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Abstract

We develop a variational theory of geodesics for the canonical variation of the
metric of a totally geodesic foliation. As a consequence, we obtain comparison theo-
rems for the horizontal and vertical Laplacians. In the case of Sasakian foliations, we
show that sharp horizontal and vertical Laplacian comparison theorems for the sub-
Riemannian distance may be obtained as a limit of horizontal and vertical Laplacian
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comparison theorems for the Riemannian distances approximations. As a corollary
we prove that, under suitable curvature conditions, sub-Riemannian Sasakian spaces
are actually limits of Riemannian spaces satisfying a uniform measure contraction

property.
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1 Introduction

In the last few years there has been major progress in understanding curvature type invari-
ants in sub-Riemannian geometry and their applications to partial differential equations.
In that topic, one can distinguish two main lines of research:

e A Lagrangian approach to curvature which is based on second variation formulas for
sub-Riemannian geodesics and an intrinsic theory of sub-Riemannian Jacobi fields.
We refer to [6, 7] and to the recent memoir [4] and its bibliography for this theory,
see also [22].



e An Eulerian approach to curvature which is based on Bochner type inequalities for
the sub-Laplacian as initiated in [16] (see also [26, 27]).

The two methods have their own advantages and inconveniences. The first approach
is more intrinsic and yields curvature invariants from the sub-Riemannian structure only.
Though it gives a deep understanding of the geodesics and, in principle, provides a general
framework, it is somehow challenging to compute and to make use of those invariants, even
in simple examples like Sasakian spaces (see [5, 32, 33]). The second approach is more
extrinsic and produces curvature quantities from the sub-Riemannian structure together
with the choice of a natural complement to the horizontal distribution. Actually, the
main idea in [16] is to embed the sub-Riemannian structure into a family or Riemannian
structures converging to the sub-Riemannian one. Sub-Riemannian curvature invariants
appear then as the tensors controlling, in a certain sense, this convergence. Since it requires
the existence of a good complement allowing the embedding, this approach is a priori less
general but it has the advantage to make available the full power of Riemannian tensorial
methods to large classes of sub-Riemannian structures and is more suited to the study
of subelliptic PDEs and their connections to the geometry of the ambient space (see for
instance [13] for a survey).

In the present paper, we aim at filling a gap between those two approaches by studying
the variational theory of the geodesics of the Riemannian approximations in the setting
of totally geodesic foliations. Our framework is the following. Let (M, g, F) be a totally
geodesic Riemannian foliation on a manifold M with horizontal bracket generating distri-
bution . The sub-Riemannian structure we are interested in is (M, H, g3 ) where gy is
the restriction of g to H. It can be approximated by the family of Riemannian manifolds
(M, g.) obtained by blowing up the metric g in the direction of the leaves (see formula 2.3).
A natural sub-Laplacian for (M, H, gy) is the horizontal Laplacian A of the foliation.
Our main interest is then in uniform Hessian and sub-Laplacian comparison theorems for
the Riemannian distances approximations of the sub-Riemannian distance. Namely, we
wish to estimate Ayr. everywhere it is defined, where r. denotes the distance from a fixed
point for the distance associated to g. and deduce a possible limit comparison theorem for
Anro, where rg denotes now the sub-Riemannian distance. Obviously, relevant estimates
may not be obtained by standard Riemannian comparison geometry based on Ricci cur-
vature. Indeed, the basic idea in classical comparison theory is to compare the geometry
of the manifold to the geometry of model spaces which are isotropic in the sense that all
directions are the same for the energy cost of geodesics. In our setting, when € — 0 the
horizontal directions are preferred and geodesics actually do converge to horizontal curves.
Quantitatively, when ¢ — 0 the Riemannian Ricci curvature of the metric g. diverges to
—oo in the horizontal directions and +oo in the vertical directions. To obtain relevant
uniform estimates for Ayr., it is therefore more natural to develop a comparison geometry
with respect to model foliations. In all generality, the classification of such model foliations
is a difficult task. However, when the foliation is of Sasakian type it becomes possible to
develop a sectional curvature comparison theory with respect to the models:



e The Heisenberg group as a flat model;
e The Hopf fibration S' — S?"+! — CP" as a positively curved model;

e The universal cover of the anti de-Sitter fibration S! — AdS,,y; — CH" as a
negatively curved model.

This point of view will allow us to prove a horizontal Hessian comparison theorem, as well
as a uniform sub-Laplacian comparison theorem for Ayr. that actually has a limit when
e — 0 (see Theorem 3.1). For instance, we obtain that for non-negatively curved Sasakian
foliations (in the sense of Theorem 3.1), one has:

n-+2
To

Ayrg <

where n is the dimension of the horizontal distribution. In view of the known results by
Agrachev & Lee in dimension 3 (see [2, 3]), the constant n + 2 is sharp.

The paper is organized as follows. In Section 2, we work in any totally geodesic foliations
and compute the second variation formula of Riemannian g.-geodesics with respect to
variations in horizontal directions only. As a consequence we deduce a first family of sub-
Laplacian comparison theorems under weak and general conditions (see Theorem 2.7).
We deduce several consequences of those estimates, like a sharp injectivity radius esti-
mate (Corollary 2.11) or a Bonnet-Myers type theorem (Corollary 2.13). It is remarkable,
but maybe unsurprising, that the tensors controlling the trace of the horizontal index
form are the same tensors that appear in the Weitzenbock formula (see [19, 28]) for the
sub-Laplacian. In fact, we will prove in Section 2.6 that this family of sub-Laplacians
comparison theorems may actually also be proved by using the generalized curvature di-
mension inequalities introduced in [16, 26, 27]. Though the generalized curvature dimen-
sion inequality implies many expected byproducts of a sub-Laplacian comparison theorem
like uniform volume doubling properties for the sub-Riemannian balls (see [15]), there is
no limit in Theorem 2.7 when ¢ — 0. It seems that stronger geometric conditions are
needed to prove a uniform family of sub-Laplacian comparison theorems that has a limit
when € — 0. To the best of our knowledge, it is therefore still an open question to de-
cide whether the sub-Riemannian curvature dimension inequality alone implies or not a
measure contraction property of the underlying metric measure space.

In Section 3, we work in the framework of Sasakian foliations and prove under suitable
conditions a uniform family of horizontal Hessian and sub-Laplacian comparison theorems.
It should come as no surprise that for the sub-Laplacian comparison theorem, the assump-
tions are stronger than in Section 2. The main theorem is Theorem 3.1. It is proved as
a consequence of a uniform family of Hessian comparison theorems (Theorem 3.5). The
idea behind the proof of Theorem 3.5 is pointed out above: we develop a comparison
geometry with respect to Sasakian model spaces of constant curvature. In those Sasakian
model spaces Jacobi fields can be computed explicitly (see Appendix 2). We point out



that the computation of Jacobi fields in those model spaces is not straightforward, and to
the best of our knowledge is new in this form. The novelty in our computations is that we
work with a family of connections first introduced in [13]. These connections are natural
generalizations of the Levi-Civita connection and are suited to the setting of Riemannian
foliations with totally geodesic leaves. Though the connections are not torsion free, their
adjoints are metric, and it is therefore easy to develop the formalism of Jacobi fields in
this framework (see Appendix 1). In the final part of the paper, we explore then some
consequences of the sub-Laplacian comparison theorems in terms of measure contraction
properties. In particular, in the non-negatively curved case we obtain the interesting fact
that the family of Riemannian manifolds (M, g.), € > 0, uniformly satisfies the measure
contraction properties MCP(0,n + 4) despite the fact that when ¢ — 0 the Riemannian
Ricci curvature of the metric g. diverges to —oo in the horizontal directions and +oc in the
vertical directions. We also obtain sharp sub-Riemannian type Bonnet-Myers theorems
(see Theorem 3.2).

Our method is connected to both of the previously mentioned Eulerian and Lagrangian
approaches to sub-Riemannian manifolds, which is respectively expressed in Section 2 and
Section 3. The relations between positive curvature and compactness found in Corol-
lary 2.13 also appear in [16] where the Eulerian approach is used. We point out that the
sub-Riemannian comparison theorem for Sasakian manifolds has first been proved with
the Lagrangian approach in [2, 32], however our method yields Riemannian comparison
theorems which are new in this setting, see Theorem 3.7. In particular, it is interesting to
note that the sub-Riemannian comparison theorem can be seen as a limit of Riemannian
comparison theorems. Our results for the measure contraction property in Theorem 3.11
provide an alternative proof for a result first stated in [33, Theorem 1.1], but the method
to get an explicit measure contraction property of the approximating metric is new, see
[30, Theorem 1.2] for related results obtained with the Lagrangian approach.

To conclude, let us point out that we expect the methods developed in the paper to be
general and for instance that they can be generalized in the context of H-type foliations
that were introduced in [18].

Acknowledgments: The first author would like to thank Nicola Garofalo for stimulating
discussions on methods related to Section 2.6.

2 Horizontal and vertical Laplacian comparison theorems
on Riemannian foliations

2.1 Framework

Throughout the paper, we consider a smooth connected n + m dimensional manifold M
which is equipped with a Riemannian foliation with a bundle like metric ¢ and totally
geodesic m dimensional leaves. We moreover always assume that the metric ¢ is complete



and that the horizontal distribution H of the foliation is bracket-generating. We denote
by p the Riemannian reference volume measure on M.

As is usual, the sub-bundle V formed by vectors tangent to the leaves is referred to as
the set of vertical directions. The sub-bundle H which is normal to V is referred to as the
set of horizontal directions. Saying that the foliation is totally geodesic and Riemannian
means that:

(Lxg)(Z,2) =0, (Lzg)(X,X)=0, forany X e P®(H), ZeT=0W). (2.1)

The literature on Riemannian foliations is vast, we refer for instance to the classical ref-
erence [46] and its bibliography for further details.

The Riemannian gradient will be denoted V and we write the horizontal gradient as V4,
which is the projection of V onto H. Likewise, Vy will denote the vertical gradient. The
horizontal Laplacian Ay is the generator of the symmetric closable bilinear form:

Enlf.g) = - /M (Vo Vighudu,  f.g € C5(M).

