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Abstract—In ultra-dense heterogeneous networks, caching pop-
ular contents at small base stations is considered as an effec-
tive way to reduce latency and redundant data transmission.
Optimization of caching placement/replacement and content
delivering can be computationally heavy, especially for large-
scale networks. The provision of both time-efficient and high-
quality solutions is challenging. Conventional iterative optimiza-
tion methods, either optimal or heuristic, typically require a
large number of iterations to achieve satisfactory performance,
and result in considerable computational delay. This may limit
their applications in practical network operations where online
decisions have to be made. In this paper, we provide a viable
alternative to the conventional methods for caching optimization,
from a deep learning perspective. The idea is to train the
optimization algorithms through a deep neural network (DNN)
in advance, instead of directly applying them in real-time caching
or scheduling. This allows significant complexity reduction in the
delay-sensitive operation phase since the computational burden is
shifted to the DDN training phase. Numerical results demonstrate
that the DNN is of high computational efficiency. By training
the designed DNN over a massive number of instances, the
solution quality of the energy-efficient content delivering can be
progressively approximated to around 90% of the optimum.

Index Terms—Deep neural network, caching, energy optimiza-
tion, user clustering, heterogeneous network.

I. INTRODUCTION

Deploying cache-enabled small base stations (SBSs) in
ultra-dense heterogeneous networks (HetNets) has been con-
sidered as one of the promising solutions to meet the high
performance requirements in the fifth generation (5G) systems
[1]. Caching the files with high popularity to SBSs and directly
serving most of the users’ content requests from the SBSs’
local caches, are beneficial towards reducing latency and net-
work traffic load. In the cache-enabled heterogeneous network,
optimizing caching placement, user association, and content
delivering are the key aspects in performance improvement
[2]-[4]. In [2], the authors applied a primal-dual decompo-
sition and subgradient method to solve a cooperative content
caching placement problem. In [3], the authors formulated a
throughput maximization problem of jointly caching, routing,
and scheduling using linear programming. Then a column
generation algorithm was applied to solve the problem. In
[4], the authors characterized the complexity in solving a
caching placement problem, and developed an approximation
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algorithm to reduce the content server’s load. The majority of
these methods in the literature is either tailored exact algo-
rithms or meticulously designed heuristics. In these iterative
algorithms, performance improvement may typically lead to
higher computational complexity and algorithm running time.

The practical network has to make online decisions in
real-time operations, e.g., content caching, scheduling, and
resource allocation. Then the network scheduler may need to
make a trade-off, that is, tuning down the algorithm complexity
(or apply simple heuristics) to meet strict delay requirements,
e.g., millisecond scheduling period in LTE systems [5]. This
typically degrades the network performance. Thus for practical
operations, it is important to deliver both computational-
efficient and high-quality solutions. Machine learning, as an
emerging approach in the toolset for wireless communications,
has received considerable research attention in recent years
[6]. In addition to conventional heuristics, it provides another
viable choice in developing efficient solutions. In [7], the au-
thors applied a reinforcement learning approach for solving a
classical job scheduling problem. In [8], the authors considered
a Q-learning based method to minimize the total transmission
cost in caching optimization.

In this paper, we aim at minimizing network energy con-
sumption and reducing transmission delay via optimizing
caching placement, user association, and content delivering.
We employ a deep neural network (DNN) to train the optimal
scheduling algorithm through the DNN to make it learn
to optimize in the training phase, such that in the DNN
operation phase, time-efficient and near-optimal solutions can
be obtained in real-time caching optimization. Specifically, the
contributions are summarized below:

o We investigate the energy-efficient caching design by
jointly optimizing caching placement, user association,
and content delivering. We formulate a joint optimiza-
tion problem based on the simple transmission strategy,
mainly to optimize the user association and the file
assignment. Based on these optimized results, we then de-
velop an enhanced content delivering scheme, in order to
optimize the content transmission such that all users can
obtain the requested files in time, and energy consumption
can be reduced. Both problems can be optimally solved
by iterative optimization algorithms which may have high
computational complexity in general.



