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Abstract

Context. Matlab/Simulink is an advanced environment for modeling and simulating multidomain
dynamic systems. It has been widely used to model advanced Cyber-Physical Systems, e.g. in
the automotive or avionics industry. To ensure the reliability of Simulink models (i.e., ensuring
that they are free of faults), these models are subject to extensive testing to verify the logic and
behavior of software modules developed in the models. Due to the complex structure of Simulink
models, finding root causes of failures (i.e., faults) is an expensive and time-consuming task.
Therefore, there is a high demand for automatic fault localization techniques that can help en-
gineers to locate faults in Simulink models with less human intervention. This demand leads to
the proposal and development of various approaches and techniques that are able to automatically
locate faults in Simulink models.

Fault localization has been an active research area that focuses on developing automated tech-
niques to support software debugging. Although there have been many techniques proposed to
localize faults in programs, there has not been much research on fault localization for Simulink
models. In this dissertation, we investigate and develop a lightweight fault localization approach
to automatically and accurately locate faults in Simulink models. To enhance the usability of our
approach, we also develop a stand-alone desktop application that provides engineers with a usable
interface to facilitate localization of faults in their models.

Approach. In this dissertation, we propose a set of approaches based on statistical debugging and
dynamic model slicing to automatically localize faults in Simulink models. We further propose
techniques to improve fault localization for Simulink models by means of generating test cases
based on meta-heuristic search and machine learning techniques. The work presented in this
dissertation is motivated by Simulink fault localization needs at Delphi Automotive Systems, a
world leading part supplier to the automotive industry.

In this dissertation, we propose the following techniques for fault localization of Simulink
models: (1) We propose a fault localization approach for Simulink models by extending the sta-
tistical debugging technique to Simulink models. We use dynamic slicing to generate Simulink
model spectra such that each spectrum is related to one model output and one test case. We then
apply statistical ranking formulas to the resulting spectra to compute suspiciousness scores for
each Simulink model block. We also propose an iterative fault localization algorithm to further
improve fault localization accuracy and a heuristic stopping criterion to avoid unnecessary ex-
pansion of test oracles. (2) We investigate the performance of our fault localization technique
when it is applied to Simulink models containing multiple faults. We provide mechanisms to help
engineers localize faults effectively when the underlying Simulink models contain more than one
fault. Specifically, we propose an iterative approach to handle multiple faults using a supervised
learning technique (decision trees). The decision trees are used to divide the test coverage data
related to the failing test cases into a number of sets such that each set is likely to relate to an
individual fault in the model. Each set gives rise to a single ranking. We provide engineers with
criteria to select among these rankings the one in which the faulty block is more likely to be
ranked high in the list. Once a fault is found and corrected, engineers can reapply our approach
to find further faults. (3) Finally, we provide a test suite generation algorithm to improve fault
localization of Simulink models by generating small and diverse test suites, and also we develop
a strategy to stop test generation when it is unlikely to improve fault localization.



Our fault localization techniques are evaluated based industrial subjects (Simulink models
from the automotive industry).

Contributions. The main research contributions in this dissertation are:

1. An approach to localize faults in Simulink models (assuming that they contain a single
fault) based on statistical debugging and dynamic slicing. Our approach is the first to extend
statistical debugging to Simulink models.

2. A new technique to localize faults in Simulink models containing multiple faults using a
supervised learning technique (decision trees learning). Our approach builds on statistical
debugging and is iterative.

3. A search-based testing technique for Simulink models that uses three existing alternative test
objectives to generate small and diverse test suites that can help improve fault localization
accuracy.

4. A Simulink Fault Localization tool (SimFL) implementing our fault localization techniques.
Our tool provides a usable interface allowing engineers to interact and reiterate our tech-
niques on Simulink models.
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Chapter 1

Introduction

1.1 Context
Nowadays, software systems appear in all aspects of our society. However, every coin has two sides.
On one hand, the pervasion of software systems makes people’s lives more convenient. On the other
hand, ensuring the reliability and robustness of software systems is increasingly a difficult and critical
task. For example, the first significant study about the cost of software failures was published in 2002
by NIST [National Institute of Standards and Technology U.S. Department of Commerce, 2017].
In this study, it is reported that "Software bugs are costing the U.S. economy an estimated $59.5
billion each year", and improvement in testing and debugging could reduce this cost by about one
third ($22.5 billion). This was the first time that the cost of software bugs was precisely measured
nationwide. Since then, more and more developers and engineers have realized that software errors
are non-negligible and may lead to high cost and overhead. In the following years, researchers spent
a lot of effort working on the topic of testing and debugging software systems. However, due to
the explosive growth of software products, applications and e-services in recent years, the threats
from software defects have become even more acute. Recently, another disturbing software failure
review has been released by Tricentis [TRICENTIS, 2017]. It reports that 4.4 billion people and 1.1
trillion assets were affected globally in 2016 by software failures. The quality of software systems
increasingly impacts everyone’s life. Particularly, the quality of safety critical software systems in
domains such as automotive and avionics, whose failure could result in catastrophic consequences, is
becoming increasingly crucial.

This dissertation presents a set of approaches based on statistical debugging and machine learning
techniques to automate localizing faults in Simulink models in a cost-effective and practical man-
ner. The work presented in this dissertation has been done in collaboration with Delphi Automotive
Systems [Delphi Automotive LLP, 2017], a world leading automotive supplier, based in Luxembourg.

1.2 Thesis Background
The automotive software industry increasingly relies on Simulink to develop embedded software com-
ponents [Thums and Quante, 2012, Reicherdt and Glesner, 2012, Sridhar and Srinivasulu, 2014]. The
Simulink language, being supported by advanced automated code generators, has become a prevalent
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Figure 1.1. A simple Simulink model from Mathworks (Vehicle Heater control system).

language for implementing embedded software. These days nearly every automotive software mod-
ule is first developed as Simulink models from which C code is later generated automatically. These
Simulink models are subject to extensive testing and debugging before code generation takes place.
Testing Simulink models is the primary testing phase focused on verification of the logic and behav-
ior of automotive software modules. Furthermore, Simulink model testing is more likely to achieve a
high level of fault finding compared to testing code as Simulink models are more abstract and more
understandable by engineers. Given the importance of testing and debugging Simulink models, an
automated technique to localize faults in Simulink models is crucial.

As shown in Figure 1.1, Simulink models are visual and data-flow-based, and consist of blocks and
lines. Each block performs a certain operation on a set of input signals and produces a set of output
signals, whereas each line connects two blocks to establish a flow of data between them. Simulink
models often contain multiple inputs (i.e., green boxes in Figure 1.1) and outputs (i.e., pink boxes
in Figure 1.1), hundreds of blocks and lines, and are often hierarchical i.e., including subsystems
(i.e., grey boxes in Figure 1.1). Furthermore, subsystems and their connecting lines may form a
closed-loop structure. Complex structure of Simulink models makes debugging highly difficult and
time-consuming. Hence, having a technique that is able to automatically locate faults in Simulink
models is beneficial for engineers and reducing their debugging effort.

Statistical debugging is a light-weight and well-studied approach to fault localization in code(
[Abreu et al., 2007, Jones et al., 2002, Liblit et al., 2005, Liu et al., 2005, Renieris and Reiss, 2003,
Santelices et al., 2009, Wong et al., 2014, Wong et al., 2008]). This approach utilizes an abstraction of
program behavior, also known as spectra (e.g., sequences of executed statements), obtained from test
case executions. The spectra and the testing results, in terms of failing or passing test cases, are used
to derive a statistical fault ranking, specifying an ordered list of program elements (e.g., statements)
likely to be faulty. Engineers (e.g., developers) consider such ranking to identify faults in their code.
(see more information in Section 2.3)

In this dissertation we investigate and develop approaches based on statistical debugging, a light-
weight fault localization technique, to automatically and accurately suggest the location of faults in
Simulink models. We also implement a tool with informative and convenient user interfaces that can
provide engineers with a better understanding about faults in their models.
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1.3 Challenges
Debugging is a cumbersome and time-consuming task. There is a wide range of techniques in the
literature for debugging and fault localization in source code [Ball et al., 2003, Cleve and Zeller,
2000, Groce et al., 2004, Hildebrandt and Zeller, 2000, Orso et al., 2003, Parnin and Orso, 2011,
Renieris and Reiss, 2003, Zhang et al., 2006, Zhang et al., 2003]. However, none of these techniques
have been previously applied to Simulink models. Currently, in most industrial companies, debugging
Simulink models is limited to executing the Simulink models for a small number of test cases, and
manually inspecting the results of each simulation by engineers. The executed test cases are often
based on engineers’ domain knowledge, experience, and intuition, but in a rather ad hoc way.

The goal of this dissertation is to develop techniques that help engineers identify faults in Simulink
models with small debugging effort. In order to achieve this goal, we need to investigate and develop
techniques that are able to automatically and accurately locate faults in Simulink models within rea-
sonably short time duration. Specifically, we need to address the following challenges:

• The fault localization approaches we proposed in this dissertation are based on statistical de-
bugging. Statistical debugging is most effective when it is provided with a large number of
observation points (i.e., the spectra size). Existing approaches, where each test case produces
one spectrum, require a large test suite to generate a large number of spectra. For Simulink
models, however, test suites are typically small. This is mostly because test oracles for em-
bedded software are costly, and further, test suites are required to be eventually applied at the
Hardware-in-the-Loop stage where test execution is time-consuming and expensive. Hence, we
may not obtain a sufficiently large number of spectra if we simply generate one spectrum per
each test case as is the case in most existing work [Wong et al., 2014, Abreu et al., 2007, Jones
et al., 2002, Liblit et al., 2005, Liu et al., 2005, Renieris and Reiss, 2003, Santelices et al.,
2009].
• Statistical debugging often fails to properly deal with multiple faults because it implicitly as-

sumes that all failures are caused by the same fault(s). However, in the presence of multiple
faults, different failures might be due to different faults and faults might mask one another.
• One promising way to improve the accuracy of fault localization based on statistical debugging

is to increase diversity among test cases in the underlying test suite. However, in Simulink,
adding test cases is not a cost-free option because, in many situations, test oracles are developed
manually or running test cases is expensive. In additionally, as noted in the literature [Campos
et al., 2013], adding test cases does not always improve statistical debugging results. Given
that in our context test oracles are expensive, can we find a way to stop test generation when
adding new test cases is unlikely to bring about noticeable improvements in the fault localization
results?

1.4 Research Contributions
In this dissertation, we addressed the challenges of fault localization for Simulink models. Specifi-
cally, we make the following contributions:

1. An approach to localize faults in Simulink models (assuming that they contain a single fault)
based on statistical debugging and dynamic slicing. Our approach is the first to extend statistical
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debugging to Simulink models. Specifically, we use dynamic slicing to generate Simulink
model spectra such that each spectrum is related to one output and one test case, apply statistical
ranking formulas to the resulting spectra to compute suspiciousness scores for each Simulink
model block. We also propose iSimFL, an iterative fault localization approach to refine rankings
by increasing the number of observed outputs at each iteration. Our approach utilizes a heuristic
stopping criterion to avoid unnecessary expansion of test oracles. This contribution has been
published in a journal paper [Liu et al., 2016b] and is discussed in Chapter 3.

2. A new technique to localize faults in Simulink models containing multiple faults using a super-
vised learning technique (decision trees learning). Our approach builds on statistical debugging
and is iterative. At each iteration, we identify and resolve one fault and re-test models to fo-
cus on localizing faults that might have been masked before. We use decision trees to cluster
together failures that satisfy similar (logical) conditions on model blocks or inputs. We then
present two alternative selection criteria to choose a cluster that is more likely to yield the best
fault localization results among the clusters produced by our decision trees. This contribution
has been published in a conference paper [Liu et al., 2016a] and is presented in Chapter 4.

3. A search-based testing technique for Simulink models that uses three existing alternative test
objectives to generate small and diverse test suites that can help improve fault localization
accuracy. We also develop a strategy to stop test generation when test generation is unlikely
to improve fault localization. Our strategy builds on static analysis of Simulink models and
prediction models are based on supervised learning. This contribution has been published in a
conference paper [Liu et al., 2017], and is presented in Chapter 5. We have also submitted an
extension version of our paper to Empirical Software Engineering journal.

4. Simulink Fault Localization Tool (SimFL) is the tool that implements our fault localization
approaches and test generation approaches for Simulink models. The description of SimFL is
included in our journal paper submission and is presented in Chapter 6.

5. We have evaluated all of our proposed techniques by applying them into real industrial case
studies from our industrial partner, Delphi Automotive Systems Luxembourg.

1.5 Concepts and Definitions
Throughout this dissertation, we use the following terminology.

1. A failure is the situation where a model output deviates from the expected/correct output.
2. A fault (defect/bug) is the cause of a failure in the model.
3. A test oracle is a predicate that determines whether a given test activity is an acceptable behav-

ior of the SUT (System Under Test) or not [Barr et al., 2015].
4. A test suite is a set of test cases.

The prerequisite for triggering a fault localization process is that a failure is observed/occurred for
a model. In practice, although a software may not be fault free, it is un-reasonable to trigger a fault
localization technique without any failure observed because many bugs in the software remain latent
or never lead to a failure [Abreu, 2009].

Note that, in practice, the development of test oracles is effort intensive and out of scope of this
dissertation. In our experiments, we assume test oracle information is available, and chose to use a
fault-free version of our industrial subject model for the oracle information to automate our large-scale
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and time-consuming experiments.

1.6 Organization of the Dissertation
Chapter 2 provides some background information on modeling of Cyber-physical systems, Mat-
lab/Simulink model, Statistical debugging, Decision tree learning techniques, and Single-state meta-
heuristic search algorithms.

Chapter 3 describes our approach to localize faults in single-fault Simulink models based on statisti-
cal debugging.

Chapter 4 describes our approach for localizing multiple faults in Simulink models.

Chapter 5 describes our test case generation algorithms for developing small and effective test suites
for improving fault localization of Simulink models.

Chapter 6 presents the tool we developed which implements the approaches we proposed to localize
faults in Simulink models.

Chapter 7 presents and discusses related work.

Chapter 8 summarizes the thesis contributions and discusses perspectives on future work.
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Chapter 2

Background

In this chapter, we present some background information that are necessary to understand the tech-
niques/approach and key concerns that we have conducted in this dissertation. The content of this
chapter is organized under following headings: (1) Cyber-physical System Modeling and Simulation,
(2) Matlab/Simulink, (3) Debugging and Fault Localization, (4) Supervised Learning techniques, (5)
Single-state meta-heuristic search algorithm.

2.1 Cyber-physical System Modelling and Simulation
A Cyber-Physical System is a system that integrates physical and cyber components to realize rele-
vant functions through the interactions between the physical and cyber parts [Lee, 2008]. Nowadays,
Cyber-Physical Systems (CPSs) exist in different aspects of our lives. From smart household appli-
ances to advanced satellite systems, these CPSs are becoming more and more complicated and costly.
This trend also brings some new challenges for engineers to design and test CPSs: testing a highly-
complicated and safety-critical system with actual hardware can be very costly, time-consuming, and
even risky. Take nuclear power plant systems as examples, building such systems is risky for engi-
neers’ lives especially if they don’t have enough confidence in the correctness of their design.

As a result, in practice, designing and testing CPSs usually start from system modeling. System
modeling is a process to abstract and build a mathematical description of a real system. These models
are built to mimic the real behaviors of systems under different operating conditions [Chaturvedi,

Inverted Pendulum system simulation model

(a) (b)

Figure 2.1. An real inverted pendulum system application (a) example and related simulation model in
Simulink(b).
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Figure 2.2. A Simulink model example.

2009]. Moreover, once engineers build a model of a real system, they can conduct simulations by
feeding the model with different inputs to observe and capture the behavior of the system. Model
simulation is particularly useful to enable design-time testing and detect faults when a real system has
not been implemented. For example, the application shown in Figure 2.1(a) is a typical usage scenario
of inverted pendulum system, and engineers could first build a system model as shown in Figure 2.1(b)
to check and tune the coefficients of their Proportional-Integral (PI) controller implementation.

In order to obtain an accurate system model, the model usually has to go through several rounds
of checking and refinement. It is crucial to offer the engineers with proper tools and techniques to test
and debug their models. In this thesis, we provide effective techniques to help engineers effectively
find out the root cause of failures in their model after any abnormal behavior has been observed in the
simulation process.

2.2 Matlab/Simulink
MATLAB/Simulink is an advanced environment for modeling, simulating and analyzing multidomain
dynamic systems [Mathworks, 2015], it has been widely used to model the advanced Cyber-Physical
Systems, e.g., in the automotive industry or avionics industry. Particularly, Simulink, included in
each Matlab release, provides both a graphical programming interface as well as a customizable set
of block libraries to model CPSs. Figure 2.2 shows an example of a Simulink model. As shown in
the example, Simulink models consist of blocks and lines. Blocks may perform individual operations
such as numerical and combinatoric operations or they may represent constant values e.g., the Pmax
block. Simulink blocks are connected via lines that indicate data flow connections. The model has
five inputs, e.g., the intake air pressure pIn, and two outputs: the output pressure pOut and the output
temperature TOut. Moreover, Simulink models can be hierarchical and allow the encapsulation of
blocks into subsystems (e.g., Subsystem1 in Figure 2.2). Each subsystem has its own input and output
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Figure 2.3. Example of an input (a) and an output (b).

ports.

2.2.1 Simulink Input data
Engineers simulate (execute) the Simulink model by providing input signals, i.e., functions over time.
In theory, the input signals can be complex continuous functions. In practice, however, engineers
mostly test Simulink models using constant input signals over a fixed time interval. This enables
engineers to reproduce the simulation results on different platforms (e.g., when the environment is
composed of real hardware or is a real-time simulator). Further, developing test oracles for non-
constant input signals is very complex and time-consuming. Figure 2.3(a) shows an input signal
example applied to the input pIn. The input signal time interval indicates the simulation length and is
chosen to be large enough to let the output signals stabilize.

2.2.2 Simulink Test output
Similar to the input, the Simulink model output is a signal. Each test case execution (simulation)
of a Simulink model results in an individual output signal for each output port of that model. En-
gineers evaluate each output signal independently. To determine whether an output passes or fails
a test case, engineers evaluate various aspects of the output signal, particularly the value at which
the output signal stabilizes (if it stabilizes) and the dynamic characteristics of the signal, such as the
signal fluctuations (over/undershoot), the response time, and if the signal reaches a steady state. For
example, Figure 2.3(b) shows an example output signal of TOut. As shown in the figure, the output
signal stabilizes after 1 sec of simulation. The output values are the final (stabilized) values of each
output signal collected at the end of simulation (e.g., 30 for the signal shown in Figure 2.3(b)).

2.3 Debugging and Fault Localization
Debugging and Fault Localization is a process to identify and resolve the fault(s)/defect(s) that lead to
failures or abnormal behavior in a software system [Wikipedia, 2017a]. When a failure is observed,
developers have to conduct a debugging task to identify the root cause of the failure. This kind of
activities has performed since the first day of computer history.

In general, debugging is a cumbersome and time-consuming task. The effectiveness of debugging
tasks depends on several factors, such as the developers’ understanding of the artifact (model or
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program) being debugged, the developers’ personal debugging experiences, the quality of the test
suite, and etc. [Wong et al., 2016]

A traditional and intuitive fault localization technique is to log or instrument the program un-
der test to collect additional execution information to help developers identify the cause of fail-
ures [Abreu, 2009, Wong et al., 2016]. For example, developers could insert print statement or
assertions manually in the program to return variable values or check whether program reaches any
specific runtime state as shown in Figure 2.4 (a), or use the debug prospect/view in the IDE(as shown
in Figure 2.4 (b)). However, these traditional debugging activities are manual, hence they heavily
rely on developers’ intuition and need a lot of human effort. In order to avoid these limitations and
make the debugging approach applicable to realistic programs, many advanced fault localization tech-
niques have been proposed and studied specifically for software code [Ball et al., 2003, Liblit et al.,
2005, Abreu et al., 2007, Abreu et al., 2009b, Alves et al., 2011].

(a)

(b)

Figure 2.4. Examples of inserted assertion (a) and debug view in IDE Eclipse (b).

Our fault localization approaches proposed in this thesis are based on statistical debugging tech-
niques. Hence, in this section, we focus on explaining the statistical debugging techniques. Other
fault localization techniques will be discussed in Chapter 7.

Statistical debugging is a light-weight approach to fault localization and has been extensively
studied for code (e.g., C programs [Abreu et al., 2007, Jones et al., 2002, Renieris and Reiss, 2003,
Zoeteweij et al., 2007]). This approach utilizes an abstraction of program behavior, also known as
spectra, (e.g., sequences of executed statements) obtained from testing. The spectra and the testing
results, in terms of failed or passed test cases, are used to derive a statistical fault ranking, specifying
an ordered list of program elements (e.g., statements) likely to be faulty. Developers can consider
such rankings to identify faults in their code.
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Figure 2.5. Example of statistical debugging for program code.

In order to explain how statistical debugging works, we use a simple example program, which
has been originally used in the work of [Jones et al., 2002]. In Figure 2.5, the program mid() takes
three integers as inputs and return the median value. The faulty statement is line7 (the line should
read ” m = x; ”. On the right side of this Figure, we show the spectra information of each test case
in the underlying test suite. The corresponding input values are listed on the top of each column, the
detailed spectrum of each test case are marked with black solid dots, and the pass/fail information
was shown at the bottom of each column.

Obviously, compared to line4, line8 is less suspicious because no failed test case execution ex-
ercises line8. Similarly, line4 is less suspicious compared to line7 because more passed test case
executions exercise line4 than line7. So the probability that leads to a failure is higher for line7 than
other statements in this program. line7 is the first statement recommended by statistical debugging
technique to engineers to inspect.

Although statistical debugging techniques have been extensively studied to show their effective-
ness in debugging program code, these techniques have never been studied for Simulink models. In
this thesis, we propose approaches to localize faults in Simulink models based on statistical debugging
in both single-fault and multiple-fault situations.

2.4 Supervised Learning techniques
Machine learning is a type of artificial intelligence (AI) and is the science that provides comput-
ers with the ability to learn from the existing data and experience without being explicitly pro-
grammed [Wikipedia, 2017b]. The fundamental goal of machine learning is to generalize beyond
the examples in the training set [Domingos, 2012]. In machine learning, based on the information
included in the training data set, machine learning tasks can be classified into several categories, and
supervised learning is one type of machine learning tasks.

When the training data includes a set of examples with paired input subjects and desired output, we
call it supervised learning. Supervised learning is the task of inferring a mapping (function) between a
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set of input objects and output variables from labeled training data [Alpaydin, 2014]. These mapping
relations will be later applied to predict the outputs for unseen (new) data/objects.

In this dissertation, we use a supervised learning technique, namely decision trees, for two objec-
tives: (1). Clustering the failed test execution slices (in Chapter 4); (2). Building prediction models
(decision trees) based on historical data (in Chapter 5).

A decision tree is a hierarchical tree structure implementing the divide-and-conquer strategy on
the input objects [Alpaydin, 2014]. In another word, a decision tree is a predictor, h : X → Y , that
predicts the label (decision) associated with an instance x by traveling from a root node of a tree to
a leaf [Shalev-Shwartz and Ben-David, 2014]. Decision trees can be used for both classification and
regression. Decision trees are composed of leaf nodes, which represent partitions, and non-leaf nodes,
which represent decision variables. Usually, the splitting is based on one of the features of x (marked
in the non-leaf nodes). Each leaf node contains a specific label indicating the decision (or prediction
result).

Figure 2.6. An example of decision tree for distinguishing papayas.

Figure 2.6 shows an example of a decision tree for checking if a given papaya is tasty or not (this
is an illustration example which was originally used in [Shalev-Shwartz and Ben-David, 2014]). In
order to predict whether a given papaya is tasty or not, the color of the papaya will be first checked. If
the color is not in the range from pale green to pale yellow, the tree will immediately predict that the
papaya is not tasty. Otherwise, the second step is to check the softness of the papaya. The decision
tree predicts the papaya is tasty when the papaya gives slightly to palm pressure. Otherwise, the
prediction result is "not-tasty". A decision (label) is made by following one of the paths from the root
to a leaf where all the condition in this path can be completely satisfied by the corresponding features
of an input.

2.5 Single-state meta-heuristic search algorithm
Meta-heuristic search is a procedure or heuristic to search or find optimal (or as optimal as possible)
solutions to hard problems [Luke, 2015]. It has been applied to a very wide range of optimization
problems, where no prior information and guideline about what the optimal solution looks like and
how to approach an optimal solution are available, or where brute-force search is infeasible because
the input search space is too large. In order to obtain an optimal solution, meta-heuristic search
algorithms, in general, can be explained in four steps [Luke, 2015]:

• 1. Initialization procedure: creating one or more initial candidate solutions;
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• 2. Modification procedure: tweaking a candidate solution, which produces a randomly slightly
different candidate solution;
• 3. Assessment procedure: assessing the quality of each candidate solution (computing fitness

function);
• 4. Selection procedure: deciding which candidate solution to retain;

The search process is iterative, steps 2 - 4 will be iterated until any of the pre-defined stop condi-
tions is satisfied (e.g., timeout) or an optimal solution is found.

Meta-heuristics algorithms can be classified into Single-state search and Population-based search.
Single-state search keeps only one candidate solution in each iteration. In contrast, Population-based
search keeps a sample (or a set) of candidate solutions rather than a single candidate in each iteration.
In our work, computing fitness function (Step 3) requires us to execute the simulation on a given
Simulink model. This is computationally expensive and takes a long time. Hence, we rely on single-
state search as opposed to population-based search.

In the rest part of this subsection, we describe two single-state meta-heuristic search algorithms
that we used in our work: Hill-Climbing (HC), and Hill-Climbing with Random Restarts (HCRR).

2.5.1 Hill-Climbing (HC)
Figure 2.7 shows the Hill-Climbing (HC) algorithm. Initially, we randomly generate an initial candi-
date solution S as the temporary best solution (The Initialization Procedure). Then, in each iteration,
a new candidate R is generated by slightly modifying the current best solution S as shown at line3
(The Modification Procedure). In the following assessment procedure, the temporary best solution S
is replaced by the new candidate solution R only if the quality of R is better than the quality of S, i.e.,
R fits better to the optimization goal. The termination conditions of this algorithm are: either (1) S is
the ideal solution, or (2) the pre-defined budget has been reached.

Figure 2.7. Hill-Climbing (HC) procedure.

Hill-Climbing algorithm enables the search to climb up the hill and effectively reach a local opti-
mum. However, for a more complex situation (as shown in Figure 2.8(a)) to find out a global optimal
solution, Hill-Climbing algorithm might not be efficient enough.