The vertical Laplacian may be defined as Ay = A — Ay where A is the Laplace-Beltrami
operator on M. We have

Ev(fog) = — /M (Vo f, Vog)y dii /M FAvgdu, fog e C(M).

The hypothesis that H is bracket generating implies that the horizontal Laplacian Ay is
locally subelliptic and the completeness assumption on g implies that Ay is essentially self-
adjoint on the space of smooth and compactly supported functions (see for instance [12]).

2.2 Canonical variation of the metric

In this section, we introduce the canonical variation of the metric and study some of its
basic properties. The Riemannian metric g can be split as

9= 91D gy, (2.2)
and we introduce the one-parameter family of rescaled Riemannian metrics:

1
9e=9n® _gv, >0 (2.3)

It is called the canonical variation of g (see [20], Chapter 9, for a discussion in the submer-
sion case). The Riemannian distance associated with g. will be denoted by d.. It should
be noted that d., € > 0, form an increasing (as ¢ | 0) family of distances converging
pointwise to the sub-Riemannian distance dg.



Let 2y € M be fixed and for € > 0 denote
re(x) = de(x0, x).

The cut-locus Cut.(xg) of xg for the distance d. is defined as the complement of the set
of y’s in M such that there exists a unique length minimizing normal geodesic joining zq
and y and xg and y are not conjugate along such geodesic (see [1]). The global cut-locus
of M is defined by

Cut. (M) = {(z,y) e M x M, y € Cut.(x)}.
Lemma 2.1 ([1], [39]). Let € > 0. The following statements hold:
1. The set M\ Cut.(x¢) is open and dense in M.
2. The function (z,y) — de(z,y)? is smooth on M x M \ Cut.(M).

It is proved in [12] that since the foliation is totally geodesic, we have for every ¢ > 0,

L(f, V9 f112)) = (V9 f,V9T(f))q.

where (f) = ||V f|2 is the carré du champ operator of Ay and V9% the Riemannian
gradient for the metric g.. Applying this equality with f = r., we obtain that outside of
the cut-locus of x,

(VIr, VT (12))g. = 0. (2.4)

This implies that T'(r.) is constant on g. distance minimizing geodesics issued from .
Likewise, denoting T'V(f) = ||fo|]3, we obtain that T'V(r.) is constant on g.-distance
minimizing geodesics issued from zg.

The following lemma will be useful:

Lemma 2.2. Let x € M, & # xo which is not in U,>1Cuty (o), then

i |[Vagry p(2)]lg = 1.

n—-+o0o

Proof. Let 7, : [0,1] — M be the unique, constant speed, and length minimizing g, s,
geodesic connecting g to x. From (2.4), one has dy (w0, )[|Vyri/m(2)llg = [[77,(0)[l%-
We therefore need to prove that lim,_, [|7,,(0)||% = do(zo,x). Let us observe that

17 (O3 + 7l O)I = di (0, ).

Therefore, lim,, o ||, (0)[|3 = 0. Let us now assume that ||7,,(0)# does not converge to
do(zo, ). In that case, there exists a subsequence ny such that [, (0)[|3; converges to
some 0 < a < do(zg,x). For f € C3(M) and 0 < s <t <1, we have

1 (i () = (i (D] < (1, O) 22l Ve lloo + 170, O) VIV v Flloo) (£ = 5).-



From Arzela-Ascoli’s theorem we deduce that there exists a subsequence which we continue
to denote 7,, that converges uniformly to an absolutely continuous curve 7, such that
~v(0) = o, ¥(1) = . We have for f € C§°(M) and 0 < s <t <1,

[F(v(#) = F(v(s))] < all VS lloo(t = 5).
In particular, we deduce that
[f (@) = f(@0)] < al| Vo flloo-
Since it holds for every f € C§°(M), one deduces
do(zo, ) = sup{|f(z) — f(xzo)], f € C°M), [Vaflo <1} <a.
This contradicts the fact that a < do(zg, ). O

2.3 Horizontal and vertical index formulas

There is a first natural connection on M that respects the foliation structure, the Bott
connection, which is given as follows:

VxY =

where VY is the Levi-Civita connection for g and 7y (resp. myp) the projection on H
(resp. V). It is easy to check that for every € > 0, this connection satisfies Vg. = 0. A
fundamental property of V is that H and V are parallel.

The torsion T of V is given as
T(X, Y) = —7Tv[7THX, WHY]

For Z € T'°(V), there is a unique skew-symmetric endomorphism Jz : H, — H, such
that for all horizontal vector fields X and Y,

gH(JZ(X)vy) :gV(Z’T(Xa Y))v (2'5)

where T is the torsion tensor of V. We extend Jz to be 0 on V,. Also, if Z € T'*°(H),
from (2.5) we set Jz = 0.

In the sequel, we shall make extensive use of the notion of adjoint connection. Adjoint
connections naturally appear in the study of Weitzenbock type identities (see [25, 28]).



If D is a connection on M, the adjoint connection of D will be denoted D and is defined
by
DxY =DyxY —TP(X,Y)

where TP is the torsion tensor of D. Metric connections whose adjoint connections are also
metric are the natural generalizations of Levi-Civita connections (see [28] and Appendix 1).
The adjoint connection of the Bott connection is not metric. For this reason, for compu-
tations, we shall rather make use of the following family of connections first introduced
in [13]:

1
VY = VxV —T(X.Y) + _Jy X,

and we shall only keep the Bott connection as a reference connection. It is readily checked
that V#g. = 0. The adjoint connection of V¢ is then given by

) 1
XY = VxY + _JxY,

thus V¢ is also a metric connection. It moreover preserves the horizontal and vertical
bundle, in contrast to the connection V¢ which does not have this property.

For later use, we record that the torsion of Ve is

A~

1 1
T5(X,Y) = T(X,Y) = ~Jy X + _JxY.

The Riemannian curvature tensor of V¢ is easily computed as

1 1
R(X,)Y)Z =R(X,Y)Z + gJT(X,Y)Z + ?(Jny —JyJx)Z
1 1
+ E(VXJ)YZ - E(VYJ)XZ (2.6)

where R is the curvature tensor of the Bott connection.

Since V¢ and V¢ are both metric, observe that the Levi-Civita connection V9% for the
metric g. is given by 1(V® + V¢). In particular, one has:

1 1 1
VxY = VY 4+ 5T(X.Y) = o JxY — Iy X. (2.7)

We point out that working with V¢ and V¢ instead of the Levi-Civita connection V%
greatly simplifies some computations (see Remark 2.5 and Section 3), whereas we can still
freely use simple second variation formulas (see Appendix 1).

The following lemma is obvious.

Lemma 2.3 (Geodesic equation). The equation for g.-geodesics is
1
Vo + EJW/'/ =0.

9



Proof. The equation for g. geodesics is ng 7' =0, and one concludes with (2.7). O

After these preliminaries, we are now ready to prove one of the main results of the section.
As before, let d. be the distance of g.. Let xyp € M be any point and define r. = r. ,, by
re(z) = de(xo, ).

Proposition 2.4 (Horizontal and vertical index formulas). Let V? denote the Hessian of
the Bott connection V. If x is not in the cut-locus of xg with respect to g., and if v is the
unique g. geodesic from xg to x parametrized by arc length, then:

(a) For every v € Hy, and vector field Y along vy, taking values in H and satisfying
Y(0) =0 and Y(r-(x)) = v, we have

Ve (v,v) < I (Y, Y)

where

re(z) ,
B Y) = [ (I3 + (RO Y)Y Y000 de

1

re(T)
+ 5/0 (<(VYT)(Y, V)Y g (&) + 1T, Y)I2(t) — 41€||Jv/y”3(t)> gt

(b) For everyw € V, and vector field Z along vy, taking values in'V and satisfying Z(0) =0
and Z(r(x)) = w, we have

Vzrs(w, w) < Iy (Z,7)

where

re(x)
bel2.2) =1 [ (192130 + (B 207 2),(0) .

Proof. We prove (a). The proof of (b) follows by a similar and even simpler computation.
From the classical theory (see Lemma 4.2 in the Appendix) one has:

V2re(v,v) < I (YY),
where
Do (Y,Y) = /O T (VY2 - YA, - YY) )
Since Y is horizontal, one has
RE(Y,Y)Y = R(y,Y)Y + éJT(%y)Y — é(vy!})vly

and ) ) R
Te(Y, V?Y,Y) =T(Y, Vi/Y).

10



In particular, we deduce that
TV, 950), e = Y, VoV + 5 1Y [
To conclude the proof, we observe that
[V ¥ — LY, T oy = [9Y + LIV By = LY, VY
= [95Y oo Y B+ gl Y2 =

Remark 2.5. By using (2.7), a lengthy but routine computation shows that the Rieman-
nian curvature tensor of the Levi-Civita connection is given by

R%(X,Y)Z (2.8)

1 1 1 1
— R(X.Y)Z ~ L(VAT)(V.2) + S(VyT)(X.2) + o (VI Z — o (Vyd)xZ
il
2e
1 1 1
- Z&T(X7 JvZ + J2Y) + @JX (JyZ + J2Y) — ZgJT(Y’Z)X

1 1
(VxJ)zY — E(VYJ)ZX + 5 JIr(x 2,

1 1 1
+ 4—€T(Y, IxZ + JzX) — @JY (IxZ +JzX) + ZEJT(X,Z)Y-

Using this formula and the usual index formulas for the Levi-Civita connection yield the
same horizontal and vertical index formulas, however using the adjoint connection V¢
greatly simplifies computations.

2.4 Horizontal Laplacian comparison theorem

We now introduce the relevant tensors which will be used to control the index forms. The
horizontal divergence of the torsion 7' is the (1, 1) tensor which in a local horizontal frame
X1,...,X,, is defined by

n

HT(X) === (Vx,T)(X;,X).
j=1

Going forward, we will always assume in the sequel of the paper that the horizontal
distribution H satisfies the Yang-Mills condition, meaning that dxT = 0 (see [12, 26, 27|
for the geometric significance of this condition).

We will denote by Ricy the horizontal Ricci curvature of the Bott connection, that is to
say the horizontal trace of the full curvature tensor R of the Bott connection. Using the
observation that V preserves the splitting H & V and from the first Bianchi identity, it
follows that Ricy (X, Y) = Ricy (my X, m1Y") (see the computation in the proof of Lemma
3.4 for details).

