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Abstract

Belief change and non-monotonic reasoning are
usually viewed as two sides of the same coin,
with results showing that one can formally be de-
fined in terms of the other. In this paper we
show that we can also integrate the two formalisms
by studying belief change within a (preferential)
non-monotonic framework. This integration relies
heavily on the identification of the monotonic core
of a non-monotonic framework. We consider belief
change operators in a non-monotonic propositional
setting with a view towards preserving consistency.
These results can also be applied to the preser-
vation of coherence—an important notion within
the field of logic-based ontologies. We show that
the standard AGM approach to belief change can
be adapted to a preferential non-monotonic frame-
work, with the definition of expansion, contraction,
and revision operators, and corresponding repre-
sentation results. Surprisingly, preferential AGM
belief change, as defined here, can be obtained in
terms of classical AGM belief change.

1 Introduction

Both belief change and non-monotonic reasoning frameworks
provide mechanisms for dealing with conflicting information.
For example, suppose I know that vertebrate red blood cells
have a nucleus (v — n), that mammalian red blood cells are
vertebrate red blood cells (m — wv), but that mammalian red
blood cells don’t have a nucleus (m — —n). The existence of
mammalian red blood cells (m) then renders my knowledge
base inconsistent. Belief change operators modify the exist-
ing knowledge base to make it consistent again, while non-
monotonic reasoning typically resolves the issue by introduc-
ing a notion of defeasibility—for example, by being able to
state that vertebrate red blood cells usually have a nucleus.
In this paper our aim is to integrate the two frameworks
by studying belief change in a non-monotonic setting. This
approach has not received much attention thus far, mostly for
two reasons. Firstly, the standard approaches to belief change
usually assume an underlying Tarskian consequence relation
which is explicitly monotonic [Alchourrén et al., 1985]. Sec-
ondly, at a first glance belief change seems to be superfluous
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in non-monotonic settings—a revision operator can simply
be replaced with expansion, with the non-monotonic machin-
ery then ensuring consistency of some kind. What this sim-
plistic view does not take into account is that non-monotonic
frameworks contain a mix of defeasible and classical (non-
defeasible) information. In our example above, for instance,
the statement that mammalian red blood cells are vertebrate
red blood cells should probably not be defeasible, while the
statement about vertebrate red blood cells having a nucleus
probably should be. The challenge thus becomes one of defin-
ing belief change for the monotonic part of the formalism,
while simultaneously ensuring that the non-monotonic part
remains well-behaved.

In addition to consistency preservation we also consider
belief change for the preservation of a restricted version of
coherence, as it is intended in the field of logic-based on-
tologies, that is, that every class that has been introduced in
the language can in principle be populated [Qi and Hunter,
2007]. In our example above the (non-defeasible) statements
{v > n,m —> v;m — —n} cause the knowledge base to
be incoherent w.r.t. m (there cannot be any mammalian red
blood cells), but the knowledge base only becomes inconsis-
tent when m is added. For our purposes here it is sufficient
to note that, in a propositional setting, the incoherence of a
knowledge base w.r.t. an atom (or any propositional formula
A, for that matter), corresponds to the statement —A being a
consequence of our knowledge base.

We focus on belief change in the preferential approach to
non-monotonic reasoning developed by Kraus, Lehmann and
Magidor [1990] in which defeasible conditionals of the form
C' |~ D are added to the language of propositional logic (with
C' and D being classical propositional formulas). In this en-
riched language the information about vertebrate blood cells
usually having a nucleus could be expressed as v |~ n.

In Section 2 we briefly summarise the AGM framework
and preferential reasoning. Section 3 describes the non-
monotonic framework we consider and introduces the notion
of a monotonic core. Section 4 analyses a contraction oper-
ator and two revision operators for the monotonic core. Sec-
tion 5 investigates the connections between contraction of the
monotonic core and classical propositional contraction. Sec-
tion 6 analyses two revision operators for non-monotonic en-
tailment. Section 7 is the concluding section.
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2 Background

We consider a finitely generated propositional language L
with lower case letters denoting atoms, and capital letters de-
noting elements of £. We adopt the standard semantics for
propositional logic. The set V of valuations v are functions
from the set of atoms in £ to {0, 1} denoting truth and falsity.
Satisfaction is denoted by |-, and entailment by .