2.5.2 Hill-Climbing With Random Restarts (HCRR)
As discussed in the previous section, the Hill-Climbing algorithm may stick at a local optimum (e.g.,
the s′ or s′′ in Figure2.8(a)) since the Tweak operation conceptually is to "make a small, bounded,
but random change" [Luke, 2015]. When local optimum is sufficiently broad, Tweak modification
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Figure 2.8. Hill-Climbing with Random Restarts (HCRR) examples and procedure.

may not be large enough to get the search out of a plateau in the fitness function. The root reason of
this limitation in Hill-Climbing algorithm is that HC is extreme in exploitation but lacks exploration.
To avoid these limitations in Hill-Climbing algorithm, another algorithm, called Hill-Climbing with
Random Restarts algorithm (HCRR), is proposed.

In essence, HCRR is a mixture of exploitation and exploration. HCRR consists of a series of Hill-
Climbing searches from different random initial positions. Specifically, in each HC search process of
HCRR algorithm, a local optimal candidate solution is voted out (as described in Figure 2.8(c) line6
– line10); then these local optimal solutions are compared and finally a global optimal solution is
identified (as described in Figure 2.8(c) line11 – line13). Take Figure 2.8(b) as an example, assume
that in three HC search iterations, s′, s′′, and s are selected as each local optimal candidate solution.
Among these three candidates solutions, s has the highest fitness and will be identified as the global
optimal solution.
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Chapter 3

An Iterative Statistical Debugging Approach
for Simulink Fault localization

In this chapter, we propose, SimFL, a combination of statistical debugging and dynamic slicing to
localize faults in Simulink models. Our work is the first to extend statistical debugging to Simulink
models. We use dynamic slicing to generate Simulink model spectra such that each spectrum is related
to one output and one test case. We then apply statistical ranking formulas to the resulting spectra to
compute suspiciousness scores for each Simulink model block. Moreover, we propose, iSimFL, an
iterative fault localization approach to refine rankings by increasing the number of observed outputs
at each iteration. Our approach utilizes a heuristic stopping criterion to avoid unnecessary expansion
of test oracles.

We have implemented our approach and evaluated our approach by applying our approach to three
industrial subjects. This is the first empirical study to evaluate statistical debugging for Simulink
models using industrial case studies. Our experiments show that our technique is able to accurately
locate faults in Simulink models, particularly in single-fault Simulink models. Further, our technique
is light-weight and hence scalable to large Simulink models.

This chapter highlights the following research contributions:

1. We propose SimFL, a combination of statistical debugging and dynamic slicing to localize faults
in Simulink models.

2. We propose iSimFL, an iterative fault localization approach to refine rankings by increasing
the number of observed outputs at each iteration. Our approach utilizes a heuristic stopping
criterion to avoid unnecessary expansion of test oracles.

3. We conduct, for the first time, an empirical study to evaluate statistical debugging for Simulink
models using three industrial subjects.

Organization. This chapter is organized as follows. Section 3.1 precisely formulates the problem
we aim to address in this chapter. Section 3.2 presents our approach to fault localization in Simulink
models. Section 3.3 describes an iterative fault localization approach, namely iSimFL that can further
improve the accuracy of SimFL in localizing faults. The results of our evaluation of the proposed
approaches are presented in Section 3.4. Finally, Section 3.6 concludes the chapter.
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3.1 Problem Formulation
Fault localization in source code has been an active research area that focuses on automating various
code debugging activities [Abreu et al., 2007, Ball et al., 2003, Cleve and Zeller, 2000, Cleve and
Zeller, 2000, Groce et al., 2004, Hildebrandt and Zeller, 2000, Jones et al., 2002, Liblit et al., 2005, Liu
et al., 2005, Orso et al., 2003, Parnin and Orso, 2011, Renieris and Reiss, 2003, Santelices et al., 2009,
Wong et al., 2008, Wong et al., 2014, Zhang et al., 2006, Zhang et al., 2003]. A well-known approach
in this area is statistical debugging [Abreu et al., 2007, Jones et al., 2002, Liblit et al., 2005, Liu
et al., 2005, Renieris and Reiss, 2003, Santelices et al., 2009, Wong et al., 2008, Wong et al., 2014].
Statistical debugging is a lightweight approach to fault localization and has been extensively studied
for code (e.g., C programs [Abreu et al., 2007, Jones et al., 2002, Renieris and Reiss, 2003, Zoeteweij
et al., 2007]). This approach utilizes an abstraction of program behavior, also known as spectra, (e.g.,
sequences of executed statements) obtained from testing. The program spectra as well as the testing
results, in terms of failed or passed test cases, are used to derive a statistical fault ranking, specifying
an ordered list of program elements (statements, blocks, etc.) likely to be faulty. Developers can
consider such ranking to identify faults in their code. These fault localization techniques, however,
have never been studied for Simulink models.

Statistical debugging is most effective when it is provided with a large number of observation
points (i.e., the spectra size). The existing techniques, where each test case produces one spectrum,
require a large test suite to generate a large number of spectra. For Simulink models, however, test
suites are considerably smaller than test suites used for generic or open source software. This is
mostly because test oracles for embedded software are costly, and further, test suites are required to
be eventually applied at the Hardware-in-the-Loop stage where test execution is time consuming and
expensive. Hence, we may not obtain a sufficiently large number of spectra if we simply generate one
spectrum per each test case.

Simulink models, being visual, dataflow based and hierarchical, have multiple observable outputs
at different hierarchy levels, each of which can be tested and evaluated independently. For each given
test case, engineers routinely and explicitly determine which specific outputs are correct and which
ones are incorrect. Relying on this observation, in our work, we use a dynamic slicing technique in
conjunction with statistical debugging to generate one spectrum per each output and each test case.
Hence, we obtain a set of spectra that is significantly larger than the size of the test suite. We then use
this set of spectra to rank blocks using statistical ranking formulas.

3.2 Description of the Approach
We present SimFL, our fault localization approach for Simulink models. Figure 3.2 shows an overview
of SimFL. The inputs to our approach is a (faulty) Simulink model (M), a test suite (TS= {tc0, . . . , tcn}),
and a test oracle (O) to determine whether the test cases in TS pass or fail.

Given a Simulink model M, we denote the set of input ports of M by I. For the model in Figure 3.1,
the set I is {NMOT, Clutch, Bypass, pIn, TIn}, and each test case in TS provides a value
(i.e., a constant signal) for each element in I. We denote the set of all outputs of M by O, including
the model outputs (at depth zero) as well as all the subsystem outputs. For each test case tc ∈ TS, the
test oracle O determines whether each output o ∈ O passes or fails tc.
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Figure 3.1. A snippet of a real-world Simulink model.
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Figure 3.2. Overview of our fault localization approach for Simulink (SimFL).

The output of the approach in Figure 3.2 is a ranked list of Simulink (atomic) blocks where the
top ranked blocks are more likely to be faulty. This ranked list is generated based on the three main
steps of SimFL, i.e., Test Case Execution, Slicing, and Ranking, that we discuss in Sections 3.2.1 to
3.2.3, respectively.

3.2.1 Test Case Execution
This step takes as input a test suite TS, a test oracle O, and a (faulty) Simulink model M. In this step,
we execute M for each test case in TS to generate the following information: (1) The PASS/FAIL
information corresponding to each output o of M and each test case in TS, and (2) A list {cr0, . . . ,crn}
of coverage reports corresponding to the test cases {tc0, . . . , tcn}.

In Section 2.2.2, we discussed how Simulink output signals are typically evaluated to obtain
the PASS/FAIL information. In this section, we focus on coverage reports. Given a test case tcl ,
Simulink generates a coverage report crl after simulating M using tcl . A coverage report shows the
list of atomic blocks that were covered during execution of tcl .

Using a coverage report describing a list of atomic blocks covered by a test case, we identify which
inputs of those blocks were covered by that test case as well. Simulink atomic blocks have two kinds
of inputs: data inputs and control inputs. Every (non trivial) atomic block has some data inputs1. But
they may or may not have control inputs. For a block that has only data inputs, e.g., a multiplication,
we know that all its inputs are covered if that block is covered, i.e., appears in the coverage report.

1Some trivial Simulink blocks (e.g., clock) do not have any input.
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For a block that has control inputs as well as data inputs, e.g., a switch block, the coverage report
provides some block details information describing which data inputs were covered and which ones
were not covered. For example, Figure 3.3 shows the block details information for a MultiPortSwitch
block, which consists of five inputs: one control input (i.e., input 0) and four data inputs (i.e., inputs
1–4). The table in Figure 3.3 reports which data inputs were actually covered during simulation.
Specifically, inputs 1–3 (highlighted in red by Simulink) were not covered, whereas input 4 was
covered. That is, the control input 0 selected the data input 4 for the output. Note that the coverage
report does not explicitly include the control input 0. However, we know that all the control inputs
of a covered block are covered as well. To summarize, from the coverage report in Figure 3.3, we
conclude that among inputs 0–4, only control input 0 and data input 4 were covered during simulation.

0"

4
4

block details information 

Figure 3.3. A coverage report snippet generated by Simulink

Note that coverage reports combine the list of covered blocks for all the Simulink outputs. That
is, they do not determine which blocks were covered for which specific output. We use slicing (Sec-
tion 3.2.2) to determine which blocks were covered for which output.

3.2.2 Slicing
The second step of SimFL is slicing of the input model. This step takes as input the Simulink model
M, and the set of coverage reports {cr0, . . . ,crn} from the first step. The output of this step is a set of
test execution slices of M indicating the set of (atomic) blocks that were executed by each test case to
generate each output in O.

To generate test execution slices, we first generate a backward static slice, denoted by static_sliceo,
for each output o∈O. That is, we set the slicing criterion, which also indicates the starting point of the
slice, to an output port. Important considerations in slicing are data and control dependencies [Re-
icherdt and Glesner, 2012]. As Simulink is a data-flow oriented language, data dependencies are
specified by the links between blocks. Starting from an output port, we follow the data dependencies
of blocks backwards through the model. If a block is data dependent, then we add this block to our
slice. Note that in Simulink, the data dependency links are disconnected at subsystem input/output
ports and at Goto/From blocks. In our backward graph traversal, for each subsystem, we ensure to
connect its input (respectively, output) ports to the corresponding incoming (respectively, outgoing)
links of that subsystem. Similarly, we connect the Goto ports to their matching From ports. The
backward traversal stops once we reach the model input ports or constant blocks (shown as orange
blocks in Figure 3.1). Finally, we note that Simulink models may contain feedback loops enabling to
use the output of a block for a subsequent calculation [Reicherdt and Glesner, 2012]. The graphical
structure of a Simulink model with a feedback loop is cyclic. To generate (backward) static slices, we
detect these cycles and do not go through them more than once.
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For example, the model in Figure 3.4 is an example of a static slice for a MultiPortSwitch block.
Suppose that the slicing criterion is the output port Taus. To compute the static slice, we follow the
(backward) data dependency to TAnsaug, i.e., the link between TAnsaug and Taus. Hence, we add
TAnsaug to the slice. Next, we identify the data dependencies to the blocks TAnsaugdaempfer,
Ground, and pEin, and thus, we add these three blocks to the slice. Note that blocks TAnsaugdaempfer
and Ground are constant, and hence, do not induce any further data dependencies, while for the block
pEin, we may have further data dependent elements that are not shown in the figure.

The backward static slices discussed above are generated for each individual output, but they
may contain blocks that do not always affect that output at runtime. For example, the static slice in
Figure 3.4 includes all the blocks connected to the MultiPortSwitch TAnsaug, however, for a given
test case, only some of the blocks connected to this switch may be executed.

0"

4"

Figure 3.4. A (partial) static slice for a MultiPortSwitch block.

Having generated backward static slices for each output, we create test execution slices by identi-
fying the subset of these static slices that are executed by each test case. Given an output o ∈ O and
a test case tcl ∈ TS, in this step, we compute a test execution slice, denoted by sliceo,l , containing the
blocks that are executed by tcl to generate o. Let {cr0, . . . ,crn} be the set of coverage reports, and let
{static_sliceo | o ∈ O} be the set of static backward slices. We define sliceo,l as a set of atomics b as
follows:

sliceo,l = {b | b ∈ static_sliceo∧b ∈ crl}

We compute a test execution slice sliceo,l by traversing the blocks in the backward static slice of
o (i.e., static_sliceo) and including in sliceo,l those blocks that appear in the coverage report of tcl
(i.e., crl). We use crl to determine the behavior of Simulink blocks for each test case and for each
output. For each block in the static slice, crl helps identify which data inputs of that block are selected
by its control inputs. For example, as discussed in Section 3.2.1, the coverage report in Figure 3.3
indicates that among inputs 0 – 4, only the inputs 0 and 4 are covered during running a test case.
Combining this coverage report with the static slice in Figure 3.4, we obtain a test execution slice
which includes TAnsaugdaempfer and pEin blocks. That is, the block Ground is not included
in the test execution slice.

A test execution slice sliceo,l is passing (respectively failing) if the result of tcl for output o
matches (respectively deviates from) the test oracle for o. Table 3.1 shows eight test execution slices
corresponding to four test cases (TC1 to TC4) and two (final) outputs for the Simulink model example
in Figure 3.1. In this table, we report for each executed test case and for each output, which blocks
were covered (i.e., X) during the execution. We use the test oracle to determine which execution
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slices are passing and which ones are failing. The example in Table 3.1 consists of five passing and
three failing execution slices. For example, the execution slice for pOut and TC1 includes SC_Active,
LimitP, IncrPres, PressRatioSpd, etc, because the coverage report for TC1 indicated that control block
SC_Active selects (for TC1) the input coming from control block LimitP, and LimitP selects the input
coming from IncrPres, and so on.

Table 3.1. Test execution slices and suspiciousness scores of model blocks using Tarantula for the example
model of Figure 3.1.

Test Execution Slices Scores Overall
TC1 TC2 TC3 TC4 Ranking

Block Name pOut TOut pOut TOut pOut TOut pOut TOut pOut TOut Overall (Min-Max)

SC_Active X X X X 0.5 NaN 0.5 5-13

LimitP X X 0 NaN 0 14-20

Pmax X 0 NaN 0 14-20

IncrPres X 0 NaN 0 14-20

PressRatioSpd X 0 NaN 0 14-20

N_SC X 0 NaN 0 14-20

Pct2Val X 0 NaN 0 14-20

FlapIsClosed X X X X X X X X 0.5 0.5 0.5 5-13

FlapPosThreshold X X X X X X X X 0.5 0.5 0.5 5-13

dp X X X X 0.75 1 0.875 1- 2

p_Co X X X X 0.75 1 0.875 1- 2

pComp X X X X X 0.6 1 0.8 3- 4

pAdjust X X X X X 0.6 1 0.8 3- 4

CalcT X X X X NaN 0.5 0.5 5-13

dT X X X X NaN 0.5 0.5 5-13

TScaler X X X X NaN 0.5 0.5 5-13

T_K2C X X X X NaN 0.5 0.5 5-13

IncrP X X X X NaN 0.5 0.5 5-13

T_C2K X X NaN 0 0 14-20

0 C X X X X NaN 0.5 0.5 5-13

Passed/Failed Passed Failed Passed Failed Failed Passed Passed Passed

Note that our notion of test execution slice is defined over Simulink models and differs from the
notion of execution slice defined by Agrawal [Agrawal, 1991] for programs. Specifically, an execution
slice is the set of basic blocks or decisions that are executed by a test case to produce all outputs in
programs [Agrawal, 1991]. However, test execution slices in our work are defined per test case and
per output.

3.2.3 Ranking
The third step of our approach is ranking of Simulink blocks. This step takes as input test execution
slices from the Slicing step, and the PASS/FAIL information for each test case and for each output
from the Test Case Execution step. The output of this step is a ranked list of Simulink (atomic) blocks
where each block is ranked with a suspiciousness score. The higher the suspiciousness score of a
block, the higher the probability that the block has caused a failure.

To compute the suspiciousness score for a Simulink block, we use three well-known statisti-
cal formulas proposed for source code fault localization, namely, Tarantula [Jones et al., 2002],
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Ochiai [Abreu et al., 2007], and D∗ [Wong et al., 2014]. Tarantula and Ochiai have been the subject
of many experiments, and are supported by more substantial empirical evidence than other formu-
las [Baudry et al., 2006, Hsu et al., 2008, Jones et al., 2007, Jones and Harrold, 2005, Lucia et al.,
2010, Lucia et al., 2014, Naish et al., 2011, Santelices et al., 2009, Xie et al., 2013a]. Recently, D∗ has
been shown to outperform 38 statistical formulas in localizing faults for programs [Wong et al., 2014].
Hence, we decided to focus on these three formulas as a representative set of the many existing statis-
tical ranking formulas. Finally, we note that these formulas are intuitive and easy to explain. This is
important as we require involvement of engineers in our experiments. Note that our technique is not
tied to any particular ranking formula and can be extended to work with other statistical formulas.

Let s be a statement, and let passed(s) and failed(s) respectively be the number of passed and
failed test cases that execute s. Let totalpassed and totalfailed represent the total number of passed
and failed test cases, respectively. The suspiciousness score of s according to Tarantula, Ochiai, D∗

denoted by ScoreTa(s), ScoreOc(s), and ScoreD∗(s), respectively, are calculated as:

ScoreTa(s) =
failed(s)

totalfailed
passed(s)

totalpassed+
failed(s)

totalfailed

ScoreOc(s) = failed(s)√
totalfailed×(failed(s)+passed(s))

ScoreD∗(s) = failed(s)∗
(totalfailed−failed(s))+passed(s)

Similar to existing work [Le et al., 2014], we set * to 2 in D∗. Wong et al., [Wong et al., 2014]
show that D2 is the lowest power D∗ variant that still outperforms several existing ranking formulas.

In our work, we compute the suspiciousness score of a Simulink block with respect to each indi-
vidual output o∈O and denote it by Scoreo. To compute Scoreo, we define the functions, totalpassedo,
totalfailedo, passedo, and failedo for every output o ∈ O. Based on the Test Case Execution step,
we obtain the set of test execution slices and the pass/fail information for each slice. We define
totalpassedo, totalfailedo, passedo(b) and failedo(b) for each output o ∈ O and atomic block b as
follows:

totalpassedo = |{sliceo,l | ∀tcl ∈ TS∧ sliceo,l is passing}|
totalfailedo = |{sliceo,l | ∀tcl ∈ TS∧ sliceo,l is failing}|
passedo(b) = |{sliceo,l | ∀tcl ∈ TS∧b ∈ sliceo,l ∧ sliceo,l is passing}|
failedo(b) = |{sliceo,l | ∀tcl ∈ TS∧b ∈ sliceo,l ∧ sliceo,l is failing}|

That is, totalpassedo and totalfailedo represent the total passing and failing test execution slices,
respectively, for output o. The sets passedo(b), and failedo(b) represent the numbers of test execution
slices that pass and fail, respectively, for output o, and include b. For each output o ∈ O, we define
the suspiciousness score of block b for Tarantula, ScoreTa

o (b), for Ochiai, ScoreOc
o (b), and for D∗,

ScoreD∗
o (b) as follows:
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ScoreTa
o (b) =

failedo(b)
totalfailedo

passedo(b)
totalpassedo

+
failedo(b)

totalfailedo

ScoreOc
o (b) = failedo(b)√

totalfailedo×(failedo(b)+passedo(b))

ScoreD∗
o (b) = failedo(b)

∗

(totalfailedo−failedo(b))+passedo(b)

Note that for a block b, Scoreo(b) is undefined (NaN) if both passedo(b) and failedo(b) are zero.
This means that b has not appeared in any of the execution slices related to o.

In practice, engineers may either choose to use the scores for each output separately or combine
the scores for all outputs. In particular, when there is some indication that failures in different outputs
are caused by different faults, e.g., when the test execution slices of different outputs are disjoints, it
is preferable to study scores separately. Otherwise, combining scores may improve the accuracy of
fault localization, as in typical Simulink models a single faulty block may produce several failures in
different outputs.

In our experiment in Section 3.4, we decided to combine the scores, since we want to assess the
overall accuracy for all faults and outputs. We considered and experimented with several alternative
ways of combining the score functions Scoreo, and based on our experiments computing the average
of the scores (see below) yielded the best experiment results. Hence, we use this method to combine
the scores of the individual outputs in Section 3.4.

Score(b) =
∑

o∈O∧Scoreo(b)6=NaN Scoreo(b)
|{o∈O|Scoreo(b)6=NaN}|

Having computed the scores, we now rank the blocks based on these scores. The ranking is done
by putting the blocks with the same suspiciousness score in the same rank group. Given blocks in the
same rank group, we do not know in which order the blocks are inspected by engineers to find faults.
Hence, we assign a min and a max rank number to each rank group. The min rank for each rank group
indicates the least number of blocks that would need to be inspected if the faulty block happens to be
in this group and happens to be the first to be inspected. Similarly, the max rank indicates the greatest
number blocks that would be inspected if the faulty block happens to be the last to be inspected in
that group.

For example, Table 3.1 reports the Tarantula suspiciousness score for each block and for each of
the pOut and TOut outputs as well as the mean of these two scores for the example in Figure 3.1.
Note that undefined scores are shown as NaN cells and are not used for mean score computation.
Table 3.1 also shows the block rankings obtained based on the mean scores. According to the overall
ranking, the blocks dp and p_Co have the highest ranking (min rank: 1 and max rank: 2). In this
example, the block p_Co is faulty causing both pOut and TOut to fail for different test cases. Note
that if we use the scores for the pOut and TOut outputs (without averaging), four blocks dp, p_Co,
pComp, and pAdjust appear in the highest rank, whereas the average ranking, which ranks two of
these blocks as the highest, is more refined.
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3.3 Iterative fault localization
This section describes how the approach in Figure 3.2 can be applied iteratively, allowing engineers
to start with a small test oracle O, and extend the oracle only when it is necessary. The purpose of
iterative fault localization is to enable engineers to select a trade-off between the accuracy of fault
localization and the cost of test oracles. The core of our iterative fault localization is a heuristic that
guides engineers based on the quality of the ranking obtained at each iteration to determine whether
it is worthwhile to continue fault localization with an extended test oracle or not.

Figure 3.5 shows our iterative fault localization algorithm referred to as iSimFL. Similar to SimFL
(Figure 3.2), iSimFL takes as input a Simulink model M and a test suite TS. Since in iSimFL, the
test oracle O is built incrementally, O is not part of its input. In addition, iSimFL receives two input
parameters: (1) N which is the number of top most suspicious blocks that engineers typically inspect
during fault localization, and (2) g which is a coarseness threshold. The coarseness threshold is used
to determine whether a given group is too coarse or not. A rank group is too coarse if its size is
larger than the maximum number of blocks that engineers can conceivably inspect (i.e., larger than
g). These parameters are used in our heuristic and are domain specific. In practice, the values of these
parameters are determined by archival analysis of historical fault localization data.

Algorithm. iSimFL

Input: - M: Simulink model
- TS: Test suite
- N: Number of most suspicious blocks that engineers typically inspect
- g : Coarseness threshold

Output: - L: A ranked list of blocks

1. Let h be the hierarchy depth of M, let itr = 0, and let O = /0.
2. do
3. Let O′ be the test oracle for outputs at depth itr, and let O = O∪O′
4. Let L = {g0, . . . ,gm} be the ranking list obtained by calling SimFL(M,TS,O)
5. Let L′ = {g0, . . . ,gk} such that |⋃0≤i≤k gi| ≥ N and |⋃0≤i≤k−1 gi|< N
6. Let g∗ be the largest group in L′

7. if (|g∗|< g) do
8. break;
9. itr++
10. while (itr ≤ h)
11. return L

Figure 3.5. Iterative fault localization with iSimFL

As discussed in Section 2.2, Simulink models are composed of subsystems blocks that can be
hierarchical. Each subsystem at each hierarchical level can have multiple outputs. We denote the
hierarchy depth of M by h, i.e., the maximum subsystem nesting level. Model M has outputs at
hierarchy depths 0 to h. For example, for the model in Figure 3.1, we have h = 1. The outputs pOut
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and TOut are at depth 0, and the outputs of Subsystem1 and Subsystem2 are at depth 1.

In iSimFL, we start at hierarchy depth zero (itr = 0), and iteratively build test oracle O such
that O always includes the test oracle data for all the outputs from depth 0 up to depth itr. At each
iteration, we call original SimFL with test oracle O (line 4) to obtain a ranked list L = {g0,g1, . . . ,gm}
containing rank groups. Given a ranked list L = {g0,g1, . . .gm}, we apply our heuristic to determine
whether another iteration of iSimFL is worthwhile or not.

Briefly, the intuition behind our heuristic is that engineers cannot effectively localize faults when
the ranked list L is coarse, particularly within the top blocks in the list. We say a ranked list L is coarse
for the top blocks, if, among the rank groups covering the top N blocks, there is a rank group whose
size is larger than g (coarseness threshold). Lines 5 to 8 in Figure 3.5 implement our heuristic. If L
happens to be coarse for the N top most blocks, we proceed to the next iteration where we increase itr,
extend O to include test outputs at depth itr, and call SimFL with the extended test oracle. Otherwise,
we terminate iSimFL either when L does not pass our heuristic, i.e., is not coarse (line 8), or when we
reach the outputs at depth h of M (line 10).

3.4 Empirical Evaluation
This section presents our research questions and describes our industrial subjects and experimental
setup, followed by the analysis of the results.

3.4.1 Research Questions
RQ1. [SimFL’s accuracy] Can SimFL help localize faults by ranking the faulty blocks in the top
most suspicious blocks? and what is the accuracy of SimFL for different statistical formulas? This
research question investigates whether SimFL can help engineers locate faulty blocks by inspecting
a small subset of the model blocks. Specifically, we report the minimum and maximum number of
blocks that engineers have to inspect to identify faulty blocks when they are provided with a ranked
list of blocks generated by SimFL using Tarantula, Ochiai, and D2. We then compare the accuracy of
SimFL in localizing faults for these three ranking formulas.

RQ2. [Increasing test suite size] Does increasing test suite size improve SimFL’s accuracy in lo-
calizing faults? In order to increase the spectra size, one can either increase the size of test suites or
increase test oracles to include more outputs. Both require effort and have to be investigated. This
research question focuses on the former to determine if increasing the size of test suites can improve
the accuracy of SimFL in localizing faults.

RQ3. [Extending test oracle] Does extending the set of outputs and correspondingly the test oracle
to include more subsystem outputs improve the accuracy of SimFL in localizing faults? For Simulink
models, engineers often try to manually localize faults by inspecting intermediary outputs (i.e., the
subsystem outputs at different hierarchy levels) in addition to final model outputs. This research
question investigates the impact of increasing the number of outputs, by including subsystem outputs,
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on the accuracy of SimFL in localizing faults.

