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Abstract

In this thesis, numerous Machine Learning (ML) applications for Cognitive Radios Net-

works (CRNs) are developed and presented which facilitate the efficient spectral coex-

istence of a legacy system, the Primary Users (PUs), and a CRN, the Secondary Users

(SUs). One way to better exploit the capacity of the legacy system frequency band

is to consider a coexistence scenario using underlay Cognitive Radio (CR) techniques,

where SUs may transmit in the frequency band of the PU system as long as the induced

to the PU interference is under a certain limit and thus does not harmfully affect the

legacy system operability. This thesis starts with an overview of the ML literature for

CRNs in Chapter 2 and continues with the contributions which are divided into the

three following chapters.

In Chapter 3, we propose a ML approach for detecting the Modulation and Coding

scheme (MCS) of a PU. This Spectrum Sensing (SS) task considers Higher Order Statis-

tical (HOS) features of the sensed PU signal and an efficient ML classifier, the Support

Vector Machine (SVM), to identify the modulation scheme used by the PU. The outcome

of this identification is combined with the log-likelihood ratios (LLRs) of the PU signal

code syndromes to find the PU MCS. This process is called Modulation and Coding

Classification (MCC) and it will play an important role in the next part of this thesis.

In Chapter 4, we take advantage of the MCC process in order to bypass the absence of

communication between the PU and the SU systems. Due to lack of cooperation between

the two systems, the CRN may exploit this multilevel MCC sensing feedback as implicit

channel state information (CSI) of the PU link in order to constantly observe the impact

of the aggregated interference it causes. Changes in the PU MCS because of the CRN

induced interference are considered as PU reactions following the PU Adaptive Coding

and Modulation (ACM) protocol. In the examined case study, this MCC feedback al-

lows the CRN to sequentially adjust the SU transmit power levels in order to jointly

tackle maximizing the CRN throughput, a Power Control (PC) optimization objective,

and learning the interference channel gains which basically constitute the PU interfer-

ence constraint of the aforementioned optimization problem. Ideal candidate learning

approaches for this problem setting with high convergence rate are the Cutting Plane

Methods (CPMs). The work of this part laid the foundation of the Active Learning

(AL) thesis perspective enabled by PU pieces of feedback.

In Chapter 5, we aim solely at learning the interference channel gains by sequentially

probing the PU system. Here, we no longer consider the MCC feedback but the ACK-

/NACK binary packet which is acquired by eavesdropping the reverse PU link and

indicates whether the probing-induced interference is harmful or not. This rudimentary
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piece of feedback is chosen in order to focus on developing sophisticated probing design

techniques for learning the PU interference constraint, since we have already demon-

strated the benefits of using the multilevel MCC feedback. We adopt an approach

related with AL, a ML field where a learning algorithm sequentially chooses unlabelled

data and requests its label in order to reach to a learning solution with as less as pos-

sible label queries. This means that the unlabelled data chosen in each step must be

selected or designed intelligently so that it delivers more information about the learning

solution. This process is clearly correlated with designing the SU transmit power levels,

the probing, in order to render it as more informative as possible. Additionally, we

incorporate the probability of each binary feedback being correct into this intelligent

probing mechanism by developing multivariate Bayesian AL methods inspired by the

Probabilistic Bisection Algorithm (PBA) and the CPMs.

In Chapter 6, the AL rationale of the previous chapters is further enhanced by adding

a constraint on the number of the harmful probing attempts during this learning pro-

cess. Specifically, the CRN aims to learn the PU interference constraint with as few

as possible probing attempts while limiting under a threshold the number of harmful

probing-induced interference events or equivalently of NACK packet observations. No

uncertainty of the ACK/NACK binary packet is taken into account in this scenario. A

provenly optimal solution for this constrained AL problem is obtained and implemented

using a fast and accurate Bayesian Learning method, the Expectation Propagation (EP).

Finally, in Chapter 7 we summarize the conclusions and discuss the promising research

applications of AL in the CR framework.
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Chapter 1

Introduction

1.1 Motivation and Scope

Radio spectrum is well known to be a limited resource. Ever since its first commercial

usage, regulations for limiting services to specific frequency bands have been enforced.

This rulemaking process assumes that a static assignment of services to frequency bands

not only facilitates the financial exploitation of the Radio Spectrum, but also limits

interference and supports the construction of cheap and less complicated transceivers, a

major technological restraint.

Within the last years though, wireless communications have faced a steadily growing

demand of multimedia and other bandwidth consuming interactive services. At the

same time, measurements of the spectrum usage have shown that even if some segments

are congested because of this service demand burst, many others are being underutilized

[1] as they still rely on old communication technologies. This has led us to rethink the

inefficient static nature of this architecture which limits accessibility and creates the

false perception of spectrum saturation.

Towards this direction, the research community proposed a breakthrough architecture

design called Dynamic Spectrum Access (DSA) [2] according to which radio spectrum

should be distributed to users and services based not on rigid regulations, but flexible re-

straints which take into consideration overall spectrum availability, access needs, service

priorities, market perspectives, network optimization objectives and QoS requirements.

The first step of this evolution is to retain the costly infrastructure and spectrum access

protocols of licensed services based on outdated technology, the so called legacy systems,

which are not fully utilizing their assigned bands or which are resilient to interference,

and allow unlicensed users access the frequency bands assigned to these licensed services.

1
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These unlicensed users must be flexible and intelligent radio devices with DSA abilities

which will detect access opportunities in these bands and exploit them to serve their

own service demands.

This new kind of radio is the catalytic agent of DSA and it is called in the literature

Cognitive Radio (CR) [3, 4]. It was first introduced by J. Mitola who actually borrowed

the term ”Cognitive” from the Computer Science world in order to signify a radio device

able to sense, understand, adapt and interact with its surroundings based on the user’s

demands and the environment’s limitations. In the CR regime, the licensed and the

unlicensed users are called respectively Primary Users (PUs) and Secondary Users (SUs)

basically in order to distinguish their service priority. To better define the CR, we

describe its basic abilities which are usually classified in two major groups, Spectrum

Sensing (SS) and Decision Making (DM). A new trend in CR technology which is adopted

in this thesis as well and it is closely related to its origins is the application of Machine

Learning (ML) in both SS and DM.

The main enabler of the CR is the SS part which gives “eyes” and “ears” to the “body”

of this intelligent radio. Like any cognitive entity, the CR must first examine its envi-

ronment in order to learn from it and then interact with it. SS applies advanced signal

processing and other methods and enables the CR to “observe” the spectrum. One way

of making the CR aware of its environment is PU signal detection which mainly focuses

on the classic binary hypothesis testing of PU existence. Another way of enhancing the

CR’s senses is PU signal classification. This new radio must be able not only to detect

whether a PU signal exists but also to identify its kind, a direction which we consider in

the beginning of this thesis. In Chapter 3, we develop SS techniques based on ML tools

in order to identify the Modulation and Coding Scheme (MCS) of the PU, a process

that we call Modulation and Coding Classification (MCC). This SS piece of information

can play an important role for the second function of the CR, the DM.

The second skill set of the cognition cycle, the DM, represents the interacting abilities

of the CR with its environment which actually perform an adaptive configuration of

the radio operational parameters, like beamformer, transmit power, modulation, coding,

frequency, time schedules and others, and consequently reach some goals, such as system

throughput, SINR maximization or interference mitigation. The DM process is a broad

scientific area and usually employs optimization tools or other mathematical mechanisms

to enhance spectrum usage. In this thesis, the configurable CR parameters we are

interested in are the transmit power levels of the unlicensed cognitive users. This CR

power level adaptation is called in the literature Power Control (PC) and in Chapters 4

and 5 we demonstrate its applications for achieving optimization and learning goals.
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In the CR regime, there are three main application categories which are also character-

ized as DSA examples, the underlay, the overlay and the interweave mechanisms [5]. In

the underlay one, a CR Network (CRN), the SUs, may transmit in a PU frequency band

as long as the CRN generated interference to the PUs is under a certain threshold. As

far as the overlay methods are concerned, PUs share knowledge of their codebooks and

possibly messages with the SUs, so as to reduce the interference on the PU receiver side

or even relaying the PU message in order to enhance the PU communication link. In

the interweave approach, SUs identify holes in space, time or frequency where PUs are

absent and they transmit only in the case of these vacancies. In this thesis, we focus on

underlay CRN paradigms, which enable a simultaneous coexistence in frequency of PUs

and SUs.

This vast topic has been thoroughly investigated from many aspects depending on the

system model, the optimization variables, the objective functions and the constraints.

An interesting approach of the underlay problem tackled by the research community

is to consider a centralized CRN where a central decision maker, the Cognitive Base

Station (CBS), elaborates an intelligent selection of the SU operational parameters and

communicates them through a control channel [6]. In this context, network optimization

problems have been formulated to achieve common or different SINR requirements for

each SU, maximum SU system throughput, maximum weighted throughput, maximum

worst SU throughput or minimum transmit power, subject to PU QoS constraints, like

SINR, data rate or outage probability.

A major challenge though in all these underlay problems is the knowledge of the inter-

ference channel gains from the CR transmitters to the PU receivers and the PU receiver

interference threshold which define the PU QoS constraints. This arises because PU

systems are usually legacy systems which were not foreseen to coexist and interact with

other systems. Therefore, a CRN cannot rely on an access protocol that cooperates

with the PUs in order to utilize their frequency bands. This lack of cooperation forbids

passing information for inferring the interference channel gains and the PU interference

threshold. Yet, the CRN must acquire some kind of knowledge about the CR-to-PU

channel gains and the interference limit.

A common approach to tackle this issue in the CR regime is the CRN to exploit a PU

link state feedback, monitor how this changes because of the CRN operation and thus

estimate these interference parameters. This idea, called proactive SS, was first proposed

in [7] where the SU probes the PU and senses its effect from the PU power fluctuation,

a rather informative piece of information. The proposed DSA application concerns only

the SU system without adding any complexity in the infrastructure or a control channel

between the PU system and the SU one in order to exchange information about the
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channel gains or the induced interference. Later work retained this probing scheme, but

it focused on more rudimentary feedback such as the binary ACK/NACK packet of the

reverse PU link which requires the implementation of the complete PU receiver on the

CRN side to decode the PU feedback message. The main problems of this approach

are the hardware complexity of the complete PU receiver, security issues risen from the

exploitation of the PU message and a minimum required SINR of the sensed PU signal

to decode the PU message. In Chapter 4, we demonstrate how the MCC feedback can be

used instead of the ACK/NACK packet in an underlay PC scenario for both optimizing

and learning purposes. This application bridges our work in SS, the MCC, with an

essential DM function, the PC. Subsequently, in Chapter 5, we focus on the binary

ACK/NACK packet to develop PC techniques whose only goal is the Active Learning

(AL) of the interference channel gains. Finally, in Chapter 6, the same AL perspective

is kept with the constraint of limiting under a threshold the number of NACK packet

observations which actually correspond to harmful probing-induced interference events.

1.2 Thesis Organization

In this section, we include the outline of the thesis. We begin with a literature review

about ML applications for CRNs in Chapter 2. Next, we introduce a ML approach

for signal classification and specifically for MCC purposes in Chapter 3. Chapter 4

deals with an underlay PC scenario where the CRN throughput is maximized subject to

an uknown PU interference constraint using the MCC feedback obtained from the PU

signal. In Chapter 5, we study an AL PC scheme aiming at learning the PU interference

constraint with uncertain ACK/NACK feedback. Finally, in Chapter 6, an constrained

AL probing technique is examined with accurate ACK/NACK feedback. For each topic,

a brief background is provided along with the considered problem statements and the

main contributions are listed.

1.2.1 Chapter 2: Machine Learning for Cognitive Radio Networks

In this chapter, we mention the state of the art ML applications for CRNs by dividing

them into two major groups. The first group consists of the works which study ML ap-

plications for SS, specifically for signal classification purposes. This includes the signal

feature extraction and the classifiers used to process these features. Telecommunication

signals have a great variety of characteristics. Among them, there are many distinguish-

able statistical features which are unique for each signal type and which can be combined

with sophisticated classifiers to easily identify the kind of the sensed signal.
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The second group includes the works concerning ML applications for DM. This scientific

area is extremely vast and it is better explained by separating it into two categories,

the centralized and the decentralized ones. Learning how to make decisions aiming at

a specific objective with or without other decision-makers in the environment is related

to topics like Classic Optimization Theory, Dynamic Programming (DP), Game Theory

and Control Theory.

1.2.2 Chapter 3: Modulation and Coding Classification

In this chapter, we study signal feature design, which is mostly based on statistical

signal processing, and ML tools to classify the sensed PU signal MCS. The extracted

features are the signal Higher Order Statistics (HOS) cumulants and the log-likelihood

ratios (LLRs) of the signal code syndromes. The proposed classifier is one of the most

powerful ML techniques, the Support Vector Machine (SVM). This overall process is

called Modulation and Coding Classification (MCC) and it will be proven helpful for

enhancing the PC mechanism of the CRN. The content of this chapter is published in

[8–10].

1.2.2.1 Contributions

The contributions of this chapter are as follows:

1. The combination of HOS cumulants, code syndrome LLRs, SVMs and likelihood

based code rate classifiers for identifying the MCS of a sensed signal.

2. Comprehensive simulation results are provided to demonstrate the classification

accuracy of the suggested scheme even in a low Signal-to-Noise Ratio (SNR) envi-

ronment.

3. A cooperative MCC procedure is introduced based on plurality voting, which is

simple and delivers better detection results than other methods in the multiple

hypothesis testing and sensor fusion literature.

1.2.3 Chapter 4: Power Control Using Modulation and Coding Clas-

sification Feedback in Cognitive Radio Networks

In this chapter, a case study is considered with a PU and multiple SUs where the PU link

is changing its MCS based on an Adaptive Coding and Modulation (ACM) protocol and

is operating in its assigned band together with a CRN accessing this band and having
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knowledge of this ACM protocol. Our idea is to detect the PU MCS in a cooperative

way in the CBS which gathers the sensed MCC feedback from all the SUs through a

control channel and combines them using a hard decision fusion rule and subsequently

to exploit this multilevel feedback, instead of the binary ACK/NACK packet that is

hard to obtain, in order to learn the CR-to-PU channel gains. This channel knowledge

is acquired by having the SUs constantly changing their transmit power under the CBS

instructions and checking whether the CRN caused the PU MCS to change, a clearly

probing procedure. First, a simple AL technique is demonstrated for probing the PU

system and learning the interference channel gains of a CRN using the observed MCS

degradation of the PU. Next, a PC method aided by interference channel gain estimation

is presented which maximizes the total SU throughput subject to maintaining the PU

QoS. Furthermore, a novel technique is developed so that the probing/learning method

can be performed concurrently with the pursuit of the CRN maximum throughput and

without this affecting the learning convergence time. The content of this chapter is

published in [10, 11].

1.2.3.1 Contributions

The contributions of this chapter are as follows:

1. For the first time, the MCS degradation is used as a multilevel feedback of the

induced interference.

2. A simple AL probing scheme for learning static interference channels is developed.

3. A PC mechanism for static interference channels is proposed where maximizing the

total SU throughput subject to an unknown PU interference constraint is taking

place simultaneously with an interference channel gain learning process.

4. A dynamic adaptation of this mechanism is proposed for slow fading channels

which takes into account a window of the most recently observed feedback.

5. Simulations show faster convergence rate of the latter solution compared to the

literature benchmark method and the first one we developed.

1.2.4 Chapter 5: Active Learning of the Interference Constraint with

Uncertain ACK/NACK Feedback in Cognitive Radio Networks

In this chapter, we study solely AL probing methods suitable for rapidly estimating the

interference channel gains from multiple SU transmitters to a PU receiver and we no
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longer consider the MCC feedback, but the ACK/NACK packet. The probing design

novelty here is that the uncertainty of the SS feedback, the binary ACK/NACK, is taken

into account to design the probing power levels of the CRN. Due to low SNR conditions

of the sensed PU signal by the CRN sensing antenna, the ACK/NACK packet may be

decoded imperfectly. Therefore, the feedback likelihood must be considered not only

for updating our knowledge about the interference channel gains, but also for designing

the probing power levels. Initially, a simple Bayesian method based on the univariate

Probabilistic Bisection Algorithm (PBA) is considered for uncertain binary feedback and

subsequently multivariate Bayesian AL methods are developed using this uncertainty.

The content of this chapter is published in [12, 13].

1.2.4.1 Contributions

The contributions of this chapter are as follows:

1. A simple and computationally cheap univariate Bayesian AL technique is pre-

sented.

2. The novel construction of multivariate Bayesian AL methods designed for probing

the PU and learning fast interference channel gains.

3. An optimality proof is provided for one of these multivariate Bayesian AL methods.

4. A computationally cheap and analytical CPM adaptation is given as a Bayesian

AL technique suitable for high dimensional problems.

5. Simulations show the performance superiority of the AL methods developed in the

second part of this chapter compared to the literature benchmark method and the

one we suggested in the first part.

1.2.5 Chapter 6: Constrained Bayesian Active Learning of the Inter-

ference Constraint in Cognitive Radio Networks

In this chapter, we examine an AL probing method using accurate ACK/NACK packet

observations. The enhancement introduced in this part of the thesis is that the SU power

levels are sequentially design in order to learn the PU interference constraint with as

few as possible probing attempts while limiting under a threshold the number of NACK

packet observations. This constraint is of great practical significance since it represents

specific technical operation constraints of the PU system. A provenly optimal solution

for this constrained AL problem is obtained and implemented with a sophisticated,
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accurate and fast Bayesian Learning method, the Expectation Propagation (EP). The

content of this chapter will be submitted to IEEE Trans. Signal Process..

1.2.5.1 Contributions

The contributions of this chapter are as follows:

1. The novel construction of a provenly optimal Constrained Bayesian AL method

designed for probing the PU and learning fast interference channel gains while

maintaining the ratio of harmful probing attempts under a limit.

2. A new computationally cheap, fast and analytical implementation of a sophisti-

cated and accurate Bayesian Learning technique, the Expectation Propagation,

suitable for the sequential probing design nature of our problem.

3. Simulations show fast learning convergence rates for our Constrained Bayesian AL

method and most importantly adequate satisfaction of the harmful interference

constraint.

1.3 Publications

The author has published his PhD research in IEEE journals, international conferences

and one book chapter. The publications are listed below with the acronyms “J”, “C”

and “BC” defining the journal, conference and book chapter publications respectively.

• J1: A. Tsakmalis, S. Chatzinotas and B. Ottersten, “Centralized Power Control in

Cognitive Radio Networks Using Modulation and Coding Classification Feedback”,

IEEE Trans. Cognitive Commun. and Networking, vol. 2, no. 3, pp. 223–237,

Sept. 2016

• J2: A. Tsakmalis, S. Chatzinotas and B. Ottersten, “Interference Constraint Ac-

tive Learning with Uncertain Feedback for Cognitive Radio Networks”, IEEE

Trans. Wireless Commun., vol. XX, no. XX, pp. XX–XX, XX 2017

• C1: A. Tsakmalis, S. Chatzinotas and B. Ottersten, “Automatic Modulation Clas-

sification for Adaptive Power Control in Cognitive Satellite Communications”,

Proc. 7th ASMS Conf. and 13th SPSC Workshop, Sept. 2014

• C2: A. Tsakmalis, S. Chatzinotas and B. Ottersten, “Modulation and Coding Clas-

sification for Adaptive Power Control in 5G Cognitive Communications”, in Proc.
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IEEE 14th Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC),

Jun. 2014

• C3: A. Tsakmalis, S. Chatzinotas and B. Ottersten, “Power Control in Cogni-

tive Radio Networks Using Cooperative Modulation and Coding Classification”,

in Proc. 10th Int. Conf. on Cognitive Radio Oriented Wireless Netw. (CROWN-

COM), Apr. 2015

• C4: A. Tsakmalis, S. Chatzinotas and B. Ottersten, “Active Interference Con-

straint Learning with Uncertain Feedback for Cognitive Radio Networks”, in Proc.

IEEE International Conf. on Commun. (ICC), May 2016

• BC1: A. Tsakmalis, S. Chatzinotas and B. Ottersten, “Power Control in Hetero-

geneous Networks using Modulation and Coding Classification”, in 5G Networks:

A Research and Development Perspective, 2016





Chapter 2

Machine Learning for Cognitive

Radio Networks

In this chapter, we review the ML literature in CR applications which relates to this

thesis. Broadly speaking, we divide the related literature into two parts, ML tools for

signal classification in the first part and for DM in the second one.

In the first section, we mention the works which use ML tools for classifying the PU

signal, a SS task. We elaborate on signal feature extraction and learning techniques.

Feature extraction in the CR regime derives mostly from statistical signal processing.

The learning part is comprised of supervised and unsupervised classifiers from ML and

also likelihood based classifiers or simple decision tree approaches which were the first

approaches in signal classification. In this thesis, we categorize all these classifiers as

Bayesian or non-Bayesian.

In the second section, we summarize the main contributions of learning in DM for

telecommunication networks and CRNs. We divide this category into two subgroups,

the centralized and the decentralized. Subsequently, we attempt to explain the basics

of the most noteworthy learning techniques within the DM framework.

2.1 Machine Learning applications for Signal Classification

in Cognitive Radio Networks

The enabler of the CR is the sensing part. Throughout most of the existing literature,

SS focuses on one hypothesis testing, the existence or absence of PU in a frequency

band. Another way of making the CR aware of its environment is to detect the type of

11
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the PU signal. This new radio must be able to identify all kinds of signals depending

on the modulation scheme, the code or its rate, the protocol, the waveform and many

other signature factors and it has been realized by extracting features of the signal and

classifying it based on tools from the ML literature or other simpler ones.

2.1.1 Features

Communication signals contain many characteristics that give us information about

their nature. Some of them are extracted in a straightforward way and others in a more

complex one. Now, let us consider that the sensed PU signal sample by the CR receiver

is:

rSU [i] = hS ∗ sPU [i] + nSU [i] (2.1)

where hS is the sensing channel gain, sPU [i] is the transmitted symbol from the PU and

nSU ∼ N (0, NSU ) is the AWGN. The first and simplest signal feature, which has been

widely used [14–17], is its energy:

Er =

Ns∑
i=1

|rSU [i]|2 (2.2)

where Ns is the number of the samples. Furthermore, if we assume that A[i] is each

sample’s amplitude, |rSU [i]|, then another feature which can be derived is the maximum

value of the spectral power density of the normalized centered instantaneous amplitude

γmax and it is defined as [18–20]:

γmax =
max|FFT [Acn[i]]|2

Ns
(2.3)

where FFT [.] is the Fast Fourier Transform operator and Acn is the zero centered unitary

instantaneous amplitude which is defined as:

Acn[i] =
A[i]

E{A[i]}
− 1. (2.4)

This parameter is considered to be efficient for recognizing different amplitude modu-

lated signals. Additionally, another characteristic of the PU sensed signal is the standard

deviation of the absolute value of the nonlinear component of the normalized instanta-

neous amplitude σαα which is expressed as [18–20]:

σαα =
√
E{A2

cn[i]} − E2{|Acn[i]|} (2.5)

and it is used to distinguish M-ASK, M-QAM and other amplitude modulated signals.

Furthermore, a fourth easy to extract PU signal feature is the standard deviation of the
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absolute value of the nonlinear component of the sample phase in the non-weak signal

samples σαp which is calculated as [18–20]:

σαp =
√
E{φ2

NN [i]} − E2{|φNN [i]|} (2.6)

where φNN is expressed as:

φNN [i] = φN [i]− E{φN [i]} (2.7)

and φN [i] corresponds only to the phase of the non weak signal samples. These samples

are the ones whose amplitude is above a certain amplitude threshold. A very similar

to the previous but nevertheless useful feature is also the standard deviation of the

nonlinear component of the sample phase in the non weak signal samples σdp computed

as [18–20]:

σdp =
√
E{φ2

NN [i]} − E2{φNN [i]}. (2.8)

The fifth practical feature taken advantage of for MFSK signal classification is the stan-

dard deviation of the absolute value of the nonlinear component of the sample frequency

in the non weak signal samples σαf estimated as [18–21]:

σαf =
√
E{f2

NN [i]} − E2{fNN [i]} (2.9)

where fNN is expressed as:

fNN [i] =
fN [i]− E{fN [i]}

Rs
(2.10)

and fN [i] corresponds only to the frequency sample of the non weak signal samples,

while Rs is the PU signal symbol rate.

Also, numerous metrics of the normalized Power Spectral Density (PSD) of the received

signal can provide us useful information about the nature of the signal:

SnrSU (f) =
|RSU (f)|2∫∞

−∞ |RSU (f)|2 df
(2.11)

where RSU (f) is the Fourier Transform of rSU [i].

Other features are extracted from Time-Frequency (TF) distributions [22, 23] (Short

Time Fourier Transform, Wigner-Ville distribution, Choi–Williams distribution etc.).

The two most used TF distributions are the STFT and the Wigner-Ville distribution.

The first one is known for being the easiest TF distribution to calculate, while the second

one for its smooth and continuous characteristics. These functions provide us a view of

the signal in both time and frequency domain.
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This computationally demanding category delivers more specifically the center frequency

C and its spread S. To obtain these features, a threshold is applied to the TF components

at each sampled time instant. Let f be the frequencies in the processed data and τ(f) be

the TF components at a certain instant. The threshold at any time instant is the average

value of the TF components τ obtained at that time instant. The center frequency C

and its spread S are defined as

C =

∑
f fI(f)∑
f I(f)

(2.12)

and

S =

∑
f (f − C)2I(f)∑

f I(f)
(2.13)

where

I(f) =

{
1, τ(f) ≥ τ
0, otherwise

(2.14)

If only one system transmits at a certain time instant, C and S are good indicators of

the center frequency and bandwidth of that system. When multiple systems transmit

at the same time instant, these features may technically not mean anything, but do still

give a hint of the systems that are involved.

The hardest to extract signal metrics are the cyclostationary (CS) ones. CS signals pos-

sess statistical features which vary periodically with time, specifically the cumulants of

the signal. This sophisticated and very interesting signal processing approach was first

introduced by Gardner and is capable of detecting underlying periodicities [24, 25]. Most

researchers who focus on modulation recognition consider signals which exhibit cyclo-

stationarity in second-order statistics, like the autocorrelation function. Still, CS signal

processing of second order statistics is not adequate for distinguishing QAM and PSK

schemes among themselves, but a CS processing of higher order statistics is. Notable

studies which incorporate second-order CS processing to detect modulation schemes and

specific codes are [14, 15, 26–32]. Higher order CS has been studied less mostly because

of its very high computational complexity. Examples of its use for signal classification

can be found in [33–36]. Initially, we present the general definitions from Higher Order

CS processing and next we proceed with more specific second order CS features.

Now, let us see how all these metrics are defined for a cyclostationary signal which

for annotation simplicity will be referred to as x[i]. Initially, we specify the nth order

temporal moment function with q conjugated terms, Rx(i, τ ;n, q), as:
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Rx(i, τ ;n, q) = Ê

 n∏
j=1

x(∗)j (u+ τj)

 [i] (2.15)

where τ is the lag vector [τ1, ..., τn], (∗)j denotes optional conjugacy (and there are in

total q conjugated terms in this product) and Ê [.] is the general sine-wave extraction

operator (sometimes denoted as Eα [.]). Basically, when the operator Ê [.] is applied on

a time series y[i], it reconstructs it by using only its periodic components:

Ê [y[k]] [i] =
∑

α∈A(y[k])

〈y[k] e−j2παk〉k ej2παi (2.16)

where the set A(y[k]) contains all the nonzero Fourier Series coefficients of y[k] and

〈.〉k is the averaging operator w.r.t. the variable k. Next, we define the nth order

cyclic temporal moment function, Rcx(α, τ ;n, q), as the Fourier Series coefficients in the

discrete time of the (poly)periodic moment Rx(i, τ ;n, q):

Rcx(α, τ ;n, q) = 〈Rx(i, τ ;n, q) e−j2παi〉i. (2.17)

Respectively, we can specify the nth order temporal cumulant function, Cx(i, τ ;n, q),

and the nth order cyclic temporal cumulant function, Ccx(α, τ ;n, q), using the moment-

to-cumulant conversion formula. First, Cx(i, τ ;n, q) can be expressed using the temporal

moments of equal and lower order as:

Cx(i, τ ;n, q) =
∑
p

(|p| − 1)!(−1)|p|−1
∏
b

Rx(i, τ ;nb, qb) (2.18)

where p runs through the list of all partitions of {1, ..., n}, b runs through the list of

all blocks of the partition p, |p| is the number of blocks in the partition p, nb is the

number of elements in the block b and qb is the number of conjugations in the block

b. Consequently, Ccx(α, τ ;n, q) which is described as the Fourier Series coefficients of

Cx(i, τ ;n, q):

Ccx(α, τ ;n, q) = 〈Cx(i, τ ;n, q) e−j2παi〉i (2.19)

can also be written using (2.18) as:

Ccx(α, τ ;n, q) =
∑
p

(|p| − 1)!(−1)|p|−1
∑
β1=α

Nb∏
b=1

Rcx(βb, τ ;nb, qb) (2.20)

where Nb is the number of blocks in the partition b and β is the row vector [β1, ..., βNb ].
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The multidimensional Fourier transforms of cyclic temporal cumulants are called cyclic

polyspectra, or else spectral cumulants. Finally, we must underline that in the vast

literature concerning higher order CS processing there is an essential simplification which

enables the computations in (2.17): signals are almost always considered cycloergodic.

As far as the second order CS features are concerned, these are derived from all the

previous equations where we set n = 2 and q = 1. Initially, we define Rcx(α, τ ; 2, 1) as

the Cyclic Autocorrelation Function (CAF) which basically measures the correlation of

different frequency-shifted versions of a signal. This second order underlying periodicity

becomes clear when Rcx(α, τ ; 2, 1) is different from zero for some nonzero frequency α.

The frequency α is called cyclic frequency and the set of cyclic frequencies α for which

Rcx(α, τ ; 2, 1) 6= 0 is called the cyclic spectrum. Now, in order to detect the cyclic

frequencies easier, there must be a transfer from the time domain to the frequency

domain.