AGM Belief Change. AGM belief change assumes an un-
derlying logic with a propositional language and a Tarskian
entailment relation Cn that is compact and satisfies disjunc-
tion in the premises ([Alchourrén et al., 1985], p.511-512). A
knowledge base K is assumed to be a set of formulas closed
under entailment. AGM is concerned with three types of op-
erators: expansion, contraction, and revision. Expansion is
simply defined as adding a formula and closing under entail-
ment: K+ A = Cn(K U {A4}). The intuition associated with
the contraction of K by A is that it should result in a knowl-
edge base K — A in which A is not entailed. Dually, a revi-
sion of K by A should result in a consistent knowledge base
K % A in which A is entailed. Formally, AGM contraction is
required to satisfy the following basic postulates:

(—1) K = Cn(K}) (- closure)
(—2) K, < K(— inclusion)

(—3) If A ¢ K, then K, = K (— vacuity)

(—4) If £ A, then A ¢ K, (— success)

(—5) If A= Bthen K, = K (— extensionality)
(—6) K< (K3)4 (— recovery)

AGM contraction operators can be constructed using so-
called partial meet functions ([Alchourrén et al., 1985], Ob-
servation 2.5). Let K| A be the remainder set, containing the
maximal subsets K’ of K s.t. A ¢ K’. Thatis, K" € K|A
iff (i) K" < K, (ii) A ¢ K’, and (iii) there is no set K” s.t.
K'c K” 2 Kand A ¢ K”. Let pm be a partial meet function
defined over K| A s.t. pm(K|A) € K|A and if K| A # (&,
then pm (K| A) # . A partial meet contraction operator —
is defined as: K, = (| pm(K|A).

Theorem 1 [Alchourrdn et al., 1985] A contraction operator
is an AGM contraction operator (satisfying (—1)-(—6)) iff it
is a partial meet operator.

)
)
)
)

Similarly, AGM revision is required to satisfy the following
postulates:

(1) K% = Cn(K¥%) (x closure)

x2) K% < KY (x inclusion)

x3) If =A ¢ K then K € K, < K¥ (* vacuity)
x4) A € K¥ (x success)

x5) If A= B then K% = K} (* extensionality)
%6) If A# | then K% £ L (* consistency)

It is well-known that revision can be defined in terms of con-
traction and expansion via the Levi Identity [Levi, 1977] :
KA = (K24 k-

Theorem 2 [Alchourrén et al., 1985] Revision defined in
terms of a contraction operator — via the Levi Identity is an
AGM revision operator iff — is an AGM contraction operator.

(
(
(
(
(
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Intuitively the Levi Identity states that, to revise a knowledge
base with A, we first contract with its negation, thereby “mak-
ing room” for A, and then simply expand with A.

Preferential Entailment. To introduce defeasibility we
consider the language £ consisting of defeasible condition-
als of the form A |~ B (for A,B € L), that are read as
“Typically, if A then B’. The semantics of £/ is based
on the notion of a preferential interpretation: triples of the
form (W,l, <) where W is a set of objects (states), | is
a function from W to V (mapping states into valuations),
and < is a strict partial ordering on W [Kraus et al., 1990].
w < v is interpreted as indicating that the state w represents
a more typical situation than the state v. For A € L, we let
[A]" = {w e W | l(w) - A}. A defeasible conditional
A |~ B is satisfied in a preferential interpretation P, denoted
as P |- A |~ B, iff min.[A]" < [B]". Observe that
a propositional formula A is satisfied in all the elements of
W (e., l(w) I+ A for every w € W) iff P | —A |~ L.
This means that any classical propositional formula A can be
represented as the defeasible conditional —A |~ L. Indeed
every conditional of the form A |~ L is not defeasible, and
actually represents classical propositional information. E.g.,
the statement that vertebrate red blood cells have a nucleus
(v — n) will be represented as —(v — n) |~ L. Because of
this we sometimes abuse notation by referring to —A |~ L as
the propositional formula A.

