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The notion of Risk

Suppose you can choose between 2 games:

Game 1: 5% chance of winning 1000e; 95% chance of not winning
anything.

Game 2: 5% chance of winning 5000e; 95% chance of loosing 200e.

Which game should you choose?

Expected return for game 1: 0.05 ∗ 1000 = 50e

Expected return for game 2: 0.05 ∗ 5000− 0.95 ∗ 200 = 60e

Conclusion : The expected return of game 2 is higher.

Nevertheless, most people choose game 1, because they are risk averse.
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The notion of Risk

A risk averse investor doesn’t like to take risk. If he can choose between
two investments with the same expected return, he will choose the less
risky one.

But usually investments with higher expected return also have higher risk.

So, there is a trade-off between expected return and risk.

In portfolio theory, expected return is measured by the average of the
portfolio return, risk by its dispersion.
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Harry Markowitz (JF 1952)

Prior to Markowitz’s work, investors focused on assessing the risks and
rewards of individual securities in constructing their portfolios.

Key insight of Markowitz: An asset’s risk and return should not be
assessed by itself, but by how it contributes to a portfolio’s overall risk and
return.

Markowitz assumes that investors are risk averse, meaning that given two
portfolios that offer the same expected return, investors will prefer the less
risky one. Thus, an investor will take on increased risk only if
compensated by higher expected returns.

Since portfolio volatility depends on the correlations between the
component assets, an investor can reduce portfolio risk simply by holding
combinations of instruments that are not perfectly positively correlated.
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Efficient portfolio

An efficient portfolio is defined as the portfolio that maximizes the
expected return for a given amount of risk, or the portfolio that minimizes
the risk for a given expected return.
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Efficient frontier without risk-free assets

The efficient frontier is the curve that shows all efficient portfolios in a
risk-return framework.
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Minimum variance portfolio

Suppose an investor wants to invest all his money with the lowest possible
amount of risk. Because he will always invest in an efficient portfolio, he
will choose the portfolio on the efficient frontier with minimum standard
deviation.
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Optimal portfolio in the Markowitz sense

The theory of Markowitz stipulates that investors try to maximize their
utility function u that depends on his risk aversion parameter γ and is
given by

u(γ) = E [P]− 1

2
γσ2

P ,

where E [P] denotes the (unconditional) expected portfolio return.

The higher value of γ the more risk averse is the investor.

The optimal portfolio for an investor is the portfolio with maximum utility.

Jang Schiltz (LSF) Conditioned portfolio optimization April 4, 2017 10 / 62



Optimal portfolio in the Markowitz sense

The theory of Markowitz stipulates that investors try to maximize their
utility function u that depends on his risk aversion parameter γ and is
given by

u(γ) = E [P]− 1

2
γσ2

P ,

where E [P] denotes the (unconditional) expected portfolio return.

The higher value of γ the more risk averse is the investor.

The optimal portfolio for an investor is the portfolio with maximum utility.

Jang Schiltz (LSF) Conditioned portfolio optimization April 4, 2017 10 / 62



Optimal portfolio in the Markowitz sense

The theory of Markowitz stipulates that investors try to maximize their
utility function u that depends on his risk aversion parameter γ and is
given by

u(γ) = E [P]− 1

2
γσ2

P ,

where E [P] denotes the (unconditional) expected portfolio return.

The higher value of γ the more risk averse is the investor.

The optimal portfolio for an investor is the portfolio with maximum utility.

Jang Schiltz (LSF) Conditioned portfolio optimization April 4, 2017 10 / 62



Optimal portfolio in the Markowitz sense

The theory of Markowitz stipulates that investors try to maximize their
utility function u that depends on his risk aversion parameter γ and is
given by

u(γ) = E [P]− 1

2
γσ2

P ,

where E [P] denotes the (unconditional) expected portfolio return.

The higher value of γ the more risk averse is the investor.

The optimal portfolio for an investor is the portfolio with maximum utility.

