Mapping Combinational Circuits to Homogenous Trellis-Constrained Codes

Christian Franck

Definitions

Combinational Circuits

A combinational circuit is a memoryless digital circuit in which the output is directly dependent on the input. Homogenous Trellis-Constrained Codes (HTCC) [Frey and McKay, 1997]

An HTCC code is a generalization of Turbo-codes where all bits are constrained. An HTCC code \bm{C}_{\cap} is defined by constituent

codes C_1 , C_2 , and a permutation matrix π , with $\mathbf{c} \in \mathbf{C}_{\cap} \Leftrightarrow (\mathbf{c} \in \mathbf{C}_1 \text{ and } \pi \mathbf{c} \in \mathbf{C}_2).$

Exemplary Mapping

Combinational Circuit

Generalization

- Combinational circuits composed of NAND gates can be mapped to HTCC codes.
- Every combinational circuit can be built using only NAND gates.

Every combinational circuit can be mapped to a HTCC Code.

Other Gates and Circuits

XOR gate

Full Adder gate

Cost of k-bit Full-Adder gate:

Cryptographic Circuits

HTCCs can be used to represent cryptrographic circuits for, e.g.,

- ► SHA256
- ► SIPHASH

▶ ...

and circuits for

- ► the computation of semi-primes, or
- the computation of discrete logarithms.

2+12k nodes, and 4+16k edges.

Circuit Evaluation

Belief-Propagation Decoding

Given the inputs, one can compute the outputs using belief-propagation.

Maximum-Likelihood (ML) Decoding

A ML-decoder could compute the inputs given the outputs and could for instance be used to break cryptographic functions.

Munich Workshop on Coding and Applications 2017 (MWCA 2017)