gateway.

ReadyAPI was selected as a baseline because it is the successor of SoapUI [47], which

is widely used for testing web services. ReadyAPI combines several tools (e.g, LoadUI NG,

Secure, API Monitoring in AlertSite) and was developed by SmartBear. In short, it helps

software testers in performing functional, load, and security testing of their web services. The

test generation of ReadyAPI is based on a dictionary of attack payloads, which are injected

in XML messages. The tool provides several security scans for web services, e.g. Malformed

XML, XML Bomb, Weak Authentication. We use the “Malformed XML” security scan since

it is the most comparable to the features of SOLMI.

The XML gateway is the first layer of defence and aims to block malicious requests that

target the web services. As our tests contain malicious content, they should ideally be blocked

by this gateway. Otherwise, the web services are at risk unless they compensate by having

their own sanitisation and verification procedures. In this chapter, we limit our evaluation

to this first layer of defence, the XML gateway. We evaluate SOLMI and ReadyAPI in terms

of their ability to generate malicious messages (tests) that can bypass the gateway to reach

the protected web services.

We investigate the following research questions:

RQ1 [Effectiveness]: Are the tools able to generate malicious messages (tests) bypassing

the first layer of defence (the XML gateway) and thus reaching the targeted web services?

Tests that can bypass the gateway can potentially lead to security breaches in the pro-

tected web services. The gateway should normally block the attacks generated by the tools.

From a testing standpoint, a tool is deemed effective if it can generate bypassing tests to

demonstrate that the gateway is vulnerable.

RQ2 [Cost]: What is the cost of using the tools in terms of generation and execution

time?

Cost can be evaluated both in terms of test generation and execution time. Test genera-

tion time is important given that SOLMI relies on constraint solving to search for malicious

content, an operation that is known to be time consuming in many cases. The test execution

1These are web services of a financial company whose name cannot be revealed due to security concerns.
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time depends on the responsiveness of the SUT, the number of tests executed, and the test

output evaluation. However, in our context, since the XML gateway and the web services

typically respond to a service request in less than a few milliseconds, the execution time may

not be as important as the test generation time, from a practical standpoint.

4.4.1 Subject Application

The experimental evaluation was performed on 44 web services of a company who manages

financial transactions and bank card processing. These web services are protected from

unauthorised accesses or injection attacks, including XML Injection, SQL Injection, by the

XML gateway.

As shown in Figure 4.3, the XML gateway is the first to consume XML messages coming

from the service consumer (a Bank in this scenario). For every protected web service, the

gateway exposes an equivalent service interface along with its corresponding XML Schema

with constraints to validate incoming messages. The gateway is also configured with an XML

threat policy to block XML-based attacks. The gateway forwards an XML message to its

targeted service only if it does not violate any constraints nor the threat policy. Otherwise,

the message is blocked.

Web Service 1

Web Service

Web Service N

XML 
Schemas XML Threat 

Policy

Backend 

Service 
Interface 1

Service 
Interface

Service 
Interface N

XML GatewayInternet

Figure 4.3: XML Gateway and Web services
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The 44 web services include a total of 443 distinct XML elements of 75 different data

types. Each data type is associated with a set of XSD constraints, such as string length and

regular patterns.

4.4.2 Variables

To investigate our first research question about effectiveness, we measure the total number

of tests generated (T ) and the number of tests that successfully bypass the XML gateway

(Tp).

ReadyAPI exercises each web service parameter with a set of predefined attacks in its

dictionary. Therefore, we expect that the value of T for ReadyAPI is proportional to the

number of parameters of the web services under test.

SOLMI involves two strategies. Applying the mutation operators MO der meta, MO der att,

and MO clo, behaves similarly to ReadyAPI because each parameter is systematically ex-

ercised with all the XML meta-characters or the special closing tag (</test>). So the

number of tests generated by these mutation operators is also proportional to the number

of parameters of the web services.

The second strategy for SOLMI involves applying

MO replica or MO replace with constraint solving. So their T value is not only dependent on

the number of parameters but also on the constraints specified in the XSDs of the services.

Since the constraint solver can find multiple content solutions for an XML element, the

total number of tests can be very large. In the considered services, since there are several

web services that have more than 40 XML elements, this would lead to a large number of

generated tests. Therefore, we cap the maximum number of new tests obtained for each

XML element to 20.

The second variable Tp is the number of distinct tests that successfully bypass the XML

gateway. It is used to evaluate the effectiveness of the generation tools. It also captures

the security level of the gateway: the greater the value of Tp, the greater the risk to the

underlying web services. Since our tests contain malicious content, the XML gateway should

detect and block them if it works in accordance to its intended requirements.

To answer the second research question regarding cost, we measure the time to gener-

ate tests Gtime and execution time Etime. The test generation time Gtime is important to

assess the scalability of our approach, especially for the two mutation operators MO replica

or MO replace because they involve constraint solving. Gtime may not be significant for
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ReadyAPI since it applies directly a set of attacks in its dictionary to a parameter and no

significant computation overhead is involved.

4.4.3 Results

We applied ReadyAPI and SOLMI to all the 44 web services, protected by the XML gateway.

Table 4.3 shows the obtained results in terms of the total number of tests T , the number

of tests that successfully bypassed the gateway (Tp ), the percentage of bypassing tests, the

test generation time Gtime and test execution time Etime.

ReadyAPI resulted in 4430 tests which were submitted to the XML gateway. Only a

small number (2.37%) of these tests were able to bypass the gateway. We investigated these

bypassing tests and found that they bypassed because they were neither malformed nor

malicious, despite what could be expected.

Regarding SOLMI, the operator MO der att was not applicable to the subject because

no attributes were used in these web services. The MO der meta mutation operator, which

mutated each web service parameter with the XML meta-characters, resulted in a total of

1772 tests for the 44 web services. These tests were then submitted to the XML gateway

and were all blocked by the gateway. This happened because the tests (XML messages)

generated by the mutation operator were malformed and hence were rejected by the XML

gateway. The results for MO clo are similar except that it generated a lower number of tests

(443). This is due to the fact that MO clo mutates each parameter once with the random

closing tag.

Regarding the operators MO replica and MO replace, each mutation operator resulted

in 3236 tests. All the tests generated with the MO replica were blocked by the gateway

because they violate a cardinality constraint specified in the XSDs of the web services. The

most successful mutation operator was MO replace, which generated 78.86% bypassing tests.

The XML gateway failed to block them. Recall that MO replace generates XMLi attacks of

Type 4, which are the most difficult to detect. These tests contain malicious content that

can potentially harm the web services.

This high bypassing rate is attributed to our approach based on constraint solving since

the generated tests satisfy all XSD constraints by design, and therefore, most of them are

able to break the first layer of defence. This concludes the first research question:
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Table 4.3: Summary of the results with ReadyAPI and SOLMI

Test Strategy MO Operator #Tests (T ) #Bypass. % Gen. Exec

Tests (Tp) Time Gtime (s) Time Etime (s)

ReadyAPI Malformed XML 4430 107 2.37 ¡ 1 min 55.62

SOLMI

MO der meta 1772 0 0 0.7 51.46

MO clo 443 0 0 0.35 9.97

MO der att NA NA NA NA NA

MO-replica 3236 0 0 2929.99(=̃49 min) 140.21

MO replace 3236 2552 78.86 2998.97(=̃50 min) 160.99

SOLMI and ReadyAPI were able to generate tests that bypass the gateway. Among
the two, SOLMI was significantly more effective as 78.86% of its generated tests
were able to reach the web services.

For the second research question, we measured the test case generation time Gtime and

test execution time Etime. ReadyAPI does not distinguish the two time values. However, we

noted that for each web service, the test generation took less than 1 second that amounts

to less than a minute for all the 44 web services. Similarly for SOLMI with MO der meta,

MO der att, and MO clo, all the tests were generated in less than a minute.

Test generation for SOLMI with MO replica and MO replace, which involved constraint

solving, is expectedly more expensive. SOLMI was able to generate the 3236 total tests in

about 50 minutes, that is 0.92 second per test. However, we also observed a variation among

the test case generation time for different web services. Some XML elements have more

sophisticated constraints than others, thus requiring more time for the solver. Despite such

variation, the worst time to generate a test case was still less than a few seconds. Hence,

our approach is scalable and applicable, in terms of test generation time, in the practical

context where such testing is taking place.

As expected, the test execution time is low for all approaches ranging from 9 seconds

to a few minutes for all the 44 web services. It has therefore no practical incidence. The

execution time of ReadyAPI and SOLMI (MO der meta, MO der att, and MO clo) is small

because most or all of their tests are malformed, and thus, are detected quickly and blocked

by the gateway, i.e. the web services are not involved. On the contrary, the tests generated

by SOLMI with MO replica or MO replace are well-formed, and many of them reach the

web services. Therefore, the execution time of MO replica or MO replace is higher than that

of the others, though it has no practical consequences.

This addresses the second research question:
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SOLMI, with MO replica or MO replace, takes by far the longest time to generate
tests. However, the average amount of time for SOLMI to generate a test case is
0.92 second (or less than one hour for all 44 web services), which is in practice
fully acceptable.

4.4.4 Discussion

The first strategy of SOLMI with MO der meta, MO der att, and MO clo could not generate

any test that bypassed the XML gateway. This suggests that a simple application of fuzzing,

a quite popular approach to such testing, may not be effective with realistic applications.

Such test strategy may convey the misleading conclusion that a system is secure while it is

not.

The results obtained from ReadyAPI tool are not reliable since only 2.37% of the tests

were able to bypass the gateway and were found, surprisingly, not to be malicious. The tool

was therefore not able to generate effective attacks. Figure 4.4 depicts a test generated by

ReadyAPI, that bypassed the gateway. ReadyAPI mutated only the parameter Merchant-

Locality with the character ‘’¿”, while keeping the original values for the other parameters.

This test is well-formed and does not contain any malicious content. It was therefore allowed

by the XML gateway to reach its target web service.

Figure 4.4: An example of a test case generated by ReadyAPI, sensitive information was

pixelated.

The effectiveness of SOLMI with MO replace is attributed to the constraint solving and

mutation based-test generation technique. The higher bypassing rate of 78.86% was made
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possible by the test strategy of generating well-formed, valid, and yet malicious XML mes-

sages. All these tests indeed include malicious content. Consider the test case shown in

Figure 4.5, it was generated by SOLMI for a specific web service in our SUT. It contains

4 parameters UserName, IssuerBankCode, RequestId and CardNumber. The value of the

parameter RequestID includes malicious content (“0 || 1=1” - an SQLi attack), which was

generated using the Hampi constraint solver. The application MO replace has commented

out the previous element and inserted the new RequestID element along with the malicious

content. The values of the other three XML elements were kept from the original XML

message. If the web service directly concatenates the received parameter values into a SQL

Select query, the resulting query becomes:

select * from Cards where RequestID = 0 || 1=1

Upon execution, this SQL query can result in disclosure of sensitive information from

the company’s database. Similarly, other tests generated by SOLMI that were not blocked

by the gateway could also result in security breaches.

In practice, web services rely on the XML gateway for security. Our results indicate that

the gateway in our case study, which is operated in a professional and critical context, is not

protecting web services against sophisticated attacks generated by SOLMI and is, therefore,

vulnerable to XMLi . This is in contrast with the misleading results of simple attacks based

on fuzzing. As malicious tests can reach the target web services, it is highly probable that

web services can be compromised when a proper sanitisation of inputs is missing, as it is

often the case in practice. We recommend that web services should adopt the principle of

defence in depth for security i.e. providing security at multiple layers. They should not

only rely on the XML gateway for security but also provide their own security mechanism

to protect against known vulnerabilities such as XML Injection.

SOLMI is not limited to only SQL injections. It is a generalizable approach and can be

easily adopted to test web services for other types of nested attacks. For instance, to test

web services for Cross Site Scripting attacks using SOLMI, it suffices to replace the SQLi

grammar with a Cross Site Scripting (XSS) grammar to generate valid tests that contain

XSS attack payloads. Such grammars are often available already (e.g. [48]) and can be

utilized.
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Figure 4.5: An example of a test case generated by SOLMI, sensitive information was pixe-

lated.

4.5. RELATED WORK

4.5.1 Testing for Vulnerabilities in Web Services

Several studies have been carried out on the detection of vulnerabilities in web services

[5, 22, 23, 24, 26, 27, 49, 50]. An experimental study performed by Vieira et al. [49] that

involved 300 publicly available web services, revealed a large number of vulnerabilities. Most

of these vulnerabilities were related to SQL Injections. There exists a large research literature

on the detection of SQL Injection vulnerabilities in web services e.g. [40, 51, 52, 53, 54].

However, a very limited research effort has been devoted to testing approaches for XML-

based vulnerabilities, especially XMLi .

In the previous chapter, we have studied two XML-based vulnerabilities called Billion

Laughs (BIL) and XML External Entity (XXE ) in modern XML parsers and found most

of them to be vulnerable. Some other work investigated penetration testing for XML-based

Denial of Service (XDoS) vulnerabilities in web services [8, 35, 38].

Aydin et al. [55] have used automata-based static analysis to learn vulnerability signatures

(i.e, automata) from deliberately vulnerable web applications and to further utilise these

automata to generate test inputs for other web applications. In contrast, our work does not
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require any deliberately vulnerable applications. Furthermore, they targeted SQLi and XSS

while we focus on XMLi .

To the best of our knowledge, only Rosa et al. [56] targeted the detection of XMLi attacks

in their research work. They proposed a strategy based on ontology to build a knowledge

database and use it for detecting XMLi attacks. In the approach, known attack elements

are modelled as classes, relationships, and instances in an ontology. It is then used to detect

attacks when they occur by matching them with the modelled instances or by checking if

they are new attacks on the basis of classes and axioms of the ontology. Their evaluation

has shown that the approach performs better compared to the traditional signature-based

detection approaches. This work focuses on intrusion detection, not on security testing. In

contrast, our work tackles the test generation problem by generating effective XMLi attacks

using constraint solving.

The OWASP [20] testing guideline defines a testing methodology for XML Injection. It

starts with a discovery phase where an XML meta-character is inserted in the SUT. This

may reveal information about the structure of the XML. Having this information, the tester

can then insert XML data and tags to manipulate the structure or business logic of the web

service. OWASP has also provided a tool called WSFUZZER [13] that facilitates SOAP

penetration testing with fuzzing features. However, when running the tool with our subject

web services, we found that it could not deal with the complex structure of their WSDLs

(nested XML elements). This resulted in an execution error, which prevented any comparison

with SOLMI.

Chunlei et al. [32] also proposed a fuzz testing approach for web services. Fuzzing

approaches do not consider the associated domain constraints, hence, their effectiveness is

often limited, as shown by our empirical results.

Our proposed approach differs from existing work by accounting for the wide variations

in XML Injection attacks as described in Section 4.1. This increases our chances of finding

vulnerabilities. Moreover, the integration of constraint solving and input mutation for test

generation makes our approach more effective as it produces attacks that are more difficult

to detect as they are both well-formed and malicious.

4.5.2 XML Test Data Generation

The following work targets functional, not vulnerability testing. But they share one of our

starting premises, which is the use of XML Schemas, and also produce XML documents.
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There exists a large research body investigating the generation of test data for XML-based

web services [45, 46, 57, 58]. Havrikov et al. [45] proposed a search-based test generation

technique for XML-based systems. A tool named XMLMate has been implemented that

uses program structure and existing XML schemas and inputs, to generate new and valid

XML test inputs. The tool uses genetic algorithms to evolve a random or sample initial

population to achieve higher branch coverage. Experimental evaluation of XMLMate yielded

good results in terms of finding unique failures in test subjects.

Xu et al. [58] proposed a testing methodology for XML-based communication in accor-

dance with an XML Schema. Web services and applications are tested with respect to how

well they validate input XML messages according to their XML Schemas. The method gener-

ates test cases from existing XML messages and schemas via schema perturbation operators.

These test cases are then used to transmit invalid data to the web service or application. An

evaluation on two web services revealed only 33 % of the known faults. A similar approach

was presented by Offutt et al. [57] where data perturbation is used for testing web services.

Test cases are generated by modifying data values and their interaction based on the types

defined in the XML schema.

The approaches discussed here for XML test data generation target the functional testing

of web services. They do not focus on vulnerability testing. However, the output of their

approaches might be used in SOLMI to start our generation procedure.

4.6. Summary

We discussed a taxonomy of all known XMLi types and proposed an effective testing ap-

proach for XMLi in web services based on constraint solving and input mutation. The

effectiveness of a testing approach is highly influenced by the quality of test data generation.

We have focused on a test generation strategy that generates attack payloads (malicious

content) which satisfy the associated domain constraints defined using XML Schema Def-

inition (or WSDL) and attack grammars (e.g., SQL injections in our experiments). The

malicious content generation is automated using a constraint solver (Hampi). Test cases

(i.e., malicious XML messages) are, then, generated by mutating existing XML messages

and combining them with malicious content to generate nested attacks. As a result, gener-

ated tests are valid according to XSD constraints, yet malicious at the same time.

We have carried out an experimental evaluation to compare our proposed approach with

a state-of-the-art tool based on fuzz testing and known attack patterns. Our subject is a real-
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world financial system with an XML gateway at the front-end that is protecting the 44 back-

end web services, including a total of 443 input parameters. Our approach (SOLMI) using

constraint solving and input mutation delivers promising results. Approximately 78% of the

tests generated by SOLMI, which were all attacks with malicious content, were able to bypass

the XML gateway and reached the target web services. Only 2.37% of the tests produced

by ReadyAPI, a state-of-the-art commercial tool, could bypass the gateway. Furthermore,

against expectations, these tests turned out to be non-malicious. In other words, our tool

was able to find vulnerabilities in a professionally configured gateway whereas fuzz testing

was misleading in suggesting it was secure. Despite using a constraint solver, the computing

cost of using SOLMI is affordable in practice as it takes 0.92 seconds on average to generate

each test case.
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Chapter 5

Testing Front-end Web Applications

for XML Injections

This chapter focuses on the automated testing for XML injections (XMLi), a prominent

family of attacks that aim at manipulating XML documents or messages to compromise

XML-based applications. More specifically, we target the front-end web applications of SOA

systems, i.e., front-end web applications are the systems under test (SUTs) in our context.

Among other functionalities, they receive user inputs, produce XML messages, and send

them to services for processing (e.g., as part of communications with SOAP and RESTful

web services [10, 11]). Such user inputs must be properly validated to prevent XMLi attacks.

However, in the context of large web applications with hundreds of distinct input forms,

some input fields are usually not properly validated [59]. Moreover, full data validation (i.e.,

rejection/removal of all potentially dangerous characters) is not possible in some cases, as

meta-characters like “<” could be valid, and ad-hoc, potentially faulty solutions need to

be implemented. For example, if a form is used to input the message of a user, emoticons

such as “<3” representing a “heart” can be quite common. As a consequence, front-end web

applications can produce malicious XML messages when targeted by XMLi attacks, thus

compromising services that consume these messages.