11



If Zy,...,Zy is a local vertical frame, the (1,1) tensor

32:= gz
=1

does not depend on the choice of the frame and may globally be defined.

Remark 2.6. A simple computation (see for instance Theorem 9.70, Chapter 9 in [20])
gives the following result for the Riemannian Ricci curvature of the metric g.. For every
X €T®(H) and Z € T (V),

1

Ric”(Z,7) = Riey(Z.2) —

Ric% (X, Z) =0

Tr(J7)

Ric’ (X, X) = Ricy(X, X) + 21—€<J2X, X)),
where Ricy is the Ricci curvature of the leaves as sub-manifolds of (M, g).
Let z¢p € M be fixed and for € > 0 let
re(z) = de (20, ).
We assume that globally on M, for every X € I'*°(H) and Z € T'>°(V),
Ricn(X, X) > ()| X[B —(°X, X) < w(r)| X3 —3Te(J3) > palr) |21},

for some continuous functions p1, p2, K.

Theorem 2.7. Consider the operator Ay = TryV? = divVy. Let x € M, x # x¢ and
not in the d. cut-locus of xg. Let G : [0,r:(z)] — R>¢ be a differentiable function which is
positive on (0,7:(x)] and such that G(0) = 0. We have

Murie) < g | " (n6(62 = | () = 29 ) P21 (0) + ooV ) 0)| 92 ) s

Proof. Let v be the unique length parametrized g.-geodesic between xg and z. Let
X1,...,X,, be a horizontal orthonormal frame along ~ such that

1 =2
V,},/XZ' + %Jw’Xi = VjXZ’ = 0.

‘We have

Apre(z) =Y Vire(X;, X,).
=1

12



Consider now the vector fields along ~ defined by

G(s)
G(re(x))

Using Proposition 2.4 and the Yang-Mills condition one finds

Y, = Xi, 0<s<r(x).

n
ZIHE%Yi,Yi)

n
1
2:1; QN7J/+ TV = (Rl VYo + T I = gl Yl )
=1
1 n

re(x) )
2 2 9 9
(7"5((E)) / TLG/(S) + Z G(S) <_<R(’Y’;-La Xz)X'L7’Y,H>e + HT(X’H PY;{)HE - 422 HJ’Y{)XZH5> ds

=1
re(x)
_ (T:(x))/ nG(s)2 + G(s)? <_RicH(’Y§{»’Y§{)—i<J2%{=%¢> yE L2 ))ds

a0 = [~ 2n0)) W+ 2L 18] ) s

From (2.4), one has

IV ($)F = T(re) (@), 1V ($)]IF = 2TV (re) (),
which completes the proof. O
Remark 2.8. Since I'(r.) + 'Y (r.) = 1, one can rewrite the previous inequality as

mﬂwsG%ZWAM”@a@%[@mwiW@+m@QHMWH”fﬂm#)w

Optimizing the function G in the previous theorem when pq, po, k are constants yields:

Corollary 2.9. Assume that the functions p1, kK, ps are constant. Then, for x # xg not
in the d. cut-locus of xq,

Ayre(z) < F(re(x),[(re)(z)),

where
e (7) cot(\/ 5=y if k(7)) > 0,
n .
F(ry) =1 if ke(7) =0,
nlre(7)] coth(y/ =) - if k. (7) < 0,
and

R (R R YS) FR- S

13



In particular, since I'(r.) is always between 0 and 1, we get:

Corollary 2.10. Assume that the functions p1, K, p2 are constant. Denote

. K p2
e = min (p1— 2. 2)

For x #+ xg € M, not in the d. cut-locus of xg

V/Nike cot(y/Eere(x)), if ke >0,
n :
Ayre(z) < re(x)’ if ke =0, (2.9)

\/n|/£€|coth(\/|'{—;‘7“5(x)), if ke <O.

We conclude this section with two easy corollaries from our horizontal Laplacian compar-
ison theorem.

Corollary 2.11 (Injectivity radius estimate). Assume that the functions pi,k,ps are
constant with py > 0. Then, for xo € M the d. distance of xg to its cut-locus is less than

o /nE

p2’
Proof. Let xg € M. Let us denote by L;, the leaf going through z¢ and consider a g.
length parametrized geodesic v in Ly, such that v(0) = z. From Corollary 2.9 one has

Burcr(s) = |/ con ((/25)).

lim  Ayre(y(s)) = —o0.

s—m, [RE
P2

One deduces that

Therefore, r-(y(s)) can not be differentiable at s = 7, /- We deduce that the d. distance

of x¢ to its cut-locus is less than 7, /%. O

Remark 2.12. A first version of this theorem is proved in [11] in the case where the
foliation is the Reeb foliation of a Sasakian manifold (in that case p = 7).

Corollary 2.13 (Bonnet-Myers type theorem). Assume that the functions pi,k,pa are
constant with p1, p2 > 0, then M is compact. Moreover, for e > p—”l,

diam(M, d.) < 7, /=,

Re
where

ﬁgzmin(pl—f,@).
e €
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Proof. Let x9p € M and € > p%' From Corollary 2.10, one has for = # x¢, not in the d.

cut-locus of xg
Ayre(z) < \/nke cot <,/r€( )) .

We deduce from Calabi’s lemma that any point x such that de(zg,z) > 7, /r% has to be
in the cut—locus of xg. Let now x € M arbitrary. If z is not in the cut-locus of zg, then
d(xg,z) <m . If x is in the cut-locus of z( then for every n > 0 there is at least one

point ¥ in the open ball with center x and radius 7 such that y is not in the cut-locus of
zo. Thus d(xo,z) < my /7= + 1. O

Remark 2.14. That the conditions p1 > 0 and py > 0 are sufficient for compactness of M
was also proved in [16]. By using heat equation methods, the first Bonnet-Myers theorem
in this situation was obtained, which also prove that the sub-Riemannian diameter of M
satisfies the bound

diam(M, dy) < 2V/37 \/ K+ P2 1+ 3'{> n.
P1P2 2p2

2.5 Vertical Laplacian comparison theorem

Let z¢p € M be fixed and, as before, for € > 0 denote
re(z) = de(x0, ).
We assume that globally on M, for every Z € I'>°(V),
Ricy(Z,2) > ps(ro)ll 2|3,

where Ricy is the vertical Ricci curvature of the Bott connection (this is also the Ricci
curvature of the leaves of the foliation as sub-manifolds of (M, g)), and where p3 is some
continuous function.

Theorem 2.15. Let x € M, © # xq, not in the d. cut-locus of xg. Let G : [0,7:(x)] = Rx>g
be a differentiable function which is positive on (0,7r-(z)] and such that G(0) = 0. We have

1 re(®) ,
Ayre(z) < W/O <?G (5)% — p3(S)EFV(T5)<.T)G(S)2) ds.

The proof is similar to that of Theorem 2.7. As an immediate corollary we deduce:

Corollary 2.16. Assume that the function ps is constant. Then, for x # xg not in the
cut-locus of xg,

Ayre(x) < F(Ts($)arv(7"€)(x))
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where

VmpsTV(re) cot ( mEZ)E:(TE)rE) , if p3 >0,
m

F(TsaFv(rs)) =9 - if p3=0,

)
ETe

/—mps'V(re) coth < —‘”’5271;1}(7’5)7@) , if p3 <O0.

2.6 Horizontal and vertical Bochner formulas and Laplacian comparison
theorems

It is well-known that on Riemannian manifolds the Laplacian comparison theorem may
also be obtained as a consequence of the Bochner formula. In this section, we show that
Theorems 2.7 and 2.15 may also be obtained as a consequence of Bochner type identities.
The methods developed in the previous sections are more powerful to understand second
derivatives of the distance functions (see Section 3), but using Bochner type identities
and the resulting curvature dimension estimates has the advantage to be applicable in
more general situations (see [16, 26, 27] for the general framework on curvature dimension
inequalities).

We first recall the horizontal and vertical Bochner identities that were respectively proved
in [19] and [14] (see also [26, 27] for generalizations going beyond the foliation case).

Theorem 2.17 (Horizontal and vertical Bochner identities). For f € C*°(M), one has

SR = (@0 df). = [Vl 2 + (Rica(df), dfhy + 2 ()

and
%Adefo = (dAvf, df)e = IVin fII* + e[ VD FIP + & (Riev(df), df),

Proof. The first identity is Theorem 3.1 in [19]. The second identity may derived from
Proposition 2.2 in [14]. O

Those two Bochner formulas may be used to prove general curvature dimension estimates
respectively for the horizontal and vertical Laplacian.
We introduce the following operators defined for f,g € C*°(M),

D(f,9) = 5 (Awlfa) — 0w f — [Awg) = (Vuf, Vi),
TV (f.9) = (Vv f, Vv,
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and their iterations which are defined by

TH(7,0) = 5 (AT (f,9)) — Tlg, Anef) = T(f, Ag)
TV (F.9) = (AT (£,9)) ~ TV (g, A f) ~ TV(f, Ang)
Y™ (f.9) = 5(Au(T(F.9)) ~ T(g, Avf) ~ T(f, Avg))

and
T¥(£.9) = S (Av(T¥(1,)) ~ TV (g, Avf) ~ TV (f, Avg))

As a straightforward consequence of Theorem 2.17, we obtain the following generalized
curvature dimension inequalities for the horizontal and vertical Laplacians.

Theorem 2.18.

1. Assume that globally on M, for every X € T°(H) and Z € T*°(V),
. 1
Ricy (X, X) > pi(re) | X[}, —(I°X, X)u < w(ro) | X |13, —ETI'H(J%) > pa(re) | 2|3,

for some continuous functions p1, p2, k. For every f € C°°(M), one has

K(re)

@utP+ () = L) TG0+ T )

S

LY F) + T3V (f, f) >

2. Assume that globally on M, for every Z € T>°(V),
Ricy(Z, Z) = pa(re) 1 2],

for some continuous functions ps. For every f € C*°(M) one has

Ty (f, £) + DY (f, ) > —(Av )2 + eps(ro)TV(f, ).