For this reason, another useful function in second order CS signal processing is the

Fourier Transform of CAF. This is called the Spectral Correlation Density (SCD) func-

tion and it is defined as:

Sx(α, f) =

∞∑
τ=−∞

Rcx(α, τ ; 2, 1)e−j2πfτ . (2.21)

Furthermore, it is beneficial to measure the degree of local spectral redundancy derived

from spectral correlation. A metric to compute this is the Spectral Coherence function,

Cx(α, f), a normalized version of Sx(α, f), which is determined as:

Cx(α, f) =
Sx(α, f)√

Sx(0, f + α/2)Sx(0, f − α/2)
. (2.22)

The final step of the second order CS processing is acquiring the α-domain profile or

Cyclic Domain Profile (CDP). This is calculated as:

I(α) = max
f
|Cαr (f)| (2.23)

and exhibits the peak values of the Spectral Coherence function which are more conve-

nient to handle for signal classification, especially modulation classification.

Additionally, we must mention one of the easiest to extract and most widely used statis-

tical feature set, the signal temporal cumulants [18, 19, 26, 37]. These have distinctive

theoretical values among different modulation schemes and even though they demand a

great amount of samples, they are easy to be calculated. Their definition will be given

in Chapter 3.
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Finally, of particular interest are code features like the code length and the number

of encoded symbols per block which have been exploited in [38] for recognizing Linear

Space–Time Block Codes and the code syndromes which are based on the unique parity-

check matrix that each code has and have been used in [39] for Low Density Parity

Check (LDPC) code identification. A detailed description of the last code features will

be provided in Chapter 3.

2.1.2 Classifiers

As far as the ML methods used in the CR literature are concerned, there are two general

categories. The first one is the non-Bayesian group where signal features are computed

and using techniques mostly based on optimization, these features are processed and

exploited to classify or cluster signal samples as noise or any other kind of signal. The

second one is the Bayesian group or likelihood based group which takes advantage of

the likelihood functions of statistical signal features, which are most of the times well

defined, or of a Bayesian based learning structure and distinguishes the different signal

classes by usually comparing likelihood ratios.

Within the non-Bayesian literature, there has been significant progress using ML to

identify correctly the kind of the signal. These ML algorithms are divided into two

categories, the supervised and the unsupervised classifiers, and their difference is that the

first one requires training with labelled data, while the second one does not. Assuming

that one of the feature extraction procedures mentioned before is chosen by the CR to

process the sensed signal samples and the feature vectors are xi ∈X, then the supervised

methods also need the corresponding label yi ∈ Y in order to be trained, whereas the

unsupervised methods can learn without yi by clustering similar feature vectors.

A popular supervised ML option is the Artificial Neural Networks (ANNs). ANNs have

been successfully used for modulation detection [18, 21, 22, 26, 28, 30] and they were one

of the early applications of ML in this field. They are biology inspired computational

machines which imitate the function of a set of interconnected neurons, the basic pro-

cessing units of the brain. They have been proven able to store experiential knowledge

through a learning process and therefore they became a powerful classification tech-

nique. In the ANN model, each of these neurons applies a transformation function on

the weighted sum of its inputs to produce an output. A lot of these units can create

a sequence of neuron layers, where the first one is the input layer and the last one is

the output layer. Between these two layers, there are the intermediate or hidden ones,

which are not directly connected to the outside world.
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Figure 2.1: A Feedforward Neural Network

The kinds of ANNs used in this research area are the Feedforward Neural Networks

[18, 21, 22, 26, 28, 30] which have been successful for identifying BPSK, QPSK, FSK,

MSK, and AM signals in [28], CCK and OFDM signals in [21], 2ASK, 4ASK, 2FSK,

BPSK, QPSK, AM, DSB, SSB, FM, OFDM, 16QAM and 64QAM signals in [18], Pulse

compression waveforms in [22] and BPSK, QAM, FSK and MSK signals in [26]. A simple

structure of a Feedforward Neural Network is shown in Fig. 2.1. In this network the

information moves only forward. From the input nodes, data goes through the hidden

nodes and on to the output nodes. There are no cycles or loops in the network.

Another powerful supervised classification tool used in modulation classification liter-

ature [19, 29] is the Support Vector Machines (SVMs). Its mathematical foundation

is statistical learning theory and it has been developed by Vapnik [40]. It has been

successfully used to distinguish BPSK, QPSK, GMSK, 16-QAM, 64QAM, FM and AM

signals in [19], AM, ASK, FSK, PSK, MSK and QPSK signals in [29] and BPSK signal

and AWGN in [16]. An extensive description of the SVMs will be given in Chapter 3.

An additional classification technique which is simple and moderately effective is the

decision trees. By appropriately designing feature thresholds based on feature statistical

properties, researchers have managed to discriminate modulation schemes [26, 33, 34],

Space-Time Block Codes [32], Spatial Multiplexing and Alamouti Space-Time Block

Code Signals [41] and WiMAX and LTE OFDM signals [31]. Furthermore, distance

criteria between sensed signal features and their possible ideal no-noise values have been

of great importance with satisfactory results. Most of the distance based research work

for signal classification concerns modulation scheme classification [35–37].
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Figure 2.2: The k-means clustering

In the second subgroup of this category, the unsupervised one, the signal recognition

problem is being tackled in a more autonomous manner. Since this kind of learning

methods do not need labelling of the training feature vectors, that means that the CRs

equipped with such learning modules can detect signal types without someone indicating

the class of the training signal features to the CR.

One of the initial attempts of utilizing such algorithms is the work introduced in [20],

where three algorithms are employed, the K-means, the X-means and the Self-Organizing

Maps (SOMs), to distinguish 8VSB, OFDM and 16QAM signals. The first technique

is clustering the observed feature vectors into a certain given number of classes so as

to minimize the sum of the squared distances of all samples from their class centroids

as shown in Fig. 2.2. The second one is a variation of the K-means method capable

of training without any knowledge of the class number. The SOMs are a special kind

of ANN which represent training samples in a low dimensional space, usually on a

plane, where the ANN’s neurons organize themselves through an neuron weight updating

process.

Within the Bayesian literature, signal classification contributions have been made in

both modulation scheme and coding recognition. A moment using likelihood based

method is presented in [42] for identifying BPSK and QPSK signals. An overview

of these techniques concerning the modulation scheme detection can be found in [43],

where basically three variations of this likelihood approach are demonstrated, the average

likelihood ratio test (ALRT), the generalized likelihood ratio test (GLRT) and the hybrid
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likelihood ratio test (HLRT). Likelihood based classifiers have also achieved great results

in coding recognition whether they deal with specific coding systems [38, 39] or any other

coding schemes with parity check relations [44].

Additionally, a less attractive learning machine the Hidden Markov Models (HMMs) has

been applied to recognize AM, BPSK, FSK, MSK and QAM sensed signals in [26, 27].

As a classifier, HMMs are used to process probabilistically a sequence of observations,

symbols in this case, and identify from which process, specifically here from which modu-

lation scheme, this sequence was produced. Even though HMMs are powerful classifiers,

they require a huge memory space to store a large number of past observations and they

are also computationally very complex, which makes them unsuitable for a CR device

to embed. Nevertheless, they are modified versions of popular HMM solving algorithms

(e.g. Baum–Welch algorithm) which can be used for fast learning but with less accuracy.

Furthermore, non-parametric unsupervised learning procedures have been utilized to

recognize signals with notable results. The authors of [14, 15] recommended the Dirich-

let Process Mixture Model (DPMM) clustering algorithm and use the Gibbs sampling

to sample from the posterior distribution and to update the DPMM hyperparameters.

Also, they proposed a simplified and a sequential DPMM classifier in order to reduce

the computationally demanding DPMM classifier by exploiting the Chinese Restaurant

Process property of the Dirichlet process and improve the selection strategy of the Gibbs

sampler. Applying this classifier has been successful for distinguishing WiFi and Blue-

tooth signals with great accuracy in [15] and Zigbee and WLAN signals in [23].

2.2 Machine Learning applications for Decision Making in

Cognitive Radio Networks

Learning procedures have played an important role in DM processes and have shown

remarkable theoretical and practical results within the CR framework. A great vari-

ety of algorithms has been employed for learning action strategies, or action policies,

with many different objectives, such as spectrum vacancy access or spectrum vacancy

bidding, for learning equilibria in game modelled CRNs or for learning other player,

or agent, strategies. The main characteristic of a DM process is that resources are

allocated sequentially subject to some unknown problem parameters and after every

allocation there is some piece of information about how successful that allocation was.

This instantaneous cost or reward can be exploited to learn strategies achieving some

long term objectives. We divide this category into two groups, first the learning methods

for centrally organized CRNs and second the learning methods for decentralized CRNs.
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In each group, the contributions of each ML technique for DM in CRNs is discussed and

their basic structure is explained.

2.2.1 Decision Making in Centralized Cognitive Radio Networks

In centrally organized CRNs, learning how to allocate resources with unknown environ-

ment parameters or reactions is basically the same as the DM problem with a single

CR, meaning a single agent. This happens because the CBS knows every piece of infor-

mation that the CRs have and dictates their every action. The research community has

formulated this problem basically under the umbrella of DP using techniques from two

groups, model-based and model-free network evolution knowledge. This concerns the

interactions between the CRN and its RF environment. The CRN receives an observa-

tion about the environment Ot, usually this is the PU system, which is indicative of the

environment state St. This observation may be reliable or unreliable and may be a com-

plete description of the environment state or incomplete. Based on this observation, the

CRN, or the single CR/agent, must somehow make a decision. Now, assuming that the

CRN has knowledge of the way it interacts with the environment, e.g. the PU spectrum

activity and its collision protocol, it may incorporate this into its DM process. After

making a decision or as most commonly said in the DM literature taking an action At,

the CRN receives some kind of reward Rt and observes again the environment to check

what kind of effect it caused. This new observation Ot+1 of the new environment state

St+1 follows some dynamics equation or transition probability matrix which describes

the interaction of the CRN with the RF environment.

Model-based DM is very closely related to Control Theory which always assumes hav-

ing knowledge of these dynamics. If this network evolution model is not known or it

is too complex, then model-free DM approaches must be adopted. This subject has

been studied within the Reinforcement Learning (RL) framework which is basically an

Approximate DP formulation. Strictly speaking, learning a strategy or policy, meaning

the way an agent takes actions, is a true learning problem only for the model-free case.

Nevertheless, we include the model-based approach as well because the agent still needs

to learn how to deal with rewards in this multistage problem. Even though this may

appear as an optimization or a Control Theory problem, the truth is that the separating

lines are very thin.

As far as the model-based approach is concerned, the problem is frequently formed into

a Markov Decision Process (MDP) or its probabilistic version, the Partially Observable

Markov Decision Process (POMDP), and strategy or policy learning is designed using

this framework. In [45], admission control and channel allocation decisions in cognitive
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overlay networks are designed to support delay sensitive communications of SUs. The

rollout algorithm is employed to derive a suboptimal policy which performs very close to

the optimal one. This algorithm is basically a Policy Iteration (PI) method but with a

single policy improvement step. The authors of [46], assuming periodic channel sensing,

design a MAC protocol using a constrained MDP and learn the randomized access policy

by solving a Linear Program (LP).

POMDP formulations are more common in the CR literature, since they tackle the

uncertain sensing issue. In [47], a myopic sensing and access policy is implemented which

is close to the optimal POMDP solution and performs very close to it. The authors of

[48] have tackled a joint sensing and Resource Allocation (RA) problem for interweave

scenarios in a more efficient way. By appropriately decomposing the sensing and the RA

parts in this multistage discounted problem, they managed to find a stationary policy

using either Value Iteration (VI) or PI. This scheme is designed to minimize the cost

of sensing, maximize the weighted sum rate of the SUs and limit the probability of

interfering with the PUs. In [49], a decentralized cognitive access scheme is proposed

but assuming each agent’s action and policy is independent of the others and they only

way they interact is by a collision constraint where they consider that a collision with a

SU is basically a collision with the PU. Basically, the authors based on this assumption

they form the decentralized problem into a single agent problem, abstractly exploiting

the water-filling rationale. The last case study in the model-based POMDP category is

a learning aided method for accessing spectrum holes between PU packet bursts [50].

The proposed mechanism learns the PU traffic pattern using an HMM and utilizes the

spectrum holes with a simple stationary suboptimal policy.

In the model-free DM group, RL is the tool seeking domain. The main strategy learning

mechanism in this case is the Q-learning, an approximate DP technique which instead

of exact gain matrices, it takes decisions based on an approximate gain matrix, which

is being updated sequentially through simulation instances. In [51, 52], the problem of

dynamic channel assignment has been addressed with Q-learning. A popular trend in

Q-Learning, and in DP, is replacing the approximate gain matrix with some adaptive

approximation, like an ANN, which is the method of [52] and basically combines the

Neuro-DP with RL. Another application of Q-learning has been suggested in [53] for

MIMO transmission control where a modification of Q-learning is developed for solving

a constrained MDP problem. Other model-free applications have been proposed for

channel access in [54] where a locally optimal policy for a constrained POMDP is found

based on policy gradient. Finally, MDPs with unknown dynamics have been addressed

by learning on-the-fly these dynamics [55, 56].
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2.2.2 Decision Making in Decentralized Cognitive Radio Networks

In decentralized CRNs, the employed strategy learning schemes do not differ so much

from the centralized case. Usually, learning schemes from the centralized, or single-

agent, case are exploited to tackle the decentralized strategy learning scheme. Most of

the times, their performance or convergence is not guaranteed, but empirical studies

show that with the proper adaptations a decentralized DM method can achieve strategy

learning objectives with satisfactory speed. Here, we make a distinction about the

model-based and model-free strategy learning as previously and explain why we focus

only on model-free strategy learning and more specifically on strategy learning schemes

within the Game Theory (GT) framework.

Similarly with optimization, strategy learning may be applied in three ways: centralized,

or single agent, distributed and decentralized, or GT based. The first we already de-

scribed it in the previous subsection. The distributed fashion deals with multiple agents

which make decisions on their own and may also share information with other agents.

The main characteristic of this scheme is that, just like in distributed optimization, all

the agents have the same objective. So, they allocate resources sequentially and on

their own and at each time step they receive some kind of feedback which shapes their

strategies. This DM problem has been well investigated in distributed adaptive resource

allocation and distributed control problems. Distributed versions of water-filling for ex-

ample are basically such a problem where the threshold violation plays the role of the

feedback. In the decentralized case, each agent is on its own, but still coupled with

the rest. This means that their objectives are different, but coupled, and information

sharing may or may not be happening. This vast category is described in terms of GT

and has shown a lot of growth in the CR regime. The dynamics of such a problem are

most commonly difficult to be described and therefore a black box approach is adopted,

the model-free strategy learning case.

First, we describe applications of Learning Automata (LA) techniques which allow an

agent to learn the stationary randomized policy by directly updating the probabilities

of state-actions based on the utility feedback. This is a kind of approximate PI in

terms of DP. In [57], the joint relay selection and discrete power control problem is

investigated in a cognitive relay network subject to the interference power constraint at

the PUs and the total available power constraint for the secondary relays. The authors

of [58] utilize a special case of the general LA updating rule, the Linear-Reward-Inaction

(LR−I) learning, for enabling SUs to access PU channels. In [59], the Bush-Mosteller

LA is adopted for learning the Nash Equilibrium (NE) of the repeated power control

game in a CRN with a set of aggregated PU interference constraints. The constrained

game is transformed into an unconstrained game with the help of Lagrange multipliers.
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Moreover, strategy learning schemes based on Q-learning have been used for network se-

lection [60] and controlling aggregated interference in CRNs [61]. Another decentralized

strategy learning tool is best-response learning which has been successfully applied in

CR auctions for resources modelled as Stochastic Games [62]. Additionally, a strategy

learning option is Fictitious play or modifications of it in repeated games for RA [63–65].

Regret based methods are popular in the GT framework and have been exploited for

spectrum access [66] and interference mitigation [67]. Interesting approaches have also

integrated unsupervised learning mechanisms in strategy learning for estimating other

agents’ actions. In [68], spectrum access in a CRN is modelled as a repeated auction

game subject to monitoring and entry costs. Knowledge about other SU actions is gained

using a Bayesian nonparametric belief update scheme based on the Dirichlet process.

Finally, simultaneous policy and value learning has been proposed [69] and heuristic RL

techniques have been developed for spectrum seasing via auctions in CRNs [70].



Chapter 3

Modulation and Coding

Classification

In this chapter, we study signal feature design, which is based on statistical signal

processing, and ML tools to classify the sensed PU signal MCS. The extracted features

are the signal Higher Order Statistics (HOS) cumulants and the log-likelihood ratios

(LLRs) of the signal code syndromes. The proposed classifier for the modulation scheme

recognition is one of the most powerful ML techniques, the Support Vector Machine

(SVM), and we also employ a likelihood based classifier for the code rate identification.

This overall process is called Modulation and Coding Classification (MCC) and it will

be proven helpful for enhancing the RF environment awareness of the CRN. The content

of this chapter is published in [8–10].

3.1 Introduction

Signal classification has proven to be both in theory and in practice a more enhanced SS

task. Throughout most of the existing literature, SS focuses on one hypothesis testing,

the existence or absence of PU in a frequency band. Signal classification though goes

one step beyond, it identifies the kind of signals in the RF environment which brings

more awareness to the CR.

In this chapter, we develop an MCS identifier using specific statistical signal features

and advanced learning techniques. Specifically, we compute the signal HOS cumulants

and the LLRs of the signal code syndromes and feed them respectively to an SVM for

25



Chapter 3. Modulation and Coding Classification 26

modulation scheme recognition and to a likelihood based classifier for coding rate identi-

fication. The overall recognition process is called Modulation and Coding Classification

(MCC) and delivers specifically the following contributions:

• For the first time, a combined modulation scheme and coding rate recognition

process is designed which is easy to be implemented and performs efficiently even

for sensed signals of low SNR.

• A cooperative MCC procedure is introduced based on plurality voting, which is

simple and delivers better detection results than other methods in the multiple

hypothesis testing and sensor fusion literature.

• Comprehensive simulation results are provided to demonstrate the classification

accuracy of the suggested scheme even in a low Signal-to-Noise Ratio (SNR) envi-

ronment.

3.2 Modulation Scheme Classification

The chosen signal classification technique extracts HOS cumulants of the signal and

classifies them with a reliable and sophisticated ML detector, the SVM. Although a

plethora of features exists, only HOS cumulants can be used to discriminate the PSK and

QAM modulation schemes and are easily computed. An additional reason for choosing

these specific features is the low complexity of their computation, an advantage which

is not met in other statistical features like the CS ones. As noted in Chapter 2, higher

order CS processing is actually very effective for modulation scheme classification, but

it is a very computationally expensive process. Moreover, the SVM is chosen as a

very sophisticated and advanced supervised classifier with reasonable implementation

complexity.

3.2.1 The Higher Order Statistics Cumulants

In Chapter 2, we presented a vast collection of signal features exploited for signal clas-

sification. Here, we examine a new feature set exploited for modulation classification,

the sensed signal cumulants which have distinctive theoretical values among different

modulation schemes and even though they demand a great amount of samples, they are

easy to calculate. Assuming the signal model described in (2.1), the 2nd, 4th, 6th and

8th order mixed cumulants of rPU , Cr2,0, Cr2,1, Cr4,0, Cr4,1, Cr4,2, Cr6,0, Cr6,1, Cr6,2, Cr6,3, Cr8,0,

Cr8,1, Cr8,2, Cr8,3, Cr8,4, have been used successfully by the research community [20, 26, 35]

and have delivered results with high probability of detection.



Chapter 3. Modulation and Coding Classification 27

Cumulants are best expressed in terms of raw moments. A generic formula for the joint

cumulants of several random variables X1, ..., Xn is

CX1,...,Xn =
∑
π

(|π| − 1)!(−1)|π|−1
∏
B∈π

E

{∏
i∈π

Xi

}
(3.1)

where π runs through the list of all partitions of 1, ..., n, B runs through the list of all

blocks of the partition π and |π| is the number of parts in the partition. For example:

CX1,X2,X3 =E{X1X2X3} − E{X1X2}E{X3}

− E{X1X3}E{X2} − E{X2X3}E{X1}

+ 2E{X1}E{X2}E{X3}.

(3.2)

Consequently, the p-order mixed cumulant Crp,q of the complex received signal can de

derived from the joint cumulant formula in (3.1) as:

Crp,q = C r, ..., r,︸ ︷︷ ︸
(p-q) times

r∗, ..., r∗︸ ︷︷ ︸
(q) times

. (3.3)

Because of the symmetry of the considered signal constellations, pth-order mixed cu-

mulant for p odd are equal to zero and also it can be easily proven that for p even

Crp,q = Crp,p−q. The estimates of the previous statistical characteristics are going to be

the features fed into a pattern recognition structure which will decide the modulation

scheme the signal belongs to.

3.2.2 The Support Vector Machines

Another effective supervised classification tool used in modulation classification litera-

ture [19, 29] is the Support Vector Machines (SVMs). Its mathematical foundation is

statistical learning theory and it has been developed by Vapnik [40]. A major drawback

of the SVMs is that initially they require a lot of computations to train themselves offline

but they can become very accurate. The SVMs operate by finding a hyperplane in a high

dimensional space which divides the training samples in two classes. This hyperplane is

chosen so that the distance from it to the nearest data points on each side is maximized

as shown in Fig. 3.1. This is called the maximum-margin hyperplane and basically it is

computed by formulating the aforementioned problem into a Quadratic Programming

(QP) form and solving it with interior point based solvers.

Nevertheless, the most interesting contribution of the SVMs is in the non-linear sep-

aration of data. This machinery with some small adaptations and using the so-called

kernel trick can be used to map indirectly input feature vectors into a high dimensional
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space in which they become linearly separable [40]. The impressive part of this high

dimensional approach is that it happens without any extra computational effort. The

Figure 3.1: Maximum-margin separating hyperplane

reason this non-linear mapping Θ does not add any extra computational burden lies on

the way the SVM operates. For a simple linear separation in the initial feature space,

the SVM training has to solve a QP problem which considers only the dot products of

the training feature vectors. Extending this idea to a higher dimension space where the

feature vector ”images” are linearly separable, the SVM again needs only to know the

dot products of the dimensional expansions of the training feature vectors. This enables

us to surpass the obstacle of knowing this non-linear mapping Θ and just calculate the

dot products of the training feature vector mappings.

This is the point where the kernel trick is used. Given two vectors from the training

feature space xi and xj , the dot product of their mappings in some high dimensional

feature space is:

K(xi,xj) = Θ(xi) ·Θ(xj) (3.4)

where K(xi,xj) denotes the kernel function. In most classification applications, the

polynomial function kernel (3.5) and the Gaussian Radial Basis Function (GRBF) kernel

(3.6) are used:

K(xi,xj) = (1 + xi · xj)d (3.5)
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K(xi,xj) = exp(−‖xi − xj‖
2

2σ2
). (3.6)

In previous work, the most commonly used kernel and also chosen here is the GRBF

which is actually a polynomial kernel of infinite degree. Originally, the SVM is a binary

classifier, but can also be used for multi-class classification into one of the available

classes, here modulation schemes, if we consider a combination of binary classifiers to

find to which class it most likely belongs compared to every other one. In this one-

against-one approach, the most typical strategy for labeling a test signal feature vector

is to cast a vote to the resulting class of each binary classifier. After repeating the process

for every pair of classes, the test signal is assigned to the class with the maximum number

of votes.

3.2.3 Results for Modulation Scheme Classification

In this section, the performance of the Modulation Scheme Classification method is

presented. First, it must be mentioned that the received PU signal through the sensing

link can be of 6 types, QPSK, 8PSK, 16QAM, 32QAM, 64QAM and 128QAM, and

of lower SNR level than the one in the receiver of the PU link. Also, 2 numbers of

symbol samples are tested in the simulations, Ns1 = 2048 and Ns2 = 65536 and the

performance of the SVM binary classifier network is examined in the SNR ranges of

[−5, 10] and [−11, 5] respectively. Moreover, for each case of Ns and SNR, the training

and testing procedures were performed using number of the signals Ntrain = 10000 and

Ntest = 1000 from each modulation scheme. The metric used to measure the detection

performance of the AMC method for a class j is the probability of correct classification

(Pcc), which is defined as:

Pcc =
Ncc

Ntest
(3.7)

where Ncc is the number of correctly classified by the SVM signals of class j.

In Fig. 3.2 and 3.3, the Pcc of the simulations is shown. Initially, an obvious remark is

that the higher the SNR of the test signal, the higher the Pcc. Furthermore, for a specific

SNR the Pcc is higher, if the number of symbol samples is increased. Additionally, one

can notice that the lower the order of the constellation to be classified, the easier it is for

the SVM to recognize it. Another interesting result derived from Fig. 3.2 and 3.3 is that

the Pcc vs SNR curves form 3 groups. This indicates that some classes have similar Pcc

behaviour, because some modulation schemes have the same constellation pattern. The

3 groups formed are the QPSK-8PSK, the 16QAM-64QAM and the 32QAM-128QAM.
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Figure 3.2: Pcc vs SNR for Ns1 = 2048
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Figure 3.3: Pcc vs SNR for Ns2 = 65536

Apparently, the SVM classifier has similar performance for modulation schemes of almost

identical pattern, such as the rectangular one for the 16QAM-64QAM pair and the cross-

like one for the 32QAM-128QAM pair. One more conclusion which has to be noted

is that for Pcc = 1 in all classes, the minimum required SNR for Ns1 = 2048 and

Ns2 = 65536 is 10dB and 4dB respectively.



Chapter 3. Modulation and Coding Classification 31

3.3 Code Rate Classification

In this section, coding classification likelihood based classifiers is considered. An overview

of these techniques concerning the modulation scheme detection can be found in [43],

where basically three variations of this likelihood approach are demonstrated, the aver-

age likelihood ratio test (ALRT), the generalized likelihood ratio test (GLRT) and the

hybrid likelihood ratio test (HLRT). Nevertheless, significant contributions with the help

of these tools have been achieved for identifying codes. All previous researchers in this

area have taken advantage of the log-likelihood ratios to identify codes like Space-Time

Block Codes (STBC) [38], Low Density Parity Check (LDPC) code rates [39] or any

other coding schemes with parity check relations [44].

Of particular interest mostly because of their practicality are the classification methods

based on the unique parity-check matrix that each code has [39, 44]. Assuming that a

CR intents to recognize the encoder of a PU transmitter and has a priori information of

all the possible PU encoders, a reasonable piece of knowledge about the PU system, then

the CR must detect the most likely encoder being used. Each candidate encoder θ′ has

an exclusive parity-check matrix Hθ′ ∈ ZNθ′×Nc2 , where Nθ′ is the number of parity check

relations of the candidate encoder and Nc is the length of the produced by the encoder

θ′ codeword. Given a codeword cθ ∈ ZNc×1
2 from encoder θ, in a noiseless environment

the following

Hθ′cθ = 0 (3.8)

holds over the Galois field GF(2) if and only if θ′ = θ. Due to noise in the codeword

though, some errors occur in (3.8) even when choosing the correct encoder θ. These

errors are called code syndromes ek and for a candidate encoder θ′ in vector form they

are defined as

eθ′ = Hθ′cθ (3.9)

where eθ′ ∈ ZNθ′×1
2 and every line represents a parity-check relation.

In order to use the code syndromes eθ′ for code identification, one needs to calculate

the LLR of each bit of the codeword cθ, which after some processes in the log-likelihood

domain is obtained as

LLR(c[m]|rSU [n]) = LLR(rSU [n]|c[m]) (3.10)

where c[m] is the considered bit and rSU [n] is the corresponding received symbol sample.

This is the result of the log-likelihood soft decision demodulation. Subsequently, if ekθ′
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is the syndrome derived from the kth parity check relation of the candidate encoder θ′

ekθ′ = c[k1]⊕ c[k2]⊕ ...⊕ c[kNk ] (3.11)

where Nk is the number of codeword bits taking part in the XOR operations of the

parity check relation, then the LLR of ekθ′ is given by

LLR(ekθ′) = 2tanh−1

Nk∏
q=1

tanh (LLR(c[kq])/2)

 (3.12)

a log likelihood property of the XOR operation shown in [71]. Based on these LLRs of

the code syndromes, two different approaches have been proposed to identify the right

encoder. The first one suggests a GLRT test which assumes a priori information on

the distributions of the GLRT nuisance parameters [44]. This is actually the first piece

of work taking advantage of the (3.12) lemma for coding identification. The second

one proposes as a soft decision metric the average LLR of the code syndromes. This is

calculated as

Γθ′ =

Nθ′∑
k=1

LLR(ekθ′)

Nθ′
. (3.13)

Once, the average syndrome LLRs of all the candidate encoders are calculated, the

estimated encoder can be identified as

θ̂ = arg max
θ′∈Θ

Γθ′ (3.14)

where Θ is the set of the encoder candidates.

3.3.1 Results for Modulation and Coding Classification

In this section, a combination of the two aforementioned techniques is proposed capable

of performing MCC. The idea is to sequentially combine the modulation and coding rate

classifiers into an MCC module to detect the MCS of the sensed signal. So, first the

signal cumulants are estimated and fed into supervised classifier, the SVM, in order to

identify the modulation scheme with high accuracy and then the average code syndrome

LLRs are computed to calculate the soft decision metric of (3.13) and detect the signal

source encoder. The presented MCC module is tested in the SNR range of [−11, 14] for

a sensed signal of a system which utilizes MCSs of QPSK 1/2, QPSK 3/4, 16QAM 1/2,

16QAM 3/4, 64QAM 2/3, 64QAM 3/4 and 64QAM 5/6 with LDPC coding. Also, the

number of symbol samples considered to be sensed in the simulations is Ns = 64800 in

order to obtain all the necessary statistical features presented in the previous techniques.
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The metric used to measure the detection performance of the MCC method for a class

j is the probability of correct classification Pcc as defined in (3.7). In Fig. 3.4, the
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Figure 3.4: Pcc vs SNR for Ns = 64800 symbol samples

Pcc performance from the simulations is shown. Initially, an obvious remark is that the

higher the SNR of the test signal, the higher the Pcc. Furthermore, one can notice that

the lower the order of the constellation or the code rate to be classified, the easier it is

to recognize it. Other conclusions which can be drawn are that the Pcc curves are very

steep, mostly due to the performance of the coding classifier, and that they actually

resemble the decoding curves for each MCS.

