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ABSTRACT
We present the results of applying our approach for testing Simulink
controllers to one public and one proprietary model, both industrial.
Our approach combines explorative and exploitative search algo-
rithms to visualize the controller behavior over its input space and
to identify test scenarios in the controller input space that violate
or are likely to violate the controller requirements. The engineers’
feedback shows that our approach is easy to use in practice and
gives them confidence about the behavior of their models.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation;
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1 INTRODUCTION
The Simulink/Stateflow (SL/SF) environment is widely used for
model-based design and development of control software systems
in the Cyber Physical Systems (CPSs) domain [10]. Testing SL/SF
models is important in practice and complicated by a number of fac-
tors that distinguish the testing of suchmodels from themainstream
software testing applied to code: First, the inputs and outputs of
SL/SF models are signals, i.e., variables capturing evolution of values
over time. Second, SL/SF models have continuous-time behaviors
with various signal shapes since they are expected to capture and
continuously interact with the physical world. Finally, SL/SF models
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typically have a large number of inputs and configuration parame-
ters with float data types.

Engineers require tools for automated testing of Simulinkmodels.
These tools would be useful in practice if they can effectively deal
with the large input spaces of controllers. Specifically, they should
be able (1) to visualize the behaviors of controllers over their input
spaces, and (2) to find individual test scenarios that violate or are
close to violating controller requirements. In our earlier work, we
presented automated testing techniques and tools with mechanisms
for input space exploration and exploitation [4, 6]. In this paper we
apply our approach to two common types of controllers (i.e., open-
loop and closed-loop controllers). In the exploration step, depending
on the number of input variables, Heatmap diagrams or regression
trees are used to visualize the results of input space exploration.
Specifically, Heatmaps are used to visualize two-dimensional input
spaces, and regression trees are used to visualize input spaces with
more than two dimensions. Both Heatmaps and regression trees
help engineers identify critical input space regions of the model
under test. In the exploitation step, search algorithms [3] are used
to find worst-case test scenarios of the model in critical regions of
Heatmap diagrams and critical partitions of regression trees.

Our experience of applying our approach to one public and one
proprietary model, both developed in industrial contexts, led to the
following observations:

- Engineers want to identify worst-case scenarios of Simulink
controllers to gain confidence about what risks can be expected in
practice.

- Engineers are interested in exploring controller input spaces to
identify conditions under which the risk of violating requirements
is higher.

- The overhead of applying our approach is small since it is
directly applicable to Simulink models without requiring any trans-
lation or pre-processing of the models under test.

2 MOTIVATING EXAMPLE
In this section, we describe our open-source case study – a realistic
simulation model containing open-loop and closed-loop controllers.
It is an experimental Electro-Mechanical Braking (EMB) system
consisting of a physical (plant) model together with the software
controller consisting of a discrete state machine (open-loop) and
a continuous PID (closed-loop) controller. EMB is published by
Bosch research lab as a representative benchmark model for cyber
physical systems from the automotive domain [9] and is available
at [8]. It is implemented in Matlab/Simulink [10]. A block-level
view of the EMB Simulink model is shown in Figure 1. Below, we
briefly discuss each block:
Physical model (EMB). The EMB system consists of a brake disk,
a brake caliper and an electric DC-motor that moves the brake
caliper towards the brake disk. The brake disk is connected to
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Figure 1: Simulink model for EMB.
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Figure 2: The EMB state machine controller.

the wheel. The contact between the caliper and the disk results
in vehicle deceleration. Even after the contact between the disk
and caliper has been established, the DC motor can be used to
exert additional braking force, allowing for fine-grained control of
the vehicle deceleration. In Figure 1, variable x(t) represents the
position of the caliper over time. The contact between disk and
caliper occurs at the position x0.

The EMB system is captured by the EMB Simulink plant model
in Figure 1. This model consists of mathematical equations repre-
senting the relationships between the voltage applied to the motor
by the controller, the motor current, the angular velocity, the angle
of the motor shaft and the velocity and position of the brake caliper.
The detailed equations are available in [8]. The voltage V applied
to the motor by the PID controller as well as parameters R and L
representing motor resistance and motor inductance, respectively.
The parameters R and L are used to create different DC motor
configurations corresponding to different DC motor hardware.