Jang Schiltz (LSF) Conditioned portfolio optimization April 4, 2017 10 / 62



Optimal portfolio in the Markowitz sense

Graphically, the portfolio with maximum utility is gained by moving the
utility curve as high as possible. The utility curve is the curve that shows
the possible combinations of mean and standard deviation that result in
the same utility.
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Sharpe ratio

Suppose now, that there exists a risk-free asset guaranteing a risk-free rate
of return rf .

The Sharpe ratio (JF 1964) examines the performance of an investment by
adjusting for its risk.

The ratio measures the excess return (or risk premium) per unit of
deviation in an investment asset.

For a portfolio P, of volatility σP , the Sharp ratio SRP is then defined as

SRP =
E [P]− rf

σP
.
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Tangency portfolio without risk-free asset

If an investor wants to invest in a portfolio with maximum Sharpe ratio,
getting thus the highest expected return per unit of risk, he chooses the
tangency portfolio, which is the most ”risk-efficient portfolio”.

Graphically, this portfolio is the point where a line through the origin is
tangent to the efficient frontier, because this point has the property that is
has the highest possible mean-standard deviation ratio.
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Tangency portfolio with risk-free assets

The theory of Markowitz implies that the new efficient frontier is a straight
line, starting at the risk-free point and tangent to the old efficient frontier.

This line, called also the capital allocation line is the efficient frontier in
the presence of a risk-free asset.
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Optimal portfolio with risk-free assets

Maximizing the utility function of an investor in the presence of a risk-free
asset gives the following optimal portfolio.
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The Ferson-Siegel paper (JF 2001)

Ferson and Siegel postulate that there exists some relationship µ(s)
between a signal s and each asset return r observed at the end of the
investment interval:

rt = µ(st−1) + εt ,

with E [εt |st−1] = 0.

How do we optimally use this information in an otherwise classical
portfolio optimization process?

Ferson and Siegel provided an analytical solution for the case where the
weights are unconstrained.
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The Ferson-Siegel paper (JF 2001)

Theorem (Ferson and Siegel, 1991)

Given unconditional expected return µP , n risky assets, and no risk-free
asset, the unique portfolio having minimum unconditional variance is
determined by the weights

u′(s)=
e ′Λ(s)

e ′Λ(s)e
+

µP − E
[
e′Λ(s)µ(s)
e′Λ(s)e

]
E
[
µ′(s)

(
Λ(s)− Λ(s)ee′Λ(s)

e′Λ(s)e

)
µ(s)

]µ′(s)
(
Λ(s)−Λ(s)ee ′Λ(s)

e ′Λ(s)e

)

where e is an n−vector of ones and Λ(s) = [µ(s)µ(s)′ + Σ2
ε ]−1; Σ2

ε is the
conditional covariance matrix E [εε′|s].
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The Ferson-Siegel paper (JF 2001)

Theorem (Ferson and Siegel, 1991)

Given unconditional expected return µP , n risky assets, and a risk-free
asset, with return rate rf , the unique portfolio having minimum
unconditional variance is determined by the weights

u′(s) =
µP − rf

E [(µ(s)− rf e)′Λ(s)(µ(s)− rf e)]
(µ(s)− rf e)′Λ(s),

where e is an n−vector of ones and
Λ(s) = [(µ(s)− rf e)(µ(s)− rf e)′ + Σ2

ε ]−1; Σ2
ε is the conditional

covariance matrix E [εε′|s].
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Problems with the Ferson-Siegel results

In practice, portfolio weights are often not unconstrained.

In particular, negative portfolio weights correspond to short sales of the
underlying assets. It is generally unrealistic to assume that large short
positions can be entered at no extra cost.

This may even be prohibited for legal reasons, as in the case of pension
funds.

Clearly, ignoring these restrictions is even less realistic when dealing with
less liquid assets such as investment funds.

Another plausible constraint on feasible investment weights would restrict
them to a certain interval usually centred on zero, so as to avoid entering
excessively large positions in particular assets.

For the traditional Markowitz problem, the introduction of portfolio
weights constraints of any kind means a closed-form solution is no longer
available, and a numerical algorithm has to be used.
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them to a certain interval usually centred on zero, so as to avoid entering
excessively large positions in particular assets.