3.4 A Simple Cooperative Modulation and Coding Classi-

fication Scheme

In this section, we provide a simple cooperative MCC process which combines MCS

estimations from different sources. A general description of cooperative SS in the CR

literature is that each SU performs a SS technique independently, forwards its obser-

vation to the Cognitive Base Station (CBS) via a control channel and finally the CBS

using a fusion rule combines this information to get to a decision. Here, a hard decision

fusion of observations obtained by different users equipped with a secondary omnidirec-

tional antenna only for sensing the PU signal and an MCC module is considered using

a plurality voting system [72]. Based on this voting system, the CBS collects all the

MCC pieces of feedback over a sensing period and decides the MCS of the PU. Let
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C = {c1, .., cK} denote the set of the MCS candidates of the ACM protocol, which are

considered to be equiprobable, K is the number of elements of this set and Vcj is the

vote tally associated with the class cj .

During the voting procedure, the CBS first gathers the votes from N SUs, basically the

MCS estimates of each SU, of a sensing period denoted as MCS1, ...,MCSN and which

support elements of the class set C. All the votes are of same importance and no use of

weight factors is made. With every vote MCSi, the CBS increases by one the vote tally

Vcj of the cj class supported by this vote. After casting every vote of the nth period to

the corresponding vote tally, the CBS identifies the MCSn as:

MCSn = arg max
cj∈C

Vcj . (3.15)

Even though plurality voting is a simple and not sophisticated method which elects the

MCS value that appears more often than all of the others, it produces the correct voting

output under the condition that some SUs have sensing channels of moderate quality.

Its equivalent voting system for binary data fusion, the majority one, has been used

by the research community to improve the detection and false alarm probabilities with

satisfactory results. Additionally, it is appropriate in multiple hypothesis tests where

the statistics of the classification metric are not easy to handle, as in our case.



Chapter 4

Power Control Using Modulation

and Coding Classification

Feedback in Cognitive Radio

Networks

In this chapter, an underlay scenario of one PU and multiple SUs is considered where

the PU link is changing its MCS based on an Adaptive Coding and Modulation (ACM)

protocol and the CRN is assumed to have knowledge of this ACM protocol while at-

tempting to access the PU frequency band. Our idea is to detect the PU MCS in a

cooperative way in the CBS which gathers the sensed MCC feedback from all the SUs

through a control channel and combines them using the cooperative MCC technique from

Chapter 3 and subsequently to exploit this multilevel feedback, instead of the binary

ACK/NACK packet that is hard to obtain, in order to learn the interference channel

gains. This channel knowledge is obtained by having the SUs sequentially adjusting

their transmit power levels dictated by the CBS and checking if the CRN caused the

PU MCS to change, a clearly probing procedure. Essentially these gains constitute the

PU interference constraint. First, a simple AL technique is demonstrated for probing

the PU system and aiming solely at learning the interference channel gains using the

observed MCS degradation of the PU. After this probing/learning stage, a CRN perfor-

mance optimization stage follows where the CRN may maximize its total SU throughput

subject to the now known PU constraint. Next, a sophisticated PC method is presented

which maximizes the total SU throughput subject to the unknown PU constraint and

at the same time learns this unknown PU constraint without this affecting the learning

convergence time. The content of this chapter is published in [10, 11].

35
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4.1 Introduction

As shown in 2, SS and specifically signal classification is an important part of the cog-

nition cycle of the CR which may further enhance the SS abilities of the CR. Another

essential skill set of the CR is its interacting techniques with the RF environment. In

this chapter, the latter abilities concern the transmit power of the unlicensed cognitive

users which coexist in the same frequency band with the PUs and they are described

as PC. One major category of cognitive PC techniques accomplishing this coexistence

is the underlay one [5]. In the underlay CR scenarios, on which we focus here, SUs may

transmit in the PU frequency bands as long as the interference induced to the PU is

under a certain limit. Therefore, the CRN should learn how to manage properly the

transmit powers of its users. As mentioned before, the first stage of the DSA evolution

will be the deployment of CRs, the SUs, capable of using their acute senses in order to

access frequency bands already used by older communication technologies, the PUs, also

referred to as legacy systems. Therefore, the transmit power strategy under which the

SUs will access the frequency band of the PUs cannot rely on an access protocol that

cooperates with the one adopted by the PU to enter the frequency band, simply because

the PUs’ infrastructure or protocols cannot be easily changed. A practical approach for

the CRN would be the SUs to be coordinated by a Cognitive Base Station (CBS) using

a dedicated control channel, which signifies a centralized PC scheme [6]. Still, the CRN

must acquire some kind of knowledge about the SU-to-PU channel gains and hence the

induced interference to the PU.

Since no cooperation between the PU and SU systems is expected, accurate Channel

State Information (CSI) about the interference channels cannot be obtained. In the CR

context though, a common approach is the CR individual user or network to exploit a

PU link state feedback, monitor how this changes because of the CRN operation and

thus estimate the SU-to-PU channel gains. In previous work, this was extracted from the

binary ACK/NACK feedback of the reverse PU link [59, 73–75] for PC or beamforming

purposes. Here, we must mention that acquiring this binary feedback would require the

implementation of the complete PU receiver on the CR side to decode the PU message

and retrieve its ACK/NACK feedback. In addition to the hardware complexity issue,

this rises security issues for the exploitation of the PU message. Also, to decode the

PU message the sensed PU signal on the CR side must have a minimum required SINR,

which might not always be the case.
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4.1.1 Contributions

In this chapter, an underlay cognitive case study is considered where the PU link is

changing its MCS based on an ACM protocol and operating in its assigned band together

with a CRN accessing this band and having knowledge of this ACM protocol. Our idea

is to detect the PU MCS in a cooperative way in the CBS which gathers the sensed

MCC feedback from all the SUs through a control channel and combines them using a

hard decision fusion rule and subsequently to exploit this multilevel feedback, instead of

the binary ACK/NACK packet that is hard to obtain, in order to learn the SU-to-PU

channel gains. Our goal in this chapter is to maximize the CRN throughput subject to

an unknown PU QoS constraint, the PU interference constraint. The solution of this

problem is the well known waterfilling scheme. Our first approach is to first learn the

unknown constraint, which basically means learning the SU-to-PU channel gains, by

using a simple cognitive probing method where we consecutively adapt the SU power

levels and detecting whether an MCS degradation happened or not. This is basically our

first AL approach in interference channel gain learning. After this AL stage, the CRN

may proceed with maximizing its performance metric, the CRN throughput, subject to

the estimated PU interference constraint.

Next, a sequential PC method is demonstrated which maximizes the total SU throughput

subject to the unknown PU interference constraint and at the same learns this unknown

constraint again by using the MCC feedback. This novel technique is developed so

that the probing/learning method can be performed concurrently with the pursuit of

the CRN maximum throughput and without this affecting the learning convergence

time. Ideal learning approaches for this problem setting are the CPMs, whose high

learning rate is not affected severely by the sampling procedure, i.e. the CRN power

allocation. In our problem, the sampling procedure is choosing sequentially training

data (the SU transmit power levels) which satisfy the optimization objective subject to

the estimated interference constraint of each learning step. Here, we focus on two of the

fastest CPMs, the analytic center cutting plane method (ACCPM) and the center of

gravity cutting plane method (CGCPM). The ACCPM has been used by the research

community for enhancing the speed of various learning methods and the CGCPM has

attracted attention mostly due to its theoretically fastest convergence rate.

These two design novelties of exploiting the MCC feedback and combining them with

an AL procedure in such a way delivers specifically the following contributions:

• For the first time, the MCS degradation is used as a multilevel feedback of the

induced interference. As marked in the Chapter 3, MCC is a combined procedure

of extracting HOS cummulants and feeding them to an SVM classifier and then
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using the code syndrome LLRs with a likelihood based classifier. Therefore, the

complexity of the MCC module is much simpler than that of an actual decoder

which is used in underlay CR scenarios of other papers to obtain the ACK/NACK

packets of the PU reverse link or even of a PU packet preamble decoder. In

addition, the MCC feedback provides more information than the binary feedback

and therefore improves the learning rate of the interference constraint.

• A simple probing/learning process for learning static interference channel gains

is developed with low implementation complexity for designing the CRN probing

power vectors and which is published in [11].

• A PC mechanism for static interference channels is proposed where maximizing

the total SU throughput subject to an unknown PU interference constraint is

taking place simultaneously with an interference channel gain learning process.

The optimization part focuses on SU power allocation and assumes that sub-bands

of equal bandwidth are allocated to each SU. This mechanism is an enhanced

variation of the scheme proposed in [75]. Specifically, in this work a theoretically

faster CPM is implemented and used, the CGCPM rather than the ACCPM, and a

modification in the sample diversity or exploration process is also introduced based

on the proximity to the true learning solution. This work has been published in

[10].

• A dynamic adaptation of this mechanism is proposed for slow fading channels

which takes into account a window of the most recently observed feedback and

which is published in [10].

• Simulations show a convergence rate for the CPM based methods faster than

the method developed in [11] which we consider as one of our benchmarks and

furthermore a learning speed superiority of the CGCPM based method compared

to the ACCPM based technique [75].

4.1.2 Structure

The remainder of this chapter is structured as follows: Section 2 reviews in detail prior

work related to cognitive scenarios using a PU link feedback. Section 3 provides the

system model and the problem formulation. Section 4 presents the benchmark AL

scheme we developed. Section 5 analyses the simultaneous PC and interference channel

learning algorithm. Section 6 shows the simulation results obtained from the application

of the proposed techniques and compares them with the method of [75]. Finally, Section

7 gives the concluding remarks.
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4.2 Related work

Previous work in the field of cognitive underlay PC has considered a great variety of

assumptions, protocols, system models, optimization variables, objective functions, con-

straints and other known or unknown parameters. The general form of the underlay

CR scenarios is the optimization of a SU system metric, such as total throughput, worst

user throughput or SINR of every SU, subject to QoS constraints for PUs, like SINR,

data rate or outage probability [5]. Moreover, the research community has formed com-

binations of the aforementioned PC problems with beamforming patterns, base station

assignment, bandwidth or channel allocation and time schedules, which led to more

complicated joint problems, but with the same basic form. Based on the coordination

or cooperation of the CR network, PC is separated in two categories, the centralized

and the decentralized.

The most important issue arising from cognitive scenarios is the knowledge of the inter-

ference channel gains. In prior work, this piece of information was either assumed known

[76] or within some uncertainty limits [77, 78]. Although, this presumption helped to

devise sophisticated optimization problems, it is not applicable in most cases. Here,

we describe scenarios with one common characteristic, no prior knowledge of the CR

transmitter to PU receiver channel gain. This assumes that a learning mechanism of the

interference channel gains is implemented by a central decision maker or each SU indi-

vidually. A necessary condition for the learning process is the availability of a feedback

which is usually acquired by a SS technique, assuming no cooperation between the CRN

and the PU system. An interesting idea was proposed in [7] called proactive SS, where

the SU probes the PU and senses its effect from the PU power fluctuation. Further, the

exploitation of the MCC feedback, which is used in our work, is suggested briefly by

the authors of [7] in a footnote and also thoroughly investigated in [79], a quite recent

admission in the CR literature, proving the applicability of such an approach. Primarily

though, the most common piece of information being used to estimate the interference

channel gains is the binary feedback, which is often obtained by eavesdropping the PU

feedback channel and detecting the ACK/NACK packet.

In the decentralized or distributed underlay scenarios, the binary feedback has been

used to enable CRs apply Reinforcement Learning procedures, like Q-Learning and

Bush-Mosteller Learning, to regulate the aggregated interference to the PU [61] and

additionally reach a throughput optimization objective [59]. Formulating this problem

as a repeated PC game and employing Game Theory to analyse it [59] has been a

critical contribution to explain the behaviour of such a system and prove the convergence

of decentralized learning methods. Also, pricing distributed PC schemes have been

developed under outage probability constraints [73].
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As far as the centralized underlay research work is concerned, a central decision maker,

the CBS, must learn the interference channel gains, elaborate an intelligent selection

of the operational parameters of the SUs, such as their transmit power, and communi-

cate it to them. Even though distributed PC underlay scenarios have been investigated

thoroughly, the centralized PC problem combined with interference channel gain learn-

ing is still an unexplored area. Remarkably, the most sophisticated and fast methods

suitable for the CBS learning the interference channel gains of multiple SUs with the

use of feedback come from multiple antenna underlay cognitive scenarios. In this point,

we need to explain how channel learning in beamforming problems can easily be trans-

lated as channel learning in centralized CRN PC problems. If you assume that each

one of the multiple antennas corresponds to a SU in a CRN, then coordinating the

beamforming vectors in order to estimate the CR to PU channel gains is no different

than a CBS coordinating the transmit powers of a CRN for the same purpose. In fact,

designing the transmit powers is actually much simpler than composing each antenna’s

complex coefficient in the beamforming scenarios, since in PC no phase parameters are

incorporated.

Previous researchers in this field have exploited slow stochastic approximation algorithms

[80, 81], the one-bit null space learning algorithm (OBNSLA) [74] and an ACCPM based

learning algorithm [82]. The last two approaches were introduced as channel correlation

matrix learning methods with the ACCPM based technique outperforming the OBNSLA.

All these learning techniques are based on a simple iterative scheme of probing the PU

system and getting a feedback indicating how the PU operation is changed. One other

thing in common of the aforementioned work is the discrimination of the channel learning

phase and the transmission phase which is optimum to an objective, like the maximum

total throughput or maximum SINR transmission. Thus, the optimization objective is

achieved only after the learning process is terminated, a principle followed in our first AL

work [11] and demonstrated in Section 4 of this chapter. Nonetheless, the ideal would

be to tackle them jointly and learn the interference channel gains while at the same time

pursuing the optimization objective without that affecting the learning convergence time.

On this rationale, the authors of [75] proposed an ACCPM based learning algorithm

where probing the PU system targets to both learning channel correlation matrices and

maximizing the SNR at the SU receiver side.

In this chapter, we exploit this idea in the underlay PC problem by using the MCC sens-

ing feedback instead of the binary ACK/NACK packet captured from the PU feedback

channel. In this problem formulation, first a purely learning approach is adopted and a

simple AL solution is provided which is also used later on as a benchmark method. Next,

we demonstrate an enhanced adaptation of [75] where learning the interference channel

gains from each SU to the PU receiver is performed concurrently with maximizing the
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total SU throughput under an interference constraint which depends on these channel

gains. At the end, we provide results to compare the last method with the benchmark

techniques of [11, 75].

4.3 System Model and Problem Formulation

Consider a PU link and N SU links existing in the same frequency band as shown in

Fig. 4.1. Furthermore, a Frequency Division Multiple Access (FDMA) method allows

SU links to operate in separate sub-bands of the PU frequency band and not to interfere

with each other, but still aggregately cause interference to the PU system. In addition,

all these PU sub-bands are assumed to have equal bandwidth. The structure of the CRN

is a centralized one where the SUs are coordinated by the CBS using a dedicated control

channel. The formulation of the problem and the system model is compatible with real

world settings such as the cognitive satellite scenarios described in [83, 84]. In one of

these case studies, satellite terminals, the SUs, transmit to their appointed satellite and

coexist in the same satellite covered area with a microwave link, the PU, which they

interfere. Additionally, the satellite terminal operation is being dictated by the gateway

and in principle this CRN and the microwave link are not communicating with each

other. Concerning the technical details of the problem, the examined scenarios in this

chapter are considering the PU channel gain to be static and the unknown interference

channel gains static and slow fading. Here we focus on channel power gains g, which in

general are defined as g = ‖gc‖2, where gc is the complex channel gain. From this point

on, we will refer to channel power gains as channel gains.

Further, interference to the PU link is caused by the transmitter part of each SU link

to the receiver of the PU link. Taking into account that the SU links transmit solely in

the PU frequency band, the aggregated interference on the PU side is defined as:

IPU = g pᵀ (4.1)

where g is the interference channel gain vector [g1, ..., gN ] with gi being the SUi-to-PU

interference channel gain and p is the SU power vector [p1, ..., pN ] with pi being the SUi

transmit power. Additionally, the SINR of the PU is defined as:

SINRPU = 10 log

(
gPUpPU

IPU +NPU

)
dB (4.2)

where gPU is the PU link channel gain, pPU is the PU transmit power and NPU is the

PU receiver noise power.
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Figure 4.1: The PU system and the CR network

In this chapter, we address the problem of total SU throughput (U totSU ) maximization

without causing harmful interference to the PU system, which can be written as:

maximize
p

U totSU (p) =
N∑
i=1

Wi log

(
1 +

Gipi
Ni

)
(4.3a)

subject to g pᵀ ≤ Ith (4.3b)

0 ≤ p ≤ pmax (4.3c)

where pmax = [pmax1 , ..., pmaxN ] with pmaxi being the maximum transmit power level of

the SUi transmitter, Gi is the channel gain of the SUi link, Ni is the noise power level of

the SUi receiver and Wi is bandwidth the SUi link. Assuming that the SUs are assigned

by the CBS to PU sub-bands of equal size, Wi is equal to WSU = WPU
N , where WPU

is the PU bandwidth. The channel gain parameters Gi and the noise power levels Ni

are considered to be known to the CRN and not to change over time. An observation

necessary for tackling this problem is that the gi gains normalized to Ith are adequate

for defining the interference constraint. Therefore, the new version of (4.3b) will be:

h pᵀ ≤ 1 (4.4)

where h = g
Ith

.
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This optimization problem is convex and using the Karush-Kuhn-Tucker (KKT) ap-

proach a capped multilevel waterfilling (CMP) solution is obtained [76] for each SUi of

the closed form:

p∗i =


pmaxi if 1

λhi
− Ni

Gi
≥ pmaxi

0 if 1
λhi
− Ni

Gi
≤ 0

1
λhi
− Ni

Gi
otherwise

, i = 1, . . . , N (4.5)

where λ is the KKT multiplier of the interference constraint (4.4) and which can be

determined as presented in [76].

Even though this problem setting is well known and already investigated, in the next

sections we will demonstrate how to cope with it without knowing the interference

constraint (4.4). In the next sections, two algorithms will be described which combine

learning the normalized interference channel gain vector h of (4.4) with the use of an

implicit PU CSI feedback.

4.3.1 The Multilevel Modulation and Coding Classification Feedback

In this section, we deal with the MCC feedback, which is the enabler of the interference

constraint learning defined by the unknown hi parameters. Initially, the outputs of the

cooperative MCC procedure have to be noted. In Chapter 3, a cooperative MCC method

is described where all the SUs are equipped with a secondary omnidirectional antenna

only for sensing the PU signal and an MCC module which enables them to identify the

MCS of the PU. Specifically, each SU collects PU signal samples, estimates the current

MCS, forwards it through a control channel to the CBS and finally the CBS using a

hard decision fusion rule combines all this information to get to a decision based on a

plurality voting system. After casting every vote, the CBS identifies the PU MCS.

Strong interference links may have a severe effect on the MCS chosen by the PU link,

which changes to more robust modulation constellations and coding rates depending on

the level of the SINRPU . Let {MCS1, ..,MCSJ} denote the set of the MCS candidates

of the ACM protocol and {γ1, .., γJ} the corresponding minimum required SINRPU

values, which whenever violated, an MCS adaptation happens. Furthermore, consider

these sets arranged such that γ’s appear in an ascending order. Here, it has to be

pointed out that it is reasonable to assume that the CRN has some a priori knowledge

of the standard of the legacy PU system whose frequency band attempts to enter and

therefore the CRN can be aware of the PU system ACM protocol and of its γj values.

Assuming that NPU and the received power remain the same at the PU receiver side,

the {γ1, .., γJ} values correspond to particular maximum allowed IPU values, designated
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as {Ith1 , .., IthJ}. Hence, whenever the PU is active, for every MCSj it can be inferred

that IPU lies within the interval (Ithj+1
, Ithj ], where Ithj is the interference threshold over

which the PU is obliged to change its transmission scheme to a lower order modulation

constellation or a lower code rate and Ithj+1
is the interference lower limit below which

the PU can change its transmission scheme to a higher order modulation constellation

or a higher code rate. Still, the actual values of these thresholds are unknown to the

CRN, since the CRN cannot be aware of the NPU and the received power at the PU

receiver side.

This groundwork predisposes us how to transform the MCS feedback into a multilevel

piece of information. Nevertheless, in our interference channel learning problem we

have to encounter the fact that the CRN has no knowledge of {Ith1 , .., IthJ}. To this

direction, the observation that learning the interference channel gain vector g is equiv-

alent to learning the normalized interference channel gain vector h of (4.4) is essential.

Now, taking as reference the PU MCS when the SU system is not transmitting at all,

MCSref = MCSk, and the corresponding γref = γk, where k ∈ {1, .., J}, the following

γ ratios can be defined:

cj =
γj
γref

(4.6)

where j 6= k and j ∈ {1, .., J}. Supposing a high SNRPU regime, gPUpPU � NPU , the

Ithj ratios can also be determined as:

Ithj
Ithref

=
γref
γj

=
1

cj
(4.7)

where Ithref is the interference threshold of MCSref .

The knowledge of these ratios has a great significance for our normalization process

which has two steps. Now, let MCSref be the sensed MCS when the CRN is silent and

no interference occurs, p = 0, and MCSj be the deteriorated MCS after the SU system

interfered the PU using an arbitrary SU power vector p. The information gained by the

CBS as mentioned before is that:

Ithj+1
< g pᵀ ≤ Ithj . (4.8)

These inequalities can be rewritten using the Ith ratios as:

Ithref
cj+1

< g pᵀ ≤
Ithref
cj
⇐⇒ 1

cj+1
< h pᵀ ≤ 1

cj
(4.9)
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where the first step of the normalization process takes place and normalizes g like in

(4.4) with Ith = Ithref as h = g
Ithref

.

In the second normalization step, the former inequalities (4.9) are formulated as:

h p̃ᵀ
u > 1

h p̃ᵀ
l ≤ 1

(4.10)

where p̃l = cj+1p and p̃u = cjp. Thus, when interference is introduced to the PU

system, the MCC feedback allows us to detect where the interfering SU power vector

lies within the feasible region more accurately without searching uselessly the power

vector feasible region by using the Ith ratios, c. This second normalization step is the

advantage of using the multilevel MCC feedback instead of a simple binary indicator,

such as the ACK/NACK packet of the PU link, and it will be employed by the learning

technique described in the latter section in order to estimate the unknown interference

channel gain vector, h, and reach the optimization objective defined by (4.5).

4.4 A Simple Active Learning Algorithm for Interference

Channel Gain Learning

From here on, the equality extreme of the constraint (4.4) will be referred to as the

interference hyperplane. In this section, a probing method is described for estimating

the interference hyperplane where the CRN probes the PU and subsequently applies the

MCC technique to monitor the PU MCS and collect the information described earlier.

The target of this sequential probing and sensing process is to select SU power vectors

which aim to minimize the number of probing attempts. To this direction, an adaptation

of the bisection algorithm for higher dimensions is implemented. We suggest performing

bisection-like searches on N linear segments in order to find N intersection points with

the interference hyperplane and hence the hyperplane itself. For the 2D example in Fig.

4.2, the searches are performed on the line segments OA and OB. The method proposed

in this section is to manipulate better the MCC information as a multilevel feedback.

First, the feasible set of this problem is defined as ΩN = {p|0 ≤ pi ≤ pmaxi , i =

1, . . . , N}, an N -dimensional rectangle with 2N corners. To locate N linear segments

crossing the interference hyperplane, a number of end points needs to be known with

some of them below the N -dimensional plane and the rest above it. Given that the

interference hyperplane crosses the feasible region ΩN , there is always a known point

below this N -dimensional plane, the [0, ..., 0], and one above it, the [pmax1 , ..., pmaxN ].
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Figure 4.2: A 2D graphical example of the algorithm

So, in the worst case scenario, N−1 more points are needed to define N linear segments

crossing the hyperplane. Now, if we consider that the initial sensing MCC feedback by

the CRN when no probing occurs is MCSref , a simple end point search is to examine

random power vectors within ΩN and check whether they cause or not PU MCS dete-

rioration which indicates whether they are above or below the interference hyperplane

respectively. After the end points, pend
i , i = 1, ..., N , are found and the line segments

are defined, line searches can be performed on each one of them so as to detect the

intersection points, pin
i , i = 1, . . . , N and hence the interference hyperplane. Once the

intersection points of the line segments, pin
i , i = 1, . . . , N , are estimated and the inter-

ference hyperplane is defined, the hi gains can be found as the solution of an N × N
system using the equality of the constraint (4.9):


h1

h2

...

hN

 =


pin
1

pin
2
...

pin
N


−1 

1

1
...

1

 (4.11)

where pin
i , i = 1, . . . , N , are represented as row vectors.
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A detailed description of the search method on a line segment with arbitrary end points

should also be given. Assuming 2 points, Q1 and Q2, in the N -dimensional space, every

point Q(θ) lying on the line segment defined by them is expressed using the parametric

equation Q(θ) = θQ1 + (1 − θ)Q2, where θ ∈ [0, 1]. So, basically the line search is

performed within the θ region [0, 1] to find a θ∗. Now, specifically in our scenario, the

line searches are performed using feedback which has the form of (4.10). This means that

at time step k of the line search, the applied probing power vector p(k), or testing point,

corresponds to p̃u(k) and p̃l(k) which on their turn define θu(k) and θl(k) respectively

in terms of the aforementioned parametric form. These pieces of information help us to

update the uncertainty θ region [θlow, θup] in the following way:

[θlow, θup] =


[θlow, θu(k)] if θl(k) < θlow and θu(k) < θup

[θl(k), θup] if θl(k) > θlow and θu(k) > θup

[θl(k), θu(k)] if θl(k) > θlow and θu(k) < θup

[θlow, θup] if θl(k) < θlow and θu(k) > θup

. (4.12)

Moreover, in order to probe as less times as possible and give an AL sense in this probing

process, we choose to design p(k) in a bisection-like way where p(k) corresponds to the

midpoint of the uncertainty interval at each step. An overview of the entire process

described in this section is presented in Algo. 1.

Algorithm 1 Interference hyperplane estimation algorithm

Sense MCSref
Search ΩN for endpoints, pend

i , i = 1, ..., N , to define N linear segments
t = 1
for i = 1, . . . , N do

Assume the interval [0, 1] for the ith linear segment, choose its midpoint, design p(t)
as p(t) = 1/2 pend

i and probe the PU system
Sense MCS(t)
Update [θlow, θup] using (4.12)
repeat
t = t+ 1
Choose the midpoint θm of [θlow, θup], design p(t) = θm pend

i and probe the PU
Sense MCS(t)
Update [θlow, θup] using (4.12)

until θup − θlow ≤ ε
Choose the midpoint θm of [θlow, θup] and define pin

i = θm pend
i

end for
Calculate h using (4.11)
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4.5 The Simultaneous Power Control and Interference Chan-

nel Learning Algorithm

Initially, we need to describe the basic rationale of the suggested algorithm. In this

work, a proactive approach is adopted where iteratively the PU is probed with some

interference and the CRN senses the effect of this interference by detecting the PU MCS

as illustrated in Fig. 4.3. The steps of this recurrent algorithm are:

Step 1 : Design probing and probe the PU

Step 2 : Sense feedback and infer the probing impact

Specifically, in this probing process the CRN designs the probing power vector p, com-

municates p to all SUs and probes the PU system, Step 1 of Fig. 4.3, and next the SUs

collect PU signal samples, extract their estimates of PU MCS, send them to the CBS

and fuse them to make the final MCS decision, Step 2 of Fig. 4.3.

Subsequently, the main problem tackled in this section is to find a fast learning method

aided by feedback and whose training samples can be chosen by an intervening process

without that affecting the convergence time of the learning part. This idea was first

explored as a cognitive beamforming problem by the authors of [75] who managed by

properly probing the PU system and using only ACK/NACK packets of the PU feedback

channel to simultaneously learn channel correlation matrices and maximize the SNR at

the SU receiver side by applying a CPM, the ACCPM. CPMs are iterative techniques

which cut an uncertainty set in a sequential way using inequalities in order to localize a

search point [85].

In each CPM iteration, two pieces of information are needed to define a cut:

• the center of the uncertainty set

• a hyperplane passing through this center
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Figure 4.3: The algorithm: Probe (Step 1 ) and Sense (Step 2 )

In our problem, the goal of this learning procedure is to estimate the parameter vector

h of the interference constraint as represented in (4.4) using the SU system probing

power vectors as training samples. In this probing procedure, the SU system has the

freedom of intelligently choosing the training samples in order to learn and not just

receive them from a teaching process. This kind of learning where the learner actually

chooses training samples that are more informative so that he can reach the learning

solution faster is precisely an AL rationale. The learning speed, and thus the smaller

number of probing power vectors, is an essential part of the suggested idea, because of

two main reasons. The SU system must learn the interference constraint fast so that

first it will not interfere the PU and reduce the PU QoS for a long time and secondly

it can apply this learning method in a fading channel environment. Ideal AL methods

for this task are the newly introduced to this field CPMs. Still, the CPMs that we have

chosen are used to localize points in a search space. For this purpose, a conceptual trick

must be used which in Machine Learning literature was introduced by Vapnik [40] and

is called the “version space duality”. According to that, points in the training sample or

feature space are hyperplanes in the parameter or version space and vice versa. Hence,

when a learning procedure tries to estimate the parameters of a hyperplane (the version)

it actually tries to localize a point in the parameter or version space. In our problem,
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the feature space corresponds to the training sample space or the power vector space

and the version space to the parameter h space, where the point being sought is the

endpoint of the interference channel gain vector. In addition, the inequalities obtained

by feedbacks (the labels of our training) are meaningful also in the parameter h space

since they are linear inequalities with respect to hi’s.

One main advantage of CPMs is that the training sample, p in this case, can be chosen

based on any rationale without that affecting the decrease of the uncertainty region

in the parameter h space. This rationale can be in our problem the solution of the

optimization problem defined in (4.5). Hence, approaching the actual endpoint of the

parameter vector h can happen in parallel with maximizing the SU system throughout,

the optimization objective. More specifically, at each learning step the CPM only dic-

tates the center of the uncertainty set, an estimation of h, and the hyperplane/cutting

plane passing through this center, which is actually determined by p, can be the solu-

tion of (4.3). Since the chosen cutting plane passes through it, the SU system power

allocation vector is considered to satisfy the equality of the so far estimated interference

constraint.