RQ4. [iSimFL vs SimFL] How do the accuracy results of iSimFL compare with those of SimFL,
and further, does iSimFL help limit the size of test oracles while improving accuracy? Given that
developing test oracles for subsystem outputs, though common and feasible, is costly, it is important
to evaluate the heuristic we use in iSimFL to determine if it can predict when test oracle expansion is
worthwhile. That is, when extending test oracles results in significant improvement in fault localiza-
tion accuracy justifying the expansion overhead.

RQ5. [Impact of iSimFL’s parameters] Does the performance of iSimFL change in a predictable
way when we vary its input parameters g and N? In RQ4, we compare the performance of iSimFL
with that of SimFL by giving fixed values to the g and N parameters used in iSimFL. It is important
to investigate if and how the performance of iSimFL is impacted when these parameters change.
Specifically, for this question, we report the test oracle size required by iSimFL and the accuracy of
iSimFL for different values of g and N. This data allows us (1) to determine whether the changes to
the oracle size and accuracy are monotonic, and hence predictable; and (2) to identify optimal values
for g and N. The optimal values of g and N are determined by comparing the results of SimFL and
iSimFL and are those values that lead to a larger oracle size reduction with a negligible accuracy loss.

3.4.2 Our Industrial Subject
We use three Simulink models developed by Delphi in our experiments. These models simulate
physical processes that occur inside the powertrain systems, more specifically, the combustion engine
and gearbox behavior. We refer to these three models as MS, MC, and MG. All these three models
contain different types of Simulink blocks such as switches, lookup tables, conditional blocks, inte-
grator blocks, From/Gotos, and feedback loops. Table 3.2 shows key information about our industrial
subjects. For example, Model MS contains 37 subsystems, 646 atomic blocks, and 596 links. The
hierarchy depth is five, and the model has 12 inputs, 8 outputs at hierarchy depth zero, 8 outputs at
depth one, and 7 outputs at depth two. That is, the number of outputs at depths zero and one (O1)
is 16, and the number of outputs at depths zero, one, and two (O2) is 23. The outputs at depths
three to five are redundant because they match those at depths one and two (e.g., in Figure 2.2, the
Subsystem2 output matches TOut).

Table 3.2. Key information about industrial subjects.

Model
Name

# of sub-
system

# of atomic
blocks

# of
links

# of
inputs

Hierarchy
Depth

# of model outputs
(depth 0)

O0

(depths 0 to 1)
O1

(depths 0 to 2)
O2

MS 37 646 596 12 5 8 16 23
MC 64 819 798 13 7 7 11 14
MG 15 295 261 5 4 6 13 17

We asked a Delphi engineer to seed 40 realistic faults in each one of MS and MC, and 15 realistic
faults in MG. In total, we generated 95 faulty versions (one fault per each faulty version). The faults
were seeded before our experiment took place. The engineer seeded faults based on his past experi-
ence in Simulink development and, to achieve diversity in terms of the location and types of faults,
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we required faults of different types to be seeded in different parts of the models. We categorize the
seeded faults into the following three groups: (1) Wrong Function which indicates a mistake in the
block function type such as choosing > instead of >=. (2) Wrong Connection which indicates a
wrong link between two blocks. For example, engineers may connect the signal A to input 2 instead
of input 1 of a block. Note that if the data type of signal A and input 2 does not match, Simulink
reports a syntax error. Hence, this fault refers to cases where the types match, but the connection
is still wrong. (3) Wrong Value, indicating a wrong value in a constant Simulink block or a wrong
threshold value in a Simulink control block.

The above classification of faults does not include Stateflow [MathWorks, b], which is the state
machine notation of Simulink. This is because (1) our industrial subjects do not include any State-
flows, and (2) we would need to adapt slicing to Stateflow, which is out of the scope of this disserta-
tion. Further, Simulink models may fail due to the wrong configuration of the simulator, e.g., a wrong
step size. In our work, we focus on handling failures caused by faults applied to the model and not
those that are due to the wrong configuration of the simulator.

Finally, we note that our industrial subjects are representative in terms of size and complex-
ity among Simulink models developed at Delphi. Our industrial subject models include about ten
times more blocks than the publicly available Simulink models from the Mathworks model repos-
itory [MathWorks, a]. In addition, most publicly available Simulink models are small exemplars
created for the purpose of training for which realistic faults are not available. Hence, we chose to per-
form our experiments exclusively on industrial subjects for which realistic faults could be obtained
from an experienced engineer.

3.4.3 Experiment Settings
In addition to a Simulink model, which is discussed in Section 3.4.2, SimFL requires as input a test
suite and a test oracle which are discussed below, along with the experiment design and evaluation
metrics.

Test Suite. In this chapter, we generated test suites using Adaptive Random Testing [Chen et al.,
2005]. In our experiment, we were provided with the valid ranges of input signals of our industrial
subjects. Adaptive random testing is a black box and lightweight test generation strategy that dis-
tributes test cases evenly within the input space (i.e., the valid ranges), and therefore, helps ensure
diversity among test cases.

Test Oracle. In practice, the development of test oracles is largely manual and out of scope of this
dissertation. In our experiment, we chose to use a fault-free version of our industrial subject model
for the oracle information to automate our large-scale and time-consuming experiments. Note that the
Simulink models used in our experiment, when provided with constant input signals, are expected to
stabilize and eventually converge to a constant output signal (see Figure 2.3(b)). If the output signal
does not stabilize within a sufficiently large simulation time interval, we mark that as a failure. In this
case study, we followed the suggestion from Delphi engineers and set the simulation time (and thus,
the moment at which we measure the output signal) to 10 seconds. For each output, to determine
if a test case passes or fails, we compared the values of that output from the faulty Simulink model
with the fault-free Simulink model at the end of a 10-sec simulation. If they matched, we marked the
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output as PASS, and otherwise, as FAIL.

Experiments. We perform five separate experiments, referred to as EXP1, EXP2, EXP3, EXP4, and
EXP5 to answer our research questions. In our experiments, we consider three different sets of outputs
and their corresponding test oracles: (1) test oracle O0 for the model outputs at depth zero, (2) test
oracle O1 for the outputs at depth zero and one, and (3) test oracle O2 for the outputs at depths zero,
one, and two. Table 3.2 shows the sizes of test oracles O0 to O2 for each industrial subject.

To answer RQ1, we perform experiment EXP1 where we apply SimFL (Figure 3.2) using Taran-
tula, Ochiai, and D2 to our 95 faulty models with a test suite size of 200 and with the smallest test
oracle (O0). Note that the size selected for test suites was based on typical practice at Delphi given
test budget constraints and the cost of oracles. For RQ2, we perform experiment EXP2 where we
apply SimFL using Tarantula, Ochiai, and D2 to our 95 faulty models with the test oracle O0 and with
nine different test suites of varying size: 200, 300, 400, 500, 600, 700, 800, 900, and 1000. We start
from the test suite with 200 test cases and augment the test suites by adding (100) more test cases
generated using Adaptive Random Testing. For RQ3, we perform experiment EXP3 where we apply
SimFL using Tarantula, Ochiai, and D2 to our 95 faulty models with a test suite size of 200 and with
test oracles O1 and O2. Based on the results of EXP1, EXP2, and EXP3, we select one statistical
formula to be used by iSimFL in EXP4 to EXP5. For RQ4, we perform experiment EXP4 where
we apply iSimFL (Figure 3.5) to our 95 faulty models with a test suite size of 200 and rely on the
heuristic used in iSimFL to determine how many iterations are required for each faulty model. For the
parameters N and g used in iSimFL, we set their values based on our experience and discussions with
domain experts. Specifically, we set N = 15 because engineers, when provided with a ranked list of
blocks, are able to typically and routinely inspect the top 15 blocks. Further, for each faulty model,
we set g to 6% of the size of the model. Finally, for RQ5, we perform experiment EXP5 where we
apply iSimFL with different values of N and g to our 95 faulty models with a test suite size of 200.
EXP5 consists of two parts i.e., EXP5a and EXP5b. For EXP5a, we apply iSimFL where we fix N to
15 and vary the value of g to 1%, 2%, ..., 10% of the model size. For EXP5b, we apply iSimFL where
we fix g to 6% of the model size and vary the value of N to 5, 10, ..., 25.

Evaluation Metrics. Assuming that engineers inspect block rankings generated by SimFL or iSimFL
to find faults, we evaluate the accuracy of SimFL and iSimFL using the following metrics from the
fault localization literature [Cleve and Zeller, 2005, Jones and Harrold, 2005, Liu et al., 2005, Lucia
et al., 2014, Parnin and Orso, 2011, Renieris and Reiss, 2003]: The percentage of blocks inspected
to find faults, the absolute number of blocks inspected to find faults, and the proportion of faults
localized when engineers inspect fixed numbers of the top most suspicious blocks.

For the absolute number of blocks inspected to find faults, we consider the min and the max ranks
of the rank group that contains the faulty block. For the percentage of blocks inspected to find faults,
we divide the absolute number of blocks inspected (both for the min and the max ranks) by the total
number of blocks. The proportion of faults localized is the proportion of localized faults over the
total number of faults when engineers inspect a fixed number of the top most suspicious blocks from
a ranked list.
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3.4.4 Experiment Results
In this section, we address our research questions based on our experiment results.

RQ1. [SimFL’s accuracy] To answer this question, we performed EXP1 described in Sec-
tion 3.4.3. We evaluate SimFL’s accuracy in localizing faults in terms of the percentage and the
absolute number of blocks inspected, and the proportion of faults localized, as follows:

Percentage and absolute number of blocks inspected. In Table 3.3, we show the percentages and
absolute numbers of blocks that engineers need to inspect when they use SimFL with the smallest test
oracle (i.e. O0) for three formulas i.e., Tarantula, Ochiai, and D2. For all 95 models, when using
SimFL with O0 and Tarantula as the statistical formula, engineers need to inspect, on average, at
least 14 and at most 63 blocks (i.e., 2.1% - 8.9%). Similarly, when using SimFL with Ochiai as the
statistical formula, engineers need to inspect, on average, at least 23 and at most 62 blocks (i.e., 3.1%
- 8.8%), and when using SimFL with D2, engineers need to inspect, on average, at least 16 and at
most 56 (i.e., 2.3% - 7.9%).

Table 3.3. Average percentage and absolute number of blocks inspected using SimFL with O0 for Tarantula,
Ochiai, and D2.

Model
min.#(%) - max.#(%) for SimFL with O0

name Tarantula Ochiai D2

MS 13 (2.1%) - 46 (7.1%) 14(2.2%) - 43(6.7%) 11(1.6%) - 40(6.1%)
MC 19 (2.4%) - 96 (11.7%) 39(4.7%) - 98(12%) 26(3.2%) - 86(10.5%)
MG 4 (1.4%) - 18(6%) 5(1.6%) - 18(6%) 4(1.4%) - 18(6.0%)

All models 14 (2.1%) - 63 (8.9%) 23 (3.1%) - 62 (8.8%) 16 (2.3%) - 56 (7.9%)

Proportion of faults localized. In Figures 3.6, 3.7, and 3.8, we present the proportion of faults
localized when engineers inspect a fixed number of the most suspicious blocks in the rank lists gener-
ated by SimFL with three statistical formulas (i.e., Tarantula, Ochiai, and D2) for MS, MC, and MG,
respectively. In each figure, the solid line shows the maximum proportion of faults localized, and the
dashed line shows the minimum proportion of faults localized.

For 40 faulty versions of MS (see Figure 3.6), by inspecting the top 10% of most suspicious blocks
(i.e., 65 blocks), engineers can locate at most 95% and at least 78% of the faults when SimFL with
Tarantula is used; at most 93% and at least 78% of the faults when SimFL with Ochiai is used; and at
most 95% and at least 83% of the faults when SimFL with D2 is used. For 40 faulty versions of MC
(see Figure 3.7), by inspecting the top 10% of most suspicious blocks (i.e., 82 blocks), engineers can
locate at most 85% and at least 33% of the faults when SimFL with Tarantula is used; at most 80%
and at least 33% of the faults when SimFL with Ochiai is used; and at most 85% and at least 35% of
the faults when SimFL with D2 is used. For 15 faulty versions of MG (see Figure 3.8), by inspecting
the top 10% of most suspicious blocks (i.e., 30 blocks), engineers can locate at most 100% and at
least 93% of the faults when SimFL with Tarantula and D2 are used; and at most 100% and at least
87% of the faults when SimFL with Ochiai is used.

Note that, for all of the three formulas (i.e., Tarantula, Ochiai, and D2), the results of using
SimFL for MC is not as good as the results for the other two models. This is because, compared
to MS and MG, MC includes a larger number of lookup tables, integrator blocks, unit convertors,
and trigonometry and logarithmic functions that may potentially reduce or mask data discrepancies,
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and hence, impact the number of observed failures for outputs at depth zero. As a result, the fault
localization results for MC when we focus on the outputs in O0 are less accurate compared to the
results for MS and MG.

Comparing with the state-of-the-art. Since no studies on fault localization for Simulink models
are reported, we briefly report the results obtained from applying statistical debugging approaches
(with various ranking formulas) to source code implemented in C or Java. We note that, like our
work, the approaches discussed here assume that the code under analysis has a single fault.

Comparing the percentage of blocks inspected to localize faults in programs, on average, devel-
opers need to inspect at most around 20% of their code (i.e., program blocks) to localize faults [Cleve
and Zeller, 2005, Liu et al., 2005, Lucia et al., 2014, Renieris and Reiss, 2003], while SimFL, on av-
erage, requires at most around 8% (i.e., 8.9% for SimFL with Tarantula, 8.8% for SimFL with Ochiai,
and 7.9% for SimFL with D2) of the model blocks to be inspected to find faults. Comparing the pro-
portion of faults localized, assuming that developers only inspect the top 10% of the most suspicious
code elements, on average, the minimum percentage of faults localized is less than 55% [Cleve and
Zeller, 2005, Liu et al., 2005, Lucia et al., 2014, Renieris and Reiss, 2003]. When engineers inspect
10% of the top most suspicious blocks returned by SimFL, on average, the minimum percentage of
faults localized is around 60% (i.e., 58/95 for SimFL with Tarantula 57/95 for SimFL with Ochiai,
and 61/95 for SimFL with D2).

While source code debugging and Simulink model debugging have major differences, the above
comparison shows that our results are promising and statistical debugging for Simulink models is
potentially useful. We note that while inspecting 10% of software code may indeed require developers
to review tens or hundreds of KLOC, 10% of a typical Simulink model is often less than 100 blocks.
Moreover, engineers are often able to conceptually trace Simulink blocks to abstract functions and
concepts, making it easier for them to determine whether an individual block is faulty or not.

Comparing Tarantula, Ochiai, and D2. The above results show that the accuracy of ranking results
obtained by these three formulas are considerably close. Based on Table 3.3, the percentage and abso-
lute numbers of blocks inspected using SimFL with O0 for Tarantula, Ochiai, and D2 are considerably
close. The average maximum percentages of blocks inspected corresponding to the three formulas
range from 7.9% to 8.9%. Figure 3.9 shows the comparison of the proportions of faults localized
for all 95 faulty versions when using SimFL with Tarantula, Ochiai, and D2. Based on Figure 3.9,
the minimum proportions of faults localized when using the three formulas are close, in particular
when engineers inspect the top 20 blocks. Further, when engineers inspect more than 20 blocks, the
variations in the minimum proportions of faults localized across the three formulas are less than 7%,
and hence, not substantial.

In summary, the answer to RQ1 is that, on average, SimFL is able to rank the faulty blocks as the
most suspicious blocks that should be inspected by engineers. Further, the accuracies of SimFL using
Tarantula, Ochiai, and D2 in localizing faults in Simulink models are not substantially different.

RQ2.[Increasing test suite size] To answer this question, we performed EXP2. We observed that
the maximum number of blocks that engineers need to inspect to find the fault in each faulty model
remains almost constant as we apply SimFL with Tarantula, SimFL with Ochiai, and SimFL with D2
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Figure 3.6. Proportion of faults localized for MS using SimFL with O0.
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Figure 3.7. Proportion of faults localized for MC using SimFL with O0.

0 20 40 60 80 100 120 140 160 180 200 220 240

10

20

30

40

50

60

70

80

90

100

The number of model blocks inspected

Pr
op

or
tio

n 
of

 fa
ul

ts
 lo

ca
liz

ed
(%

)

 

 

max.- Tarantula
min.- Tarantula
max.- Ochiai
min.- Ochiai
max.- Dstar
min.- DstarD2

D2

Figure 3.8. Proportion of faults localized for MG using SimFL with O0.
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Figure 3.9. Proportion of faults localized for all models using SimFL with O0.

using test suite sizes of 200, 300, . . . , 1000. For all the 95 faulty models and for these three formulas,
changes in the rankings of the faulty blocks are negligible as we apply SimFL with different test suite
sizes. Specifically, for the three formulas, the differences on the maximum percentages of blocks
inspected are less than 1.8% as we increase the test suite size. Note that we start with a test suite with
size 200 because this size is realistic and comparable to test suite sizes used for Simulink models in
Delphi.

To explain why the rankings of the faulty blocks remain almost constant, we introduce the no-
tion of Coincidentally Correct Test cases (CCT) [Wang et al., 2009]. CCTs are test execution slices
that execute faulty blocks but do not result in failure. CCTs are likely to occur in Simulink models
because these models often contain various mathematical function blocks that may reduce or mask
data discrepancies, resulting in passing test execution slices that exercise faulty blocks. We note that
based on the Tarantula, Ochiai, and D2 formulas, and given that our faulty models include a single
faulty block, the following hold: (1) The Tarantula scores of faulty blocks depend on the proportion
of CCTs over the total number of passing test execution slices [Wang et al., 2009], (2) the Ochiai
scores of faulty blocks depend on the proportion of total failing test execution slices over the number
of test execution slices that cover the faulty blocks, and (3) the D2 scores of faulty blocks depend on
the proportion of total failing test execution slices over the number of CCTs.

In our experiments, we observed that as we increase the test suite size: (1) the proportion of CCT
over all passing test execution slices remains almost constant (i.e., changes in this proportion are less
than 1%), (2) the proportion of total failing test execution slices over the total number of test execution
slices that cover the faulty blocks also remains almost constant with an average difference of 0.004,
and (3) the changes in the proportion of total failing test execution slices over the number of CCTs
are negligible (i.e., the average difference is 0.22). Hence, increasing the test suite size has no notable
impact on the rank of faulty blocks for none of these three formulas.

In summary, the answer to RQ2 is that increasing the size of test suites, above what can be
considered a typical size in our application context, does not make any significant changes in SimFL’s
accuracy.

RQ3.[Extending test oracles] To answer this question, we performed EXP3. In Figures 3.10(a)
to 3.10(f), we show the maximum percentages of blocks required to be inspected for 58 out of 95
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faulty models when SimFL with Tarantula is applied with test oracles O0, O1, and O2. The results
for the other 37 models are not shown, as SimFL with O0 already performs well, i.e., on average, the
maximum percentage of blocks inspected is 4.4% and by extending test oracles of those 37 models,
the accuracy only slightly improves or remains the same.

Among the 58 models under consideration, SimFL with O0 performs reasonably well for 20 mod-
els (Figures 3.10(a) and 3.10(b)) as the maximum percentage of blocks inspected for these models is
less than 10%. We still chose to show the results for these 20 models because these results are used
to answer RQ4 as well. For the other 38 models (i.e., models in Figures 3.10(c) to 3.10(f)), SimFL
with O0 requires engineers to inspect more than 10% of the blocks in order to locate faults (between
10.2% and 26.6%).

For faulty models shown in Figure 3.10(a), extending test oracles from O0 to O2 improves
SimFL’s accuracy slightly (i.e., up to 3%) for 13 models, while for the other three models (i.e.,
MS39, MG3, and MG9), SimFL’s accuracy remains the same. For 29 faulty models (Figures 3.10(b)
to 3.10(d)), extending test oracles from O0 to O1 notably improves SimFL’s accuracy. Specifically,
on average, the maximum percentage of blocks inspected reduces to 1.8%, 3%, and 10% for the mod-
els in Figures 3.10(b), 3.10(c), and 3.10(d), respectively. However, for these models, the accuracy
improves slightly or remains the same when we extend the oracle to O2. On the contrary, for the 10
models as shown in Figure 3.10(e), extending the oracle to O1 improves SimFL’s accuracy slightly,
but extending the oracle to O2 notably improves the accuracy to, on average, 4%. Note that extending
the test oracle could potentially increase the number of failing execution slices that are useful for lo-
calizing faults. In Table 3.4, we show the minimum and maximum numbers of failing execution slices
for all the faulty versions of MS, MC, and MG, as we extend the test oracle from O0 to O2. For the
large difference between the minimum and maximum, we can see that certain faults are much easier
to detect than others and hence they result in many more failing execution slices. Based on Table 3.4,
the minimum and maximum numbers of failing execution slices increase or remain the same as we
extend the test oracle from O0 to O2.

In contrast to the above models, where SimFL’s accuracy either improves or stays the same as
we expand the oracle, for MS32, MS33, and MS14 (Figure 3.10(f)), SimFL may fare worse as we
extend the oracle. For MS32 and MS33, the maximum percentages of blocks that engineers need to
inspect decrease to below 10% (i.e., 5.8%) when going from O0 to O1, but these percentages increase
to above 10% (i.e., 15.7% and 10.9%) again when O2 is used. As for MS14, SimFL fares worse
when we extend the oracle from O0 to O1. But after extending the oracle to O2, we observe a high
improvement (i.e., 8.3%).

To explain why test oracle expansion does not always improve accuracy, we note that as we
extend the size of test oracles, either the number of CCTs increases or stays the same. In the latter
case, SimFL’s accuracy either improves or remains the same because none of the new passing test
execution slices exercise faults, and hence, the block rankings either stay the same or become more
accurate. In the former case, however, SimFL’s accuracy is unpredictable and may even decrease.
Our experiment data confirms this intuition. For the cases where SimFL’s accuracy declines as we
increase the spectra size, i.e., for MS32 and MS33 (from O1 to O2) and for MS14 (from O0 to O1),
the size of CCT increases.

Nevertheless, we note that for all but three faulty models, SimFL’s accuracy improves or remains
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Table 3.4. Number of failing execution slices based on test oracles O0, O1, and O2.

Model
Name

Test suite # of failing slices (min. ∼ max.)
size Test oracle O0 Test oracle O1 Test oracle O2

MS 200 6 ∼ 1009 34 ∼ 1796 47 ∼ 2461
MC 200 8 ∼ 1010 8 ∼ 1390 8 ∼ 1390
MG 200 34 ∼ 249 92 ∼ 467 102 ∼ 467

the same as we extend the test oracles to include more subsystem outputs. When using SimFL with
O2, on average, engineers need to inspect, for MS, at least 1.7% and at most 4.0% of model blocks
(i.e., 11 to 26 blocks); for MC, at least 1.1% and at most 4.1% of model blocks (i.e., 9 to 34 blocks);
and for MG, at least 1.4% and at most 3.4% of model blocks (i.e., 4 to 10 blocks). On average, for
all 95 faulty models and using SimFL with O2, engineers need to inspect at least 1.4% and at most
4% of model blocks (i.e., 9 to 27 blocks) , which is less than the results for SimFL with O0 (i.e., on
average, at least 2.1% and at most 8.9% of model blocks). Furthermore, using SimFL with O2, by
inspecting only the top 10% of most suspicious blocks, engineers are able to find at least 91 out of 95
faults, which is 33 more faults compared to using SimFL with O0.

When we extend the test oracle to O2, the accuracy of SimFL with Ochiai and SimFL with D2

is similar to the accuracy of SimFL with Tarantula. Specifically, for all the 95 faulty models and for
SimFL with Ochiai, the number of blocks inspected decreases to, on average, at least 1.8% and at
most 4% of the model blocks (i.e., 13 to 27 blocks). Similarly, for SimFL with D2, the number of
blocks inspected decreases to, on average, at least 1.5% and at most 3.6% of the model blocks (i.e.,
10 to 24 blocks).

In summary, the answer to RQ3 is that extending test oracles by including more outputs at lower
hierarchy levels may or may not improve SimFL’s accuracy in localizing faults on a specific model.
But overall, oracle extension leads to the detection of significantly more faults.

Since, as shown in RQ1 to RQ3, there is no significant differences in the accuracies ofTarantula,
Ochiai, and D2 in localizing faults in Simulink models, we answer RQ4 and RQ5 based on iSimFL
results with one of these formulas. In particular, we report the results for iSimFL with Tarantula as
its results are representative for the other two formulas.

RQ4.[iSimFL vs SimFL] To answer this question, we performed EXP4. Our experiment shows
that for 37 out of 95 models (not shown in Figure 3.10), iSimFL only performed one iteration before
it terminates. That is, the loop in Figure 3.5 was executed only once and with oracle O0 for these 37
models. The maximum percentages of blocks inspected for these 37 models with O0 are reasonably
low (4.4% on average) and hence, as iSimFL correctly predicted, oracle expansion is not necessary.
The results of EXP4 for the other 58 models are shown in Figures 3.10(g) to 3.10(l).

For 16 faulty models as shown in Figure 3.10(g), iSimFL extends test oracles although the maxi-
mum percentages of blocks inspected using O0 are already good (4.2% on average) and oracle expan-
sion does not lead to a substantial improvement. For these models, the iSimFL heuristic still extended
O0 because there were some coarse groups (with size larger than g) below the faulty block but within
the top N blocks. Specifically, for eight of these 16 models, iSimFL extends test oracle to O1, and for
the other eight models (i.e., MS3, MS12, MS34, MS36, MC2, MC29, MC31, MC33), iSimFL extends
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Figure 3.10. Maximum percentage of blocks that need to be inspected to find faults for SimFL with Taran-
tula and test oracles O0, O1, and O2 and for iSimFL with Tarantula: (a) SimFL’s accuracy improves slightly or
remains the same as we extend the oracle, (b-e) SimFL’s accuracy improves notably as we extend the oracle,
(f) SimFL’s accuracy is unpredictable as we extend the oracle, and (g-l) iSimFL’s accuracy for those models
where, according to the iSimFL’s heuristic, oracle expansion is required.
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test oracle to O2.

For four faulty models as shown in Figure 3.10(h), the maximum percentages of blocks inspected
using O0 are within an acceptable range (8.8% on average). Nevertheless, extending test oracles to
O1 is still beneficial. For these models, iSimFL correctly extends test oracles to O1. By doing so, on
average, the maximum percentage of blocks inspected notably decreases from 8.8% to 1.8% of the
model blocks. However, for MC14 and MG15, iSimFL unnecessarily extends the oracles to O2 while
the maximum percentage of blocks inspected remains the same.