Let B indicate a finite set of defeasible conditionals. The
set of preferential models of BB, preferential interpretations
satisfying B, is denoted by [[B]]. The obvious notion of
Tarskian entailment associated with this semantics is known
as preferential entailment [Lehmann and Magidor, 1992],
represented as k=, where B =, A~ Biff [[B]] < [[{A |~
B}]]. The closure operator associated with preferential en-
tailment is known as preferential closure: P(B) = {A |~ B |
B £, A |~ B}. We use the notation K, K’ etc. to refer to
conditional knowledge bases closed under preferential entail-
ment. B is preferentially inconsistent iff B =, T |~ L, and
B is preferentially incoherent w.r.t. a propositional formula A
iff B =, A~ L. Two bases are preferentially equivalent iff
they have the same preferential models.

In what follows below, the notion of exceptionality and the
rank of a formula (and a defeasible conditional) is important
([Lehmann and Magidor, 1992], Section 2.6). A € L is said
to be exceptional w.rt. Biff B =, T |~ —A (that is, in ev-
ery model of B A is falsified in all the most typical states),
and A | B € L is said to be exceptional w.r.t. B iff A is
exceptional w.r.t. 5. We make use of exceptionality to pro-
vide a notion of rank for defeasible conditionals. £§ = B
and fori > 0,8 = {AhBe &8, | AR~ Bis
exceptional w.r.t. £ |}. There is a smallest integer, say n,
such that E5 = €5 | (it may be the case that E5 = ).
The rank of A € L w.r.t. B, denoted as rg(A), is the small-
est integer k for which A is not exceptional w.r.t. EZ. If A
is exceptional w.r.t. E5 for all i, then r5(A) = oo. The
rank of a defeasible conditional A |~ B w.r.t. BB, denoted
as rg(A |~ B), is equal to r3(A). Intuitively, the rank of
a defeasible conditional provides an indication of the extent
to which we would be willing to override it: the lower the
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rank, the more likely we are to discard it. Conditionals with
rank oo will never be overridden and can thus be viewed as
classical assertions w.r.t. B. For ¢ € {0,...,n — 1,00} we
let BB = {A~BeB | rg(A | B) = i}, and we
let B<® = B\B®. From a computational perspective, it is
useful to note that exceptionality checking can be reduced to
classical propositional reasoning. The materialisation B of
B is defined as follows: B = {A —» B | A B € B}.
It is known that exceptionality w.r.t. B (B =p. T |~ —A)

can be reduced to checking whether B = -4 ([Lehmann
and Magidor, 1992], Section 5.8). In particular, B® is the

biggest subset of Bs.t. B® = {A|~ Be B | B® —A},

and, for every A € £, A |~ L € P(B) iff B® £ —A. All
the notions defined above for conditional bases 5 also apply
to every knowledge base with the property of having a well-
founded model. Base-generated knowledge bases have such
a property ([Lehmann and Magidor, 1992], Lemma 2.24); it
can be proved that the operators defined here preserve it as
well.

3 The Monotonic Core

It is widely recognised that preferential entailment is too
weak to be an appropriate form of entailment for a non-
monotonic framework ([Kraus er al., 1990], pp. 4,34). This
is primarily because the preferential entailment relation itself
is monotonic (non-monotonicity occurs on the object-level,
within defeasible conditionals). At the same time there is suf-
ficient consensus that any acceptable form of non-monotonic
entailment will be an extension of preferential entailment
[Kraus et al., 1990; Lehmann and Magidor, 1992]. Our fi-
nal focus in this paper is on such an extended set of non-
monotonic entailment relations. Below we make this idea
more precise by defining the class of supra-preferential cu-
mulative entailment relations.

Consider a closure operator C, which is defined as fol-
lows: A |~ B € C(B) iff P I A |~ B for every preferen-
tial model P € ¢(B), where ¢ is a choice function s.t. (i)
c(B) < [[B]]. Gi) if [[B]] # & then ¢(B) # &, and (iii)
¢(B) = c(c(B)). The closure operators definable using such
choice functions are the ones that extend preferential closure
and respect consistency preservation (if T |~ L ¢ P(B),
then T |~ L ¢ C(B)), and we will indicate them as supra-
classical. We also require cumulativity: for every B,5', if
B < B < C(B), then C(B') = C(B). This is captured by
a choice function c as follows: if ¢(B) < [[B']] < [[B]]
then ¢(B’) = ¢(B). We refer to the closure operators satis-
fying these properties as spc-operators (as supra-preferential
cumulative). Most of the prominent non-monotonic closure
operators proposed in the preferential framework (e.g. [Kraus
et al., 1990; Lehmann and Magidor, 1992; Lehmann, 1995;
Casini and Straccia, 2013]) are spc-operators. Our goal is to
analyse belief change for the class of spc-operators.