As described in Section 1.2, fuzz testing approaches (e.g., ReadyAPI [12], WSFuzzer [13])

are not capable of detecting XMLi vulnerabilities in web applications. They can generate

only simple test cases using XML meta-characters (e.g., <), which are blocked by the ap-

plications. Furthermore, some attacks could be based on the combination of more than one

input field, where each field in isolation could pass the validation filter unaltered.
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In this chapter, we propose an automated and scalable approach to search for test cases

(attacks) that are effective at detecting XMLi vulnerabilities. Given that the SUT is a web

application that communicates with web services through XML messages, we first identify

a set of possible malicious XML messages (called test objectives, or TOs for brevity, in this

dissertation) that the SUT can produce and send to those services. These TOs are identified

using fully automated tool SOLMI (described in the previous chapter), that creates malicious

XML messages based on known XML attacks and the XML schemas of the web services

under test. Then, we use a specifically-tailored genetic algorithm to search the input space

of the SUT (e.g., text data in HTML input forms) in an attempt to generate XML messages

matching the generated TOs. Search is guided by an objective function that measures

the difference between the actual SUT outputs (i.e., the XML messages toward the web

services) and the targeted TOs. Our approach does not require access to the source code of

the SUT and can, therefore, be applied in a black-box fashion on many different systems.

The current chapter focuses on the generation of test inputs and is complementary to the

automated solution for generating TOs that we presented in the previous chapter.

Note that proper input validation in the front-end can prevent many of the possible

security attacks. However, in the context of large web applications with hundreds of dis-

tinct input forms, some input fields are typically not properly validated as a result of time

pressures, changes, and lack of security expertise.

Furthermore, some attacks could be based on the combination of more than one input

field, where each field in isolation could pass the validation filter unaltered. In some cases, full

data validation (i.e., rejection/removal of all potentially dangerous characters) is not possible,

as meta-characters like < could be valid, and ad-hoc solutions need to be implemented (which

could be faulty). For example, if a form is used to input the message of a user, emoticons

like <3 representing a “heart” can be quite common.

We have carried out an extensive evaluation of the proposed approach on two case stud-

ies. The first study consists of 20 experiments on six web applications that simulate bank

interactions with an industrial bank card processing service. These web applications have

different levels of complexity in terms of the number of inputs, their data types and the

validation technique. The second study includes a third-party application used for training

purposes and an industrial web application having millions of registered users, with hundreds

of thousands of visits per day. Results are promising, as our proposed search-based testing

approach is effective at detecting XMLi vulnerabilities in both case studies, within practical

execution time. The evaluation of our approach on such diverse systems, including a large

industrial web application, is a sizable and useful empirical contribution.
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The remainder of the chapter is structured as follows. Section 5.1 describes the testing

context for this chapter. Section 5.2 presents our proposed approach and the tool that we

developed for its evaluation. Section 5.3 reports and discusses our evaluation on two case

studies including research questions, results and discussions. Section 5.4 discusses related

work. Finally, Section 5.5 concludes the chapter.

5.1. Testing Context

A SOA system typically consists of a front-end web application that generates XML messages

(e.g., toward SOAP and RESTful web services) upon incoming user inputs (as depicted in

Figure 5.1). The front-end system often performs various transformation techniques on the

user inputs before generating the XML messages, e.g., encoding, validation or sanitisation.

XML messages are consumed by various back-end systems or services, e.g., an SQL back-

end, that are not directly accessible from the net. In this chapter, we focus on the front-end

web application and aim to test if it is vulnerable to XMLi attacks. We consider the web

application as a black-box. This makes our approach independent from the source code and

the language in which it is written (e.g., Java, .Net, Node.js or PHP). Furthermore, this also

helps broaden the applicability of our approach to systems in which source code is not easily

available to the testers (e.g., external penetration testing teams). However, we assume to

be able to observe the output XML messages produced by the SUT upon user inputs. To

satisfy this assumption, it is enough to set up a proxy to capture network traffic leaving from

the SUT, and this is relatively easy in practice.

The security of the front-end plays a vital role in the overall system’s security as it

directly interacts with the user. Consider, for instance, a point of sale (POS) as the front-

end that creates and forwards XML messages to the bank card processors (bank-end). If

the POS system is vulnerable to XMLi attacks, it may produce and deliver manipulated

XML messages to web services of the bank card processors. Depending on how the service

components process the received XML messages, their security can be compromised, leading

to data breaches or services being unavailable, for example.

5.2. Approach

This section describes our search-based testing [60] approach to detect XMLi vulnerabilities.

We first describe the TOs that are used to guide the search for malicious test inputs and
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Figure 5.1: Testing Context

demonstrate the presence of vulnerabilities. A search-based technique that generates inputs

to reach such TOs is then introduced. Along with the discussion of the technique, we describe

in detail its building blocks, including input encoding and the fitness function.

5.2.1 Test Objectives (TOs)

In our approach, TOs are specific outputs of the SUT (i.e., XML messages to web services)

that contain malicious content. If there exist inputs (e.g., forms in HTML pages) that can

lead the SUT to generate such malicious XML outputs, then the SUT is considered to be

vulnerable.

A TO is said to be covered if we can provide inputs which result into the SUT producing

the TO. Our focus in this chapter is to search for such user inputs. Since the TO is malicious

by design, the SUT is not expected to do so unless it is vulnerable. In other words, we search

for user inputs that can lead the SUT to generate malicious messages and send them to the

web services behind the corporate firewall, which cannot be contacted directly by an attacker.

Sending such TOs to the backend systems/services could severely impact them depending

on the malicious content that these TOs carry.

We define four types of TOs based on the types of XMLi attacks described in Chapter 4:

Type 1: Deforming, Type 2: Random closing tags, Type 3: Replicating and Type 4: Replacing.
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The intent and impact of each of these XMLi attack types are different. Type 1 attacks

aim to create malformed XML messages to crash the system that processes them. Type 2

attacks aim to create malicious XML messages with an extra closing tag to reveal the hidden

information about the structure of XML documents or database. Finally, Type 3 and Type

4 aim at changing the XML message content to embed nested attacks, e.g., SQL injection

or Privilege Escalation.

To obtain TOs for a given SUT, we first sample diverse and non-malicious output XML

messages (recorded during normal execution of the SUT). Then, we automatically modify

those XML messages to inject malicious intent in them. In Chapter 4, we have developed an

approach and tool to automate the TO generation. Such automation requires sophisticated

techniques, as we need to be able to generate XML data that is not only syntactically valid,

but also conformant to their given schema (e.g., in XSD format). Such schema might have

non-trivial constraints. This is important, as otherwise wrongly formatted XML messages

would be trivially discarded by the parsers in the web services processing them.

Ensuring diversity in the generated TO set is important to the success of our technique.

Since we consider the SUT as a black box, we do not know a priori how inputs are related

to output XML messages. Having a diverse set of TOs increases our chances of figuring out

such relationships and detecting XMLi vulnerabilities. Therefore, when generating TOs, we

make sure that each XML element and attribute of the messages is modified at least once

with all the types of XMLi attacks described in the previous chapter.

Consider the example of user registration given in Section 2.2.1: Figure 2.4 shows a

possible TO where the userid element is manipulated, i.e., the original element userid has a

value 500, which has been commented out and replaced with the new userid element having

a value of 0.

5.2.2 Search-based Testing

Once a set of TOs for the SUT is generated, we want to test whether the SUT, with certain

user inputs, can produce any of these TOs. If the SUT does not properly block malicious

inputs that lead to any of the TOs, it is considered vulnerable. The testing problem is now

defined as a search problem: seeking for malicious input values (i.e., XMLi attack strings)

that, when submitted to the the SUT, lead the SUT to produce XML messages matching

the TOs.
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As the number of possible input strings for the SUT can be extremely large, random

testing without any guidance would most likely be ineffective. Also, since we consider the

SUT as a black-box and hence we are not aware of how user inputs are transformed into

output XML messages, it is infeasible to use a simple deterministic algorithm based on direct

input-output matching. Therefore, we use a search algorithm, namely a genetic algorithm

(GA) [61], that seeks to evolve the output of the SUT towards the TOs. Given a TO and

an output XML message, the objective (fitness) function guiding search is measured by the

distance between them.

GA is inspired by the mechanisms of natural adaptation. In a nutshell, it starts from

an initial population of individuals (encoded in chromosomes) and iteratively evolves them

by selecting elite individuals (having the best fitness) and producing offspring by applying

crossover and mutation operators.

Our GA-based approach is depicted in Figure 5.2. Each test case is a GA individual,

composed of a number of string values to be assigned to input parameters of the SUT.

The number of input strings depend on the number of inputs of the SUT. For each TO, our

approach first generates an initial population of random test cases. Then, it iteratively selects

and evolves them based on the feedback from the fitness function. This process is repeated

until optimal fitness is achieved (outputs match a TO) or we run out of computational budget

(e.g., timeout). Note that we consider each TO separately. TOs are independently created

based on different types of XMLi attacks. The coverage of different TOs requires different

test cases and, hence, we cannot consider the coverage of multiple TOs at the same time.

In the subsequent sections we discuss in detail how test cases are encoded and the way

we define and measure the fitness function.
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5.2.2.1 GA Encoding and Reproduction

The encoding of chromosomes is a pivotal task when addressing a search problem with a

GA. For a given SUT with N input parameters, we represent a test as a chromosome of N

genes. Each of these genes is one string corresponding to an input parameter. We consider

every input of the SUT as a string regardless of its original data type, since (i) inputs to

the web application SUT will be sent through HTTP and (ii) malicious XMLi attacks are

strings. These input strings can contain alphanumeric and special characters (e.g., %, || or

&).

By default, we consider all the printable ASCII characters as the alphabet for the input

strings. However, depending on the given TOs, we can reduce the alphabet to containing

only characters that can possibly compose the TOs. We investigate this point further in

Section 5.2.2.3.

Each input string is represented as an array of ASCII characters. The lengths of the

arrays for the genes are set based on the expected maximum lengths of the corresponding

input parameters. We use a special symbol to denote the “empty” character, i.e., absence

of character, to fill up the array when the input string is shorter than the maximum length.

Furthermore, in this way the lengths of input strings can vary during the search, as these

empty spaces can be filled with new characters.

Reproduction to create offspring is done through standard crossover and mutation oper-

ators. Crossover is a genetic operator that is used to vary the programming of chromosome

pairs from one generation to the next: a pair of individuals is selected, the chromosome of

each is cut into two parts at the same random cut point, two new offspring are formed by

concatenating the head part of one parent with the tail part of the other parent. Mutation

on an offspring is done by randomly selecting a position in the chromosome and swap its

corresponding character with a new one that is randomly selected from the alphabet.

To select chromosomes for crossover and mutation, we use the binary tournament selec-

tion technique [62] as recommended in the literature [63, 64].

5.2.2.2 Fitness Function

The fitness (objective) function that guides our search for effective test inputs is defined as

the distance between the output XML message and the TO. Given a TO and an individual

(i.e., a test case consisting of inputs to the SUT), its fitness is measured as the distance

between the XML message that the SUT produces upon the execution of the test case and
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the TO. Our search evolves such individuals, aiming at reducing the distance so that the

TO can be reached.

A TO is essentially a malicious XML document that might be malformed or contain

potentially dangerous values (e.g., SQL injection). The structure of the TO might, therefore,

be broken. As a result, we consider TOs as plain text, i.e. just as strings. We use string

edit distance (also known as Levenshtein distance) between pairs of strings for the fitness

measure. In short, edit distance between two strings is the minimum number of editing

operations (inserting, deleting, or substituting a character) required to transform one into

the other. It is also supported by fast algorithms [65] and open source implementations.

Consider the following simple example of a TO of a SUT that has a single input parameter

I. The TO is represented as the string:

<test>data OR 1=1</test>

Upon a test case t in which I = “ OR %”, the SUT generates the following XML message:

<test>data OR %</test>

The fitness value of t is measured as the edit distance between the TO and the XML

message, which in this case is equal to three, as we need to modify the “%” character into

“1”, and then add the two characters “=1”.

The lower the fitness value is, the closer we are to cover a TO. We consider the TO to

be covered when the corresponding fitness value is 0. It means that the generated XML

message and the TO are identical.

5.2.2.3 Reducing the Search Space

The search space for a SUT is characterized by three factors: the number of input parameters

of the SUT, the maximum string lengths for the values of those inputs, and the alphabet

from which strings are created. They should be controlled in order to reduce the search

space and improve the performance of the GA. The number of input parameters of the SUT

is normally fixed. However, assuming that some domain knowledge is available i.e., if we

know that some parameters are not involved in producing XML outputs, then they can be

excluded from the search. Their values can be fixed with valid data taken from the functional

test suite of the SUT.

The maximum string length values, i.e., the size of the genes, corresponding to the input

parameters of the SUT, should also be adapted to the nature of the parameters. For instance,

parameters for name and password are often shorter than a parameter for description. Again,
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if we know any upper bound for input lengths, we should limit the gene size accordingly.

Nevertheless, since the input strings are used or concatenated to create XML messages, their

lengths are smaller than the lengths of the XML messages. As a result, we should always

set the string lengths smaller than the lengths of TOs.

We should also consider to restrict the alphabet to contain only the specific set of char-

acters that appear in the TOs. If the TOs do not contain some characters, we omit them

from the alphabet. As the GA has to work with fewer characters in this case, we expect

an improvement in performance. We investigate the benefit of limiting the alphabet in the

experimental evaluation.

5.2.3 Tool Implementation

We developed a tool in Java that implements the technique presented in this chapter. The

inputs of the tool include the TOs that contain malicious intents for a target SUT. The

tool generates test cases, which include the values for the input parameters of the SUT (e.g.,

input values in HTML forms). When these tests are run, the tool compares the XML outputs

of the SUT to the TOs for fitness calculation. The search is guided by this fitness function

for generating new test cases. The process is repeated until the TOs are covered or the tool

runs out of time.

The main components of the tool are: Test Case Generator and Test Executor. The test

case generator is the core component of the tool. It is implemented on top of jMetal [66] -

an object oriented, Java-based framework for optimization. The test executor provides an

interface between the SUT and the test case generator. It takes the input values generated

by the test case generator and submits them to the SUT (e.g, through a HTTP POST with

all the needed cookies set up). The XML messages sent by the SUT toward the web services

need to be intercepted and then sent back to the test case generator where the fitness is

calculated. This can be easily done by setting up an HTTP proxy between the SUT and the

web services.

The test case generator is generic and can be used with any application. The test executor

has been modularized so that it can easily be instantiated for a specific SUT that has a

different user interface (e.g., HTML web forms with different parameter names) and that

generates XML files in different ways (e.g., SOAP messages or data bodies in HTTP POST

messages toward RESTful web services).
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5.3. Evaluation

We evaluate the effectiveness in vulnerability detection and the execution cost of the pro-

posed approach through a series of experiments grouped into two studies, namely Study 1:

Controlled Experiments and Study 2: Third-party Applications. The common characteristic

of the subject applications in these studies is that they receive user inputs, produce XML

messages, and process or send them to associated web services. In Study 1, we have two

front-ends, called SBank and SecureSBank , that simulate a bank’s interactions with a real-

world bank card processing service1. Since we designed these front-ends, we can control the

number of inputs and validation mechanisms in them to investigate how they influence the

effectiveness of our approach.

Differently from Study 1, Study 2 involves third-party independent subject applications.

They enable us to evaluate how well our approach scales and to which extent our results

generalize.

5.3.1 Research Questions

In this chapter, we investigate the following six research questions:

RQ1 [Effectiveness ]: To what extent is our search-based approach effective in detecting

XMLi vulnerabilities?

Since our TOs correspond to malicious XML messages, being able to identify inputs to

generate them would demonstrate that the SUTs are vulnerable. Our approach is therefore

deemed effective if it can find input strings that lead to the production of TOs, i.e, cover

TOs.

RQ2 [Comparison with Random Search]: How does our search-based approach perform

compared to random search? Random search [62] is typically adopted as a baseline in SBSE

research [15].

RQ3 [Cost ]: What is the cost, in terms of execution time, of applying the proposed

approach?

We should consider the cost for deriving TOs and the computational cost of the GA.

Since the TO derivation is addressed in the previous chapter and is not the focus of the

current chapter, we only discuss here the input search cost. As GAs are notorious for being

1The name of the company cannot be revealed due to non-disclosure agreements.
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computationally expensive, we investigate whether the cost in terms of execution time affects

the applicability of our approach.

RQ4 [Impact of Restricted Alphabets ]: How does restricting the alphabet to the characters

in the TO affect the GA performance?

As described in Section 5.2.2.3, instead of using the complete alphabet of all possible

characters, we could use a restricted alphabet by omitting the characters unused in the

TOs. It is expected that the performance of the GA would improve as the overall search

space would be reduced. We assess whether the magnitude of the improvement is practically

significant.

RQ5 [Influence of Input Setting ]: To which degree the number of input parameters and

their length settings affect the GA performance?

When there are more user inputs, the GA has to spend more time searching. Also, the

length of user inputs can be variable (Var) and depend on specific inputs, or be fixed (Fix)

for all inputs. The former may help reduce the search space, but it requires selecting proper

lengths for inputs, which often requires domain knowledge. The latter is easier as one has to

select a single maximum length for all inputs, but it might unnecessarily increase the search

space. We study these trade-offs in RQ5.

RQ6 [Influence of Input Validation]: Does search-based testing work in presence of input

validation?

The SUT may implement protection mechanisms that do validate the inputs. When such

mechanisms detect malicious inputs, they often react to malicious content by generating

error messages in the HTTP responses, and often end up not generating any XML to be sent

toward the target web services. This is a challenge for the GA, as no useful fitness value

would be produced, generating a fitness plateau hampering effective search. It is hence

important to investigate whether our proposed approach works in such circumstances, i.e.,

how it is affected by input validation.

5.3.2 Metrics

We rely on the following metrics to help answer the above research questions.

• Coverage Rate (C): Coverage rate C is the ratio of the number of covered TOs over

the total number of TOs. We denote the coverage rates for the GA as Cga and for

random search as Crn.
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• Average Execution Time (T ): Each experiment on a specific TO is repeated 10 times

to account for randomness. We then measure the average execution time T (minutes)

across runs and per TO for specific subject applications. We denote the execution time

as Tga and Trn for the GA and random search, respectively.

5.3.3 Study 1: Controlled Experiments

Beside checking the effectiveness of the proposed approach on applications that are known

to be vulnerable, this study investigates the influence of the input space (number of inputs,

their lengths, and the alphabet) on the GA performance.

5.3.3.1 Subject Applications

Our first study has been carried out with two web applications, SBank and SecureSBank ,

that simulate the web front-end of a banking system that receives user inputs, produces

XML messages, and sends them to a bank card processing service. The XML messages share

the same structure as those used in production. SBank and SecureSBank were, however,

developed in our lab specifically for this study. We wanted to be able to configure the number

of user input parameters and apply validation mechanisms. SBank and SecureSBank were

deliberately designed to be vulnerable.

Both applications can have up to three input parameters, including UserName, Issuer-

BankCode, and CardNumber. The applications generate XML messages using the inputs

submitted by the user. Figure 5.3 shows an example of such an output XML message. Note

that the RequestID element in the XML message is generated by the application automat-

ically. Users are not authorized to tamper with its value unless they do so maliciously.

The generated XML messages are then forwarded to the web services of the card processing

company.

SBank directly inserts the user inputs into the XML elements of the message without

validation. This makes the application vulnerable to XMLi attacks. SecureSBank is similar

to SBank except that one of the input parameters is validated. The application validates

the input parameter IssuerBankCode and generates an error message if malicious content is

found. The aim of evaluating SecureSBank is to test our approach in the presence of input

validation.
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Figure 5.3: An example of output XML message created by SBank .