4.5.1 Details of the CPM application to our problem

This section examines the CGCPM and the ACCPM and their corresponding centers,

the center of gravity and the analytic center. Now, consider that the initial sensing

MCC feedback by the CRN when no probing occurs, p(0) = 0, is MCSref . Following t

probing attempts, the CBS has collected t MCC pieces of feedback which correspond to

t pairs of inequalities:

h p̃ᵀ
u(k) > 1

h p̃ᵀ
l (k) ≤ 1

, k = 1, . . . , t. (4.13)

The (4.13) inequalities are derived as described in previous section in the form of (4.10)

and additionally consider inequalities coming from probing power vectors which do not

cause MCS deterioration. In order to keep a single notation in (4.13) even for power

vectors not degrading the PU MCS, the first inequality does not hold and p̃l is regarded

equal to p in this special case. An additional constraint for the hi parameters is that

hi’s have to be positive as channel gains:

hi ≥ 0, i = 1, . . . , N (4.14)
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The inequalities (4.13) and (4.14) define a convex polyhedron Pt, the uncertainty set of

the search problem:

Pt =
{
h | h ≥ 0,h p̃ᵀ

u(k) > 1,h p̃ᵀ
l (k) ≤ 1, k = 1, . . . , t

}
(4.15)

In the CGCPM, the center of gravity CG of the convex polyhedron Pt is calculated in

vector form as:

hCG(t) =

∫
Pt h dVh∫
Pt dVh

(4.16)

where Vh represents volume in the parameter h space. The advantages of the CGCPM

are that its convergence to the point in search is guaranteed and that the number of the

uncertainty set cuts or inequalities needed are of O(N log2(Rr )) complexity, where R is

the ball radius including the initial uncertainty region and r is the ball radius centered

around the true interference channel gain vector endpoint [85]. This convergence rate

is ensured by the fact that any cutting plane passing through the CG reduces the

polyhedron volume by at least 37% at each step. The main disadvantage of using

the CG is its calculation, a computationally expensive integration process in multiple

dimensions known to be a #P-hard problem. A way of bypassing this issue is the

randomization solution proposed by the author of [86] which computes an approximation

of the CG. The general idea is to generate many random sample points within Pt by

taking a random walk, the so called Hit and Run method, and average them to find the

CG. The computational complexity of the Hit and Run CG approximation to retain

the O(N log2(Rr )) convergence rate is O(N6) [87], since O(N4) random walk steps are

required and O(N2) arithmetic operations need to be implemented for each step.

In the ACCPM, the analytic center AC of the convex polyhedron Pt is calculated in

vector form as:

hAC(t) = arg min
h

(
−

t∑
k=1

log(h p̃ᵀ
u(k)− 1)

−
t∑

k=1

log(1− h p̃ᵀ
l (k))−

N∑
i=1

log(hi)

)
. (4.17)

Interior point methods can be used to efficiently solve the optimization problem described

in (4.17) with a computational complexity of O(
√
t) and estimate the AC which make

this center a tractable choice for CPMs [88]. Furthermore, an upper bound for the

number of inequalities needed to approach the sought point has been evaluated to prove
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the convergence of the ACCPM which is ofO(N
2

r2
) complexity, also referred to as iteration

complexity.

4.5.2 The Necessity of Exploration

Even though this framework seems ideal for learning the interference constraint and at

the same time pursuing the optimization objective, there is still a problem arising. The

optimization part, which is responsible for choosing the training power vectors, focuses

on cutting planes of specific direction as illustrated in Fig. 4.4. These training power

vectors basically correspond to the power level ratios which maximize U totSU (p) and are

subject to the initial interference hyperplane estimation. Thus, they focus on specific

power level ratios and contribute only in reducing uncertainty in this direction.

Figure 4.4: The CPM in 2D when no exploration occurs

This indicates that choosing the training power vectors based solely on the optimization

problem is not a good strategy. Instead, the SU system should start probing the PU

system in an exploratory manner by diversifying initially the training power vectors and

gradually, when enough knowledge of the interference constraint is obtained, shift to an

exploitive behaviour which allocates power levels to the SUs specified by the optimization

problem solution (4.5).
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The authors of [75] proposed to make this shift from exploration to exploitation by

mixing the optimization objective, the maximization of the SU received SNR, with a

similarity metric of the beamforming vectors. The influence of this similarity metric in

the design of these probing vectors was determined to be a decreasing function of time,

so that the desirable transition could happen. This is a combination of two tactics known

in the ML community as the ε-decreasing and contextual-ε-greedy strategies [89] and

according to which the choice of the training samples is performed using an exploration

or else randomization factor, ε. In these strategies, this factor decreases as time passes

or depending on the similarity of the training samples, resulting in explorative behaviour

at the beginning and exploitative behaviour at the end. Nevertheless, this logic not only

requires tuning of the exploration factor time dependency according to performance

results, but it also does not guarantee that enough diversification has occurred to reach

the learning goal, which in the case of [75] is the channel correlation matrix, since time on

its own cannot be an indicator of approaching the exact values of the sought parameters.

The enhancement introduced in this section is to relate the exploration factor, ε, to

the proximity of h(t) to h, where h(t) = hCG(t) or h(t) = hAC(t) depending on the

CPM. Clearly this depends on the geometry of Pt, the region where we search. Towards

this goal, a simple approximation of this convex polyhedron, the minimum bounding

box containing it, is adopted. The minimum bounding box, Bt, indicates how large

the uncertainty region, Pt, is and in order to compute this, we first need to solve the

following 2N Linear Programs:

hmaxi(t) = max
h∈Pt

hi, i = 1, . . . , N (4.18)

hmini(t) = min
h∈Pt

hi, i = 1, . . . , N (4.19)

which provide us the boundaries for the values of hi at each step t. Now, let V(t) =

{v1(t), ..,vNv(t)}, where Nv = 2N , denote the set of the minimum bounding box vertices

which are defined straightforward from the boundaries of hi. A proximity metric of h(t)

to h could be the euclidean distance of these points d(h(t),h) = ‖h(t) − h‖, but the

problem is that h is unkonwn. To fix this, the proximity metric is chosen as the maximum

distance of h(t) from a Bt vertex:

dmax(t) = max
vj(t)∈V(t)

d(h(t),vj(t)) (4.20)

which is an upper bound of d(h(t),h). The proposed error driven solution is to relate ε

to this proximity metric, a variation of the tactic known as adaptive ε-greedy strategy.

According to this, the closer the learning algorithm gets to the exact value h, the less
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exploration occurs and training power vectors are more relative to the optimization

problem solution (4.5). A simple design to adapt ε is:

ε(t) =

{
1− dth

dmax(t) if dmax(t) > dth

0 if dmax(t) ≤ dth
(4.21)

where the threshold dth is linked with the precision limit that the learning algorithm

has. That signifies that once dmax(t) passes below this threshold, the algorithm has

reached the exact solution within an error bound and thus there is no need to explore,

but to exploit and choose power vectors according to (4.5).

Moreover, the usage of ε(t) has to be specified and the way the training power vectors

are chosen in case of ε(t) > 0. As mentioned before, ε(t) is a randomization factor which

imposes that the power vector must be chosen randomly with ε(t) probability and the

reason for that is to differentiate the cutting hyperplanes passing through the AC or CG

of the CPM procedure. This random selection of power vectors is better explained in

the power vector space, i.e. the variable space. The random power vector has to satisfy

first the equality version of the so far estimated interference constraint (4.4):

h(t) pᵀ = 1 (4.22)

and second the constraints (4.3c). Consequently, this random selection is translated into

a uniform sampling on the simplex piece S(t) defined by (4.22) and (4.3c).

4.5.3 The Static and Slow Fading Channel Formulation of the Algo-

rithm

To clarify all this process described thoroughly in the previous section, we present it in

Algo. 2. Specifically, in the tth iteration of this process the CRN designs the probing

vector p(t) and probes the PU system, which requires a Tp period for the CBS to

calculate and communicate p(t) to all SUs and for the CRN to actually probe the PU

(Step 1 of Fig. 4.3), and the CBS detects the PU MCS, MCS(t), which demands a Ts

period for all SUs to collect PU signal samples, extract their estimates of PU MCS, send

them to the CBS and amass them to make the final MCS decision (Step 2 of Fig. 4.3).

It also must be mentioned that Algo. 2 has no stopping criterion. This is actually a

consequence of the exploration factor design, because as time passes by, the interference

channel gains are better estimated and thus the probing design process switches from

power vectors which are more informative about the interference channel gains to power

vectors which maximize the CRN capacity. Therefore, the learning and the optimization
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parts, which depend on the exploration/exploitation strategy, are actually intertwined

which means that there is no need for the algorithm to terminate after some time, since

it will naturally switch to designing power vectors for CRN capacity maximization.

Algorithm 2 The Simultaneous Power Control and Interference Channel Learning Al-
gorithm
t = 0
p(t) = 0
Sense MCS(t)
Assume an initial h(t)
loop
t = t+ 1
Compute ε(t)
Generate rand ∈ (0, 1)
if rand ≥ ε(t) then

Exploit: p̃(t) = arg maxU totSU s.t. h(t) p̃ᵀ = 1
else

Explore: p̃(t) = random point ∈ S(t)
end if
Sense MCS(t)
Create new pair of inequalities (4.13)
Compute h(t) using a CPM

end loop

Here, we must emphasize on two practical considerations related to the algorithm op-

eration. First, the PU cannot instantly change its MCS once interference is caused. In

reality, the PU needs time to detect this interference and adapt to a new MCS. In case

the CRN probes and estimates faster than the PU can adapt itself, then the PU will

not have adequate time to adjust its transmission to interference caused by a specific

SU power vector. But even if the PU does adapt its transmission and change its MCS,

on the next step the CRN will falsely know that the cause of this MCS change was the

last SU power vector. Therefore, the CRN must be aware of the PU adaptation period

in order to probe the PU at least for that period of time and then detect the PU MCS.

Secondly, the messaging overhead has to be analysed which defines the CRN control

channel. The first kind of messages being passed through the control channel are the

PU MCS estimates from the SUs to the CBS which require dlog2(J)e bits considering

there are J MCS candidates of the PU ACM protocol. The second kind of messages

are the transmit power commands from the CBS to the SUs which demand dlog2(Npl)e
bits if we assume that the SU power range is discretized to Npl power levels. It is also

assumed that all the previous messages are being communicated correctly and no errors

occur.

A formulation for slow fading interference channels is also given with some modifications

of Algo. 2. The solution proposed in this section is window-based in contrast with the
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maximum likelihood concept suggested in [75] which considered a probit modelling of

each inequality age. To approach the case of slow fading interference channels, first we

must take into account the grade of channel variation over time. For this purpose, a

quasi static block fading modelling of the interference channels is chosen, according to

which the interference channel gains remain constant within a block period, also called

coherence time. Assuming that the coherence time Tc of the interference channels is

known and the same for all interference channels, the crucial problems we need to tackle

is the asynchronous change of the interference channel gains and the lack of knowledge

about the exact time an interference channel change occurs. In order to handle these

issues, first we calculate how many probing and sensing time periods fit in the coherence

time, approximately tc = Tc
Tp+Ts

. From these tc iteration periods which correspond to

an equal number of probing power vectors and sensing inequality pairs, we recommend

to use for the slow fading algorithm formulation the last tw = b tcN c inequality pairs to

construct a time window from the (t− tw)th to the tth probing and sensing period. This

actually changes the set of inequalities taken into account to compute the h(t) using a

CPM in order to include only the latest tw inequality pairs:

h p̃ᵀ
u(k) > 1

h p̃ᵀ
l (k) ≤ 1

, k = t− tw, . . . , t. (4.23)

More precisely, the convex polyhedron is no longer defined by (4.13) and (4.14), but by

(4.23) and (4.14).

In this overall description of the proposed algorithm, we must also mention a simple

practical adaptation of the algorithm which can tackle fading PU channels. In this case,

the normal operation PU MCS may change because of the dynamic PU link nature.

This can have a severe effect in the algorithm operation, since MCSref will no longer

be static. In order to confront this, the CRN may adopt a duty cycle operation where

it can periodically stop transmitting and solely sense the current normal operation PU

MCS.

4.5.4 Multiple PU interference constraint learning

Now, let us consider the multiple PU interference constraint learning scenario. Here, we

assume a PU system with M users where each PU is assigned to a separate frequency

band. In this section, we will show how to tackle this multiple constraint problem by

decoupling it. An important piece of information the CRN must have to achieve this

decoupling is the way the PUs occupy the PU system bandwidth which is determined by
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the number of the PU channels and their bandwidth. Once this is known, a CRN may

partition the N SU set to M subsets and spread them over the PU system bandwidth

in an FDMA fashion again as shown in Fig. 4.5 so that no SU interferes to more than

one PU. Each SU assigned to subset m occupies a sub-band of length WSUm =
WPUm
Nm

.

Each SU subset is defined as {SU1,m, .., SUNm,m} where m = 1, . . . ,M and Nm is the

number of elements of the mth subset.
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3 3
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Figure 4.5: The SU FDMA scheme in the multiple PU scenario

This decomposition allows the CBS to separate the multiple interference constraint AL

to multiple AL sub-problems and thus execute simultaneously our proposed method for

each PU and SU subset. Hence, the original problem can be expressed into the following

M constraint learning sub-problems:

gm pᵀ
m ≤ Ith,m, m = 1, . . . ,M (4.24)

where gm are the interference channel gain vectors [g1,m, ..., gNm,m] with gi,m being the

SUi,m-to-PU interference channel gain, pm are the SU power vectors [p1,m, ..., pNm,m]

with pi,m being the SUi,m transmit power and Ith,m are the PUm interference thresholds.

In order for this approach to work, each SU must sense only within the PU band it

is assigned. Otherwise it may detect the MCC feedback of a PU which it does not

interfere and therefore contribute incorrectly to its corresponding cooperative MCC

process. Thus, extracting the MCC feedback for each PU is also a decoupled procedure

which provides in every sensing period the following inequalities:

hm p̃ᵀ
u,m > 1

hm p̃ᵀ
l,m ≤ 1

, m = 1, . . . ,M. (4.25)
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4.6 Results

In this section, we provide simulation results to compare the performance of the bench-

mark and the CPM based method proposed in this chapter and of the benchmark so-

lution given in [75]. Our benchmark method is a computationally cheap AL method

which performs consecutive 1-D line bisection-like searches in the SU power vector fea-

sible region in order to find the interference hyperplane and it is expected to have worse

learning performance than the CPM based techniques which actually perform high di-

mensional bisections in the version space. The CPM based methods we developed are

an enhancement of the ACCPM based simultaneous channel correlation matrix learning

and beamforming solution provided in [75]. Furthermore, the CGCPM is tested to vali-

date its theoretically faster convergence compared to that of the ACCPM. Additionally,

the benefit of utilizing the multilevel MCC feedback instead of the binary ACK/NACK

packet is demonstrated for all the aforementioned techniques. To prove the MCC feed-

back superiority, we have chosen the legacy PU system to be operating using an ACM

protocol close to the outdated technical specifications of 802.11a/g with LDPC coding

[90, 91]. The selected MCS set and the corresponding γ values are:

Table 4.1: The PU ACM protocol

MCS γ

BPSK 1/2 5dB

BPSK 3/4 6dB

QPSK 1/2 7dB

QPSK 3/4 9dB

16QAM 1/2 13dB

Also, the PU receiver is chosen to normally operate at SINRPU = 20dB with no in-

terference and NPU = −103dBm resulting in MCSref = 16QAM 1/2. The Ith, which

corresponds to 16QAM 1/2 and over which a PU MCS adaptation occurs resulting in

PU QoS deterioration, is −97dBm and it is unknown to the CRN. Given the information

in Table 4.1, the formulation of the γ ratios can easily be written using (4.6) in order to

construct the normalized inequality pairs (4.10). Additionally, the threshold dth, which

is related to the precision limit of the learning algorithm and to the exploration factor

design, is chosen at 5% signifying that once the learning error upper bound, dmax(t),

is below 5% the algorithm no longer explores but solely exploits to achieve the CRN

throughput maximization.

Initially, the static interference channel scenario is examined with N = 5 SUs which

are dispersed uniformly within a 3km range around the PU receiver. The interference

channel gains that are unknown to the CRN are assumed to follow an exponential path

loss model gi = 1
d4i

, where di is the distance of the SUi from the PU receiver in metres.
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The last SU operational parameter is the maximum transmit power, pmaxi , which is set

to 23dBm for all SUs. The aforementioned simulation parameters are also collected in

Table 4.2.

Table 4.2: Simulation Parameters

PU Parameters for IPU = 0 Value

MCSref 16QAM 1/2

SINRPU 20dB

NPU −103dBm

Ith −97dBm

CRN Parameters Value

N for static channel scenario 5 and 10

N for slow fading channel scenario 5

pmaxi 23dBm

dth 5%

Tc 250(Tp + Ts)

tw 50

Fig. 4.6 shows the channel estimation error diagrams for the benchmark, ACCPM-based

and CGCPM-based methods depending on the number of time flops where each time

flop is the time period Tp + Ts necessary to coordinate the CRN, probe the PU system,

sense the MCC feedback and decide collectively the PU MCS. The interference channel

gain vector estimation error metric at each time flop is defined as the normalized root-

square error ‖h(t)−h‖
‖h‖ . The error figure results are obtained as the average of the error

metric defined earlier over 100 SU random topologies, which deliver 100 random draws

of interference channel gain vectors g.

It can be clearly seen in Fig. 4.6 that the CPM-based methods outperform the bench-

mark AL method we first developed and which is based on 1-D bisection-like searches.

This occurs because our benchmark method may be the fastest AL method in the train-

ing sample space, but the proposed CPM-based methods are performed in the version

space, which appears to be more efficient. More specifically as far as the method com-

parison is concerned, for an estimation error approximately 1%, our benchmark method

achieves convergence in 78 and 65 time flops for binary and MCC feedback respectively,

whereas the corresponding numbers of time flops for the ACCPM-based benchmark

technique are 61 and 55 and for the CGCPM-based one are 55 and 50. For the binary

feedback, a gain of at least 17 time flops is accomplished and for the MCC feedback the

gain is at least 10 time flops.

Another outcome is that the utilization of the MCC feedback instead of the binary

ACK/NACK packet reduces the convergence time significantly in our benchmark method

and noticeably in the CPM-based AL methods. Specifically, for an estimation error of
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Figure 4.6: Interference channel gain vector estimation error progress vs time of all
method and feedback combinations for 5 SUs

1%, in our benchmark technique this gain of time flops is almost 13 and in the CPM-

based techniques it is nearly 6. Even though the convergence time reduction is small

in the CPM case, it is considered a notable enhancement considering that CPM-based

techniques are already fast enough. The final conclusion derived from Fig. 4.6 is about

the comparison of the two CPM-based learning mechanisms. It is observed that the

CGCPM-based scheme surpasses the benchmark ACCPM-based one and particularly

for an estimation error of 1% the CGCPM-based procedure outperforms the ACCPM-

based one in the binary feedback case by 6 time flops and in the MCC feedback case by

5 time flops.

In the next diagrams, we investigate an important aspect of the methods presented so

far, the aggregated interference caused to the PU during the simultaneous learning and

CRN capacity maximization process. As all these probing methods progress in time, it is

essential to examine the degradation of the PU link quality which can be quantified as the

induced harmful interference. To this direction, we designed a metric which measures

the PU interference exceeding Ith averaged over the 100 SU random topologies, the

scenarios of our simulations. This parameter of average harmful interference over the

100 SU random topologies is expressed as:

Iharm,av(t) = E [H (IPU (t)− Ith) ∗ IPU (t)] (4.26)

where E is the expectation operator and H is the Heaviside step function. In Fig. 4.7

and 4.8, we may see for the simple AL benchmark, the ACCPM-based benchmark and
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the CGCPM-based methods the Iharm,av progress in time for binary feedback and MCC

feedback respectively. Originally, it is clear by comparing Fig. 4.7 and 4.8 that taking
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Figure 4.7: Iharm,av progress vs time using binary feedback
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Figure 4.8: Iharm,av progress vs time using MCC feedback

advantage of the MCC feedback instead of the binary one causes less interference and

conduces to faster convergence. Secondly, it is observed that the CPM-based methods
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reach the learning objective faster than our benchmark AL method and that in the

cases of both binary and MCC feedback the CGCPM-based scheme converges to the

PU interference threshold limit faster than the ACCPM-based and induces less harmful

interference to the PU. Lastly, the combination of probing method and feedback which is

optimal in terms of protecting the PU is the CGCPM-based method with MCC feedback.

Additionally, we need to examine how well all the methods maximize the CRN capacity

while learning the interference channel gain vector, h. Similarly with the previous metric,

we define the average CRN capacity over the 100 random SU topologies as:

U totSU,av(t) = E
[
U totSU

]
(4.27)

and study its progress in time for binary feedback in Fig. 4.9 and for MCC feedback in

Fig. 4.10. The last diagrams of the 5 SU static scenario depict this parameter. The
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Figure 4.9: U tot
SU,av vs time using binary feedback

results of the average CRN capacity in Fig. 4.9 and Fig. 4.10 initially show, as stated

before, the benefit of using the MCC feedback. Specifically, it can be clearly observed

that the maximum value of U totSU,av is achieved faster in the MCC feedback case by 10 time

flops. Again, the CGCPM-based method because of its better learning rate, switches

earlier to the capacity maximization problem and therefore performs marginally better

the the ACCPM-based one both in Fig. 4.9 and Fig. 4.10. Finally, we need to comment

that ous simple AL benchmark method, which only focuses on learning h, pursues the
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Figure 4.10: U tot
SU,av vs time using MCC feedback

CRN capacity maximization target only after it reaches the learning solution and not

simultaneously.

To clearly show that the CGCPM based method is faster than the ACCPM based one,

a fact indicated by the CPM theory about their iteration complexities and mentioned

in subsection 5.1, we need to increase the problem dimensions, the number of the SUs.

Particularly, these theoretical convergence properties of the CPMs indicate that for an

estimation absolute error r the ACCPM-based method needs O(N
2

r2
) probing attempts to

learn an interference channel gain vector, h, of N dimensions, while the CGCPM-based

method requires O(N log2(Rr )) probing attempts for the same purpose. This difference

between the necessary probing attempts of the two methods is increased as the CRN

grows. The next diagram in Fig. 4.11 is about a static interference channel scenario with

N = 10 SUs and exhibits the channel estimation error metric for the ACCPM-based

and CGCPM-based methods with MCC feedback. Furthermore, the error performances

of the same method and feedback combinations for N = 5 SUs are shown in the same

diagram to validate experimentally that the convergence gain between the ACCPM-

based and CGCPM-based methods is increased as the size of the CRN, namely the

number of the SUs, N , is increased from N = 5 SUs to N = 10 SUs.

Specifically, as seen in Fig. 4.11, our variation of the ACCPM, which was used in [75]

to enhance the channel correlation matrix learning speed, achieves an estimation error

1% at 95 time flops, while the corresponding CGCPM based algorithm obtains the same
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Figure 4.11: Interference channel gain vector estimation error progress vs time of
CPM based methods and MCC feedback for 5 and 10 SUs

error at 85 time flops. This provides us a convergence gain of 10 time flops which is

increased compared to the 5 SU case and of course greater protection to the PU receiver

with the CGCPM based method. Nevertheless, this gain in learning speed comes with

a penalty. As noted in earlier section, the Hit and Run calculation of the CGCPM

requires the generation of many random samples within the polytope Pt. The number

of these samples grows exponentially with the number of problem dimensions. Hence, in

order for the CBS, where the CG computation takes place, to perform this calculation

an exponentially increasing computational burden is needed. This means that the larger

the CRN a CBS must coordinate, the more computations the CBS needs to perform in

order to achieve the fastest convergence possible.

Subsequently, the proposed algorithms are tested for slow fading interference channels

where Tc is chosen to be equal to 250 probing and sensing periods, Tp + Ts. The

corresponding time window based on the empirical rule of b tcN c for N = 5 SUs is tw = 50

inequality pairs and the rest of the algorithm settings remain the same with the fixed

channel experiment case. In addition, 100 random SU topology scenarios are generated

for a duration of 3 block periods which correspond to 750 probing and sensing periods

and where 2 interference channel changes occur. In these experiments the simple AL

benchmark method can be no longer used, since it can be only exploited for learning

static interference channels, and the binary feedback is not taken into account as it

was proven earlier that it is inferior to the multilevel MCC feedback. Consequently, in
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this section we compare the performance of the CPM-based methods using the MCC

feedback.
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Figure 4.12: Interference channel gain vector estimation error progress vs time of
CPM methods using MCC feedback for slow fading channels

Once more, the first diagrams concern the learning error of the methods which depict

an average of all the random SU topology simulations. In Fig. 4.12, the learning error

diagrams show variations, because the learning approach in the dynamic channel scenario

is window based and not maximum likelihood based like in [75]. Thus, the results have

peaks and valleys instead of being smooth. Nevertheless, the advantage of this approach

is that the obsolescence and thus the credibility of each inequality is not dependent any

more on the arbitrary probit model and on a forgetting factor whose value choice is

impractical. Moreover, the length of the window can be easily distinguished in every

channel change where there is a constant average error of almost 100% for 50 time flops.

This is because for the learning algorithm to completely “forget” any inequality pair

about the previous interference channel vector and proceed to the next one, a number

of time flops equal to the observation window is necessary. It can also be observed that

between the two CPMs the CGCPM delivers marginally less estimation error with only

in one case surpassing the 10% error barrier.

Next, we provide the Iharm,av and U totSU,av diagrams in Fig. 4.13 and Fig. 4.14 respec-

tively. The main advantage observed in these diagrams of the CGCPM-based method

over the ACCPM-based one is that despite the number of peaks and valleys which is

roughly the same for both techniques, the CGCPM appears to have smaller variations



Chapter 4. Power Control Using Modulation and Coding Classification Feedback in
Cognitive Radio Networks 66

in both diagrams. This provides better protection to the PU as shown in Fig. 4.13,

since it causes less interference to the PU, and closer pursue of the optimization ob-

jective, the CRN capacity maximization, as shown in Fig. 4.14. In order to evaluate

better the results of the diagrams in Fig. 4.13 and Fig. 4.14, the average Iharm,av

over time, I harm,av, and the average CRN capacity over time, U
tot
SU,av, are calculated

for the 3 blocks and compared to derive further solid performance conclusions besides

the convergence rate. For the ACCPM based method, these time average metrics are

I harm,av = −95.7dBm and U
tot
SU,av = 8.24Mbps, while for the CGCPM based method

they are I harm,av = −96.9dBm and U
tot
SU,av = 8.45Mbps. We notice that the CPM used

in this section, the CGCPM, delivers on average 1.2dB less harmful PU interference

and 2.5% more CRN capacity compared to the ACCPM used in [75]. Basically, our

enhancement contributes to better adaptation and faster learning especially for large

CRNs, closer pursue of the optimization objective and most importantly better protec-

tion of the PU.
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Figure 4.13: Iharm,av progress vs time using MCC feedback for slow fading channels

4.7 Summary

In this chapter, we proposed a simultaneous PC and interference channel learning algo-

rithm using the MCC feedback. This sensing output is more informative than the binary
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Figure 4.14: U tot
SU,av vs time using MCC feedback for slow fading channels

ACK/NACK feedback and easier to obtain, since it does not require the implementa-

tion of an actual PU decoder on the SU sensing module. The proposed technique was

applied in a CR scenario where a CRN with centralized structure access the frequency

band of a PU operating under an ACM protocol and learns the unknown interference

channels while maximizing its total capacity. New methods from the AL research area,

the CPMs, were utilized for the design of the algorithm and compared to a simple AL

benchmark learning method we initially demonstrated in this chapter and published in

[11]. The chosen CPMs were the ACCPM and the CGCPM inspired by the cognitive

beamforming mechanism developed in [75]. Additionally, a window-based solution was

introduced for the case of slow fading interference channels. Initially, the results prove

the superiority of the MCC feedback whose use provides us an implicit CSI of the PU

link more informative than the binary feedback and thus delivers faster convergence.

Subsequently, a comparison of the methods was performed which points out the better

learning rate of the CPMs to our benchmark method and the small but yet distinguish-

able, especially in large CRNs, difference between the CGCPM-based approach and the

ACCPM-based one, our second benchmark technique. The CGCPM-based algorithm

manages to be faster in static interference channel scenarios, more adaptive, more pro-

tective to the PU and with less variations in dynamic interference channel scenarios due

to its more intelligent choice of probing power vectors.

An extension of this work will be the probabilistic version of the proposed algorithm

which takes into account how accurate the output of the MCC process is by utilizing a
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reliability factor for each feedback. This will be demonstrated in the next chapter and

even though this issue was addressed using a maximum likelihood approach in [75], the

proposed solution was not consistent in the AL framework, since no convergence proof

was provided.



Chapter 5

Active Learning of the

Interference Constraint with

Uncertain ACK/NACK Feedback

in Cognitive Radio Networks

In this chapter, intelligent probing methods for interference constraint learning are pro-

posed to allow a centralized CRN access the frequency band of a PU in an underlay

cognitive communication scenario. The main idea is that the CRN probes the PU and

subsequently eavesdrops the reverse PU link to acquire the binary ACK/NACK packet.

This feedback is implicit CSI of the PU link, indicating whether the probing-induced

interference is harmful or not. The intelligence of this sequential probing process lies

in the selection of the power levels of the SUs which aims to minimize the number of

probing attempts, a clearly AL procedure, and expectantly the overall PU QoS degrada-

tion. The enhancement introduced herein is that we incorporate the probability of each

feedback being correct into these intelligent probing mechanisms by using Bayesian AL

methods. First, a simple Bayesian AL technique based on the Probabilistic Bisection Al-

gorithm (PBA) is demonstrated for probing the PU system and learning the interference

channel gains using the observed PU ACK/NACK feedback and its probability of being

correctly decoded. Next, sophisticated multivariate Bayesian AL methods are presented

which introduce the deterministic CPMs into this Bayesian framework. Among these,

one method is proven optimal and its effectiveness is demonstrated through numerical

simulations. The rest of these multivariate Bayesian AL solutions are suboptimal and

relate to prior AL work from the literature and computationally cheap CPM adaptations

69
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which still outperform existing AL methods from other authors and are ideal fo high

dimensional scenarios. The content of this chapter is published in [12, 13].