For the traditional Markowitz problem, the introduction of portfolio
weights constraints of any kind means a closed-form solution is no longer
available, and a numerical algorithm has to be used.
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Possible signals
Taken from a continuous scale ranging from purely macroeconomic indices
to investor sentiment indicators. Indicators taking into account investor
attitude may be based on some model or calculated in an ad-hoc fashion.

Examples include

short-term treasury bill rates (Fama and Schwert 1977);

CBOE Market Volatility Index (VIX) (Whaley 1993) or its European
equivalents (VDAX etc.);

risk aversion indices using averaging and normalisation (UBS Investor
Sentiment Index 2003) or PCA reduction (Coudert and Gex 2007) of
several macroeconomic indicators;

global risk aversion indices (GRAI) (Kumar and Persaud 2004) based
on a measure of rank correlation between current returns and previous
risks;

option-based risk aversion indices (Tarashev et al. 2003);

sentiment indicators directly obtained from surveys (e.g. University of
Michigan Consumer Sentiment Index)
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Unconditioned expected return and variance given
conditioning information

These are obtained as expectation integrals over the signal domain. If a
risk-free asset with return rt is available,

E (P) = E
[
u′(s)(µ(s)− rf 1)

]
= E [I1(u, s)]

and

σ2(P) = E
[
u′(s)

[
(µ(s)− rt1)(µ(s)− rt1)′ + σ2

ε

]
u(s)

]
− µ2

P

= E [I2(u, s)]− µ2
P

for an expected unconditional return of µP and a conditional covariance
matrix σ2

ε .
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Optimal control formulation

Minimize J[s−,s+](x , u) =

∫ s+

s−
I2(u, s)ps(s)ds as s− → −∞, s+ → +∞

subject to ẋ(s) = I1(u, s)ps(s) ∀s ∈ [s−, s+], with

lim
s→−∞

x(s) = x−, lim
s→+∞

x(s) = x+,

and u(s) ∈ U, ∀s ∈ [s−, s+]

where U ⊆ Rn, x(s) ∈ Rm and L as well as f are continuous and
differentiable in both x and u.

Since the signal s is not necessarly bounded, the resulting control problem
involves expectation integrals with infinite boundaries in the general case.
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Necessity and sufficiency results generalised

The Pontryagin Minimum Principle (PMP) and Mangasarian
sufficiency theorem are shown to continue holding if the control
problem domain corresponds to the full real axis: the corresponding
optimal control problems are well-posed.

The PMP is then used to show that the given optimal control
formulation of the conditioned mean-variance problem generalizes
classical (Ferson and Siegel; Markowitz) problem expressions
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Aim of the study

Carry out backtests executing constrained-weight conditioned optimization
strategies with different settings.
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Data set

11 years of daily data, from January 1999 to February 2010 (2891
samples)

Risky assets: 10 different EUR-based funds commercialized in
Luxembourg chosen across asset categories (equity, fixed income) and
across Morningstar style criteria

Risk-free proxy: EURIBOR with 1 week tenor

Signals: VDAX, volatility of bond index, PCA-based indices built
using both 2 and 4 factors and estimation window sizes of 50, 100
and 200 points, Kumar and Persaud currency-based GRAI obtained
using 1 month and 3 month forward rates
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Benchmark problem

Take VDAX index as signal, with 60 point estimation window and
weights constrained to allow for long investment only

Rebalance Markowitz-optimal portfolio alongside conditioned optimal
portfolio, both with and without the availability of a risk-free proxy
asset, over the 11-year period

Assume lagged relationship µ(s) between signal and return can be
represented by a linear regression

Use kernel density estimates for signal densities

Estimate the above using a given rolling window size (15 to 120
points)

Use direct collocation discretisation method for numerical problem
solutions
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Benchmark problem (2)

Vary the parameters to check both for robustness of strategy results
and whether results can be further improved while staying with a
linear regression model for the relationship between signals and returns

Obtain efficient frontier for every date and choose portfolio based on
quadratic utility functions with risk aversion coefficients between 0
and 10

Compare sharp ratios (ex ante), additive observed returns (ex post),
observed standard deviations (ex post) of both strategies

Try different window sizes, different signal lags, weight averages over
different signal points, different signals
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Typical kernel density estimate for signal and resulting
optimal weight functionals

As would be expected, the constrained optimal weights are not simply a
truncated version of the unconstrained optimal (Ferson-Siegel) weights.