5.3.3.2 Test Objectives

As described in Section 5.2.1, we created TOs based on the four XMLi injection techniques

proposed in the previous chapter. For SBank and SecureSBank , TOs are created by applying

these four XMLi techniques to every element of the sample XML message (Figure 5.3). The

Type 4: Replacing attack is a more advanced form of XMLi that requires at least two XML

elements where the value of one must be auto-generated by the application. Therefore this

attack can only be applied to the RequestID as it is the only element auto-generated by

SBank/SecureSBank . This results in 10 (3 attacks x 3 elements + 1 attack x 1 element)

representative TOs in total.

An example of a TO for SBank is shown in Figure 5.4. It contains four XML elements

UserName, IssuerBankCode, RequestId, and CardNumber. The value of the parameter Re-

questID includes malicious content (“0” || 1 = 1 - an embedded SQLi attack). The appli-

cation of the XMLi technique Type 4: Replacing resulted in commenting out the previous

element and inserting the new RequestID element along with malicious content. If the web

service that consumes such malicious TO executes a SQL query by directly concatenating

the received values into it, then the resulting query may get executed:

Select * from Cards where RequestID = "0" || 1=1

The condition in this SQL query is a tautology and results in returning all cards’ infor-

mation when executed. If the front-end system can generate this XML message from user

inputs, it is considered vulnerable to XMLi attacks.
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Figure 5.4: An example of test objective containing a malicious attack.

5.3.3.3 Experiment Settings

We conducted a number of experiments with different settings of the applications, as repre-

sented in Table 5.1. Each row in the table represents one experiment. The column Exp. ID is

the id of the experiments. The values of Exp. ID is based on the corresponding applications

(S for SBank , SS for SecureSBank), the number of inputs considered, whether input lengths

are fixed (Fix) for all or are input specific (Var), and whether the alphabet is restricted (Y)

or not (N). The TOs column lists the number of TOs created for the experiments. The

#Inp. column lists the number of inputs accepted by the application version. The Len.

column represents whether the length of the genes in a chromosome is fixed or variable. The

gene’s lengths directly correspond to the lengths of the input parameters of the SUT and

may affect the GA’s performance. The last column Res. Alph. indicates whether the GA

uses a reduced alphabet or not.

All but four experiments have 10 TOs, as described in Section 5.3.3.2. Each of these four

experiments (i.e. S.1.* and SS.1.*) have 9 TOs as they consist of the SBank/SecureSBank

versions having one input parameter. The missing TO from each of these four experiments

is the one generated using the Type4: Replacing attack on RequestID element as this TO

requires at least two input parameters to be covered. It is therefore not coverable in the

experiments with application versions having only one input parameter.

For these experiments, a TO is covered when it matches the output XML message,
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Table 5.1: Experiment Settings for Study 1: SSBank stands for SecureSBank , Experiment

ID (Exp. ID) is named based on the corresponding application (App.), the number of inputs

(#Inp.), the input length setting (Len), and whether the alphabet is restricted (Res. Alph.).

App. Exp. ID #TOs #Inp. Len. Res. Alph.

SBank

S.1.F.N 9 1 Fix N

S.1.F.Y 9 1 Fix Y

S.2.F.N 10 2 Fix N

S.2.F.Y 10 2 Fix Y

S.2.V.N 10 2 Var N

S.2.V.Y 10 2 Var Y

S.3.F.N 10 3 Fix N

S.3.F.Y 10 3 Fix Y

S.3.V.N 10 3 Var N

S.3.V.Y 10 3 Var Y

SSBank

SS.1.F.N 9 1 Fix N

SS.1.F.Y 9 1 Fix Y

SS.2.F.N 10 2 Fix N

SS.2.F.Y 10 2 Fix Y

SS.2.V.N 10 2 Var N

SS.2.V.Y 10 2 Var Y

SS.3.F.N 10 3 Fix N

SS.3.F.Y 10 3 Fix Y

SS.3.V.N 10 3 Var N

SS.3.V.Y 10 3 Var Y

meaning that fitness is 0. As GA is a randomized algorithm, to account for the statistical

variation, we run it 10 times for each TO. To simplify the discussion and visualization of the

experiment results, a TO is considered to be covered if the TO is covered in at least one of

these 10 runs.

For each iteration of the TO, the program is terminated when the TO is covered or when

there is no improvement in fitness after X evaluations. The value of X is determined based

on some preliminary experiments. We use the same termination criteria for the search-based
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Table 5.2: Results for SBank for the GA and Random Search in terms of coverage rate Cga,

Crn and average execution time Tga, Trn in minutes.

Exp.ID Cga Crn Tga Trn

S.1.F.N 9/9 0/9 13.63 54.75

S.1.F.Y 9/9 0/9 10.53 54.92

S.2.F.N 10/10 0/10 28.30 49.60

S.2.F.Y 10/10 0/10 23.57 50.88

S.2.V.N 10/10 0/10 16.78 42.30

S.2.V.Y 10/10 0/10 12.18 45.48

S.3.F.N 10/10 0/10 31.88 40.42

S.3.F.Y 10/10 0/10 25.20 43.78

S.3.V.N 10/10 0/10 24.13 42.28

S.3.V.Y 10/10 0/10 19.13 47.93

approach and random search.

The GA algorithm described in Section 5.2.2 is generic. More specifically, we use gen-

erational GA [62], which is one of the single-objective optimization algorithms available in

jmetal [66] and has worked well for our problem based on our preliminary experiments. The

GA parameters have also been assigned values based on some small-scale preliminary exper-

iments and are consistent with the “best practices” in the literature [66, 67]. The population

size is set to 50, which is in the recommended range of 30-80 [68]. The crossover rate is

set to 0.8, which also falls within the recommended range of 0.45 to 0.95 [68, 69]. For the

mutation rate, we use the recommendations in [14, 69] i.e. 1.75
λ
√
l

where l is the length of the

chromosome and λ is the population size.

5.3.3.4 Results

The results obtained with Study 1 are shown in Tables 5.2 and 5.3 for SBank and SecureS-

Bank , respectively. Our proposed approach achieved 100% TO coverage for the experiments

with SBank . This was the case for all variants of SBank with different numbers of inputs

(S.1.*, S.2.*, or S.3.*) and the GA configurations ([F|V].[Y|N]). These results demonstrate

that all the variants of SBank are found to be vulnerable to XMLi .
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Table 5.3: Results for SecureSBank for the GA and Random Search in terms of coverage rate

Cga, Crn and average execution time Tga, Trn in minutes.

Exp.ID Cga Crn Tga Trn

SS.1.F.N 6/9 0/9 14.32 52.07

SS.1.F.Y 6/9 0/9 11.70 44.82

SS.2.F.N 0/10 0/10 25.83 38.28

SS.2.F.Y 0/10 0/10 24.20 31.63

SS.2.V.N 6/10 0/10 24.60 40.72

SS.2.V.Y 6/10 0/10 19.62 36.05

SS.3.F.N 0/10 0/10 18.20 27.88

SS.3.F.Y 0/10 0/10 17.95 23.63

SS.3.V.N 6/10 0/10 23.48 36.98

SS.3.V.Y 6/10 0/10 21.05 38.85

Results for SecureSBank are provided in Table 5.3. They also show that all the variants of

SecureSBank , with different number of user inputs (SS.1.*, SS.2.*, or SS.3.*), have at least

one configuration of the GA ([F|V].[Y|N]) that covers more than half the TOs, meaning

that the variants are found to be vulnerable. However, the coverage rate is smaller than that

achieved with SBank . This was expected, as with the presence of input validation procedures

applied on the input parameter BankCode, four (three for SS.1.*) TOs that require malicious

inputs for this parameter are not feasible. For the other TOs, it is also more difficult for the

GA to search since, whenever an unexpected input is submitted to BankCode, SecureSBank

produces an error message. Since it differs from the TOs by a large distance, it introduces

large fluctuations in the fitness function over time during the search.

The average execution time Tga per TO ranges from approximately 10 to 31 minutes for

SBank and 11 to 25 minutes for SecureSBank . Such durations in practice are acceptable as

they are not expected to impact the pace of development, especially when testing is fully

automated and performed off-line, for example on continuous integration systems.

Regarding RQ2, random search could not cover a single TO in any configuration as

depicted in the Crn columns in both Tables 5.2 and 5.3. This clearly shows that our search

problem is far from trivial. Even with just 10 runs, Fisher exact tests on differences between

success rates Crn and Cga provide very small p-values close to 0. Also the execution time

Trn for random search in each experiment is much higher than their counterparts in the GA
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experiments.

Regarding the research questions RQ1-RQ3, we find that:

The proposed approach is highly effective in searching for inputs to detect XMLi
vulnerabilities and performs much better than random search. The average execution
time per TO is acceptable in practice.

All of the experiments that used a restricted alphabet (Exp. IDs ending with Y) performed

better in terms of execution time. For instance, the average execution time of S.3.F.Y (which

used a restricted alphabet) per TO is 25 minutes whereas its counterpart S.3.F.N (which

used the full alphabet) stands around 31 minutes. For RQ4, we find that:

Using a restricted alphabet for the GA helps significantly reduce the execution time.

The effects of varying the number of user inputs on the GA performance are evident

from the result tables of both subject applications. The application variants with one input

parameter (S.1.*, SS.1.*) achieved the best results in terms of execution time. The variants

with two input parameters performed better compared to their three-parameter counterparts.

For example, S.2.* achieved the same TO coverage in less time compared to S.3.*.

The results of both applications indicate that keeping the input length fixed is not a

viable option. The experiments where the lengths of the input parameter’s lengths were

variable (specific to parameters) achieved much lower execution times compared to their

fixed length counterparts. For example, S.3.V.* with variable length took less time than its

counterparts S.3.F.*. The results of SecureSBank comparing length options are even more

interesting, as none of the configurations with two and three input parameters with fixed

length (S.2.F.*, S.3.F.*) could cover any TO. In contrast, the variable length configurations

performed much better. For instance, SS.2.V.* with variable length achieved 6/10 coverage

while its counterpart SS.2.F.* with fixed length did not cover any TO.

Despite such observations, it is important to note that the differences between variable

and fixed length options for the input parameters depend on the variation in their actual

lengths. If there exists a significant variation in the actual lengths while the GA is configured

to use the same length for all parameters, then the GA performance will be considerably

affected. For instance, for SBank and SecureSBank , the length of the CardNumber parameter

is 16 characters while the BankCode is only four characters. On the other hand, if the lengths

of the parameters differ by only a few characters, then keeping it fixed (maximum length)

for all parameters will not have much effect on the coverage or execution time. In short, in

addressing RQ5, we find that:

75



5.3 Evaluation

The number of user input parameters affects the execution time. Furthermore, using
a maximum and identical fixed length for all user inputs does adversely affect coverage
as well as execution time.

Regarding input validation for RQ6, all variants of the application SecureSBank achieved

much lower coverage (Table 5.3) compared to the non-validated SBank variants (Table 5.2).

However our approach still covered more than half of the TOs in total (excluding the four

infeasible TOs) for SecureSBank .

5.3.4 Study 2: Third-party Applications

We focus exclusively on the most effective experimental settings identified in Study 1 for these

applications. The results of these experiments provide additional evidence to answer RQ1,

RQ3 and RQ4, The other RQs were not further investigated due to space and technical

constraints, as further described below.

5.3.4.1 Subject Applications

Two subject applications considered in this study are XMLMao and M (an arbitrary name

to preserve confidentiality).

• XMLMAO: XMLMao is a deliberately vulnerable web application for testing XMLi

vulnerabilities. It is part of the Magical Code Injection Rainbow (MCIR) [70] frame-

work for building a configurable vulnerability test-bed. The application has a single

user input parameter. It inserts inputs directly into one of the four locations in the

output XML message, depending on XMLMao’s setting. XMLMao is written in PHP

and consists of 1178 lines of code.

• M: M is an industrial web application with millions of registered users and hundreds

of thousands of visits per day. The application itself is hundreds of thousands of lines

long, communicating with several databases and more than 50 corporate web services

(both SOAP and REST). Out of hundreds of different HTML pages served by M ,

in this chapter we focus on one page having a form with two string inputs. Due to

non-disclosure agreements and security concerns, no additional details can be provided

on this case study.
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5.3.4.2 Test Objectives

To create TOs for XMLMao, we apply the first three XMLi mutation techniques (Types

1−3) to the sample XML message of the application. Type 4: Replacing is not applicable as

it requires two user inputs. Since there are four locations of insertion in the XML message,

we create 12 (3 x 4) TOs.

We only used four TOs for M (one per type), as the experiments had to be run on the

laptop of one of the engineers working on M , as opposed to a cluster for other experiments.

The TOs come from one of the SOAP web services invoked by the SUT when the target

HTML form is submitted. As M is a large and complex system, when run on a laptop,

instead of a high performance cluster of servers, response times are slow and this makes

fitness evaluation more time consuming (most of the 32 minutes in Table 5.5). Even if

response times for a single user are still in the order of tens of milliseconds, this made

running a large number of experiments on M impossible, thus resulting in considering four

TOs only.

5.3.4.3 Experiment Settings

Experiment settings for Study 2 are depicted in Table 5.4. Like Study 1, each row in the

table represents one experiment. For XMLMao, there is only one input and, therefore, the

Fix/Var length settings are not applicable. The only two configurations for XMLMao are:

X.1.F.Y with restricted alphabet and X.1.F.N without restricted alphabet for the GA. For

XMLMao, we keep the same termination criteria as Study 1.

For M , there are two user inputs. However, due to computational constraints, we only

considered one configuration (M.2.F.Y) with restricted alphabet. Furthermore, we used a

30K cap for the maximum number of fitness evaluations.

5.3.4.4 Results

The results obtained with Study 2 are shown in Table 5.5. Our proposed approach achieved

100% TO coverage for XMLMao, i.e., all 12 TOs were covered. The cost in terms of execution

time per TO is in the range 5-7 minutes.

With 31.87 minutes on average, execution time for M is much higher, although still

within reasonable limits, but for a much lesser budget i.e. 30K evaluations. However, our
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Table 5.4: Experiment Settings for Study 1: Experiment ID (Exp. ID) is named based on

the corresponding application (App.), the number of inputs (#Inp.), the input length setting

(Len), and whether the alphabet is restricted (Res. Alph.).

App. Exp. ID #TOs #Inp. Len. Res. Alph.

XMLMao
X.1.F.N 12 1 Fix N

X.1.F.Y 12 1 Fix Y

M M.2.F.Y 4 2 Fix Y

Table 5.5: Results for XMLMao and M in terms of coverage rate Cga and average execution

time Tga in minutes.

Exp. ID Cga Tga

X.1.F.N 12/12 6.86

X.1.F.Y 12/12 5.68

M.2.F.Y 1/4 31.87

technique did manage to find inputs to cover one of the TOs. The other three TOs turned

out to be infeasible due to the type of input validation that M applies. Note that, in contrast

to XMLMao that is a vulnerable application implemented to study and evaluate penetration

testing tools, M is an actual industrial system used in production (i.e., the found potential

vulnerability was not artificially injected for the sake of these experiments).

Regarding the research questions RQ1 and RQ3, we find that:

The proposed approach is effective in finding inputs that detect XMLi vulnerabilities
in third-party independent applications, within practical execution time.

Regarding RQ4, the use of the restricted alphabet in XMLMao was also beneficial in

terms of execution time, i.e., X.1.F.Y that used the restricted alphabet was faster with an

average execution time of 5.68 minutes per TO compared to its counterpart X.1.F.N, with

6.86 minutes.

Using a restricted alphabet for the GA results in better execution time for XMLMao.
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5.4. Related Work

In this section, we survey work related to vulnerability detection in web applications/services,

with particular attention to XML vulnerabilities. We also discuss existing work that uses

search-based approaches for security testing.

Automated approaches for vulnerability testing: There is a large research body

investigating automated approaches for the detection of vulnerabilities in web application-

s/services, e.g., [23, 31, 33, 34, 71]. Bau et al. [72] performed a study to evaluate the

effectiveness of the state-of-the-art in automated vulnerability testing of web applications.

Their results demonstrate that such approaches are only good at detecting straightforward,

historical vulnerabilities but fail to generate test data to reveal advanced forms of vulnerabil-

ities. Mainka et al. [31] presented an automated penetration testing approach and evaluated

it on several web service frameworks. They implemented a tool named WSAttacker and tar-

geted two web service specific attacks: WS-Addressing spoofing1 and SOAPAction2. Their

work was further extended by Oliveira et al. [33] with another tool (WSFAgresser) targeting

specific web service attacks. A common issue with most of these automated approaches is

the large number of false positives, which makes their application in practice difficult. Be-

sides, none of these approaches are dedicated towards the detection of XML injections, the

objective of this chapter.

Testing for XML Injections: A recent survey [9] in security testing has investigated

various approaches and tools for testing SQL injections and Cross-site scripting vulnerabili-

ties in web applications and services. Unlike these two vulnerabilities which received much

attention (e.g., [40, 73, 74]), only limited research targets XML injections. An approach for

the detection of XML injection attacks is presented by Rosa et al. [56]. They proposed a

strategy to first build a knowledge database from the known attack patterns and then use it

for detecting XML injection attacks, when they occur. This approach is an improvement over

the traditional signature-based detection approaches, however it focuses on intrusion detec-

tion, not on security testing. In contrast, our work is targeted towards test data generation

to detect XML injection vulnerabilities in web applications.

A basic testing methodology for XML injections is defined by OWASP [75]. It suggests

to first discover the structure of the XML by inserting meta-characters in the SUT. The

revealed information, if any, combined with XML data/tags can then be used to manipulate

the structure or business logic of the application or web service. OWASP also provided a

1http://www.ws-attacks.org/index.php/WS-Addressing_spoofing
2http://ws-attacks.org/index.php/SOAPAction_spoofing
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tool named WSFUZZER [13] for SOAP penetration testing with fuzzing features. However,

as reported in [7], the tool could not be used with WSDLs having complex structure (nested

XML elements) and is only useful in scenarios where the web services are directly accessible

for testing.

In the previous chapter, we discussed four types of XML injection attacks and proposed

a novel approach for testing web services against these attacks. Our evaluation found the

approach very effective compared to state-of-the-art tools. However, it focuses on the back-

end web services that consume XML messages and are directly accessible for testing. In

contrast, our current work targets the front-ends (web applications) of SOA systems that

produce XML messages for web services or other back-end systems.

In addition, while in the previous chapter we used constraint solving and input mutation

for manipulating XML messages, in this chapter we use search-based testing techniques to

generate test inputs for the front-end of the SUT that produces malicious XML messages.

Such inputs can then help detect XMLi vulnerabilities in web applications that can be

exploited through the front-ends.

Search-based approaches for security testing: Search-based testing has been widely

investigated in the literature in the context of functional testing [67, 76, 77, 78, 79]. However,

little attention has been devoted to non-functional properties of the SUT, such as security

testing [80, 81].

Avancini and Ceccato [82] used search-based testing for cross-site scripting vulnerabilities

in web applications. Their approach uses static analysis to look for potential cross-site

scripting vulnerabilities in PHP code. Then, genetic algorithms and constraint solvers are

used to search for input values that can trigger the vulnerabilities. This approach is white-

box and targets a different type of vulnerabilities, i.e., cross-site scripting. Instead, our

approach is completely black-box, i.e., it does not require the source code and it targets

XML injection vulnerabilities.

