Mapping Combinational Circuits to Homogenous Trellis-Constrained Codes

Christian Franck

Definitions

Combinational Circuits

A combinational circuit is a memoryless digital circuit in which the output is directly dependent on the input.

Homogenous Trellis-Constrained Codes (HTCC)

 [Frey and McKay, 1997]An HTCC code is a generalization of Turbo-codes where all bits are constrained. An HTCC code \mathbf{C}_{n} is defined by constituent codes $\mathbf{C}_{1}, \mathbf{C}_{2}$, and a permutation matrix $\boldsymbol{\pi}$, with

$$
\mathbf{c} \in \mathbf{C}_{\cap} \Leftrightarrow\left(\mathbf{c} \in \mathbf{C}_{1} \text { and } \pi \mathbf{c} \in \mathbf{C}_{2}\right) .
$$

Exemplary Mapping

Combinational Circuit

Generalization

- Combinational circuits composed of NAND gates can be mapped to HTCC codes.
- Every combinational circuit can be built using only NAND gates.
\Downarrow
Every combinational circuit can be mapped to a HTCC Code.

Other Gates and Circuits

XOR gate

Figure 1: XOR gate
Cost of k-bit XOR gate:
$1+5 k$ nodes, and $8 k$ edges.

Full Adder gate

Cost of k-bit Full-Adder gate:
$2+12 k$ nodes, and $4+16 k$ edges.

Cryptographic Circuits

HTCCs can be used to represent cryptrographic circuits for, e.g.,

- SHA256
- SIPHASH
- ..
and circuits for
- the computation of semi-primes, or
- the computation of discrete logarithms.

Circuit Evaluation

Belief-Propagation Decoding

Given the inputs, one can compute the outputs using belief-propagation.

Maximum-Likelihood (ML) Decoding

A ML-decoder could compute the inputs given the outputs and could for instance be used to break cryptographic functions.