As mentioned in Section 1, belief change in a non-
monotonic framework seems superfluous at a first glance,
since the non-monotonic machinery usually takes care of
‘readjusting’ the inferences in order to preserve consistency
and coherence facing new unexpected evidence. But that’s
not always the case. Let’s look at some examples.
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Example 1 Consider the example about the red blood cells,
but adding the information that avian red blood cells are ver-
tebrate red blood cells (a — v). Let our base contain the
conditional counterpart of the classical formalisation. le.,
B={-(v->nhl—-(m->uvhkl-(m->-n)k
1, =(a — v) |~ L}. Consider the following situations:

1. m~ Lis in C(B). But mammalian red blood cells exist,
and we want to enforce such information. In propositional
belief change we would remove some piece of information,
presumably either m — v, v — n, or m — —n. In the
framework we propose we can resolve the situation by intro-
ducing defeasibility. Contracting m |~ L from B we would
like to end up, for example, with B = {v |~ n, —(m — v) |~
1,—~(m — —n) |~ L, —(a > v) |~ L} in which, instead of
eliminating —(v — n) |~ L, we have just made it defeasible.

2. If C is a well-behaved non-monotonic closure operator,
we should have a |~ n € C(B'), since, with the information we
have, we can treat avian cells as typical vertebrate cells. Now
assume we are informed that a |~ —n: B" = {v|~n,—(m —
v) L, —~(m — —n) |~ L, —(a > v) |~ L a|~—n}. Inthis
case, since a |~ n is a presumptive conclusion made by the
non-monotony machinery, the entailment relation itself will
take care of eliminating such a conclusion once faced with
conflicting evidence. In such a case we want the introduction
of a |~ —n to correspond to a simple expansion.

3. We are then informed that a |~ n actually holds, infor-
mation that directly conflicts with a |~ —n in our base. This
kind of conflict cannot be managed by the non-monotonic ma-
chinery, since a |~ —n is a (trivial) necessary conclusion from
B”. So, we would be forced to conclude that avian red blood
cell do not exist (a |~ L). We have two choices: either we are
interested just in general consistency (not deriving T |~ L),
and in such a case the addition of a |~ n is just an expansion
and we conclude that birds do not have red blood cells. Or we
perform a revision in order to ‘make room’ for a |~ n without
being forced to conclude a |~ L.

As shown in the examples, in order to preserve consistency
and coherence we need to distinguish between what follows
necessarily from the information at our disposal and what the
inference operator concludes ‘presumptively’. That is, we
need to identify the monotonic part of our reasoning and oper-
ate only on it, while for the non-monotonic part the entailment
relation should automatically take care of the appropriate ad-
justments. A closure operator C! is called the monotonic core
of a non-monotonic operator C if, for every B, B, (i) B < B’
implies Cl(B) < CIl(B'); (i) Cl(B) < C(B); (iii) for every
closure operator C!’ satisfying (i) and (ii), C'(B) < CIl(B).
Given a non-monotonic entailment relation, the existence of
a monotonic core needs to be proved.

Proposition 1 The monotonic core of a supra-preferential
closure operator is the preferential closure P.

Proof: (Sketch). Assume that for some A |~ B €
C(B)\P(B) there is a monotonic C’ contained in C s.t. A |~
B € C'(B), and obtain a contradiction. O

Hence, the monotonic core of the class of spc-operators is
the preferential closure.
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4 Preferential Belief Change

In this section we start our investigation with a study of be-
lief change for the monotonic core of spc-operators—that
is, belief change for preferential entailment. We apply an
AGM-like approach to the preferential closure K of defea-
sible knowledge bases B. Expansion is then defined as:
ICX‘ 5 = P(K U {A|~ B}). The postulates for contraction

are as follows (where =p refers to preferential equivalence):

1 A‘ B = P(/C;|~B) (= closure)
2 A\ 5 € K (= inclusion)
3) If K pr A~ B, then ICA‘ 5 = K (= vacuity)

~4) If -,  A|~ B, then A|~ B ¢ /CA‘ g (= success)