Thomé et al. [83] proposed a search-based testing approach to detect SQL injection

vulnerabilities in web applications. Their approach evolves inputs by assessing the effects

on SQL interactions between the web server and database with the goal of exposing SQL

injection vulnerabilities. Our work is also based on evolving test inputs but for XML injection

instead of SQL. Moreover, Thomé et al. [83] used a fitness function based on a number of

factors to measure the likelihood of the SQLi attacks. Instead, we use a fitness function based

on the distance between the SUT’s outputs and test objectives based on attack patterns.
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Evolutionary algorithms have been also used to detect other types of vulnerabilities [84,

85]. Unlike our black-box approach for XMLi testing, these techniques are white-box and

are focused on buffer overflow detection.

5.5. Summary

In this chapter, we have presented an effective search-based approach for the security testing

of web applications, with a focus on XMLi vulnerabilities. Our approach is able to lead the

system under test (SUT) to produce malicious XML messages from user inputs (e.g., HTML

forms). Such web applications often act as front-ends to the web services of a SOA system.

In such context, XMLi vulnerabilities are common and can lead to severe consequences, e.g.,

DoS or data breaches. Therefore, automated and effective testing to detect and fix XMLi

vulnerabilities is of paramount importance.

The proposed approach is divided into two steps: (1) the automated identification of

malicious XML messages (our test objectives, TOs) that, if generated by the SUT and sent

to services, would suggest a vulnerability; (2) The automated generation of SUT inputs that

generate messages matching such TOs. This chapter focuses on item (2), as item (1) was

already addressed in the previous chapter.

We have evaluated our novel approach on several artificial systems and one large industrial

web application. Our results suggest that the proposed approach is effective as it was able to

uncover vulnerabilities in all case studies. We also found that the employed genetic algorithm

works best when some domain knowledge about the system under test is available, e.g., the

lengths of user input parameters and their alphabets, to restrict the search space.
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Chapter 6

Improving Test Case Generation for

XML Injections in Front-end Web

Applications

Chapter 5 presented an automated and effective black-box testing approach for the security

testing of web applications, with a focus on XMLi vulnerabilities. In this chapter, we improve

upon the previous results by providing more efficient techniques to generate test cases. More

specifically, the contributions of this chapter with respect to the previous chapter are:

• We investigate four different search algorithms, namely Standard Genetic Algorithm

(SGA), Real-coded Genetic Algorithm (RGA), Hill Climbing (HC) and Random

Search (RS), while in the chapter 5 we compared only SGA and RS.

• We evaluate a different fitness function, namely the Real-coded Edit Distance (Rd), to

overcome the limitations of the traditional String Edit Distance (Ed) in our context.

• We provide an in-depth analysis by comparing all possible combinations of fitness

functions and search algorithms to determine the combination that is most effective

and efficient in detecting XMLi vulnerabilities.

• We extensively analyze several co-factors that are likely to affect the effectiveness and

efficiency of the proposed approach.

We have carried out an extensive evaluation of the proposed search-based approach by con-

ducting two different case studies. In the first study, we compared all combinations of fitness
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functions and search algorithms with respect to the detection of XMLi vulnerabilities in

(i) one open-source third-party application designed for secure-code training, and (ii) two

web applications that interact with an industrial bank card processing system. We find that

RGA combined with Rd is able to detect more XMLi vulnerabilities (better effectiveness)

within a significantly lower amount of time (better efficiency) when compared to the other

combinations, including the one used in the previous chapter, i.e., SGA with Ed.

To evaluate the applicability of our search-based approach in a realistic setting, we con-

ducted a second case study involving two industrial systems. The first one is a web ap-

plication having millions of registered users, with hundreds of thousands of visits per day.

We focused on one of its pages with an HTML form. As our approach would be directly

applicable to any system that receives HTTP messages, to show that this is indeed the case,

our second case study involves a web service receiving JSON messages and generating XML

messages for back-end SOAP services. Our results show that the proposed technique, when

configured with RGA and Rd, successfully detects XMLi vulnerabilities in the evaluated

industrial systems.

The remainder of the chapter is structured as follows. Section 6.1 describes our proposed

approach. Sections 6.2 and 6.3 report and discuss our evaluation on two case studies including

research questions, results and discussions. Further analyses regarding the various co-factors

that may affect our results are presented in Section 6.4. Section 6.5 discusses related work.

Threats to validity are discussed in Section 6.6. Finally, Section 6.7 concludes the chapter.

6.1. Approach

6.1.1 Search-Based Testing

In our context, applying search-based techniques requires to address three issues [15]: (i)

choose an encoding schema to represent candidate solutions (i.e., test inputs); (ii) design a

fitness function to guide the search for malicious test inputs; and (iii) choose and apply an

effective search algorithm to generate inputs closer to the target TO. Our choices for the

aforementioned tasks are detailed in the next sub-sections.
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6.1.1.1 Solution Encoding

A given SUT requires to submit N input parameters to produce XML messages that will

be sent through HTTP to the web services. Therefore, the search space is represented by

all possible tuples of N strings that can be submitted via the web form, with one string for

each single parameter. In this context, a string is a sequence of alphanumeric and special

characters (e.g., %, || or &) that can be inserted by an attacker in the web form.

Therefore, we use the following encoding schema: a candidate test case for the SUT with

N input parameters is a tuple of strings T = 〈S1, S2, . . . , SN〉 where a Si denotes the string

for the i-th input parameter of the SUT. A generic string in T is an array of k characters,

i.e., Si = 〈c1, c2, . . . , ck〉. The length k of the array is fixed based on the expected maximum

length of the corresponding input parameter. To allow input strings with different length,

we use a special symbol to denote the “empty” character, i.e., absence of character. In this

way, the lengths of input strings can vary during the search even if the length of the array

(i.e., k) in the encoding schema is fixed. In other words, the array Si = 〈c1, c2, . . . , ck〉 can

be filled with the “empty” character to represents shorter strings.

Theoretically, characters in the input string can come from the extended ASCII code

as well as from UNICODE. However, in this chapter we consider only printable ASCII

characters with code between 32 and 127 since, as noticed by Alshraideh et al. [86], the

majority of software programs do not use characters outside this range (i.e., non-printable

characters).

6.1.1.2 Fitness Function

The effectiveness of the search strongly depends on the guidance of the fitness function,

which evaluates each candidate solution T according to its closeness to the target TO.

In particular, when a candidate solution T is executed against the SUT, it should lead

to the generation of an XML message that match the TO. Hence, the fitness function is

the distance d (TO, SUT(T)) between the target TO and the XML message that the SUT

produces upon the execution of T , i.e., SUT(T). The function d(·) can be any distance

measure such that d (TO, SUT(T)) = 0 if and only if SUT(T) and the TO are identical,

otherwise d (TO, SUT(T)) > 0. In this chapter, we investigate two different measures for

the fitness function: the string edit distance and the real-coded edit distance.

String Edit Distance. The first fitness function is the edit distance (or Levenshtein

distance), which is the most common distance measure for string matching.
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Its main advantage compared to other traditional distances for strings (e.g., Hamming

distance) is that it can be applied to compare strings with different lengths [87]. In our

context, the length of the XML messages generated by the SUT varies depending on the

input strings (i.e., the candidate solution T ) and the data validation mechanisms in place to

prevent possible attacks. Therefore, the edit distance is well suited for our search problem. In

addition, recent studies [86] showed that this distance outperforms other distance measures

(e.g., Hamming distance) in the context of test case generation for programs with string

input parameters, despite its higher computational cost1.

In short, the edit distance is defined as the minimum number of editing operations (in-

serting, deleting, or substituting a character) required to transform one string into another.

More formally, let An and Bm be two strings to compare, whose lengths are n and m,

respectively; the edit distance is defined by the following recurrence relations:

dE(An, Bm) = min


dE(An−1, Bm) + 1
dE(An, Bm−1) + 1
dE(An−1, Bm−1) + f(an, bm)

(6.1)

where an is the n-th character in An, bm is the m-th character in Bm, and f(an, bm) is zero

if an = bm and one if an 6= bm. In other words, the overall distance is incremented by one

for each character that has to be added, removed or changed in An to match the string Bm.

The edit distance takes value in [0; max{n,m}], with minimum value dE = 0 when An = Bm

and maximum value of dE = max{n,m} when An and Bm have no character in common.

To clarify, let us consider the following simple example of TO and a SUT with one

single input parameter. Let us assume that the target TO is the string <test>data OR

1=1</test>; and let us suppose that upon the execution of the test T = 〈OR %〉, the SUT

generates the following XML message SUT(T) = <test>data OR %</test>. In this ex-

ample, the edit distance dE (TO, SUT(T)) is equal to three, as we need to modify the “%”

character into “1”, and then add the two characters “=1” for an exact match with the TO.

One well-known problem of the edit distance is that it may provide little guidance to

search algorithms because the fitness landscape around the target string is largely flat [86].

For example, let us consider the target TO = <t> and let us assume we want to evaluate the

three candidate tests T1, T2 and T3 that lead to the following XML messages: SUT(T1) = At>,

SUT(T2) = ^t>, SUT(T3) = <t. The messages SUT(T1) and SUT(T2) share two characters

with the target TO (i.e., t and >) and have a correct length, i.e., three characters. Instead,

1The computational cost of the edit distance is O(n × m), where n and m are the lengths of the two

strings being compared.
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the message SUT(T3) shares two characters with the target TO but it is one character

shorter. Therefore, we may consider T1 and T2 to be closer to the target TO than T3 since

they have the correct number of characters, two of which match the TO. However, using the

edit distance, all the three tests will have the same distance to the TO since they require

to change only one character, i.e., dE(<t>, At>) = dE(<t>, ^t>) = dE(<t>, <t) = 1. In this

example, the edit distance is not able to distinguish between messages having the correct

length (e.g., T1) and messages that are shorter or longer than the TO (e.g., T3).

In general, the fitness landscape around the target TO will be flat as depicted in Fig-

ure 6.1-(a): all strings that require to change (e.g., At>), add (e.g., <t) or remove (e.g.,

<tt>) one single character will have a distance dE equal to 1 while the distance will be 0 for

only one single point. Thus, a search algorithm would have to explore this whole, very large

neighborhood, without any particular guidance.

Real-Coded Edit Distance. To increase the guidance of the fitness function, in this

chapter we modify the traditional edit distance by taking into account the relative distance

between characters in the ASCII code. Our motivation is to focus the search on sub-regions

of the large neighborhood of the target TO.

In particular, we change the recurrence relations of the traditional edit distance as follows:

dR(An, Bm) = min


dR(An−1, Bm) + 1
dR(An, Bm−1) + 1

dR(An−1, Bm−1) + |an−bm|
1+|an−bm|

(6.2)

In Equation 6.2, the first two recurrence rules are identical to the traditional edit distance

covering the case where An will match Bm by removing or adding one character, respectively.

The change is applied on the third recurrence rule, which covers the case when the character

an should be replaced by the character bm. In the traditional edit distance, if an is not equal

to bm then the overall distance is always incremented by one. Instead, in Equation 6.2, if an
is not equal to bm, then the overall distance is incremented by the factor | an− bm |, which is

the absolute value of the difference between the ASCII codes for the two characters an and

bm.

Such an increment factor is normalized using the well-known normalization function

φ(x) = x/(x+ 1) to obtain distance values within the interval [0; 1].

To describe the benefits of this new distance, let us consider the example used previously

to describe the fitness landscape of the edit distance: the target TO is the string <t>, and
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Figure 6.1: Fitness landscapes for the edit distance and the real-coded edit distance for the

target string TO = <t>

the tests to evaluate lead to the XML messages SUT(T1) = At>, SUT(T2) = ^t>, SUT(T3)
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= <t. Using the real-coded edit distance, we obtain:

dR(<t>, At>) =
| 60− 65 |
| 60− 65 | +1

≈ 0.8333

dR(<t>, ^t>) =
| 60− 94 |
| 60− 94 | +1

≈ 0.9714

dR(<t>, <t) = 1

Thus, with dR the three tests are not equally distant to the TO anymore: the test T3 is the

furthest one among the three tests. Therefore, differently from the edit distance, the new

distance is able to distinguish between messages with correct length (e.g., T1) and messages

that are longer or shorter than the TO (e.g., T3). We can also observe that the new distance

returns two different values for T1 and T2 although both the two tests need to replace only one

character to perfectly match the TO. This difference is given by the relative distance between

the character to match in the TO (i.e., “<”) and the two characters to replace (i.e., “A” for T1
and “^” for T2) according to their ASCII codes. Therefore, dR introduces a distance among

characters such that small differences among strings can still lead to differences in fitness

values. Though such distance may sound arbitrary, it helps the search focus on sub-regions

of the neighborhood of the target TO, e.g., by preferring T1 over T2 in the example, and thus

reduce the search space without decreasing our chances to reach the target.

Figure 6.1-(b) plots the fitness landscape around the target TO=<t> as well as the

three candidate tests T1, T2, and T3 in the previous example. In particular, the x axis

orders the candidate XML messages according to their ASCII codes while the y axis reports

the corresponding fitness function values produced by the real-coded edit distance. As we

can observe, the plateaus are replaced by a fitness function providing more guidance by

considering the arbitrary ordering of characters according to their ASCII codes.

However, as for any heuristics, our new string distance might have side effects (e.g.,

create new local optima) in some cases. Therefore, such heuristics needs to be empirically

evaluated to check if indeed it provides the benefits we expect from the theory.

6.1.1.3 Solvers

Once the encoding schema and the fitness function are defined, search algorithms can be

applied to find the optimal solutions, as for example malicious input strings in our case. In

this chapter, we investigate four different search algorithms, which are described below.

Random Search is the simplest search algorithm, which uniformly samples the search

space by evaluating random points. It starts with a randomly generated test T representing
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the initial candidate solution to the problem. Such a solution is evaluated through the fitness

function and it is stored until a new, better solution is found in the next iterations of the

algorithm, or if a stop condition is reached. At each iteration, a new test T ∗ is randomly

generated and compared with T using the fitness function. If T ∗ has a better fitness value

than T , then it is kept as current solution for the next iterations, i.e., T = T ∗. The search

ends after a fixed number of iterations. The final test T will be the best solution among all

those observed across all the iterations.

In our context, a randomly generated solution T = 〈S1, S2, . . . , SN〉 is composed of N

arrays of characters with a fixed length k. Each array Si contains characters randomly taken

from the set of available characters (alphabet), including the “empty” character. Therefore,

a solution T is composed of arrays representing strings with variable lengths ≤ k.

Since random search does not refine previously generated solutions, it has usually a low

probability to reach the global optimum. However, it is often used in the software engineering

literature as baseline for comparison with more advanced algorithms. Moreover, random

search has been shown to outperform other search algorithms (e.g., evolutionary algorithms)

when solving specific problems, such as automated software repair [88], and hyper-parameter

optimization [89].

Hill Climbing is a local search algorithm, which iteratively exploits the neighborhood of

the current solution to find better nearby solutions (neighbors). Similar to random search,

hill climbing starts with a single randomly generated test T , which represents the current

solution to the problem. At each iteration, a new solution T ∗ is taken from the neighborhood

of T and evaluated against the fitness function. If T ∗ improves the fitness function, then it

becomes the current solution for the next iteration, i.e., T = T ∗. The search ends after a

fixed number of iterations or if a zero fitness value is reached, which indicates that the target

TO is matched.

The key ingredient for the hill climbing algorithm is the definition of the neighborhood,

which corresponds to the set of tests (neighbors) that can be obtained from the current

solution T by applying “small mutations”. Let T = 〈S1, S2, . . . , SN〉 be the current test

composed of N arrays of characters. A neighbor is obtained from T by mutating its con-

stituent arrays using one of the following operators: adding, replacing or deleting characters.

Each operator is performed with probability p = 1/3, i.e., the three operators are mutu-

ally exclusive (only one operator is applied at a time) and equiprobable. Given an array of

characters Si = 〈c1, c2, . . . , ck〉 of length k, the three operators are implemented as follows:
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• deleting : each character cj in Si is deleted with probability pd = 1/k. The deletion is

performed by replacing the character cj ∈ Si with the “empty” character.

• replacing : each character cj in Si is replaced with a new character c∗j with probability

pr = 1/k, where c∗j is randomly selected from the set of printable ASCII characters.

• adding : a new character c∗ is inserted in Si at a random position j ∈ [1, . . . , k]. The

character is added if and only if Si does not contain already k non “empty” characters.

Therefore, on average only one character is removed, replaced or added in the arrays Si
contained in the test T .

Despite its simplicity, the hill climbing algorithm is very effective when the fitness forms a

unimodal function in the search space, i.e., functions with only one single optimal point [62].

However, for function with multiple local optima (multimodal problems), this algorithm can

return sub-optimal solutions since it converges to the first local optimum encountered during

the search, even if it is not the global one [62].

Standard Genetic Algorithm (SGA) is a metaheuristic solver inspired by the mech-

anisms of natural selection and adaptation. In a nutshell, it starts with a pool of solu-

tions, called population, where each solution (or chromosome) is a randomly generated test.

Then, the population is iteratively evolved by applying well-known genetic operators, namely

crossover, mutation and selection. At each iteration (generation), pairs of solutions (parents)

are selected and re-combined using the crossover operator, which creates new solutions (off-

springs) to form the population for the next generation. Other than inheriting parts (genes)

from their parents, offsprings are further modified, with a given small probability, using the

mutation operator. Solutions are selected according to a selection operator, which typically

gives higher selection probability to solutions in the current population with better fitness

values (fittest individuals). This process is repeated until a zero fitness value is achieved

(i.e., the TO is matched) or after a fixed number of generations.

The most popular genetic operators in SGA are the binary tournament selection, the

multi-point crossover and the uniform mutation [62]. They are defined as follows:

• the binary tournament selection is the most common selection mechanism for GAs

because of its simplicity and efficiency [63, 64]. With this operator, two individuals are

randomly taken from the current population and compared against each other using

the fitness function. The solution with the best fitness value wins the tournament and

is selected for reproduction.
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• the multi-point crossover generates two offsprings O1 and O2 from two parent solutions

P1 and P2 by recombining their corresponding arrays of characters. More precisely, let

P1 = 〈S1, S2, . . . , SN〉 and P2 = 〈R1, R2, . . . , RN〉 be the two selected parents, the two

offsprings O1 and O2 are generated as follows:

O1 = 〈⊗(S1, R1, p1), . . . ,⊗(SN , RN , pN)〉 (6.3)

O2 = 〈⊗(R1, S1, p1), . . . ,⊗(RN , SN , pN)〉 (6.4)

where the generic element ⊗(Si, Ri, pi) denotes the array obtained by cutting the two

arrays Si and Ri at the same random cut point pi and then concatenating the head part

from Si with the tail part from Ri. Similarly, ⊗(Ri, Si, pi) indicates the array obtained

by applying the same random cut point pi but concatenating the head part from Ri

with the tail part from Si. Therefore, the i-th array from one parent is recombined

with the corresponding array at the same position i in the other parent.

• the uniform mutation is finally used to mutate, with a small probability, newly gener-

ated solutions in order to preserve diversity [62]. It corresponds to the mutation oper-

ator used for the hill climbing algorithm when generating neighbors: tests are mutated

by deleting, replacing or adding characters in the corresponding array of characters.

GAs are global search algorithms and are thus more effective than local search solvers

for multimodal problems. This is because they use multiple solutions to sample the search

space instead of a single solution (e.g., for the hill climbing) which could bias the search

process [62]. On the other hand, GAs can suffer from a slower convergence to the local

optimum when compared to hill climbing. Therefore, they are usually less effective and

efficient for unimodal problems [62].