5.1 Introduction

In this chapter, we focus on an underlay CR scenario, where SUs may transmit in a

PU frequency band as long as the induced to the PU receiver interference is under a

certain threshold. In general, the underlay approach is related to Power Control (PC) or

Beamforming (BF) problems where the CR users must intelligently select their transmit

power levels or beamforming vectors to optimize some operation metric and satisfy the

PU interference constraint. In all these scenarios, an architecture suggestion for the

deployed CRN could be the CR users to be coordinated by a Cognitive Base Station

(CBS) using a dedicated control channel [6] which denotes a centralized structure and

is more applicable than a decentralized CRN where CR users are partially independent

and pass messages among each other.

An essential piece of information of these PC or BF problems regarding the PU interfer-

ence constraint is accurate CSI of the interference channels. However, the legacy system

(PU) was not originally designed to exchange any information, hence the two networks

are not able to directly communicate. This indicates that no feedback about the in-

duced to the PU interference can be transmitted to the CRN (SUs) in order to infer

the interference channel gains. Since no cooperation between the PU and SU systems

is expected, the CRN must somehow learn this interference CSI once it is deployed. In

the CR context though, a common approach to overcome this issue is the CRs to use

the PU reverse link feedback, check how this changes because of the CR operation and

thus calculate the SU-to-PU channel gains in a sequential manner. This iterative proce-

dure is clearly a probing scheme which combines carefully selecting the CR transmitting

parameters and eavesdropping the PU reverse link feedback. Capturing and exploiting

this feedback bridges the gap of PU and SU system segregation and enables learning in

the CRN part. In previous work, this was obtained from the binary ACK/NACK packet

of the reverse PU link [74, 75] for underlay PC or BF problems.

Another kind of feedback introduced in [9, 10] and presented in the Chapter 4 is the

Modulation and Coding Classification (MCC) information. Assuming that the PU link

operates under an Adaptive Coding and Modulation (ACM) protocol, whenever the PU

link quality deteriorates due to CR induced interference, the PU changes its Modulation

and Coding Scheme (MCS) to a more robust one. If the CR is equipped with an MCC

module, detecting this MCS transition is feasible and in fact easier than decoding a PU

ACK/NACK packet. The most crucial benefit of exploiting the MCC feedback instead of
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the ACK/NACK one is that the MCC feedback in contrast with the binary ACK/NACK

packet delivers more than 1-bit information and therefore speeds up the learning process

as demonstrated in [10]. Nevertheless, in any learning process utilizing either MCC or

ACK/NACK feedback there is a crucial issue which rises from classifying the PU signal

to an MCS or decoding the PU message to obtain the ACK/NACK feedback. This

problem is linked to the low SINR conditions of the sensed PU signal on the CRN side

which may occur and make the classification or the decoding unreliable. Therefore, if

a learning mechanism which exploits a sensed feedback is to be applied, it should also

incorporate the uncertainty of the feedback resulting from realistic SINR conditions.

In this chapter, the MCC approach used in Chapter 4 is not adopted and the binary

ACK/NACK packet is chosen as the learning facilitator. The main reason for doing so

is that the advantages of the MCC feedback were exhibited in Chapter 4 and also it was

clearly shown that any cognitive scenario considering a binary feedback of the PU link

quality can perform even better with the multilevel MCC feedback. Therefore, in this

chapter we utilize this rudimentary binary feedback, the ACK/NACK packet, in order

to focus on developing more sophisticated learning mechanisms.

5.1.1 Contributions

Herein, AL probing methods suitable for centrally organized CRNs are demonstrated

which rapidly estimate the interference channel gains from multiple SU transmitters to

a PU receiver. The case study assumes that the PU link is operating under a commu-

nications protocol where the receiver sends an ACK/NACK packet to the transmitter

to acknowledge positively or negatively the receipt of messages. A common practice in

the CR regime which is adopted here as well is the CRN to capture this packet from the

PU feedback link and exploit it to learn the SU-to-PU channel gains. In this scenario,

obtaining this binary feedback takes place in the CBS using a sensing antenna and a PU

feedback packet decoder. This piece of information is utilized to implement sequential

probing techniques where the SUs constantly adjust their transmit power levels accord-

ing to CBS directives and monitor whether the ACK/NACK packet changes state. These

intelligent probing designs aim to minimize the number of probing attempts so that once

the CRN is deployed in the PU system’s environment, it may quickly learn the inter-

ference channels and then optimize its operation while satisfying the PU interference

constraint which depends on the SU-to-PU channel gains.

Nevertheless, when utilizing the binary feedback a practical consideration must be taken

into account. Due to low SINR conditions of the sensed PU signal by the CBS sensing

antenna, the ACK/NACK packet decoding may be imperfect. Therefore, this feedback
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uncertainty which is expressed quantitatively by the probability of correct decoding

(Pcd) must also be included in an AL probing mechanism. In this chapter, a simple

Bayesian AL mechanism based on the univariate PBA and multivariate Bayesian AL

methods which combine the Bayesian rationale of the PBA and the properties of the

deterministic CPMs are implemented in order to include Pcd within this AL framework.

In summary, this chapter delivers specifically the following major contributions:

• The design of a simple Bayesian AL scheme based on the PBA and which is a

Bayesian extension of our AL solution demonstrated in Chapter 4.

• The novel construction of an optimal multivariate Bayesian AL method designed

for probing the PU and learning fast interference channel gains.

• An optimality proof is provided for the proposed multivariate Bayesian AL method.

• A computationally cheap and analytical CPM adaptation is given as a Bayesian

AL technique suitable for high dimensional problems.

• Simulations show convergence rates for our optimal multivariate Bayesian AL

method and the cheap CPM adaptation faster than the ones of the simple Bayesian

AL method developed first and published in [12] and the Probit Maximum Likeli-

hood (ML) approach of [75] which is used as a benchmark technique.

• Results are given about the PU QoS degradation during all the examined AL

methods in order to empirically prove that the faster an AL method is, the more

protective it is to the PU link.

5.1.2 Structure

The remainder of this chapter is structured as follows: Section 2 reviews in detail prior

work related to cognitive scenarios using an uncertain PU link feedback. Section 3

provides the system model and the problem formulation. Section 4 presents a simple

Bayesian AL scheme we developed based on the PBA. Section 5 presents a set of mul-

tivariate Bayesian AL methods for interference channel gain learning and studies the

optimality of the proposed technique. Section 6 elaborates on computational techniques

necessary for the implementation of multivariate Bayesian AL. In Section 7, the simula-

tion results which are obtained from the application of all the presented techniques are

shown and compared with existing methods. Section 8 gives the concluding remarks.
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5.2 Related work

Previous works in the field of cognitive underlay methods using rudimentary feedback

have focused on PC and BF scenarios with different assumptions, protocols, system

models and constraints. Assuming no cooperation between the CRN and the PU system,

this feedback is acquired by most commonly eavesdropping the PU reverse link channel

and decoding the PU ACK/NACK packet or by sensing the PU signal and applying

MCC in order to track the PU MCS change [10]. The general form of these underlay

CR scenarios is the optimization of an SU system metric, such as total CRN throughput,

worst SU throughput or SU SINR, subject to QoS constraints for PUs, like SINR, data

rate or outage probability [5] which the CRN needs to learn. Hence, these study cases

involve both learning PU constraints and solving an optimization problem which may

be tackled in a centralized manner by a central decision maker or in a decentralized

way by each SU individually. Most of the learning techniques are based on a simple

iterative scheme of probing the PU system and acquiring the feedback indicating how

the PU operation is changed. An additional discrimination of these problems is based on

the reliability of the feedback itself which in many cases is questionable and introduces

uncertainty into the learning and optimization procedures.

First, we describe the group of these scenarios which incorporate perfect feedback knowl-

edge. A stochastic approximation algorithm is exploited in [81] for distributed BF which

exhibits slow convergence rate as it basically is a random exploration technique. In [74],

the one-bit null space learning algorithm (OBNSLA) is developed, which essentially is

a blind realization of the Cyclic Jacobi Technique, in order to learn the null space of

the interference channel matrix in a MIMO underlay cognitive scenario. Finally, a sign

algorithm is established by the authors of [80] for transmit BF using 1-bit feedback to

coarsely update the antenna weights in an LMS-like manner. It is worth noting that in

the latter work, the case of feedback error is discussed but not addressed extensively.

In the uncertain feedback problems studied by the research community, the notable

work in [92] has considered the centralized weighted sum-rate maximization topic under

average SU power and probabilistic PU interference constraints. In this study, the opti-

mization objective is achieved only after the interference channel gain learning process

is terminated, a very common tactic for handling the aforementioned learning and opti-

mization general structure of these problems. In its learning part, the recursive Bayesian

estimation is employed by using imperfect CSI feedback which may potentially be as

elementary as the binary ACK/NACK packet. Furthermore, significant work has been

conducted in this area by tackling the uncertain feedback within a Partially Observ-

able Markov Decision Process framework [61, 93] where uncertainty is introduced with a
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belief factor related to the reliability of the feedback information. In [61], a binary Spec-

trum Sensing feedback has been used to enable CRs apply a Reinforcement Learning

procedure, the Q-Learning, to regulate the aggregated interference to the PU and in [93]

a distributed channel admission solution is formulated based on Dynamic Programming,

while in their previous work [94] a SU power control policy is also included using the

same formulation but without elaborating on the belief factor enhancement. In [95],

a methodical overview of all the Reinforcement Learning applications in CRNs based

on the Markov Decision Process framework is provided. Additionally, the authors of

[75] proposed a CPM based learning algorithm where probing the PU system targets to

both learning interference channel matrices and maximizing the SNR at the SU receiver

side in an underlay cognitive BF scenario. In this work, the feedback error follows a

Gaussian Cumulative Distribution Function (CDF) model and a Maximum Likelihood

AL approach is proposed, but without any theoretical convergence guarantees.

In this chapter, we rely on the AL rationale of [75] applied in the underlay PC problem by

using the ACK/NACK feedback and we focus only on learning the unknown interference

channel gains without optimizing any SU system metric. The investigated scenario

considers a centralized CRN where SUs are coordinated by a CBS using a dedicated

control channel which usually as a structure exhibits faster learning and adaptation

rates than the decentralized approach. First, a simple Bayesian AL method is described

based on the PBA and which is also used later on in this chapter as a benchmark method.

Next, we develop various multivariate Bayesian AL schemes among which one is optimal

in the AL sense and another is suboptimal but ideal for high dimensional problems. At

the end, we provide results to compare all these methods with the benchmark techniques

of [12, 75].

5.3 System Model and Problem Formulation

In this section, we describe the system model which resembles the one assumed in

Chapter 4. Initially, let us consider a PU link and N SU links existing in the same

frequency band as shown in Fig. 5.1. Furthermore, a Frequency Division Multiple

Access (FDMA) method allows SU links to operate in separate sub-bands of the PU

frequency band and without interfering with each other, but still aggregately causing

interference to the PU system. The structure of the CRN is again a centralized one where

the SUs are dictated their operational parameters and coordinated by the CBS using

a dedicated control channel. The examined scenarios in this chapter are considering

the PU, the sensing and the unknown interference channels to follow the quasi static

block fading model which applies for telecommunication links such as the satellite or the
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backhauling ones, but not for mobile ones where channels change rapidly. Also in this

chapter, we focus on channel power gains g which we agreed on referring to as channel

gains.
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Figure 5.1: The PU system and the CRN

As far as the interference to the PU link is concerned, this is caused by the transmitter

part of each SU link to the receiver of the PU link similarly to Chapter 4. Taking into

account that the SU links transmit solely in the PU frequency band, the aggregated

interference on the PU side is defined as:

IPU = g pᵀ (5.1)

where g is the unknown interference channel gain vector [g1, ..., gN ] with gi being the

SUi-to-PU interference channel gain and p is the SU power vector [p1, ..., pN ] with pi

being the SUi transmit power. The SU power levels [p1, ..., pN ] are communicated from

the CBS to the SUs through the CRN control channel and they define the messaging

overhead of this network. In a practical setting, these transmit power commands from

the CBS to the SUs demand dlog2(Npl)e bits for each SU if we assume that the SU

power range is discretized to Npl power levels. However, in this chapter as well, SU

power levels are considered to be continuous variables. Additionally, the SINR of the
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PU is defined as:

SINRPU = 10 log10

(
gPUpPU

IPU +NPU

)
dB (5.2)

where gPU is the PU link channel gain, pPU is the PU transmit power and NPU is the

PU receiver noise power.

In this study, we consider that the CBS is equipped with a secondary omnidirectional

antenna only for sensing the signal of the PU reverse link and a module for decoding

the binary ACK/NACK feedback. From this decoding process, the CRN is able to

obtain a feedback observation, Z, and infer whether the induced interference to the PU,

IPU , is harmful or not for the PU data packet reception by the PU receiver. Assuming

that NPU and the received power remain the same at the PU receiver side, the minimum

required SINRPU , γ, corresponds to a particular unknown maximum allowed IPU value,

Ith, below which an ACK is sent and over which a NACK is transmitted to the PU

transmitter. Subsequently, the observed feedback Z is defined as:

Z =


+1 if g pᵀ ≤ Ith

−1 if g pᵀ > Ith

. (5.3)

This piece of information will be exploited in the next section to learn the PU interference

constraint determined as:

g pᵀ = Ith. (5.4)

A necessary simplification of the information gained by (5.3) is that the gi gains nor-

malized to Ith are adequate for defining the interference constraint (5.4) similarly to

Chapter 4. Therefore, if h = g
Ith

, the observed feedback can also be written as:

Z =


+1 if h pᵀ ≤ 1

−1 if h pᵀ > 1

(5.5)

while the normalized version of (5.4) is expressed as:

h pᵀ = 1. (5.6)

Due to the realistic limitation of low SNR sensing channel, the feedback packet has a

probability of being correctly decoded, Pcd. In most Automatic Repeat reQuest (ARQ)

and Hybrid ARQ mechanisms [96] which utilize identical mechanisms of request for

retransmission, feedback packets are transmitted in blocks as bits which allows us to

derive lower bounded analytical expressions or exact numerical values based on Bit
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Error Rate (BER) curves for the Pcd of each feedback packet depending on the MCS

of the ACK/NACK block and the SNR of the sensed PU signal. Thus the feedback

observation, Z, has a probability of being correct and can be expressed as:

Pr[Z being correct] = Pcd (5.7)

and a complementary probability indicating how likely Z is incorrect:

Pr[Z being incorrect] = 1− Pcd. (5.8)

The main structure of the system model and of the problem formulation have retained

the form described in Chapter 4. The only differences are that the sensing SU link is

between the CBS and the PU transmitter, the cooperative MCC process is now replaced

by an ACK/NACK decoding process and instead of assuming perfect PU feedback, there

is now a probability of this feedback being correct. Later on, we investigate AL methods

which consider this uncertainty information to infer (5.6) with the least probing attempts

possible.

5.4 A Simple Bayesian Active Learning Algorithm for In-

terference Channel Gain Learning

In this section, a probing method is described for estimating the interference hyperplane

defined in (5.6), where the CRN designs a probing power vector, probes the PU and

subsequently decodes the PU ACK/NACK packet from the PU reverse link to check

whether the probing power vector caused harmful interference or not. The design of the

SU power levels is achieved by a computationally cheap Bayesian AL method which takes

into account the uncertainty defined in (5.7) and (5.11) in order to find the interference

hyperplane with as less probing attempts as possible. To this direction, an adaptation

of the PBA [97] for higher dimensions is implemented. We suggest performing PBA

searches on N linear segments in order to find N intersection points with the interference

hyperplane and hence the hyperplane itself similarly to our initially developed technique

in Chapter 4 which is depicted in Fig. 4.2 for 2 dimensions. The only difference between

the two schemes is that here we employ a Bayesian updating of the uncertainty region

of each intersection point. This work has been published in [12].

In the beginning, we need to define the linear segments on which the consecutive 1-

D PBAs are performed. Again, just like in Chapter 4, end points are sought in a

random fashion and once these points, pend
i , i = 1, ..., N , are found the PBAs can be
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performed to detect the intersection points, pin
i , i = 1, . . . , N and hence the interference

hyperplane. When the intersection points of the line segments, pin
i , i = 1, . . . , N , are

estimated and the interference hyperplane is defined, the hi gains can be found using

(4.11) from Chapter 4.

We continue with a detailed description of the PBA application on each linear segment.

As explained in Chapter 4 the parametric form of any point on a linear segment with

arbitrary end points Q1 and Q2 is given by Q(θ) = θQ1 + (1− θ)Q2, where θ ∈ [0, 1].

Hence, the PBA is basically performed within the θ region [0, 1] to find a θ∗, which

corresponds to the intersection point of this segment with the interference hyperplane.

Now, let us elaborate more on the feedback likelihood originally described in (5.7) and

(5.11). Assuming that a power vector p which corresponds to a specific θ ∈ [0, 1] is

applied, then the following holds:

Pr[Z|θ∗, θ] =


Pcd if Z = +1 and θ ≤ θ∗

1− Pcd if Z = +1 and θ∗ ≤ θ
Pcd if Z = −1 and θ∗ ≤ θ

1− Pcd if Z = −1 and θ ≤ θ∗

. (5.9)

This piece of information can be used to update in a recursive Bayesian way the prob-

ability density function (pdf) defined on the θ region [0, 1] and which represents our

knowledge of where θ∗ truly lies. This means that at time step t of the PBA, the ap-

plied probing power vector p(t), or testing point, which corresponds to a θ(t) can be

used to update this pdf, ft(θ = θ∗), and find its posterior, ft+1(θ = θ∗), as:

ft+1(θ) =
Pr[Zt|θ∗, θ(t)] ft(θ)

MaL
. (5.10)

The denominator term, MaL, is called the marginal likelihood and it is actually a nor-

malization constant which guarantees that the posterior pdf integrates to 1. Usually, it

is computed as the integral of the numerator in (5.10) which here is an easy computa-

tional task, since it is a 1-D issue. The prior pdf, f0(θ), over [0, 1] is considered to be

uniform. In order to probe as less times as possible and give an AL sense in this probing

process, the PBA advocates that we should design p(t+1) so that θ(t+1) is the median

of the posterior pdf ft+1(θ) at each step. An overview of the entire process described in

this section is presented in Algo. 3.
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Algorithm 3 Interference hyperplane estimation algorithm

Search ΩN for endpoints, pend
i , i = 1, ..., N , to define N linear segments

t = 0
for i = 1, . . . , N do
ti = 0
Assume a uniform prior pdf fti(θ) over the interval [0, 1] for the ith linear segment,
choose its median, design p(t) as p(t) = 1/2 pend

i and probe the PU system
Decode ACK/NACK packet and obtain Z(t)
Find fti+1(θ) using the update equation (5.10)
repeat
t = t+ 1 and ti = ti + 1
Choose the median θm of fti(h), design p(t) = θm pend

i and probe the PU
Decode ACK/NACK packet and obtain Z(t)
Find fti+1(θ) using the update equation (5.10)

until σfti+1 ≤ ε
Choose the median θm of fti+1(h) and define pin

i = θm pend
i

end for
Calculate h using (4.11)

5.5 Multivariate Bayesian Active Learning Methods

In this chapter, the goal is to design SU probing power vectors, p, using uncertain

observations of ACK/NACK feedback, Z, in order to learn as fast as possible the un-

known normalized interference channel gain vector, h. From here on the true value of

the unknown normalized interference channel gain vector will be denoted as h∗. These

unknown parameters define the constraints (5.4) and (5.6) which constitute the PU in-

terference constraint in underlay cognitive scenarios, also referred to as the interference

hyperplane. This uncertainty based AL probing idea was first explored as a cognitive

BF problem by the authors of [75] who managed to simultaneously learn the null space

of an unknown interference channel matrix and maximize the SNR at the SU receiver

side. The iterative nature of this proactive probing strategy which is also adopted in

Chapter 4 can be employed in this scenario as well as illustrated in Fig. 5.2, where the

CRN probes the PU and subsequently monitors the ACK/NACK feedback sent by the

PU receiver in order to infer the interference hyperplane.

In general, sequential uncertain pieces of knowledge are incorporated using a Bayesian

approach where recursive Bayesian estimation is the main knowledge extraction tool.

To this direction, a multivariate Bayesian Learning method is implemented by using the

uncertain observations and their corresponding SU probing power vectors. Now, let us

assume that following t probing attempts, p0:(t−1) = {p(0), ..,p(t − 1)}, the CBS has

observed t pieces of ACK/NACK feedback, Z0:(t−1) = {Z0, .., Z(t−1)}. To describe in

detail the recursive Bayesian updating, first we need to define the feedback conditional

likelihood in this process using (5.7) and (5.8) as the probability of Z conditioned on
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Figure 5.2: The Active Learning probing scheme

the unknown parameter h∗ and the probing power vector:

Pr[Z|h = h∗ pᵀ] =


Pcd if Z = +1 and h pᵀ ≤ 1

1− Pcd if Z = +1 and h pᵀ > 1

Pcd if Z = −1 and h pᵀ > 1

1− Pcd if Z = −1 and h pᵀ ≤ 1

. (5.11)

Similarly to the previous section, this expression is actually a robust threshold likelihood

metric determined by the uncertainty of the feedback observation, Z.

After a new probing power vector p(t) and a piece of feedback, Zt, the h posterior

probability density function (pdf) according to the Bayes rule is expressed as:

ft+1(h) = Pr[h = h∗|Z0:t,p0:t] =

Pr[Zt|h = h∗,p(t), Z0:(t−1),p0:(t−1)] Pr[h = h∗|p(t), Z0:(t−1),p0:(t−1)]

Pr[Zt|p(t), Z0:(t−1),p0:(t−1)]
(5.12)

which indicates the probability of where h∗ lies in the h space given Z0:t and p0:t. In

(5.12), we also show the equivalence of the ft+1(h) pdf with the conditions Z0:t and

p0:t = {p(0), ..,p(t)} which represent the knowledge gained until the t step. Here, a

necessary remark about the first term of the numerator in (5.12) must be made which

simplifies (5.12) and which will also help us later. The observation Zt is conditionally
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independent of the previous observations Z0:(t−1) and probing power vectors p0:(t−1)

given h = h∗ and p(t) and therefore Pr[Zt|h = h∗,p(t), Z0:(t−1),p0:(t−1)] can be written

as Pr[Zt|h = h∗,p(t)] which is basically the likelihood expression in (5.11). Moreover,

the second term of the numerator, Pr[h = h∗|p(t), Z0:(t−1),p0:(t−1)], can be written as

Pr[h = h∗|Z0:(t−1),p0:(t−1)] which is basically the prior pdf, ft(h). This happens because

our knowledge about h∗ given Z0:(t−1) and p0:(t−1) does not change by additionally

knowing p(t). After these simplifications the following form of (5.12) is delivered:

ft+1(h) =
Pr[Zt|h = h∗,p(t)] ft(h)

Pr[Zt|p(t), Z0:(t−1),p0:(t−1)]
. (5.13)

The denominator term is called the marginal likelihood and even though it is difficult to

be calculated, it is actually a normalization constant which guarantees that the posterior

pdf integrates to 1. Usually, it is computed as the integral of the numerator in (5.13)

which in our case is an N dimensional integration over the h region and computationally

intractable. In Section 6, we will explain why its computation is not necessary for

the application of the considered AL algorithms. A general assumption when applying

recursive Bayesian estimation and employed here as well is the prior pdf f0(h) to be

a uniform non informative pdf [98], which is the maximum entropy pdf for random

variables within a bounded domain and therefore guarantees that no specific value of h

is favoured in the beginning of this recursive process.

As stated in the beginning of this section, the target of a sequential AL probing is to

select SU power vectors which aim to learn h∗ with the minimum number of probing

attempts assuming the coarse likelihood function described in (5.11). The proposed

method in this chapter is inspired by a univariate Bayesian AL algorithm, the PBA

[97], and the deterministic multivariate AL techniques, the CPMs [85]. In the previous

section and in Chapter 4, the effectiveness of both methods has separately been shown

in CR learning scenarios with reliable and uncertain PU feedback, but by maintaining

their basic form. Here, we suggest a combination in order to formulate a multivari-

ate Bayesian AL technique. In brief, the PBA has proven that assuming a recursive

Bayesian updating for estimating a 1-D parameter and an uncertain binary feedback

which indicates whether the true value of the 1-D parameter lies right or left of a testing

point, the fastest way to learn its value is to always test in the next step the median

of the posterior derived from the sequential Bayesian updating. On the other hand, in

the deterministic multivariate AL case, the CPMs, which are extensions of the bisection

algorithm to higher dimensions, theoretically guarantee that converging strategies to

locate a point within a uniform uncertainty region exist and they are implemented by

making linear cuts which pass through specific points of the uncertainty region in each

step. These points can be the Center of Gravity (CG), the Analytic Center (AC) or
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the center of the Minimum Volume Ellipsoid (MVE) covering the region. The resulting

CPMs are named respectively CGCPM, ACCPM and MVE-CPM.

5.5.1 The Optimal Cutting Plane in Bayesian Active Learning with

Robust Threshold Likelihood functions

In this section, we investigate the optimal design strategy of a SU probing power vector,

which represents a hyperplane in the h space, that should be chosen in each step of

this recursive Bayesian estimation process in order to optimally reduce the expected

posterior pdf entropy after NT probing power vectors, or cutting hyperplanes, with

their corresponding pieces of feedback, Z0:(NT−1). To achieve this, we employ Theorem

5.5.1, which is a multivariate extension of the PBA [97], and provide its proof, which is

also a multivariate adaptation of the PBA optimality proof, in Appendix A to improve

the continuity of this manuscript. Additionally, in Section 6, a numerical approximation

is provided for the optimal cutting plane.

Theorem 5.5.1. Given a limited number of NT probing attempts, pieces of feedback,

Z, with conditional likelihood as in (5.11) and a Bayesian updating rule for ft+1(h)

as in (5.13), the probing power vector sequence, {p(0), ...,p(NT − 1)}, which achieves

the minimum expected entropy of fNT (h) corresponds to the median regressors of the

{f0(h), ..., fNT−1
(h)} pdf’s, {pmed(0), ...,pmed(NT − 1)}.

Proof. The proof of this theorem can be found in Appendix A.

5.5.2 Suboptimal Cutting Planes in Bayesian Active Learning

In the previous subsection, Theorem 5.5.1 shows that an AL technique within the

Bayesian Learning framework must choose training samples, represented as hyperplanes

in the h space, which cut as evenly as possible the posterior pdf of each step. This

reminds us of the CPMs where instead of designing exact cutting hyperplanes, we rely

on the geometric properties of specific points of convex polyhedra for which every hy-

perplane passing from them cuts the polyhedron in two halfspaces whose volumes have

a proven lower bound. As far as pdf’s are concerned and not just convex bodies, a

fundamental theoretical result for partitioning by hyperplanes in N dimensions was first

given in [99], where it was proven that for any pdf, there exists at least one point for

which every hyperplane passing from it divides the pdf in two parts whose probability

masses have a proven lower bound of 1/(N+1). Nevertheless, this is merely an existence

theoretical result which does not define explicitly this point in the support region of a

pdf. An additional theorem proven in [100] states that specifically for a log-concave
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multivariate pdf every hyperplane passing from its mean has the property of cutting the

pdf in probability masses of at least 1/e, which is the same theoretical bound for the

CGCPM in convex polyhedra [99].

In this subsection, we also consider designing SU probing power vectors which pass

through the mean and the mode of each step’s posterior pdf, which are equivalents of

the CG and the AC respectively. Specifically for the mean case, if ft(h) is the posterior

pdf attained after the (t− 1) step and hmean(t) is the ft(h) posterior pdf mean which is

calculated as:

hmean(t) =

∫
h ft(h) dVh∫
ft(h) dVh

(5.14)

then the probing power vector p(t) for which:

hmean(t) pᵀ(t) = 1 (5.15)

represents a cutting hyperplane in the h space which passes through hmean(t). Alter-

natively, we examine the performance of an AL method where if the ft(h) posterior pdf

mode or Maximum A Posteriori (MAP) point, hMAP (t), is defined as:

hMAP (t) = arg max
h

(ft(h)) (5.16)

then the p(t) for which:

hMAP (t) pᵀ(t) = 1 (5.17)

describes a cutting hyperplane which passes through hMAP (t).

Finally, we demonstrate the Shallow-cut deterministic MVE-CPM which is suitable for

uncertain pieces of feedback [101]. The standard MVE-CPM is basically an ellipsoidal

approximation of the uncertainty region of the true value of h, h∗. If hEC(t) is the

center of this ellipsoid, then a probing power vector p(t) for which:

hEC(t) pᵀ(t) = 1 (5.18)

defines a cutting plane that passes through hEC(t) in the h space. With each such cutting

hyperplane and its corresponding feedback, the shape of this ellipsoid, represented by its

matrix P, is updated and specifically it shrinks and its center moves towards h∗. The

updating equations for hEC(t+ 1) and the ellipsoid matrix Pt+1 are respectively:

hEC(t+ 1) = hEC(t)− 1 +Nα

N + 1
p̃(t) Pt (5.19)
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and

Pt+1 =

N2(1− α2)

N2 − 1

(
Pt −

2(1 +Nα)

(N + 1)(1 + α)
Pt p̃ᵀ(t) p̃(t) Pt

)
(5.20)

where p̃ is a normalized subgradient term given by:

p̃(t) =
p(t)√

p(t) Pt pᵀ(t)
(5.21)

and α is heuristically determined as:

α = −2
1− Pcd
N

. (5.22)

The design of α is basically a simple linear function of Pcd which guarantees that in the

case of the most uncertain feedback, Pcd = 0.5, the ellipsoid updated based on (5.19) and

(5.20) remains the same and that when Pcd = 1, (5.19) and (5.20) are identical to the

updating equations of the neutral-cut MVE-CPM. Lastly, we must mention as practical

considerations about the MVE-CPM that the computational complexity in each step

of this method is O(N2) and that usually the initial ellipsoid is chosen to represent a

circular uncertainty region with an arbitrary center.

Here, we need to point out an important issue in AL which was emphasized in Chapter

4, the necessity of exploration. Reducing the uncertainty for h∗ must be performed by

approaching this exact value uniformly from all directions. This means that the training

samples in an AL process, in this case the power probing vectors, must be diversified

and this can be accomplished by choosing cutting planes of random direction uniformly.