o Towards real-time network operations, we develop a
learning-based approach to efficiently deliver the solution
for caching optimization. Specifically, we design a DNN
framework to train the optimal algorithms through exten-
sive training. Moreover, we optimize the DNN framework
based on the specific problems’ structure. After the train-
ing phase, the output can be obtained by providing the
required input parameters to the DNN.

o We carry out simulations to demonstrate the promising
performance of the developed deep learning approach.
The trained DNN can provide approximative solutions to
the optimum. The solution quality, i.e., the performance
gap to the optimum, can achieve a satisfactory level after
the training stage. The numerical results also demonstrate
the DNN’s superiority in computational efficiency in its
operation phase over iterative optimization algorithms.

o We investigate the performance scalability from a new
perspective. Compared to the iterative optimization meth-
ods, in our proposed approach, the trade-off between
computational efforts and solution quality has been
shifted from the real-time operation phase to the DNN
training phase, which provides new means to address the
trade-off issue.

II. SYSTEM MODEL

We consider a two-tier heterogeneous network consisting of
an MBS m and N SBSs for serving K mobile users. All the
SBSs are within the service area of the MBS. We denote the
user and the SBS sets as K = {1,...,k,...,K} and N =
{1,...,n,..., N}, respectively. Each SBS n is equipped with
a cache with limited storage capacity C,. There are F =
{1,...,f,..., F} files in the list that can be requested from
K users. We use L; to denote the size (in bits) of file f.

In the cache placement phase, the F' files can be selectively
stored and updated at each cache upon demand. The MBS is
connected to the core network and is always able to serve all
the users’ requested files. If the requested file is not available
in the SBS cache, it can be served directly from the MBS. In
practice, users may prefer to download files from the nearby
SBS’s cache. It may not be wise for some cell-edge users
to download the file from the MBS due to poor channel
conditions. Note that in this work, the files to be stored at
the SBSs and determining which base stations (BSs) to serve
users for transmitting their requested files will be an outcome
of optimization.

In the content delivery phase, one channel with bandwidth
B,, is allocated to SBS n for transmitting data to its asso-
ciated users, and By is the channel bandwidth for the MBS.
Frequency resources are orthogonally allocated among SBSs
and the MBS. We consider two schemes in content delivering,
time division multiple access (TDMA) and user clustering. The
former is conventional. The latter is used to deliver all users’
demand by consuming less energy within a time limit. In the
user clustering scheme, multiple users served by one BS can
be grouped into a set, referring to a cluster [9]. If a cluster
is scheduled, all the users in the cluster will be scheduled in

the same frequency band to transmit data simultaneously. For
example in SBS n, given its associated users in set C,, a
cluster s refers to a group of users, denoted by K. In total
there are 2/~| — 1 possible clusters for SBS n. These clusters
can be selectively and sequentially scheduled in optimization
process to deliver users’ requested data. Let s € S,, be the
index of the sth cluster, where S,, is the set of all candidate
clusters for SBS n. Once a cluster s € S,, is scheduled in
a downlink channel, from SBS n to user k, the signal-to-
interference-plus-noise ratio (SINR) for user & € K; can be
expressed as,

Pnk‘hnk|2
2jerxcy\{ky Prjlhnkl? + 0

where P, is the transmit power of SBS n to user k, and o?
is the power of the noise. The channel coefficient of the link
between SBS 7 and user £ is denoted by h,k. In addition, let
P, be the transmit power of the MBS to user k, and h,,,;; be
the channel coefficient for the link between the MBS and user
k. Both h,,; and h,; are complex Gaussian random variables
with zero mean and unit variance. Note that transmit power
P, for users may not be necessarily uniform, and it can be
predefined according to the channel conditions and subject to
SBS power constraints.