3o

Proof. The proof of 1. follows from
1
V5112 > V31 = § Ten( )
1
> —(Auf)* + pa(r)TV (S ),

where we refer to the proof of Theorem 3.1 in [19] for the details. The proof of 2. is
immediate. O

For an alternative proof of Theorem 2.7 and 2.15, we shall need the easily proved following
lemma.
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Lemma 2.19. We have

lim r.(z)?Ayro(z) = lim r.(z)2Apre(z) = 0.
T—T0 T—T0

We are now in position to give a second proof of Theorem 2.7.

Proof (Second proof of Theorem 2.7). Let v(t), 0 < ¢ < r.(x), be the unique length
parametrized g.-geodesic between xg and x. We denote

o(t) = Anre(y(t), 0<t<re(x).
From Theorem 2.18, we get the differential inequality

k(1)

(02 2007 + () = ") T + O ), (210

S|

because I'(r.) and I'V(r.) are constants along . We now notice the lower bound

1 &' (1)

G/(t)2
G(t)?"

¢(t) —n

Using this lower bound in (2.10), multiplying by G(¢)?, and integrating from 0 to r.(z)
yields the expected result thanks to lemma 2.19. O

The second proof of Theorem 2.15 is identical.

3 Horizontal and vertical Hessian and Laplacian comparison
theorems on Sasakian foliations

It is remarkable that Theorem 2.7 does not require any assumption on the dimension or
curvature of the vertical bundle. However, when & goes to 0 the upper bound for Ay,
blows up to oo, whereas it is known that in some situations one may expect a horizontal
Laplacian comparison theorem for the sub-Riemannian distance dy. Indeed, for instance
in the 3-dimensional Heisenberg group it is known that in the distributional sense

Ayrg < 4
o
where r( is the distance to a fixed point, and the constant 4 is sharp. This horizontal
Laplacian comparison theorem for the sub-Riemannian distance has been first generalized
in 3-dimensional Sasakian manifolds by Agrachev-Lee [2]. See also a version proved in
higher dimensional Sasakian manifolds by Lee-Li [32].

Inspired by some of the results in [30] and [38], we prove in this section that for Sasakian

manifolds, a comparison theorem for the sub-Riemannian distance may be obtained as
a limit when ¢ — 0 of a comparison theorem for the distances r.. With respect to
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[2, 30, 32], we obtain an explicit and simple upper bound for Ayr. which is sharp when
€ — 0, and in our opinion the method and computations are more straightforward and
shorter. Our method has also the advantage to easily yield a Hessian comparison theorem
for the distance r¢, € > 0 (such Hessian comparison theorem is not explicitly worked out
in [32]) and a vertical Laplacian comparison theorem (see Theorem 3.9).

We now describe the setting of Sasakian manifolds (see [21] for further details about
Sasakian geometry). Let (M, 6,¢g) be a complete K-contact Riemannian manifold with
Reeb vector field S. The Bott connection coincides with the Tanno’s connection that was
introduced in [45] and which is the unique connection that satisfies:

1. VO = 0;
2. VS =0;
3. Vg =0;

4. T(X,Y)=do(X,Y)S for any X,Y € I'*°(H);
5. T(S,X) = 0 for any vector field X € I'*°(H).

It is easy to see that the Reeb foliation is of Yang-Mills type if and only if d4df = 0.
Equivalently, if we introduce an operator J := Jg, this condition writes d5J = 0. If M is
a strongly pseudo convex CR manifold with pseudo-Hermitian form 6, then the Tanno’s
connection is the Tanaka-Webster connection. In that case, we have then VJ = 0 (see
[24]) and thus 6% J = 0. CR manifold of K-contact type are called Sasakian manifolds (see
[24]). Thus, the Reeb foliation on any Sasakian manifold is of Yang-Mills type.
Throughout the section, we assume that the Riemannian foliation on M is the Reeb
foliation of a Sasakian structure. The Reeb vector field on M will be denoted by S and
the complex structure by J. The torsion of the Bott connection is then

T(X,Y)=(JX,Y)yS.
Therefore with the previous notations, one has
JzX =(Z,5)JX.

In this setting, the formula (2.6) for the curvature of the adjoint connection greatly sim-
plifies:

R 1
R{(X,Y)Z =R(X,Y)Z + gJT(X,Y)Z
1

In a Sasakian space, for every non-vanishing horizontal vector field X, TM is always gener-
ated by [X,H] and H. Therefore the sub-Riemannian structure on a Sasakian foliation is
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fat (see [41] for a detailed discussion of such structures). In particular all sub-Riemannian
geodesics are normal and from Corollary 6.1 in [39], for every xg € M, the distance func-
tion & — ro(x) is locally semi-concave in M\ {zo}. In particular, it is twice differentiable
almost everywhere. Also, from Corollary 32 in [9], z # x¢ is in Cut(xo) if and only if 7o
fails to be semi-convex at x. Therefore, Cutg(zp) has p measure 0. Finally, at any point x
for which the function x — ro(x) is differentiable, there exists a unique length minimizing
sub-Riemannian geodesic and this geodesic is normal.

We now introduce the relevant tensors to state the horizontal Laplacian comparison the-
orem. We first define a symmetric two-tensor Ky ; such that for a horizontal vector field
X € T*°(H),

1
K,y (X, X) = WU%(X,JX)JX,XM,
H

at points where X does not vanish. The quantity Ky, ; is sometimes called the pseudo-
Hermitian sectional curvature of the Sasakian manifold (see [10] for a geometric inter-
pretation). It can be seen as the CR analog of the holomorphic sectional curvature of a
Kéhler manifold. We will also denote

RiCHJJ_(X,X) = RiCH(X,X) - K’H’J(X, X)

Recall that for an m-dimensional Riemannian manifold with Ricci curvature bounded
from below by (n — 1)k, the usual Laplacian comparison theorem states that Ar <
(n — 1) Frie(r, k) where

Vk cot Vkr if k>0,

FRie("'y k) = % if k=0,

V/|k| cothy/|k|r if k <O.
Furthermore, for 3-dimensional Sasakian manifolds with K3 ; > k on horizontal vectors,
we have the mentioned sharp inequality Ayr < Fgas(r, k) of [2], where

Vk(sin Vkr—/kr cos Vkr) .
2—cos Vkr—krsin vVkr if k> 0’
Foas(r, k) = % if k=0,

V |k|(\/ |k|r cosh y/|k|r—sinh \/|k|r) .
- if £ <O0.
2—cosh +/|k|r-++/|k|rsinh /|k|r

We generalize this result to arbitrary dimensions in our main result.

Theorem 3.1 (Horizontal Laplacian comparison theorem). Let (M, F,g) be a Sasakian

foliation with sub-Riemannian distance dy. Define ro(x) = d(zo,x). Assume that for some
kl, ]{52 eR

Ky j(v,v) > ki, RiCH’JL(U,'U) > (n — 2)ko, veH, vy =1
Then outside of the dy cut-locus of xo and globally on M in the sense of distributions,

Ayro < Faas(r0, k1) + (n — 2) FRie(r0, k2).
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It is known that the holomorphic sectional curvature determines the whole curvature ten-
sor, however there exist explicit examples of manifolds with positive holomorphic sectional
curvature without any metric of positive Ricci curvature (see [29]). As a consequence it is
likely that there exist examples for which k1 and k2 do not have the same sign.

Theorem 3.1 will be proved in the next sections. As a by-product of the proof of this
theorem, we first point out a straightforward corollary.

Theorem 3.2 (Sub-Riemannian Bonnet-Myers theorems). Let (M, F,g) be a Sasakian
foliation.

1. Assume that for some k1 > 0, we have
Ky, 7(v,v) > ki, vEH, vy =1

Then M is compact, the fundamental group w1 (M) is finite and

2
diam (M, dy) < —.
(M) < T4

2. Assume n > 2 and that for some ko > 0, we have
Ricy j1(v,v) > (n — 2)ks, veMH,|vl, =1
Then M is compact, the fundamental group w1 (M) is finite and

T
diam (M, dp) < —.
Vs
Remark 3.3. The same Bonnet-Myers type theorems with identical assumptions were
obtained in [5] (see Corollaries 5.6, 5.8) by completely different methods. As observed in

[5], the diameter upper bounds are sharp in the case of the Hopf fibration S* — S+ —
CP" (the sub-Riemannian diameter is w in that case).

3.1 The curvature tensor on Sasakian manifolds

The following lemma will be useful:

Lemma 3.4. Let (M, F,g) be a Sasakian foliation. Then, for all X,Y € I'*°(M),
(R(X, Y)Y, X)), = (R(Xn, Yn)Ya, Xp0)y -

Proof. Observe first that from the first Bianchi identity, with ¢ denoting the cyclic sum,
we have

O R(X,Y)Z =0 T(T(X,Y), Z)+ O (VxT)(Y, Z) = 0.
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The fact that V preserves the metric, gives us (R(-, -)v,v)q. = 0. Hence, as V also
preserves both subbundles H and V, one obtains

(R(X, Y)Y, X)g. — (R(Xw, Ya) Yat, Xoa)m
= (R(X#, Y») Yoy, Xp1)g. + (R(Xy, Y2) Y3y, Xog) g + (R(Xv, Yo) Yoy, Xay)g.
+ (R(X3, Ya) Yv, Xv) g + (R(X3y, Y)Y, Xv)g.
+ (R(Xv, Y)Yy, Xv)g. + (R(Xy, W)Yy, Xp)g.
= (O R(X, W)Y, Xn)g. — (Yo, O R( Xy, Yo ) Xot)g. + (O R(Xy, YV) Yoy, Xoy)g.
+ (O R(Xp, Y)Yy, Xv)g. — (Yo, O R(Xp, Yv) Xv)g.
+ (O R(Xy, Y)Yy, Xv)g. + (R(Xv, Y)Yy, Xp),.
= (R(Xy, W)Yy, Xy), =0,

—~~ —

where in the last equality we used the fact that the leaves are one-dimensional. O

3.2 Horizontal Hessian comparison theorem

Throughout this section, we will rely on the following functions. For r, 4 € R, we define

sinl\lf\/ﬁr if o> 0 sinh \/gj';\/ﬁr if > 0
m ) u 9
bu(r) = r. if u=0, Yu(r) = %r3 if u=0,
sin \/#I"T if 1 < 0, —\/m’”';f;/“z, ki < 0.