) K
) K
)
)
) =p A' |~ B', then ICAJN

5) If A~ B
6) K< (K,

A\~B)A\~B (= recovery)

Partial meet functions for preferential entailment are defined
as expected. K’ € (K|A |~ B) iff (i) K' < K, (ii) A |~
B ¢ K', and (iii) there is no K" s.t. K' < K” < K and
A |~ B ¢ K”. Let pm be a partial meet function defined
over (K|A |~ B) s.t. pm(KJA |~ B) € (K|A |~ B) and if
(KIA |~ B) # &, then pm(IC] A |~ B) # . A partial meet
contraction operator - is defined as: ICleB =Npm(K|A|~
B). And as expected, we have a representation result, linking
the postulates and partial meet functions.

(=
(=
(=
(=
(= =K, A (< ext)
(=

Theorem 3 A contraction operator — for preferential entail-
ment satisfies (—1) to (=6) iff it is a partial meet contraction
operator.

The proof of this result is postponed to the end of Section 5.
Turning now to coherence preservation, observe firstly that
this can be attained using preferential contraction. More pre-
cisely, to ensure coherence of I w.r.t. a formula A, we per-
form a contraction of I by A |~ L (see Example 1.1).

Moving to revision, in the present framework we can define
two kinds of revision: one to preserve consistency (adding
A |~ B while avoiding to conclude T |~ 1) and one to pre-
serve coherence (adding A |~ B while avoiding to conclude
A |~ 1, see Example 1.3). Regarding the former, we will
make use of the following result.

Proposition2 K v {A|~B} =, T~ Li
KEep Th—(A— B).

Proof: From left to right, assume that K £, T ~ A A
—B. Then there is a model P s.t. P | T |~ A A —B.
That is, there is a valuation v that is minimal in P s.t. v |
A — B. Let P’ be a model consisting of v only. P’ is a
model of X u {A |~ B}. The other direction comes from
A B =y T A — B ([Kraus et al., 1990], Lemma 19)
and the monotonicity of =y, ]

The postulates for this type of revision are the following:

(o1) ’CA‘NB = P(’CZ‘JNB) (e closure)
(¢2) IC;“NB - /CX‘ _p (¢ inclusion)

(e3) If K U {A|~ B} ¥ T |~ L, then K
(® vacuity)

c K5

A~B =NanB

(ed) Al~Be Ky (@ success)

(e5) If A~ B=p A’ |~ B, then K*

St = Kl (o ext)

(06) If A B &, T |~ L, then

(e
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’C,.4|~B Epr T |~ L (o consistency)
IC.

+) Ky = (

Observe that for revision we require, in addition to the
translation of the standard postulates, the extra postulate
(e+). The reason for the need of this postulate relates to
the result in Proposition 2, plus the fact that A |~ B =,
T |~ A — B. Proposition 2 implies that to “make room” for
A |~ B and preserve consistency we need to “make room”
only for the weaker conditional T |~ A — B

A direct translation of the Levi Identity into the preferential
framework is not possible, since the negation of a conditional
A |~ B cannot be expressed directly. But recall that in clas-
sical AGM, contraction with the negation of A should result
in a knowledge base that is compatible with A. Proposition 2
gives us the right contraction to apply to preserve consistency,
and we rephrase the Levi Identity as follows:

Kon = (

From this we get the following representation result.

K%\~A—>B)A|~B (o vacuity+)

IC'_F\»vA/\ﬁB)A%B 1)

Theorem 4 A revision operator e satisfies the postulates
(e1) — (e6) and (e+) iff it can be defined, via (1), from a
contraction operator satisfying the postulates (~1) — (=6).