SINR} = (1)

III. PROBLEM FORMULATION

In this section, we consider a joint caching problem for
content placement, user association, and TDMA-based content
delivering. Moreover, according to the outcome of the joint
problem, we develop an enhanced scheme to further optimize
the content transmission strategy. We aim at optimizing the
energy consumption in the network. Next, we formulate the
problems in the following.

A. Joint Energy-Efficient Caching Optimization

Given users’ file demand d; € {0,1} for all £ and f,
the joint optimization problem amounts to determining which
files should be cached in which SBSs, and which SBS should
be chosen to transmit a file to a user. We define two sets of
binary variables below, and formulate the caching optimization
problem in P1.

_J 1 iffile f is placed at SBS n’s cache,
nf =10 otherwise.

. _ | 1 if user k is served by n to transmit file f,
"kf = 0 otherwise.

Objective (2a) is to minimize the total energy. Power pa-
rameters P, are predefined based on channel conditions and
practical power limitations. Parameters 7,5y can be precalcu-
lated based on TDMA, where T,y = Ly/ log2(1+%@lk‘2).
Constraints (2b) confine the storage capacity of each SBS’s
cache. Constraints (2c¢) state that a file can be transmitted to
a user from an SBS only if this SBS has the file in its cache.
In constraints (2d), a file request from a user should be served
by only one BS, either an SBS or an MBS, but a user can be



served by more than one SBS to receive requested files. This
cooperative transmission can be supported by multi-antenna
systems. Constraints (2e) ensure that all users’ file requests
must be satisfied. Constraints (2f) restrict each SBS’ capability
in dealing with users’ file requests, where A7 . is a maximum
number of the files that can be served by SBS n. P1 is a linear
integer programming (ILP) problem. The optimal solution can
be obtained by exact algorithms [10] or relying on the state-of-
the-art solvers. In practice, P1 can be used to identify whether
or not the cached contents and the user association need to be

adjusted or updated upon the varying instances.
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B. Enhanced Energy-Efficient Content Delivering

Solving P1 provides the optimized results of file-SBS place-
ment and user-BS association, but adopting TDMA or other
simple schemes, e.g., schedule all the users to simultaneously
receive files from one SBS, may either lead to high energy
consumption or long transmission duration. Based on the out-
come of P1, we can further perform optimal cluster scheduling
to reduce the transmission delay of TDMA and optimize the
whole network energy consumption. We observe that due to
orthogonal channel assignment among SBSs and the MBS,
once the caching placement and the user association are fixed,
the network-level energy-efficient scheduling problem can be
decomposed to N+1 independent subproblems at the BS level.
Each subprobelm is equivalent to solving the following linear
programming (LP) problem P2 in cell n, where n € NU{m}.

P2: min Z ts Z Pk (3a)
s€S,  keKy
st tology(1+SINR}) > > Ly, Vke K,  (3b)
SES, fe]:nk
Z te <T (3¢)
SES,

The objective is to minimize cell n’s energy in content
delivering such that in constraints (3b), the requested files in
cell n are delivered, and in (3c¢) the total transmission duration
is confined within a time limit 7'. Variable ¢, is the time
duration of using cluster s in content delivering. In constraints
(3b), the associated user set K,, for SBS n and the set F,,,

i.e., the user k’s requested files to be served from SBS n, can
be obtained from solving P1 or predetermined based on new
inputs.

