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Chapter 1

Different kinds of errors in numerical
methods

“While verification and validation and uncertainty quantéition have been subjects of concern for
many years, their further development will have a profoungact on the reliability and utility of
simulation methods in the future. [...] As they stand nowifieation, validation, and uncertainty
guantification are challenging and necessary research @itbat must be actively pursued- Na-
tional Science Foundation (USA) — Simulation-Based Engjiimg) Science, final report

1.1 Why do we need error estimates?

Simulation-based engineering is concerned with solvingsigal problems of interest to engineers
with a computer. Several questions must be answered far(thidow can the physical problem be
modelled, i.e. what are the equations describing the phenon® This leads to a mathematical model.
(i) How can these equations be re-worked into a computatiorodel (finite element, boundary el-
ement, meshfree, etc.) to be solvable on a computer? Asguimése two questions were suitably
answered and a numerical solution obtained, one might wd(ige“Are the equations solved cor-
rectly and what is the error?”

The importance of error estimation when solving physicabpgms numerically (discretely) is
clear. The first source of error lies in the construction efritrathematical model, the second, is related
to the error committed by the numerical model (discretiserdion of the mathematical model). Szabo
and Babuska suggest that knowledge of the error is esséntiz able to correlate experimental
and numerical results: one must ensure that the numerisaltseare close to the true solution of
the mathematical model, to guarantee that any discrepagteyelen the numerical and experimental
results can be ascribed to the unsuitability of the matheadanodel. Strouboulis stated clearly the
need for accurate error estimates for extended finite elemethods [27].

Numerical methods, the finite element method (FEM) espggcralolutionalised industrial prod-
uct development throughout engineering disciplines. Tis érror estimation paper dates back to
Richardson in 1910 [22], in the context of finite differenc8kortly after the start of the FEM era,
it became evident that validating and verifying the nunmargchemes was vital for computer simu-
lation to play any significant role in engineering analy3ise developments that followed led to a
better understanding of what causes error, how this eraisigbuted and how the numerical method
or the approximation can be modified to minimize this erroms key contributions in this respect
are [2-4,17,19,21,30-32].
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Figure 1.1: Sources of error in simulation.

U  Physical object/process

U
& — |Error of the physical theory |
U

u  Mathematical model Au= f
g
€2 — |Approximation error |
g

u, Discrete model Ay, = f,
g
€3 — |Computational error |
g

uf  Numerical solution AW = f, +€.

1.2 When the standard FEM works and when it does not

In this part of the course, we will study the convergence effthite element method. At the end of
this section, you should be able to assess what the conergate of the FEM depends on, how it
can be improved, and for which problems the FEM is not an gpate method.

Let us write the physical problem in the following abstramth:

Findu € v, such that foraly ¢ /01

a(u,v) = (v, f)+(v,h)r (1.1)

wherea(-,-), (-,-) and(-,-)r are symmetric bilinear forms

For simplicity, but without loss of generality, we will novgsume the of the first term in the right
hand side of (1.2) —this corresponds to a linear elastiaitplem without body forces— and we will
note(v,h)r = F(v), whereF is a linear form (sinc¢-,-) is bilinear).

Let us now define the approximate finite element problem:

Find un € ¥, such that for ali, € 2,0 3

a(un,vn) = (Wn,f) 4 (Wh,N)r =F(vn) (1.2)
0 since no body force  F(v)

Define the error due to the finite element approximaéenu — uy, the following theorem holds:

Theorem 1.2.1.Galerkin orthogonality

For all functions y, of ka?, a(vh,e) =0, i.e. the error e is orthogonal to the spaef in the sense of
the bilinear form a. Or, equivalently, this means thgisithe orthogonal (in the sense of a) projection
of u on the subspaceg, as depicted in Figure 1.2.

La function inv satisfies the essential boundary conditions, a functiandsatisfies the corresponding homogeneous
boundary conditions

2for the linear elasticity model problem in one space dimemst a(u,v) = [ uxvxdQ, (v, f) = [, vfdQ and(v,h) =
Jrvhdr.