Real-Coded Genetic Algorithm (RGA) is a variant of GAs designed to solve nu-

merical problems with real or integer numbers as decision variables (genes) [90]. The main

difference between SGA and RGA is captured by the genetic operators that are used to form

new solutions. In SGAs, the crossover creates offsprings by exchanging characters from the

parents and, as a result, the new solutions will only contain characters that appear in the

parent chromosome. Further, in SGA, diversity is maintained by the mutation operator,

which is responsible for replacing characters inherited from the parents with any other char-

acter in the alphabet. Instead, in RGA, the parents are recombined by applying numerical

functions (e.g., the arithmetic mean) to create offsprings that will contain new numbers

(i.e., genes) not appearing in the parent chromosomes. Mutation, on the other hand, alters

solutions according to some numerical distribution, such as the Gaussian distribution.

91



6.1 Approach

In this chapter, we investigate the usage of RGAs since they have been shown to be

more effective than SGAs when solving numerical and high dimensional problems [90, 91].

In particular, our problem is numerical if we consider characters as numbers in ASCII code

(as in the real-coded edit distance) and it is high dimensional (the number of dimensions

corresponds to the length of the chromosomes). Indeed, maintaining the same encoding

schema used for SGA, each array of characters Si = 〈c1, c2, . . . , ck〉 of a test T can be

converted in an array of integers Ui = 〈u1, u2, . . . , uk〉 such that each ui ∈ U is the ASCII

code of the character ci ∈ S when applying real-coded crossover or mutation.

Popular genetic operators for RGA are the binary tournament selection, the single arith-

metic crossover [92], and Gaussian mutation [93]. Therefore, the selection mechanism is the

same as in SGA, whereas crossover and mutation operators are different. Before applying

these two numerical operators, we convert the input strings forming a test T in arrays of

integers by replacing each character with the corresponding ASCII code. Once new solutions

are generated using the single arithmetic crossover and gaussian mutation, the integer values

are reconverted into characters.

The single arithmetic crossover is generally defined for numerical arrays with a fixed

length. For example, let A = 〈a1, a2, . . . , ak〉 and B = 〈b1, b2, . . . , bk〉 be two arrays of

integers to recombine; it creates two new arrays A′ and B′ as copies of the two parents and

modify only one element at a given random position i using the arithmetic mean. In other

words, A′ and B′ are created as follows [92]:

A′ = 〈a1, a2, . . . , a′i, . . . ak〉 (6.5)

B′ = 〈b1, b2, . . . , b′i, . . . bk〉 (6.6)

where the integers a′i and b′i are the results of the weighted arithmetic mean between ai ∈ A
and bi ∈ B; and i ≤ k is a randomly generated point. The weighted arithmetic mean is

computed using the following formulae [92]:

a′i = ai · ρ+ bi · (1− ρ) (6.7)

b′i = bi · ρ+ ai · (1− ρ) (6.8)

where ρ is a random number ∈ [0; 1]. Finally, the two resulting real numbers a′i and b′i are

rounded to their nearest integers.

In our case, parent chromosomes are tuples of strings and not simple arrays of integers.

Therefore, we apply the single arithmetic crossover for each pair of arrays composing the

two parents, after the conversion of the characters to their ASCII codes. More formally,
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let P1 = 〈S1, S2, . . . , SN〉 and P2 = 〈R1, R2, . . . , RN〉 be the two selected parents; the two

offsprings O1 and O2 are generated as follows:

O1 = 〈µ(S1, R1, p1), . . . , µ(SN , RN , pN)〉 (6.9)

O2 = 〈µ(R1, S1, p1), . . . , µ(RN , SN , pN)〉 (6.10)

where Si is the array of ASCII codes in position i from the parent P1; Ri is the array of

ASCII codes in position i from the parent P2; the elements µ(Si, Ri, pi) and µ(Ri, Si, pi) are

the two arrays created by the single arithmetic crossover on Si and Ri with random point

pi.

The gaussian mutation is similar to the uniform mutation for SGA. Indeed, each test

T in the new population is mutated by deleting, replacing or adding characters in the cor-

responding array of characters. The main difference is represented by the routine used to

replace each character with another one. With the uniform mutation, a character is replaced

with any other character in the alphabet. Instead, the gaussian mutation is defined for nu-

merical values, which are replaced with other numerical values but according to a Gaussian

distribution [93]. In our case, let Si = 〈c1, c2, . . . , ck〉 be the array of ASCII codes to mutate;

each ASCII code cj in Si is replaced with a new ASCII code c∗j with probability pr = 1/k.

The integer c∗j is randomly generated using the formula:

c∗j = cj + cj · δ(µ, σ) (6.11)

where δ(µ, σ) is a normally distributed random number with mean µ = 0 and variance σ [93].

In other words, the new ASCII code is generated by adding a normally distributed delta to

the original ASCII code cj. The remaining issues to solve include (1) this mutation scheme

generates real numbers and not integers and (2) the generated numbers can fall outside the

range of printable ASCII code (i.e., outside the interval [32; 127]). Therefore, we first round

c∗j to the nearest integer number. Finally, the mutation is cancelled if the new character c∗j
is lower than 32 or greater than 127.

6.2. Empirical Studies

This section describes our empirical evaluation whose objective is to assess the proposed

search-based approach and compare its variants in terms of different fitness functions and

search algorithms, as discussed in Section 6.1.
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6.2.1 Study Context

The evaluation is carried out on several front-end web applications grouped into two case

studies. The first study is performed on small/medium open-source applications, whereas

the second one involves industrial systems. These two studies are described in detail below.

Study 1. The first case study involves three subjects with various web-applications.

The first two subjects are SBANK and SecureSBANK (SSBANK), which both contain web

applications interacting with real-world bank card processing system of one of our industrial

collaborators (a credit card processing company1). Each of these two subjects has three

applications that differ regarding their number of user inputs, ranging from one to three user

inputs. In the following, we will refer to SBANK1 (or SSBANK1), SBANK2 (or SSBANK2),

and SBANK3 (or SSBANK3) for the applications with one, two, and three user inputs,

respectively. These different variants of the same applications are used to analyze to what

extent the number of input parameters affects the ability of solvers and fitness functions to

detect XMLi vulnerabilities (see Section 6.4 for further details). The goal of this analysis is

to assess the scalability of the approach as the number of inputs increases.

Each SBANK/SSBANK application receives user inputs, produces XML messages and

sends them to the web services of the card processing system. An example of XML message

produced by an SBANK/SSBANK application is depicted in Figure 6.2. Such a message

contains four XML elements, which are UserName, IssuerBankCode, CardNumber, and Re-

questID. The first three elements are formed using the submitted user inputs while the

RequestID element is generated by the application automatically. In other words, the appli-

cation logic does not allow users to tamper with the value of this element unless they do so

maliciously.

Applications in SBANK are vulnerable to XML injections as there is no validation or

sanitization of the user inputs. The SSBANK applications are similar to SBANK except

that one of the input parameters is validated, i.e., the application checks the input data

for malicious content. Before producing the XML message, the latter applications validate

the user input parameter IssuerBankCode and generate an error message if any malicious

content is found. These two applications allow us to assess, in a controlled fashion, the

impact of input validation procedures on the ability of solvers and fitness functions to detect

XMLi vulnerabilities.

1The name of the company cannot be revealed due to a non-disclosure agreement
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Figure 6.2: An example of output XML message created by SBank .

The third subject of our first study is XMLMao, an open source web application that is

deliberately made vulnerable for testing XML injection attacks [70]. It is part of the Magical

Code Injection Rainbow (MCIR) [70] framework for building a configurable vulnerability

test-bed. This application accepts a single user input and creates XML messages. It has

1178 lines of code written in PHP. We chose to include such an open source application in

our evaluation to have, as part of our study, a publicly accessible system that future research

can use as a benchmark for comparison.

Study 2. The second study consists of two subjects provided by one of our industrial

collaborators which, to preserve confidentiality, are referred to by arbitrary names: M and

R.

• M: M is an industrial web application with millions of registered users and hundreds

of thousands of visits per day. The application itself is hundreds of thousands of lines

long, communicating with several databases and more than 50 corporate web services

(both SOAP and REST). Out of hundreds of different HTML pages served by M , in

this chapter we focus on one page having a form with two string inputs.

• R: R is one of the RESTful web services interacting with M . This web service receives

requests in JSON format, and interacts with two SOAP web services and one database.

R is significantly smaller than M , as it is composed of just over 40 classes. Of the

different API methods provided by R, in this chapter we focus on a POST that takes

as body a JSON object with three string fields.
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Table 6.1: Description of Test Objectives

App. Name #Input
#TOs per Attack

Total #TOs
Type 1 Type 2 Type 3 Type 4

SBANK

1 3 3 3 0 9

2 3 3 3 1 10

3 3 3 3 1 10

SSBANK

1 3 3 3 0 9

2 3 3 3 1 10

3 3 3 3 1 10

XMLMao 1 4 4 4 0 12

M 2 1 1 1 1 4

R 3 1 1 1 1 4

As the experiments on these two systems had to be run on a dedicated machine (e.g., they

could not be run on a research cluster of computers) due to confidentiality constraints, we

could not use all of theirs web pages and endpoints. We chose those two examples manually,

by searching for non-trivial cases (e.g., web pages with at least two string input parameters

that are not enumerations), albeit not too difficult to analyze, i.e., given the right inputs, it

should interact with at least one SOAP web service. Due to non-disclosure agreements and

security concerns, no additional details can be provided on M and R.

Test Objectives (TOs). For each application and for each case study, we created

the target TOs based on the four types of XML injection attacks described in the previous

chapter in Section 5.2.1. Table 6.1 reports on the number of generated TOs collected per

study subject and type of XML injection attacks. For SBANK/SSBANK applications with

two and three input parameters, there are ten TOs in total: three TOs (one for each attack

of types Type 1 -Type 3 ) for each of the three XML elements and one additional TO for

the Type 4 attacks. Note that the Type 4: Replacing attack is a more advanced form of

XML injection that requires at least two XML elements where the value of one of them

must be auto-generated by the application. Therefore, this attack can be applied only to the

RequestID element as it is the only auto-generated element in the application. Moreover, this

attack should not be applied to web applications with only one input parameter, otherwise

the resulting TO will be unfeasible. As a consequence, for SBANK/SSBANK applications

with only one input parameter, we have nine TOs in total, corresponding to the attacks of

types Type 1 -Type 3 for each of the three XML elements.
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The XMLMao application has one user input that can be inserted in four possible lo-

cations in the generated XML messages. Therefore, we create TOs by applying each type

of attack on the four XML elements. As depicted in Table 6.1, we do not have TOs for

the attack of Type 4: Replacing because XMLMao has only one input parameter. In to-

tal, we obtain 12 TOs (3 attacks × 4 locations) for this subject. Finally, for the industrial

applications (M and R), we have four TOs, i.e., one TO for each type of attack.

6.2.2 Research Questions

Our evaluation addresses the following research questions:

• RQ1: What is the best fitness function for detecting XMLi vulnerabilities? With this

first research question, we aim at comparing the two fitness functions defined for the

XMLi vulnerability detection problem. In particular, we compare the performance

of each solver (e.g., hill climbing), considered individually, when used to optimize

the real-coded edit distance proposed in this chapter and the traditional string edit

distance [16, 86]. In particular, the comparison is performed in terms of the number

of detected XMLi vulnerabilities (effectiveness) and the time needed to detect them

(efficiency). Therefore, in answering this research question, we consider the following

two sub-questions:

RQ1.1 [Effectiveness]: What is the best fitness function in terms of effec-

tiveness?

RQ1.2 [Efficiency]: What is the best fitness function in terms of efficiency?

• RQ2: What is the best solver for detecting XMLi vulnerabilities? In this second

research question, we compare to what extent different search algorithms are able

to detect XMLi vulnerabilities when optimizing the same fitness function (e.g., the

string edit distance). Specifically, we compare the different algorithms discussed in

Section 6.1.1.3 when optimizing the same fitness function with respect to their ability

to detect as many XMLi vulnerabilities as possible (effectiveness) and the time needed

to detect such vulnerabilities (efficiency). Therefore, we consider the following two

sub-questions:

RQ2.1 [Effectiveness]: What is the best solver in terms of effectiveness?

RQ2.2 [Efficiency]: What is the best solver in terms of efficiency?

The goal of these two research questions is to understand which solver and fitness function

combination is more effective and efficient for detecting XMLi vulnerabilities. Therefore to
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answer them, we use all web applications in Study 1 to perform an extensive analysis of all

possible combinations of solvers and fitness functions (see Section 6.2.3).

For the industrial applications (M and R) in Study 2, we could not involve our industrial

partners in the evaluation of all possible configurations given the high computational cost

of this type of study. Indeed, such a detailed investigation involves (i) different solvers, (ii)

different fitness functions, (iii) different configurations, (iv) various TOs for each application,

and (v) a number of repetitions to address the randomized nature of the solvers being

compared. For these reasons, Study 2 is used to evaluate the applicability of the best

configuration of our search-based approach, in a realistic context, as formulated by the

following research question:

• RQ3: Is the proposed technique effective and efficient in detecting XMLi vulnerabilities

in industrial systems? For this research question, we focus on the two real-world

applications M and R in Study 2 to understand whether the proposed search-based

approach is able to detect XMLi vulnerabilities (effectiveness) in larger systems with

complex input validation routines and in a reasonable amount of time (efficiency).

Since the goal here is to assess the applicability of our approach in realistic conditions

and because running all combinations of solvers and fitness functions is not possible on

our industrial applications, we focus on assessing the best combination of solver and

fitness function identified when answering RQ1 and RQ2.

6.2.3 Variable Selection

To answer our RQs, we studied the effect of the following independent variables:

• Fitness function: in Section 6.1.1.2 we described two different fitness functions, i.e.,

real-coded edit distance (Rd) and string edit distance (Ed), that can be used to guide

search algorithms toward the detection of XMLi vulnerabilities. The former has been

widely applied in the software testing literature [86] while the latter has been introduced

in this chapter. To answer RQ1, we compare the results achieved by each solver

considered individually when optimizing the two fitness functions for each application

and TO in our empirical study.

• Solver : given a fitness function, different optimization algorithms can be used to find

optimal solutions to our problem. Therefore, this independent variable accounts for

the four solvers described in Section 6.1.1.3 that could be used interchangeably for the
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XMLi vulnerabilities detection problem, which are Random Search (RS), Hill Climb-

ing (HC), Standard Genetic Algorithms (SGA) and Real-coded Genetic Algorithms

(RGA). To answer RQ2, we compare the four solvers when optimizing the same fit-

ness function. In other words, the comparison is performed by considering each fitness

function separately.

For brevity, in the following we refer to combinations of these two independent variables

(Fitness function × Solver) as treatments affecting the dependent variables.

In our study, the dependent variables are the performance metrics used to compare the

effectiveness and the efficiency across treatments. For effectiveness, we use the Success Rate,

which is the ratio of the number of times a given TO is covered by a treatment Ω to the

total number of times the treatment Ω is executed (i.e., runs). More formally, the success

rate is defined as follows:

SR(TO,Ω) =
# successful runs

# runs
× 100 (6.12)

where # successful runs denotes the number of times Ω covers the TO, and # runs indicates

the total number of runs.

For efficiency, we use the Execution Time, which measures the average time (in minutes)

taken by a treatment Ω to reach the termination criterion (i.e., either the TO is covered or

the search timeout is reached) over the total number of runs for a given TO.

In addition to the dependent and independent variables described above, we also inves-

tigate the following co-factors that may affect the effectiveness and the efficiency across the

treatments:

• Number of input parameters : each web application in our studies is a web-form with

different input boxes where attackers can introduce malicious input strings. A higher

number of input strings may increase the search time required by a given treatment

to cover each TO. Therefore, we investigate the effect of this co-factor by applying

each treatment on subjects with different number of input parameters. The purpose of

this analysis is to measure the scalability of each treatment when the number of input

parameters increases.

• Alphabet size: the alphabet of characters to use for generating input strings is repre-

sented by the set of printable ASCII characters. Instead of using the complete alphabet

of all possible characters, we can reduce the size of the alphabet for the input param-

eters by omitting the characters, we know, are unused in the TOs. For example, if

we observe that the target TO does not contain the character “A”, we can assume
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that such a character is not useful to create malicious input strings. Therefore, we

can reduce the size of the search space by removing the character “A” from the set

of characters (alphabet) to use for generating malicious input. On the other hand, it

may be difficult to determine what the restricted alphabet is when data validation and

transformation routines are used. Therefore, we assess to what extent the usage of a

restricted alphabet (positively/negatively) helps scalability.

• Initial population: all solvers start with an initial set of randomly generated solutions,

which are tuples of randomly generated strings. Since the length of the input string

that matches the target TO (upon the generation of the corresponding XML message)

is unknown a priori, the length of the input strings in the initial population may affect

the performance of our treatments. Indeed, if the randomly generated input strings

are too long or too short (compared to the final solution) we would expect that each

treatment will require more time (more edit operations) to find the malicious input

string. To analyze the impact of the initial population on the performance of our

treatments, we consider two different settings: (i) we generate random strings with a

fixed (F) maximum lengths of characters each, or (ii) we generate strings of variable

length (V) by using the “empty” character (see Section 6.1.1.1).

To perform a detailed evaluation of the effect of these three co-factors on our main

treatments, we conducted a number of experiments with different settings, as summarized

in Table 6.2. Each row in the table represents one experiment. The first column contains

the name of the applications used in our case studies. The second column (ExpId) assigns

a unique id to each experiment based on the application and its configuration. The third

column #TOs lists the number of TOs in the experiment. The fourth column (#Inp) lists

the number of input parameters. The fifth column (PopLen.) reports whether the length

of the input strings in the initial population is fixed (Fix) or not (Var). The last column

(Res. Alph.) indicates whether the search use a full alphabet set (Y) or restricted alphabet

set (N). These configuration details are encoded in the ExpId values reported in the second

column of Table 6.2. For example, the ExpId “S.2.F.Y” encodes the following settings for

the SBANK (“S”) web application: it has two input parameters (“2”), input strings in the

initial population have a fixed length (“F”), and a restricted alphabet set (“Y”) is used.

Therefore, we have (3 input parameters × 2 alphabets × 2 input string’s lengths = )

12 different configurations for both SBANK and SSBANK. Instead, for XMLMao, we have

only four possible configurations since this application has only one input parameter. For the

industrial applications (M and R) in Study 2, we could not involve our industrial partners

in the evaluation of all possible configurations given the high computational cost of this type
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of study (see Section 6.2.2). For these reasons, the M and R applications are evaluated

with only one configuration, M.2.V.Y and R.3.V.Y respectively. It is worth noticing that

the number of input parameters for M and R is fixed since no alternative versions with a

different number of input parameters are available. For the remaining setting, we opted for

the configurations we empirically found to be statistically superior in Study 1. Therefore,

for Study 2 we used the restricted alphabet (“Y”) and the initial population composed by

input strings with variable length (“V”).

6.2.4 Experimental protocol

For each TO and each configuration, we executed each treatment Ω and recorded if the TO is

covered or not as well as the execution time. Each execution (i.e., run) is repeated 10 times

(but only three times for the industrial systems) to account for the randomized nature of

the optimization algorithms. The coverage data is binary since a given TO is either covered

or not by a specific run of the treatment, whereas the execution time is recorded in minutes.

This data is further used to calculate the selected performance metrics, i.e., Success Rate

and average Execution Time for each TO.