IV. SOLUTION DEVELOPMENT: TRAINING DEEP NEURAL
NETWORKS

In realistic networks, users’ movement, channel conditions,
and their file requests are varying frequently. Thus the devel-
oped optimization models P1 and P2 are expected to be solved
efficiently such that the real-time decision making can be
supported for network operations. Solving the combinatorial
caching optimization problem P1 and the cluster scheduling
problem P2 is in general with high computational complexity
[2], [4], [5]. Although P2 is an LP, the problem’s combinatorial
aspect is exhibited in selection of users to form clusters [11].
To construct a cluster, any scheduler has to make binary
decisions of determining whether or not each user should
be included in a cluster. Moreover, the number of clusters
increases exponentially with the user number K. For the
scenario with large K, selecting optimal clusters among a large
number of 25X — 1 clusters is computational heavy and time
consuming. Thus directly applying conventional iterative opti-
mization algorithms, e.g., Branch-and-Bound algorithm for P1,
Simplex algorithm for P2, or other iterative heuristics for both
problems, may have difficulties to meet the restricted delay
and provide high-quality performance in real-time operations.
To develop time-efficient algorithms for P1 and P2, especially
for P2 due to its more stringent delay requirement in real-time
online scheduling, we design a learning-based solution based
on training DNNs.

We take P2 as an example in presenting the designed
DNN. Ideally, we expect to train the DNN as a black-box
algorithm that essentially works as a mapping from a problem
instance to its corresponding optimal solution. However, doing
so is impractical as the combinatorial nature of P2 poses
high complexity in function approximation. This results in
challenges to guarantee the optimality of the estimated so-
lution. For instance, two solutions that only differ slightly in
element values may lead to dramatically large gap on their
corresponding objective values in P2. Though it is hard to
directly use the DNN to precisely generate exact solutions for
P2, it helps to identify the pattern of user channel conditions
in relationship of optimal clustering strategies. The basic idea
is to use DNN to predict the users that are most promising
in terms of clustering in the optimal solution, according to
the channel conditions and demands. In general, the DNN
optimization procedure is divided into two phases, i.e., training
and operation phases. During the training phase, the DNN is
trained by data sets consisting of the parameters of P2 as the
input, and the users participating in clustering in the optimal
solution obtained by the solver as the desired output. With
sufficient training, the DNN is able to accurately recognize
the status of user clustering in the optimal solution. In this
way, a considerably large amount of users are excluded, which
significantly reduces the searching space of the optimization
problem. Theoretically, as long as DNN can achieve precise



estimation, we can convert a large-scale instance of P2 to a
much smaller one, without loss of optimality.

We design a DNN for P2 with an encoder for data regular-
ization, and a hidden layer with a large number of nodes to
further learn the input-output relations. One can see in Figure 1
for an illustrative structure. We adopt the resilient back-
propagation (RProp) algorithm as the learning heuristic for
supervised learning in the DNN training [6]. After training,
given a new input to the well-trained DNN in the operation
phase, an approximated solution can be efficiently obtained
after simple operations via the DNN [6]. Specifically, the
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Figure 1. DNN structure.

DNN has an encoding layer, which consists of 2|/C,,| nodes.
After encoding, 100 nodes are configured in the hidden layer.
The number of inputs are 2|/C,|, consisting of |KC,| users’
channel coefficients |hnk|2, k € K,, and the users’ requested
data amount } .. L¢, k € K, in cell n. The number of
output nodes are |K,,|. After processing, the network gives a
|IC.|-dimension binary vector g = [u1, pto, ..., 1K, ]| as the
output. Each element p indicates that whether or not user
k participates in clustering scheduling. If user £ is clustered,
then puy is expected to be one, otherwise user k is scheduled
by TDMA transmission with the output i = 0. The output of
the DNN is a real-valued vector. We compute the mean value
M for the vector’s elements. Then, any element that is larger
than pM (0 < p) is set to one in its corresponding position
of p and is set to zero otherwise. The parameter p controls
the number of positive elements in . The larger value the
parameter p has, the fewer elements are set to be positive in
p. The training data is generated by solving the optimization
problem for |KC,,| users in each cell n. We extract the data
samples in which there exists at least two users participating
in clustering. In addition, all data samples used for training
are chosen to be feasible for P2. We refer to the union of the
sets used for DNN training, testing and validation as training
set [6]. The data set is generated by solving the optimization
problem P2 for |K,| users in each cell.