For the other 38 models (Figures 3.10(i) to 3.10(l)), the maximum percentages of blocks inspected
using O0 are considerably high (15.5% on average). For 34 of the 38 models, iSimFL correctly ex-
tends oracles which substantially decreases the maximum percentage of blocks inspected. Specifi-
cally, iSimFL correctly performs two iterations (with O0 and O1) for 20 models and three iterations
(with O0, O1, and O2) for 14 models. For these 34 models, iSimFL continues extending the oracle
either until its accuracy improves and fall below 10%, or until no further extension is possible. Note
that only one model (i.e., MS40) falls in the latter group. Further, for four models (i.e., MS1, MS11,
MC3, and MC4 (Figure 3.10(i))), iSimFL correctly predicts that extending oracles to O1 is beneficial,
though iSimFL additionally and unnecessarily extends the oracles to O2 while the accuracy remains
the same or does not substantially improve.

In summary, oracle extension is not necessary for 53 out of 95 models. For the other 42 models
where it is necessary (i.e., leads to considerable improvement in accuracy), 28 models need to extend
the test oracle up to depth one (i.e., O1), and 14 models require to extend the test oracle up to depth
two (i.e., both O1 and O2).

The iSimFL heuristic was able to correctly identify 37 out of 53 models that do not need oracle
extension and correctly identify all models (i.e., 42) that require oracle extension. Among these 42
models, the iSimFL correctly predict the oracle extension depth for 36 models. For the other six
models (i.e., MS1, MS11, MC3, MC4, MC14, and MG15), iSimFL correctly extends test oracles to
O1, but iSimFL unnecessarily extends test oracles further to O2. Further, using iSimFL, the average
oracle size for each model is about 12 and therefore lower compared to the size of O2 (23 for MS,
14 for MC, and 17 for MG). Finally, iSimFL was able to properly handle the three cases discussed in
RQ3 where oracle extension caused the accuracy to decline (Figure 3.10(f)). Specifically, for MS32
and MS33, iSimFL stops after applying O1, whereas for MS14, it goes all the way to O2.

Table 3.5 shows the minimum and maximum numbers (and percentages) of blocks inspected for
each industrial subject, comparing SimFL with O0, SimFL with O2 (i.e., extending all oracles), and
iSimFL. Specifically, after applying iSimFL to our 95 faulty models, we obtained the following values
for our evaluation metrics:

Percentage and absolute number of blocks inspected. For all models, using iSimFL, engineers
need to inspect, on average, at least 1.3% and at most 4.4% of model blocks. As shown in Table 3.5,
these results are comparable to those obtained by SimFL with O2 and are better than those obtained
by SimFL with O0.

Proportion of faults localized. Using iSimFL, engineers can find at least 90 out of 95 faults (i.e.,
95%) when only the top 10% of most suspicious blocks are inspected. iSimFL is able to locate a
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Table 3.5. Average of minimum and maximum numbers of blocks inspected and test oracle sizes when using
SimFL-Tarantula with O0, SimFL-Tarantula with O2, and iSimFL-Tarantula.

Model SimFL with O0 SimFL with O2 iSimFL

name
min. #(%) - max. #(%)

(|O0|)
min. #(%) - max. #(%)

(|O2|)
min. #(%) - max. #(%)

(Avg.|O|)
MS

13 (2.1%) - 46 ( 7.1%)
(8 outputs)

11 (1.7%) - 26 (4.0%)
(23 outputs)

9 (1.5%) - 29 (4.5%)
(12 outputs)

MC
19 (2.4%) - 96 (11.7%)

(7 outputs)
9 (1.1%) - 34 (4.1%)

(14 outputs)
10 (1.2%) - 37 (4.5%)

(12 outputs)

MG
4(1.4%) - 18( 6.0%)

(6 outputs)
4 (1.4%) - 10 (3.4%)

(17 outputs)
4 (1.4%) - 11 (3.7%)

(11 outputs)

similar number of faults compared to SimFL with O2 (i.e., 90 vs. 91).

In summary, the answer to RQ4 is that the accuracy of iSimFL is similar to the accuracy of SimFL
with O2, while the average test oracle size for iSimFL is 12 compared to a larger size for O2 (12 vs.
23 for MS, 12 vs. 14 for MC, and 11 vs. 17 for MG). That is, iSimFL achieves the same accuracy as
SimFL with O2 using smaller test oracles. Further, iSimFL, with an average oracle size of 12, yields
a significant improvement in accuracy over SimFL with O0, which has an average oracle size of 7.
That is, iSimFL extends only by five outputs the oracle O0.

RQ5.[Impact of iSimFL’s parameters] To answer this question, we performed EXP5a and
EXP5b as described in Section 3.4.3. We evaluated the impact of changes in the values of N and
g parameters of iSimFL on the average accuracy and the average oracle size extension of iSimFL.
The reference for comparison is SimFL with the maximum oracle (O2). Specifically, we want to
know, when changing N and g, how the average accuracy and the average oracle size of iSimFL fare
compared to the accuracy and the test oracle size of SimFL with O2.

Figures 3.11 and 3.12 show the results of these experiments: In Figure 3.11, we show the results
of EXP5a where N is fixed at 15 and we vary the value of g from 1% to 10% of model blocks. Specif-
ically, Figure 3.11(a) shows the average reduction in the oracle size required by iSimFL compared to
the size of O2 for MS, MC, and MG, and Figure 3.11(b) shows the average loss in the accuracy of
iSimFL, which tries to use smaller oracles than O2, compared to the accuracy of SimFL with O2 for
MS, MC, and MG. For example, based on the results in these figures, by applying iSimFL to MS and
when g is set to 3% of the size of MS, the average accuracy of the rankings generated by iSimFL is
around 2 (blocks) less than the average accuracy of rankings obtained by SimFL with O2 (see Fig-
ure 3.11(b)). But iSimFL obtains these rankings with an oracle that contains on average seven less
outputs compared to O2 (see Figure 3.11(a)). In Figure 3.12, we show the results of EXP5b where g
is set to 6% of the size of the underlying models and N is set to 5, 10, 15, 20, and 25. Similar to Fig-
ure 3.11, Figure 3.12(a) shows the average reduction in the oracle size required by iSimFL compared
to the size of O2 for MS, MC, and MG, and Figure 3.12(b) shows the average loss in the accuracy of
iSimFL compared to the accuracy of SimFL with O2 for MS, MC, and MG.

As shown in Figure 3.11, for N = 15, as the value of g increases, iSimFL extends test oracles less
(i.e., the difference between the oracle size required by iSimFL and size of O2 increases), while the
accuracy of ranking results mostly decreases (i.e., engineers on average have to inspect more blocks
to find the fault compared to the number of blocks that they need to inspect when SimFL with O2
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Figure 3.11. The impact of varying the value of g on the average reduction of oracle size (a) and the average
loss in fault localization accuracy (b).
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Figure 3.12. The impact of varying the value of N on the average reduction of oracle size (a) and the average
loss in fault localization accuracy (b).

is used). This is because for larger g, the probability of finding rank groups with size larger than g
decreases and iSimFL’s heuristic tends to extend test oracles less often (line 7 in Figure 3.5). Note
that for MS and for two points g = 1% and g = 5%, the accuracy slightly decreases when we increase
g. This is because as we observed in RQ3, in some few cases by extending test oracles, accuracy
may decrease. So although the relationship between g and oracle reduction is monotonic and fully
predictable, i.e., oracle size decreases with increasing g, the relationship between g and accuracy
loss is not always monotonic. However, as shown in Figure 3.11(b), in most cases by increasing g,
accuracy loss either increases or stays the same, and only in two cases we may slightly gain accuracy
by increasing g.

Similarly, when we fix g to 6% of the size of model (Figure 3.12) and increase N, iSimFL extends
test oracles more (i.e., the difference between iSimFL required oracle size and size of O2 decreases),
while the accuracy of ranking results increases (i.e., engineers on average have to inspect less blocks to
find the fault compared to the number of blocks that they need to inspect when SimFL with O2 is used).
Note that, when the value of N increases, iSimFL checks a larger number of most suspicious blocks
for deciding whether the suspiciousness ranking is coarse or not. When the set of most suspicious
blocks checked by iSimFL is larger, iSimFL is more likely to find a rank group with size > g (i.e.,
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coarse ranking results), and hence, is more likely to decide that oracle extension is necessary. As a
result, the average reduction on oracle size decreases. On the other hand, as shown in Figure 3.12(b),
as the value of N increases, the accuracy of iSimFL gets closer to the accuracy of SimFL with O2, i.e.,
accuracy loss decreases. Note that the trend in Figure 3.12(b) happens to be monotonic, but as we
discussed earlier, the changes in accuracy that are caused by changes in the oracle size are in general
unpredictable.

In summary, the answer to RQ5 is that changing the value of the parameters (i.e., N and g) used
in iSimFL has a predictable impact on the oracle size required by iSimFL. By increasing g, oracle
size decreases, and by increasing N, oracle size increases when compared to the size of the maximum
oracle (O2). The accuracy loss is not always predictable when we change N and g. In a majority of
cases, however, by increasing g, the accuracy loss increases, and by increasing N, the accuracy loss
decreases when compared with the results obtained by SimFL with O2. Finally, based on Figure 3.11,
we observe that when the value of g is between 4% to 6% of the model blocks, the average loss in
fault localization accuracy is low (i.e., less than 5 blocks) for all the three models, while reduction
in the test oracle size is relatively large (around 8 outputs on average for the three models). Based
on Figure 3.12, we observe that the loss in accuracy is high when N is less than 15, suggesting that
checking less than 15 most suspicious blocks may not be enough to assess the coarseness of ranking
results and could lead to missing necessary oracle extensions, hence degrading iSimFL’s accuracy.

MC is the largest model but also has the smallest variation in oracle size from O0 to O2, i.e., there
is less room for improvement compared to MS and MG. With the highest value of g and the smallest
value of N, the heuristic leads to extending the oracle by only two more outputs, resulting in a larger
loss of accuracy compared to MS and MG.

Based on the above results for three distinct models of different sizes, for the experiment whose
results are reported in Figure 3.10, we picked optimal values for g and N, that is 6% and 15, respec-
tively. When setting these parameters in practice, it does not make much sense for g to go higher
than 10%, which is already a quite large rank group size. Further, g should not be below 4% of the
model size since our results suggest that the reduction in oracle size will be limited. The parameter N
is limited by how much time engineers have to inspect blocks. Our results suggest that, for our three
subject studies, by setting N to be at least 15, i.e., less than 5% of the model size for our smallest
model and less than 2% for our largest model, we are able to provide a reasonable prediction as to
when the test oracle extensions are beneficial. Covering such small percentages of blocks is feasible
in most practical contexts and situations.

3.5 Threats to Validity
Threats to the external validity relate to the generalizability of our findings. In this work, we evaluated
the accuracy of our approach in localizing 95 faulty versions of three industrial Simulink models from
the automotive domain. The industrial Simulink models that we analyzed are representative in terms
of size and complexity among Simulink models developed at Delphi, and the seeded faults were
realistic and were obtained from Delphi engineers. However, it is yet to be seen if our findings are
generalizable to Simulink models from other domains.

Threats to the internal validity relate to the assumptions we made in our experiments. In partic-
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ular, we evaluated our approach on faulty Simulink models where each faulty model contained one
fault only. In practice, models may have multiple faults, and these faults may impact one another in
unknown ways. However, a large bulk of existing research on applying statistical debugging to code
is exclusively evaluated on programs seeded with single faults [Abreu et al., 2007, Arumuga Nainar
and Liblit, 2010, Chen et al., 2002, Chilimbi et al., 2009, Cleve and Zeller, 2000, Cleve and Zeller,
2005, Jones and Harrold, 2005, Jones et al., 2002, Liblit et al., 2005, Liu et al., 2005, Lucia et al.,
2010, Parnin and Orso, 2011, Renieris and Reiss, 2003, Santelices et al., 2009, Xie et al., 2013b]. Our
approach is the first to apply statistical debugging to Simulink models, and no prior empirical results
on Simulink fault localization exist. In our work, in order to be able to compare our findings with
those reported in the literature, we decided to be consistent with the existing experiment settings and
evaluate our approach on models seeded with single faults. Our work is a necessary basis before we
can move forward to more complex evaluations involving models seeded with multiple faults. Fur-
ther, our work opens up opportunities for more research on applying statistical debugging to Simulink
models.

3.6 Conclusion and Future Work
We presented SimFL, a new fault localization approach for Simulink models by combining statistical
debugging and dynamic model slicing. In our work, we generate finer grained spectra (i.e., one
spectrum for each test case and each output) compared to the existing techniques where one test case
yields a single spectrum. This allows us to apply statistical debugging to Simulink models where
test suites are typically small due to the practical limits of embedded system development. We use
backward static slicing and coverage reports to generate test execution slices. We then compute
suspiciousness scores per block and per output using three different, well-known statistical ranking
formulas and take the average of suspiciousness scores of each block over all outputs to obtain the
final scores used for ranking. Our approach considers as many outputs as possible and necessary,
potentially increasing test oracle cost. Hence, we propose an iterative fault localization algorithm
(iSimFL) to help engineers determine when oracle extension is likely to increase accuracy. We applied
SimFL to 95 faulty models generated based on three different Simulink models from the automotive
industry. Our results show that SimFL’s accuracy in localizing faults in Simulink models is promising:
on average, for example, using SimFL with Tarantula, the percentage of blocks inspected is at least
2.1% and at most 8.9% of the total model blocks. In contrast to fault localization for source code,
we found that the accuracy of Tarantula, Ochiai, and D2 in localizing fault in Simulink models are
very similar. Further, we show that increasing the size of test suites, above what is common practice
in embedded systems, does not significantly change SimFL’s accuracy. Hence, to improve accuracy,
we extend test oracles using iSimFL, a method to iteratively refine them and augment their failure
detection capability. We show that iSimFL significantly improves SimFL’s accuracy (i.e. on average,
at least 1.3% and at most 4.4% of the total model blocks need to be inspected) by extending test
oracles with only five outputs on average.

The performance of iSimFL depends on a stopping criterion heuristic, which is tunable via pa-
rameters N (the number of top most suspicious blocks inspected) and g (coarseness threshold). Our
analysis shows that changing the value of N and g has a predictable impact on the test oracle size
required by iSimFL. Further, for the majority of cases, the impact on the accuracy of iSimFL is also
predictable. This is expected to facilitate the setting of such parameters. In this work, we relied on
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our experience and discussions with domain experts to determine the value of iSimFL’s parameters.
Practical guidelines for choosing values for N and g require further studies and are left for future
work.

Our results suggest that the three well-known statistical formulas (i.e., Tarantula, Ochiai, and D2)
yield similar accuracy in localizing faults for Simulink models. In future, we will investigate why
different statistical formulas have similar impacts on fault localization accuracy. Moreover, we plan
to extend SimFL to localize faults in Stateflow (state machine) models. In addition, we intend to
perform user studies with engineers to better understand their information needs while debugging, so
as to provide additional insights along with the block rankings.
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Chapter 4

Localizing Multiple Faults in Simulink
models

In the presence of multiple faults, faults may mask one another and different failures might be due to
different faults. As statistical debugging implicitly assumes that all failures are caused by the same
fault, the accuracy of statistical debugging for identifying faults often degrades when multiple faults
exist in models. Thus, we have enhanced our fault localization approach to handle multiple faults in
Simulink models.

Our approach is based on statistical debugging and iterative. At each iteration, our approach rec-
ommends a ranked list of most suspicious blocks. Engineers then inspect the recommended ranked-
list to locate and resolve one fault. Further, engineers re-test the model to ensure that a particular fault
is fixed, and to focus on localizing other faults including those that might have been masked or were
not observable in the previous round of testing. Engineers apply our approach until no failures are
observed.

We evaluate our approach on 240 multi-fault Simulink models obtained from three different indus-
trial subjects. We have further adapted and implemented two baseline techniques for Simulink mod-
els: A traditional statistical debugging approach without clustering, and a state-of-the-art clustering-
based statistical debugging that uses unsupervised learning [Jones et al., 2007]. We compared our
decision tree-based approach with the two baseline techniques and our results show that our approach
is able to significantly reduce the number of blocks that are required to be inspected to localize all
faults compared with the two baselines and our approach is more robust than the baselines when
applied to models containing larger numbers of faults.

This chapter highlights the following research contributions:

1. We propose a new iterative technique to localize multiple faults in Simulink models using a
supervised learning technique (decision trees).

2. We evaluate our approach on 240 multi- fault models obtained from three different industrial
subjects. We compare our approach with two baselines: (1) Statistical debugging without clus-
tering, and (2) State-of-the-art clustering-based statistical debugging.

Organization. This chapter is organized as follows. Section 4.1 presents the motivation of our
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work in this chapter. Section 4.2 outlines our solution approach to localize multiple faults in Simulink
models. Section 4.3 describes our experiments setup and evaluation results. Finally, Section 4.4
concludes the chapter.

4.1 Motivation
In this section, we motivate our approach to localizing multiple faults in Simulink models.

When models contain multiple faults, statistical debugging can be imprecise. This is because the
multiple faults that exist in a model may impact one another in unknown ways causing the impact of
some faults to be masked by others. This may result in faulty blocks to be ranked low in the rankings
obtained by statistical debugging. To improve the results of statistical debugging in the presence of
multiple faults, researchers have proposed to cluster failures in such a way that the failures that are
caused by the same faults are put in the same cluster [Steimann and Frenkel, 2012, Liu and Han,
2006, Jones et al., 2007, Briand et al., 2007, Zheng et al., 2006, Jiang and Su, 2007].

Similar to the existing work [Steimann and Frenkel, 2012, Liu and Han, 2006, Jones et al., 2007,
Briand et al., 2007, Zheng et al., 2006, Jiang and Su, 2007], we propose an approach based on failure
clustering for identifying faults in Simulink models with multiple faults. Our approach is, however,
different from the existing techniques in terms of the notion of failures, the input and the technique
used for clustering, and in the way we use clustering results to localize faults. We explain each of
these distinguishing factors below:

Notion of failures. As mentioned in Section 3.2.2, we associate a failure with the incorrect output
of a test execution (i.e., a failing execution slice). Thus, in our work, clustering failures is equivalent to
clustering failing execution slices. While in the existing techniques [Steimann and Frenkel, 2012, Liu
and Han, 2006, Jones et al., 2007, Briand et al., 2007, Zheng et al., 2006], a failure corresponds to a
failing test case and clustering failures is equivalent to clustering failing test cases without regard to
the particular outputs at which failures are observed.

Input for clustering failures. Some existing techniques [Steimann and Frenkel, 2012, Jones
et al., 2007, Zheng et al., 2006, Jiang and Su, 2007] take as input sequences of program elements
executed by failing test cases, while other techniques [Liu and Han, 2006, Jones et al., 2007, Briand
et al., 2007] use sequences of program elements executed by both passing and failing test cases. The
inputs to our approach are sequences of blocks executed by each test case for each output, i.e., all
test execution slices, as well as the test input data used to generate these slices. Our intuition is that
failures are more likely to have been caused by the same fault, not only if they execute similar blocks,
but also when they use similar test inputs.

Techniques for clustering failures. Most existing approaches [Liu and Han, 2006, Jones et al.,
2007, Zheng et al., 2006, Jiang and Su, 2007] rely on clustering techniques (i.e., unsupervised learn-
ing techniques) where they group failures based on some similarity measure defined over the data that
characterizes failures. Instead of relying on similarity measures, in this work, we use a supervised
learning technique that can learn from failing and passing test executions to determine how to group
the failures. Specifically, we use Decision trees [Olshen et al., 1984] (see Section 4.2.1). A deci-
sion tree is built by partitioning the set of test execution slices such that homogeneity is maximized
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across the resulting partitions, within certain constraints, in terms of passing and failing test execution
slices. Decision trees also allow us to distinguish input data and execution trace characteristics that
statistically determine failures.

Usage of clustering results. Similar to existing techniques [Steimann and Frenkel, 2012, Jones
et al., 2007], we generate a single ranked list of most suspicious blocks per each cluster. However,
instead of requiring engineers to inspect all ranked lists [Liu and Han, 2006, Steimann and Frenkel,
2012, Jones et al., 2007], our approach aims to select the most fault revealing ranked lists (i.e., those
that rank faulty blocks higher), and requires engineers to inspect those selected ranked lists only (see
Section 4.2.3). In our work, we assess the level of consistency of failing execution slices in clusters
and we assume that the most consistent one will yield the best ranking.
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Figure 4.1. A Simulink model example with faulty blocks LimitP and pStand.

Motivating example. We illustrate the benefits of our statistical debugging approach that relies
on clustering and is used in a one-at-a-time debugging process using the faulty model example in
Figure 4.1 that contains two faults: in blocks pStand and LimitP. Table 4.1 shows that testing this
model produces seven failures, three of which are caused by the fault in LimitP and the rest are due
to the fault in pStand The block ranking computed based on Tarantula is shown in the left-most
column of Table 4.1. In this ranking, the rank of pStand and LimitP are 12 and 14, respectively.
Assuming engineers debug one fault at a time, they first locate the faulty block pStand by inspecting
up to 12 blocks. After fixing this fault and re-applying the statistical debugging technique, engineers
can locate the faulty block LimitP by inspecting at most three blocks. Thus, engineers need to
inspect 15 blocks in total to locate both faults when they do not use clustering.

43



Chapter 4. Localizing Multiple Faults in Simulink models

Block
Name

tc1 tc2 tc3 tc4 tc5 tc6 Score Rank
(Min-Max)pOut TOut pOut TOut pOut TOut pOut TOut pOut TOut pOut TOut

SC_Active X X X X X X X X X X 0.52 15 - 17
*LimitP X X X X X X X X 0.54 13 - 14
Coef_Pct X X X X X 0.32 27 - 30
Pct2Val X X X X X 0.32 27 - 30
Coef_N X X X X X 0.32 27 - 30
Pmax X X X X X 0.32 27 - 30
IncrPres X X X 1.00 1 - 1
PressRatioSpd X X X X X X X X 0.54 13 - 14
FlapIsClosed X X X X X X X X X X 0.52 15 - 17
FlapPosThreshold X X X X X X X X X X 0.52 15 - 17
Calcp X X 0.42 18 - 26
pCh X X 0.42 18 - 26
dp X X 0.42 18 - 26
p_Co X X 0.42 18 - 26
pEin X X X X X X X X X 0.59 2 - 12
mK X X X X X X X X X 0.59 2 - 12
N_SC X X X X X X X X X 0.59 2 - 12
Gain X X X X X X X X X 0.59 2 - 12
pAdjust X X X X X X X X X 0.59 2 - 12
pComp X X X X X X X X X 0.59 2 - 12
CalcT X X X X X X 0.59 2 - 12
IncrP X X X X X X 0.59 2 - 12
pCheck X X X X X X 0.59 2 - 12
PreInc X X X X X X 0.59 2 - 12
*pStand X X X X X X 0.59 2 - 12
T_K2C X X 0.42 18 - 26
Tadjust X X 0.42 18 - 26
Treal X X 0.42 18 - 26
T_C2K X X 0.42 18 - 26
O C X X 0.42 18 - 26
Pass(P)/Fail(F) P P F P P F P F F F F F

Table 4.1. Test execution slices and ranking results for Simulink model in Figure 4.1. * denotes the faulty
blocks and Xdenotes the executed blocks.

When we use our decision tree-based clustering, we obtain two clusters as follows: Cluster1 con-
sisting of the failing execution slices that are caused by the fault in LimitP; Cluster2 consisting of
the failing execution slices that are caused by the fault in pStand. For each cluster, we generate
a ranked list of the most suspicious blocks using Tarantula. We then select the most fault revealing
ranked list to be inspected by engineers. For this example, our approach selects the ranked list gen-
erated from Cluster1 because it contains the most similar failing execution slices. By inspecting the
ranked list from Cluster1, engineers can find the faulty block LimitP by inspecting at most three
blocks. We then re-apply our technique after fixing the fault at block LimitP. This time, our ap-
proach produces one cluster containing all the failing execution slices. Using the ranked list generated
from this cluster, engineers can find the faulty block pStand by inspecting at most five blocks. Thus,
engineers localize all faults by inspecting at most eight blocks which is significantly smaller than that
of without clustering (i.e., 15 blocks).

4.2 Approach
In this section, we present our approach to localize multiple faults in Simulink models. Our approach
(shown in Figure 4.2) takes as input a faulty Simulink model, a test suite, and test oracles to determine
the pass/fail information for each model output and for each test execution. We describe the three steps
of our approach in Sections 4.2.1 to 4.2.3.
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Test suites 
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Figure 4.2. Overview of our approach to identify multiple faults in Simulink models.

4.2.1 Step 1. Failure Clustering
The goal of this step is to cluster failures such that the failures that are likely to have been caused by
the same fault(s) are put in the same cluster. We cluster failures using decision trees [Olshen et al.,
1984], a supervised learning technique. We apply the decision tree technique to a set of test execution
slices. Each test execution slice contains the following information: (a) the blocks that are covered
by the test execution slice; (b) the model input variables related to each test execution slice and the
values of these model input variables. Each test execution is further labeled with passing (P) and
failing (F) values. Consider our model example in Figure 4.1. Table 4.1 shows the blocks that are
covered by each execution slice, and Table 4.2 shows the model input variables and values that are
used by each execution slice. For example, the execution slice (tc3,TOut) covers 18 blocks (e.g.,
pAdjust), and is generated by two model inputs, i.e., Bypass and pIn with values 5 and 1500,
respectively. Further, the execution slice (tc3,TOut) is labeled with F, indicating that the execution of
tc3 results in a failure at TOut.

Decision trees are composed of leaf nodes, which represent partitions, and non-leaf nodes, which
represent decision variables. Given a set of failing and passing test execution slices, a decision tree
is built by partitioning these slices in a stepwise manner with the aim of generating increasingly
homogeneous partitions. A partition of test execution slices is fully homogeneous if the slices in that
set are either all passing or all failing. The larger the gap between the number of failing and passing
slices in a partition, the more homogeneous that partition is. A partition is labeled by Failed
(respectively Passed) when the majority of the test execution slices in that partition are failing
(respectively passing).

Decision variables in our decision trees either represent blocks or input variables. Given a decision
variable (i.e., non-leaf node) labeled by block b, one branch (i.e., included branch) emanating
from b leads to partitions (leaf nodes) containing slices all of which include b, and the other branch
(i.e., not included branch) leads to partitions containing slices none of which include b. Given
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Input block
tc1 tc2 tc3 tc4 tc5 tc6

pOut TOut pOut TOut pOut TOut pOut TOut pOut TOut pOut TOut

NMOT 4500 4500 6000 - - - 4500 4500 3000 - 6000 6000
Clutch 40 40 50 - - - 40 40 50 - 50 50
ByPass 20 20 20 - 5 5 20 20 20 - 20 20
Pin - 2000 500 500 1500 1500 - 1500 - 1000 1500 1500
Tin - - - 10 - - - - - 10 - -
Pass(P)/Fail(F) P P F P P F P F F F F F

Table 4.2. Model inputs and input values that are used to compute pOut and Tout for each test execution
slice. Note that "-" denotes that the corresponding input value is not used to compute the corresponding output.