The EMB software controller is hybrid (mixed discrete-continuous)
and consists of a state machine and a continuous controller (PID
controller):
Discrete controller (statemachine).The statemachine controller
in Figure 2 has five states: (1) The initial state (s0) where the caliper
is in its leftmost position. (2) The position control state (s1) where
a brake request is activated (i.e., BR = 1) so the controller moves
the caliper from left to right. (3) The force control state (s2) where
the brake request activation persists for more than t0. Then, an
additional force is applied to push the caliper to the right harder.
(4) The release force control state (s3) where the brake request is
deactivated (i.e., BR = 0), and the caliper is slowly moved back to
the left. (5) The release position control state (s4) where the brake
request remains deactivated for more than t0, and the caliper is
released back to the initial position. Note that t ′/t ′′ in Figure 2 is
when the brake request is activated/deactivated in state s1/s3.
Continuous Controller (PID). In control theory, continuous con-
trollers are specified using differential equations known as
proportional-integral-derivative (PID) [7]. The EMB PID controller is
used in states s2 and s3. The function of the EMB PID controller is to

smoothly and properly control the physical movement of the caliper
when the extra force is applied (state s2) and released (state s3). In
particular, it moves the caliper position (x(t)) from the reference
position (x0) towards the disk and vice versa.
Configuration Parameters. Simulink/Stateflow models typically
contain parameters that are not time-dependent and are fixed for
every controller configuration. These parameters are referred to as
calibration or configuration parameters, and optimize the behavior
of a particular controller configuration for specific hardware. For
example, t0 in Figure 2 is a configuration parameter that determines
at what point in time extra force should be applied or released
in states s1 and s3 after activation or deactivation of the brake
request (BR), respectively. The value of t0 depends, among others,
on x0, the size of the caliper and the amount of force that can be
tolerated when pushing the caliper against the brake disk. For these
parameters, engineers usually have some ranges as well as nominal
values based on the hardware specifications. We consider the test
input space to include both time-dependent input variables (i.e.,
input signals) and time-independent configuration parameters.

3 APPROACH
In this section we introduce the objective functions we use in our
work to find the worst-case test scenarios of the Simulink models.
We then provide an overview of our automated test generation
approach, which consists of exploration and exploitation steps.

3.1 Specification
Controller input and output: Each input/output variable of a
Simulink model is a signal, i.e., a function of time. When the model
is simulated, its input/output signals are discretized and represented
as vectors whose elements are indexed by time. Assuming that the
simulation time is T , the simulation interval [0..T ] is divided into
small equal time steps denoted by ∆t . For example for EMB, we
set T = 1s and ∆t = 1ms . We define a signal sg as a function
sд : {0,∆t , 2 · ∆t , . . . ,k · ∆t} → Rsд , where ∆t is the simulation time
step, k is the number of observed simulation steps, and Rsд is the
signal range. In our example, we have k = 2000.
Closed-loop controller. The function of closed-loop controllers
is to control a system, often called the plant, such that its output
follows a reference control signal, called the desired output. Closed-
loop controllers are typically used when the control behavior of the
plant is not precisely known and any disturbance can significantly
impact the result of the control process.

In our earlier work, we proposed an approach to testing closed-
loop controllers with respect to three generic requirements of such
controllers, namely stability, smoothness, and responsiveness [4, 6].
Our approach, however, is applicable not just to generic properties
but also to controllers function-specific requirements. For example,
the following requirement is specified for EMB [9]:

- As soon as braking is requested, the contact between caliper
and disk should occur within t0 ms. The contact occurs when the
distance between caliper (x(t)) and disk (x0) is less than ϵ .

The above requirement (denoted by ϕ1) can be formalized in
terms of a temporal logic formula as follows [9]:

ϕ1 = ♢[0,t0]□((x ≤ x0 + ϵ) ∧ (x ≥ x0 − ϵ))

To apply our approach, we need to convert ϕ1 into a quantitative
(objective) function ideally in such a way that the notion of logical
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satisfaction is preserved and can be expressed as a predicate over
the resulting quantitative function. We follow the translation of the
temporal logic formulas into quantitative functions provided by [1]
for this purpose. Below, we have shown the quantitative function
obtained from ϕ1 following the translation of [1]:

F (ϕ1) = Min{Max{Max{|x(t ′) − (x0 + ϵ)|, |x(t ′) − (x0 − ϵ)|}}t ≤t ′≤T }0≤t ≤t0
whereT is the simulation time. According to Abbas et.al. [1], we

have the following: F (ϕ1) > 2 × ϵ ⇔ ϕ1 is violated
That is, EMB violates the property ϕ1 if and only if there is some

simulation output of EMB for which the function F (ϕ1) yields a
value larger than 2 × ϵ .
Open-loop controllers: Open-loop controllers are another class
of embedded controllers that control the plant in the absence of
environment feedback. Open-loop controllers are typically used
when the possible disturbances do not largely impact the control
behavior or when it is too costly to implement the feedback mecha-
nism. Figure 2 shows an example of an open-loop controller where
the state of the caliper is computed based on the current state, time
and the brake request and not based on the feedback from the plant.
For open-loop controllers, there is no plant model and feedback is
not available. For such controllers, we usually do not have require-
ments such as ϕ1 since these requirements rely on the feedback
from the plant. In our work, to test open-loop controllers, we look
for anti-patterns in the controller outputs, i.e., patterns indicating
a potential problem in the output signal.

In our earlier work, we identified two anti-patterns, namely
instability and discontinuity [5]. In this paper, we introduce an
additional pattern referred to as growth to infinity. Figures 3(a) to (c)
show our three anti-patterns. These anti-patterns were identified
by our review of the control engineering literature and the help of
automotive engineers from our industry partners.
Instability. The first anti-pattern is instability where the controller
output signal shows quick and frequent oscillations. Presence of
instability anti-pattern in Simulink model outputs may have unde-
sirable impact on physical processes or objects that are controlled
by or interact with a Simulink model. An example of this behav-
ior is shown in Figure 3(a). Given an output signal sдo , we define
the function instability(sgo ) as the sum of the differences of signal
values for consecutive simulation steps:

instability(sgo ) =
k∑
i=1

|sдo (i · ∆t) − sдo ((i − 1) · ∆t)|

Specifically, function instability(sgo ) provides a quantitative ap-
proximation of the degree of instability of sдo . The higher the value
of the instability function for a signal sgo , it is more likely that sgo
exhibits an instability failure.
Discontinuity. The second anti-pattern is discontinuity where
the controller output signal shows a very short duration pulse
in the controller output at point A in Figure 3(b). The control
output of a Simulink model is a continuous function with some
discrete jumps at state transitions. As a result, control signals, at
each simulation step, are expected to be either left-continuous or
right-continuous, or both. We define a heuristic objective func-
tion to identify signals that are neither left-continuous nor right-
continuous at some simulation step. Since in our work simulation
time steps (∆t ) are not infinitesimal, we cannot compute deriva-
tives for signals, and instead, we rely on discrete change rates
that approximate derivatives when time differences of observable
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Figure 3: Three anti-patterns: (a) instability, (b) discontinu-
ity and (c) growth to infinity.

changes cannot be arbitrarily small. Given an output signal sдo , let
lci =

|sдo (i ·∆t )−sдo ((i−dt)·∆t ) |
∆t be the left change rate at step i , and

let rci = |sдo ((i+dt)·∆t )−sдo (i ·∆t ) |
∆t be the right change rate at step i .

We define the function discontinuity(sgo ) as the maximum of the
minimum of the left and the right change rates at each simulation
step over all the observed simulation steps:

discontinuity(sдo ) =
3max

dt=1
(
k−dtmax
i=dt

(min(lci , rci ))))

Specifically, we first choose a value for dt indicating the max-
imum expected time duration of a spike. Then for a fixed dt, for
every step i such that dt ≤ i ≤ k − dt, we take the minimum of the
left change rate and the right change rate at step i . Since we expect
the signal to be either left-continuous or right-continuous, at least
one of the right or left change rates should be a small value. We
then compute the maximum of all the minimum right or left change
rates for all the simulation steps to find a simulation step with the
highest discontinuity from both left and right sides. Finally, we
obtain the maximum value across the time intervals up to length
dt. For our work, we pick dt to be between 1 and 3.
Growth to infinity. The third anti-pattern is growth to infinity
where the controller output signal grows to an infinite value. An
example of this behavior can be seen in Figure 3(c). Given an output
signal sдo , we define the function infinity(sgo ) as the maximum of
the signal values among all the simulation steps:

infinity(sgo ) =
kmax
i=1

|sдo (i · ∆t)|

Specifically, function infinity(sgo ) provides a quantitative ap-
proximation of how likely the output signal sдo is to grow to infin-
ity. The higher the value of the infinity function for a signal sдo , it
is more likely that sдo is growing to infinity.