V. PERFORMANCE EVALUATION

We evaluate the performance of the developed DNN-based
approach, in terms of computational time in DNN operation

phase, performance gap between the DNN and the optimum,
and training time in DNN training phase. In the network, 5
SBSs are deployed in the MBS’s coverage area. For each SBS
or the MBS, up to 20 users are connected. The network oper-
ates at 2 GHz. We use the COST-231-HATA path loss model,
with the shadowing follows a Log-normal distribution with
3 dB standard deviation, and Rayleigh fading is considered.
The parameter settings for the DNN structure are summarized
in Table I. For illustration, we use a DNN based on || = 15
in a cell to demonstrate the performance.

Table 1
DNN SETTINGS

Parameter Value
Input nodes 2|Kn|
Encoder nodes 2|Kn|
Hidden layer nodes 100
Output nodes |Knl
Learning algorithm  RProp [6]

A. Comparison in Computational Time

We compare the CPU time (second) in computations be-
tween the DNN and the optimal algorithm. The results are
shown in Table II. In terms of the optimization algorithm,
we optimally solve P2 by applying the LP solver in Matlab,
where the simplex algorithm or the interior-point algorithm
is adopted. For a fair comparison, we evaluate the the DNN’s
running time per instance in Matlab, and also train the DNN in
Matlab as well. The average computational time of the DNN

Table II
CPU TIME IN COMPUTATION

Case DNN  Optimal Algorithm
10 users 0.03 0.11
15 users  0.035 0.65
20 users 0.05 197

per instance in its operation phase can be significantly reduced
compared to directly applying the optimization algorithm. The
CPU time of the optimal algorithm exponentially increases
with the number of users, whereas the DNN is insensitive to
the input size, and is able to deliver output efficiently.

B. Performance of the DNN in approximating to the optimum

Figure 2 shows the performance of the DNN in approaching
to the optimum in respect of the size of the training set. We use
a metric called “optimality rate” to measure to what extend we
can keep the optimality of the solution obtained with DNN.
For example, the value of “0.8” in the y-axis means that the
solutions obtained by the DNN are with 80% probability to
be global optimal. For performance evaluation in Figure 2,
two sets are respectively used for computing the optimality
rate, i.e., the set that we used for training the DNN, and the
whole data set (with 42000 data points in total). The size
of the training set ranges from 100 to 10000. In Figure 2,
the optimal size for training is around 2000, leading to the
highest optimality rate around 98% As expected, when the
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Figure 2. Optimality in function of training set size.

size of the training set is small, one cannot expect a high-
quality approximation performance. In other words, the DNN
is unable to learn the optimization process without being
trained with sufficient data samples. In Figure 2, we observe
that with a small training set (i.e. hundreds of samples), the
DNN can achieve an optimality rate above 70% on the total
set. Furthermore, in Figure 2 if we compare the objective value
between the DNN and the optimal algorithm, in average the
DNN can achieve 90% approximation to the optimum.

C. Training Time

This subsection evaluates the required the DNN training
time with respect to the training set size. As shown by
Figure 3, computationally, the training time is linearly scalable
with the training set size. On the other hand, the training time
may not monotonically increase with the size of the training
set. The training set includes the set used for validation during
the training process. Thus, by enlarging the set, the validation
set is enlarged as well. This may cause the training process
to terminate than before. Recall that in Figure 2 the training
set with size 2000 leads to the highest optimality rate. One
can observe in Figure 3 that the training process is completed
around 10 seconds with the set size 2000. Even with 10000
samples in the set, the training can be finished within 1 minute.

VI. CONCLUSIONS

We considered energy optimization in a cache-enabled het-
erogeneous network. We formulated optimization problems of
caching placement, user association, and content delivering
in order to improve the network performance. Aiming at
addressing the issue of computational efficiency in real-time
network operations, we considered a learning-based approach,
and designed a DNN to train the iterative algorithms, such
that time-efficient and near-optimal solutions can be obtained.
Numerical results demonstrate that the well-trained DNN can
progressively achieve around 90% approximation to the opti-
mum, and with promising performance in supporting online
optimization.
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Figure 3. Training time in function of the training set size.
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