Jang Schiltz (LSF) Conditioned portfolio optimization April 4, 2017 31 / 62



Typical kernel density estimate for signal and resulting
optimal weight functionals

As would be expected, the constrained optimal weights are not simply a
truncated version of the unconstrained optimal (Ferson-Siegel) weights.

Jang Schiltz (LSF) Conditioned portfolio optimization April 4, 2017 31 / 62



Weights in the constrained and unconstrained case
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With risk-free asset

Ex post observed relative excess additive returns, standard deviation ratios
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With risk-free asset

Time path of additive strategy returns for λ = 2
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With risky assets only

Ex post observed relative excess additive returns, standard deviation ratios
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With risky assets only

Time path of additive strategy returns for λ = 2
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Ex post results for different estimation window sizes

Excess returns (and standard deviations) larger as window sizes
increase

Trade-off between statistical quality of estimates and impact of
conditional nonstationarities
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Ex post results for different signal lags

Excess returns larger and standard deviations smaller as lag size
increases

Trade-off between statistical quality of estimators and easier modelling
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Ex post results for weight averages over different number
of signal points

Negligible changes in excess returns, slight changes in standard
deviations: little risk attached to signal observations
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Ex post results for different signals

Best results seen for baseline VDAX signal, averaging seems to
distract from signal power
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Higher-moment optimisation

In the present, we obtain and exercise optimal control formulations of
conditioned problems involving higher moments of returns to evaluate
the impact of conditioning information on higher moment
optimisation for the first time.

Model user preferences with respect to the third and fourth moments
of returns (skewness (S) and kurtosis (K)) as well as mean (M) and
variance (V).

Can either work as in MV case, replacing expected return or variance
by, respectively, skewness or kurtosis (MK efficient frontier)

or use (polynomial) utility functions to capture investor preferences
with respect to more than two moments at the same time (MVK and
MVSK optimisation).
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MK optimisation as an optimal control problem

Minimize J[s−,s+](x , u) =

∫ s+

s−
I4(u, s)ps(s)ds as s− → −∞, s+ → +∞

subject to ẋ(s) = I1(u, s)ps(s) ∀s ∈ [s−, s+], with

lim
s→−∞

x(s) = x−, lim
s→+∞

x(s) = x+,

and u(s) ∈ U, ∀s ∈ [s−, s+]

where I1(u; s) and I4(u; s) are integrands chosen such that the signal
domain integral of Iips(s) corresponds in either case to unconditional ith
moment metrics of expected portfolio returns, µP is the expected
unconditional portfolio return and ps(s) is the signal density function.
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MVK/MVSK optimisation as an optimal control problem
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Ex ante and ex post kurtoses for MK optimisation

Large reduction in kurtosis both ex ante and ex post seen when
conditioning information is used.
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Ex ante and ex post utility values for MVK optimisation
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Ex ante and ex post improvements in ASR for MVSK
optimisation

The adjusted Sharpe ratio (ASR, Pzier and White (2006)) takes into
account third and fourth moments of expected returns.

MVSK improvements are consistent with the MVK case: some
evidence that skewness preferences may be taken into account in
practice.
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Summary

Analysis gives an example of how the optimal control formulation of
conditioned problems may be applied to different problem variations
not previously accessible.