3.2 Exploration and Exploitation
No matter which type of controller we are testing, we are able to
obtain quantitative objective functions either based on the system
specific or generic requirements (e.g., F (ϕ1)) or based on the three
anti-patterns discussed earlier. These functions are defined such
that optimizing them indicates violation of the system behavior or
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may indicate presence of error. Our approach to test controllers
based on a given objective function has two consecutive steps:
exploration and exploitation.

In the exploration step, we apply a random (unguided) search to
the entire input space of the objective functions. Whether testing
closed-loop or open-loop controllers, to visualize the results of the
exploration step in terms of the given objective functions we use
Heatmap diagrams [2] and Regression trees [11]. Both Heatmaps
and Regression trees visualize the degree of compliance with a
requirement or a pattern and identify critical partitions of the input
space. Heatmap diagrams are graphical 2-D or 3-D representations
of data where a matrix of values are represented by colors. They
can be used when we have an input space consisting of two or three
dimensions. Figure 4(a) shows an example of a Heatmap diagram
generated for EMB model and based on property ϕ1. Regression
trees partition the input space such that the variance of the objective
function values within each partition is minimized. Unlike Heatmap
diagrams, regression trees can be used with input spaces consisting
of any number of dimensions. Figure 4(b) shows an example of a
regression tree generated for property ϕ1 which corresponds to the
Heatmap diagram in Figure 4(a). Each node in the tree corresponds
to a space partition in the Heatmap and is labeled by the number
of the points in that partition as well as the mean and standard
deviation of the values of F (ϕ1) for those points. For example, the
highlighted node in Figure 4(b) corresponds to a partition where
0.5454 ≤ R < 0.5725 and includes 37 simulated points. The mean
and standard deviation of F (ϕ1) for these points are 0.0066 and
0.0004528, respectively.

In the exploitation step, we use meta-heuristic search to explore
the critical partitions of the input space selected after the explo-
ration and generate test cases maximizing the likelihood of pres-
ence of failures in controller outputs (i.e., test cases that produce
outputs that break or are close to breaking closed-loop controller
requirements or produce open-loop controller outputs containing
anti-patterns). This can be reached by minimizing or maximizing
the objective functions defined in Section 3.1. Depending on the
output of the exploration step, the user selects some of the critical
regions of the Heatmap or critical partitions of the regression tree
to further search for increasingly worse test scenarios. For exam-
ple Figures 3(a) to (c) show three examples of the worst-case test
scenarios the search could find for the EMB controller with respect
to instability, discontinuity and growth to infinity.

4 RESULTS
In this paper, we applied our test generation approach to two
Simulink/Stateflow models. The first case study is the EMB model
described in Section 2 [8]. The second case study is an industrial
Simulink model from an automotive partner company and cannot
be made public. We refer to the latter as the M model.

As explained in Section 3.2, during the exploration step of our
approach we create a Heatmap diagram or a regression tree to visu-
alize the controller behavior with respect to the objective functions,
e.g., F (ϕ1). Then, during the exploitation step, we run a single-state
search algorithm to find the worst-case test scenarios of the con-
troller with respect to a given property, e.g., ϕ1, by minimizing or
maximizing the corresponding objective function.
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and (b) the regression tree
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In our work, to test the EMB model’s behavior, we ran two
experiments. In the first experiment, we verify the correctness of the
EMB model with respect to property ϕ1 by applying our approach
for closed-loop controllers. To complement the first experiment, in
the second experiment, we ignore the feedback received from the
plant and apply our approach for open-loop controllers to the EMB
model to find anti-patterns in the output signals of the models.

In the first experiment, we fix the BR(t) signal to the one used
in [9] and vary the values of R and L within the ranges [0.4, 0.6]
and [0.00025, 0.00175], respectively. These ranges are identified
by model designers [9]. In general, the ranges for model inputs
and configuration parameters should be identified by engineers
who design and implement the models. In the first step of our
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Figure 6: Example regression trees: (a) Growth-to-infinity
for EMB model, and (b) Instability for M model.