For answering RQ1.1, we analyzed whether the success rates achieved by the solvers

statistically differ when using two different fitness functions, i.e., real-coded edit distance

(Rd) and the string edit distance (Ed). To this aim, we use the Fisher’s exact test [94] with

a level of significance α = 0.05. The Fisher exact test is a parametric test for statistical

significance and is well-suited to test differences between ratios, such as the percentage of

times a TO is covered. When the p-value is equal or lower than α, the null hypothesis can be

rejected in favor of the alternative one, i.e., a solver (e.g., HC) with one fitness function (e.g.,

Rd) covers the TO more frequently than the same solver but with another fitness function

(e.g., Ed). We also use the Odds Ratio (OR) [95] as measure of the effect size, i.e., the

magnitude of the difference between the success rates achieved by Rd and Ed. The higher

the OR, the higher is the magnitude of the differences. When the Odds Ratio is equal to

1, the two treatments being compared have the same success rate. Alternatively, OR >1

indicates that the first treatment achieves a higher success rate than the second one and

OR <1 the opposite case.

For answering RQ1.2, we analyzed whether the execution time achieved by the solvers

statistically differs when using Rd or Ed. To compare execution times, we use the non-

parametric Wilcoxon test [96] with a level of significance α = 0.05. When obtaining p-values

≤ α, we can reject the null hypothesis, i.e., a given treatment takes less time to cover the TO
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Table 6.2: Experiment Settings: Experiment ID (Exp. ID) is named based on the corre-

sponding application (App.), the number of inputs (#Inp.), length of input strings in the

initial population (PopLen), and whether the alphabet is restricted (Res. Alph.).

App. Exp. ID #TOs #Inp. PopLen. Res. Alph.

SBank

S.1.F.N 9 1 Fix N

S.2.F.N 10 2 Fix N

S.3.F.N 10 3 Fix N

S.1.F.Y 9 1 Fix Y

S.2.F.Y 10 2 Fix Y

S.3.F.Y 10 3 Fix Y

S.1.V.N 9 1 Var N

S.2.V.N 10 2 Var N

S.3.V.N 10 3 Var N

S.1.V.Y 9 1 Var Y

S.2.V.Y 10 2 Var Y

S.3.V.Y 10 3 Var Y

SSBank

SS.1.F.N 9 1 Fix N

SS.2.F.N 10 2 Fix N

SS.3.F.N 10 3 Fix N

SS.1.F.Y 9 1 Fix Y

SS.2.F.Y 10 2 Fix Y

SS.3.F.Y 10 3 Fix Y

SS.1.V.N 9 1 Var N

SS.2.V.N 10 2 Var N

SS.3.V.N 10 3 Var N

SS.1.V.Y 9 1 Var Y

SS.2.V.Y 10 2 Var Y

SS.3.V.Y 10 3 Var Y

XMLMao

X.1.F.N 12 1 Fix N

X.1.F.Y 12 1 Fix Y

X.1.V.N 12 1 Var N

X.1.V.Y 12 1 Var Y

M M.2.V.Y 4 2 Var Y

R R.3.V.Y 4 3 Var Y
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under analysis than another treatment. We also use the Vargha-Delaney (Â12) statistic [97]

to measure the magnitude of the difference in the execution time. A value of 0.5 for the Â12

statistics indicates that the first treatment is equivalent, in terms of execution time to the

second one. When the first treatment is better (lower execution time) than the second one,

Â12 < 0.5. Naturally, Â12 > 0.5 otherwise.

For RQ2.1 and RQ2.2, we use the Friedman’s test [98] to verify whether multiple

treatments are statistically different or not. It is a non-parametric equivalent to the ANOVA

test [99] and thus does not make any assumption about the data distributions to be compared.

More specifically, for RQ2.1, we compare the average success rates achieved by the different

treatments in 10 independent runs across all web applications and configurations. Instead,

for RQ2.2 the comparison is performed considering the average execution time achieved in

the 10 runs across all web applications and configurations. For both RQ2.1 and RQ2.2,

we use a level of significance α = 0.05. When the p-values obtained from the Friedman’s

test are significant (i.e., <= 0.05), we apply the post-hoc Conover’s procedure [100] for

pairwise multiple comparison. The p-values produced by the post-hoc Conover’s procedure

are further adjusted using the Holm-Bonferroni procedure [101] to correct the significance

level in case of multiple comparisons. Note that the purpose of RQ2.1 and RQ2.2 is to

compare different solvers in terms of both effectiveness and efficiency; thus, we separately

compare the four solvers described in Section 6.1.1.3 for the two fitness functions (e.g., Rd

and Ed).

6.2.5 Parameter settings

Running randomized algorithms, and GAs in particular, requires to set various parameters

to achieve acceptable results. In this study, we set the parameter values by following the

recommendations in the related literature, as detailed below:

• Mutation rate. De Jong’s [102] recommended value of pm=0.001 for mutation rate

has been used by many implementations of Genetic Algorithms. Another popular

mutation rate has been defined by Grefenstette’s [103] as pm=0.01. Further studies

[14, 69, 104, 105] have demonstrated that pm values based on the population size and

chromosome’s length achieves better performance. Hence, for RGA and SGA we use

pm = (1.75)/(λ
√
l) as mutation rate, where l is the length of the chromosome and λ

is the population size. We also conducted some preliminary experiments with these

different recommended mutation rates and we found that better results are indeed

achieved when pm is based on the population size and chromosome’s length. For HC,
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we set the mutation rate to 1/l (where l is the length of the chromosome) since there

is no population for this solver. This parameter is not applicable for RS.

• Crossover rate. The crossover rate is another important factor for the performance

of GAs. The recommended range for the crossover rate is 0.45 ≤ pc ≤ 0.95 [68, 69].

In our experiments, we chose pc = 0.70 for RGA/SGA, which falls within the range of

the recommended values. Notice that this parameter is not applicable to HC and RS.

• Population size. Selecting a suitable population size for GAs is also a challenging task

since it can affect their performance. The recommended values used in the literature

are within the range 30-80 [68]. From our preliminary experiments, we observed that

the population size of 50 works best for RGA/SGA in our context. Such a value is

also consistent with the parameters settings used in recent studies in search-based

software testing [106, 107, 108]. This parameter is applicable only to population-based

algorithms, i.e., RGA and SGA in our case.

• Termination Criteria. The search terminates when one of the following two stopping

criteria is satisfied: a zero-fitness value is obtained (i.e., the target TO is covered) or

the maximum number of fitness evaluations is reached. For SBANK, XMLMao and the

two industrial systems, we set the maximum number of fitness evaluations to 300K.

Instead, for SSBANK, we used a larger search budget of 500K fitness evaluations

because it uses input validation routines, which make the TOs more difficult to cover.

We also empirically found that a larger search budget is indeed needed for SSBANK

compared to SBANK and XMLMao.

6.3. Results

This section discusses the results of our case studies, addressing in turn each of the research

questions formulated in Section 6.2. Reporting the individual results along with the statisti-

cal tests for each TO, for each configuration, and for each treatment is not feasible due to the

large number of resulting combinations, i.e., 2,016 in total. Therefore, we report the mean

and standard deviation of the success rate and of the execution time obtained for all TOs of

the same web application and with the same configuration (i.e., for each experiment/row in

Table 6.2). For the statistical tests, we report the number of times the differences between

pairs of treatments are statistically significant together with the average effect size measures.

104



6.3 Results

Table 6.3: Average Success Rates (SR) and Standard Deviation (SD) out of 10 runs per TO

for SBANK

ExpId

RGA SGA HC RS

Rd Ed Rd Ed Rd Ed Ed

SR SD SR SD SR SD SR SD SR SD SR SD SR SD

S.1.F.N 100.00 0.00 22.22 23.86 71.11 38.87 67.78 29.49 92.22 13.02 90.00 7.07 0.00 0.00

S.2.F.N 96.00 6.99 8.00 11.35 50.00 43.97 39.00 29.61 88.00 22.01 79.00 23.31 0.00 0.00

S.3.F.N 93.00 10.59 3.00 6.75 40.00 34.96 28.00 27.81 60.00 51.64 45.00 41.16 0.00 0.00

S.1.F.Y 100.00 0.00 35.56 33.21 85.56 10.14 73.33 17.32 98.89 3.33 90.00 11.18 0.00 0.00

S.2.F.Y 92.00 7.89 21.00 20.25 45.00 28.38 44.00 36.88 89.00 14.49 90.00 10.54 0.00 0.00

S.3.F.Y 87.00 19.47 7.00 9.49 41.00 33.48 26.00 21.71 60.00 51.64 47.00 42.96 0.00 0.00

S.1.V.Y 100.00 0.00 40.00 36.40 100.00 0.00 78.89 13.64 97.78 4.41 86.67 14.14 0.00 0.00

S.2.V.Y 99.00 3.16 26.00 27.16 75.00 35.36 56.00 25.03 71.00 41.75 58.00 26.58 0.00 0.00

S.3.V.Y 93.00 13.37 6.00 8.43 69.00 41.75 46.00 26.75 70.00 48.30 37.00 34.66 0.00 0.00

S.1.V.N 100.00 0.00 21.11 27.13 77.78 33.46 67.78 27.74 96.67 7.07 86.67 11.18 0.00 0.00

S.2.V.N 100.00 0.00 3.00 6.75 61.00 50.43 41.00 35.10 76.00 35.02 63.00 32.34 0.00 0.00

S.3.V.N 90.00 15.63 0.00 0.00 55.00 47.90 24.00 23.19 60.00 51.64 29.00 29.98 0.00 0.00

Average 95.83 6.43 16.07 17.57 64.20 33.23 49.31 26.19 79.96 28.69 66.78 23.76 0.00 0.00

6.3.1 RQ1: What is the best fitness function for detecting XMLi

vulnerabilities?

Table 6.3 summarizes the results of all treatments on the first subject SBANK in Study 1,

listing the average success rate (SR) along with the standard deviation (SD) for each con-

figuration. Each row in the table represents one configuration (experiment) identified by

the unique id listed in the first column ExpId. The last row in the table lists the mean

values for SR and SD across all configurations. As depicted in that table, for all solvers

the real-coded edit distance (Rd) achieved higher success rates compared to the string edit

distance (Ed). RGA achieved an SR of 95.83% with Rd, which is much higher than that of

Ed with 16.07%.

These observations are confirmed by the Fisher’s exact test, as reported in Table 6.4.

For each solver, this table lists the average Odds Ratios (OR) of the success rates for each

configuration, as well as the number of times where Rd achieved significantly higher (#Rd >

Ed) or lower (#Rd < Ed) success rates compared to Ed, according to the Fisher’s exact

test. The last row in the table lists (i) the average OR for all configurations (i.e., average

of the columns Avg. OR), and (ii) the total number of statistically significant cases (i.e.,

the sum of the #Rd > Ed / #Rd < Ed columns). We can observe that, for all solvers
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Table 6.4: Average Odds Ratios (OR) of the Success Rate for SBANK application. For each

solver, we also report the number of times the Success Rate obtained by the real-coded distance

is statistically better (# Rd > Ed) or worse (# Rd < Ed) than the edit distance.

ExpId
RGA SGA HC

Avg. OR #Rd> Ed #Rd<Ed Avg. OR #Rd>Ed #Rd<Ed Avg. OR #Rd>Ed #Rd<Ed

S.1.F.N 216.25 8 0 2.88 0 0 2.30 0 0

S.2.F.N 223.93 10 0 2.55 0 0 2.36 0 0

S.3.F.N 235.08 10 0 2.10 0 0 5.98 1 0

S.1.F.Y 164.75 6 0 3.14 0 0 3.57 0 0

S.2.F.Y 57.59 10 0 2.13 0 0 2.39 0 0

S.3.F.Y 118.90 9 0 2.44 0 0 5.28 1 0

S.1.V.Y 162.06 5 0 7.16 0 0 3.81 0 0

S.2.V.Y 167.45 8 0 6.84 0 0 7.12 1 0

S.3.V.Y 196.65 10 0 8.79 1 0 54.14 3 0

S.1.V.N 224.83 8 0 3.59 0 0 3.22 0 0

S.2.V.N 373.24 10 0 8.08 1 0 5.25 1 0

S.3.V.N 269.64 10 0 10.36 3 0 22.89 4 0

Avg./Total 200.87 104 0 5.00 5 0 9.86 11 0

Table 6.5: Average Success Rates (SR) and Standard Deviation (SD) out of 10 runs per TO

for SSBANK

ExpId

RGA SGA HC RS

Rd Ed Rd Ed Rd Ed Ed

SR SD SR SD SR SD SR SD SR SD SR SD SR SD

S.1.F.N 66.67 50.00 17.78 24.38 63.33 47.70 52.22 41.77 62.22 47.11 56.67 43.01 0.00 0.00

S.2.F.N 3.00 4.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S.3.F.N 3.00 6.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S.1.F.Y 66.67 50.00 23.33 28.28 56.67 43.59 50.00 39.05 63.33 48.48 57.78 44.10 0.00 0.00

S.2.F.Y 6.00 5.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S.3.F.Y 7.00 6.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S.1.V.Y 66.67 50.00 32.22 39.62 64.44 48.51 54.44 42.75 64.44 48.51 47.78 37.34 0.00 0.00

S.2.V.Y 18.00 15.49 2.00 4.22 12.00 16.19 5.00 7.07 0.00 0.00 0.00 0.00 0.00 0.00

S.3.V.Y 21.00 19.12 2.00 4.22 6.00 12.65 3.00 4.83 0.00 0.00 0.00 0.00 0.00 0.00

S.1.V.N 66.67 50.00 13.33 20.62 62.22 47.64 46.67 37.42 65.56 49.27 44.44 37.45 0.00 0.00

S.2.V.N 4.00 6.99 0.00 0.00 2.00 4.22 2.00 4.22 0.00 0.00 0.00 0.00 0.00 0.00

S.3.V.N 5.00 9.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average 27.81 22.90 7.56 10.11 22.22 18.37 17.78 14.76 21.30 16.11 17.22 13.49 0.00 0.00

and for all configurations, the OR is always larger than one. The largest OR values are

obtained for RGA, for which we observe that Rd is significantly better than Ed in most of

the configurations (≈ 90%), with an average OR value ranging between 57.59 to 373.24. For
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Table 6.6: Average Odds Ratios (OR) of the Success Rate for SSBANK application. For

each solver, we also report the number of times the Success Rate obtained by the real-coded

distance is statistically better (# Rd > Ed) or worse (# Rd < Ed) than the edit distance.

ExpId
RGA SGA HC

Avg. OR #Rd> Ed #Rd<Ed Avg. OR #Rd>Ed #Rd<Ed Avg. OR #Rd>Ed #Rd<Ed

S.1.F.N 114.42 5 0 3.04 0 0 2.02 0 0

S.2.F.N 1.69 0 0 1.00 0 0 1.00 0 0

S.3.F.N 1.75 0 0 1.00 0 0 1.00 0 0

S.1.F.Y 107.27 4 0 2.12 0 0 2.71 0 0

S.2.F.Y 2.39 0 0 1.00 0 0 1.00 0 0

S.3.F.Y 2.68 0 0 1.00 0 0 1.00 0 0

S.1.V.Y 102.81 3 0 4.31 1 0 5.47 1 0

S.2.V.Y 4.91 0 0 2.29 0 0 1.00 0 0

S.3.V.Y 5.78 0 0 1.34 0 0 1.00 0 0

S.1.V.N 158.04 6 0 6.57 1 0 7.55 1 0

S.2.V.N 1.98 0 0 1.16 0 0 1.00 0 0

S.3.V.N 2.34 0 0 1.00 0 0 1.00 0 0

Avg./Total 42.17 18 0 2.15 2 0 2.15 2 0

the other solvers, OR is still larger than one but its magnitude is smaller when compared

to that of RGA. In addition, according to the Fisher’s exact test, SGA and HC performed

significantly better with Rd in only 4% and 9% of the configurations, respectively. These

results indicate that the solver that most benefits from the usage of Rd is RGA.

For SSBANK in Study 1, success rate results are listed in Table 6.5. Despite the in-

put validations in SSBANK, the solvers were able to obtain positive success rates in many

configurations with both Rd and Ed. This means that some XMLi attacks can be still

generated by inserting malicious inputs. Thus, the input validation procedures in SSBANK

is sub-optimal, either because it is not adequately implemented, or because it is not pos-

sible to avoid all possible attacks using only input validation. We further observe that Rd

achieved higher average success rates compared to Ed in all configurations. Indeed, the

average improvement of the success rate when using Rd is 20% for RGA, 4% for SGA and

3% for HC. The corresponding results of the Fisher’s exact test and OR values are provided

in Table 6.6. Similar to the results achieved for SBANK, OR is larger than one in most of

the configurations, although the larger differences are observed for RGA. In particular, for

this solver, Rd leads to an average OR ranging between 1.69 and 107.27. Instead, for the

other two solvers, there is no statistically significant difference according to Fisher’s exact

test for most of the cases, as confirmed by the OR values which are often around one.

For XMLMao in Study 1, the results for average success rates are provided in Table 6.7.
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Table 6.7: Average Success Rates (SR) and Standard Deviation (SD) out of 10 runs per TO

for XMLMao

ExpId

RGA SGA HC RS

Rd Ed Rd Ed Rd Ed Ed

SR SD SR SD SR SD SR SD SR SD SR SD SR SD

X.1.F.N 100.00 0.00 35.00 38.26 78.33 24.80 70.83 29.37 98.33 3.89 91.67 8.35 0.00 0.00

X.1.F.Y 100.00 0.00 44.17 44.41 70.83 19.75 70.83 23.92 96.67 6.51 91.67 12.67 0.00 0.00

X.1.V.Y 100.00 0.00 51.67 37.86 95.83 11.65 82.50 16.03 95.00 6.74 90.00 11.28 0.00 0.00

X.1.V.N 100.00 0.00 30.00 32.19 85.83 22.75 81.67 21.25 95.00 6.74 88.33 10.30 0.00 0.00

Average 100.00 0.00 40.21 38.18 82.71 19.74 76.46 22.64 96.25 5.97 90.42 10.65 0.00 0.00

Table 6.8: Average Odds Ratios (OR) of the Success Rate for XMLMao application. For

each solver, we also report the number of times the Success Rate obtained by the real-coded

distance is statistically better (# Rd > Ed) or worse (# Rd < Ed) than the edit distance.

ExpId
RGA SGA HC

Avg. OR #Rd> Ed #Rd<Ed Avg. OR #Rd>Ed #Rd<Ed Avg. OR #Rd>Ed #Rd<Ed

X.1.F.N 175.32 8 0 2.50 0 0 2.81 0 0

X.1.F.Y 167.90 7 0 2.06 0 0 2.89 0 0

X.1.V.Y 94.09 6 0 4.94 0 0 2.06 0 0

X.1.V.N 156.95 9 0 2.51 0 0 2.32 0 0

Avg./Total 148.56 30 0 3.00 0 0 2.52 0 0

When applying RGA with Rd, the success rate is 100% for all configurations, which is much

higher than that of Ed with 40%. This large difference is also confirmed by the Fisher’s

exact test and very large OR values. Indeed, RGA with Rd is significantly better than RGA

with Ed in 30 cases out of 48 (62%). The corresponding average OR values are very large,

ranging between 94.09 and 175.32. In contrast, for the other two solvers, the differences are

never significant when comparing the two fitness functions.