Notice that () fo > ¢u(s1) dsy dso. We finally introduce the following function:

7 (\/ﬁ—ltanh\fr) it p >0,
U, (r) = %7"2 if =0,
sz G tan /e = /Jul) - if <0,

Using trigonometric and hyperbolic identities, we can verify that

¢4 (r) Oy W_g(r)
i (r)’ ¢k V_g(r/2)

As before, let g € M be fixed and for £ > 0 denote

FRIG(T k) FSaS(T k)

re(x) = de(x0, x).

If v € Hy is a non-zero vector, we define the space £;(v) to be the subspace of H,
orthogonal to v and Jv. Observe that dim £;(v) = n —2 and that u € £;(v) if and only if
it is orthogonal to u and satisfies T'(u,v) = 0. Theorem 3.1 will be proved as a consequence
of the following horizontal Hessian comparison theorem.
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Theorem 3.5 (Horizontal Hessian comparison theorem). Let (M, F,g) be a Sasakian
foliation. Let k1,ko € R and € > 0. Let x # x¢ be a point that is not in the g. cut-locus

of xg.

L If |[Vyre(x)||Z > 0, then

min(||Vyre(@)[I7, 1 = | Vare(@)]17)

V?HTE(VHTE(I')v VHTE(:E)) < 7“5(1')

2. Assume that ||[Vyre(z)||2 > 0 and that for every local vector field X € T®(H), || X[y =
1

2

(R(X,IJX)JIX, X )y > k. (3.2)
Then,
1 ¢/_)\k(ra) AV gy (Te) +€
—Vre(IV IV < === T
)\8 TE( ’,L[’I”a(ﬂ?) ’HT‘E(CC)) = ¢—A5k1 (TE) AE\II—)\ekl (’FE/Q) +e
where A\ = ||V7.Lrs(x)||§.

3. Assume that || Vyre(z)||2 > 0 and that for all local vector fields X,Y € T°(H), | X |, =
HYHQ =1, and Y € ’QJ(X)f

(RX, Y)Y, X)3 > ko (3.3)
Then, for any horizontal unit vector v € £;(Vyre(z)),

¢/_A€ ko (re)

2
Vere(v,v) < ()

where A\ = HVHra(x)Hg.

! re/2
4. If Vyre(z) = 0, then V3r.(v,v) < 2%:;:1;572%;2; for any unit v € H,.

Remark 3.6. Observe that the set of © € M such that Vyre(z) = 0 is a bounded set of
measure zero included in the leaf passing through xg.

Proof. In the proof, to simplify notations, we often simply write r = r.(z) and A\ =
HV}[T‘E(.’L’)H;. For any vector field Y along a geodesic v, we will use Y’ for the covariant

derivative with respect to the adjoint connection @2, and we identify vectors and their
corresponding parallel vector field along ~.

1. From the index lemma, one has

Vi r(Vure, Vure) < I(v, X, X)
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where 7 is the unique length parametrized geodesic connecting xg to x and X = i'yf;{.

Te
An immediate computation gives

I'(r
Is(’YaXyX) = Ena)
£

Therefore

F(ra).

Te

V%T5<VHT‘5, vr,l.ﬂ“a) S

‘We now observe that
IVarel3 + el Vyrelly = 1.

As a consequence
Vall Vare |, + eVal[Vyre[} = 0

and
VVHVHTsH%-L + é‘V];HVVTaH% =0.

From the first equality we deduce
(ValVareld, Vare)w + (Vo[ Vyre|l$, Vagre) = 0,

and therefore,
v%_ﬂ“g(v;-ﬂ“g, Vurs:) + EV%_L,V’I}(VT‘S, Vr.) =0.

Similarly, from the second equality we have
Vi ure(Vre, Vre) + eVire(Vyre, Vyre) = 0.

Since the Sasakian foliation is totally geodesic, it is easy to check that V%H = V%—L,V
(see [14]). Consequently,

V?HTE(VHTE, Voure) = €2V%T5(VVTE, Vyre).
From the vertical index form in Proposition 2.4 one has

IVyrell$

2
VVTE (VVTE, V\;TE) <
ere

This yields

Vyrely _ 1[IV}, _ 1-T
Ve (Vaare, Vogrs) < V07l _ 1= WVl 1= Tlre)
Te Te Te

. The proof of 2. is the most difficult. The idea is to use an almost Jacobi field based on
the computations of Appendix 2 (to which we refer for further details). Let v be the
unit speed geodesic joining xg and x. Define

Ce=A (¢/—)\k1 (T)Q — Vb (T)@ﬂ)\kl (7“)) + 5T¢/—/Ak1 (),
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Ge(t) = - (¥ 1m0+ (57 = Vs (1) W, 1))
and
Y(t) = SGL0 T + (20! a, ()t + GelD)) S,

A
This vector field satisfies

1 1
Yy” — T(’y/, Y/) + EJYI’)/;_[ + A1 Yy — EJT(’YCY)V’:'{ =0

with boundary conditions Y (0) = 0 and Y (r) = %J%{.

Computations with the index form and Lemma 3.4 give us

r 1 1
IE(Y,Y):/ <Y/,Y’—T(7’,Y)+€Jy7/—€JA,/Y> dt
0 ge

T 1
- / <R(7/7 Y)Y + 7JT(’7’,Y)Y7 ’7,> dt
0 € 9ge

1

— (Y)Y D~ 2 [ T

r 1 1
—/ <Y, Y —T(v,Y') + gqu — EJT(WW’ + H%,[||_(2]k:1Y> dt
0
- /0 (RO Y)Yy — ki \|[Yaul2) de

=YY~ [ (ROYIVA) — RAIYal)
< )\G/E'(r).

We finally compute

)\G’E’(r) = CZ ()\(@D/—,\kl(r)le,\kl (1) = Yk, (r)¢Z,Ak1 (r) + 5T¢/—,/Ak1 (7"))

r”\, (r)
= %()\\I]—Akl (7’) +€).

From the proof of Lemma 5.1 (b), we know that C. = r¢”, (r)(A¥_xp, (r/2) + ¢€),
therefore we obtain that
P (1) AU s () +e 0y, (1) AUy (r) 4

" _ =Xk
AGe(r) = P VA ey (1/2) + & Gy (1) AUy (7/2) + &

3. Let X be defined as



Observe that since this vector field solves the equation
" / / 1 / 1 /
0=X —T(’y,X)—i—EJX/’y +k2)‘X_gJT('y’,X)7'

and satisfies T'(7/, X)) = 0, we have

T /
06,30 < 000, X000 + [, a0 <
€Jo —koxe (7)
4. Define a vector field X by
1 r—t r t
X(t)=—F——"""—< ((1 + cos —=— — cos —= —cos) Vg
2 <1 — cos %) Ve Ve Ve

. r—1 . . t J
— | sin — —sin — +sin — | Jyvp | .
NG NG Ve ) e
By computations similar to Lemma 5.1 (c), X (¢) is a Jacobi field. Hence

sin \L@ 1 r 1 ¢11/5 (r/2)

) S = (e ) T 2E N T a2

3.3 Horizontal Laplacian comparison theorem

We now turn to the proof of Theorem 3.1. The first part of the theorem is a straightforward
application of Theorem 3.5 and standard arguments, choosing an orthonormal basis at z:

1 1
Vure, IJVyre,v,...,v 2}
{Hv’HreHg © ||V7-lrs”g ) !

with v1, ..., v,—2 orthonormal basis of the space £;(Vyre(x)). From this result, we obtain
the following statement.

Theorem 3.7 (Horizontal Laplacian comparison theorem for d.). Let (M, F,g) be a
Sasakian foliation. Let ki,ka € R and € > 0. Assume that for every X € I'*°(H),
[ XIlg = 1,

Ky j(v,v) > ki, Ricy j1(v,v) > (n — 2)k2, veH,|vly =1

Let & # o which is not in the cut-locus of xo. Define \e(z) = || Vure(z)||* and assume
Ae(z) > 0. Then at x we have

¢ sy (7) +¢/—Agk1(7“e) AW 3k (1e) +€
Gorko(Te)  Poncky (1) AW _p py (1:/2) + &

1 1
Ayr. < min{l,)\—l}+(n—2)

Te
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In order to obtain Theorem 3.1, we need to prove that we can take the limit as ¢ — 0.
Since the cut-locus of z( for the metric g. has measure zero, by usual arguments (Calabi’s
trick), we have in the sense of distributions:

¢LA5k2(T8) ¢L/\Ek1 (7'5) )\S\I/,)\Ekl (7“5) + e
D acka(Te)  Drcky (1) AW .k, (1e/2) + €

Indeed, from Calabi’s lemma, one has Ml = Cut.(z9) U2 where (2 is a star-shaped domain.
Take now a family of smooth star-shaped domains €2, C 2, with lim 2, =  obtained
by shrinking € in the r. direction. Consider now a function f € C§°(M) which is non-
negative. One has

1 1
Ayre < min{l,/\—l}—l—(n—Z)
3

Te

/MTEAHfdM = —/MWHﬁ Vure)dp = — lim [ (Vyf, Vyre)du

n—oo Q
n

where we used in the last equality ||Vy7:|| <1 and Vi f bounded. Similarly,

/ reAyfdu = —/ <va, VvT5>dM = — lim (Vyf, Vyrs>du.
M M

n—oo Q
n

From Green’s formula, we have

- / (Vo Vagre)dp < / (Aggrs) folp + / (Vo f, Vyre) g di + = / (Ayre) fdp.
Qn Qn Qpn

n

When n — oo, we have [, (Vv f, Vyre)g.du+e [ (Ayre)fdp — 0. This means that for
every smooth, non-negative and compactly supported function f,

/M(Aﬂf) redp

1 . 1 O aky(Te) Oy (Te) AWy g, () +
< /M ( min {1’ P 1} T ) ) T Gt (72) AT (r2/2) ) fap

Taking the limit as ¢ — 0 yields the result, thanks to Lemma 2.2 and equations (3.1).