approach, we use random exploration to generate test scenarios
within the input space of the controller. Each point in the input
space (identified by the two dimensions R and L in Figure 4(a))
corresponds to one test scenario of the controller. For each test
scenario, we compute the value of F (ϕ1) based on the simulation
output. To compute the values of F (ϕ1), similar to what is suggested
by Strathmann et al. in [9], we set ϵ = 0.002. Figure 4(a) shows
the Heatmap diagram generated for ϕ1. The color of each Heatmap
region depicts the average value of the objective function F (ϕ1) for
the points in that region. Red regions have higher average values
of the objective function, and hence, are more likely to contain
test scenarios that violate ϕ1. Recall from Section 3.1 that ϕ1 holds
for test scenarios with F (ϕ1) less than or equal to 2 × ϵ and does
not hold otherwise. One interesting observation from the Heatmap
diagram in Figure 4(a) is that larger R values result in test scenarios
that are likely to violate ϕ1. Furthermore, it can be seen that varying
L only slightly impacts compliance with ϕ1, while varying R has a
much more significant impact on whether ϕ1 holds on the Simulink
model or not.

In the second step of our approach, we applied a Hill-Climbing
search algorithm (HC) [3] to the Heatmap region with the highest
average value of F (ϕ1) to find the worst-case test scenarios of the
controller. We chose Hill-Climbing because based on our experi-
ence of applying search algorithms to continuous controllers [5],
Hill-Climbing performs the best for critical Heatmap regions sur-
rounded by other critical regions, such as the highlighted region
in Figure 4(a). We note that the engineers may be interested to see
more than one test scenario by searching multiple regions of the
Heatmap, but here we show only the worst-case scenario found
in the most critical region of the Heatmap. Figure 5 shows the
worst-case scenario of the controller that was found with respect
to property ϕ1. This test scenario matches values R = 0.59807 and

L = 0.000297, and is identified by a black circle on the Heatmap
in Figure 4(a). In Figure 5, black and blue lines show x(t) and x0,
respectively. The dashed red lines depict the two boundaries (i.e.,
x0 + ϵ and x0 − ϵ) specified by property ϕ1. Further, the solid arrow
in Figure 5 indicates the value (0.01) of the objective function F (ϕ1)
for the test scenario, which violates property ϕ1 (larger than 2 × ϵ).

Let A and B be the highest objective function values computed
during the exploration step and by the HC algorithm, respectively.
We compute the relative improvement that the search step could
bring about over the results of the exploration step as B−A

A . For the
EMB case study, B was 0.01 (see Figure 5) and A was 0.0089. As a
result, the relative improvement was about 12%, which is significant
compared to our previous results [5]. Finally, it took around 75min
and 15min to generate the Heatmap diagram in Figure 4(a) and the
worst-case test scenario in Figure 5, respectively.

In the second experiment, we vary the values of R and L within
the same ranges as the first experiment. In addition, we vary the val-
ues of three configuration parameters of the EMB model, namely t0,
c_дear and d_rot . Parameter t0 controls how long we stay in states
s1 and s3 in Figure 2 and was explained in Section 2. c_дear and
d_rot are two configuration parameters of the EMB plant model. In
our work, we vary the values of t0 within [0.001, 0.1], c_дear within
[1, 32] and d_rot within [0.001, 0.1]. Since the input space has five
dimensions, we generated regression trees for the instability, dis-
continuity, and growth to infinity properties. Figure 6(a) shows the
regression tree generated for the growth to infinity pattern. Among
different partitions identified by the regression tree in Figure 6(a),
the infinity function has the highest mean value when c_дear is
less than 1.0279. The two other regression trees are similar to the
regression tree in Figure 6(a). Specifically, c_дear and t0 are the
variables that appear in the first and second levels of the regression
trees for both instability and discontinuity functions. The results
of the exploitation step are shown in Figure 3. Specifically, Fig-
ures 3(a) to (c) show the worst-case test scenarios for instability,
discontinuity, and growth to infinity, respectively. We note that
the relative improvement of the results of the search step over the
results of the exploration step were around 5%, 6% and 24% for
instability, discontinuity and growth to infinity, respectively. In this
experiment it took around 9 hours to generate the regression tree
in Figure 4(a) as well as the other two regression trees and 1 hour
to compute each worst-case test scenario in Figures 3(a) to (c).