In general, for all three subjects in Study 1, we observe that Random Search (RS) always

results in zero success rate, i.e., it was unable to cover any TO. This confirms the need for

more advanced search algorithms to detect XMLi vulnerabilities. Furthermore, none of the

solvers reached significantly higher success rates when using Ed instead of Rd. Therefore,

for RQ1.1, we conclude that:

The real-coded edit distance is very effective compared to the string edit distance,
especially for RGA which, as shown next, happens to be the best solver as well.

Regarding efficiency (RQ1.2), Tables 6.9, 6.10 and 6.11 report the average execution
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Table 6.9: Average execution time (in minutes) results for SBANK

ExpId
RGA SGA HC

RS
Rd Ed Rd Ed Rd Ed

S.1.F.N 2.26 8.82 9.27 5.21 4.37 3.65 8.52

S.2.F.N 5.21 10.06 13.55 7.75 8.49 6.48 8.82

S.3.F.N 6.51 8.74 14.26 8.24 8.91 8.53 8.40

S.1.F.Y 1.52 7.19 7.13 4.73 2.20 2.33 9.11

S.2.F.Y 4.38 8.30 11.82 6.93 8.24 3.95 10.32

S.3.F.Y 5.73 8.03 12.28 7.83 9.52 7.42 9.05

S.1.V.Y 1.51 6.83 5.08 4.14 2.08 2.46 7.87

S.2.V.Y 2.95 8.14 8.92 6.14 12.10 5.65 7.90

S.3.V.Y 4.98 8.38 10.42 6.88 7.58 7.28 7.47

S.1.V.N 2.17 7.89 8.98 5.71 3.53 3.16 10.93

S.2.V.N 4.21 9.21 11.84 7.71 7.95 5.72 12.03

S.3.V.N 6.08 7.83 12.36 7.77 8.40 7.59 10.33

Average 3.96 8.28 10.49 6.59 6.95 5.35 9.23

time for the three subjects SBANK, SSBANK and XMLMao in Study 1, respectively. The

results of the Wilcoxon’s test, along with the Â12 statistics, are reported in Tables 6.12, 6.13

and 6.14. For each solver and each configuration, these tables list the effect size as well as

the number of cases where the execution time for Rd is significantly lower or higher than

Ed, based on the Wilcoxon’s test and Â12 statistics.

Unlike the results of the success rates where Rd always performed better, we obtained

mixed results for different solvers and applications when looking at efficiency.

For SBANK, RGA with Rd exhibited better efficiency with an average execution time of

3.96 minutes compared to 8.28 minutes for Ed. This is also confirmed by the reported low

Â12 values (e.g., 0.14) and a significantly more efficient Rd in 80% of the cases. For SGA

and HC, Ed obtained lower execution times and is significantly more efficient than Rd in

50% and 39% of the cases, respectively.

Efficiency results for XMLMao are similar to SBANK except for HC, for which the average

execution time obtained with Rd is lower and is found to be significantly better than Ed in

seven cases.
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Table 6.10: Average execution time (in minutes) results for SSBANK

ExpId
RGA SGA HC

RS
Rd Ed Rd Ed Rd Ed

S.1.F.N 5.12 15.21 11.45 8.20 7.09 8.18 12.95

S.2.F.N 10.50 6.87 10.11 8.57 11.92 13.46 5.36

S.3.F.N 5.33 3.87 6.06 4.95 6.76 5.47 1.70

S.1.F.Y 5.49 13.88 8.77 7.96 6.67 6.11 13.86

S.2.F.Y 11.62 6.99 9.73 9.23 12.81 10.72 5.77

S.3.F.Y 6.24 4.15 5.94 4.29 7.26 4.78 1.71

S.1.V.Y 5.69 14.20 8.75 9.03 6.00 8.63 11.49

S.2.V.Y 11.40 8.89 11.42 10.41 12.48 11.60 4.85

S.3.V.Y 6.41 3.98 8.32 5.61 6.29 4.84 1.68

S.1.V.N 5.57 14.49 10.65 11.62 7.14 8.87 13.08

S.2.V.N 11.52 5.80 9.44 8.81 12.07 9.92 5.49

S.3.V.N 5.49 4.24 6.20 4.14 6.16 5.35 1.66

Average 7.53 8.55 8.90 7.74 8.56 8.16 6.63

Regarding SSBANK, the differences in average execution time obtained with Rd and Ed

are not very large (i.e., ≈ 1 minute), although statistically significant in favor of Ed in many

cases, i.e., 25-53% for #Rd > #Ed.

Overall, in terms of efficiency, the real-coded edit distance is significantly better than

the string edit distance for RGA, while the reverse is true for SGA and HC. One possible

explanation for this difference is the better ability of the genetic operators in RGA to exploit

the neighborhood of candidate solutions when using Rd. As explained in Section 6.1, Rd

helps focus on sub-regions of the search space but it is necessary that the solvers are able

to exploit this information to produce some benefits. To better explain this aspect, let us

consider the TO=A (ASCII code 65) and let assume that the current input string is C (ASCII

code 67), whose real-coded edit distance to the TO is |65−67|/(|65−67|+ 1) = 0.67. When

using the mutation operators of HC and SGA, the character C can be replaced by any other

character with ASCII code from 32 to 127 even if only few characters in this set would lead

to better Rd values, i.e., those with ASCII codes ∈ {64, 65, 66}. Therefore, the probability of

replacing the character C with a better character is very low, i.e., p = 3/95 ≈ 0.03. Instead,

in RGA the gaussian mutation gives higher probability to characters with ASCII codes that

are closer to 67, which is the code of C. Indeed, the probability of replacing C with characters
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Table 6.11: Average execution time (in minutes) results for XMLMao

ExpId
RGA SGA HC

RS
Rd Ed Rd Ed Rd Ed

X.1.F.N 1.04 8.02 7.18 5.98 1.86 3.21 12.19

X.1.F.Y 1.02 6.73 7.45 6.17 1.35 2.09 8.84

X.1.V.Y 0.81 6.44 4.76 5.41 1.38 2.29 12.11

X.1.V.N 0.90 8.33 6.86 5.92 2.34 3.77 8.64

Average 0.94 7.38 6.56 5.87 1.73 2.84 10.44

with ASCII codes ∈ {64, 65, 66} is much higher in RGA when compared to HC and SGA. On

the other hand, Rd is more expensive to compute than Ed since it is based on real-numbers

and entails additional computations (as shown in Equation 6.2 in Section 6.1). Therefore,

Rd will lead to better efficiency if and only if its additional overhead is compensated by a

large saving in the number of fitness evaluations.

After manual investigation, we discovered that this is the case only for RGA. Indeed, Rd

remained efficient for RGA in most of the cases due to a higher success rate than Ed, which

resulted in a lower number of fitness evaluations during search. Instead, for SGA and HC

the reduction in the number of fitness evaluations is small and thus it does not compensate

for the additional overhead of Rd with respect to Ed. The only exception to this general rule

is SSBANK, for which RGA with Rd is both more effective and less efficient than Ed. This

results from the input validations performed in SSBANK, which produces an error message

instead of a complete XML response whenever invalid inputs are submitted. When using

Ed, computing the distance between such a small error message and the TO is much faster

than doing so with a complete XML output generated upon the insertion of valid inputs.

In other words, our investigation reveals that the real-coded edit distance is more efficient,

in terms of execution time, in the specific case where it achieves a much higher success rate

than the string edit distance. Otherwise, if the success rates of the two fitness functions do

not differ significantly, the string edit distance is more efficient.

Regarding RQ1.2, we conclude that,

Unless a significantly higher success rate is achieved by the real-coded edit distance,
the string edit distance leads to a more efficient search.

To answer RQ1, we consider both the results of RQ1.1 and RQ1.2. Rd fares better in

terms of effectiveness whereas it is worse regarding efficiency. However, even when Rd leads
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Table 6.12: Average A12 statistics of the execution time for SBANK application. For each

solver, we also report the number of times the efficiency of the real-coded distance is statistically

better (# Rd > Ed) or worse (# Rd < Ed) than the edit distance.

ExpId
RGA SGA HC

Eff.Siz #Rd>Ed #Rd<Ed Eff.Siz #Rd>Ed #Rd<Ed Eff.Siz #Rd>Ed #Rd<Ed

S.1.F.N 0.05 8 0 0.81 0 5 0.62 0 3

S.2.F.N 0.11 8 0 0.79 0 4 0.77 0 5

S.3.F.N 0.38 6 4 0.88 0 6 0.60 0 1

S.1.F.Y 0.11 7 0 0.75 0 4 0.61 1 2

S.2.F.Y 0.12 10 0 0.82 0 6 0.62 0 3

S.3.F.Y 0.27 6 0 0.76 0 4 0.70 1 5

S.1.V.Y 0.06 8 0 0.68 1 4 0.61 0 0

S.2.V.Y 0.03 10 0 0.73 0 4 0.60 1 3

S.3.V.Y 0.20 6 0 0.72 0 5 0.65 0 3

S.1.V.N 0.01 9 0 0.81 0 5 0.65 0 3

S.2.V.N 0.04 9 0 0.80 0 5 0.79 0 7

S.3.V.N 0.34 6 2 0.83 0 7 0.59 1 4

Avg./Total 0.14 93 6 0.78 1 59 0.65 4 39

to higher execution times, the difference with Ed ranges between 0.69 to 3.9 minutes on

average, which is of limited practical consequences. Further, this relatively small difference

is largely compensated with a much higher ability to detect XMLi vulnerabilities, up to an

improvement of 80% in detection rate.

6.3.2 RQ2: What is the best solver for detecting XMLi vulnera-

bilities?

To answer RQ2.1, we compare the success rates of the four solvers (i.e., RS, HC, SGA,

and RGA) for each fitness function (e.g., Rd and Ed) . As reported in Table 6.3, the

highest success rate (95.83%) for SBANK is achieved by RGA with Rd. Similarly, for

SSBANK and XMLMao, RGA with Rd achieved the highest success rates of 27.81% and

100%, respectively. In contrast, the results are mixed when using Ed as fitness function:

for SBANK and XMLMao, the highest success rate scores are obtained by HC (66.78% and

90.47% respectively), while for SSBANK the best success rate of 17.78% is obtained by SGA.

Finally, RS fares the worst with a success rate of zero in all experiments and subjects, as it

could not cover a single TO.

To establish the statistical significance of these results, we use the Friedman’s test [98]
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Table 6.13: Average A12 statistics of the execution time for SSBANK application. For each

solver, we also report the number of times the efficiency of the real-coded distance is statistically

better (# Rd > Ed) or worse (# Rd < Ed) than the edit distance.

ExpId
RGA SGA HC

Eff.Siz #Rd>Ed #Rd<Ed Eff.Siz #Rd>Ed #Rd<Ed Eff.Siz #Rd>Ed #Rd<Ed

S.1.F.N 0.12 6 0 0.81 0 6 0.47 1 0

S.2.F.N 0.80 0 8 0.70 0 2 0.49 1 1

S.3.F.N 0.77 0 5 0.72 0 3 0.53 0 2

S.1.F.Y 0.33 6 2 0.59 0 1 0.69 0 2

S.2.F.Y 0.87 0 9 0.55 0 0 0.65 0 3

S.3.F.Y 0.83 0 9 0.80 0 6 0.68 1 6

S.1.V.Y 0.21 6 1 0.54 1 1 0.48 1 1

S.2.V.Y 0.65 0 5 0.53 0 1 0.65 1 2

S.3.V.Y 0.68 0 3 0.69 0 5 0.75 0 4

S.1.V.N 0.28 6 1 0.49 3 2 0.56 0 0

S.2.V.N 0.91 0 9 0.52 0 0 0.67 0 4

S.3.V.N 0.93 0 10 0.75 0 7 0.63 1 5

Avg./Total 0.62 24 62 0.64 4 34 0.60 6 30

to compare the average success rates (over ten runs) achieved by the different solvers for

all web applications, configuration settings, and TOs. When using Rd as fitness functions,

the Friedman’s test reveals that the solvers significantly differ from each other in terms of

effectiveness (p-value = 2.58×10−15). For completeness, Table 6.15 provides the ranking ob-

tained by the Friedman’s test as well as the results of the post-hoc Conover’s procedure [100]

for multiple pairwise comparisons. As we can observe, the best rank is obtained by RGA,

which turns out to be significantly better than all the other solvers according to the post-

hoc Conover’s procedure. The four solvers are also significantly different when using Ed as

indicated by the Friedman’s test, yielding a p-value of 8.2 × 10−12. However, as visible in

Table 6.16, RGA is not the best solver with this fitness function, being ranked third above

RS. The two other solvers, i.e., HC and SGA, are statistically equivalent according to the

Conover’s tests, though HC obtained a slightly better rank based on Friedman’s test.

Given the mixed results obtained for the two fitness functions, we compare the best

solver with Rd against the best solver with Ed to find the best treatment (i.e., combination

of solvers and fitness functions). To this aim, we performed the Friedman’s test comparing

the average success rates of RGA with Rd against HC and SGA with Ed. Results show these

three treatments are statistically different in terms of effectiveness (p-value = 9.17× 10−11).

The post-hoc Conover procedure confirms the superiority of RGA with Rd over the other

two treatments. Therefore, for RQ2.1 we conclude that:
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Table 6.14: Average A12 statistics of the execution time for XMLMao application. For each

solver, we also report the number of times the efficiency of the real-coded distance is statistically

better (# Rd > Ed) or worse (# Rd < Ed) than the edit distance.

ExpId
RGA SGA HC

Eff.Siz #Rd>Ed #Rd<Ed Eff.Siz #Rd>Ed #Rd<Ed Eff.Siz #Rd>Ed #Rd<Ed

X.1.F.N 0.23 8 1 0.66 0 3 0.41 4 0

X.1.F.Y 0.26 8 1 0.61 0 1 0.45 2 0

X.1.V.Y 0.26 8 2 0.54 0 2 0.48 0 1

X.1.V.N 0.16 8 0 0.64 0 2 0.46 1 0

Avg./Total 0.23 32 4 0.61 0 8 0.45 7 1

Table 6.15: Ranking produced by the Friedman’s (smaller values of Rank indicate more

effectiveness) when using Rd. For each solver, we also report whether it is significantly better

than the other solvers according to the post-hoc procedure.

ID Solver Rank Significantly better than

1 RGA 1.02 (2), (3), (4)

2 HC 2.50 (3), (4)

3 SGA 2.70 (4)

4 RS 3.77 -

Table 6.16: Ranking produced by the Friedman’s (smaller values of Rank indicate more

effectiveness) when using Ed. For each solver, we also report whether it is significantly better

than the other solvers according to the post-hoc procedure.

ID Solver Rank Significantly better than

1 HC 1.62 (3), (4)

2 SGA 1.87 (3), (4)

3 RGA 2.86 (4)

4 RS 3.64 -

RGA combined with the real-coded edit distance as fitness function is the best solver
in terms of effectiveness.

Regarding RQ2.2, we analyze the execution time of the solvers for each fitness function

(i.e., Rd and Ed) separately. The results of this analysis for the three subjects in Study 1 are
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Table 6.17: Ranking produced by the Friedman’s (larger values of Rank indicate more effi-

ciency) when using Rd. For each solver, we also report whether it is significantly better than

the other solvers according to the post-hoc procedure.

ID Solver Rank Significantly better than

1 RGA 3.53 (2), (3), (4)

2 HC 2.36 (4)

3 RS 2.28 -

4 SGA 1.82 -

reported in Tables 6.9, 6.10 and 6.11. For all three subjects, the most efficient solver with

Rd is always RGA, whose average running time ranges between 0.94 (for XMLMao) and

7.53 (for SSBANK) minutes. Further, the average execution time for HC ranges between

1.73 (for XMLMao) and 8.56 (for SSBANK) minutes, whereas it ranges between 6.56 and

10.49 minutes for SGA. The differences in execution times are also confirmed by Friedman’s

test, which returned a p-value of 6.26×10−6. To better understand for which pairs of solvers

such a significance holds, Table 6.17 shows the complete ranking produced by Friedman’s

test as well as the results of the post-hoc Conover’s procedure. The best rank is achieved by

RGA, which significantly outperforms all the other solvers when using Rd. The second best

ranked solver is HC, which is statistically more efficient than SGA only.

When using Ed as fitness function, there is no clear winner among the four solvers in

terms of efficiency for the three subjects in Study 1. Indeed, HC is the most efficient solver

for XMLMao and SBANK, while SGA is for SSBANK. From the statistical comparison

performed with the Friedman’s test, we can definitely conclude that the four solvers are

significantly different in terms of execution time. However, the post-hoc Conover’s procedure

revealed that statistical significance holds only when comparing one pair of solvers (see

Table 6.18): HC and RS.

To find out which treatment among all possible combinations of solvers and fitness func-

tions is the most efficient (as measured by the average execution time), we performed Fried-

man’s test to compare RGA with Rd and HC with Ed, which are the best treatments for

the two fitness functions (see Tables 6.17 and Table 6.18). The resulting p-value of 0.002

and the corresponding Friedman’s ranking indicate that RGA with Rd is significantly more

efficient than HC with Ed. Thus, addressing RQ2.2, we conclude that:
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Table 6.18: Ranking produced by the Friedman’s (larger values of Rank indicate more effi-

ciency) when using Ed. For each solver, we also report whether it is significantly better than

the other solvers according to the post-hoc procedure.

ID Solver Rank Significantly better than

1 HC 3.07 (3)

2 SGA 2.78 -

3 RS 2.21 -

4 RGA 1.93 -

Table 6.19: Results on the industrial systems

Config. TO Successes Avg. Iterations

M.2.V.Y Close 0 300k

Meta 0 300k

Replicate 0 300k

Replace 3 23k

R.3.V.Y Close 0 300k

Meta 0 300k

Replicate 0 300k

Replace 2 147k

RGA combined with the real-coded edit distance as fitness function is the most efficient
solver in terms of execution time.

6.3.3 RQ3: How does the proposed technique scale to industrial

systems?

To address RQ3, we carried out experiments on two industrial systems (recall Section 6.2),

provided by one of our industrial partners. As the experiments had to be run on a dedicated

machine, only 4 TOs, one solver (the best from the previous experiments) and 3 repetitions

were carried out. Table 6.19 shows the results of these experiments.

In both cases, it was possible to solve at least one TO. The others are unfeasible, due

116



6.4 Additional Analysis

to the type of input sanitization carried out by those systems. Note that whether a TO

is feasible or not depends on the actual implementation of the SUT. We used the actual

systems without modifications, i.e., we did not inject any artificial security vulnerability to

check if our technique could spot them.

In the case of R, there was no direct mapping from the JSON fields and the fields in

the XML of the TO (e.g., two of the JSON fields are concatenated in one single field in the

output XML of the TO), making the search more difficult compared to M . Regarding M ,

interestingly, one of the fields that leads to the XML injection does get sanitized. Given the

TO target field:

0 or 1=1

one of the valid inputs to solve that TO was

0 or 1=1<v2

as any character including and after the first < is removed as part of the input sanitiza-

tion.

Our proposed technique was able to produce inputs that can detect XMLi vulnerabilities
in the evaluated industrial systems.

6.4. Additional Analysis

In this section, we investigate the various co-factors that may affect the effectiveness of

the solvers. For this purpose, we use the two-way permutation test [109], which is a non-

parametric test to verify whether such co-factors statistically affect or not the search effec-

tiveness. This test is equivalent to the two-way Analysis of Variance (ANOVA) test [99].