Proof: (Sketch). From right to left, it is easy to check that
if + satisfies (=1) — (=6), o satisfies (o1) — (o6), (o).
From left to rlght define K, Anp 3 follows: if = A = T,
then IC = (IC}lw 5 N K) (areformulation of the Harper
Identlty [Harper 1976]); if = A = T, then K, AR

(pm(K|A |~ B) for some choice function pm. We prove
that = generates o: (K3, _p) g = (K54 p 0 K) g
(K$ass 0 K)as (KSasp) s 0 Kip), that
by (e+) is equivalent to (K% 5 N K ), that by (e2) is
equivalent to IC:4|~B' Now we have to check that — satisfies
(=1) — (=6). For # A =T, use Theorem 3. If = A =T,

the only difficulty is to prove (=6): K < (IC;‘ B)T|~B iff

Kc (IC.T|~ﬂB mIC)%NB iff € < ((IC'T‘WB)T‘NB N (IC)Tl p) iff
K< Ky 5 )}rlNB, that holds since T |~ L € (K%,__ 5 )T\~B'

[l

If we want to add a conditional A |~ B preserving not only
consistency but also coherence w.r.t. A, we can model a revi-
sion operator o as

( 2

We characterise such a class of operators with a set of pos-
tulates (o1) — (06) where (o1), (02), (o4), (o5) are the refor-
mulation for o of the corresponding e-postulates, while (03)
and (o6) are:

(03) If K f&p A~ —B, then /CAl 5 S KA\ g (® vacuity)
(06) If A~ B frpr A~ L, then K9 g frpr A~ L (@ coherence)

K = Ky p) s
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If we use a partial meet contraction - in the definition of
o, it is easy to show that we obtain a revision operator that
satisfies (o1) — (06), but in order to characterise such a class
of revision operators, we refer to a more general class of con-
traction operations: those satisfying (=1) — (=5).
Proposition 3 A revision operator o satisfies (o1) — (06) iff
it can be defined, via (2), using a contraction = satisfying
(=1) = (=5).

Proof: (Sketch). If — satisfies (=1) — (=5), it is easy
to check that (o1) — (06) are satisfied. For (06) we need
(=4) and Lemma (1) (see below). Now let o be a revision
operator satisfying (o1) — (06), and define — as ’CZ|~B =
(K%—p N K). First, we have to check that = generates o.

Start with K3 5 = (Koyp 0 ’C)X|~B’ that is equivalent to
= ((K?4|~B)A]~B m,CA]~B) By (02) that’s equivalent to
(’CZ|~B)A]~B’ that by (06), (o4), and (03) is equiva-
lentto K5 = K7 p. Proving that = satisfies (=1)—(=5)
is immediate. O

Contraction operations satisfying (1) — (=5) can be eas-
ily characterised using a choice function that, for the contrac-
tion of A |~ B from [, just pick a subtheory of K that does
not imply A |~ B

A\~B
o —
ICA\~B =

5 A Reduction to Classical Contraction

In this section we investigate the option of defining contrac-
tion for preferential entailment in terms of classical propo-
sitional contraction. As we shall see, it turns out that (7)
there is an intuitive way for doing so and (i¢) perhaps sur-
prisingly, there is a precise correspondence between classical
AGM contraction and preferential AGM contraction. To do
so, we’ll make use of the following result.

Lemma 1 ([Lehmann and Magidor, 1992], Corollary 2.9)
KiEepr ARBIfKU{A~—B} E, AL

Recall from Section 2 that a knowledge base K is partitioned
into ranks K' for i € {0,...,n — 1,00}. It is not hard to
prove that the entailment of formulas of the form A |~ L is
determined solely by the conditionals of infinite rank.

Lemma2 K=, A LifK® =) AL
For brevity, we use K’ to denote K U {A |~ =B}, K _

to denote K'® n K (that is, the set of conditionals in C that
have infinite rank in K), while 5% Wp = K\Kﬁm 5 (the

conditionals in K that do not have infinite rank in K’). Then
we get from Lemmas 1 and 2 that K =, A~ Biff K'® =,
A~ L. Also, if K' =y, A |~ L it must hold that A |~ —B €
K'®. Therefore K'* = K3 __ 5 {A|~—B} and

K e, A Biff ICfle Epr A~ B 3)
So, to obtain a preferential partial meet contraction operator
w.r.t. the contraction of A |~ B we only consider ICXW B
leaving C5% A-B untouched, as Propositions 4 and 5 imply.

Proposition 4 I[fK* € (K| A~ B), then K372 p < K*.