Clutch 
>=45 <45 

Failed 
F/P: 3/0 

Passed 
F/P: 0/5 

(4.3.1) A Decision tree for pOut.

CalcT 
Not Included Included 

Failed 
F/P: 4/0 

Passed 
F/P: 0/1 

Passed 
F/P: 0/3 

Pin 
>=750 <750 

Passed 
F/P: 0/1 

Pin 
<1750 >=1750 

(4.3.2) A Decision tree for TOut.

Figure 4.3. Decision trees generated for clustering failures at pOut and TOut.

a decision variable labeled by an input variable i, the two associated branches may be labeled as
included/not included similar to the above, or alternatively, the branches may be labeled by
conditional expressions on i (e.g., i< 750, i≥ 750). Formally, let P be a partition, and let n1n2 . . .nkP
be the path to partition P from the root such that every ni(1≤ i≤ k) is a non-leaf node representing a
block or an input variable. As discussed above, every two consecutive nodes ni and ni+1 are connected
by a branch that is labeled by included, not included, or a conditional expression. The test
execution slices in P consistently include (or exclude) the blocks and variables represented by nodes
ni(1 ≤ i ≤ k), and further, they satisfy the conditions indicated by the path n1n2 . . .nkP. Hence, the
execution slices in P are likely to overlap, and are likely to have executed similar faulty blocks.

In our work, for each output that fails at least once, we build a decision tree that takes as input the
failing test execution slices related to that output and all the passing test execution slices. Consider our
faulty model example in Figure 4.1. We build the two decision trees in Figures 4.3.1 and Figures 4.3.2
that, respectively, relate to the failing outputs pOut and TOut. For example, the decision tree for
pOut is built by using the three failing execution slices related to pOut (i.e., (tc2,pOut), (tc5,pOut)),
(tc6,pOut)) and all the passing execution slices (i.e., (tc1,pOut), (tc1,TOut),(tc2,TOut),(tc3,pOut),
(tc4,pOut)). Note that F/P shown in Figure 4.3 indicates the number of failing and passing execution
slices at each leaf node. Considering the decision tree for pOut, when the value of Clutch is greater
than equal to 45, the test execution slices are likely to fail at output pOut. Otherwise, these slices are
likely to be passing for pOut.
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Note that decision trees do not require the number of partitions to be known a priori. Instead,
to build such trees, we need to have precise criteria on when to terminate the partitioning, and on
how decision variables should be selected to generate new partitions at each step. Given a parti-
tion, decision trees split the partition if the partition size is not smaller than a defined threshold (i.e.,
minimum split parameter) and if splitting the partition can reasonably reduce the miss-classification
error [Olshen et al., 1984]. Further, decision trees rely on data homogeneity measures for selection of
decision variables. In our work, we use the following termination and selection criteria to build our
decision trees: We set the value of minimum split parameter to 50. This is because splitting partitions
with size smaller than 50 would produce partitions with too few failing execution slices for statistical
debugging to be able to distinguish faulty blocks from non-faulty ones. Moreover, we require that
splitting a partition reduces the miss-classification error of decision trees by at least 1%. Finally, our
decision trees use a well-known data homogeneity measure, namely Gini Index [Olshen et al., 1984].

Having built the decision trees, we create one cluster for each partition (leaf node) if that partition
contains at least one failing execution slice. Each cluster contains only the failing execution slices
(and not the passing slices) of their corresponding partitions. For example, using decision trees shown
in Figure 4.3, we obtain two clusters: Cluster1= {(tc2,pOut), (tc5,pOut)), (tc6,pOut)} and Cluster2
= {(tc3,TOut),(tc4,TOut),(tc5,TOut),(tc6,TOut)}.

4.2.2 Step 2. Ranked-List Generation
In this step, our approach generates a ranked list of most suspicious Simulink (atomic) blocks for each
cluster produced in Step 1. Each ranked list indicates the blocks that are more likely to cause failures
in the corresponding cluster.

To generate a ranked list for a cluster, we compute suspiciousness scores for Simulink blocks using
the Tarantula formula [Jones and Harrold, 2005, Jones et al., 2002] (see equation in Section 3.2.3).
Specifically, the totalfailed corresponds to the number of failing execution slices in a given cluster
and the totalpassed is the total number of all passing execution slices. We then rank the blocks in
descending order of their suspiciousness scores. As several blocks can obtain the same score, we
assign min and max ranks for each block as described in Section 3.2.3.

Example. Using our example, we generate a ranked list for Cluster1 and a ranked list for Cluster2.
To generate the ranked list for Cluster1, we analyze failing execution slices in Cluster1 and all the
(five) passing execution slices. To generate the ranked list for Cluster2, we analyze failing execution
slices in Cluster2 and all the (five) passing execution slices. In the ranked list obtained from Cluster1,
the faulty block LimitP obtains the highest rank (i.e., 3) with the score of 0.63, while in the ranked
list obtained from Cluster2, the faulty block pStand obtains the highest rank (i.e., 6) with the score of
0.71.

4.2.3 Step 3. Ranked-List Selection
In this step, we aim to select a ranked list that is more likely to yield the best fault localization
results among the rankings generated in step 2. We introduce a ranked-list selection criterion, namely,
quality-of-cluster. Prior to applying our selection criterion, we exclude the ranked lists obtained based
on small clusters (i.e., the clusters that contain a few failing execution slices) from our selection pool.
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This is because a small number of failing execution slices might not provide enough information to
identify faults. In this work, a cluster is considered to be small if its size is smaller than 10.

The quality-of-cluster selection criterion aims to select the ranked lists that are generated from
the most coherent cluster (i.e., clusters that contain similar failing execution slices). The rationale is
that the more similar the failing execution slices, the more likely that they have executed the same
faulty blocks. To measure the degree of similarity between slices inside a given cluster c, we define
intra-cluster distance as the average of distances between the failing execution slices inside c. Let
D(Si,Sj) be the distance between a pair of failing execution slices Si and Sj. Given a cluster c, the
quality of c (i.e., QC(c)) is the inverse of the intra-cluster distance of c denoted by DIntra(c), i.e.,
QC(c)=1/DIntra(c). We define DIntra(c) as follows:

DIntra(c) = 2×
∑

Si,S j∈c∧Si 6=S j
D(Si,S j)

|c|×(|c|−1) (4.1)

The key to the quality-of-cluster criterion is the definition of distance D(Si,Sj) between pairs of
failing execution slices. In our work, we provide two alternative definitions for D(Si,Sj) discussed
as follows: (1) The intuition behind the first definition is that two failing execution slices are more
similar (i.e., their pairwise distance D(Si,Sj) is small), if they execute similar sequences of blocks
and are generated by similar model input variables with similar values. To capture this intuition, we
associate to each failing execution slice Si a vector Sv

i such that Sv
i has one element for each model

block and one element for each model input variable. Specifically, the length of Sv
i is equal to the total

of the number of model blocks and the number of input variables. Each element in vector Sv
i gets the

following value: For each element of Sv
i related to a block b, we assign the element to one if Si covers

b, and otherwise, we assign zero. For each element of Sv
i related to an input value v, we assign v to

the element and if that input is not covered by Si, we assign NaN to the element.

(2) Based on the second definition, two failing execution slices are more similar (i.e., their pairwise
distance D(Si,Sj) is small), if the sets of suspicious blocks that are produced based on those slices are
more similar [Liu and Han, 2006, Jones et al., 2007]. To formalize this definition, we associate to
each failing execution slice Si a vector Sv

i such that Sv
i has one element for each model block (i.e.,

the size of Sv
i is equal to the number of model blocks). We then create a set of slices S containing Si

and all the passing execution slices, and use Tarantula to generate a ranking R based on the set S.
Then we obtain the top N elements from R. In our work, we typically set N to be 10% of the model
blocks. For each element of Sv

i related to a block b, we assign one to the element if b is among the
top N elements obtained from R. Otherwise, we assign zero to that element. Note that, this way of
generating a ranking R for a failing execution slice Si has been first proposed in [Jones et al., 2007]
where the goal was to obtain a ranking for a failing test case.

We compute the pairwise distance D(Si,Sj) between failing execution slices based on each of the
above two different definitions separately. Having computed vectors Sv

i (based on either of the two
above definitions), for each failing execution slice Si, we compute the distance D(Si,Sj) as the Eu-
clidean distance between their corresponding vectors Sv

i and Sv
j. A small Euclidean distance indicates

that two failing slices are similar. Note that when the first definition is used for Sv
i and Sv

j, the values
of the vector elements representing input variables are equal to NaN or some values within the input
variable ranges. Otherwise, the values of other elements of the vectors Sv

i and Sv
j are either one or
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zero by definition. In our Euclidean distance computation, instead of applying a subtraction operator
to the elements representing input variables, we perform a matching that yields one if the values of
these elements do not match and zero if their values match.

We denote the quality-of-cluster selection criterion by QCTrace(c) when the first definition above
is used, and by QCRank(c) when the second alternative definition is used. In either case, we select
the ranked list that is obtained from clusters with the highest value of QCTrace(c) or QCRank(c) (i.e.,
the clusters with smallest intra-cluster distance). If there are more than one cluster having the same
quality, we randomly choose one of them.

Example. For Cluster1 and Cluster2 in our example, we have QCTrace(Cluster1) = 0.48 and
QCTrace(Cluster2)= 0.29. Using the second definition of distance with N = 5, we have QCRank(Cluster1)=
1.19 and Cluster2 = 0.49. Hence, both QCTrace and QCRank select the ranked list obtained from
Cluster1 where the faulty block LimitP is ranked among the top three blocks.

4.3 Empirical Evaulation
In this section, we describe our research questions (Section 4.3.1), experiment settings (Section 4.3.2),
evaluation metrics (Section 4.3.3), and experiment results (Section 4.3.4).

4.3.1 Research Questions
RQ1. [Fault Localization Accuracy] Can our decision tree-based clustering approach help local-
izing faults by ranking the faulty blocks in the top most suspicious blocks? How does the fault lo-
calization ability of our approach compare with that of the non-clustering approach and the existing
clustering approaches? We investigate the accuracy of our approach in identifying faults in Simulink
models with multiple faults. Specifically, we evaluate the maximum number of blocks inspected to
identify faults at different debugging iterations. We compare our results with those obtained by two
alternative debugging techniques for Simulink models with multiple faults: (1) Statistical debugging
without using clustering (2) Statistical debugging combined with the pairwise clustering technique.
The latter is a state-of-the-art clustering technique based on statistical debugging previously proposed
for identifying multiple faults in source code [Jones et al., 2007]. We implemented and adapted this
technique for Simulink models to use it as a baseline clustering technique for comparison with our
work.

RQ2. [Fault Localization Cost] Can our decision tree-based clustering approach significantly lower
the cost of identifying all faults compared to the pairwise clustering and the non-clustering ap-
proaches? We investigate the total cost of fault localization when our approach is used to identify
several faults in Simulink models. We measure the total cost based on the total number of blocks that
need to be inspected to make models fault-free. We then compare the total fault localization cost of
our decision tree-based clustering approach with that of the non-clustering and the pairwise clustering
approaches.

RQ3. [Robustness] Does the fault localization ability of our approach remain robust when it is
applied to models with an unknown (and potentially large) number of faults? How does our approach
compare with the pairwise clustering and the non-clustering approaches in terms of robustness? In
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Model name #Subsystem #Blocks #Links #Inputs #Outputs # Fautly Versions
MS 37 646 596 12 8 80
MC 64 819 798 13 7 80

MGL 35 716 721 19 13 80

Table 4.3. Key information about industrial subjects.

order for our approach to be effective in localizing multiple faults, its fault localization ability should
remain robust (i.e., show a graceful degradation) when the number of faults in the model grows. We
study the changes in the fault localization ability of our approach when applied to models containing
different numbers of faults and compare those changes with the changes in the fault localization ability
of the non-clustering and the pairwise clustering approaches applied to the same models.

4.3.2 Experiment Settings
In this section, we describe the industrial subjects, test suites, and test oracles that are used for our
experiments.

Industrial Subjects. We use three Simulink models developed by Delphi Automotive in our ex-
periments. We refer to these three models as MS, MC, and MGL. Table 4.3 shows the number of
subsystems, atomic blocks, links, and inputs and outputs of each model. Note that the models that
we chose are representative in terms of size and complexity among the Simulink models developed
at Delphi. Further, these models include about ten times more blocks than the publicly available
Simulink models from the Mathworks model repository [MathWorks, a].

Fault Seeding. We requested a senior Delphi engineer to provide realistic faults for Simulink models
based on his domain expertise and his years of experience in the automotive sector. We categorize the
seeded faults into the following three groups: (1) Wrong Function such as using > instead of >=. (2)
Wrong Connection such as a wrong link between two blocks. (3) Wrong Value such as a wrong value
in a constant block or a wrong threshold in a control block.

Based on the above set of faults, we seeded 19 faults into MS, 20 faults into MC, and 20 faults
into MGL such that each fault is controlled by a switch allowing us to activate or deactivate each
specific fault. Utilizing the fault activating/deactivating mechanism, we automatically created, for
each model, 80 faulty versions containing different numbers of faults. Specifically, for each model,
we created four sets of faulty versions of that model such that each set contains 20 faulty versions
with n faults activated where n was set to two for the first set, to three for the second set, to four for
the third set, and to five for the fourth set. We made sure to activate the faults in different parts of the
models and of different types, and further, to cover all the originally seeded faults into each model.
Overall, we created 240 faulty versions containing 840 faults in total.

Test suite and test oracle. We generated three test suites, each of which with 200 test cases for MS,
MC, and MGL using Adaptive Random Testing [Chen et al., 2005]. Adaptive random testing is a
black box and lightweight test generation strategy that distributes test cases evenly within valid input
ranges, and thus, helps ensure diversity among test cases. Note that the size of the test suites was
based on typical practice at Delphi given test budget constraints and the oracle costs. Further, we
used the fault-free versions of our industrial subjects for test oracles.
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Experiment design. To answer our research questions, we applied our approach (in a one-at-a-time
debugging process) on our 240 faulty models. The number of debugging iterations for each faulty
model is at most equal to the number of faults activated for that faulty model. This is because, at each
iteration, we resolve all the faults located in the same rank as that of the top most ranked faulty block.
For each faulty model and at each iteration, we run our approach outlined in Figure 4.2 by applying
a test suite with 200 test cases to obtain test execution slices. We then subsequently apply the three
steps in Figure 4.2 to generate a selected ranked list of suspicious blocks which is used by engineers
to find one fault. We inspect the ranking manually to identify the first faulty block and we remove
that fault by deactivating its corresponding switch. We then re-iterate the approach in Figure 4.2 until
all faults are removed. We repeated the above experiment for the 240 faulty models twice: One time
for the QCTrace selection criterion, and the second time for the QCRank selection criterion. We denote
our decision tree-based clustering approach that uses QCTrace, QCRank, by DT-QCTrace, DT-QCRank,
respectively.

As specified in the research questions, in our experiment, we consider two baseline techniques for
comparison: A traditional statistical debugging technique without clustering (denoted by NC), and a
statistical multi-fault debugging approach [Jones et al., 2007] that uses a pairwise clustering technique
that we adapted to Simulink models. We repeated the above experiment for the NC and the pairwise
approaches. Our implementation of the pairwise approach uses the setting used by Jones et al. [Jones
et al., 2007] except that we consider the top 10% of the blocks to build the clusters as opposed to
the top 20%. This is because in Chapter 3, we have shown that the top 10% of the Simulink blocks
in a ranking are likely to contain most faults. As for the pairwise approach, since several clusters
are generated, we use our two selection criteria discussed in Section 4.2.3 to select a ranking with
the highest fault revealing ability. Specifically, we denote the pairwise approach that uses QCTrace,
QCRank by PW-QCTrace, PW-QCRank,respectively. In summary, we repeated our experiment 682,
679, 621, 673, and 659 times for DT-QCTrace, DT-QCRank, PW-QCTrace, PW-QCRank, and NC,
respectively. Note that, at each iteration, we resolve all the faults located in the same rank as that of the
top most ranked faulty block. Thus, different fault localization techniques require different numbers of
iterations to resolve all the faults. We ran our experiment on a high performance computing platform
with 2 clusters, 280 nodes, and 3904 cores. Our experiment were executed on different nodes of a
cluster with Intel Xeon L5640@2.26GHz processor. The total computation time for our experiment
(using a single node) is 15548 hours. Most of the experiment time is used to generate test execution
slices. In total, we generated 1744000, 1503600, and 3000400 test execution slices for MS, MC, and
MGL, respectively.

Decision tree settings. For building a decision tree, we use Gini index as the measure to determine
which variables to be used for splitting. In order to control the size of our decision tree (i.e., in our
work, the number of clusters of failure), a node in the tree can be split only if its size is larger than
50 i.e., the minimum split parameter equals to 50. We set this parameter to 50 in order to avoid
nodes with very small size after splitting. Nodes that contain a small number of failing slices may not
provide enough information to identify faults. Further, we set the value of the complexity parameter
to 0.01 (i.e., default value) which is used to avoid splits that are not worthwhile i.e., when performing
cross-validation on a decision tree, a split is not perfomed if the split does improve the accuracy of
the decision tree in predicting failures and non-failure by 0.01.
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4.3.3 Evaluation Metrics
Since we experiment with faulty models with multiple faults and fault localization is applied itera-
tively until models are fault-free, we provide two new metrics: maximum rank of faulty blocks and
fault localization cost. In our work, at each iteration, we identify the faulty block that is ranked high-
est in the ranked list generated at that iteration. For each identified faulty block, the maximum rank
of faulty blocks is the max rank of the rank group containing that faulty block. The fault localization
cost is the total number of blocks that need to be inspected to localize all the faults in a given faulty
model over all the iterations and making the model fault-free. Note that when several faults are in
the same rank group in a ranked list, we assume that all of them are localized when engineers inspect
that ranked list. Thus, the total iterations for obtaining a fault-free model can be smaller than the
number of faults in that model. Note that the fault localization cost is an adaptation of the absolute
number of blocks inspected metric used in the literature for single-fault localization in code [Parnin
and Orso, 2011, Renieris and Reiss, 2003, Liu et al., 2005, Cleve and Zeller, 2005, Jones and Harrold,
2005, Lucia et al., 2014].

4.3.4 Experiment Results
4.3.4.1 RQ 1. Fault Localization Accuracy

To answer this question, we compute the number of faults and the proportion of faults that are ranked
among the top blocks in some ranked list generated at some iteration by each of the DT-QCTrace,
DT-QCRank, PW-QCTrace, PW-QCRank, and NC fault localization techniques. Figure 4.4 shows
the number of faults that are ranked among the top blocks when these techniques are applied to our
240 faulty versions containing, in total, 840 faults. In this figure, the X-axis shows the number of
top N (N = {10,20, ...,200}) blocks and the Y-axis shows the number of faults located among the
top N blocks at some rank list produced at some fault localization iteration by each of the above five
techniques. Based on Figure 4.4, when we use DT-QCTrace and DT-QCRank, 95 out of the total of
840 faults are ranked among the top 10 blocks in some ranked list at some iteration. In contrast, by
using NC, PW-QCTrace and PW-QCRank, 23, 82, and 86 faults are ranked among the top 10 blocks at
some iteration, respectively. In general, DT-QCTrace is able to rank more faults among the top ranked
blocks compared to the other four techniques. After DT-QCTrace, DT-QCRank is the best. Further,
both DT-QCTrace and DT-QCRank are better than PW-QCTrace and PW-QCRank. NC is worse than
PW-QCTrace and PW-QCRank when we are interested in faults ranked among the top 50 blocks.

Figures 4.5 to Figures 4.8 show the proportion of faults that are ranked among the top blocks
when our five fault localization techniques are, respectively, applied to the 120 faults seeded into
our two-fault models, the 180 faults seeded into our three-fault models, the 240 faults seeded into
our four-fault models, and the 300 faults seeded into our five-fault models, respectively. Note in
Figures 4.5 to Figures 4.8, the X-axis is the same as the X-axis in Figure 4.4, but the Y-axis shows
the proportion (instead of the absolute number) of faults ranked high, because the numbers of faults
seeded into two-fault to five-fault models are different form one another. Based on Figure 4.5, using
DT-QCTrace, 61 out of the 120 faults (i.e., more than 50% of the faults) seeded into the two-fault
models are ranked among the top 50 blocks. In contrast, using DT-QCRank, NC, PW-QCTrace, and
PW-QCRank, the 61 faults are ranked among the top most 70, 60, 90, and 90 blocks, respectively.

In general, the results in Figures 4.5 to Figures 4.8 show that DT-QCTrace and DT-QCRank always
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Figure 4.4. The number of faults vs. the maximum rank of faulty blocks for all the 840 faults.
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Figure 4.5. Proportion of faults vs. the maximum rank of faulty blocks for two-fault models.

perform better than PW-QCTrace and PW-QCRank. Further, DT-QCTrace always performs better
than NC for three-fault to five-fault models, and also for two-fault models when we consider the
faults that are ranked among the top 60 blocks. DT-QCRank always performs better than NC when
we consider the faults that are ranked among the top 50 blocks. Note that it is expected for NC to
eventually converge to the same performance as that of our clustering technique (DT-QCTrace and
DT-QCRank) when the number of faults in our models are small (e.g., two-fault models). This is
because faults are less likely to mask one another, and hence, the rankings generated by NC are less
impacted when the number of faults are small (e.g. two faults).
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Figure 4.6. Proportion of faults vs. the maximum rank of faulty blocks for three-fault models.
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Figure 4.7. Proportion of faults vs. the maximum rank of faulty blocks for four-fault models.

In summary, the answer to RQ1 is that our decision tree-based clustering approach is able to
rank the faulty blocks among the top most suspicious blocks. Specifically, our techniques (i.e., DT-
QCTrace and DT-QCRank) always outperform the statistical debugging with pairwise clustering (i.e.,
a state-of-the-art fault localization clustering technique). Further, DT-QCTrace always performs better
than NC (i.e., the baseline non-clustering technique) except when the number of faults in models are
small (i.e., two). For two-fault models, DT-QCTrace always perform better that NC when we consider
the faults that are ranked among the top 60 blocks.
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Figure 4.8. Proportion of faults vs. the maximum rank of faulty blocks for five-fault models.

4.3.4.2 RQ2. Fault Localization Cost

To answer this question, we compute the fault localization cost values for all the 240 faulty models
and for each of the DT-QCTrace, DT-QCRank, PW-QCTrace, PW-QCRank, and NC fault localization
techniques. Figures 4.9 to Figures 4.12 show the distributions of the fault localization cost values
for our two-fault to five-fault models, respectively. Specifically, each box-plot consists of 60 points
corresponding to the 60 faulty versions in each of the two-fault to the five-fault model groups. In each
of these figures, the X-axis shows the five fault localization techniques, and the Y-axis shows the fault
localization cost.

To statistically compare the fault revealing ability of different fault localization techniques, we
performed the non-parametric pairwise Wilcoxon signed-rank tests [Wilcoxon, 1945], and calculated
the effect size using Vargha and Delaney A test [Vargha and Delaney, 2000]. The A12 was labeled
“small” for 0.56 ≤ d < 0.64, “medium” for 0.64 ≤ d < 0.71, and “high” for d ≥ 0.71 [Vargha and
Delaney, 2000].

Based on the statistical test results, for two-fault to five-fault models, the fault localization cost of
our decision tree-based approaches (DT-QCTrace and DT-QCRank) is always significantly lower (bet-
ter) than that of the other three techniques (NC, PW-QCTrace, and PW-QCRank) (p-values < 0.01).
Further, the fault localization cost of DT-QCTrace is always significantly lower (better) than that
of DT-QCRank. The effect size, when comparing DT-QCTrace and NC, is “small” for two-fault,
three-fault and four-fault models, and “large” for five-fault models. In addition, when comparing DT-
QCTrace with PW-QCTrace, is “large” for two-fault, four-fault, and five-fault models, and “medium”
for three-fault models. When comparing DT-QCTrace with PW-QCRank, “small” for four-fault mod-
els, and “medium” for two-fault, three-fault and five-fault models.

In summary, the answer to RQ2 is that our decision tree-based techniques significantly improve
the fault localization cost compared to NC, PW-QCTrace, and PW-QCRank. Further, on average, DT-
QCTrace reduces the fault localization cost by 59 blocks (25%) compared to NC, and by 62 blocks
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Figure 4.9. Distributions of fault localization cost for two-fault models.
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Figure 4.10. Distributions of fault localization cost for three-fault models.

(26%) compared to PW-QCRank.

4.3.4.3 RQ3. Robustness

For this question, we consider DT-QCTrace, PW-QCRank and NC because based on our results in
RQ1 and RQ2, DT-QCRank, PW-QCTrace underperform DT-QCTrace and PW-QCRank, respec-
tively. To answer this question, we evaluated the changes in the proportion of faults that are ranked
among the top blocks as we vary the number of faults seeded in the underlying faulty models. Fig-
ures 4.13 to Figures 4.15 show the results for DT-QCTrace, PW-QCRank, and NC, respectively. In
each figure, we show how the performance of each of these three techniques is impacted when that

56



4.3. Empirical Evaulation

NC DT−QCTrace PW−QCTrace

0
20

0
40

0
60

0
80

0

Techniques

Fa
ul

t l
oc

al
iz

at
io

n 
co

st
Fa

ul
t l

oc
al

iz
at

io
n 

co
st

 

Techniques 
    NC   DT-QCTrace DT-QCRank  PW-QCTrace PW-QCRank 

0 
   

   
 2

00
   

   
  4

00
   

   
  6

00
   

   
 8

00
 

Figure 4.11. Distributions of fault localization cost for four-fault models.
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Figure 4.12. Distributions of fault localization cost for five-fault models.

technique is applied to the two-fault, the three-fault, the four-fault, and the five-fault models sepa-
rately.

The data in Figures 4.13 to Figures 4.15 were already shown in Figures 4.5 to Figures 4.8 where
we showed that DT-QCTrace outperforms other techniques. Figures 4.13 to Figures 4.15, however,
compare the robustness of these techniques as the number of faults changes. As this figure shows,
DT-QCTrace is the most robust technique since its performance changes the least as the number of
faults increases from two to five. The maximum deviation for DT-QCTrace is 7.9% and the aver-
age deviation is 3.7%. PW-QCRank is less robust than DT-QCTrace but more robust than NC with
maximum and average deviations of 10.3% and 5.5%, respectively. Finally, NC is the least robust

57



Chapter 4. Localizing Multiple Faults in Simulink models

0 20 40 60 80 100 120 140 160 180 200

10
20
30
40
50
60
70
80
90

100

The maximum rank of faulty blocks

Pr
op

or
tio

n 
of

 fa
ul

ts
 (%

)

 

 

2Faults
3Faults
4Faults
5Faults

Figure 4.13. Proportions of faults (y-axis) among the top-N ranks (x-axis) obtained by DT-QCTrace.
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Figure 4.14. Proportions of faults (y-axis) among the top-N ranks (x-axis) obtained by PW-QCRank.

technique with maximum and average deviations of 21.2% and 11.9%, respectively.