3.4 Proof of Theorem 3.2

The proof is relatively similar to the proof of Corollary 2.13. We will only prove k; > 0,
since the proof of ko > 0 is almost identical. Let € > 0. Since

- O reky (Te) AWy gy (re) + € ~ e
e AT (e e

one deduces from Theorem 3.5 that if 2 is not in the cut-locus of g, then d.(xg,x)

INIA

27
IIQVHTE OIS We conclude from Lemma 2.2 that for almost every x, we have do(xo, x)
VR
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To complete the proof, we note first that since the foliation is Riemannian, for every
sufficiently small neighborhood U in M such that ny : U — My = U/F|U is smooth
map of manifolds, there exist a Riemannian metric gy on My such that gy = 7*gy.
Furthermore, if RV denotes the curvature of the Levi-Civita connection of gy and R is
the curvature of the Bott connection, then for any vector fields X and Y on U, we have

<R(X’H, Y’;.[)YH, XH>7-[ = <RU(7TU,*X7 7TU7*Y)7TU7*Y, 7TU,*X>9U

See [26, Section 3.1] for details. In conclusion, k; only depends on the Riemannian geome-
try of My for all sufficiently small neighborhoods U of M. Next. let p : M — M denote the
universal cover of Ml. Consider the foliation and metric (M, F, g) obtained by pulling these
back from M. The foliation F is then Riemannian with totally geodesic leaves since the
equations of (2.1) only depend on local properties. The same is true for the requirements
for the foliation to be Sasakian, so if we can show that its pseudo-Hermitian curvature K
will be bounded from below by ki. However, this is true, since for every sufficiently small
neighborhood U such that p : U — U = p(U) is an isometry and such that U/F|U is a
manifold, we have that U/ F|U is isometric to My as well. The result follows.

3.5 Vertical Hessian and Laplacian comparison theorems

One can also easily prove vertical Hessian and Laplacian comparison theorems.

Theorem 3.8 (Vertical Hessian comparison theorem). Let (M, F,g) be a Sasakian folia-
tion. Let k1 € R and ¢ > 0. Let x # xg be a point that is not in the g. cut-locus of xg.
Assume that ||VHT5(:L’)||3 > 0 and that for every X € I'°(H), | X||n =1,

K'H’J(X,X) > k1.

Then, for any g-unit vertical vector z € V,,

Prcky (1)

2
Vire(z,2) < D—eky (1) (€76 = Yrky (re)) + VL5 g, (re)?

where Ao = ||[Vyre(x)||2.

Note that a simple computation shows wl—>\5k1 (1e)2 — b Ak, (re)0 by (1) > 0 if 72 > 0
for € > 0. Actually, when ky > 0,

O sy (re)? = by (re)p—xoy ()

4 . V Ackire . V Ackire V Ackire V Aek1re
= 53 8 sin — cos >0
/\skl 2 2 2 2

since 7. < 19 < 27w/vk1 < 27w/y/Ack1 by Theorem 3.2. Other cases can be discussed
similarly.
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Proof. The proof is somewhat similar to the proof of Theorem 3.5 (2), so we omit the
details. The idea is to consider the vector field defined along a geodesic v by

C 1
X = (G0 = L0, 0) T2 + (G (1= 2o, 0) + O, 0) 2
where Z is parallel transport of z along ~ for the adjoint connection Ve =V + %J and
Co, C1 are the constants such that X(r;) = z. a

As an immediate corollary, we deduce:

Corollary 3.9 (Vertical Laplacian comparison theorem). Let (M, F,g) be a Sasakian
foliation. Let k1 € R and € > 0. Assume that for every X € I°(H), || X|y =1,

Ky 7(X, X) > ki.

Let x # mg which is not in the cut-locus of zo. Define A\:(z) = ||[Vure(z)||* and assume
Ae(z) > 0. Then at x we have

P—rky (1e)
¢7A5k1 (?”5)(67”5 - w*)\akl (Te)) + Q/JLAEkl (TE)Z.

Therefore, outside of the dg cut-locus of xo and globally on M in the sense of distributions,

(b*kl (TU)
bty (r0) -, (ro) + 9", (r0)?

Remark 3.10. When k1 = 0, the theorem yields Ayrg < i—%
0

AVTE <

Ayrg <

3.6 Measure contraction properties

As an application of Theorem 3.1, we will show measure contraction properties of the
metric measure spaces (M, d.,u), € > 0 (see [35, 43, 44] for standard corollaries of the
measure contraction properties). To state it, we prepare some notations. Let £ > 0. Let
er: C([0,1];M) — M be the evaluation map for ¢ € [0,1] given by e;(y) = . For a
probability measure v on M and xy € M, there exists a probability measure II on the
space of (constant speed) minimal geodesics Geo.(M) on (M, g.) satisfying (eg)sII = dg,
and (eq)3II = v. Such a I is called a dynamic optimal coupling from d,, to v. In our case,
we have a measurable map G, : M — Geo. (M) so that each G.(x) is a minimal g. geodesic
from x to x by a measurable selection theorem (the existence of such map is classical
when € > 0 and we refer to [33] in the case ¢ = 0). Then, the push-forward measure Gyv
indeed provides a dynamic optimal coupling from §,, to v. For v € Geo.(M), we denote
the g.-length of v by £(v) (we omit ¢ for simplicity of notations). Let u denote the volume
measure of g. For A € B(M) (Borel set in M) with p(A) € (0,00), let fig be a probability
measure on M given by the normalization of the restriction of y on A:

pi= p(A) " pa.
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Again, we write A\ : M — R for the function A.(z) = ||[Vx7:|%(7)% By slight abuse of
notation, let us also define \. : Geo.(M) — R such that for any constant speed geodesic
/ 2
v € Geo (M) starting at xg, A:(y) = Hﬂ’ﬁ%é””, t € [0,1] which is a constant by (2.4).

Additionally, let us define a function ®. , , and =, , for e >0, A € (0,1] and x € R by

b [ACKT = 00 o)+ pnl), RO,
E,A,/{(T‘) = T()\T2 n 125)3/2’ k=0,
= (r) = ¢—+(r)

P-r(r)(er —p_p(r)) + 9L (r)*
We also write @, := ®g 1 4.

Theorem 3.11 (Measure contraction property). Let (M, F,g) be a Sasakian foliation.
Assume that for constants ki, ks € R and for every X € T°°(H) with || X||y =1,

Ky (X, X) > ki, (3.4)
and,
Ricy, ;1 (X, X) > (n—2)ke. (3.5)

(1) For any e > 0, A € B(M) with u(A) € (0,00) and xo € M, there exists a dynamic
optimal coupling I1 on the space of (constant speed) minimal geodesics Geo.(M) from
0z, to jta such that the following holds:

t1+min{1,>\21*1}¢ﬁ;\3k2 () Pernoky (E(Y))

1> (e ( Z;fk‘g (€(7)Pe e Ak (£(7))

te(y)
«exp e / = (P)dr | (AT, (3.6)
()

(2) For any A € B(M) with u(A) € (0,00) and xo € M, there exists a dynamic optimal
coupling I1 from ., to Lo on the space of (constant speed) minimal geodesics Geop(M)
such that the following holds:

> (e <t¢zk22 (7)) Py (EE(7))
e ¢2222(€(7))‘I’k1(£(7))

u(A)H) .

Remark 3.12. Theorem 3.11 (2) asserts the same inequality as in [33, Theorem 1.1]. As
we will see below, our approach gives an alternative simple proof of this result.

A strong connection between Laplacian comparison theorems and measure contraction
properties in an infinitesimal form are known (see [30], [36, Section 6.2] for instance; cf.
(3.7) below). Here we will give a detailed proof for completeness. One reason why we prefer
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it is on the fact that Laplacian comparison theorem is described in terms of Laplacian
and distance while measure contraction property is formulated in terms of distance and
measure. Laplacian, distance and measure are mutually related in Riemannian geometry
but the same relation is not obvious (even not always true) in sub-Riemannian setting.
Another reason is on the fact we are formulating the measure contraction property in an
integrated form. Thus the presence of cut locus should be treated somehow. It can be
problematic when € = 0. Thus we first show the measure contraction property when € > 0
and let € — 0 instead of showing it directly from the Laplacian comparison theorem when
e=0.

Proof. (1) In the case € > 0, we closely follow the argument in [35, Section 3]. For 2y € M,
let Do(z9) C Ty,M be the maximal domain of the g.-exponential map eXPe 4, at o. That
is, M\ exp, , (De(w0)) is the g cut-locus Cutc(zg) of o. Let p. be the Riemannian
measure for g.. By definition, we can easily see p. = e~ %/2y. Thus it suffices to show the
assertion for y. instead of u, since our goal (3.6) is linear in p. We denote the density of
(exp_ 1, )ette in polar coordinate (r,&) (r > 0, & € Tp,,M, |¢] = 1) on D(xo) by Az (7, &).
Then we know 9

Az (1.6) = Dere(expe 4y (1, €)) - Ay (1, €), (3.7)

where A; is the Laplace-Beltrami operator for g (see [23, Theorem 3.8] or [37, Section
9.1]). Since A. = Ay + Ay, by Theorem 3.1 and Corollary 3.9 (see the comment after
Theorem 3.8 also) together with (3.1) and a simple computation,

¢L>\5k2(rs) + ¢L>\€k1 (re) AV _a kg (re) +¢
G ncka(Te)  Prcky (1) AeWniky (12/2) +
+ 8557)\51“ (7“5)

1 1
Agre < min{l,/\—l}—l—(n—Q)
3

Te

1 1 Oy (Te) P Ak, (Te)
= —min<1l,— -1+ (n—2 2 4 el + 2k, (7
i Ly 1 2 Boy (1) | e 7E)

When A > 0. Recall that, as observed after (2.4), Ac = Ac(exp, ,, (7, &)) does not depend
on r. Thus, we regard it constant when we fix £&. Then by integrating (3.7) in r with
applying this inequality, for 0 < r1 < ro with (r9,&) € D(xg), we obtain

As,:}co (7“27 f) <®()\67 7’2)
Aé,mo (7‘1, f) _@()\5, Tl)’

(3.8)
where

,
@()\7 7“) ;:Tmln{l,)\—lfl}d)T_L;i2 (T)(I)€7)\’)\k1 (’I”) exp <E/ Es,)\kl (s)ds)
(&
for some ¢ > 0. Let f € C§°(M) supported on exp, , (tD(wo)) with f > 0. It suffices
to show the integral of f by u is larger than the integral of f by the right hand side of

(3.6), since the measure on the right hand side of (3.6) is supported on exp, , (tD(xo))
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by definition. Let G. : M — Geo.(M) be the map mentioned at the beginning of this

subsection for v = fi. Since ((exp_ s, )spt)(tD(wo) \ tD(w0)) = 0, with keeping Remark 3.6
in mind, we have

/ fp = / F(€XDy g (7, €)) A g, €) i
M tD(zo)

— /D o TP (01,60 Ay 0, €)

@<)\€7 t/r)
> /D(xo) f(expg 4, (tr, 5))mAE,IO (r, &) drd¢

O(Ae, tr)
O(Aey 1)

O(As; (7)) -

Here the inequality follows from (3.8), and we have used p(Cut.(p)) = 0 in the last
identity.