Proof: (Sketch). If Kj‘ﬁB ¢ K* € Kand £* ¥, A |~
B, then, by (3), £* U KZ‘ﬁB pr A~ B O

933

MLeO\)/er, since K'® =, AL iffW E —A, and W =
K5 v {A — —B}, we obtain
Kb ARBit K,
We can conclude the following.
Proposition 5 C* € (KC|(A |~ B)) iff it is a maximal set s.t.
K3l p € K* € Kand KN\KCZZ € (K pl(A — B)).

Proof: (Sketch). From (4) we have, for £* C IC,
K* Wpr A~ Biff C\CZZ p # A — B. Together with
the definition of a remainder set and Proposition 4 this proves
the proposition. O
Given a classical propositional contractor operator —, we
can now justify the following definition of preferential con-
traction in terms of —:

_pEA—B. @)

Definition 1 K:1|~B =K3lp v
{CrDeKj plC—DeCn(Ky p)a.p}
The following is the main result of this section.

Theorem 5 — is a partial meet preferential contraction iff it
can be defined, in terms of Definition 1, using a partial meet
propositional contraction —.

Proof: (Sketch). 1t is easily derivable from Proposition
5. For one direction let — be defined as (|pm(K|A |~ B)
for some pm, and then introduce a propositional choice func-
tion pm/ as pm/(K3__plA — B) == {K*\K3Z 5 | K* €
pm(K|A |~ B)} to define —. For the other direction let —

be defined using a function pm’ and use pm(KC| A |~ B)
{/C<°°BU{C|~DEICZ°‘WB|C—>DeA}|.Ae

pm (IC An—plA — B)} to define - ]

Theorem 5 shows that there is a precise correspondence be-
tween classical AGM contraction and preferential AGM con-
traction: the latter can be determined using the former, pre-
ceded by the ranking process described in Section 2.

We conclude this section with a proof of Theorem 3 in Sec-
tion 5, made easy by the availability of Theorem 5.
Proof of Theorem 3: (Sketch). From left to right it is suffi-
cient to check that every postulate is satisfied. (—1) — (=5)
are easy. (—6) comes easily from Theorem 5 and (—6). From
right to left, from IC2|~B define a partial meet function pm as
K* e pm(K|A|~ B)iff K* € (K| A~ B) and IC;“ 5 S K*.
We need to prove that ICA‘ 5 = [1pm(K| A~ B). Itis prov-
able defining a propositional partial meet function pm’ over
(K%-plA — B) as in the proof of Theorem 5, then defin-
ing from it a partial meet propositional contraction —, and
then showing that — can be defined using — in Definition 1.
By Theorem 5, — is a partial meet preferential contraction. []

Note that, applying any partial meet operator in Example
1.1 to contract m |~ L, we preserve the conditional v |~ n,
since it does not have an infinite rank.

6 Revision w.r.t. Non-monotonic Closure

In the previous sections we investigated belief change for the
monotonic core of the (non-monotonic) spc-operators. Here
we build on those results to venture into the area of belief
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change for the spc-operators. So consider an spc-operator C.
As in the previous sections, our focus will be on operators for
closed knowledge bases—closed under C in this case. We use
K to refer to knowledge bases closed under C. Since revision
for C will be defined in terms of its monotonic core, we need
to distinguish between K and its monotonic core. We refer to
the latter as X”. Here are the postulates for revision w.r.t. C:

(*1) ICZ~B = C(’C:]~B) (* closure)
(+2) 3K’ st C(K') = C(K¥% ) and K' < (KP) 75

(= generator inclusion)
(#3) I (KP)3p Foor T~ L then C((KT) 4 ) € Ky
(* vacuity)

(¥4) A~ B e K% g (+ success)
(¥5) fAB =p A"~ B’ then K} = K% g (* extensional.)
(#6) If A~ B fpr T L, then K4 g e T~ L (x consistency)

The only postulate that needs some explanation is (#2).

Given that C is non-monotonic , standard inclusion (lCi‘NB c

C((ICP)ENB)) is not applicable. What (%2) conveys is that
it should be possible to generate the non-monotonic closure
’CZ\~B from the C-closure of a set of conditionals X’ that is a

subset of (K¥), s+ our revision on the non-monotonic level

should be generated by a revision in the monotonic core.
As Theorem 6 shows, the revision for C can be defined in
terms of the revision of the monotonic core.

Theorem 6 = is a revision operator satisfying (x1) — (%6)
iff there is a preferential revision e satisfying (1) — (6) s.1.