In summary, compared to PW-QCRank and NC, the fault localization ability of DT-QCTrace is
more robust as the number of faults in models increases from two to five faults. The least robust
technique among these three is NC.
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Figure 4.15. Proportions of faults (y-axis) among the top-N ranks (x-axis) obtained by NC.

4.4 Conclusion
In this chapter, we propose an approach to localize multiple faults in Simulink models. Our approach
clusters failures (i.e., failing execution slices) that are likely to have been caused by the same fault(s)
by using decision trees. Decision trees group together failures that satisfy similar (logical) conditions
on model blocks and test inputs. For each cluster, our approach generates a ranked list of most
suspicious blocks. We then select a ranked list that is the most likely to have a faulty block ranked
high. Engineers then inspect this list to find at least one fault, fix the fault, and re-test the models.
Our approach iterates until no failures are observed. We have evaluated our approach on 240 multi-
fault models obtained from three different industrial subjects. Our experiment results show that our
approach, on average, reduces the number of blocks inspected to localize all faults by 59 blocks (25%)
compared to statistical debugging without clustering and by 62 blocks (26%) compared to a state-of-
the-art pairwise clustering approach. These reductions are statistically significant with p-values less
than 0.01. Furthermore, our approach exhibits less performance degradation than the baselines when
we increase the number of faults in the underlying models. In future, we plan to provide effective
visualization mechanisms to help engineers debug Simulink models.

In our chapter, we studied these fault types: wrong function, wrong value, and wrong connection.
In future, we plan to consider other fault types, e.g., missing blocks or missing connections. Further,
we plan to localize multiple faults in Stateflow [MathWorks, b] (state machine) models.
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Chapter 5

Test Suite Generation for Improving Fault
Localization

In this chapter, we focus on improving fault localization of Simulink models by generating test cases.
We identify three similar approaches in the literature where the accuracy of statistical debugging
is improved by generating additional test cases that help increase diversity in the underlying test
suite used for debugging [Jiang et al., 2009, Campos et al., 2013, Baudry et al., 2006]. We adapt
the test objectives used in these earlier papers to Simulink models and use these test objectives to
develop a search-based test generation algorithm, which builds on the whole test suite generation al-
gorithm [Fraser and Arcuri, 2013], to extend an existing test suite with a small number of test cases.
Given the heuristic nature of statistical debugging, adding test cases may not necessarily improve
fault localization accuracy. Hence, we use the following two-step strategy to stop test generation
when it is unlikely to be worthwhile: First, we identify Simulink super blocks through static analysis
of Simulink models. Statistical debugging, by definition, always ranks the blocks inside a super block
together in the same rank group. Thus, when elements in a rank group are all from a super block, the
rank group cannot be further refined through statistical debugging, and hence, test generation is not
beneficial. Second, we develop a prediction model based on supervised learning techniques, specifi-
cally decision trees [Olshen et al., 1984], using historical data obtained from previous applications of
statistical debugging. Our prediction model effectively learns rules that relate improvements in fault
localization accuracies to changes in statistical rankings obtained before and after adding test cases.

We have evaluated our approach on 60 faulty versions obtained from three different industrial
subjects. Our experiment results show that the three test objectives are able to significantly improve
the accuracy of fault localization for small test suite sizes. Our approach is able to reduce the average
number of blocks need to inspect to find a fault from 76 to 43 blocks (i.e. 43.4% reduction) by adding
only 25 test cases. Moreover, when engineers use our prediction model, we are able to maintain
almost the same fault localization accuracy while reducing the average number of newly generated
test cases by more than half (i.e., 52% to 56% fewer test cases).

This chapter highlights the following research contributions:

1. We develop a search-based testing technique for Simulink models that uses the existing alterna-
tive test objectives [Jiang et al., 2009], [Campos et al., 2013], [Baudry et al., 2006], to generate
small and diverse test suites that can help improve fault localization accuracy.
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2. We develop a strategy to stop test generation when test generation is unlikely to improve fault
localization. Our strategy builds on static analysis of Simulink models and prediction models
built based on supervised learning.

3. We have evaluated our approach using three industrial subjects.

Organization. This chapter is organized as follows. Section 5.1 provides the motivation of our ap-
proach in this chapter. Section 5.2 presents our solution approach to generate test suite for improving
fault localization for Simulink models. The results of our evaluation of the proposed approaches are
presented in Section 5.3. Finally, Section 5.4 concludes the chapter.

5.1 Motivation
Statistical debugging is a lightweight and well-studied debugging technique [Abreu et al., 2007, Jones
et al., 2002, Liblit et al., 2005, Liu et al., 2005, Renieris and Reiss, 2003, Santelices et al., 2009, Wong
et al., 2008, Wong et al., 2014]. Statistical debugging localizes faults by ranking program elements
based on their suspiciousness scores. These scores capture faultiness likelihood for each element and
are computed based on statistical formulas applied to sequences of executed program elements (i.e.,
spectra) obtained from testing. Developers use such ranked program elements to localize faults in
their code.

In Chapter 3, we extended statistical debugging to Simulink models and evaluated the effective-
ness of statistical debugging to localize faults in Simulink models. Our approach builds on a combi-
nation of statistical debugging and dynamic slicing of Simulink models. We showed that the accuracy
of our approach, when applied to Simulink models from the automotive industry, is comparable to
the accuracy of statistical debugging applied to source code (discussed in Chapter 3). We further ex-
tended our approach to handle fault localization for Simulink models with multiple faults (discussed
in Chapter 4).

Since statistical debugging is essentially heuristic, despite various research advancements, it still
remains largely unpredictable [Campos et al., 2013]. In practice, it is likely that several elements have
the same suspiciousness score as that of the faulty, and hence, be assigned the same rank. Engineers
will then need to inspect all the elements in the same rank group to identify the faulty element. Given
the way statistical debugging works, if every test case in the test suite used for debugging executes
either both or neither of a pair of elements, then those elements will have the same suspiciousness
scores (i.e., they will be put in the same rank group). One promising strategy to improve precision
of statistical debugging is to use an existing ranking to generate additional test cases that help refine
the ranking by reducing the size of rank groups in the ranking [Baudry et al., 2006, Campos et al.,
2013, Röβ ler et al., 2012, Artzi et al., 2010].

In situations where test oracles are developed manually or when running test cases is expensive,
adding test cases is not a zero-cost activity. Therefore, an important question, which is less studied in
the literature, is how we can refine statistical rankings by generating a small number of additional test
cases? In this chapter, we aim to answer this question for fault localization of Simulink models. While
our approach is not particularly tied to any modeling or programming language, we apply our work
to Simulink since, in some domains (e.g., automotive), it is expensive to execute Simulink models
and to characterize their expected behaviour [Zander et al., 2011, Matinnejad et al., 2016]. This is
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because Simulink models include computationally expensive physical models [Ben Abdessalem et al.,
2016], and their outputs are complex continuous signals [Matinnejad et al., 2016]. We identify three
alternative test objectives that aim to generate test cases exercising diverse parts of the underlying
code and adapt these objectives to Simulink models [Jiang et al., 2009, Campos et al., 2013, Baudry
et al., 2006]. We use these objectives to develop a search-based test generation algorithm, which
builds on the whole test suite generation algorithm [Fraser and Arcuri, 2013], to extend an existing
test suite with a small number of test cases. Given the heuristic nature of statistical debugging, adding
test cases may not necessarily improve fault localization accuracy. Hence, we use the following two-
step strategy to stop test generation when it is unlikely to be worthwhile: First, we identify Simulink
super blocks through static analysis of Simulink models. Given a Simulink model M, a super block
is a set B of blocks of M such that, for any test case tc, tc executes either all or none of the blocks
in B. That is, there is no test case that executes a subset (and not all) of the blocks in a super block.
Statistical debugging, by definition, always ranks the blocks inside a super block together in the
same rank group. Thus, when elements in a rank group are all from a super block, the rank group
cannot be further refined through statistical debugging, and hence, test generation is not beneficial.
Second, we develop a prediction model based on supervised learning techniques, specifically decision
trees [Olshen et al., 1984] using historical data obtained from previous applications of statistical
debugging. Our prediction model effectively learns rules that relate improvements in fault localization
accuracies to changes in statistical rankings obtained before and after adding test cases. Having these
rules and having a pair of statistical rankings from before and after adding some test cases, we can
predict whether test generation should be stopped or continued.

5.2 Approach
In this section, we present our approach to improve statistical debugging for Simulink by generat-
ing a small number of test cases. Our test generation aims to improve statistical ranking results by
maximizing diversity among test cases. An overview of our approach is illustrated by the algorithm
in Figure 5.1. As the algorithm shows, our approach uses two subroutines TESTGENERATION and
STOPTESTGENERATION to improve the standard fault localization based on statistical debugging
(STATISTICALDEBUGGING). Engineers start with an initial test suite TS to localize faults in Simulink
models (Lines 1-2). Since STATISTICALDEBUGGING requires pass/fail information about individual
test cases, engineers are expected to have developed test oracles for TS. Our approach then uses sub-
routine STOPTESTGENERATION to determine whether adding more test cases to TS can improve the
existing ranking (Line 4). If so, then our approach generates a number of new test cases newTS using
the TESTGENERATION subroutine (Line 6). The number of generated test cases (i.e., k) is determined
by engineers. The new test cases are then passed to the standard statistical debugging to generate a
new statistical ranking. Note that this requires engineers to develop test oracle information for the
new test cases (i.e., test cases in newTS). The iterative process continues until a number of test gener-
ation rounds as specified by the input round variable are performed, or the STOPTESTGENERATION

subroutine decides to stop the test generation process. We present subroutines TESTGENERATION

and STOPTESTGENERATION in Sections 5.2.1 and 5.2.2, respectively.
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SIMULINKFAULTLOCALIZATION()

Input: - TS: An initial test suite
- M : A Simulink model
- round: The number of test generation rounds
- k: The number of new test cases per round

Output: rankList: A statistical debugging ranking

1. rankList,TESTS← STATISTICALDEBUGGING(M,TS)
2. initialList← rankList
3. for r← 0,1, . . . ,round−1 do
4. if STOPTESTGENERATION(round, M, initialList, rankList) then
5. break for-Loop
6. newTS← TESTGENERATION(TESTS,M,k)
7. TS← TS∪newTS
8. rankList,TESTS← STATISTICALDEBUGGING(M,TS)
9. end
10. return rankList

Figure 5.1. Overview of our Simulink fault localization approach.

5.2.1 Search-based Test Generation
We use search-based techniques [Luke, 2015] to generate test cases that improve statistical debugging
results. To guide the search algorithm, we define fitness functions that aim to increase diversity of
test cases. Our intuition is that diversified test cases are likely to execute varying subsets of Simulink
model blocks. As a result, Simulink blocks are likely to take different scores, and hence, the resulting
rank groups in the statistical ranking are likely to be smaller. In this section, we first present the fitness
functions that are used to guide test generation, and then, we discuss the search-based test generation
algorithm. We describe three different alternative fitness functions referred to as coverage dissimilar-
ity, coverage density and number of dynamic basic blocks. Coverage dissimilarity has previously been
used for test prioritization [Jiang et al., 2009], and is used in this chapter for the first time to improve
fault localization. The two other alternatives, i.e., coverage density [Campos et al., 2013] and number
of dynamic basic blocks [Baudry et al., 2006], have been previously used to improve source code fault
localization.

Coverage Dissimilarity. Coverage dissimilarity aims to increase diversity between test execution
slices generated by test cases. We use a set-based distance metric known as Jaccard distance [Jaccard,
1901] to define coverage dissimilarity. Given a pair testc,o and testc′,o′ of test execution slices, we
denote their dissimilarity as d(testc,o, testc′,o′) and define it as follows:

d(testc,o, testc′,o′) = 1− |testc,o∩testc′,o′ |
|testc,o∪testc′,o′ |

The coverage dissimilarity fitness function, denoted by fitDis, is the average of pairwise dissimi-
larities between every pair of test execution slices in TESTS. Specifically,

fitDis(TS) =
2×

∑
testc,o,testc′,o′ ∈TESTS

d(testc,o,testc′,o′)

|TESTS|×(|TESTS|−1)

64



5.2. Approach

The larger the value of fitDis(TS), the larger the dissimilarity among test execution slices generated
by TS. For example, the dissimilarity between test execution slices test1,TOut and test2,TOut in Table 3.1
is 0.44. Also, for that example, the average pairwise dissimilarities fitDis(TS) is 0.71.

Coverage Density. Campos et al [Campos et al., 2013] argue that the accuracy of statistical fault
localization relies on the density of test coverage results. They compute the test coverage density as
the average percentage of components covered by test cases over the total number of components in
the underlying program. We adapt this computation to Simulink, and compute the coverage density
of a test suite TS, denoted by p(TS), as follows:

p(TS) = 1
|TESTS|

∑
testc,o∈TESTS

|testc,o|
|static_slice(o)|

That is, our adaptation of coverage density to Simulink computes, for every output o, the average
size of test execution slices related to o over the static backward slice of o. Note that a test execution
slice related to output o is always a subset of the static backward slice of o. Low values of p(TS) (i.e.,
close to zero) indicate that test cases cover small parts of the underlying model, and high values (i.e.,
close to one) indicate that test cases tend to cover most parts of the model. According to Campos et
al [Campos et al., 2013], a test suite whose coverage density is equal to 0.5 (i.e., neither low nor high)
is more capable of generating accurate statistical ranking results. Similar to Campos et al [Campos
et al., 2013], we define the coverage density fitness function as f itDens(TS) = |0.5− p(TS)| and aim
to minimize fitDens(TS) to obtain more accurate ranking results.

Number of Dynamic Basic Blocks. Given a test suite TS for fault localization, a Dynamic Basic Block
(DBB) [Baudry et al., 2006] is a subset of program statements such that for every test case tc ∈ TS,
all the statements in DBB are either all executed together by tc or none of them is executed by tc.
According to [Baudry et al., 2006], a test suite that can partition the set of statements of the program
under analysis into a large number of dynamic basic blocks is likely to be more effective for statistical
debugging. In our work, we (re)define the notion of DBB for Simulink models based on test execution
slices. Formally, a set DBB is a dynamic basic block iff DBB ⊆ Nodes and for every test execution
slice tes ∈ TESTS, we have either DBB⊆ tes or DBB∩ tes = /0. For a given set TESTS of test execution
slices obtained by test suite TS, we can partition the set Nodes of Simulink model blocks into a number
of disjoint dynamic basic blocks DBB1, . . . ,DBBl . Our third fitness function, which is defined based
on dynamic basic blocks and is denoted by f itdbb(TS), is defined as the number of dynamic basic
blocks produced by a given test suite TS, i.e., f itdbb(TS) = l. The larger the number dynamic basic
blocks, the better the quality of a test suite TS for statistical debugging.

Test generation algorithm. Having defined the fitness functions, we now define our search-based test
generation algorithm (i.e. TESTGENERATION in Figure 5.1). The TESTGENERATION algorithm is
shown in Figure 5.2 and generates new test cases based on any of our three fitness functions. The algo-
rithm adapts a single-state search optimizer [Luke, 2015]. In particular, it builds on the Hill-Climbing
with Random Restarts (HCRR) algorithm [Luke, 2015]. We chose to build on HCRR because, in
our previous work on testing Simulink models [Matinnejad et al., 2015a], HCRR was able to pro-
duce the best optimized test cases among other single-state optimization algorithms. Computation
of all the three fitnesses we described earlier rely on test execution slices. To obtain test execution
slices, we need to execute test cases on Simulink models. This makes our fitness computation expen-
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Algorithm. TESTGENERATION

Input: - TESTS: The set of test execution slices
- M : The Simulink model
- k: The number of new test cases

Output: newTS: A set of new test cases

1. TScurr← Generate k test cases tc1, . . . , tck (randomly)
2. TEScurr← Generate the union of the test execution slices of

the k test cases in TScurr
3. fitcurr← ComputeFitness (TEScurr∪TESTS,M)
4. fitbest← fitcurr; TSbest← TScurr
5. repeat
6. while (time != restartTime )
7. TSnew←Mutate the k test cases in TScurr
8. TESnew← Generate the union of the test execution slices of

the k test cases in TSnew
9. fitnew← ComputeFitness (TESnew∪TESTS,M)
10. if (fitnew is better than fitcurr )
11. fitcurr← fitnew; TScurr← TSnew
12. end
13. if (fitcurr is better than fitbest )
14. fitbest← fitcurr; TSbest← TScurr
15. TScurr← Generate k test cases tc1, . . . , tck (randomly)
16. until the time budget is reached
17. return TSbest

Figure 5.2. Test case generation algorithm.

sive. Hence, in this chapter, we rely on single-state search optimizers as opposed to population-based
search techniques.

The algorithm in Figure 5.2 receives as input the existing set of test execution slices TESTS, a
Simulink model M, and the number of new test cases that need to be generated (k). The output
is a test suite (newTS) of k new test cases. The algorithm starts by generating an initial randomly
generated set of k test cases TScurr (Line 1). Then, it computes the fitness of TScurr (Line 3) and sets
TScurr as the current best solution (Line 4). The algorithm then searches for a best solution through
two nested loops: (1) The internal loop (Lines 6 to 12). This loop tries to find an optimized solution
by locally tweaking the existing solution. That is, the search in the inner loop is exploitative. The
mutation operator in the inner loop generates a new test suite by tweaking the individual test cases in
the current test suite and is similar to the tweak operator used in our earlier work [Matinnejad et al.,
2015b]. (2) The external loop (Lines 5 to 16). This loop tries to find an optimized solution through
random search. That is, the search in the outer loop is explorative. More precisely, the algorithm
combines an exploitative search with an explorative search. After performing an exploitative search
for a given amount of time (i.e., restartTime), it restarts the search and moves to a randomly selected
point (Line 15) and resumes the exploitative search from the new randomly selected point. The
algorithm stops after it reaches a given time budget (Line 15).

We discuss two important points about our test generation algorithm: (1) Each candidate solution
in our search algorithm is a test suite of size k. This is similar to the approach taken in the whole
test suite generation algorithm proposed by Fraser and Arcuri in [Fraser and Arcuri, 2013]. The
reason we use a whole test suite generation algorithm instead of generating test cases individually
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is that computing fitnesses for one test case and for several test cases takes almost the same amount
of time. This is because, in our work, the most time consuming operation is to load a Simulink
model. Once the model is loaded, the time required to run several test cases versus one test case is not
very different. Hence, we decided to generate and mutate the k test cases at the same time. (2) Our
algorithm does not require test oracles to generate new test cases. Note that computing fitDis and fitdbb
only requires test execution slices without any pass/fail information. To compute fitDens, in addition
to test execution slices, we need static backward slices that can be obtained from Simulink models.
Test oracle information for the k new test cases is only needed after test generation in subroutine
STATISTICALDEBUGGING (see Figure 5.1) when a new statistical ranking is computed. In the next
section, we discuss the STOPTESTGENERATION subroutine (see Figure 5.1) that allows us to stop
test generation before performing all the test generation rounds when we can predict situations where
test generation is unlikely to improve the fault localization.

5.2.2 Stopping Test Generation
As noted in the literature [Campos et al., 2013], adding test cases does not always improve statistical
debugging results. Given that in our context test oracles are expensive, we provide a strategy to stop
test generation when adding new test cases is unlikely to bring about noticeable improvements in the
fault localization results. Our STOPTESTGENERATION subroutine is shown in Figure 5.3. It has two
main parts: In the first part (Lines 1–6), it tries to determine if the decision about stopping test gener-
ation can be made only based on the characteristics of newList (i.e., the latest generated ranked list)
and static analysis of Simulink models. For this purpose, it computes Simulink super blocks and com-
pares the top ranked groups of newList with Simulink super blocks. In the second part (Lines 7-10),
our algorithm relies on a predictor model to make a decision about further rounds of test generation.
We build the predictor model using supervised learning techniques (i.e., decision trees [Olshen et al.,
1984]) based on the following three features: (1) the current test generation round, (2) the SetDistance
between the latest ranked list and the initial ranked list, and (3) the OrderingDistance between the lat-
est ranked list and the initial ranked list. Below, we first introduce Simulink super blocks. We will
then introduce SetDistance and the OrderingDistance that are used as input features for our predictor
model. After that, we describe how we build and use our decision tree predictor model.

Super blocks. Given a Simulink model M = (Nodes,Links, Inputs,Outputs), we define a super block
as the largest set B ⊆ Nodes of (atomic) Simulink blocks such that for every test case tc and every
output o ∈ Outputs, we have either B ⊆ testc,o or B∩ testc,o = /0. The definition of super block is
very similar to the definition of dynamic basic blocks (DBB) discussed in Section 5.2.1. The only
difference is that dynamic basic blocks are defined with respect to the test execution slices generated
by a given test suite, while super blocks are defined with respect to test execution slices that can be
generated by any potential test case. Hence, dynamic basic blocks can be computed dynamically
based on test execution slices obtained by the current test suite, whereas super blocks are computed
by static analysis of the structure of Simulink models. In order to compute super blocks, we identify
conditional (control) blocks in the given Simulink model. Each conditional block has an incoming
control link and a number of incoming data links. Corresponding to each conditional block, we
create some branches by matching each incoming data link with the conditional branch link. We
then remove the conditional block and replace it with the new branches. This allows us to obtain
a behaviorally equivalent Simulink model with no conditional blocks. We further remove parallel
branches by replacing them with their equivalent sequential linearizations. We then use the resulting
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STOPTESTGENERATION()

Input: - r: The index of the latest test generation round
- M: The underlying Simulink model
- initialList: A ranked list obtained using an initial test suite
- newList: A ranked list obtained at round r after some

test cases are added to the initial test suite
Output: result: Test generation should be stopped if result is true

1. Let rg1, . . . ,rgN be the top N rank groups in newList
2. Identify Simuilnk superblocks B1, . . . ,Bm in the set rg1∪ . . .∪ rgN
3. if for every rgi (1≤ i≤ N) there is a B j (1≤ j ≤ m) s.t. rgi = B j then
4. return true
5. if r = 0 then
6. return false
7. m1 = ComputeSetDistance(initialList, newList)
8. m2 = ComputeOrderingDistance(initialList, newList)
9. result = Prediction(m1, m2, r)
10. return result

Figure 5.3. The STOPTESTGENERATION subroutine used in our approach (see Figure 5.1).

Simulink model to partition the set Nodes into a number of disjoint super blocks B1, . . . ,Bl .

We briefly discuss the important characteristics of super blocks. Let rankList be a ranked list
obtained based on statistical debugging, and let rg be a ranked group in rankList. Note that rg is a
set as the elements inside a ranked group are not ordered. For any super block B, if B∩ rg 6= /0 then
B⊆ rg. That is, the blocks inside a super block always appear in the same ranked group, and cannot
be divided into two or more ranked groups. Furthermore, if rg = B, we can conclude that the ranked
group rg cannot be decomposed into smaller ranked groups by adding more test cases to the test suite
used for statistical debugging.

Features for building our predictor model. We describe the three features used in our predictor
models. The first feature is the test generation round. As shown in Figure 5.1, we generate test cases
in a number of consecutive rounds. Intuitively, adding test cases at the earlier rounds is likely to
improve statistical debugging more compared to the later rounds. Our second and third features (i.e.,
SetDistance and OrderingDistance) are similarity metrics comparing the latest generated rankings (at
the current round) and the initial rankings. These two metrics are formally defined below.

Let initialList be the ranking generated using an initial test suite, and let newList be the latest
generated ranking. Let rgnew

1 , . . . ,rgnew
m be the ranked groups in newList, and rginitial

1 , . . . ,rginitial
m′ be

the ranked groups in initialList. Our SetDistance feature computes the dissimilarity between the top-
N ranked groups of initialList and newList using the intersection metric [Fagin et al., 2003]. We
focus on comparing the top N ranked groups because, in practice, the top ranked groups are primarily
inspected by engineers. We compute the SetDistance based on the average of the overlap between the
top-N ranked groups of the two ranked lists. Formally, we define the SetDistance between initialList
and newList as follows.

IM(initialList,newList) = 1
N

∑N
k=1

|{
⋃k

i=1 rginitial
i }∩{

⋃k
i=1 rgnew

i }|
|{

⋃k
i=1 rginitial

i }∪{
⋃k

i=1 rgnew
i }|

SetDistance(initialList,newList)=1− IM(initialList,newList)
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Figure 5.4. A snapshot example of a decision tree.

The larger the SetDistance, the more differences exist between the top-N ranked groups of initialList
and newList.

Our third feature is OrderingDistance. Similar to SetDistance, the OrderingDistance feature also
attempts to compute the dissimilarity between the top-N ranked groups of initialList and newList.
However, in contrast to SetDistance, OrderingDistance focuses on identifying changes in pairwise
orderings of blocks in the rankings. In particular, we define OrderingDistance based on Kendall
Tau Distance [Kendall, 1938] that is a well-known measure for such comparisons. This measure
computes the dissimilarity between two rankings by counting the number of discordant pairs between
the rankings. A pair b and b′ is discordant if b is ranked higher than b′ in newList (respectively,
in initialList), but not in initialList (respectively, in newList). In our work, in order to define the
OrderingDistance metric, we first create two sets initialL and newL based on initialList and newList,
respectively: initialL is the same as initialList except that all the blocks that do not appear in the
top-N ranked groups of neither initialList nor newList are removed. Similarly, newL is the same as
newList except that all the blocks that do not appear in the top-N ranked groups of neither newList nor
initialList are removed. Note that newL and initialL have the same number blocks. We then define
the OrderingDistance metric as follows:

OrderingDistance(newL, initialL) = # of Discordant Pairs
(|newL|×(|newL|−1))/2

The larger the OrderingDistance, the more differences exist between the top-N ranked groups of
initialList and newList.