Therefore, we need first to define how to uniformly sample a random direction θ, where

θ is a unit vector. This problem is related to the uniform hypersphere point picking

which has been tackled by generating N , the hypersphere dimensions, random values

according to a 1-D Gaussian distribution with zero mean and arbitrary variance, σ2,

and set each one as variable values of a vector η:

ηi ∼ N (0, σ2), i = 1, . . . , N (5.23)

Then, θ is produced by normalizing η to its magnitude, θ = η
‖η‖ . The endpoint of the

resulting unit vector θ is uniformly distributed on the surface of the unit hypersphere.

Now, particularly for our study, in order to produce a power vector which represents a

cutting hyperplane of random direction, p(t) must be parallel to a randomly generated

θ, p(t) = βθ where β ∈ R, and according to the CPM used, it must satisfy (5.15), (5.17)
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or (5.18). After some processing, p(t) is expressed for the Mean CPM as:

p(t) = βθ =
θ

hmean(t) θᵀ
(5.24)

for the MAP CPM as:

p(t) = βθ =
θ

hMAP (t) θᵀ
(5.25)

and for the MVE-CPM as:

p(t) = βθ =
θ

hEC(t) θᵀ
. (5.26)

Moreover, all the coordinates of p(t), which represent power levels, must be non negative,

otherwise a new θ has to be generated until a valid power vector is produced. In the

next section, besides presenting numerical approximations of hmean(t) and hMAP (t), an

exploration strategy will be directly introduced in the numerical estimation of pmed(t).

5.6 Numerical Approximations for Cutting Plane Estima-

tion

A common problem when dealing with analytically intractable multivariate pdf’s, as in

our case (5.13), is how to estimate the mean, the mode and the median hyperplane of

these density functions which are key points of the investigated Bayesian AL methods

as shown in the previous section. To tackle this issue, the research community has

developed sophisticated sampling methods based on Markov chain random walks, the

Markov Chain Monte Carlo (MCMC) techniques [102]. Learning about probability

models by simulating them and generating random samples from them has proven to

be more efficient than theoretical approximations of the desired distributions, but still

more computationally expensive especially when the dimension number of the target

multivariate pdf grows.

One of the most commonly used sampling algorithms is the Hit and Run algorithm

which was first thoroughly elaborated in [103] and has also been applied in Chapter

4. The simplest form of this sampling mechanism is to start from a point x0 in the

support region S of a pdf f , choose uniformly a random direction θ0, find the linear

segment within S which is defined by the line passing through x0 and having direction θ0

and compute the conditional density function along this linear segment. Subsequently,

perform a 1-D random sampling over the linear segment using the conditional density

function in order to find the first point of the random walk, x1, and repeat this process

with starting point x1 to generate the second one and so on. As far as the practical

details of this sampling algorithm are concerned, first, we already defined in Section
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5 how to uniformly sample a random direction θ, a problem which is related to the

uniform hypersphere point picking. Additionally, the conditional density function along

the linear segment of each random point generating step must be determined. Given

a point x and a vector θ, the parametrized expression of a linear segment defined by

them and within S is described as x + λθ, where λ ∈ [λl, λu]. The conditional density

function π(λ) based on which the 1-D random sampling is performed can be written as:

π(λ) =
f(x + λθ)∫ λu

λl
f(x + νθ) dν

. (5.27)

Once an adequate number of random points is produced by the aforementioned random

walk process, all the required characteristics of the f pdf can be extracted so that the

exhibited cutting planes in Section 5 can be determined. At first, let us examine how the

median hyperplane of a pdf can be estimated which according to our previous analysis

is optimal in Bayesian AL with robust threshold likelihood functions. Given a set of

points {x1, ...,xNr} with real valued weights {f(x1), ..., f(xNr)} like in our case due

to the MCMC technique, a hyperplane expressed as in (A.1) and which satisfies the

condition C(w) = 1/2, where C(.) is defined in Appendix A, is actually called in robust

statistics literature a halving hyperplane. The thin difference between a halving and a

median hyperplane is that the latter is also a halving hyperplane [104] and moreover it

minimizes the sum of the weighted distances of the points from it:

wmed = arg min
w

(
Nr∑
i=1

f(xi)
| xi wᵀ − 1 |
‖w‖

)
(5.28)

where Nr is the number of the random points. In our work, we focus on the solution of

(5.28) and not just halving hyperplanes, basically because it delivers a unique hyperplane

towards a specific direction and not a set of hyperplanes from which we need to select

somehow one candidate.

As far as the suboptimal cutting planes are concerned, we are interested in regressors

passing from the mean and the mode of a pdf. The mean of f can be computed as:

xmean =

Nr∑
i=1

xif(xi)

Nr∑
i=1

f(xi)

(5.29)
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while the mode or MAP point can be calculated as:

xMAP =

∑
i:f(xi)=fmax

xif(xi)∑
i:f(xi)=fmax

f(xi)
. (5.30)

It is worth noting that the suboptimal MVE-CPM presented previously does not need

such numerical techniques to work. The reason is that all its parameters can be analyt-

ically calculated without using the computationally expensive MCMC’s.

In the linear piecewise optimization problem of (5.28), the median cutting plane solution

is unique for hyperplanes of a specific direction. Nevertheless, this does not mean that

it is unique for all directions, a fact which can be taken advantage of to introduce

exploration in the final solution. An adaptation which can be made is to uniformly

sample a random unit vector, wrand, and solve (5.28) for w = κwrand, where κ ∈ R.

Consequently, (5.28) becomes:

κmed = arg min
κ

(
Nr∑
i=1

f(xi)
| κ xi wᵀ

rand − 1 |
‖κ wrand‖

)
(5.31)

and

wmed = κmed wrand. (5.32)

All the aforementioned numerical approximations of the mean, xmean, the mode, xMAP ,

and the median hyperplane, wmed, concern an arbitrary pdf f(x). Respectively, for our

Bayesian AL techniques, these approximations will be used in each time step t of the

AL procedures in order to estimate hmean(t), hMAP (t) and pmed(t) of ft(h). One last

detail about the pmed(t) estimation is that it must have non negative elements, since

they denote power levels. Therefore, if (5.31) and (5.32) do not produce a wmed for

which wmed ≥ 0 holds, then a new wrand must be generated until a valid power vector

is delivered. For all these numerical approximations, a critical remark which must be

made is that the denominator term or normalization factor of (5.13) can be omitted

either because of fraction reduction in (5.27), (5.29), (5.30) or due to redundancy in

(5.31). Therefore, we can use the unnormalized version of (5.13) which basically is the

product of the collected likelihood functions and the uniform prior pdf instead of the

actual f values.



Chapter 5. Active Learning of the Interference Constraint with Uncertain ACK/NACK
Feedback in Cognitive Radio Networks 88

5.7 Results

In this section, we provide simulation results to compare the performance of the optimal

and suboptimal Bayesian AL methods presented in Section 5, the method we previously

developed in Section 4 and the ML based mechanism of [75], which is used as a bench-

mark technique. The mean and mode crossing and median AL methods are based on

MCMC sampling in the h space and they are numerical, accurate, but also require a

great amount of samples. The benchmark technique can also be considered as a Probit

MAP scheme for estimating the MAP point assuming again that the prior pdf is the

uniform one. Specifically, the only difference in the Probit MAP technique is that the

likelihood function, instead of the (5.11) form, is expressed as:

Pr[Z|h] =

 Φ
(

1−h pᵀ

σm

)
if Z = +1

Φ
(
h pᵀ−1
σm

)
if Z = −1

(5.33)

where Φ(x) = 1√
2π

∫ x
−∞ e

− z
2

2 dz is the standard Gaussian cdf and σm is the standard

deviation of the likelihood Probit model. Using this model, the MAP estimation becomes

a fast and easily solvable convex optimization problem using numerical algorithms, but

with less accuracy than the MCMC based MAP calculation.

In subsections 7.2 and 7.3, the figures show the channel estimation error depending

on the number of time flops where each time flop is the time period necessary for the

CBS to decode the ACK/NACK packet and design the SU probing power vector. The

interference channel gain vector estimation error metric at each time flop is defined

as the normalized root-square error ‖h(t)−h∗‖
‖h∗‖ and basically demonstrates the learning

efficiency of each method. The error figure results are obtained as the average of the error

metric defined earlier over 100 SU random topologies, which deliver 100 random draws of

interference channel gain vectors h∗. Subsequently, the figures of subsection 7.4 present

the aggregated interference caused to the PU during each AL process demonstrated in

this chapter. As all these AL methods progress in time, it is important to examine

the degradation of the PU link quality which can be measured as the induced harmful

interference. To this direction, we designed a metric which measures the PU interference

exceeding Ith and is defined as Iharm(t) = H (IPU (t)− Ith) ∗ IPU (t), where H is the

Heaviside step function. This parameter of harmful interference is also averaged over

the 100 SU random topologies to deliver the corresponding average metric Iharm,av(t).

This metric is a clear indicator of PU protection during the probing process of all the AL

schemes. Even though limiting the induced PU interference is not taken into account in

any of the presented probing design techniques, useful conclusions can be extracted for

PU protection.
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In Table 5.1, all the AL methods described in this chapter are collected with the cor-

responding abbreviations for identifying them in the performance figures and with the

equations or references required for their implementation or understanding. Later on,

the aforementioned techniques are compared and the resulting diagrams are divided in

two categories, the MCMC based and the computationally cheap ones. The computa-

tionally cheap techniques are the MVE-CPM based AL method, the one proposed in

Section 4 and the benchmark procedure [75]. This second category is expected to have

worse learning performance than the first one, but its AL candidates are recommended

for learning interference hyperplanes of high dimensions, where MCMC sampling fails.

Table 5.1: An overview of the examined AL methods

Method
Figure

Abbreviation

Related Equations

or References

MCMC based Median CPM MCMC Median (5.31) and (5.32)

MCMC based Mean CPM MCMC Mean (5.29) and (5.24)

MCMC based MAP CPM MCMC MAP (5.30) and (5.25)

MVE CPM MVE CPM (5.19), (5.20), (5.21), (5.22) and (5.26)

Probit based MAP CPM Probit MAP [75]

1-D PBA based AL method 1-D PBA [12]

An algorithmic description of all the Bayesian AL methods provided in this section is

presented in Algo. 4 where a limited ”budget” of NT probing attempts is considered.

Algorithm 4 Bayesian Active Learning for interference hyperplane estimation

Assume a uniform f0(h) or an initial ellipsoid {P0,hEC(0)}
for t = 0 : (NT − 1) do

1: Design p(t) using the related equations from Table 5.1 and probe the PU
2: Acquire uncertain observation Zt
3: Incorporate Zt to define ft+1(h|Z0:t) or update ellipsoid to {Pt+1,hEC(t+ 1)}

end for
Choose h∗ as hmean(NT ) or hEC(NT )

5.7.1 Simulation Parameters

As far as the technical parameters of the simulations are concerned, the PU receiver

is chosen to normally operate and acknowledge with ACK packets when interference is

below Ith = −97dBm, a limit unknown to the CRN. The examined scenarios consider

N = 5 and N = 10 SUs which are dispersed uniformly within a 3km range around the

PU receiver. The interference channel gains that are unknown to the CRN are assumed
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to follow an exponential path loss model gi = 1
d4i

, where di is the distance of the SUi

from the PU receiver in metres. The remaining scenario parameters are the maximum

transmit power, pmaxi , which is set to 23dBm for all SUs, and the probability of the

CBS correctly decoding the ACK/NACK packets, Pcd, which is selected to take three

values {0.7, 0.8, 0.9}.

Additionally, a practical consideration which must be taken into account is the necessary

number of samples for the MCMC based AL methods to be accurate, which in the

MCMC literature is not well defined. Using the MCMC convergence diagnostics method

of [105], we have concluded that Nr = 20000 is acceptable for median estimation error

of 1% in N = 5 dimensions. For the mean and mode estimations, the error is around

0.1% for the same Nr. In the case of N = 10, the corresponding errors are 1.6% for the

median regressor and 0.1% for the mean and the mode with Nr = 150000 samples, which

are similar to the previous ones. In [105], the estimation of a statistical feature of a pdf

using MCMCs is monitored as the sampling proceeds. Particularly, after each sample, a

series of cumulative sums of residuals concerning the feature of interest is constructed.

Subsequently, its smoothness is analysed in order to decide if the MCMC estimation

of this feature has converged and thus presume that it is safe to stop sampling. A

comparative review of the most popular MCMC convergence diagnostics tools can be

found in [106] where the advantages and disadvantages of each method are explained.

5.7.2 Estimation Performance of MCMC Based AL Methods

Initially, let us see in Fig. 5.3, 5.4 and 5.5 the performance of the first category AL

methods for N = 5 SUs. Here, it can be clearly seen that as Pcd is reduced, the three

AL techniques require more time flops, meaning probing attempts, to correctly estimate

h∗. Furthermore, the median based AL method outperforms in speed both the mean and

MAP based probing schemes. More specifically, in the case of Pcd = 0.9, Fig. 5.3, for an

estimation error 1% the median method achieves convergence in 105 time flops, whereas

the corresponding numbers of time flops for the mean and MAP based techniques are

116 and 158 respectively. This convergence gain is also observed for Pcd = 0.8 in Fig. 5.4

where in 200 time flops the median, mean and MAP based methods have corresponding

estimation errors 2.1%, 5.5% and 27% and for Pcd = 0.7 in Fig. 5.5 where in 500 time

flops the respective estimation errors are 1.8%, 2.9% and 23%.

Moreover, to clearly show that the median based method is faster than the mean and the

MAP based ones, we need to increase the problem dimensions, the number of the SUs.

The observed differences among the necessary probing attempts of the MCMC based

methods in order to reach h∗ within some certain error should be increased as the CRN
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Figure 5.3: Interference channel gain vector estimation error progress vs time of the
MCMC based AL methods for Pcd = 0.9 and N = 5 SUs

20 40 60 80 100 120 140 160 180 200
10

−2

10
−1

10
0

10
1

Time flops

E
st
im

a
ti
o
n
er
ro
r

 

 

MCMC Mean
MCMC MAP
MCMC Median

Figure 5.4: Interference channel gain vector estimation error progress vs time of the
MCMC based AL methods for Pcd = 0.8 and N = 5 SUs

grows. Otherwise, one could argue that there is a N limit beyond which the median

based technique is not optimal. The next diagram in Fig. 5.6 shows the estimation
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Figure 5.5: Interference channel gain vector estimation error progress vs time of the
MCMC based AL methods for Pcd = 0.7 and N = 5 SUs

performance of the first group AL methods for N = 10 SUs and Pcd = 0.9.

Compared to the diagram in Fig. 5.3, it is clearly shown that first of all the probing

attempts to achieve estimation error of 1% have increased for all methods which is

expected to happen, since in the N = 10 case h∗ has higher dimensions and therefore

more coefficients. Second, the convergence gains among the MCMC based methods have

also increased which experimentally validates that the higher the problem dimensions,

the larger the performance differences among these methods. Specifically, as seen in

Fig. 5.6, the median and mean based AL schemes achieve an estimation error of 1% at

208 and 252 time flops respectively, whereas the MAP based can hardly compete them.

This delivers us a convergence gain of 44 time flops between the median and the mean

based method for N = 10 SUs, while the convergence gain between the same schemes

for N = 10 SUs is 9 time flops as observed in Fig. 5.3.

However, as mentioned earlier, the high learning speed of the MCMC based probing

schemes comes with a penalty. The Hit and Run calculation of the median regressors

and the mean and MAP points requires the generation of many random samples in

the h space according to the pdf of each step. The number of these samples grows

exponentially with the problem dimensions and can be specified by the aforementioned

convergence diagnostics tool [105]. Particularly in our scenarios, as we emphasized in

subsection 7.1, for the N = 5 and N = 10 SU cases we used respectively Nr = 20000 and
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Figure 5.6: Interference channel gain vector estimation error progress vs time of the
MCMC based AL methods for Pcd = 0.9 and N = 10 SUs

Nr = 150000 samples. Therefore, in order for the CBS, where all these computations

take place, to design the SU probing power vectors an exponentially increasing to N

computational burden is demanded. This means that the larger the CRN a CBS must

coordinate, the more computations the CBS needs to perform in order to achieve fast

convergence performances.

5.7.3 Estimation Performance of Computationally Cheap AL Methods

To tackle the computational issue due to MCMC usage, we have also tested the perfor-

mance of the analytical MVE-CPM based AL technique we developed in this chapter,

of the Probit MAP scheme in [75] and of the Bayesian AL scheme from Section 4 which

is essentially based on Bayesian 1-D grid estimators and thus it is also computationally

effective.

At first, as seen in Fig. 5.7 and 5.8 for Pcd = 0.9 and Pcd = 0.8 respectively, the

AL mechanisms of this second category have worse convergence rate than the previous

ones, which was expected. Furthermore, when comparing the last three techniques, it

can easily be observed that the suboptimal MVE-CPM based AL method developed

in Section 5 converges faster than the other two ones. Particularly, for Pcd = 0.9 an

estimation error of 1% is achieved by the MVE-CPM in 398 time flops, whereas by the
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scheme of Section 4 in 452. Similarly, for Pcd = 0.8 the MVE-CPM learns h∗ in 708 time

flops, while the scheme of Section 4 in 765 time flops. The benchmark method in both

cases does not perform well and exhibits slow learning rate, basically because it uses an

additive Gaussian model for the feedback error resulting in approximating the likelihood

functions of (5.11) as Gaussian cdf’s, which is a very rough approximation. Here, we

must also mention that a reason for testing the MCMC based MAP method was to

prove that choosing the MAP point, or at least an almost exact estimation of it through

MCMC sampling, for AL purposes is not optimal. Furthermore, below the barrier of

Pcd = 0.8, these techniques do not manage to converge, hence results for Pcd = 0.7 have

not been included.
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Figure 5.7: Interference channel gain vector estimation error progress vs time of the
computationally cheap AL methods for Pcd = 0.9 and N = 5 SUs

Finally, in order to confirm that the performance ranking of the computationally cheap

AL methods does not change as the problem dimensions grow, the estimation error

diagram for N = 10 SUs and Pcd = 0.9 is given in Fig. 5.9. The Probit MAP scheme

appears to converge slowly, while the MVE-CPM based AL method and the scheme of

Section 4 achieve an estimation error of 2.3% in 1342 and 2000 time flops respectively.

Compared to the convergence gain between the two last techniques for N = 5 SUs as

shown in Fig. 5.7, in this case a greater gain is delivered in favour of the MVE-CPM

based AL method. Hence, it can be safely concluded that for this group, the MVE-CPM

based scheme is optimal.
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Figure 5.8: Interference channel gain vector estimation error progress vs time of the
computationally cheap AL methods for Pcd = 0.8 and N = 5 SUs
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Figure 5.9: Interference channel gain vector estimation error progress vs time of the
computationally cheap AL methods for Pcd = 0.9 and N = 10 SUs
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5.7.4 Interference induced by MCMC Based and Computationally Cheap

AL Methods

In this subsection, we provide the Iharm,av diagrams for MCMC based and computation-

ally cheap AL methods in Fig. 5.10 and Fig. 5.11 respectively. These diagrams enable

us to distinguish which AL methods are optimal in terms of protecting the PU, since an

important aspect of all the aforementioned probing schemes is the harmful PU interfer-

ence caused by each AL process. The results demonstrated here correspond to Pcd = 0.8,

firstly because the Iharm,av curves become more distinguishable as the convergence time

increases and secondly for the reason that we wish to compare the two method groups,

MCMC based and computationally cheap, but below the barrier of Pcd = 0.8, the com-

putationally cheap techniques do not manage to converge. Additionally, the number of

SUs is chosen to be N = 5 instead of N = 10, because specifically the results in Fig.

5.11 are easier to be discriminated. Hence, choosing Pcd = 0.8 and N = 5 SUs is suitable

for acquiring readable results and drawing solid conclusions.

Initially, in Fig. 5.10, we observe that after 200 time flops the mean and median AL

schemes induce interference close to the Ith = −97dBm, but still the median based

MCMC AL method provides better protection to the PU, since it causes less interfer-

ence to the PU through time. As far as the computationally cheap AL methods are

concerned, in Fig. 5.11 we first notice that the Probit MAP AL scheme, which is used

as a benchmark method, approaches the Ith = −97dBm slower than the MVE-CPM or

the 1-D PBA based AL method and also induces more harmful interference to the PU

overall. Moreover, the MVE-CPM compared to the 1-D PBA based method of Section

4 generates less harmful PU interference, without any high interference spikes and with

smoother convergence to the Ith = −97dBm. Conclusively, it can be derived from Fig.

5.10 and Fig. 5.11 that the MVE-CPM is worse than all MCMC based AL schemes,

but still comparable in terms of induced harmful interference, and that in general the

faster the estimation performance of an AL is, the less interference it causes to the PU.

Additionally, the more informative an AL process is, the closer to the PU interference

threshold it probes. This indicates that in an AL setting, even though the only prob-

ing design metric is the information gain, a probing power vector which delivers more

information is also more cautious towards the PU link operation.

5.8 Summary

In this chapter, we proposed probing methods which can be used by a centralized CRN

for PU interference constraint fast learning using uncertain ACK/NACK PU feedback.
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Figure 5.10: Iharm,av progress vs time of the MCMC based AL methods for Pcd = 0.8
and N = 5 SUs

The proposed techniques were inspired by the deterministic multivariate CPMs and the

univariate PBA. The first method we suggest, whose optimality is also proven, is a me-

dian based Bayesian AL design of the SU probing power vectors using MCMC sampling

and the second one is an MVE-CPM adaptation that is less accurate, but computation-

ally affordable and suitable for large CRN’s. The superior performance of these methods

compared to existing ones in the AL field [12, 75] was demonstrated through numerical

simulations in static channel scenarios for interference channel gain learning. Addition-

ally, results were given for the induced PU interference, which prove that the median

based Bayesian AL method and the MVE-CPM adaptation are more protective to the

PU among the MCMC based and the computationally cheap AL techniques respectively.
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Figure 5.11: Iharm,av progress vs time of the computationally cheap AL methods for
Pcd = 0.8 and N = 5 SUs



Chapter 6

Constrained Bayesian Active

Learning of the Interference

Constraint in Cognitive Radio

Networks

In this chapter, the target and the scenario setting of Chapter 5 is retained but with

two important differences. First, the acquired binary ACK/NACK packets are no longer

considered uncertain and second the AL process takes into consideration not only gaining

as more information as possible over time about the interference channel gains, but also

limiting the harmful probing-induced interference events. A provenly optimal solution

for this constrained AL problem is obtained and implemented with a sophisticated,

accurate and fast Bayesian Learning method, the EP. The effectiveness of this solution

is demonstrated through numerical simulations.

6.1 Introduction

In the CR literature, the binary ACK/NACK packet of the reverse PU link has ex-

tensively been used as a piece of feedback for estimating PU receiver maps [107], ap-

proximating the Lagrange multiplier of the interference constraint in decentralized PC

schemes [73] and maximizing or minimizing the power delivered respectively to the SU

or PU receiver by adapting the transmit antenna weights in BF scenarios [80]. In the

next section, we thoroughly describe other works where a purely learning objective is

adopted using this rudimentary piece of feedback. Another kind of feedback introduced

99
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in [9, 10] is the MCC information. Assuming that the PU link operates under an ACM

protocol, whenever the PU link quality deteriorates due to CR induced interference,

the PU changes its MCS to a more robust one. This PU reaction knowledge can also

be taken advantage of for interference channel gain learning purposes. In this chapter

though, the binary ACK/NACK feedback is taken into account to facilitate learning on

the CRN side.

Furthermore, a practical and convenient architecture design for the CRNs in most of

these cognitive scenarios is the CR users to be coordinated by a CBS using a dedicated

control channel [6]. This structure is also chosen here and denotes a centralized network

setting which is more applicable than a decentralized CRN where CR users are partially

independent and pass messages among each other.

6.1.1 Contributions

Herein, a Constrained Bayesian AL probing method suitable for centrally organized

CRNs is demonstrated which rapidly estimates the interference channel gains from mul-

tiple SU transmitters to a PU receiver while limiting under a threshold the number of

harmful probing power vectors over a certain time window. This case study assumes

that the PU link is operating under a communications protocol where the receiver sends

an ACK/NACK packet to the transmitter to acknowledge positively or negatively the

receipt of messages. A common practice in the CR regime which was adopted in Chapter

5 and here as well is the CRN to capture this packet from the PU feedback link and

exploit it to learn the SU-to-PU channel gains. In this scenario, obtaining this binary

feedback takes place in the CBS using a sensing antenna and a PU feedback packet de-

coder. This piece of information is utilized to implement a sequential probing technique

where the SUs constantly adjust their transmit power levels according to CBS directives

and monitor whether the ACK/NACK packet changes state.

This intelligent probing design aims to minimize the number of probing attempts which

are needed for learning the SU-to-PU channel gains over a time window subject to main-

taining the ratio of the harmful probing attempts under a limit. Hence, once the CRN is

deployed in the PU system’s environment, it may quickly learn the interference channels

without severely degrading the PU communication system and then optimize its oper-

ation while satisfying the PU interference constraint which depends on the SU-to-PU

channel gains. The introduced constraint in this AL process is of practical significance,

because it represents the time ratio during which the PU system cannot efficiently oper-

ate which is basically an average over time outage probability constraint, a well defined



Chapter 6. Constrained Bayesian Active Learning of the Interference Constraint in
Cognitive Radio Networks 101

design parameter in practical systems. This problem setting is tackled using the Con-

strained DP framework. Additionally, exactly because this probing process is sequential,

the probing vector design must be implemented fast and accurately at each time step. To

this direction, an advanced Bayesian Learning, the Expectation Propagation (EP) [108],

is implemented analytically for the first time to the authors’ knowledge to facilitate the

AL goal.

In summary, this chapter delivers specifically the following major contributions:

• The novel construction of a provenly optimal Constrained Bayesian AL method

designed for probing the PU and learning fast interference channel gains while

maintaining the ratio of harmful probing attempts under a limit.

• A computationally cheap, fast and analytical implementation of a sophisticated

and accurate Bayesian Learning technique, the Expectation Propagation, suitable

for the sequential probing design nature of our problem.

• Simulations show fast learning convergence rates for our Constrained Bayesian AL

method and most importantly adequate satisfaction of the harmful interference

constraint.

6.1.2 Structure

The remainder of this chapter is structured as follows: Section II reviews in detail prior

work related to cognitive learning scenarios using the ACK/NACK feedback of the PU

reverse link. Section III provides the system model and the problem formulation. Section

IV presents a fast and accurate Bayesian Learning method, the Expectation Propagation,

for interference channel gain learning. Section V elaborates on the optimal Constrained

Bayesian AL probing technique for interference channel gain learning. In Section VI, the

simulation results obtained from the application of the proposed technique are shown.

Section VII gives the concluding remarks and future work in this topic.

6.2 Related work

In the field of cognitive underlay methods, rudimentary PU feedback has been used for

learning purposes in PC and BF scenarios with different assumptions, protocols, system

models and constraints. Most commonly, this is acquired by eavesdropping the PU

reverse link channel and decoding the PU ACK/NACK packet. The general form of

these underlay CR scenarios is the optimization of an SU system metric, such as total
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CRN throughput, worst SU throughput or SU SINR, subject to QoS constraints for

PUs, e.g. SINR, data rate or outage probability [5] whose parameters the CRN needs to

learn. Hence, these study cases involve learning PU constraints which may be tackled

in a centralized manner by a central decision maker or in a decentralized way by each

SU individually. Most of the learning techniques are based on a simple iterative scheme

of probing the PU system and acquiring the feedback indicating how the PU operation

is affected.

In this group of CR learning works, learning the null space of the interference chan-

nel matrix in a MIMO underlay cognitive scenario has been tackled by the one-bit null

space learning algorithm [74], which essentially is a blind realization of the Cyclic Jacobi

Technique. Furthermore, in [61], a binary Spectrum Sensing feedback has been used to

enable CRs apply a Reinforcement Learning procedure, the Q-Learning, to regulate the

aggregated interference to the PU. Additionally, in [92], the centralized weighted sum-

rate maximization under average SU power and probabilistic PU interference constraints

has been considered. In this study, the optimization objective is achieved only after the

interference channel gain learning process is terminated, a very common tactic for han-

dling the aforementioned learning and optimization general structure of these problems.

In its learning part, the recursive Bayesian estimation is employed by using imperfect

CSI feedback which may potentially be as elementary as the binary ACK/NACK packet.

Next, we describe CR learning problems using binary PU feedback which aim at in-

telligently designing the SU probing attempt in order to learn as fast as possible the

unknown constraints of the CR operation, an AL design rationale. Initially, the authors

of [75] proposed a Cutting Plane Method based learning algorithm where probing the

PU system targets to both learning interference channel matrices and maximizing the

SNR at the SU receiver side in an underlay cognitive BF scenario. In the previous

chapter, whose content was published in [13], we focused only on learning the unknown

interference channel gains without optimizing any SU system metric. We proposed an

optimal multivariate Bayesian AL method for intelligent probing which incorporates the

probability of each feedback being correct and a suboptimal AL method ideal for CRNs

with many SUs.

At this point, we need to specify the broader connections of the AL problem setting which

led us to the methodology used in this work. AL is tightly connected to a statistical

framework called Bayesian Experimental Design [109] which in its turn is closely related

to the theory of optimal Decision Making (DM). Therefore, researchers from the DM

field have exploited a DP approach to sequentially design experiments [110]. In [111],

the problem of state tracking with active observation control is also tackled in a similar

fashion where a Kalman-Like state estimator is developed. Next, AL problems with
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constraints were developed by the research community which exploited Constrained DP

[48, 112] to actively classify human body states with biometric device sensing costs [113]

and to operate a sensor network with communication costs [114]. In this chapter, we

combine this Constrained DP framework with a sophisticated Bayesian Learning tool,

the EP. Moreover, we enhance the accuracy and the speed of the EP by utilizing recent

advances in Statistics from the Econometrics research community [115].

6.3 System Model and Problem Formulation

The system model of this chapter is identical to the one of Chapter 5 with the only

difference that acquiring the ACK/NACK packet from the PU reverse link is now ac-

curate. More specifically, a PU link and N SU links exist in the same frequency band

as shown in Fig. 6.1. Furthermore, a FDMA method allows SU links to operate in

separate sub-bands of the PU frequency band and without interfering with each other,

but still aggregately causing interference to the PU system. The structure of the CRN

is again a centralized one where the SUs are dictated their operational parameters and

coordinated by the CBS using a dedicated control channel. The examined scenarios in

this study are considering the PU, the sensing and the unknown interference channels to

follow the quasi static block fading model and similar to Chapter 5 we focus on channel

power gains g.