As mentioned earlier, in addition to the EMB model, we applied
our test generation approach for open-loop controllers to an indus-
trial case study (M Model) in the automotive domain. The model is
used to implement the vehicle automatic transmission controller
and has 24 input variables. We generated three regression trees
for instability, discontinuity and growth to infinity properties and
ran the search to find the worst-case test scenarios within the par-
titions with the highest mean of the objective function for each
property. Figure 6(b) shows the regression tree generated for insta-
bility. As shown in the figure, among the 24 inputs of the model,
inputs one, nine, and 14 appear in the tree and are therefore more
significant factors than other inputs. For the 24 input variables, we
assume value ranges given to us by engineers with domain exper-
tise. According to the regression tree, the instability function has
the highest mean value in the partition where input nine is greater
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than 3230.8. The other two regression trees for discontinuity and
growth to infinity are quite similar to the regression tree in Fig-
ure 6(b) and input variables five, nine and 14 appear in different
levels of those trees. Note that the regression tree in Figure 6(b)
provides interesting insights for engineers on where and under
what conditions the model generates critically unstable behavior.
Figures 7(a) and (b) show the worst-case test scenarios we found for
discontinuity and growth to infinity, respectively. The worst-case
test scenarios in Figures 7(a) and (b) yield values 11000 and 7221400
for the discontinuity and growth-to-infinity objective functions,
respectively. The relative improvements of the result of the search
step over the exploration step were around 10% and 8% for discon-
tinuity and growth to infinity, respectively. Finally, we note that
it took around 8 hours and a half to generate the three regression
trees and 1 hour to compute each worst-case test scenario.
Lessons Learned: We can draw four conclusions based on our
experiments results and the feedback we received from engineers:

- Most existing tools and techniques on testing and verification
of Simulink models focus on identifying individual scenarios re-
vealing some failure behavior. The exploration step of our approach
provides engineers with conditions on the input variables under
which failures are likely to occur. Specifically, the Heatmaps and
regression trees help engineers specify conditions on the input
variables specifying input space regions that contain most failure
scenarios, and moreover, they show the level of risks associated
with each critical input region. For example, as mentioned earlier,
one interesting observation from the Heatmap diagram and regres-
sion tree in Figure 4 is that larger R values lead to test scenarios that
are likely to violate ϕ1. Furthermore, it can be seen that varying L
only slightly impacts ϕ1, while varying R is a much more significant
factor. In a similar way, but this time based on a regression tree, the
engineers can see the conditions under which the model has the
most unstable behaviors in Figure 6(b). This, we were told, helps
engineers find the root causes of failures.

- Our approach is further useful when engineers need to gain
more confidence regarding the worst-case behavior of their models.
Specifically, the output of the exploitation step generates the worst-
case test scenarios of the controller under test. Such scenarios
are characterized by the values of objective functions, which can
then be used to assess how critical and risky such situations are in
practice. For example, a value of 0.01 for F (ϕ1), which is the worst-
case test scenario in Figure 5, entails that the highest distance of
x(t) from the acceptable range is 0.01 − 2 × ϵ .

- The overhead of applying our approach is small. Most of the
existing techniques need Simulink models to be manually or auto-
matically translated into an intermediary formalism, e.g., hybrid
automaton, before the tool can be applied [9]. Manual translation of
models into intermediary formalisms is time-consuming and infea-
sible for large models. Moreover, as models become more complex,
they often contain features and blocks that cannot be translated into
an intermediary formalism. Since our approach is black-box, it can
be directly applied to any model without requiring any translation
or pre-processing.

- Finally, the execution time of our approach is acceptable for
real industrial Simulink models used in practice. Specifically, our
test generation approach is a simulation-based approach where the
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Figure 7: The worst-case scenarios for the M model: (a) dis-
continuity and (b) growth to infinity.

execution time is determined by the number of model simulations
and the time it takes to run each single simulation. The time to run a
single simulation depends on the size and complexity of the model.
As for the number of simulations, we have two different situations
for exploration and exploitation steps. In our experiments, we ran
the exploration step between one and nine hours, depending on
the number of input space dimensions. We observed that if we run
more simulations for the exploration step, more variables are likely
to appear in the regression tree. As for the exploitation step, we
ran the algorithm for 100 iterations. We picked 100 iterations since,
based on our previous experiments [5], after 100 iterations the
search often reaches a fitness plateau. In our experiments, running
the model for 100 iterations took from several minutes to one hour.

5 CONCLUSION
We presented the results of applying our approach for testing
open-loop and closed-loop controllers to one public and one propri-
etary Simulink model, respectively developed by Bosch and another
undisclosed partner. Our approach enables users to explore and
visualize the controller input search space and identify worst-case
test scenarios of the controller within the critical operating regions
of the controller. Our experience shows that our approach is ef-
ficient and easy to use in practice, has a small overhead as it is
directly applicable to Simulink models, and helps engineers gain
confidence in the behavior of their Simulink models.
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