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Abstract. This paper presents an application of the measurements-based AHP 
to define a two-stage algorithm for product-driven systems control, in case of an 
unexpected event. This algorithm is made of two stages: the first one aims to 
define which kind of strategy the product should adopt (wait¸ react by it self  or 
switch back to centralized mode) while the second one helps to choose the most 
appropriate resource able to fulfill the product requirements. The methodology 
is detailed on a simple case study. 
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1 Introduction  

PDS (Product Driven Systems) can provide reactive solutions to unexpected events 
and significantly improve robustness and adaptation of local decisions on the shop 
floors. The products processed by a PDS are considered as intelligent in the sense of 
[1], i.e “linked to information and rules governing the way [they are] intended to be 
made, stored or transported and capable to support or influence these operations” (for 
more information about intelligent products, the reader is advised to read the compre-
hensive review made by [2]). Products can thus make real-time decision in unex-
pected situations according to production status. [3] suggested that performance of 
product-driven control depends highly on the nature of the local decisions. Indeed, 
when nothing happens, the initial production plan is followed, while products stay 
silent. However, in case of unexpected events (in this paper, resource breakdowns), 
the product has only 3 choices:  

─ Wait and do nothing: the product waits and does nothing until the resource is re-
paired; 

─ React by itself (distributed mode): the product tackles the emergency by itself; 
─ Switch back to centralized mode: the product switches back to the centralized con-

trol to ask the higher level to globally optimize the re-scheduling. 



It is thus vital, at first, to be able to correctly select and switch from a strategy to an-
other when appropriate. The product thus executes the following two-stage algorithm: 
1) Stage 1 : Select the strategy to use (wait, react by itself or ask for help); 
2) Stage 2 [only  in the “react by itself” strategy]: 

a) Evaluate and rank the resources than could respond to its needs; 
b) Select the most appropriate alternative among the ordered list of resources, 

using consensus strategy or negotiation protocols with other prod-
ucts/resources.  
 

This two-stage algorithm is the subject of this paper. However, in this paper, the point 
2b) – resource selection – is not detailed. 
The problem of strategy switching (stage 1 of the algorithm) is addressed in [4], 
where a complete solution dedicated for mixed planning and scheduling is described.  
Under an unexpected event, they consider three different strategies: hierarchical (cen-
tralized) strategy, negotiated heterarchical (decentralized) strategy and non-negotiated 
heterarchical strategy. In their experiments, they compare the performances of each 
strategy on the makespan for a particular FMS platform, and conclude that the second 
strategy is the best for this system.  
The problem of resource evaluation and selection (stage 2 of the algorithm) has been 
treated extensively via several theories and methods (goal programming, stochastic 
approaches, …). One interesting way to handle this problem is to employ Multi-
Criteria Decision Making (MCDM) algorithms [4]. [6] argue that MCDM algorithms 
suit well to production activity control because they are interfaced with the human 
operator and can handle conflicting objectives that can arise in task reallocation (such 
as minimizing the lead time vs. the production costs). They can also support qualita-
tive and quantitative criteria. [6] use indicators related to 3 criteria (Lead Time, Quali-
ty and Cost) and 7 indicators (like Running Time, Move Time, Setup Time, …) to 
evaluate resource via the ELECTRE method [7] defines the concept of ‘potential’ 
associated with a resource-machine as the basis for reassignment of tasks in case of 
breakdowns. This potential is a value between 0 and 1, evaluated by means of three 
criteria (Time, Cost and Reliability). Each criterion comprises a certain number of 
indicators (among them, Upstream Storage Cost or Reliability). In the present work, 
the Analytic Hierarchy Process (AHP) [8] is chosen as a MCDM technique. This 
choice is based on the simplicity and flexibility of AHP among multi-criteria decision 
making (MCDM) techniques. Indeed, AHP allows to rank a set of alternatives, here 
the finite set of resources, via the use pairwise comparisons matrices (see section 2 for 
further explanations). Each alternative receives a ‘potential’ value (or weight). The 
‘potential’ concept is closed to the concept of ‘potential field’ used for prod-
uct/resource interaction, for dynamic product routing and task allocation in FMS 
[9,9]. When arriving at a location d, the product uses the value of each resource po-
tential field to select the resource the most suitable from its situation.  
From this short state-of-the-art, some remarks can be done: 1) Even if the perfor-
mances of the different execution strategies have been studied, the question of when 
switching from a strategy to another one is still an issue 2) Resource evaluation is 
related to the production context (location of the product, required operation, resource 



queue at time t, machine states, …). This very specific choice should be based on 
human knowledge, which makes MCDM techniques the most suitable ones because 
they are flexible, capable of handling a wide range of information, and overall inter-
faced with the human operator. In this regard, AHP, via its hierarchical structure, 
seems to be a very convenient alternative. However, it needs some adaptation to be 
able to handle dynamic data originating from the shop floor. 
The rest of this document is organized in 3 sections. Section 2 introduces the mathe-
matical background, needed to structure the different stages of the methodology. The 
AHP process as well as its adaptation for PDS are described. Section 3 presents in 
details both stages of the algorithm. Finally, in section 4, an illustration of the pro-
posed algorithm is done on a small case of study. Finally, some conclusions are pro-
vided. 