Prediction model. Our prediction model builds on an intuition that by comparing statistical rankings
obtained at the current and previous rounds of test generation, we may be able to predict whether
further rounds of test generation are useful or not. We build a prediction model based on the three
features discussed above (i.e., the current round, SetDistance, OrderingDistance). We use super-
vised learning methods, and in particular, decision trees [Olshen et al., 1984]. The prediction model
returns a binary answer indicating whether the test generation should stop or not. To build the pre-
diction model, we use historical data consisting of statistical rankings obtained during a number of
test generation rounds and fault localization accuracy results corresponding to the statistical rank-
ings. When such historical data is not available the prediction model always recommends that test
generation should be continued. After applying our approach (Figure 5.1) for a number of rounds,
we gradually obtain the data that allows us to build a more effective prediction model that can rec-
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ommend to stop test generation as well. Specifically, suppose rankList is a ranking obtained at
round r of our approach (Figure 5.1), and suppose initList is a ranking obtained initially before
generating test cases (Figure 5.1). The accuracy of fault localization for rankList is the maximum
number of blocks inspected to find a fault when engineers use rankList for inspection. To build
our decision tree, for each rankList computed by our approach in Figure 5.1, we obtain the triple
I = (r,SetDistance(initList,rankList),OrderingDistance(initList,rankList)). We then compute the maximum fault lo-
calization accuracy improvement that we can achieve if we proceed with test generation from round
r (the current round) until the last round of our algorithm in Figure 5.1. We denote the maximum
fault localization accuracy improvement by Max_ACCr(rankList). We then label the triple I with
Continue, indicating that test generation should continue, if Max_ACCr(rankList) is more than a
threshold (THR); and with Stop, indicating that test generation should stop, if Max_ACCr(rankList)
is less than the threshold (THR). Note that THR indicates the minimum accuracy improvements that
engineers expect to obtain to be willing to undergo the overhead of generating new test cases.

Having obtained triples I labelled with Stop or Continue, we build our decision tree model
(prediction model). Decision trees are composed of leaf nodes, which represent partitions, and non-
leaf nodes, which represent decision variables. A decision tree model is built by partitioning the set
of input triples in a stepwise manner aiming to create partitions with increasingly more homogeneous
labels (i.e., partitions in which the majority of triples are labelled either by Stop or by Continue).
The larger the difference between the number of triples with Stop and Continue in a partition,
the more homogeneous that partition is. Decision variables (i.e., non-leaf node) in our decision tree
model represent logical conditions on the input features (i.e., r, SetDistance, or OrderingDistance).
Figure 5.4 shows a fragment of our decision tree model. For example, the model shows, among the
triples satisfying r = R1 and SetDistance < 0.36 conditions, 81% are labelled with Stop and 19%
are labelled with Continue.

We stop splitting partitions in our decision tree model if the number of triples in the partitions
is smaller than α , or the percentage of the number of triples in the partitions with the same label is
higher than β . In this work, we set α to 50 and β to 95%, i.e., we do not split a partition whose size
is less than 50, or at least 95% of its elements have the same label.

Stop Test Generation Algorithm. The STOPTESTGENERATION() algorithm starts by identifying
the super blocks in newList, the latest generated ranking (Line 2). If it happens that the top-N ranked
groups in newList all comprise a single super block, then test generation stops (Line 3-4), because
such ranking cannot be further refined by test generation. If we are in the first round (i.e., r = 0), the
algorithm returns false, meaning that test generation should continue. For all other rounds, we use
the decision tree prediction model. Specifically, we compute the SetDistance and OrderingDistance
features corresponding to newList, and pass these two values as well as r (i.e., the round) to the pre-
diction model. The prediction model returns true, indicating that test generation should be stopped,
if the three input features satisfy a sequence of conditions leading to a (leaf) partition where at least
95% of the elements in that partition are labelled Stop. Otherwise, our prediction model returns
false, indicating that test generation should be continued. For example, assuming the decision tree in
Figure 5.4 is our prediction model, we stop test generation only if we are not in round one, SetDis-
tance is greater than or equal to 0.079, and OrderingDistance is less than 0.036. This is because, in
Figure 5.4, these conditions lead to the leaf partition with 97% stop-labelled elements.
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5.3 Empirical Evaluation

5.3.1 Research Questions
RQ1. [Evaluating and comparing different test generation fitness heuristics] How is the fault
localization accuracy impacted when we apply our search-based test generation algorithm in Fig-
ure 5.2 with our three selected fitness functions (i.e., coverage dissimilarity ( fDis), coverage density
( fDens), and number of dynamic basic blocks ( fdbb))? We report the fault localization accuracy of
a ranking generated by an initial test suite compared to that of a ranking generated by a test suite
extended using our algorithm in Figure 5.2 with a small number of test cases. We further compare
the fault localization accuracy improvement when we use our three alternative fitness functions, and
when we use a random test generation strategy not guided by any of these fitness functions.

RQ2. [Evaluating impact of adding test cases] How does the fault localization accuracy change
when we apply our search-based test generation algorithm in Figure 5.2? We note that adding test
cases does not always improve the fault localization accuracy [Campos et al., 2013]. With this ques-
tion, we investigate how often fault localization accuracy improves after adding test cases. In partic-
ular, we apply our approach in Figure 5.1 without calling the STOPTESTGENERATION subroutine,
and identify how often subsequent rounds of test generation do not lead to fault localization accuracy
improvement.

RQ3. [Effectiveness of our STOPTESTGENERATION subroutine] Does our STOPTESTGEN-
ERATION subroutine help stop generating additional test cases when they do not improve the fault
localization accuracy? We investigate whether the predictor model used in the STOPTESTGENER-
ATION subroutine can stop test generation when adding test cases is unlikely to improve the fault
localization accuracy, or when the improvement that the test cases bring about is small compared to
the effort required to develop their test oracles.

5.3.2 Experiment Settings
In this section, we describe the industrial subjects, test suites and test oracles used in our experiments.

Industrial Subjects. In our experiment, we use three Simulink models referred to as MA, MZ
and MGL, and developed by Delphi Automotive [Delphi Automotive LLP, 2017]. Table 5.1 shows
the number of subsystems, atomic blocks, links, and inputs and outputs of each model. Note that the
models that we chose are representative in terms of size and complexity among the Simulink models
developed at Delphi. Further, these models include about ten times more blocks than the publicly
available Simulink models from the Mathworks model repository [MathWorks, b].

Table 5.1. Key information about industrial subjects.

Model Name #Subsystem #Blocks #Links #Inputs #Outputs #Faulty version
MA 37 680 663 12 8 20
MZ 65 833 806 13 7 20

MGL 33 742 730 19 9 20
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We asked a Delphi engineer to seed 20 realistic and typical faults into each model. We have
provided detailed descriptions of the seeded faults in [Liu, 2017]. In total, we generated 60 faulty
versions (one fault per each faulty version). We ensured that the faults were of different types and
were seeded into different parts of the models. All experiment data and scripts are available in [Liu,
2017].

Test Suite and Test Oracles. We generated three initial test suites (i.e., TS in Figure 5.1) for
MA, MZ and MGL using Adaptive Random Testing [Chen et al., 2005]. Adaptive random testing
is a black box and lightweight test generation strategy that distributes test cases evenly within valid
input ranges, and thus, helps ensure diversity among test cases. Given that in our work we assume test
oracles are manual, we aim to generate test suites that are not large. However, the test suites should
be large enough to generate a meaningful statistical ranking. Hence, at least some test cases in the
test suite exhibit failures. In our work, we chose to use initial test suites with size 10. To enable the
full automation of our experiments, we used the fault-free versions of our industrial subjects as test
oracles. On average, our initial test suites covered 75.5% of the structure of the faulty models.

Experiment Design. To answer our research questions, we applied our approach to the faulty
versions of our three models, in total 60 faulty versions. We refer to the test generation algorithm in
Figure 5.2 as HCRR since it builds on the HCRR search algorithm. We refer to HCRR when it is
used with fitness functions fDis, fDens and fdbb as HCRR-Dissimilarity, HCRR-Density and HCRR-
DBB, respectively. We set both the number of new test cases per round (i.e., k in Figure 5.1), and the
number of rounds (i.e., round in Figure 5.1) to five. That is, in total, we generate 25 new test cases by
applying our approach. We applied our three alternative HCRR algorithms to our 60 faulty versions.
We ran each HCRR algorithm for 45 minutes with two restarts. To account for randomness of the
search algorithms, we repeat our experiments for ten times (i.e., ten trials). Further, to compute input
features for our stopping criteria setting, we set N (in Figure 5.3) to five. We ran our experiment on
a high performance computing platform [Varrette et al., 2014] with 2 clusters, 280 nodes, and 3904
cores. Our experiment were executed on different nodes of a cluster with Intel Xeon L5640@2.26GHz
processor. In total, our experiment (using a single node 4 cores) required 6750 hours. Most of the
experiment time was used to execute the generated test cases in Simulink. In total, we generated and
executed 129000, 159000, and 120000 test cases for MA MZ, and MGL, respectively.

5.3.3 Evaluation Metrics
We evaluate the accuracy of the rankings generated at different rounds of our approach using the
following metrics [Cleve and Zeller, 2005, Jones and Harrold, 2005, Liu et al., 2005, Lucia et al.,
2014, Parnin and Orso, 2011, Renieris and Reiss, 2003]: the absolute number of blocks inspected to
find faults, and the proportion of faults localized when engineers inspect fixed numbers of the top
most suspicious blocks. The former was already discussed for prediction models in Section 5.2.2.
The proportion of faults localized is the proportion of localized faults over the total number of faults
when engineers inspect a fixed number of the top most suspicious blocks from a ranking.

5.3.4 Experiment Results
RQ1. [Evaluating and comparing different test generation fitness heuristics] Figure 5.5 compares
the fault localization results after applying HCRR-DBB, HCRR-Density and HCRR-Dissimilarity
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algorithms to generate 25 test cases (five test cases in five rounds) with the fault localization results
obtained before applying these algorithms (i.e., Initial) and with the fault localization results obtained
after generating 25 test cases randomly (i.e., Random). In particular, in Figure 5.5(a), we compare
the distributions of the maximum number of blocks inspected to locate faults (i.e. accuracy) in our 60
faulty versions when statistical rankings are generated based on the initial test suite (i.e. Initial), or
after using HCRR-DBB, HCRR-Density, HCRR-Dissimilarity and Random test generation to add 25
test cases to the initial test suite. Each point in Figure 5.5(a) represents fault localization accuracy for
one run of one faulty version. According to Figure 5.5(a), before applying our approach (i.e., Initial),
engineers on average need to inspect at most 76 blocks to locate faults. When in addition to the
initial test suite, we use 25 randomly generated test cases, the maximum number of blocks inspected
decreases to, on average, 62 blocks. Finally, engineers need to inspect, on average, 42.4, 44 and 42.8
blocks if they use the rankings generated by HCRR-DBB, HCRR-Density and HCRR-Dissimilarity,
respectively. We performed non-parametric pairwise Wilcoxon signed-rank tests to check whether
the improvement on the number of blocks inspected is statistically significant. The results show that
the fault localization accuracy distributions obtained by HCRR-DBB, HCRR-Density and HCRR-
Dissimilarity are significantly lower (better) than those obtained by Random and Initial (with p-
value<0.0001).

Similarly, Figure 5.5(b) shows the proportion of faults localized when engineers inspect a fixed
number of blocks in the rankings generated by Initial, and after generating 25 test cases with HCRR-
DBB, HCRR-Density, HCRR-Dissimilarity, and Random. Specifically, the X-axis shows the number
of top ranked blocks (ranging from 10 to 80), and the Y-axis shows the proportion of faults among a
fixed number of top ranked blocks in the generated rankings. Note that, in Figure 5.5(b), the maximum
number of blocks inspected (X-axis) is computed as an average over ten trials for each faulty version.
According to Figure 5.5(b), engineers can locate faults in 13 out of 60 (21.67%) faulty versions
when they inspect at most 10 blocks in the rankings generated by any of our techniques i.e., HCRR-
DBB, HCRR-Density and HCRR-Dissimilarity. However, when test cases are generated randomly,
by inspecting the top 10 blocks, engineers can locate faults in only 3 out of 60 (5%) faulty versions.
As for the rankings generated by the initial test suite, no faults can be localized by inspecting the top
10 blocks. Using HCRR-DBB, HCRR-Density and HCRR-Dissimilarity, on average, engineers can
locate 50% of the faults in the top 25 blocks of each ranking. In contrast, when engineers use the
initial test suite or a random test generation strategy, in order to find 50% of the faults, they need to
inspect, on average, 50 blocks in each ranking.

In summary, the test cases generated by our approach are able to help significantly improve the
accuracy of fault localization results. In particular, by adding a small number of test cases (i.e., only
25 test cases), we are able to reduce the average number of blocks that engineers need to inspect to
find a fault from 76 to 43 blocks (i.e., 43.4% reduction). Further, we have shown that the fault lo-
calization accuracy results obtained based on HCRR-DBB, HCRR-Density and HCRR-Dissimilarity
are significantly better than those obtained by a random test generation strategy. Specifically, with
Random test generation, engineers need to inspect an average of 62 blocks versus an average of 43
blocks when HCRR-DBB, HCRR-Density and HCRR-Dissimilarity are used.

RQ2. [Evaluating impact of adding test cases] We evaluate the fault localization accuracy
of the ranking results obtained at each test generation round. In particular, we computed the fault
localization accuracy of rankings obtained by applying HCRR-DBB, HCRR-Density and HCRR-
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Figure 5.5. Comparing the number of blocks inspected (a) and the proportion of faults localized (b) before and
after applying HCRR-DBB, HCRR-Dissimilarity and HCRR-Density, and with Random test generation (i.e.,
Random).
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Dissimilarity to our 60 faulty versions from round one to five where at each round five new test cases
are generated. Recall that we have repeated 10 times each application of our technique to each faulty
model. That is, in total, we have 1800 trials (60 faulty versions × 3 algorithms × 10 runs). Among
these 1800 trials, we observed that, as we go from round one to round five, in 953 cases (i.e., 53%), the
fault localization accuracy improves at every round; in 803 cases (i.e., 44.6%), the accuracy improves
at some (but not all) rounds; and in 44 cases (i.e., 2.4%), the accuracy never improves at any of the
rounds from one to five.

To explain why adding new test cases does not always improve fault localization accuracy, we
investigate the notion of Coincidentally Correct Test cases (CCT) for Simulink (discussed in Chap-
ter 3). CCTs are test execution slices that execute faulty blocks but do not result in failure. We note
that as we add new test cases, the number of CCTs may either stay the same or increase. In the former
case, the fault localization accuracy either stays the same or improves. However, in the latter case, the
accuracy changes will be unpredictable.

In summary, adding test cases may not always improve fault localization accuracy. Hence, it
is important to have mechanisms to help engineers stop test generation when it is unlikely to be
beneficial for fault localization.

RQ3. [Effectiveness of our STOPTESTGENERATION subroutine] In order to generate the pre-
diction model used in the STOPTESTGENERATION subroutine, we consider all the statistical ranking
results obtained by applying the five rounds of test generation to the 60 faulty versions as well as
the corresponding accuracy results. We randomly divide the results into three sets, and use one of
these sets to build the decision tree prediction model (i.e., as a training set). The other two sets are
used to evaluate the decision tree prediction model (i.e., as test sets). Following a standard cross-
validation procedure, we follow this process three times so that each set is used as the training set at
least once. To build these models, we set THR = 15 (i.e., the threshold used to determine the Stop
and the Continue labels in Section 5.2.2). That is, engineers are willing to undergo the overhead
of adding new test cases if the fault localization accuracy is likely to improve by at least 15 blocks.
Figure 5.6(a) shows the fault localization accuracy results (i.e., the maximum number of blocks in-
spected) obtained by our three test generation algorithms (HCRR-DBB, HCRR-Density, and HCRR-
Dissimilarity) and when the STOPTESTGENERATION subroutine is used with the three decision tree
prediction models generated by cross-validation. These results are shown in columns with With stop

label. Figure 5.6(a), further, shows the accuracy results obtained by applying the five rounds without
using STOPTESTGENERATION in columns labelled Without stop. In addition, Figure 5.6(b) shows
the number of new test cases generated by HCRR-DBB, HCRR-Density and HCRR-Dissimilarity
when we applied the STOPTESTGENERATION subroutine. Note that we generate 25 test cases in five
rounds without STOPTESTGENERATION.

According to Figure 5.6, we are able to obtain almost the same fault localization accuracy with
considerably fewer number of new test cases when we use the STOPTESTGENERATION subroutine
compared to when we do not use it. In particular, on average, when we use the STOPTESTGENERA-
TION subroutine, the fault localization accuracies obtained for HCRR-DBB, HCRR-Dissimilarity and
HCRR-Density are 47.3, 47.9 and 50.4, respectively. In contrast, without the STOPTESTGENERA-
TION subroutine, the fault localization accuracies obtained for HCRR-DBB, HCRR-Dissimilarity and
HCRR-Density are 43, 43.4 and 45.1, respectively. We note that these accuracies are obtained by only
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Figure 5.6. The maximum number of blocks inspected and the number of new test cases added when we
applied STOPTESTGENERATION on the rankings generated using HCRR-DBB, HCRR-Density, and HCRR-
Dissimilarity based on the predictor models obtained for three different validation sets.

generating, on average, 11 test cases for HCRR-DBB, and 12 test cases for both HCRR-Density and
HCRR-Dissimilarity. We have also repeated our experiments for THR= 10. The results for THR= 10
show that the average fault localization accuracies improve by one to two blocks while the number of
new test cases also increases by one or two when compared with the results for THR = 15.

In summary, our approach identifies situations where adding new test cases does not improve
fault localization results. When engineers use the STOPTESTGENERATION subroutine, they need to
inspect a few more blocks (i.e., around five blocks), on average, but the number of test cases, and
hence the test oracle cost, reduces by more than half (i.e., 52% to 56% fewer test cases).
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5.4 Conclusion
In this chapter, we improve fault localization accuracy for Simulink models by extending an existing
test suite with a small number of test cases. The latter requirements is very important in contexts
where running and analyzing test case is expensive, such as with embedded systems. Our approach
has two components: (1) A search-based test generation algorithm that aims to increase test suite
diversity, and (2) a predictor model that predicts if additional test cases are likely to help improve
fault localization accuracy. Our work is driven by an important consideration that in some situations,
test oracles are manual and hence expensive, or running test cases is expensive. As a result, we
assess our test generation technique for small test suite sizes, and use our predictor models to avoid
generating additional test cases when they cannot lead to substantial improvement justifying their
incurred overhead. Our results show that our test generation technique significantly improves the
accuracy of fault localization for small test suite sizes, and further, our prediction model is able to
maintain a similar fault localization accuracy while reducing the average number of newly generated
test cases by more than half.

In future, we intend to study fault localization for evolving Simulink models. A recent study of
industrial Simulink models indicates a strong co-evolution relation between changes in models and
in their corresponding test suites [Rapos and Cordy, 2016]. We plan to investigate how such relations
can be used to generate test suites that lead to effective Simulink fault localization, especially, when
models are subject to frequent changes.
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Chapter 6

A Fault Localization Tool for Simulink
Models

To better support debugging Simulink models, we develop a tool called Simulink Fault Localization
tool (SimFL) which implements the techniques discussed in Chapter 3, 4, and 5. In this chapter, we
present SimFL.

Organization. This chapter is organized as follows. We first provide the relevant background and
an overview of different features supported by SimFL in Section 6.1. Implementations are discussed
in Section 6.2.

6.1 Tool Overview & Features
Figure 6.1 shows an overview of SimFL. The process of SimFL consists of four steps. The first step
of SimFL is Test Case Execution. In this step, SimFL calls Matlab/Simulink to execute the input
test suite based on a Matlab executable script we devised in SimFL. We then collect test coverage
information and save it into a .csv file for later steps. The second step, Super Block Computation, is
optional (shown by dashed line in Figure 6.1). Given a list of model outputs, SimFL computes the
super block information based on the static analysis of Simulink models (see Section 5.2.2). The third
step in SimFL is Fault Localization. In this step, SimFL takes the test coverage information as well
as the test oracle data (the pass/fail data for test cases) as inputs, computes the test execution slices
and generates ranked lists based on a selected statistical formula. The fourth step (i.e., Test Suite
Extension) is necessary when the users are not satisfied with the currently generated ranking. In this
step, SimFL invokes a search-based technique to generate a number of new test cases to improve this
ranked list. These steps can be applied independently or sequentially. Moreover, SimFL can be used
once or iteratively and the whole process can stop when the debugging budget runs out or the ranking
result is unlikely to be improved by adding new test cases. In the rest of this section, we elaborate
each step of the process shown in Figure 6.1.

6.1.1 Test Suite Execution
“Test Suite Execution” is an implementation of the first step described in Chapter 3. To be able to
use statistical debugging techniques to perform fault localization, SimFL requires collecting the test
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Simulink Model Test Suite

Test Case Execution

Super Block 
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Fault Localization

Pass/Fail info

Simulink model input info

Test Suite Extension

New Test cases

Need more 
test cases?

Yes

No

Pass/Fail info
for new test cases

Figure 6.1. Workflow of SimFL

coverage information for each model output and each test case. In this step, SimFL takes as input a
test suite file, and a (faulty) Simulink model and calls Matlab/Simulink to run the Simulink model
with the given test suite. The output of this step is a file containing which decision being made by
individual conditional blocks (e.g. Switch) in the model. This decision information can be obtained
by analyzing Matlab/Simulink Model Coverage Report Generator data. SimFL computes the actual
coverage data for conditional blocks and then exports the data into a file in a specific format.

6.1.2 Super Block Computation
The “Simulink super block” is a new concept we proposed in Chapter 5 which could help engineers
understand the generated rankings and help them decide whether further extending the test suite is
likely to be beneficial (as discussed in Section 5.2.2). In brief, a Simulink super block is a set of atomic
Simulink blocks whose suspiciousness scores cannot be differentiated by adding new test cases.

Computing super block is based on the static analysis of a Simulink model, so it only needs to
be computed once if there is no change in the model output list. SimFL offers the computation of
super blocks as an optional function (marked with dashed line in Figure 6.1). Users can decide by
themselves to generate it or not based on their needs. However, SimFL detects the existence of the
super block information file to decide about structure view of the generated ranked list visualization
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in the debugging dialogue.

6.1.3 Fault Localiation
Once the test execution information has been obtained, SimFL is ready to generate a ranked list of
blocks for engineers to debug their Simulink model. In this part, we discuss: (1) Statistical Debugging
techniques that we used to generate the ranked list to inspect and (2) The debugging window in SimFL
and the way SimFL connects/interacts with Matlab/Simulink.

Figure 6.2. A screenshot of the debugging window

6.1.3.1 Statistical Debugging

Our fault localization approach that has been implemented in SimFL is based on the statistical debug-
ging technique described in Chapter 3. SimFL provides three alternative statistical formulae: Taran-
tula [Jones et al., 2002], Ochiai [Abreu et al., 2007], and DStar [Wong et al., 2014]. Users can select
any of the formulae to compute the block suspiciousness scores. The output of statistical debugging
is a ranked list of Simulink atomic blocks.

We implemented the slicing technique we proposed and explained in Chapter 3 to compute the
spectra information. Particularly, based on the coverage information generated in the previous step,
SimFL prunes and refines the backward static slices to generate the test execution slices that contain
precisely the information about the execution of atomic blocks in the model for each output. The
other input, the pass/fail information, has to be provided by users.
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6.1.3.2 Debugging user interface design and Connection with Matlab/Simulink

After generating a ranked list, SimFL presents the ranked list as a tree structure as shown in Figure 6.2.
The elements (blocks) listed in the tree are organized based on their suspiciousness score from high to
low. The elements are put under the same rank group when they have the same suspiciousness score.

Figure 6.2 shows the user interface design for the debugging step. This window is divided into
two parts: on the left part, SimFL presents the generated ranked list into a tree structure. The right part
shows the related block information of the selected elements in the list, including block name, block
type, bug fixing suggestions, and percentage of passed/failed test cases. On the left part, each element
in the ranked list represents an atomic block in the Simulink model. In the ranked list, SimFL uses
Simulink SID instead of Block Name as the identification of a block. This is because, in a Simulink
model, several blocks that are located in different subsystems could have the same name. Hence,
Block Name is not enough to differentiate different blocks. But, Simulink SID is unique for each
block in a Simulink model.

Whenever an element (SID) in the ranking list is selected, all information related to this block is
displayed in the right part of the window. In order to help engineers quickly find the exact location
of the block, SimFL also provides a button ("Highlight in the model" button in Figure 6.2) to bring
engineers back to the corresponding Simulink model. When this button is clicked, the model is opened
and the selected element is highlighted in a bright blue color.

6.1.4 Test Suite Extension
In statistical debugging results, several elements (blocks) may have the same suspiciousness scores,
and hence, form coarse-grained rank groups. If engineers inspect blocks using such a ranked list, they
may have to inspect a large number of blocks to find out the faulty one(s). To improve the precision of
statistical debugging techniques, SimFL provides a test suite extension strategy based on search-based
techniques to refine the ranking.

Figure 6.3 shows the test case generation setting form where the user can specify the necessary
information for SimFL to run a search-based test case generation approach (discussed in Chapter 5).
In this window, users have to specify the current test suite file, the Simulink model inputs as well
as the configuration/selection parameters for running search algorithms. Once all these parameters
have been correctly configured, SimFL will start generating new test cases. At this stage, Simulink is
invoked to execute the test case candidates.

6.2 Implementation
SimFL has been implemented as a standalone application. The pre-requisites of the tool are (i) JDK
version later than 1.7, and (ii) Matlab/Simulink version later than 2012. SimFL can work on both
MacOS and WindowsOS environments.

Figure 6.4 shows the architecture view of SimFL. The GUI is implemented in JavaFX. The four
functional modules in the core engine part are implemented in Java. We adopt a third-party Java
API, matlabcontrol [matlabcontrol, 2010], to setup the communication between the SimFL and Mat-
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Figure 6.3. A screenshot of the test suite extension window

lab/Simulink. The Simulink model executions in both the Execution step and Test Suite Generation
step are implemented in Matlab scripts.
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Figure 6.4. SimFL architecture view

84



Chapter 7

Related Work

In this chapter, we focus on comparing our work in this dissertation with the related research and
studies. We initially present existing approaches and their suitability to solving the challenges of
single fault problem in source code (Section 7.1). Next, we present the existing work on the analysis
of Simulink models (Section 7.2). We also review existing work that aims to localize multiple faults
in programs (Section 7.3). Section 7.4 provides a review of research as they relate to the test suite
generation for improving fault localization result.