As far as the interference to the PU link is concerned, this is caused by the transmitter

part of each SU link to the receiver of the PU link. Taking into account that the SU

links transmit solely in the PU frequency band, the aggregated interference on the PU

side is defined as:

IPU = g pᵀ (6.1)

where g is the unknown interference channel gain vector [g1, ..., gN ] with gi being the

SUi-to-PU interference channel gain and p is the SU power vector [p1, ..., pN ] with pi

being the SUi transmit power. The SU power levels [p1, ..., pN ] are communicated from

the CBS to the SUs through the CRN control channel and they define the messaging

overhead of this network. Additionally, the SINR of the PU is defined as:

SINRPU = 10 log10

(
gPUpPU

IPU +NPU

)
dB (6.2)

where gPU is the PU link channel gain, pPU is the PU transmit power and NPU is the

PU receiver noise power.

In this chapter as well, we consider that the CBS is equipped with a secondary omni-

directional antenna only for sensing the signal of the PU reverse link and a module for
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Figure 6.1: The PU system and the CRN

decoding the binary ACK/NACK feedback. From this decoding process, the CRN is

able to obtain a feedback observation, Z, and infer whether the induced interference to

the PU, IPU , is harmful or not for the PU data packet reception by the PU receiver.

Assuming that NPU and the received power remain the same at the PU receiver side, the

minimum required SINRPU , γ, corresponds to a particular unknown maximum allowed

IPU value, Ith, below which an ACK is sent and over which an NACK is transmitted to

the PU transmitter. Subsequently, the observed feedback Z is defined as:

Z =


+1 if g pᵀ ≤ Ith

−1 if g pᵀ > Ith

. (6.3)

This piece of information will be exploited in the next sections to learn the PU interfer-

ence constraint determined as:

g pᵀ ≤ Ith. (6.4)

A necessary simplification of the information gained by (6.3) is that the gi gains nor-

malized to Ith are adequate for defining the interference constraint (6.4). Therefore, if
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h = g
Ith

, the observed feedback can also be written as:

Z =


+1 if h pᵀ ≤ 1

−1 if h pᵀ > 1

(6.5)

while the normalized version of (6.4) is expressed as:

h pᵀ ≤ 1. (6.6)

In the next section, we elaborate on a sophisticated and computationally fast Bayesian

ML method which exploits the observed feedback of (6.5) to infer (6.6). Later, in section

6.5, we propose a Constrained Bayesian AL method which achieves learning (6.6) using

the technique described in section 6.4. The particularity of this Constrained Bayesian AL

method is that it designs sequentially the SU probing power vectors in order to learn the

PU interference constraint with the least probing attempts possible while maintaining

a limited number of probing attempts which cause harmful interference.

6.4 Bayesian Learning using Expectation Propagation

In this section, we present a probabilistic way to learn the unknown normalized in-

terference channel gain vector, h, given a set of SU probing power vectors and the

corresponding ACK/NACK pieces of feedback. The true value of the unknown normal-

ized interference channel gain vector will be denoted as h∗ from here on. These unknown

parameters define the constraints (6.4) and (6.6) which constitute the PU interference

constraint. The data sets of the SU probing power vectors and the ACK/NACK pieces

of feedback basically represent the feature vector set and the label set respectively in the

ML sense and we demonstrate how to learn the linear classifier, or else the interference

hyperplane, denoted by (6.4) and (6.6) in the Bayesian way. The reason for following

this Bayesian direction will be clearly revealed in the next section, but let us just state

here that deriving a pdf for h∗ will be proven useful for the AL setting of this chapter.

In general, Bayesian ML uses the Bayes rule as the main knowledge extraction tool. To

describe in detail the Bayes rule application, first we need to define the feedback, or

label, conditional likelihood in this process as the probability of Z conditioned on the
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unknown parameter h∗:

Pr[Z|h = h∗,pᵀ] =


1 if Z = +1 and h pᵀ ≤ 1

0 if Z = +1 and h pᵀ > 1

1 if Z = −1 and h pᵀ > 1

0 if Z = −1 and h pᵀ ≤ 1

. (6.7)

This expression is actually a threshold likelihood metric determined by the feedback

observation, Z, and the power vector p. A similar expression was given in Chapter 5

which also included the probability of correctly decoding the binary feedback. We may

also describe the likelihood function form based on the “version space duality” introduced

by Vapnik [40]. According to this, when we deal with learning linear classifiers, feature

vectors are hyperplanes in the parameter or version space and vice versa. Hence, when

a learning procedure tries to estimate the parameters of a hyperplane, the version, it

actually tries to localize a point in the parameter or version space. In our problem,

the feature space corresponds to the power vector space and the version space to the h

space. In addition, by combining a power vector, or feature vector, and its respective

piece of ACK/NACK feedback, or label, an inequality is obtained which in the h space,

or version space, represents a linear inequality. Therefore, the likelihood function may

also be thought of as a halfspace defined by p and Z or alternatively as a multivariate

form of the Heaviside step function in the version space.

Now, let us assume that following t probing attempts, p0:(t−1) = {p(0), ..,p(t− 1)}, the

CBS has observed t pieces of ACK/NACK feedback, Z0:(t−1) = {Z0, .., Z(t−1)}, which

all together constitute the data known until the (t− 1) power vector and ACK/NACK

feedback pair, Dt−1. After a new probing power vector p(t) and a piece of feedback, Zt,

the h posterior pdf according to the recursive form of the Bayes rule is expressed as:

ft+1(h) = Pr[h = h∗|Z0:t,p0:t] = Pr[h = h∗|Dt] =

Pr[Zt|h = h∗,p(t), Dt−1] Pr[h = h∗|p(t), Dt−1]

Pr[Zt|p(t), Dt−1]
(6.8)

which indicates the probability of where h∗ lies in the h space given Dt. In (6.8), we

also show the equivalence of the ft+1(h) pdf with the condition Dt which represents the

knowledge gained until the t step. Here, a necessary remark about the first term of the

numerator in (6.8) must be made which simplifies (6.8) and which will also help us later.

The observation Zt is conditionally independent of the previous observations Z0:(t−1)

and probing power vectors p0:(t−1) given h = h∗ and p(t) and therefore Pr[Zt|h =

h∗,p(t), Z0:(t−1),p0:(t−1)] can be written as Pr[Zt|h = h∗,p(t)] which is basically the

likelihood expression in (6.7). Moreover, the second term of the numerator, Pr[h =

h∗|p(t), Z0:(t−1),p0:(t−1)], can be written as Pr[h = h∗|Z0:(t−1),p0:(t−1)] which is basically
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the prior pdf, ft(h). This happens because our knowledge about h∗ given Z0:(t−1) and

p0:(t−1) does not change by additionally knowing p(t). After these simplifications the

following form of (6.8) is delivered:

ft+1(h) =
Pr[Zt|h = h∗,p(t)] ft(h)

Pr[Zt|p(t), Dt−1]
. (6.9)

The denominator term is called the marginal likelihood and even though it is difficult to

be calculated, it is actually a normalization constant which guarantees that the posterior

pdf integrates to 1. Usually, it is computed as the integral of the numerator in (6.9)

which in our case is an N dimensional integration over the h region and computationally

intractable. A general assumption in Bayesian ML is the prior pdf f0(h) to be a uniform

non informative pdf [98], which is the maximum entropy pdf for random variables within

a bounded domain and therefore guarantees that no specific value of h is favored in the

beginning of this learning process. The derived relation (6.9) is identical to the recursive

form of the Bayes rule in Chapter 5, but with a different form of likelihood functions.

Alternatively, the posterior pdf expressed in (6.9) can be written in a non-recursive form

as:

ft+1(h) =

t∏
i=0

Pr[Zi|h = h∗,p(i)]

t∏
i=0

Pr[Zi|p(i), Di−1]

f0(h) (6.10)

where again the denominator term is a normalization factor whose computation will

be shown unnecessary. The reason we first expressed the posterior pdf in a recursive

form is that it will be proven useful in the next section due to the sequential nature

of the AL process. Moreover, in Bayesian ML, we should not always take for granted

that the posterior pdf is proportional to the likelihood function product times the prior

pdf which indeed holds for conditionally independent samples. This is the reason why

we should always start from decomposing probabilistically our data set in the Bayes

rule expression and first derive its recursive form. More importantly, it is necessary

for our AL setting, which relates to Bayesian Experimental Design, to show in detail

the conditional independences occurring even when training samples, here our power

probing vectors, are judiciously designed based on previous training samples and their

labels.

Now, let us rewrite (6.10) in a more compact way in order to focus solely on the likelihood

function product and thus approximate it using EP [108]. Each likelihood function can

be expressed as li(h) = Pr[Zi|h = h∗,p(i)] and hence the likelihood function product of

(6.10) is now
t∏
i=0

li(h). This product is basically a product of halfspace indicator func-

tions and it defines along with f0(h) and the denominator term of (6.10), the marginal
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likelihood, a uniform pdf with a polyhedral support region. This pdf is not easy to be

handled and its statistical properties, like its mean or covariance, are not easily com-

puted. In the previous chapter, this was tackled by using MCMC sampling methods,

which are accurate but computationally expensive as the dimensions of the version space

increase.

In this section, we show how to approximate
t∏
i=0

li(h) and thus the deriving posterior

pdf using EP. The rationale of the EP is to approximate this product by finding an

approximation l̃i(h) for each li(h). This is done by initializing arbitrarily the likelihood

function approximations and iteratively filtering each one of them considering the rest

approximations stable. This filtration process is based on minimizing the KL divergence

of lj(h)
t∏

i=0,i 6=j
li(h) and l̃j(h)

t∏
i=0,i 6=j

li(h) and it is performed enough times to ensure

that all l̃i(h) have been corrected sufficiently so that
t∏
i=0

l̃i(h) approximates
t∏
i=0

li(h) well

enough. A detailed algorithmic description of EP is presented in Algo. 5.

Algorithm 5 The Expectation Propagation algorithm

Initialize arbitrarily {l̃0(h), l̃1(h), ..., l̃t(h)}
for k = 1 : NEP do

for j = 0 : t do
l̃j(h) :=

arg min
l̃j(h)

KL

(
lj(h)

t∏
i=0,i 6=j

l̃i(h) ‖ l̃j(h)
t∏

i=0,i 6=j
l̃i(h)

)
end for

end for

Usually, the outer loop iterations of EP, NEP , are chosen to be maximum 5, which is

also used in this work. Nevertheless, a more elaborate stopping criterion could be used

such as a limit on the KL divergence between the resulting product
t∏
i=0

l̃i(h) of one

step of the outer loop and the previous one. In Bayesian ML, this sophisticated iterative

filtration for likelihood function approximations has proven to be a very accurate method

for approximate inference. However, to the authors’ knowledge, all the existing EP

approaches rely on numerical quadratures or independence assumptions between the

latent variables to facilitate the computations. Next, we describe in more detail the EP

implementation and we show how to tackle analytically the KL divergence minimization,

the critical step of the EP algorithm, without independence assumptions between the

latent variables. This will lead to greater accuracy and faster implementation of this

sophisticated tool.

So far, an abstract description of the EP algorithm has been given and its basic principles

have been explained. In general, each approximation in the EP algorithm is considered

to have the form of a multivariate normal pdf, a strategy which is also followed here.
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Consequently, the product of multivariate normal pdf’s, which appears in the KL di-

vergence minimization step, based on Gaussian identities is also a multivariate normal

pdf. More specifically, if l̃i(h) = N (h;µi,Σi) for i = 0, ..., t, then their product is

an un-normalized multivariate normal pdf proportional to a multivariate normal pdf,

N (h;µtot,Σtot), where assuming vectors are row vectors:

Σ−1
tot =

t∑
i=0

Σ−1
i (6.11)

and

µtot =

(
t∑
i=0

µiΣ
−1
i

)
Σtot. (6.12)

Hence, the second part of the KL divergence in the core stage of the EP method,

l̃j(h)
t∏

i=0,i 6=j
l̃i(h), and the approximation product in the first part,

t∏
i=0,i 6=j

l̃i(h), are basi-

cally un-normalized multivariate normal pdf’s. For notation simplification,
t∏

i=0,i 6=j
l̃i(h),

which is called the cavity function, will be symbolized from now on as l̃−j(h). Now, as

far as the KL divergence minimization is concerned, when Gaussian approximations are

used, then this is achieved by moment matching. A similar theoretical result is also true

for all approximations in the exponential family. Moment matching means that the two

functions whose KL divergence needs to be minimized must have the same moments and

since the second function is an un-normalized multivariate normal one, this results to

matching the 0th, 1st and 2nd moments of the two parts. This basically indicates that

the function to be refined in each EP step, l̃j(h), must be adjusted so that the moments

of l̃j(h) l̃−j(h) are equal to the ones of lj(h) l̃−j(h).

This is the breaking point of the EP algorithm. Calculating the moments of the true

likelihood function and the cavity function product could not be implemented so far

analytically or in a computationally cheap way. Researchers have tried numerical inte-

gration or independence assumptions to simplify the results, but no exact and analytical

solution has ever been delivered for basic likelihood function forms. Now, let us examine

the function lj(h) l̃−j(h). First, we have already shown that l̃−j(h) is an un-normalized

multivariate normal function and we have described lj(h) as a halfspace indicator func-

tion. Thus, lj(h) l̃−j(h) is actually a one-side truncated multivariate Gaussian and

what we need is to calculate its 0th, 1st and 2nd moments, q, q and Q. To improve the

continuity of this manuscript, the analytical moment calculation of a one-side truncated

multivariate Gaussian can be found in Appendix B.
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Once these moments are computed, l̃j(h) is defined using (6.11) and (6.12) as a multi-

variate normal pdf with covariance matrix:

Σ−1
j = Q−1 −Σ−1

−j (6.13)

and mean:

µj =
(
q Q−1 − µ−j Σ−1

−j

)
Σj . (6.14)

We also need to highlight that matching the 0th moments does not offer essentially

better approximations, because multiplying l̃j(h) with a constant may lead to unwanted

results in this iterative filtration process. Still, we mentioned this earlier for the sake of

completeness and explained it by showing that the product of multivariate normal pdf’s

is un-normalized.

In the end of this section, we elaborate on the prior pdf, f0(h). Most commonly, the prior

pdf is chosen to represent a prior belief about h∗. Moreover, it should also facilitate us

computationally in order to have a well defined posterior pdf. If the likelihood functions

are approximated with Gaussian ones, then a reasonable choice for f0(h) is also to be

Gaussian. Here though, we use another function to show exactly the potential of EP.

A closer to reality choice for f0(h) is to define it as a uniform pdf over some bounding

box in the h space. This could represent for example minimum and maximum possible

values for h∗. Thus, the prior could be described as a hyper-rectangle which can also be

written as the product of 2N halfspace indicator functions and therefore participate in

the EP process.

6.5 Constrained Bayesian Active Learning of Interference

Channel Gains

The goal of this chapter is to design SU probing power vectors, p, using observations of

ACK/NACK feedback, Z, in order to learn as fast as possible the unknown normalized

interference channel gain vector, h∗, while ensuring that the number of probing power

vectors causing harmless interference over a time horizon is always above a certain limit.

This means that assuming a limited number of NT probing attempts, {p(0), ...,p(NT −
1)} and their corresponding pieces of feedback, {Z0, ..., ZNT−1}, we wish to minimize the

uncertainty of our knowledge about h∗, formally represented by the entropy of fNT (h),

subject to maintaining the sum of Zt = −1, where t = 0, ..., NT − 1, below a threshold

and which is equivalent to controlling the sum of Zt = +1, where t = 0, ..., NT −1, above

a corresponding limit. This practical constraint is essential for the PU system operation,

since the actual deterioration of its link does not depend on the total or average amount
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of interference over time caused by the CRN, but on the time ratio during which harmful

interference occurs because of SU probing attempts.

In the previous section, we showed the recursive Bayesian update (6.9) which modifies

our knowledge about h∗ step by step. This will be our main tool for handling the

iterative nature of this proactive probing strategy. Next, we investigate the optimal

design policy of a SU probing power vector, which represents a hyperplane in the h

space, that should be chosen in each step of this recursive Bayesian estimation process

in order to optimally reduce the posterior pdf entropy after NT probing power vectors,

{p(0), ...,p(NT − 1)}, with their corresponding pieces of feedback, Z0:(NT−1), subject to
NT−1∑
t=0

1{Zt=+1} ≥ α, where 1{..} is the indicator function and α is the protection time ratio

during which the PU link operation must remain undisrupted. The constraint can also

be written as
NT−1∑
t=0

Zt ≥ (2α− 1)NT . This multistage constrained optimization problem

can be expressed in the spirit of DP [116] as finding the optimal probing rule that maps

{f0, .., fNT−1} to {p(0), ..,p(NT − 1)} in order to achieve the maximum average entropy

reduction from the f0(h) to the fNT (h) pdf subject to the aforementioned constraint.

In a formal manner, we seek the optimal probing design policy π∗0:(NT−1) = {p(0) =

µ∗(f0), ..,p(NT − 1) = µ∗(fNT−1)} which solves the following constrained optimization

problem over all possible feedback sequences derived by this policy:

max
π

Eπ[H(f0)−H(fNT )|p(NT − 1), DNT−2] (6.15a)

s.t. Eπ

[
NT−1∑
t=0

Zt|p(NT − 1), DNT−2

]
≥ (2α− 1)NT (6.15b)

where H is the entropy operator of a pdf. This approach is a constrained equivalent of

the proof of Theorem 5.5.1 given in Appendix A for Chapter 5. The objective function

of (6.15) which is the conditional expectation of the information gain of an arbitrary

policy π can also be expressed in an additive form:

Eπ[H(f0)−H(fNT )|p(NT − 1), DNT−2] =

Eπ[H(f0)−H(f1)|p(0) + ...

+ Eπ[H(fk−1)−H(fk)|p(k − 1), Dk−2 + ...

+ Eπ[H(fNT−1)−H(fNT )|p(NT − 1), DNT−2]...] (6.16)

where we added and subtracted all the entropy terms of the intermediate pdf’s to form

an additive gain over time and similarly the left part of the constraint of (6.15) can be
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written as:

Eπ

[
NT−1∑
t=0

Zt|p(NT − 1), DNT−2

]
=

Eπ[Z0|p(0) + ...+ Eπ[Zk−1|p(k − 1), Dk−2 + ...

+ Eπ[ZNT−1|p(NT − 1), DNT−2]...]. (6.17)

After we invert the entropy subtractions, in order to reform the optimization problem

into a minimization one, and move the left part of (6.15b) on the right side, we create

the Lagrangian of this multistage problem as:

Jλ0:(NT−1) = Eπ[H(f1)−H(f0)− λZ0|p(0) + ...

+ Eπ[H(fk)−H(fk−1)− λZk−1|p(k − 1), Dk−2 + ...

+ Eπ[H(fNT )−H(fNT−1)− λZNT−1|p(NT − 1), DNT−2]...]+

+ λ(2α− 1)NT (6.18)

where λ is the KKT multiplier related to (6.15b) and which has to be non-negative. Now,

we need to minimize Jλ0:(NT−1) for an abstract λ and we can do so without including the

last term λ(2α − 1)NT , since it is independent of the policy π. The new form of the

Lagrangian will thus be Λλ0:(NT−1) = Jλ0:(NT−1) − λ(2α − 1)NT . Additionally, to bring

our problem closer to the DP formulation, we define the subtail problem Lagrangian or

Lagrangian-to-go, Λλk:(NT−1), as:

Λλk:(NT−1) =

Eπ[H(fk+1)−H(fk)− λZk|p(k), Dk−1 + ...

+ Eπ[H(fNT )−H(fNT−1)− λZNT−1|p(NT − 1), DNT−2]...]. (6.19)

and we denote its minimum value as Λ∗λk:(NT−1). By employing the principle of optimality,

we have:

Λ∗λk:(NT−1) =

min
π

Eπ
[
H(fk+1)−H(fk)− λZk|p(k), Dk−1 + Λ∗λ(k+1):(NT−1)

]
(6.20)

and based on this, we may proceed with the backward induction logic of DP.

Before we continue though with the DP solution of our constrained multistage problem,

let us first redefine the multivariate cumulative distribution function (cdf) in a more

”natural” than the usual way. Assuming a multivariate pdf f in S ⊆ RN and a vector

x = [x1, ..., xN ], usually its cdf F is defined as F (x) = Pr[X1 ≤ x1, ..., XN ≤ xN ] which
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is the joint probability of its components X1, ..., XN , that are scalar valued random

variables, being less or equal than the values x1, ..., xN respectively. Nevertheless, this

definition is not geometrically smooth and commonly used just because it is easy to be

computed in case of independent x components. Here, we describe it more strictly and

not just by using a ”box limit”-like definition. Assuming a hyperplane in Rn:

x wᵀ = 1 (6.21)

we alternatively determine the cdf C of a multivariate pdf f as:

C(w) = Pr[x wᵀ ≤ 1] =

∫
x wᵀ≤1

f(x) dVx. (6.22)

For our case study, this means that the posterior cdf after the (t − 1) step, Ct(p), is

expressed as:

Ct(p) = Pr[h pᵀ ≤ 1|h = h∗, Dt−1] =

∫
h pᵀ≤1

ft(h) dVh (6.23)

and the support region of ft(h) is limited to the positive orthant of the h space, RN+ ,

because the interference channel gains can only have non negative values.

Further on, we elaborate on the marginal likelihood of (6.9). In the event of Zt = +1,

the conditional probability Pr[Zt|p(t), Dt−1] can also be written according to the Bayes

sum rule, the product rule and the conditional independences from Section IV as in
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(6.24).

Pr[Zt = +1|p(t), Dt−1] =

∫
RN+

Pr[Zt = +1,h = h∗|p(t), Dt−1] dVh =

∫
RN+

Pr[Zt = +1|h = h∗,p(t), Dt−1] Pr[h = h∗,p(t), Dt−1]

Pr[p(t), Dt−1]
dVh =

∫
RN+

Pr[Zt = +1|h = h∗,p(t), Dt−1] Pr[h = h∗|p(t), Dt−1]dVh =

∫
h pᵀ≤1

Pr[Zt = +1|h = h∗,p(t), Dt−1] Pr[h = h∗|p(t), Dt−1]dVh+

∫
h pᵀ>1

Pr[Zt = +1|h = h∗,p(t), Dt−1] Pr[h = h∗|p(t), Dt−1]dVh =

∫
h pᵀ≤1

Pr[Zt = +1|h = h∗,p(t), Dt−1] Pr[h = h∗|Dt−1]dVh+

∫
h pᵀ>1

Pr[Zt = +1|h = h∗,p(t), Dt−1] Pr[h = h∗|Dt−1]dVh =

∫
h pᵀ≤1

Pr[Zt = +1|h = h∗,p(t), Dt−1] ft(h)dVh+

∫
h pᵀ>1

Pr[Zt = +1|h = h∗,p(t), Dt−1] ft(h)dVh =

∫
h pᵀ≤1

Pr[Zt = +1|h = h∗,p(t)] ft(h)dVh +

∫
h pᵀ>1

Pr[Zt = +1|h = h∗,p(t)] ft(h)dVh =

∫
h pᵀ≤1

ft(h)dVh = Ct(p(t)) (6.24)

A similar expression can also be derived for the Zt = −1 event:

Pr[Zt = −1|p(t), Dt−1] = 1− Ct(p(t)). (6.25)

Moving on with our DP solution, we apply the backward induction logic of DP and first

solve min
π

Eπ
[
Λλ(NT−1):(NT−1)

]
which is equivalent to:

min
p(NT−1)

Eπ[H(fNT )−H(fNT−1)− λZNT−1|p(NT − 1), DNT−2]. (6.26)

Now, let us first evaluate the term Eπ[H(fNT )−H(fNT−1)−λZNT−1|p(NT −1), DNT−2],

where Eπ[.] is basically the expectation over the two possible observations ZNT−1 = +1
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and ZNT−1 = −1, by using (6.9) and the equivalence of the conditions DNT−2 and fNT−1:

Eπ[H(fNT )−H(fNT−1)− λZNT−1|p(NT − 1), fNT−1] =

Eπ [Eh [− log(fNT−1)]]− Eπ [Eh [− log(fNT−1)]] +

+ Eπ[Eh [− log(Pr[ZNT−1|h = h∗,p(NT − 1)])] |p(NT − 1), fNT−1]−

− Eπ[Eh [− log(Pr[ZNT−1|p(NT − 1), fNT−1])] |p(NT − 1), fNT−1]−

− λEπ[ZNT−1|p(NT − 1), fNT−1]. (6.27)

The last three remaining terms can be further processed. With the help of (6.7) for

Pr[ZNT−1|h = h∗,p(NT − 1)], the third term can be analyzed as:

Eπ[Eh [− log(Pr[ZNT−1|h = h∗,p(NT − 1)])] |p(NT − 1), fNT−1] =

Eπ [Eh [− log(Pr[ZNT−1|h = h∗,p(NT − 1)])] |fNT−1] =

Eπ [− log(Pr[ZNT−1|h = h∗,p(NT − 1)])] = 0 (6.28)

where we exploited the fact that ZNT−1 does not depend on fNT−1 given h = h∗ and

p(NT − 1). Additionally, by using (6.24) and (6.25) which again lead us to omit Eh,

since Pr[ZNT−1|p(NT −1), fNT−1] is stable over the h domain, the fourth term becomes:

Eπ[Eh [− log(Pr[ZNT−1|p(NT − 1), fNT−1])] |p(NT − 1), fNT−1] =

Eπ [− log(Pr[ZNT−1|p(NT − 1), fNT−1])] =

− CNT−1(p(NT − 1)) log(CNT−1(p(NT − 1)))−

− (1− CNT−1(p(NT − 1))) log((1− CNT−1(p(NT − 1)))). (6.29)

Finally, we elaborate on the fifth term:

λEπ[ZNT−1|p(NT − 1), fNT−1] =

λ[(+1) Pr[ZNT−1 = +1|p(NT − 1), fNT−1] + (−1) Pr[ZNT−1 = −1|p(NT − 1), fNT−1]] =

λ[CNT−1(p(NT − 1))− (1− CNT−1(p(NT − 1)))]. (6.30)

We observe that minimizing (6.27) using (6.28), (6.29) and (6.30) over p(NT − 1) is

equivalent to minimizing (6.27) over CNT−1, since the term p(NT − 1) appears only

inside CNT−1(.). Consequently, this results to the following problem where we include

(6.28), (6.29) and (6.30) in (6.27) and simplify the notation for the sake of space with

the help of C = CNT−1(p(NT − 1)):

Λλ(NT−1):(NT−1) = C log(C) + (1− C) log(1− C)− λ(2C − 1) (6.31)
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and thus (6.26) becomes:

min
C

[C log(C) + (1− C) log(1− C)− λ(2C − 1)]. (6.32)

Solving (6.32) by imposing
∂Λλ

(NT−1):(NT−1)

∂C = 0 results to the value of C = e2λ

1+e2λ
which

delivers Λ∗λ(NT−1):(NT−1) = λ − log(1 + e2λ). We notice that this minimum value of the

Lagrangian-to-go Λλ(NT−1):(NT−1) is a constant value and independent of the time step.

This allows us to state that by moving backwards in time at the (k + 1) time step, the

accumulated constant values of the of the Lagrangian’s-to-go yield the following:

Λ∗λ(k+1):(NT−1) = ((NT − 1)− (k + 1) + 1)
(
λ− log(1 + e2λ)

)
. (6.33)

Proceeding with our DP solution, we now solve (6.20) using the same procedure as before

and we obtain that:

Λ∗λk:(NT−1) = (NT − k)
(
λ− log(1 + e2λ)

)
(6.34)

which for k = 0 gives Λ∗λ0:(NT−1) = NT

(
λ− log(1 + e2λ)

)
. Consequently, the dual func-

tion q(λ) of (6.15), which is always concave, is defined as:

q(λ) = J∗λ0:(NT−1) = Λ∗λ0:(NT−1) + λ(2α− 1)NT =

= NT

(
λ− log(1 + e2λ)

)
+ λ(2α− 1)NT (6.35)

which enables us to rewrite (6.15) as:

max
λ

q(λ) (6.36a)

s.t. λ ≥ 0 (6.36b)

and solve this by imposing ∂q(λ)
∂λ = 0 which delivers λ∗ = 0.5 log( α

1−α). For α ≥ 0.5, which

is the lower reasonable limit of the time ratio during which the CRN probes protectively

to the PU system, we always have λ∗ > 0 and therefore the constraint (6.15b) is active

because of the complementary slackness condition. Finally, we conclude by using λ∗

that the optimal probing design policy must satisfy Ct(p(t)) = α or equivalently p(t) =

µ∗(ft(h)) = C−1
t (α) and for this reason π∗0:(NT−1) = {p(0) = C−1

0 (α), ..,p(NT − 1) =

C−1
NT−1(α)}.

At this point, we must emphasize some aspects of the optimal policy. This constrained

DP problem must somehow take into account the actual obtained pieces of feedback and

not just the expected ones derived from the probabilistic formulation of our problem.

This is similar to inventory control problems with stock constraints where we may know
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probabilistically the product demands over time, but we also need to include into the

inventory control the actual demands already arrived before each time step. This means

that the protection time ratio α should be adapted to the past feedback observations.

Now, let us take a closer look to the optimal policy at some arbitrary time step k.

The multistage optimization problem in time step k has a form similar to the one of

(6.15), only that this time we are interested in maximizing the information gain in the

remaining steps and still maintaining the overall violation constraint:

max
π

Eπ[H(fk)−H(fNT )|p(NT − 1), DNT−2] (6.37a)

s.t. Eπ

[
NT−1∑
t=0

Zt|p(NT − 1), DNT−2

]
≥ (2α− 1)NT (6.37b)

We observe that the constraint (6.37b) can also be written as:

Eπ

[
NT−1∑
t=k

Zt|p(NT − 1), DNT−2

]
≥ (2α− 1)NT −

k−1∑
t=0

Zt (6.38)

since the pieces of feedback {Z0, ..., Zk−1} already happened. If we manage to refor-

mulate the left hand side of (6.38) in the fashion of (6.15b), then the problem defined

by (6.37a) and (6.38) is solved with the same optimal policy derived for (6.15), but

with a different α. Specifically, we wish the left hand side of (6.38) to have the form

(2αk − 1)(NT − k) which by equating the two expressions generates the following αk

value:

αk =

2αNT − k −
k−1∑
t=0

Zt

2(NT − k)
(6.39)

Therefore, the overall optimal adaptive policy can now be expressed as π∗0:(NT−1) =

{p(0) = C−1
0 (α0), ..,p(NT − 1) = C−1

NT−1(αNT−1)} where α0 = α.