2 Adaptation of AHP to PDS 

AHP is a simple but cumbersome process, which is time-consuming mainly because 
the pairwise comparisons. Hence, when a breakdown occurs, each product being 
manufactured may need to find an alternative resource, autonomously, which is not 
possible with the classical AHP methodology. The main idea is then to modify the last 
level of the AHP structure, when alternatives are compared to each other, to use 
measurements made on resources. Indeed, all the other levels (criteria and sub-
criteria) are the same for all the products, and supposed to be fixed by the human 
operator before the breakdown occurs (each week for instance). It represents the glob-
al context, which is supposed to be the same for all products. However, the choice of 
alternatives is highly contextual and the preferences of one product may not be similar 
to the ones of another product. As a result, Product preference functions are intro-
duced to transform parameters measured on resource into a preference scale. A prod-
uct preference function is defined for each criterion as in equation 1: 

  (1) 

Where : 
− , the value measured on a resource; 
−  is the corresponding preference value between 0 and 1.  

For each resource Ai, a preference value pi is obtained, corresponding to the prefer-
ence for a given criterion for the considered product. This value is then used to 
build the pairwise comparison matrix (PCM) of the resources as in equation 2: 

 (2) 



3 Description of the proposed algorithm 

3.1 Stage 1: strategy switching 

From a product’s perspective, the objective of this first stage of the algorithm is to 
determine which actions should be undertaken at time t. In a first attempt, two param-
eters have been considered as relevant for strategy switching, i.e Residual Slack Time 
(RST) and Event Duration (ED). The RST is the difference between the latest possible 
completion time of product production (the date which will not delay the completion 
of the overall command), and the earliest possible completion time. The ED is an 
estimated duration of the event causing the breakdown, given by the human operator 
when the breakdown is detected. It can change over time. Figure 1 depicts different 
zones depending on the RST and ED: in zone 1 (Wait and do nothing), the RST is high 
and estimated ED low, the ratio RST/ED is far above 1. After recovery, the failed 
resource would still have time to produce the item. In zone 2 (React by itself), the 
ratio RST/ED is approximately 1, meaning the ED is equal to the RST. The product 
can be done on time, but a slight additional problem could result in important delivery 
delays. When the ratio is really under 1, which corresponds to zone 3 (Switch back to 
centralized), the product needs to ask for help. The limits between each zone is clear-
ly an issue, that is solved in this paper via the use of the AHP methodology combined 
with product preference functions. 

 

 Fig. 1. Different strategy domains according to Residual Slack Time and Event Duration 

The proposed AHP structure is presented figure 2 (a). The Goal is to select the most 
appropriate strategy, and this choice is based on two criteria which are: the ratio 
RST/ED (also named Product Ratio) and the ED duration. The different alternatives 
are the candidate strategies (Centralized, Wait, PDS). Two product preference func-
tions are defined for each criterion (figure 2(b)). 

3.2 Second stage: resource evaluation 

In this second stage, the resource evaluation is done via AHP as well. The AHP struc-
ture is shown figure 2(c). Part of the parameters of this structure have been selected 
from the literature. However, to emphasize on the importance of quality and sustaina-
bility, two more criteria machine precision and power consumption have been added 
to the structure. For each parameter, product preference functions are defined and 



presented figure 2(d). For the sake of simplicity, we consider only one type of prod-
uct, hence only one type of preference function has been considered for each criterion 
 

 