’CZ\~B = C((’CP),’4|~B)-

Proof: From right to left it is easily provable. In the other
direction, define o as (ICP);“NB = (’Cj\]~B N (ICP)Z|~B). We
need to prove that K%, = C((K”)% p). CU(K7)%y ) =
C(Kp 0 (ICP)X|~B) and, by (#2), there is a K’ s.t. Kip =
C(C(K") m (ICP)ZINB) and K' < (ICP)I‘NB. Hence we have
that ' < (C(K') n (ICP)XINB) c C(K'), and, C being cumu-
lative, we obtain that C((C(K') n (ICP)X‘NB)) = C(K’) that
in turn equals KZ|~B' Check that e satisfies (e1) — (¢6). [
At the moment we do not have a representation result that
also incorporates the postulate (e+).

We can define revision for coherence preservation in a sim-
ilar way, except that we have to add a constraint to C. That is,
the monotonic part of our information is determined by the
preferential closure: for every A and every K, A~ L € K
iff A |~ L € KP. This property was initially proposed by
Lehmann and Magidor ([1992], Sections 5.4-5.5). It is sat-
isfied by most of the prominent non-monotonic entailment
relations proposed in the preferential framework [Kraus er
al., 1990; Lehmann and Magidor, 1992; Lehmann, 1995;
Casini and Straccia, 2013]. The revision postulates for coher-
ence preservation are (®1), (®2), (®4), and (®5), that are
direct reformulations of ® of (1), (2), (*4), and (%5), and:

(®3) If K £, A~ =B, then C((KP) 5 ) € KF 5
(®-vacuity)

(®6) If A~ B J=pr A~ L then IC%NB Hc Al~ L (®-coherence)

We obtain the analogous of Th. 6 for coherence preservation.
Theorem 7 ® is a revision operator satisfying (®1) — (®6)
iff there is a preferential revision o satisfying (o1) — (06) s.t.
KE s = C(KP)o0p).

Proof: The proof is similar to that of Theorem 6. In the
first half, to prove that (®6) hold we have to refer to the prop-
erty that A L e Kiff A L e K. ]

As (+3) indicates, the operator is such that if the conflicts
do not arise at the level of preferential entailment, the revision
resolves in a simple expansion, as indicated in Example 1.2.

7 Conclusion

In this paper we have laid the foundations for defining belief
change in (preferential) non-monotonic framework. Follow-
ing the well-known AGM approach, we defined and charac-
terised AGM expansion, contraction and revision (for both
consistency and coherence preservation) on the monotonic
core of a class of non-monotonic closure operators—the spc-
operators. We also showed that preferential AGM contrac-
tion can be reduced to classical AGM contraction. Then we
showed how to define revision for the class of spc-operators.

As far as we know, just a few works deal with belief change
in a nonmonotonic framework. Booth and Paris [1998] deal
with conditional bases, but also containing negative condi-
tionals, which can be thought of as related to the contraction
of conditionals. Casini and Meyer [2016] are concerned with
the contraction of strict conditionals A |~ 1 from finite con-
ditional bases in order to restore coherence. Hunter [2016]
deals with the revision of highly implausible conditionals,
while Delgrande and others [2013] analyse belief change in
Answer Set Programming. Conditional belief change was
previously addressed by Kern-Isberner [1999], who proposes
a set of rationality postulates; the relations between her ap-
proach and ours will be object of further analysis.

For future work, an obvious next step is to define a form
of base change for defeasible bases, but in such a way that
it adheres to the type of change defined for the closed knowl-
edge bases. For example, for a base contraction operator — of
this kind, we would require that P(B_5) = P(B) 5. We
have started to work along these lines where the base contrac-
tion operator — is built on top of similar propositional base
contraction operators [Nebel, 1989; Meyer, 2001]. We also
intend to extend our work to belief change for Description
Logics. Recently, there has been a lot of interest in develop-
ing non-monotonic formalisms for this family of logics, espe-
cially in the preferential framework [Britz ef al., 2008; 2011;
Casini and Straccia, 2010; 2013; Giordano et al., 2013; 2015;
Lukasiewicz, 2008]. Given the importance of coherence in
the field, we expect such an extension to be very useful.
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