Additionally, we need to point out an important issue in AL which was emphasized in

our previous work [10, 13], the necessity of exploration. Reducing the uncertainty of

our knowledge about h∗ must be performed by approaching this exact value uniformly

from all directions. This means that the training samples in an AL process, in this

case the power probing vectors, must be diversified and this can be accomplished by

choosing hyperplanes in the version space of random direction uniformly. Therefore, we

need first to define how to uniformly sample a random direction θ, where θ is a unit

vector. This problem is related to the uniform unit hypersphere point picking which

has been thoroughly described in [10, 13]. Hence, in order to produce a power vector

which represents a hyperplane of random direction, p(t) must be parallel to a randomly
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generated θ, p(t) = βθ where β ∈ R, and it must also satisfy Ct(p(t)) = α according to

our previous analysis. In a formal manner, this is expressed using (6.22) as:∫
h βθᵀ≤1

ft(h) dVh = Ct(βθ) = α. (6.40)

At this point, we make use of the Gaussian approximation of each step’s posterior pdf

which we developed in Section IV with the help of EP. In accordance with that result,

ft(h) can be approximated by the normalized version of
t−1∏
i=0

l̃i(h) which we denote as

f̃t(h). So, (6.40) now becomes: ∫
h βθᵀ≤1

f̃t(h) dVh = α (6.41)

With the help of the transformation scheme described in Appendix B and after some

processing, we obtain that:

p(t) = βθ (6.42)

where β = 1
F−1(α;c1,c2)

and F−1(.) is the inverse cdf of the univariate normal pdf with

mean c1 and variance c2. Furthermore, c1 = θ µ̃ᵀ(t), where µ̃(t) is the mean row vector

of f̃t(h), and c2 =
N∑
i=1

θiθ(Σ̃:,i(t))
ᵀ , where Σ̃:,i(t) is the ith column of the covariance

matrix of f̃t(h). Moreover, all the coordinates of p(t), which represent power levels,

must be non negative, otherwise a new θ has to be generated until a valid power vector

is produced.

6.6 Results

In this section, we provide simulation results to demonstrate the performance of the

Constrained Bayesian AL method presented in this chapter. The figures of this section

show the channel estimation error depending on the number of time flops where each

time flop is the time period necessary for the CBS to decode the ACK/NACK packet,

design the SU probing power vector and probe the PU system. The interference channel

gain vector estimation error metric at each time flop is defined as the normalized root-

square error ‖µ̃(t)−h∗‖
‖h∗‖ similarly to the previous chapters. The error figure results are

obtained as the average of the error metric defined earlier over 100 SU random topologies,

which deliver 100 random draws of interference channel gain vectors h∗. Moreover, each

figure of subsection 6.6.2 is followed by a metric which examines the protection of the

PU link quality as the proposed method progresses in time. This can be measured

by the time ratio during which the induced interference caused to the PU system is



Chapter 6. Constrained Bayesian Active Learning of the Interference Constraint in
Cognitive Radio Networks 119

harmless. This is actually the time ratio during which pieces of feedback Zt = +1 occur,
NT−1∑
t=0

1{Zt=+1}

NT
. This parameter of harmless interference is also averaged over the 100 SU

random topologies to deliver the corresponding average protection metric αsim.

6.6.1 Simulation Parameters

As far as the technical parameters of the simulations are concerned, the PU receiver

is chosen to normally operate and acknowledge with ACK packets when interference is

below Ith = −97dBm, a limit unknown to the CRN. The examined scenarios consider

N = 5 and N = 10 SUs which are dispersed uniformly within a 3km range around the

PU receiver. The interference channel gains that are unknown to the CRN are assumed

to follow an exponential path loss model gi = 1
d4i

, where di is the distance of the SUi

from the PU receiver in meters. Additionally, the protection time ratio α takes the

following values {0.5, 0.7, 0.9} where α = 0.5 basically means that protecting the PU is

not considered at all. The remaining scenario parameter is the ”budget” of NT probing

attempts which can also be considered as the pilot time window and it is assumed to be

NT = 100 for the N = 5 SU case and NT = 200 for the N = 10 SU case.

6.6.2 Estimation Performance of the Constrained Bayesian AL Method

Initially, let us see in Fig. 6.2, 6.3 and 6.4 the performance of the proposed Constrained

Bayesian AL technique for N = 5 SUs. Here, it can be clearly seen that as α is increased,

more probing attempts are required to correctly estimate h∗. More specifically, in the

case of α = 0.5, Fig. 6.2, for an estimation error 1%, convergence is achieved in 72 time

flops, whereas the corresponding number of time flops for α = 0.7 is 89 as it can be seen

in Fig. 6.3. Furthermore, the convergence of our method becomes worse for α = 0.9 as

shown in Fig. 6.4, where after 100 probing attempts, the estimation error is 6%. These

results prove that as the design parameter of PU protection α increases, the CBS designs

less harmful for the PU system probing power vectors, but also less informative about

h∗.

As far as the αsim metric for these three cases is concerned, for α = 0.5, α = 0.7

and α = 0.9, the resulting αsim values are αsim = 0.49, αsim = 0.68 and αsim = 0.87

respectively. The small differences between the target values of the protection time ratio,

α, and the simulated ones, αsim, appear because of the inaccurate estimation of the each

step posterior pdf using the EP. Even though EP is a very accurate, sophisticated and

fast method for density estimation, the approximated posterior pdf’s still have some
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deviation from the real ones. This results in computing power vectors which satisfy

(6.41) but not its exact version, (6.40).
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Figure 6.2: Interference channel gain vector estimation error progress vs time of the
Constrained Bayesian AL method for α = 0.5 and N = 5 SUs
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Figure 6.3: Interference channel gain vector estimation error progress vs time of the
Constrained Bayesian AL method for α = 0.7 and N = 5 SUs

Next, we examine for N = 10 SUs and designed protection time ratio α = 0.7 the

performance of our technique which is illustrated in Fig. 6.5. After NT = 200 time flops,

or probing attempts, the h∗ estimation error is 2.5% and the simulated protection time
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Figure 6.4: Interference channel gain vector estimation error progress vs time of the
Constrained Bayesian AL method for α = 0.9 and N = 5 SUs

ratio is αsim = 0.67. The reason for checking the learning efficiency of the Constrained

Bayesian AL method for N = 10 SUs is to observe its behavior when the learning

problem dimensions grow. We observe by comparing the results of Fig. 6.3 and 6.5 that

the convergence time for an estimation error of 2.5% increases from 66 time flops in Fig.

6.3 to 200 in Fig. 6.5. Hence, we could empirically claim that the convergence rate of

our method depending on the number of SUs, N , is approximately of order O(N log2N).

6.7 Summary

In this chapter, we proposed a sequential probing method in order for a centralized

CRN to learn fast the PU interference constraint using the ACK/NACK PU feedback

while limiting the number of PU outage events under a certain threshold. This problem

was formulated within the Constrained DP framework and its optimal solution policy

was implemented with the help of an advanced, fast and accurate Bayesian Learning

technique, the EP, which was for the first time developed analytically without inde-

pendence assumptions about the latent variables. The performance of this method was

demonstrated through numerical simulations in static channel scenarios for interference

channel gain learning. Additionally, results were given for the induced PU outage time

ratio to confirm that the simulated PU protection metric αsim is satisfactorily close to

the target, or design, PU protection time ratio α.
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Figure 6.5: Interference channel gain vector estimation error progress vs time of the
Constrained Bayesian AL method for α = 0.7 and N = 10 SUs



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we have demonstrated various Machine Learning applications in underlay

Cognitive Radio scenarios. These ML ideas were developed to enhance the Spectrum

Sensing and Decision Making capabilities of a CRN. First, in Chapter 3, a Modulation

and Coding Classification process was constructed aiming at enabling the CR to identify

the PU Modulation and Coding Scheme. This MCC process considered Higher Order

Statistical features of the sensed PU signal and an efficient ML classifier, the Support

Vector Machine, to identify the PU modulation scheme and the log-likelihood ratios

of the PU signal code syndromes to find the PU encoder. Combining in a serial way

these identification procedures enable a CR to find the PU MCS even in low sensing

SNR conditions. Moreover, a simple collaborative MCC scheme was proposed to allow

a Cognitive Base Station fuse multiple MCS estimates from a group of CRs. This SS

ability played an important role in bridging the communication gap between the CRN

and the PU system.

In Chapter 4, assuming a PU system operating based on an Adaptive Coding and Mod-

ulation protocol, we exploited this PU reaction, the PU MCS adjustment, both for

optimizing the CRN performance and learning how to mitigate the induced to the PU

interference. The multilevel MCC sensing feedback as implicit CSI of the PU link facili-

tates the CRN to constantly observe the impact of the aggregated interference it causes.

In the examined scenario, the CRN intelligently adjusts the SU transmit power levels

in order to maximize the CRN throughput, a Power Control (PC) optimization objec-

tive, and ensure learning the unknown PU interference constraint of the aforementioned

optimization problem. For this scenario setting, the Cutting Plane Methods were used

and provided the perfect framework for this joint optimization and learning problem

123
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with high convergence learning rates which are guaranteed theoretically. Specifically,

the proposed scheme, an adaptation of the Center of Gravity CPM, managed to deliver

better learning results compared to the existing methods in the literature and further-

more better protection to the PU system during this combined optimization and learning

process. The work of this chapter established the Active Learning spirit of this thesis

on which we further elaborated in the next chapter by considering uncertain PU pieces

of feedback.

In Chapter 5, we aimed exclusively at learning the interference PU constraint and not at

optimizing the CRN performance and adopted the same sequential AL probing rationale

as in Chapter 4. Here, we considered the ACK/NACK binary packet instead of the MCC

feedback and acquired it by decoding the reverse PU link messages. This rudimentary

piece of feedback which is a binary indicator of harmful or harmless induced interference

is chosen in order to solely focus on developing sophisticated AL techniques for learning

the PU interference constraint. The enhancement introduced in this chapter is that the

probability of each binary feedback being correct is taken into account in this intelligent

probing mechanism by constructing univariate and multivariate Bayesian AL methods

inspired respectively by the Probabilistic Bisection Algorithm (PBA) and the CPMs.

Specifically, a median based optimal Bayesian AL method and an MVE-CPM based AL

scheme, which is less accurate but computationally affordable, were implemented for

designing the SU probing power vectors. Simulations were performed and the learning

superiority of both techniques was shown compared to existing ones in the literature and

to our first Bayesian AL attempt presented in Section 4 of Chapter 5. Finally, results

were provided proving that both of these schemes are also more protective to the PU

among the MCMC based and the computationally cheap AL techniques respectively.

In Chapter 6, we presented a constrained version of the AL scenario in Chapter 5. Again,

a Bayesian AL perspective is adopted but with a practical for the PU system constraint,

limiting under a threshold the number of harmful probing-induced interference events or

equivalently of NACK packet observations over a certain time window. In order to design

such a probing policy, the problem was studied within the framework of Constrained

DP and a provenly optimal solution for this Constrained AL problem was obtained.

Furthermore, we utilized a sophisticated, accurate and fast Bayesian Learning method,

the EP, instead of the slow MCMC methods of Chapter 5 for the implementation of this

Constrained Bayesian AL case study. The effectiveness of this solution is demonstrated

through numerical simulations.
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7.2 Future Work

As part of our future work, we intend to elaborate more on the AL principle, find

different application areas of it and exploiting Bayesian knowledge for Decision Making

and Optimization purposes. Particularly, the possible improvements and extensions are:

1. Developing Bayesian AL techniques for fading interference channel gain learning

based on the forgetting factor approach of [75].

2. Implementing decentralized AL schemes with a message passing mechanism suit-

able for distributed CRNs and cooperative Cognitive Radar scenarios.

3. Focusing on more practical and commercial scenarios where AL principles can be

used such as targeted advertising and active caching.

4. Handling the acquired probabilistic knowledge of interference channel gains, or

any other unkown parameters, in Stochastic Programming or Robust Optimiza-

tion problems for defining the optimal average or worst case CRN operation re-

spectively.

5. Deriving probing designs which not only actively learn and maximize information

gain of unknown parameters, but also incorporate other metrics such as CRN

throughput, CRN energy consumption and PU induced interference. These metrics

could be incorporated into an optimization problem, but just one of them as an

objective, while the rest as constraints, so that we could still guarantee some lower

or upper bounds for the latter.

6. Designing a Multi-objective optimization problem to study the trade-off’s in sat-

isfying the aforementioned different objectives.

7. Embarking on purely Decision Making tools to explore possible mechanisms which

can be applied in AL scenarios under different assumptions and system models.





Appendix A

Proof of Theorem 5.5.1

First of all, let us define the multivariate cumulative distribution function (cdf) in a more

”natural” than the usual way. Assuming a multivariate pdf f in S ⊆ RN and a vector

x = [x1, ..., xN ], usually its cdf F is defined as F (x) = Pr[X1 ≤ x1, ..., XN ≤ xN ] which

is the joint probability of its components X1, ..., XN , that are scalar valued random

variables, being less or equal than the values x1, ..., xN respectively. Nevertheless, this

definition is not geometrically smooth and commonly used just because it is easy to be

computed in case of independent x components. Here, we describe it more strictly and

not just by using a ”box limit”-like definition. Assuming a hyperplane in Rn:

x wᵀ = 1 (A.1)

we alternatively determine the cdf C of a multivariate pdf f as:

C(w) = Pr[x wᵀ ≤ 1] =

∫
x wᵀ≤1

f(x) dVx. (A.2)

Specifically for our case study, the posterior cdf after the (t−1) step, Ct(p), is expressed

as:

Ct(p) = Pr[h pᵀ ≤ 1|h = h∗, Z0:(t−1),p0:(t−1)] =

∫
h pᵀ≤1

ft(h) dVh (A.3)

and the support region of ft(h) is limited to the positive orthant of the h space, RN+ ,

because the interference channel gains can only have non negative values.

Further on, we elaborate on the marginal likelihood of (5.13). In the event of Zt = +1,

the conditional probability Pr[Zt|p(t), Z0:(t−1),p0:(t−1)] can also be written according to

the Bayes sum rule, the product rule and the conditional independences from Chapter

127
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5 as:

Pr[Zt = +1|p(t), Z0:(t−1),p0:(t−1)] =∫
RN+

Pr[Zt = +1,h = h∗|p(t), Z0:(t−1),p0:(t−1)] dVh =

∫
RN+

Pr[Zt = +1|h = h∗,p(t), Z0:(t−1),p0:(t−1)] Pr[h = h∗,p(t), Z0:(t−1),p0:(t−1)]

Pr[p(t), Z0:(t−1),p0:(t−1)]
dVh =

∫
RN+

Pr[Zt = +1|h = h∗,p(t), Z0:(t−1),p0:(t−1)] Pr[h = h∗|p(t), Z0:(t−1),p0:(t−1)] dVh =

∫
h pᵀ≤1

Pr[Zt = +1|h = h∗,p(t), Z0:(t−1),p0:(t−1)] Pr[h = h∗|p(t), Z0:(t−1),p0:(t−1)] dVh+

∫
h pᵀ>1

Pr[Zt = +1|h = h∗,p(t), Z0:(t−1),p0:(t−1)] Pr[h = h∗|p(t), Z0:(t−1),p0:(t−1)] dVh =

∫
h pᵀ≤1

Pr[Zt = +1|h = h∗,p(t), Z0:(t−1),p0:(t−1)] Pr[h = h∗|Z0:(t−1),p0:(t−1)] dVh+

∫
h pᵀ>1

Pr[Zt = +1|h = h∗,p(t), Z0:(t−1),p0:(t−1)] Pr[h = h∗|Z0:(t−1),p0:(t−1)] dVh =

∫
h pᵀ≤1

Pr[Zt = +1|h = h∗,p(t), Z0:(t−1),p0:(t−1)] ft(h) dVh+

∫
h pᵀ>1

Pr[Zt = +1|h = h∗,p(t), Z0:(t−1),p0:(t−1)] ft(h) dVh =

∫
h pᵀ≤1

Pr[Zt = +1|h = h∗,p(t)] ft(h) dVh+

∫
h pᵀ>1

Pr[Zt = +1|h = h∗,p(t)] ft(h) dVh =

∫
h pᵀ≤1

Pcd ft(h) dVh +

∫
h pᵀ>1

(1− Pcd) ft(h) dVh =

Ct(p(t)) Pcd + (1− Ct(p(t))) (1− Pcd) (A.4)

which in the spirit of [97] is a function of p(t), γt(p(t)), and can be written as:

γt(p(t)) = Ct(p(t)) Pcd + (1− Ct(p(t))) (1− Pcd). (A.5)

A similar expression can also be derived for the Zt = −1 event:

Pr[Zt = −1|p(t), Z0:(t−1),p0:(t−1)] = 1− γt(p(t)). (A.6)
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After all this preliminary work, we continue with our original goal of this proof, which is

to find the optimal probing rule that maps {f0, .., fNT−1} to {p(0), ..,p(NT−1)} in order

to achieve the maximum average entropy reduction from the f0(h) to the fNT (h) pdf.

Based on the Dynamic Programming (DP) proof of the univariate case [97], our goal

expressed in a formal manner is to seek the optimal probing design policy π∗0:(NT−1) =

{p(0) = µ∗(f0), ..,p(NT − 1) = µ∗(fNT−1)} which maximizes the expected information

gain over all possible feedback sequences derived by this policy π∗:

π∗0:(NT−1) = arg max Jπ0:(NT−1)
. (A.7)

The expected information gain of an arbitrary policy π, Jπ0:(NT−1)
, is expressed as the

conditional expectation:

Jπ0:(NT−1)
= Eπ[H(f0)−H(fNT )|p(NT − 1), fNT−1] (A.8)

where H is the entropy operator of a pdf. To create a multistage version of our objective

in the DP spirit [116], we rewrite (A.8) as:

Jπ0:(NT−1)
= Eπ[H(f0)−H(fNT )|p(NT − 1), fNT−1] =

Eπ[H(f0)−H(f1) + ...

+H(fNT−1)−H(fNT )|p(NT − 1), fNT−1] =

Eπ

[
NT−1∑
k=0

(H(fk)−H(fk+1)|p(k), fk)

]
(A.9)

where we added and subtracted all the entropy terms of the intermediate pdf’s to form

an additive gain over time.

To solve (A.7), DP is using a backward induction logic, where if we define Jπk:(NT−1)
as:

Jπk:(NT−1)
= Eπ

[
NT−1∑
k

(H(fk)−H(fk+1)|p(k), fk)

]
=

Eπ [H(fk)−H(fk+1)|p(k), fk] + Jπ(k+1):(NT−1)
(A.10)

then we first need to solve:

max
µ

JπNT−1 =

max
µ

Eπ [H(fNT−1)−H(fNT )|p(NT − 1), fNT−1] (A.11)
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and secondly we must solve:

max
µ

Jπk:(NT−1)
=

max
µ

Eπ [H(fk)−H(fk+1)|p(k), fk] + Jπ∗
(k+1):(NT−1)

(A.12)

for an arbitrary k ∈ {0, .., (NT − 2)}. If the two resulting rules, meaning the functions

which assign a probing power vector, our decision, to a posterior pdf, our state, are

identical, then by induction we may say that this is the optimal design policy µ∗ and

that it satisfies (A.7).

Now, let us start from solving (A.11). Using the updating equation (5.13), we evaluate

Eπ [H(fNT−1)−H(fNT )|p(NT − 1), fNT−1] over the two possible events ZNT−1 = +1

and ZNT−1 = −1:

Eπ [H(fNT−1)−H(fNT )|p(NT − 1), fNT−1] =

Eπ [Eh [− log(fNT−1)]]− Eπ [Eh [− log(fNT−1)]]−

Eπ [Eh [− log(Pr[ZNT−1|h = h∗,p(NT − 1)])] |p(NT − 1), fNT−1] +

Eπ [Eh [− log(Pr[ZNT−1|p(NT − 1), fNT−1])] |p(NT − 1), fNT−1] . (A.13)

The last two remaining terms can be further processed. With the help of (5.11) for

Pr[ZNT−1|h = h∗,p(NT − 1)], the third term can be analyzed as:

Eπ [Eh [− log(Pr[ZNT−1|h = h∗,p(NT − 1)])] |p(NT − 1), fNT−1] =

Eπ [Eh [− log(Pr[ZNT−1|h = h∗,p(NT − 1)])] |fNT−1] =

Eπ [− log(Pr[ZNT−1|h = h∗,p(NT − 1)])] =

− Pcd log(Pcd)− (1− Pcd) log(1− Pcd) (A.14)

since ZNT−1 does not depend on fNT−1 given h = h∗ and p(NT −1). The operator Eπ[.]

is basically the expectation over the two possible observations ZNT−1 = +1 and ZNT−1 =

−1. This result tells us that this term does not depend on the design of p(NT − 1) and

therefore it does not participate in the maximization of Jπ(NT−1)
. Additionally, by using

(A.5) and (A.6) which again lead us to omit Eh, since Pr[ZNT−1|p(NT − 1), fNT−1] is
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stable over the h domain, the fourth term becomes:

Eπ [Eh [− log(Pr[ZNT−1|p(NT − 1), fNT−1])] |p(NT − 1), fNT−1] =

Eπ [− log(Pr[ZNT−1|p(NT − 1), fNT−1])|p(NT − 1), fNT−1] =

Eπ [− log(Pr[ZNT−1|p(NT − 1), fNT−1])] =

− γNT−1(p(NT − 1)) log(γNT−1(p(NT − 1)))−

(1− γNT−1(p(NT − 1))) log((1− γNT−1(p(NT − 1)))). (A.15)

After elaborating on Jπ(NT−1)
, we reached the conclusion that the probing rule that

maximizes Jπ(NT−1)
is achieved by maximizing the quantity derived from (A.15), which

occurs for γNT−1(p(NT −1)) = 1/2 and consequently for CNT−1(p(NT −1)) = 1/2. The

same result is derived from solving (A.12) with a similar analysis which delivers that the

optimal p(k) design rule for maximizing Jπk:(NT−1)
is Ck(p(k)) = 1/2. Thus, the overall

design policy that solves (A.7) is p(k) = µ∗(fk) = C−1
k (1/2) = pmed(k). This result

indicates that in order to reach as fast as possible our learning solution, the probing

power vectors should always be chosen as median regressors (bisectors) of the current

posterior pdf estimate, {p(0), ..,p(NT − 1)} = {pmed(0), ..,pmed(NT − 1)}.





Appendix B

Moments of a one side truncated

multivariate normal pdf

Assuming a multivariate normal pdf N (x;µx,Σx) of N dimensions and a halfspace

indicator function:

g(x) =

{
1 if a xᵀ ≤ b
0 if a xᵀ > b

(B.1)

where a xᵀ = b is the hyperplane limit of this halfspace and a and x are row vectors,

then h(x) = g(x) N (x;µx,Σx) is an un-normalized one side truncated multivariate

normal pdf. Next, we determine the 0th, 1st and 2nd moments of h(x), q, q and Q,

based on the moment related integrals, c, c and C:

c =

∫
RN

h(x) dVx =

∫
a xᵀ≤b

N (x;µx,Σx) dVx (B.2)

c =

∫
RN

x h(x) dVx =

∫
a xᵀ≤b

x N (x;µx,Σx) dVx (B.3)

C =

∫
RN

xᵀx h(x) dVx =

∫
a xᵀ≤b

xᵀx N (x;µx,Σx) dVx. (B.4)

Note that c is a constant which represents the mass or the normalization factor of h(x),

c is a vector of integrals and C is a matrix of integrals. The moments can be written as:

q = c (B.5)
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q =
c

c
(B.6)

Q =
C

c
− qᵀq. (B.7)

The problem of computing these moments lies on the computation of the integrals in

(B.2), (B.3) and (B.4).

Now, if we define an N ×N transformation matrix T such as:

T =



a1 0 0 . . . 0 0

a2 1 0 . . . 0 0

a3 0 1 . . . 0 0
...

...
...

. . .
...

...

aN−1 0 0 . . . 1 0

aN 0 0 . . . 0 1


(B.8)

and determine a new random variable y = x T , then y will also be normally distributed,

y ∼ N (y;µy,Σy), where:

µy = µx T (B.9)

and

Σy = T ᵀΣxT. (B.10)

This helps us transform the integrals in (B.2), (B.3) and (B.4) by using the change-

of-variables technique. The Jacobian matrix Jx→y is actually equal to T ᵀ, hence the

infinitesimal volume dVx can be rewritten as
dVy

|det(T ᵀ)| or
dVy
|det(T )| . Using this and changing

the integral limits delivers the following for (B.2):

c =

∫
a xᵀ≤b

N (x;µx,Σx) dVx =

∫
y1≤b

∫ ∞
−∞

...

∫ ∞
−∞
N (x;µx,Σx)

dVy
|det(T )|

=

∫ y1=b

−∞

∫ ∞
−∞

...

∫ ∞
−∞

N (x;µx,Σx)

|det(T )|
dVy =∫ y1=b

−∞

∫ ∞
−∞

...

∫ ∞
−∞
N (y;µy,Σy) dVy (B.11)
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where in the last line we used the relation of the two pdf’s of the random variables x

and y. Similarly, for c and C, we have:

c =

(∫ y1=b

−∞

∫ ∞
−∞

...

∫ ∞
−∞

y N (y;µy,Σy) dVy

)
T−1 (B.12)

and

C = (T−1)ᵀ
(∫ y1=b

−∞

∫ ∞
−∞

...

∫ ∞
−∞

yᵀy N (y;µy,Σy) dVy

)
T−1. (B.13)

Consequently, the problem of calculating the moments of a one side truncated multi-

variate Gaussian pdf has been transformed into calculating the moments of another one

side truncated multivariate Gaussian pdf where the truncation occurs vertically to the

axis y1y
′
1. This is the study object of Appendix C.





Appendix C

Moments of a one vertical side

truncated multivariate normal pdf

In this section, we elaborate on the moments of one vertical side truncated multivariate

normal pdf’s. In the statistics literature, the truncation subject has been extensively

investigated using many kinds of truncations, such as box-like and elliptical ones. Here,

we present a simplified case of calculating the moments of a doubly truncated multivari-

ate normal pdf recently studied in [115] and which actually concerns a hyper-rectangle

truncation. The simplification introduced here will lead us to computing the moments

of the one vertical side truncated multivariate normal pdf. Assuming a multivariate

normal pdf N (x;µ,Σ) in N dimensions and a hyper-rectangle defined by the inequal-

ities ai ≤ xi ≤ bi for i = 1, .., N , the authors of [115] managed to find simple recursive

relations for the moment related integrals and therefore allow the fast computation of

doubly truncated multivariate normal pdf’s moments.

More specifically, if a = [a1, ..., aN ] and b = [b1, ..., bN ], then Lk(a,b;µ,Σ) is the integral

defined as:

Lk(a,b;µ,Σ) =

∫ b1

a1

...

∫ bN

aN

xk N (x;µ,Σ) dVx (C.1)

where xk stands for xk11 · ... · x
kN
N . For example, if we wish to compute the integral∫ b1

a1
...
∫ b4
a4
x1x3 N (x;µ,Σ) dVx for N = 4, then k = [1, 0, 1, 0]. Additionally, we denote

by r(i) a row vector r with its ith element removed, by Ri,(j) the ith row of a matrix R

with its jth element removed, by R(i),j the jth column of a matrix R with its ith element

removed and by R(i),(j) a matrix R with its ith row and jth column removed. In [115], it

is shown that if we let ei denote an N -dimensional row vector with its ith element equal

to one and zeros otherwise, then:

Lk+ei(a,b;µ,Σ) = µiLk(a,b;µ,Σ) + eiΣcᵀk (C.2)
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where ck is an N -dimensional row vector with its jth element equal to:

ck,j = kj Lk−ej (a,b;µ,Σ)+

+ a
kj
j N (aj ;µj ,Σj,j) Lk(j)

(a(j),b(j); µ̃
a
j , Σ̃j)+

+ b
kj
j N (bj ;µj ,Σj,j) Lk(j)

(a(j),b(j); µ̃
b
j , Σ̃j) (C.3)

and

µ̃a
j = µ(j) +Σj,(j)

aj − µj
Σj,j

(C.4)

µ̃b
j = µ(j) +Σj,(j)

bj − µj
Σj,j

(C.5)

Σ̃j = Σ(j),(j) −
Σ(j),j Σj,(j)

Σj,j
. (C.6)

Hence, if we intend to obtain the integrals
∫ b1
a1
...
∫ bN
aN

xm N (x;µ,Σ) dVx for m = 1, ..., N

and calculate the mean of a doubly truncated multivariate normal pdf, then we should

set k = 0 and ei = em in (C.2). Next, we should divide the results with the normal-

ization constant of the truncated Gaussian
∫ b1
a1
...
∫ bN
aN
N (x;µ,Σ) dVx, which in [115]

is calculated using the inclusion-exclusion principle, a combinatorics technique. Simi-

larly, for the 2nd order moment, we are interested in computing integrals of the form∫ b1
a1
...
∫ bN
aN

xmxn N (x;µ,Σ) dVx for m = 1, ..., N and n = 1, ..., N which can be acquired

by setting k = em and ei = en in (C.2).

Now, if we let a and b, which define the box-like truncation, be respectively [−∞, ...,−∞]

and [b1,∞, ...,∞], then the aforementioned recursive relations concern the moments of

a one vertical side truncated multivariate normal pdf, where the cutting hyperplane

is x1 = b1 and the hyper-rectangle is now the halfspace x1 ≤ b1. The relations (C.2),

(C.3), (C.4), (C.5) and (C.6) are simplified and moreover we have the benefit of not using

the inclusion-exclusion principle, which for large N can be computationally demanding,

for the calculation of the mass of the truncated N (x;µ,Σ). This happens because∫ b1
−∞

∫∞
−∞ ...

∫∞
−∞N (x;µ,Σ) dVx is actually equal to

∫ b1
−∞N (x1;µ1,Σ1,1) dx1.
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