7.1 Software Fault Localization for single-fault
Many fault localization techniques have been proposed to localize faults in programs [Abreu et al.,
2009b, Abreu et al., 2007, Abreu et al., 2009c, Alves et al., 2011, Arumuga Nainar and Liblit, 2010,
Ball et al., 2003, Chen et al., 2002, Chilimbi et al., 2009, Cleve and Zeller, 2000, Cleve and Zeller,
2005, Groce et al., 2004, Hildebrandt and Zeller, 2000, Jones and Harrold, 2005, Jones et al., 2002,
Kim et al., 2015, Lei et al., 2012, Liblit et al., 2005, Liu et al., 2005, Lucia et al., 2010, Mayer
et al., 2009, Orso et al., 2004, Parnin and Orso, 2011, Parsa et al., 2014, Renieris and Reiss, 2003,
Santelices et al., 2009, Tang et al., 2014, Wong et al., 2008, Wong et al., 2014, Xie et al., 2013b,
Zhang et al., 2006, Zhang et al., 2003, Zoeteweij et al., 2007]. Statistical debugging is one family of
fault localization approaches that has been extensively studied to localize faults in programs [Abreu
et al., 2009b, Abreu et al., 2007, Abreu et al., 2009c, Alves et al., 2011, Arumuga Nainar and Liblit,
2010, Chen et al., 2002, Chilimbi et al., 2009, Jones and Harrold, 2005, Jones et al., 2002, Kim et al.,
2015, Lei et al., 2012, Liblit et al., 2005, Liu et al., 2005, Lucia et al., 2010, Mayer et al., 2009, Parsa
et al., 2014, Renieris and Reiss, 2003, Santelices et al., 2009, Tang et al., 2014, Wong et al., 2014, Xie
et al., 2013b, Zoeteweij et al., 2007]. Nevertheless, statistical debugging has not been studied to
localize faults in Simulink models. In this work, we propose a statistical debugging technique that
takes into account the characteristic of Simulink in order to localize faults in Simulink models.

To identify faults in programs, statistical debugging techniques analyze program spectra and use
a statistical formula to measure the likelihood of program elements to be faulty. Different types
of program spectra have been analyzed to localize faults, e.g. sequences of statements [Jones and
Harrold, 2005, Jones et al., 2002, Renieris and Reiss, 2003, Xie et al., 2013b, Wong et al., 2014],
program blocks [Abreu et al., 2009b, Abreu et al., 2007, Lucia et al., 2010, Renieris and Reiss,
2003, Zoeteweij et al., 2007], predicates [Liblit et al., 2005, Liu et al., 2005, Parsa et al., 2014],
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combination of spectra [Santelices et al., 2009], program path [Chilimbi et al., 2009]. A number
of statistical formulas to measure suspiciousness of program elements have also been proposed e.g.,
Tarantula [Jones et al., 2002], Ochiai [Abreu et al., 2009b, Abreu et al., 2007], formulas from data
mining [Lucia et al., 2010], Naish [Naish et al., 2011], D∗ [Wong et al., 2014], formulas generated
using genetic programming [Xie et al., 2013b], SOBER [Liu et al., 2005], CBI [Liblit et al., 2005]. In
this work, we analyze sequences of (atomic) blocks in Simulink and use existing statistical formulas
(i.e., Tarantula, Ochiai, and D∗) to measure the suspiciousness of Simulink (atomic) blocks to be
faulty.

Tang et al. [Tang et al., 2014] build a hierarchy of program predicates using hierarchical clustering
and uses it to compute the suspiciousness of each predicate. Parsa et al. [Parsa et al., 2014] focus
on comparing the effectiveness of ranking results for different code abstractions. Our work uses
intermediary model outputs obtained from different subsystems at different hierarchical levels, and
focuses on extending test oracles based on these outputs.

The above techniques [Abreu et al., 2009b, Abreu et al., 2007, Chen et al., 2002, Jones and
Harrold, 2005, Jones et al., 2002, Liblit et al., 2005, Liu et al., 2005, Lucia et al., 2010, Renieris
and Reiss, 2003, Santelices et al., 2009, Xie et al., 2013b, Zoeteweij et al., 2007] localize faults by
performing statistical debugging technique only once. Other debugging techniques [Arumuga Nainar
and Liblit, 2010, Chilimbi et al., 2009, Zuo et al., 2014] iteratively apply a statistical debugging
technique until developers find the root cause of failures. Arumuga et al. [Arumuga Nainar and Liblit,
2010] and Chilimbi et al. [Chilimbi et al., 2009] first instrument selected program elements and apply
a statistical debugging technique to obtain the most suspicious program element. Developers then
check whether the most suspicious program element is faulty or not. If the suspicious element is
not faulty, these techniques extend their instrumentation to other program elements, and a statistical
debugging technique is applied again to locate faults. Chilimbi et al. [Chilimbi et al., 2009] search
the location of faults by extending their instrumentation to include program elements (i.e., functions)
that are highly dependent on the non-suspicious program elements (e.g., functions, branches). A
program element is not suspicious if their suspiciousness score is less than a threshold. Arumuga
et al. [Arumuga Nainar and Liblit, 2010] extend their instrumentation to include program elements
(i.e., predicates) that are nearby to the most suspicious program element (i.e., predicates). Their
intuition is that predicates that are nearby to the most suspicious predicate are also suspicious. Instead
of extending the instrumentation to include other program elements, Zuo et al. [Zuo et al., 2014]
search the location of faults using hierarchical instrumentation. They first instrument functions in a
program and use a statistical debugging technique to rank functions. They then instrument predicates
of the functions that appear in the top rank and run the statistical debugging technique to locate the
faulty predicates. The existing iterative debugging techniques [Arumuga Nainar and Liblit, 2010,
Chilimbi et al., 2009, Zuo et al., 2014] focus on extending and improving program instrumentation
to reduce memory and time required by the instrumentation. In our work, however, we focus on
extending test oracles to improve the accuracy of statistical debugging in localizing faults. Further,
our approach does not require engineers to inspect the ranked list first in order to decide whether or
not another iteration is needed, since our heuristic automatically predicts whether another iteration of
fault localization is needed or not.

Gong et al. [Gong et al., 2012] refine suspiciousness rankings returned by a statistical debugging
techniques by using developer feedback (i.e., whether a program element is faulty or not) to adjust the
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suspiciousness scores of program elements and rerank the program elements. Our approach refines
the ranked lists by asking engineers whether some selected intermediary outputs are correct or not,
and use this information to narrow down the potential faulty Simulink blocks.

Program slicing has been used to refine ranking results produced by statistical debugging tech-
niques [Abreu et al., 2009c, Alves et al., 2011, Hofer and Wotawa, 2012, Lei et al., 2012, Mao et al.,
2014, Mayer et al., 2009]. Alves et al. [Alves et al., 2011] first obtain one spectrum for each test case
and apply statistical debugging on these spectra. They then prune the ranking results by removing the
statements that are not in the dynamic slicing of incorrect outputs. Our work is different as instead
of using dynamic slicing to prune the ranking results, we first obtain one spectrum (test execution
slice) per output and per test case, and then apply statistical debugging on all the test execution slices.
When multiple outputs are incorrect in a test execution, the techniques proposed by Lei et al. [Lei
et al., 2012] and Mao et al. [Mao et al., 2014] rely on the spectra related only to the first failing out-
put and use only those spectra to compute rankings. Hofer et al. [Hofer and Wotawa, 2012] use the
spectra from incorrect outputs to generate sets of program elements that can explain failures. In our
work, we use spectra from all outputs instead of only one output [Lei et al., 2012, Mao et al., 2014]
or only incorrect outputs [Hofer and Wotawa, 2012]. Further, we compute block scores based on the
combined spectra related to all the outputs. Note that in our work, we notice that some output may
fail for all test executions. That is, considering the spectra only from one output is not sufficient to
produce meaningful rankings. Finally, we also provide a heuristic to improve the ranking results by
guiding engineers on how to extend test oracles.

Approximate Dynamic Backward Slicing (ADBS) [Mao et al., 2014] bears some similarities to
our notion of test execution slice. To clarify the differences between these two, we note that our
notion of test execution slice accounts for the blocks that are executed by a test case and affect a
specific output generated by that test case. However, ADBS contains program statements executed by
a test case and appearing in the backward static slice of a specific output, but these statements do not
necessarily affect the output generated by that test case.

Statistical debugging has been previously extended to spreadsheets [Hofer et al., 2014, Hofer
et al., 2013, Jannach et al., 2014] and to multi-agent systems [Passos et al., 2015] as well. Similar
to our work, in both of these approaches, the notion of spectrum is defined per test case and per
output. Specifically, in the spreadsheet fault localization approach, only one test case is used for each
spreadsheet, and each execution of that test case for each output amounts to one spectrum [Hofer
et al., 2014, Hofer et al., 2013, Jannach et al., 2014]. In the multi-agent system fault localization,
the behavior of each agent at each time step is considered to be a spectrum [Passos et al., 2015].
Our work bears some similarities with these two approaches with respect to the notion of spectrum
and application of ranking formulas. However, our approach is applied to Simulink models that are
drastically different from spreadsheets and multi-agent systems in terms of structure and usage, and
further, the computation of Simulink model spectra (test execution slices) is significantly different in
our work compared to these approaches.

Gonzales et al. [Gonzalez-Sanchez et al., 2011] and Campos et al. [Campos et al., 2013], respec-
tively, prioritize and generate test cases with the goal of reducing the size and number of ambiguity
groups in ranked lists. In our work, we use the maximum size of the top-most ranked ambiguity groups
in a ranked list as a heuristic to choose whether to continue expanding test oracles or not. Specifi-
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cally, our coarseness measure differs from their coarseness measure [Campos et al., 2013, Gonzalez-
Sanchez et al., 2011] in that we focus on the size of ambiguity groups that ranked in the top of the list
as opposed to the size of ambiguity groups in the entire list.

Statistical debugging assumes developers can find faults by inspecting statements in isolation,
while in reality they often need context information to decide if a statement is faulty or not [Parnin and
Orso, 2011]. Like existing work, we generate block rankings without including context information.
However, Simulink blocks often contain some implicit context information since engineers often label
them with terms coming from requirements or architecture. For example, the multiplication block
with label IncrPres in Figure 3.1 refers to an operation for increasing the pressure of supercharger.
This observation suggests that block rankings could be useful to find faults in Simulink.

When researchers propose a new fault localization technique, they typically compare their tech-
nique with other techniques by using some known faults (e.g., Siemens suite [Hutchins et al., 1994])
to determine which one is better. Recently, Pearson et al. [Pearson et al., 2017] compared differ-
ent fault localization techniques (5 from spectrum-based and 5 from mutation-based families) using
real faults from different open-source projects. Some of their conclusions are consistent with our
conclusions obtained based on experiments on real industrial faulty Simulink models in Chapter 3.
Specifically, similar to Pearson et al. [Pearson et al., 2017], we did not observe any significant dif-
ference between different fault localization formulas (e.g., Dstar and Tarantula) in our experiments
applied to Simulink models based on realistic faults from industry.

7.2 Analysis of Simulink Models
In our work, we relied on model simulations to identify control dependencies between Simulink
blocks. Reicherdt and Glesner [Reicherdt and Glesner, 2012] proposed a slicing method for Simulink
models where control dependencies are obtained via Simulink Conditional Execution Contexts (CECs)
and are used to create static slices based on a set of blocks. In our work, we chose to use model execu-
tion information to identify control dependencies and compute slices since the static slicing proposed
by Reicherdt et al. [Reicherdt and Glesner, 2012] and Sridhar et al. [Sridhar and Srinivasulu, 2014]
based on CECs may provide over approximations that may not be sufficiently precise to determine
control dependencies.

Our work relates to the recent work of Schneider [Schneider, 2014] that proposes a technique for
tracking the root causes of defects in Simulink. In that technique, engineers identify failures, typically
run-time failures, at the level of code generated from Simulink models. The program statement that
exhibits the failure is then mapped to a Simulink block, and all the paths leading to that block are
collected and assigned weights based on some heuristic. The path with the highest weight is then
reported to the engineer as the root cause of the defects. This work focuses on runtime failures (e.g.,
division by zero), while in our work, we consider a wider range of fault types for Simulink models
(see Section 3.4.2). Further, Schneider [Schneider, 2014] does not provide any realistic evaluation of
the proposed approach. In particular, the number of blocks that engineers need to eventually inspect
is not reported. Finally, the scalability of the approach to large models is not discussed as the number
of paths leading to a specific block can be very large for real-world Simulink models.

88



7.3. Fault Localization for multiple faults

7.3 Fault Localization for multiple faults
In this section, we compare our work with the existing fault localization techniques that aim to localize
multiple faults in programs [Podgurski et al., 2003, Steimann and Frenkel, 2012, Liu and Han, 2006,
Jones et al., 2007, Briand et al., 2007, Zheng et al., 2006, Jiang and Su, 2007, Abreu et al., 2009a,
Abreu et al., 2009c, Cellier et al., 2011, Arumuga Nainar and Liblit, 2010, Liblit et al., 2005, Röβ ler
et al., 2012].

Several techniques [Podgurski et al., 2003, Steimann and Frenkel, 2012, Liu and Han, 2006, Jones
et al., 2007] cluster failures and require engineers to inspect either failures in all the clusters or all
rankings obtained from the clusters. Multidimensional scaling has been used for clustering failures
based on similarities between execution profiles in [Podgurski et al., 2003] and between statistical
rankings in [Liu and Han, 2006]. Jones et al. [Jones et al., 2007] cluster failures using hierarchical
clustering and pairwise clustering. They, further, propose a parallel debugging process to inspect
all the ranked lists obtained from all the clusters. Steimann et al. [Steimann and Frenkel, 2012]
use integer linear programming to cluster failures and generate statistical rankings for the clusters.
These approaches have not been evaluated nor adapted to one-at-a-time debugging. Hence, they
require engineers to inspect all the clusters (or all the ranked lists) at once, potentially missing the
masked faults or wasting effort by identifying the same faults more than once. Further, none of
these techniques use both input values and execution slices (traces) as the input for clustering. Our
work uses a supervised learning technique applied to heterogeneous input data, and is designed and
evaluated for a one-at-a-time debugging process, matching how Simulink models are often debugged
in practice.

Instead of generating several rankings, the following techniques generate one ranking. Zheng
et al. [Zheng et al., 2006] cluster failing test executions and predicates. Jiang and Su [Jiang and
Su, 2007] cluster predicates using a k-mean technique, identify the most predictive predicates, and
generate one ranking in terms of a control-flow graph. Abreu et al. [Abreu et al., 2009a, Abreu et al.,
2009c] combine statistical debugging with logical reasoning to rank sets of program elements. Brun
and Ernst [Brun and Ernst, 2004] build predictor models based on program revisions to produce a
subset of program properties that might be faulty. Cellier et al. [Cellier et al., 2011] cluster failures
using association rules to obtain a single ranking and propose a mechanism based on formal concept
analysis to guide ranking inspection. These techniques aim to find multiple faults using a single
ranking. Only the work in [Cellier et al., 2011] provides guidelines on when an inspection can be
stopped, but no evaluation is reported. In contrast, our approach aims to identify one ranking in
which at least one fault is top-ranked. Further, our approach is iterative, so that faults that are ranked
low in the first iterations, can be ranked higher in subsequent iterations. Finally, our work is evaluated
using industrial case studies.

Liblit et al. [Liblit et al., 2005, Arumuga Nainar and Liblit, 2010] iteratively re-rank predicates
using only the execution traces that do not execute the top-ranked predicates identified in the previous
iterations. As they do not re-generate execution traces after fixing faults, the masked faults may
remain undetected. In our earlier work [Briand et al., 2007], we have also used decision trees based on
input equivalence classes to cluster failures in the context of black-box testing. Our current work uses
both execution traces and test inputs for clustering. Further, we assume a one-at-a-time debugging
process and select one ranking per iteration, while in [Briand et al., 2007], clusters are combined
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together to generate a single ranking and the approach is not iterative. Finally, we have applied our
technique to industrial Simulink models with multiple faults. None of the above have been applied to
Simulink models.

7.4 Test suite generation
Many test generation techniques have been proposed for different purposes e.g., maximizing program
coverage ([Fraser and Arcuri, 2013, Harman et al., 2010, Williams et al., 2005, Xie et al., 2005, Sen
et al., 2005, Godefroid et al., 2005, Tillmann and De Halleux, 2008, Korel, 1990, Wegener et al.,
2001, Baars et al., 2011, Inkumsah and Xie, 2008, Malburg and Fraser, 2011, Tonella, 2004, Ribeiro,
2008, Wappler and Lammermann, 2005]) and revealing faults ([Artzi et al., 2008, Godefroid et al.,
2005, Tillmann and De Halleux, 2008, Fraser and Zeller, 2012, DeMilli and Offutt, 1991, Offutt et al.,
1999, Jones et al., 1998, Ayari et al., 2007, Evans and Savoia, 2007, Orso and Xie, 2008, Pacheco
and Ernst, 2005, Robinson et al., 2011, Alipour et al., 2016, Tang et al., 2016]) for programs, or
maximizing structural coverage [Windisch, 2009, Windisch, 2010, Mohalik et al., 2014, Hamon
et al., 2008, Satpathy et al., 2008, Sims and DuVarney, 2007, Böhr and Eschbach, 2011, Gad-
kari et al., 2008, Peranandam et al., 2012, Satpathy et al., 2012] and revealing faults [Matinne-
jad et al., 2016, Matinnejad et al., 2015b, Zhan and Clark, 2005, Zhan and Clark, 2008, Brillout
et al., 2009, Cleaveland et al., 2006, Barnat et al., 2012, Mazzolini et al., 2010, Venkatesh et al.,
2012, Holling et al., 2014, Balasubramanian et al., 2011] for Simulink models. Nevertheless, only a
few test generation techniques aim to improve fault localization accuracy. These techniques specifi-
cally focus on Java/C programs [Röβ ler et al., 2012, Baudry et al., 2006, Campos et al., 2013] and
on web applications [Artzi et al., 2010]. Our work aims to improve fault localization accuracy for
Simulink models by extending an existing test suite with a small number of test cases. This is to en-
sure applicability of our approach in situations where test oracles are developed manually or running
test cases is expensive.

One important requirement in our work is that the pass/fail information for each candidate test
input is not readily available, and hence, test generation techniques that require such information
to improve fault localization [Röβ ler et al., 2012, Artzi et al., 2010] are not applicable in our case
since these techniques are feasible only when test oracles are automatable. Hence, in our work, we
identify the test generation techniques of [Baudry et al., 2006] and [Campos et al., 2013] that satisfy
our requirement. Both of these techniques attempt to generate test cases that execute varying subsets
of program statements. In particular, Baudry et. al. [Baudry et al., 2006] guide test generation by
maximizing the number of Dynamic Basic Blocks (i.e. program elements that are always executed
together), and Campos et. al. [Campos et al., 2013] attempt to generate test cases with a balanced
number of long and short structural test coverages. In our work, we adapt these two test generation
algorithms to Simulink models. In addition, we introduce a new test generation objective that has
previously been used for test prioritization [Jiang et al., 2009] and use it to improve fault localization
for Simulink models. In contrast to the work of [Baudry et al., 2006, Campos et al., 2013, Jiang et al.,
2009], we assess the capabilities of test generation techniques in improving Simulink fault localization
when the number of newly generated test cases is small. We, further, combine these techniques with
a predictor model that stops test generation when new test cases are not likely to help improve fault
localization accuracy.

Most recently, Perez et al. [Perez et al., 2017] noted some possible limitations in the previous
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metrics ( [Campos et al., 2013] and [Baudry et al., 2006]). They proposed a test-suite diagnosability
metric by combining these two existing metrics, as well as another measurement defined based on
coverage diversity [Jost, 2006]. They evaluated their approaches by implementing the new metric
in EVOSUITE [Fraser and Arcuri, 2011]. They showed that their DDU metric needs less effort
compared to the Branch-coverage metric. Since DDU does not need the test oracle information, it is
possible to adapt DDU into our approach as another test objective.

Le and Lo [Le and Lo, 2013] propose an approach to predict fault localization accuracy based on
features extracted from statistical rankings generated by a fixed and specific test suite. Our predictor
model instead is built based on features that compare statistical rankings generated by a test suite and
its extensions. Moreover, our predictor model is used to help stop test generation and to ensure test
suite minimality. Further investigation is required to assess the effectiveness of the features proposed
in [Le and Lo, 2013] as a test generation stopping criterion.

Xia et al. [Xia et al., 2016] select a subset of a given test suite such that the fault localization
accuracy achieved by the subset is the same as the accuracy achieved by the entire test suite. Similar
to our work, they create predictor models based on changes in rankings as new test cases are added
to the underlying test suite. However, they build a predictor model for each program element as
opposed to our work where we build one predictor model based on the changes in the top-N ranked
groups. As discussed earlier, since Simulink atomic blocks in the same super block always have
the same rank, creating separate predictors for each individual atomic blocks is too fine-grained and
redundant. Furthermore, at each round, in order to select a test case, Xia et al. [Xia et al., 2016]
need to compare the spectra of the candidate test case with those of all the remaining test cases. This
makes their approach computationally and memory intensive when the test suite from which test cases
are selected is large. In our work, however, we extend an initial test suite using a search-based test
generation technique guided by objectives that aim to increase test suite diversity without any need to
compare the spectra of many test cases.
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Chapter 8

Conclusions and Future Work

In this chapter, we revisit the main contributions of this dissertation and discuss some perspectives on
potential research directions in this area.

This chapter is organized as follow. Section 8.1 summarizes the contributions of this dissertation.
Section 8.2 discusses potential future work.

8.1 Summary
As the most important industrial modeling and simulation language, Simulink has a lot of unique
features: Simulink models often have many inputs and output signals, contain hundreds of blocks
and lines, and are often hierarchical i.e., including subsystems. Furthermore, subsystems and their
connecting lines may form a closed-loop. The complex structure of Simulink models makes debug-
ging highly difficult and time-consuming. In addition, developing test oracles for Simulink models is
challenging. Hence, having some effective techniques that are able to automatically reveal, identify
and locate faults in Simulink models is beneficial for engineers. In this dissertation, we proposed sev-
eral fault localization approaches aimed at addressing the challenges of identifying faults in industrial
Simulink models, and a test generation algorithm for improving the fault localization for Simulink
models.

To conclude, we presented the following contributions in this dissertation:

Chapter 3 presented our fault localization approach for single-fault Simulink models. We pro-
posed SimFL, a fault localization approach for Simulink models by combining statistical debugging
and dynamic model slicing. Given a set of outputs in a Simulink model that needs to be debugged,
we generate test execution slices, for each test case and output, of the Simulink model. We then
apply statistical ranking formulas to the resulting spectra to compute suspiciousness scores for each
Simulink model block. In order to further improve fault localization accuracy, we propose iSimFL,
an iterative fault localization algorithm. At each iteration, iSimFL increases the set of observable out-
puts by including outputs at lower hierarchy levels, thus increasing the test oracle cost but offsetting
it with significantly more precise fault localization. We utilize a heuristic stopping criterion to avoid
unnecessary test oracle extension. We evaluate our work on three industrial Simulink models from
Delphi Automotive. Our results show that, on average, SimFL ranks faulty blocks in the top 8.9%
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in the list of suspicious blocks. Further, we show that iSimFL significantly improves this percentage
down to 4.4% by requiring engineers to observe only an average of five additional outputs at lower
hierarchy levels on top of high-level model outputs.

Chapter 4 described our approach for multi-fault Simulink model fault localization. Our approach
builds on statistical debugging and is iterative. At each iteration, we identify and resolve one fault
and re-test models to focus on localizing faults that might have been masked before. We use decision
trees to cluster together failures that satisfy similar (logical) conditions on model blocks or inputs. We
then present two alternative selection criteria to choose a cluster that is more likely to yield the best
fault localization results among the clusters produced by our decision trees. Engineers are expected to
inspect the ranked lists obtained from the selected cluster to identify faults. We evaluate our approach
on 240 multi-fault models obtained from three different industrial subjects. We compare our approach
with two baselines: (1) Statistical debugging without clustering, and (2) State-of-the-art clustering-
based statistical debugging. Our results show that our approach significantly reduces the number
of blocks that engineers need to inspect in order to localize all faults, when compared with the two
baselines. Furthermore, with our approach, there is less performance degradation than in the baselines
when increasing the number of faults in the underlying models.

Chapter 5 presented our test generation approaches that aim at improving fault localization of
Simulink models by generating test cases. In this chapter, we identified several test objectives that
aim to increase test suite diversity. We used these objectives in a search-based algorithm to generate
diversified but small test suites. To further minimize test suite sizes, we developed a prediction model
to stop test generation when adding test cases is unlikely to improve fault localization. We evaluated
our approach using three industrial subjects. Our results show (1) the selected test objectives are
able to significantly improve the accuracy of fault localization for small test suite sizes, and (2) our
prediction model is able to maintain almost the same fault localization accuracy while reducing the
average number of newly generated test cases by more than half.

Chapter 6 presented our tool providing automated support for our approach and the features we
proposed for Simulink model fault localization. The tool enables users to exercise Simulink models
for a given test suite, extract and compute test execution information, generate fault localization rank-
ing lists for a selected configuration, view/inspect the ranking lists interactively, and extend a given
test suite based on a selected fitness metric. All of these features have been evaluated in the empirical
evaluation section from Chapter 3 to Chapter 5.

All of the work presented in this dissertation has been done in collaboration with Delphi Automo-
tive Systems, a world leading automotive part supplier company, based in Luxembourg.

8.2 Future Work
In this dissertation, we focused on fault localization for Simulink models developed in the automotive
domain. To better assess the applicability and effectiveness of our approaches, we identified the
following topics/areas of interest:

1. In this dissertation, all the approaches target the Simulink models without stateflow. The main
reason is that the industrial subjects we got from Delphi did not contain any. One of the future
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studies is to extend our approaches to localize faults in the Simulink models with stateflow
structures. Some useful work [Sridhar and Srinivasulu, 2014, Matinnejad et al., 2015b] about
slicing and testing stateflow has already been conducted and can be used to expand our fault
localization approach to stateflows.

2. In this dissertation, all the empirical evaluations are conducted based industrial subjects from
our automotive industrial partner. To prove the generalizability of our approaches, it is also
worthwhile to consider and evaluate our approaches on other CPS domains, e.g., avionics, com-
munications, and medical systems. Moreover, we believe our approach is not tied to Simulink.
Other system modeling notations can also be supported by adapting it, e.g., Labview [National
Instruments, 2017].

3. Although we have devised a stand-alone application, SimFL, it is still worthwhile to perform
user studies with engineers to better understand their needs while debugging, so as to provide
additional insights along with the block ranking. This may be particularly interesting for dif-
ferent domains and scenarios based on different practical needs. Furthermore, we believe there
are other effective visualization mechanisms to help engineers debug Simulink models.

4. We also intend to study fault localization for evolving Simulink models. A recent study [Ra-
pos and Cordy, 2016] of industrial Simulink models indicates a strong co-evolution relation
between changes in models and changes in their corresponding test suites. We plan to investi-
gate how such relations can be used to generate test suites that lead to effective Simulink fault
localization, most particularly when models are subject to frequent changes.
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