- / F(e(Gelexpeu (1. €))) Ap (1 €) drde
D(zo)

- / Flee()u(A)
Geo. (M)

(2) Subdividing A by taking an intersection with annuli (with respect to dp), we may
assume that A is bounded. Then our claim may be studied only in a (closed) dp-ball of
sufficiently large radius. Let f € C§°(M) with f > 0. Following a naive idea, we apply
(3.6) to integrations of f and let € | 0 with the Fatou lemma. Indeed, the density of the
right hand side of (3.8) is non-negative. By the proof of (1), we may assume also that
ITin (3.6) is of the form (G:)sfia. By Lemma 2.2, we have lim. g A\c(z) = 1 p-a.e. This
implies that lim._,0 Ae(Ge(z)) = 1. By (1), it is sufficient to take the limit of A. in Fatou’s
lemma. Note that ¢(G.(x)) = d.(xo,z) and hence ¢(G.(x)) — do(xo,z) = {(Go(x)) as
e | 0. Thus the conclusion follows once we have e;(G:(x)) — e/(Go(z)) for p-a.e. x.
Suppose = ¢ Cutg(zg). Let us take a decreasing sequence (e, )nen with €, — 0. Since d.
is non-increasing in ¢,

dey (T, (G, (7)) < de, (2, (G, (7)) = (1 = t)de, (20, 7).

Since the right hand side converges to (1 — t)do(zo, ), (e:(Ge, (x)))nen is a d.,-bounded
sequence. Thus there is a subsequence (e,1))ren such that limg o €t(Gen(k) (x)) exists.
We denote the limit by y. Then, for k < &/,

dé‘n(k) (f[f(), et(G€n<k/) (l'))) S dEn(k/) (x(]; et(Gé‘n(k/) (':U))) - tdan(k/) (.1'0, LL‘)?
dsn(k) (et(GEn(k/) (:I"))7 l’) S dEn(k/) (et(GEn(k/) (l’)), l‘) = (1 - t)dé‘n(k/) ($07 l’)
By letting k¥’ — oo and k — oo, we have
do(z0,y) < tdo(wo,z), do(y,z) < (1 —1t)do(zo, ).

By the triangle inequality do(zo, z) < do(xo,y) + do(y, z), both of the last two inequalities
must be equalities. Since z ¢ Cutg(zg), Go(x) is a unique minimal geodesic from xz( to
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x. Hence we have y = e;(Go(x)). Thus the claim holds since the limit y is independent of
the choice of a subsequence and Cutg(xg) is of u-measure zero. O

We now recall the following definition (see [35, 43, 44]).

Definition 3.13. Let (X,0,v) be a metric measure space. Assume that for every xop € X
there ezists a Borel set Qg of full measure in X (that is v(X \ Qgz,) = 0) such that any
point of Qy, is connected to xo by a unique distance minimizing geodesic t — ¢4 5, (),
t € [0,1], starting at x and ending at 9. We say that (X,0,v) satisfies the measure
contraction property MCP(0,N), N > 0, if for every o € X, t € [0,1] and Borel set U,

v(9tao(U)) 2 (1= )Nv(U).

Remark 3.14. On a N-dimensional Riemannian manifold, the measure contraction prop-
erty MCP(0, N) is known to be equivalent to non-negative Ricci curvature, see [35]. How-
ever, as the next corollary shows, on a Ni-dimensional Riemannian manifold, the measure
contraction property MCP(0, No) with No > Ny does not imply any Ricci lower bound
(such phenomenon was already observed by Rifford [38]).

As an easy consequence of Theorem 3.11, we deduce:

Corollary 3.15. Let (M, F,g) be a Sasakian foliation such that
K’H’J > 0, RiCHJJ_ > 0.

Then, for every € > 0, the metric measure space (M, d., i) satisfies the measure contrac-
tion property MCP(0,n + 4). Moreover, the metric measure space (M, dy, ) satisfies the
measure contraction property MCP(0,n + 3) and the constant n + 3 is sharp.

This corollary is interesting because, as observed earlier in Remark 2.6, the Ricci tensor
of the metric g. for the Levi-Civita connection blows up to —oo in the directions of the
horizontal space when € — 0. Such similar situations are pointed out in Lee [31].

Proof. Under the assumption, from Theorem 3.1 and Corollary 3.9, we have

1 1 2
A;.ﬂ“sgmin{l,)\—l}—i—n—i_ ,
15

Te Te
and )
Ayre <Eco(re) = —3-
ETe + TZ
Therefore,
1 1 n+3 Te
A A < ~—min{1l,— —1 - )
Hie T+ & Vrsrgmm{ "N }+ Te 12 + r2
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As before, we deduce that for any A € B(M) with p(A) € (0,00), there exists a dynamic
optimal coupling II from 4, to fia such that the following holds:

{1l 12¢ + £()?
> tn+3+m1n{1,)\5 1} AT 3.9
n = (et)ﬁ ( 122 —|—t2€(’y)2'u( ) ( )
> (e0)s (P4 u(A) ).
Thus the former assertion holds. Letting ¢ — 0 in (3.9) yields the latter result. O

3.7 Horizontal Hessian comparison theorem for the sub-Riemannian dis-
tance

To conclude the paper, we comment on the Hessian comparison theorem in the case that
was let open, namely ¢ = 0. It does not seem easy to directly take the limit £ | 0 in
Theorem 3.5. However, one can still prove some Hessian comparison theorem for the
sub-Riemannian distance with the aid of Theorem 3.11. For simplicity of the discussion,
we restrict ourselves to the case of non-negative horizontal sectional curvature and focus
on the worst possible direction in the Hessian comparison theorem. We first prove the
following slight improvement of Theorem 3.5, in the case k1 = ko = 0.

Theorem 3.16. Let (M, F,g) be a Sasakian foliation. Let ¢ > 0. Assume that the hori-
zontal sectional curvature of the Bott connection is non-negative, namely for all horizontal
fields X, Y,

(R(X,Y)Y, X)y > 0.

Let © # x¢ which is not in the g. cut-locus of xg. Let X € T,M which is horizontal and
such that || X || = 1. Then, one has at z,

1 (X, Vyrs)2, 17| T(X,V 2
V(X X) < - 4 X Vnrely | 1 el TX, Vaerolly
Te Te 4e 1+%
€

Proof. Let « be the unique length parametrized geodesic connecting x¢ to x. We consider
at x the vertical vector
1 T(X,Y)
T2y, i
We still denote by Z the vector field along v which is obtained by parallel transport of Z
for the Bott connection V. We will also still denote by X the vector field along ~ which is
obtained by parallel transport of X € T;M for the adjoint connection VE=V+ %J . We
now consider the vector field Y defined along ~ by:
3 2

Y(0) = = got(t =iy + X+ (1= o (G = gt W) 2+ 5T/ )

2¢e Te 27

Z

26\ 3 2

From Lemma 4.1 and the index lemma, one has

V3re(X, X) < / (¢V5, VEY)e = (R, V)Y, ) ) .
0
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‘We now observe that

(RE(Y, Y)Y, %)e

(RO, Y)Y, y)e = |IT(Y,7)]2
= (R(Vj4, i) Yo, Yoo — IIT(Y,7)|2
> —|IT(Y,7)

I2.

Therefore we have
Vi (XX < [ ((VEY 9.+ T)lE)
0
A lengthy but routine computation yields

| w5y w5y i) ) e
1 + <X7V'HTE>%{+ (TE_‘_ T?

QHVWH%{) Yk

Te Te

oI+ (

IVl ) (2T X0

Using the fact that
T(X.)

1
21, 2B’
1 + 12e

7 =

one gets

l-i- (Xa v?—lrs>’2ﬂ _’_LTEHT(X v?—ﬂ"e)”%}
Te Te e 14 HVngssll r2

/0 (VEY,VEY)e + | T(Y,7)|2 =

The proof is then complete. O

Observe that we always have

1 N (X, Vure)3 N 17| T(X, vHrE)H%,

e Te de 14 ||VH17;E|| 2T
and therefore 4
foT'E(X X) S
7"5

We conclude with the following (non-optimal) sub-Riemannian Hessian comparison theo-
rem.

Theorem 3.17 (Sub-Riemannian Hessian comparison theorem). Let (M, F, g) be a Sasak-
ian foliation. Assume that the horizontal sectional curvature of the Bott connection is
non-negative. Let X € T'°(H) be a smooth vector field such that || X||y = 1. For z €

M\ Cuty(xo), one has

4
VHTO(X X) S
TO
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Proof. A difficulty in the proof is that we have no topological information about the set
Cutg(rg) Un>1 Cuty/,(70), thus taking pointwise limits is made difficult. It is however
possible to bypass this difficulty by using optimal transportation tools. Let x € M\
Cuty(zg) and v € H,, with ||v| = 1.