Results provide further evidence (in addition to the existing empirical
two-moment literature) to suggest that conditioned optimisation
increases strategy performance in a universal and robust manner.
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Optimal control translation

Two signals s(1) and s(2) with s = (s(1)s(2)), investor utility function
U(x) = a1x + a2x

2, joint signal density ps give

minimise JIS (x(s), u(s)) =

∫
IS

(
a1

∂2x1

∂s(1)∂s(2)
+ a2

∂2x2

∂s(1)∂s(2)

)
ds

subject to
∂2x1

∂s(1)∂s(2)
= u′(s)µ(s)ps(s),

∂2x2

∂s(1)∂s(2)
=

((
u′(s)µ(s)

)2
+ u′(s)Σ2

εu(s)

)
ps(s),

x1(s−) = x2(s−) = 0

and u(s) ∈ U ∀s ∈ IS

as the resulting mean-variance equivalent optimisation problem
formulation.
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Multidimensional results

Optimal control problems involving a higher-dimensional objective
function integration variable and first-order state PDEs are called
Dieudonné-Rashevsky problems

Multidimensional analogues of PMP have been established (Cesari
1969) for problems of the Dieudonné-Rashevsky type

The problem with cross-derivatives just given represents a form
equivalent to Dieudonné-Rashevsky (Udriste 2010)
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2-D discretisation scheme

Use a 2-D direct collocation scheme: direct means both control and
state variables are discretised, collocation means PDE and other
constraints have to be met exactly at prespecfied (collocation) points
on the grid

Use control values constant on each surface element and state values
on vertices to which bilinear interpolation is applied

Provide analytical expressions for the (sparse) gradient and Hessian
matrices to the numerical solver so convergence rate and
computational cost remain manageable
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2-D discretisation scheme (2)

s1

s2

uapp

s1i
s1(i+1/2)
s1(i+1)

s2js2(j+1/2)s2(j+1)

(a) Control discretisation constant
over surface elements.

s1

s2

xapp

s1i
s1(i+1/2)
s1(i+1)

s2js2(j+1/2)s2(j+1)

(b) Bilinear state discretisation.
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2-D discretisation scheme convergence result

Theorem

At the collocation points si+1/2,j+1/2, the Pontryagin costate equations are
verified to order the chosen grid mesh h:

∇s · λ = −
2∑

α=1

λ
(α)
i+1/2,j+1/2

∂f
(α)
i+1/2,j+1/2

∂x
+ O(h).

Also, for any optimal control interior to the admissible set U, the proposed
scheme is consistent with the first-order condition on the Hamiltonian H

∂H
∂u(s)

= 0 ∀s ∈ IS .
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2-D discretisation gradient and Hessian matrix sparsity
patterns

Gradient dimensions for N × N-point grid and n assets are[
(N − 1)2n + 2N2

]
×
[
3(N − 1)(N − 2) + 3(N − 2) + 5

]
Hessian dimensions in that case are[
(N − 1)2n + 2N2

]
×
[
(N − 1)2n + 2N2

]
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Typical optimal weight functional

Optimal weights are found as vector functions of the two signals
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2-signal backtest

Simultaneously use VDAX (pure equity risk) and BONDIDX
(volatility of Barclays Aggregate Euro Bond Index, pure interest rate
risk) as signals

Obtain optimal portfolio weights for daily rebalancing by optimising
unconditional expected utilities for quadratic investor utility functions
U(x) = a1x + a2x

2 and three different levels of risk aversion:
a2 = −0.2, a2 = −0.5 and a2 = −0.7.

Compare utilities and Sharpe ratios (ex ante and ex post), maximum
drawdowns / drawdown durations (MD/MDD) and observed returns
time paths for Markowitz, 1 signal and 2 signal strategies
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Backtest average utility values
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Backtest average Sharpe ratios
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Backtest average maximum drawdown (durations)
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Backtest cumulative return time paths, a2 = −0.5
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Summary

Improvement with a second signal is substantial ex ante, but very
marginal ex post: estimation risk larger than for a single signal

The suggested numerical solution scheme can be generalised to even
more signals, but a curse of dimensionality applies:

I computational cost: will diminish in impact over time
I statistical (kernel density estimate): fundamentally prevents the use of

more than three signals unless simplifications are made.

Marginal ex post improvements, however, suggest an averaging effect
(as seen for single PCA indices in earlier single signal study) takes
place for more signals, such that this limitation is not seen as that
restrictive
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