Input validation: To investigate the effect of input validation, we compare the average

SR for SBANK and SSBANK, which are two different front-ends for the same real-world

bank card processing system. The difference is that one front-end uses input validation (i.e.,

SSBANK) while the other not (i.e., SBANK). This analysis can be performed by comparing

the results reported in Tables 6.3 and 6.5. For each treatment, the average SR for SBANK

is always higher than the SR scores achieved for SSBANK. The p-value <0.05 obtained

from the two-way permutation test shows that the co-factor input validation significantly

affects the performance of the solvers. This can also be observed from the interaction plot

depicted in Figure 6.3: for all the solvers, the average SR of the SBANK is always higher
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Figure 6.3: Comparison of the average success rates for SBANK (without input validation)

and SSBANK (with input validation).

compared to that of SSBANK. We note that the best treatment in our study, which is RGA

with Rd, could reach a success rate greater than 20% in the presence of input validation.

Though there exist input validation routines in SSBANK, they are applied only on one input

parameter instead of all three. Thus, if a front-end web application uses incomplete input

validation, our proposed search-based technique is able to detect XMLi vulnerabilities in a

reasonable amount of time (i.e., less than 10 minutes on average).

Number of input parameters: As described in Section 6.2.5, we have three different

versions of SBANK and SSBANK with varying numbers of input parameters. This allows us

to analyze how the success rate is impacted when increasing the number of input parameters.

The results of this analysis are reported in Table 6.20, with the average SR for all the

treatments with the same number of input parameters and for each application. We can

clearly see that for most of the treatments the larger the number of input parameters, the

smaller the success rates achieved by the different treatments. For example, for HC with Ed

the success rate is 88.33% with one input parameter and it dramatically decreases to 72.50%
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Figure 6.4: Comparison of the average success rates for SBANK and SSBANK with 1, 2 and

3 input parameters.

and 39.50% with two and three input parameters, respectively. This overall pattern is also

observable from the interaction plot in Figure 6.4. The only exception to this general rule is

the combination of RGA with Rd for which we can observe limited variation in the average

success rate as depicted in Figure 6.4. Therefore, our best configuration (i.e., RGA with Rd)

is not only more effective and more efficient, but is also more scalable as it is little affected

by increasing the number of parameters, as opposed to the other treatments.

The permutation test for the number of input parameters also reveals a significant interac-

tion between this co-factor and the SR (p-value<0.05). Hence, we conclude that increasing

the number of inputs adversely affects the average SR of the solvers, i.e., the higher the

number of input parameters, the more difficult is to detect XMLi vulnerabilities.

Initial population: As described in Section 6.2.3, the initial set of random tests can be

composed by input strings with Fixed (F) or Variable (V) length. To investigate the effect

of this co-factor, we compare the average SR obtained by each solver, for each application,

when using Fixed and Variable length. The result of this analysis is reported in Table 6.21,
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Table 6.20: Comparison of the average Success Rates (SR) of the experiments involving apps.

with 1, 2 and 3 Inputs

App./Solver
SBANK SSBANK

1 input 2 inputs 3 inputs 1 input 2 inputs 3 inputs

RGA with Rd 100.00 96.75 90.75 66.67 7.75 9.00

RGA with Ed 29.72 14.50 4.00 21.67 0.50 0.50

SGA with Rd 83.61 57.75 51.25 61.67 3.50 1.50

SGA with Ed 71.94 45.00 31.00 50.83 1.75 0.75

HC with Rd 96.39 81.00 62.50 63.89 0.00 0.00

HC with Ed 88.33 72.50 39.50 51.67 0.00 0.00

Avg/app 78.33 61.25 46.50 52.73 2.25 1.96

Table 6.21: Comparison of the average success rates (SR) when using an initial population

composed by input strings with Fixed (Fix) or Variable (Var) length

Solver
SBANK SSBANK XMLMAO

Fix Var Fix Var Fix Var

RGA with Rd 94.67 97.00 25.39 30.22 100.00 100.00

RGA with Ed 16.13 16.02 6.85 8.26 39.58 40.83

SGA with Rd 55.44 72.96 20.00 24.44 74.58 90.83

SGA with Ed 46.35 52.28 17.04 18.52 70.83 82.08

HC with Rd 81.35 78.57 20.93 21.67 97.50 95.00

HC with Ed 73.50 60.06 19.07 15.37 91.67 89.17

Avg/app 61.24 62.82 18.21 19.75 79.03 82.99
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Figure 6.5: Comparison of the average success rates (SR) when using an initial population

composed by input strings with Fixed (Fix) or Variable (Var) length.

which shows the average SR achieved for each solver and application. We can see that

the difference between the two types of setting is limited, i.e., it is on average 1.58% for

SBANK, 1.54% for SSBANK, and 3.96% for XMLMao. These small differences can be

visualized through the interaction plot in Figure 6.5 and a permutation test further shows

they are not significant (p-value=0.80). Therefore, we conclude that the length of the input

strings in the initial population (or the initial solution for HC) does not significantly affect

the performance of the solvers.

Alphabet size: Instead of using the complete alphabet (i.e., all possible ASCII char-

acters), we can restrict its size by considering only the characters we determine to be used

in the TOs. However, as discussed in Section 6.2.3, this strategy may be detrimental when
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Figure 6.6: Comparison of the average success rates (SR) with complete (Full) and restricted

(Restricted) alphabet size.

there is no straightforward relationship match between input strings and the generated XML

messages, due to transformations and validation. Therefore, we want to analyze the impact

of this strategy on the performance of the various treatments. The interaction plot in Fig-

ure 6.6 indicates that the effect of this co-factor on the average success rate SR is very small.

Only for RGA with Ed and SGA (either with Ed or Rd) we can observe slightly higher suc-

cess rates when using the restricted alphabet size. The permutation test also reveals no

significant interaction (p-value=0.55) between the success rate (i.e., effectiveness) and the

size of the alphabet. With respect to efficiency, Figure 6.7 depicts the effect of the size of the

alphabet on average execution time. As we can observe, the efficiency of RGA with Rd is

not affected by this co-factor while all the other solvers achieved a lower execution rate with

a restricted alphabet. However, the effect is still not significant according to permutation

tests, i.e., p-value=0.20. Therefore, reducing the size of the alphabet is not recommended

given its low impact on both effectiveness and efficiency of the various treatments (and RGA

with Rd in particular) combined with the high risk of unintentionally excluding characters

that may lead to XMLi attacks.
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Figure 6.7: Comparison of the average execution time with complete (Full) and restricted

(Restricted) alphabet size.

Fitness convergence: To investigate the convergence of the two fitness functions over

time, we recorded the fitness function of the best individual in the population throughout the

GA generations. For this analysis, we selected the best solver (RGA) and one representative

case (SS.1.F.N) to compare the values of Rd and Ed throughout the generations for six

TOs. As depicted in Figure 6.8, for TO1 and TO2, RGA with Rd converged much faster

(< 30K fitness evaluations) to reach zero fitness (i.e., to cover the TO), while Ed used a

large number of fitness evaluations, i.e., 90K for TO1 and 150K for TO2. RGA with Rd also

covered the other two TOs, i.e., TO3 and TO4 in less than 100K fitness evaluations while

Ed could not cover them in 500K fitness evaluations. The last two TOs (TO5 and TO6)

are infeasible to cover since the application SSBANK always returns an error message for
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invalid inputs. Therefore, the fitness function remains flat for both Rd and Ed, meaning

that the search cannot converge towards zero fitness. Hence, for applications with input

validation (like SSBANK), it should be expected that some TOs are simply infeasible to

cover. However, our results show that it is still possible to detect XMLi vulnerabilities

which are not adequately addressed by input validation routines.

6.5. Related Work

Related work for XMLi testing and search-based approaches for security testing, has already

been discussed in Section 5.4. This section describes, how we improve our approach presented

in the previous chapter, in terms of effectiveness and efficiency.

In the previous chapter, we presented a search-based approach for generating test inputs

exploiting XML injection vulnerabilities in front-end web applications. We used the standard

Genetic Algorithm along with the string-edit distance to find malicious test inputs. We

evaluated our approach on several web applications including a large industrial application

and we also compared it with random search. We found our proposed search-based testing

approach to be very effective, as it was able to cover vulnerabilities in all case studies while

the random search could not, in any single case.

This chapter extends our search-based testing approach, presented in the previous chap-

ter, in several ways. First, we introduced a different fitness function, i.e., the Real-coded

Edit Distance (Rd), which further improves the traditional string edit distance (Ed). Second,

we investigated two further optimization algorithms, namely Real-coded Genetic Algorithm

(RGA) and Hill Climbing (HC), in addition to the standard Genetic Algorithm (SGA) and

random search (RS). Third, we enlarged our empirical evaluation using an additional in-

dustrial application. Last, we conducted an extensive evaluation by comparing all possible

combinations of solvers (i.e., SGA, RGA, HC and RS) and fitness functions (i.e., Rd and

Ed). Our new results show that RGA with Rd is significantly superior the previous approach

[16] in terms of both effectiveness and efficiency.

6.6. Threats to Validity

In this section, we discuss the threats that could potentially affect the validity of our findings.
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Internal validity: In our context, there are two main threats related to internal validity:

(i) the use of randomized algorithms and (ii) the choice of parameter settings for the solvers.

To mitigate the first threat, we repeated each experiment several times, i.e., 10 times for

each subject of Study 1 and three times for the industrial systems in Study 2, and reported

the aggregated results. The use of rigorous statistical analysis also adds support to our

findings. To mitigate the threats arising from the parameter settings, especially for Genetic

Algorithms, we used the parameter values that are recommended in the literature and also

carried out some preliminary experiments before using them for the complete experiments

(as described in Section 6.2.5). Besides, we used the same parameter settings for all solvers.

However, it is worth noting that the empirical study carried out in this chapter is based on

a software tool we developed. As for any software, although it has been carefully tested, we

cannot guarantee that such tool is bug-free.

External validity: Threats to external validity concern the generalization of our find-

ings. The empirical study is based on a small set of applications. This was due to two main

reasons:

• We conducted a large empirical study with different solvers and fitness functions, which

required a cluster of computers running for days. Using more subjects would have not

been feasible.

• Enterprise systems are usually not accessible on open-source repositories, so we were

limited by what was provided by our industrial partners. Furthermore, due to technical

constraints, such systems had to be run on a dedicated machine, and not a cluster of

computers.

Although this presents a threat to the generalization of our results, we have made sure

to evaluate our approach with different types of applications, i.e., front-end web applications

interacting with the bank-card processing system, an open source application and real-world

industrial application with millions of registered users. Further, we have also evaluated

applications with different levels of complexity, i.e., three versions of SBANK and SSBANK

with varying number of parameters and the presence of input validation routines. Also,

using real industrial systems in the case study does prove that our technique can scale to

actual systems used in practice.

Conclusion validity: Regarding the threats to conclusion validity, we have carried out

the appropriate and well-known statistical tests along with multiple repetitions of the exper-

iments. In particular, we have used the parametric Fisher’s exact test, the non-parametric
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Wilcoxon test, Friedman’s test and the two-way permutation test to find whether the out-

comes (success rate for effectiveness and average execution time for efficiency) of the treat-

ments differ significantly. Besides, we have also used the Odds Ratio (OR) and Vargha-

Delaney (Â12) statistics to measure the effect size, i.e., the magnitude of the observed dif-

ference. Our conclusions are based on the results of these tests and statistics.

It should also be noted that being able to carry out a successful XML injection attack

does not necessarily mean that the receiver of such messages (e.g., a SOAP web service)

will be compromised. This depends on how the receiver is implemented (e.g., Does it have

adequate level of input validation/sanitization routines?). However, in practice, internal web

services (not directly accessible on the internet) might not be subject to rigorous penetration

testing as the user front-end, and so might be less secure.

6.7. Summary

In this chapter, we have presented an effective approach to automatically generate test cases

for the security testing of web applications based on metaheuristic search, with a focus on

XMLi vulnerabilities. This work is built on the approach presented in the previous chapter,

i.e., the automated generation of SUT inputs that generate messages matching the TOs

(our test objectives, malicious XML messages). In this chapter, we investigated different

strategies to improve the effectiveness and efficiency of test generation part.

We evaluated four different search algorithms, with two different fitness functions. We

have evaluated and compared them on artificial and open source systems and two industrial

systems (one being a very large web application). Our results are promising as the proposed

approach was able to effectively and efficiently uncover vulnerabilities in all these case studies.

In particular, a Genetic Algorithm, using a fitness function minimizing a real-coded edit

distance between TOs and generated XML messages, clearly showed to be the best algorithm

and appeared to be sufficiently effective and efficient, to be used in practice.
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Chapter 7

Conclusions and Future Work

This chapter summarizes the research contributions of this dissertation and discusses poten-

tial areas for future work.

7.1. Summary

This dissertation investigated the limitations of existing approaches for security testing of

XML-based vulnerabilities, in an industrial context. Real-world XML-based systems typi-

cally have a multi-tiered infrastructure composed of several tiers including: front-end web

applications, XML gateway/firewall, and back-end web services. Effecting and efficient de-

tection of XML-based vulnerabilities requires security testing strategies that are tailored

toward each specific tier (e.g., XML gateway/firewall). However, existing security testing

approaches for XML-based vulnerabilities rely only on fuzz testing strategy, which are un-

likely to generate the complex tests required for detecting these vulnerabilities. Indeed,

fuzzing approaches tend to generate simple tests, which are either detected at the first tier,

i.e., front-end web application, or blocked at the XML gateway/firewall tier.

To increase the efficiency and the effectiveness of security testing for XML-based sys-

tems, we have proposed several security testing strategies aimed at detecting XML-based

vulnerabilities for various components of multi-tiered business applications. These strate-

gies have been developed in close collaboration with a leading financial service provider in

Luxembourg/Switzerland, namely SIX Payment Services. All our proposed strategies are
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automated, effective and scalable. They have been empirically evaluated on several industrial

as well as on open-source systems.

In short, this dissertation made the following contributions:

Chapter 3 covered security testing for the two vulnerabilities related to XML parsers,

namely Billion Laugh (BIL) and XML External Entities (XXE). We conducted a systematic

and large-scale experimental assessment of 13 most popular XML parsers. Furthermore, we

also investigated several open-source systems adopting one of the vulnerable XML parsers.

We proposed a testing approach that uses various performance measurements (e.g., CPU

time, memory consumption), as test oracles for detecting BIL and XXE vulnerabilities. Our

results show that most of the XML parsers are vulnerable and so are the systems using one

of the vulnerable parsers. These results can be used to motivate software developers to take

appropriate security measures to detect and overcome the vulnerabilities related to XML

parsers.

Chapter 4 addressed security testing for XML Injection (XMLi) vulnerabilities in XML

gateway/firewall and back-end web services. We developed SOLMI, an automated testing

approach and tool, based on constraint-solving and input-mutation techniques that covers a

wide range of XMLi attacks. Our test generation strategy first uses a constraint solver and an

attack grammar to generate attack payloads that satisfy the associated domain constraints

(e.g., security policies at XML gateway/firewall). Then, the generated (malicious) payloads

are used to mutate existing (benign) XML messages. The resulting mutated XML messages

have higher chances to bypass the gateway. We evaluated and compared our approach with

a state-of-the-art tool, namely ReadyAPI, when testing the financial system of our industrial

collaborator. The target system consists of 44 complex web services at the back-end that are

protected by an XML gateway (firewall). Our results demonstrated that a large proportion

(78.86%) of the attacks, generated with SOLMI, could bypass the XML gateway/firewall,

while for ReadyAPI, the percentage of bypassing attack was 2.37% only.

Chapter 5 presented a novel testing approach targeting the front-end web applications.

We developed an automated, black-box testing approach using Search-Based Testing (SBT).

The aim is to search for such test inputs that, when submitted to the web application, can

generate malicious XML messages (previously created with our tool SOLMI ). If such inputs

exist, the web application is considered vulnerable to XMLi , meaning that the input saniti-

zation and transformation procedures are not able to prevent XMLi attacks. We used the

standard Genetic Algorithm with the traditional string edit distance as the fitness function

129



7.2 Future Work

to guide the search towards malicious inputs. We evaluated our approach on several arti-

ficial systems and one large industrial web application. Our results demonstrated that the

approach was able to discover XMLi vulnerabilities in all case studies.

Chapter 6 focused on boosting the efficiency and the effectiveness of the search-based test

case generation approach presented in Chapter 5. We investigated four different search algo-

rithms, namely Standard Genetic Algorithm (SGA), Real-coded Genetic Algorithm (RGA),

Hill Climbing (HC) and Random Search (RS). Furthermore, to overcome the limitations of

the traditional string edit distance, we evaluated a different fitness function, namely the

Real-coded Edit Distance (Rd). We provided a detailed analysis of all possible combinations

of the search algorithms and fitness functions, to determine the best combination in terms

of effectiveness and efficiency. Our results demonstrated a significant improvement over the

previous search-based approach. In particular, the Real-coded Genetic Algorithm (RGA), us-

ing Real-coded Edit Distance (Rd), appeared to be sufficiently effective, efficient and scalable,

to be used in practice for detecting XMLi vulnerabilities in web applications.

7.2. Future Work

In this dissertation, we focused on security testing strategies for detecting XML-based vul-

nerabilities in web services and applications. There are other injection vulnerabilities, e.g.,

XPATH, LDAP, or JSON injections, that also warrant attention from academia and practi-

tioners. Furthermore, the continuously evolving nature of web services and applications, and

the use of alternative technologies (e.g., REST web services), may result in new injection

vulnerabilities. While the security testing strategies presented in this dissertation focuses

on XML-based vulnerabilities, they can also be generalized to other types of vulnerabilities.

For instance, our search-based testing approach can be applied to Cross-site scripting or

XPATH injection vulnerabilities, by modifying the target malicious XML messages to the

corresponding types of attacks for these vulnerabilities. Similarly, the constraint-solving and

input mutation testing approach (SOLMI ) presented in Chapter 4, can also be extended to

other types of vulnerabilities by defining and adopting their specific attack grammars.

Our proposed search-based testing strategy presented in Chapters 5 and 6, can further

be improved by integrating a multitarget approach. Our current approach uses a standard

genetic algorithm to evolve test cases for one single target at one time, i.e., Test Objective

(TO) in our context. Therefore, genetic algorithms (or in general search algorithm) are

re-launched multiple times, once for each TO. However, larger web applications have many
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input forms that could be exploited by attackers. As a consequence, the number of potential

TOs to assess can be very large. Executing the genetic algorithm for each TO separately

may affect the overall efficiency. Since the TOs are based on common attack patterns for

XMLi , the test cases evolved during the search for one TO are likely good (close to cover)

for other TOs as well. Therefore, instead of starting the search from completely random

inputs for each TO, an approach that can evolve test cases for multiple TOs at the same

time, is expected to be efficient. To this aim, a multi-objective optimization algorithm, e.g.,

NSGAII, can be tailored to optimize in parallel multiple TOs.

Finally, our search-based testing approach can be improved by considering alternative

fitness functions instead of the string edit distance (or its real-coded variant). Indeed, the

string edit distance is very expensive to compute since its time complexity is O(n∗m) (where

n and m are the lengths of the two strings). Since most of the execution time is spent in the

fitness calculations, a single-target search-based approach may face challenges in covering

the target TO, especially when working under strict time constraints. Therefore, alternative,

less precise fitness functions with linear time complexity O(n) (where n is the length of the

longest string), can be investigated.
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