From Lemma 2.1, we know that M \ Cutg(zg) is an open set, so there exists an open
set U containing xy so that U C M\ Cutg(z). Then, there exists at least one minimal
sub-Riemannian geodesic v : [0,1] — M such that 79 = 2 and 49 = v. We can assume
that 7 is included in U. We denote z := 71 and y := ~1/5. Let (en)nen be a decreasing
sequence with lim,, o€, = 0. For a sufficiently small § > 0, let A := By(z,d) and
apply Theorem 3.11 (2) to this choice of A. Then we can easily see that (e;);II < Cp
for some constant C' = C(t,0) > 0 for each t. Since r., is smooth a.e. for each n € N,
Fubini’s theorem implies that, for II-a.e. sub-Riemannian-minimal geodesics o, 7, is twice
differentiable at o for each n € N. Then, for each h € C3°((0,1)) with h > 0, we have

Yh(t+n) +h(t —n) — 2h(t)
2

Te, (O't) dt

1
/ B (t)re, (o¢) dt = lim
0

740 n
1
t t—mn)—2 t
— hm h(t) rgn ( + 77) + ’r‘En (2 77) rEn ( )
70 Jo n

1
_ / BV 2re (61, 60) dt
0
1
§4/ M)
0

Tep (Ut>

dt

Now we take n — oo in the last inequality, after integration by II. Thus we obtain
/ / R (t)ro(oy) dtll(do) < 4 / / dtH o).
Geog(M) Geog(M) JO TO

o Lo
T(t) o 4/Geoo(M) ""O(Ut)H(d )

Let g(t,s) := min{s(1 — t),(1 — s)} be the Green function of —d?/ds* on [0,1] with the
Dirichlet boundary condition. Then we have

/01 W' (t) ( /0 g, 5)7(s) ds) dt = — /0 hyr) d,
/01 h'(t) (/GGOO(M) ro(oy) (do) + /01 g(t, s)7(s) d3> dt < 0.
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Thus the distributional characterization of convex functions (see [42, Theorem 1.29] for
instance), yields that

1
/ ro(at)H(da)+/ g(t,s)r(s)ds
Geop(M) 0

is concave since it is continuous in ¢. Thus we have

1 1
2/ ro(oo) I(do) + 2/ ro(o1) II(do)
Geog(M) Geoo (M)

< /GeOO(M) ro(01/2) I(do) + /01g <;s> 7(s)ds.

Hence, by letting ¢ | 0, and using the proof of Theorem 3.11 (2) , we obtain

o) + o) o) <4 [ (5.9) Lo
570(%) + 5r0(2) = ro(y) < ; 9{ 38 ro(o) s

Then the conclusion follows by dividing the last inequality by do(z,y)? and letting do(z,y) =
do(x,z) — 0. 0

4 Appendix 1: Second variation formulas and index forms

In this appendix, for the sake of reference, we collect without proofs several formulas used
in the text. The main point is that the classical theory of second variations and Jacobi
fields (see [23]) can be reformulated by using a connection which is not necessarily the
Levi-Civita connection. To make the formulas and computations as straightforward and
elegant as for the Levi-Civita connection, the only requirement is that we have to work
with a metric connection whose adjoint is also metric.

Let (M, g) be a complete Riemannian manifold and V be an affine metric connection on M.
We denote by V the adjoint connection of V given by

VxY =VxY —T(X,Y),

where T is the torsion tensor of V. We will assume that V is a metric connection. This is
obviously equivalent to the fact that for every smooth vector fields X, Y, Z on M, one has

(T(X,Y), Z) = —(T(X,Z),Y). (4.1)

Observe that the connection (V + V) /2 is torsion free and metric, it is therefore the Levi-
Civita connection of the metric g. Let v : [0,7] — M be a smooth path on M. The energy
of v is defined as

T
B0) =35 [ WP
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Let now X be a smooth vector field on « with vanishing endpoints. One considers the
variation of curves 7(s,t) = expvv(t)(sX (7(t))) where expV is the exponential map of the

connection V. The first variation of the energy F(v) is given by the formula:

T T T
/O (V! X+ T(X, ) dt = /0 (v, ¥V X) dt = — /O (VA X) dt.

As a consequence, the critical curves of I are the geodesics of the adjoint connection V:
=) I
Vv =0.

These critical curves are also geodesics for V and for the Levi-Civita connection and thus
distance minimizing if the endpoints are not in the cut-locus. One can also compute the
second variation of the energy at a geodesic v and standard computations yield

T
/0 (<v7’Xa @’Y/X> —(R(Y, X)X, 7’)) dt (4.2)

where R is the Riemann curvature tensor of V. This is the formula for the second variation
with fixed endpoints. This formula does not depend on the choice of connection V.

The index form of a vector field X (with not necessarily vanishing endpoints) along a
geodesic v is given by

T
T0:XX) = [ ((9,X,.9,X) = (R X0X.)) de

T
_ /O (VX 9,0X) = (RO, X)X, ) d.

If Y is a Jacobi field along the geodesic vy, one has
VLY = V0 = RO Y)Y
because @7/7’ = 0. The Jacobi equation therefore writes
V., VY =R+, Y). (4.3)
We have then the following results:

Lemma 4.1. Let xg € M and © # xg which is not in the cut-locus of x. We denote by
r = d(xo,-) the distance function from xo. Let X € T,M be orthogonal to Vr(x). At the
point x, we have

Vi (X, X)=1(v,Y,Y)

where v is the unique length parametrized geodesic connecting xg to x and Y the Jacob:
field along v such that Y (0) =0 and Y (r(z)) = X.
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Combining this with the index lemma yields:

Lemma 4.2. Let xg € M and x # x¢ which is not in the cut-locus of x. Let X € T, M.
At x, we have

V2r(X, X) < /0 (9%, 9, %) — (R, X)X, 7)) de

where y is the unique length parametrized geodesic connecting xo to x and X is any vector
field along v such that X(0) =0 and X (r(z)) = X.

5 Appendix 2: Jacobi fields on Sasakian manifolds of con-
stant sectional curvature

In this Appendix, we compute the Jacobi fields of the metric g. on Sasakian manifolds
of constant sectional curvature. An important difference with respect to [11] is that we
work with the adjoint connection V¢ = V + éJ instead of the Tanaka-Webster (= Bott)
connection. We assume that the Riemannian foliation on M is a Sasakian foliation. As in
Section 3, the Reeb vector field on M will be denoted by S and the complex structure by
J. We refer for instance to Chapter 2 in [47] for a discussion about Sasakian model spaces
from the point of view of sub-Riemannian geometry.

We use the notations of Section 3. For any vector field Y along v, we will use Y’ for the
covariant derivative with respect to Vi,. Whenever we use the word parallel, it is with

respect to Ve, We identify vectors and their corresponding parallel vector field. We define
Gu, ¥y and @, as in Section 3

Lemma 5.1. Let R be the curvature of the Bott connection V and assume that for some
k € R,
(R(v,w)w,v) = k|jv A w||3H, v,w e H.
Let v : [0,7] = M be a geodesic of unit speed with respect to g..
(a) Let Y be the Jacobi vector field along v such that Y(0) = 0 and Y (r) = vo € H ().
Assume that 79, # 0 and that vg is orthogonal to Jvy, and ~vy,. Finally, if

i -1
= 4e
assume that \/—pr < m. Then

0= 950 (e (200l =0) gy (BT =0) 1) o

= Ivllgk <o,

39



(b) Assume that v is a horizontal curve. Let'Y be the Jacobi vector field along v such that
Y (0) =0 and Y (r) = Jvy,(r). If k >0, assume that Vkr < 7. Then

Ce = 4 (r)? = i ()¢ 4 (r) + er9p” . (r) > 0, (5.2)

and Y (t) is given by

V() = 5 (#aWalt) + (or = () (0)3/ 1)
" é (VR )Ph(8) = V() + (e (1) = 1 () ) S().

(c) Let~:[0,r] = M be vertical with r < 2m+/e. Then any Jacobi field Y with Y (0) =0
and Y (r) = vg € Hy, is given by

Y (t) ! (<1 + cos — ! CoS —— — cos t > 0
= —-—— —_— —_— _— 0
2 (1 — cos \L@) e Ve Ve

—(vVeS, v )g. (sin reto sin —— + sin t) JUO> (5.3)

Ve Ve Ve

In fact, this is a Jacobi-field along all vertical geodesics on a Sasakian manifold without
any assumption on the curvature.

Proof. The Jacobi equation for a vector field Y is given by
0= @ixvzlY —RE(y, Y)Y
=Y"-TH,Y') - éJW/Y’ + éJy/’y’ — R(, Y)Y — %JTW,y)fy’. (5.4)
Define X = 7Y and (Y, S), = F'. Equation (5.4) then becomes
F' = (I, X'y,
X' = HRIEX 415,700, 3X" — L (F' — (o, X)) I

Note that Cy = F' — (Jvy,, X)4 is constant and so CpJ~y, is a parallel vector field.

(a) We assume that X is contained in the orthogonal complement of Jv3, and 4, which is
a parallel vector bundle along 7. Given this assumption and initial condition F'(0) = 0,
we have F' = Cpt. From the condition F(r) = 0, we must have Cy = 0, and so X is a
solution of
X" = —k|vll3X +(S,7). IX".

Define Z = X +4JX. Then

2"+ ilS,7)g Z'+ |l 2kZ = 0.
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The solution with initial condition Z(0) = 0 is
Z(t) = e 15 eet 20 (1)(Xo + I Xo),
where X is some parallel vector field and

(5,712, 1= 2
g = =28 — 2 = == T — kg2

Using that Z(r) = v + iJug and taking the real part of Z, we get the result.
If ~ is horizontal, then we are left so solve

F' = (Jv,X"),,

X" = —kX - éCOJ'y’.
Write X = fJ+'. Then Cy = F' — f and

1
' kf= —ECO-

The solution, given the initial condition, is

(0) = Cron(t) = 2 [ oulodds = Cuuale) = L0t 40),

for some constant C. This means that
1
P = G (1= 20-a)) + G40

Then we need to solve the equations C19”, (r)—Co1¢)  (r) = 1 and Co(r—L1v_4(r))+
C1¢' . (r) = 0. If C. is as in (5.2), the solution is

e’ . (r er — Y_g(r
oo ) )
Ce Ce
To complete the proof, we need to show that the denominator is in fact non-zero.

However, this follows from the observation that
U (r)? = () () = rp(r) @, (r/2),
80 Ce = 1 (r)(Wpu(r/2) + &) = r¢u(r)(Wu(r/2) +¢).

Define s = (y/&S5,7)4. € {—1,1}. Since R(v/,-) = 0, when 7 is vertical, we need no
assumptions on the curvature. The equation for a Jacobi vector field is now

F' =0
X// — <S, ry/>gEJX/ —

e

Define Z = X +4JX. With initial and final conditions, we have I’ = 0 and

JX'.

7 1 — g ist/VE -
(t) = W(UO +1 'UO).
Taking the real part, the result follows. O
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