Fig. 2. AHP structures & product preference functions 

4 Case study 

In our scenario, a breakdown occurs at time t in the shop floor, composed of intelli-
gent products and resources. Products affected by this breakdown have to decide or 
not to react by themselves or with the help of the centralized control (1st stage of the 
algorithm). To do so, the following values have been assessed by experts: the time 
needed to react autonomously (defined as pds_time) is 10 min, to setup a centralized 
response (defined as centr_time) is 20 min; PDS is ideal when the product ratio is 
equal to 1 (this value is referred to as pr_pds), whereas centralized control is rather to 
be used when the product ratio is near 0 (pr_cent). If the product ratio is equal or 
above 2, the wait strategy should be preferred (value of pr_wait). In our case, the 
product ratio is equal to 1.5 at time t, with a RST of 15min and a assessed ED of 
10min. If an autonomous reaction is required, each concerned product then decides to 
evaluate and select a resource among the 3 available machines. Each of these ma-
chines is supposed to send every 15 minutes the information needed for the 2nd stage 
of the algorithm (as depicted in the extract shown figure 3). The AHP is then 
launched with the information available at time t. The length of our experimentation 



is 480 minutes (8 hours). In this experiment, the product is supposed to require a ma-
chine precision of 5mm, and the tool number 3.  
 

 
Fig. 3. Example of information obtained for machine 1 

4.1 Algorithm 1st stage: Strategy selection.  

As explained earlier, this part of the algorithm uses the AHP structures and the prefer-
ence functions plotted figures 2 (a) & 2(b). In a first step, the weights of the criteria 
are defined. Then, the weights of the alternatives are determined and finally, all these 
are aggregated. 

a) Determination of criteria weights 

The two concerned criteria are RST/ED (or Product ratio – PR ) and ED. The expert 
gives a stronger importance to the criteria Product Ratio than the criteria ED, and 
defines the following 2x2 PDM, which leads to the weights expressed in equation (3): 

  (3) 

b) Determination of the weights of alternatives via product preference functions for 
each criteria 

Then, for each criterion, alternatives’ values are transformed into preference via the 
preference functions shown figure 2(b). As an example, let consider the criteria PR 
(RST/ED). The product ratio at time t is 1.5. By replacing ‘product ratio’ by 1.5, it is 
then possible to use the PR product preference function to compute the preference 
associated with the 3 alternatives which are ‘Wait’, ‘PDS’ and ‘Centralized’. Because 
preferences of ‘PDS’ and ‘Wait’ are equal, both strategies are equally preferred before 
‘Centralized’. Via the use of a 3x3 final level PCM, the weights are determined. The 
same kind of process is done with the criteria ED, by using the values pds_time, 
centr_time and the product preference function associated to ED. 

c) Aggregation and ranking of alternatives 

For a given PR and ED, it is then possible to compute the weights of alternatives and 
rank them. For the example expressed above, the final weights are: wwait=0.25; 
wpds=0.75; wcentr=0. This result means that, for this given situation, the PDS strategy 
should be used.  



4.2 Algorithm 2nd stage: Resource evaluation 

As explained earlier, this second part of the algorithm uses the AHP structure and the 
preference functions detailed figures 3 (c) & 3(d). The steps are similar to the ones of 
the first part of the algorithm.  

a) Determination of criteria weights 

The expert has attributed the same importance to all the criteria of a given level. In-
deed, the computed weights for the 3 criteria of level 1 are all equal to 0.33, the 
weights of the 2 sub-criteria related to the ‘Health State of the machine’ and ‘Machine 
logistics’ are equal to 0.5, and the 4 sub-criteria of ‘Machine cost’ are all equal to 
0.25. 

b) Determination of the weights of alternatives via product preference functions for 
each criteria 

The process is the same than the one described earlier. For each criterion of level 2, 
the corresponding product preference function is used to transform the alternative’s 
value into a preference. The alternative’s values are taken from the data sent by the 
resource itself. Once done for all criteria, the resulting PCM is constituted and 
weights computed. Note that these weights depend on the instant t¸ when the break-
down occurs.  

c) Aggregation and ranking of alternatives 

The aggregation of the different levels allows the computation of the weights of the 
alternatives. As said previously, the weights of each machine are time-dependent, as 
shown in figure 4, plotting the evolution of each alternatives’s weight over the 
480min of our scenario. Obviously, at a certain time, a decision should be done by 
consensus or negotiation between products (step 2b of the algorithm). 

5 Conclusions and future works 

In this paper, a two-stage methodology to handle resource breakdowns has been pre-
sented. The proposed method is based on AHP coupled with product preference func-
tions, that make possible to compute easily and on-the-fly the weights of the different 
alternatives. The theoretical foundations of this work and the tools needed to proceed 
to experimentation has been done, and a first experiment on a very simple scenario 
has been conducted. The future works will consist in first analyzing more precisely 
the results obtained with this scenario and then proceed to tests on a real production 
system like the TRACILOGIS Platform1, based in Epinal, France. 

                                                             
1 For more information, visit http://www.tracilogis.uhp-nancy.fr/ 



 
Fig. 4. Machine evaluation over time 
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