3we assume that the finite element spaegaind+/,? are such that, ¢ andv,? ¢ v°
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Theorem 1.2.2.Best approximation property

Any function | of 7}, is a worse approximant (with respect to the energy norm aasst with
the bilinear form a) than the Galerkin finite element solatig. Mathematically, for all | of 4/

a(e,e) < a(Up—u,Up—u) (1.3)

This is known as the best approximation property of the Gadinite element method.

Remark.This best approximation property means that the finite etgéraelution is a least-squares
fit of the exact solution in the sence of the bilinear foanThis implies that théd" first derivatives
of u are fit best (in the sense @j by thek!" derivative of finite element solutiom,. And, from a
mechanics point of view, this means that the strains (s sse optimum.

Theorem 1.2.3.Assume that the essential boundary conditions are homogsr{ee.”’, = rl/r?), then

a(u,u) =a(up,un) +a(ee) (1.4)

Proof.
a(u,u) = a(u, — e,up— €) = a(un, Un) — 2a(up,€) +a(e e) (1.5)

and, by Galerkin orthogonality, we haaéuy,, e) = 0, sinceu, € ¥}, = ‘Vr?, which completes

by hypothesis
the proof. 0J

Corollary 1.2.4. Error in energy and energy of the error From the previous tleao, we can write
a(e,e) =a(u,u) —a(un, n) (1.6)

The left hand side is the energy of the error. The right hane £ the error in energy (with a
minus sign). This means that the energy of the err¢r%) x the error in energy.

Corollary 1.2.5. Underestimation of the strain energy The finite elemenaiistrenergy &un,uy) is
less than or equal to the exact (strain) energy.a).

Proof. From the above,
a(Uh,Uh) = a(U,U) o a<e7 e) (17)
N——

N—— N——
finite element energy exactenergy >0 by def. ofa

thus,
a(up, un) < a(u,u) (1.8)



10 Introduction Chap. 1

Figure 1.2: The orthogonal (with respect to bilinear foafn -)) projection of the exact solution
on the finite element spacy, C 7 is the finite element solution,. On this figure, you can think
of e=u—uy as a vectorial identity. In this figure, the space where thecesgolution,u, lives is
represented artificially as a three-dimensional spaceefility it is a space of infinite dimensions).
The finite element subspace is a plane (dimension 2). The eri®a member of¢’, and the finite
element solution a member of,. Considering the right triangle in the figure, it can be imméaly
seen that the length of (squared) equals the lengthwf (squared) plus the length ef squared, i.e.
a(u,u) = a(up,un) +a(e,e) (Theorem 1.2.3). This identity is similar to the Pythagoréaeorem in
Euclidian spaces.
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1.3 A priori error estimates in Sobolev Norms
Let Q be an intervala, b| of R,

Definition 1.3.1. Continuity A function f Q — R is said to be of class Q) (i.e. to be k times
continuously differentiable) if and only if itskderivatives exist and are continuous functions.

Definition 1.3.2. Continuity and boundedness A functionCi — R is said to be bounded dd =|a, b|
if and only if there exists a constantcR (independent on x), such that, for alXa, b, | f(x)| < c.

Definition 1.3.3. Continuity and boundedness A function @ — R is said to be of class Q) if
and only if it is of class §(Q) and is bounded orf.

Definition 1.3.4. Sobolev spaces A Sobolev space of degree k (knowH)as &iset of functions with
square-integrabl&generalized derivatives until order k.

For an elliptic problem defined on a domd; the approximation error of a numerically robust
and stable primal finite element analysis is known a prioefgbe the calculation is performed).
Define the following:

e U: exact solution, assumed to possesguare integrable generalised derivatives.

¢ h: mesh size (diameter of the smallest circle containingdigeist element in the mesh — Figure
1.3)

p: polynomial order p > 1) of the finite element approximation (linear shape fumigp = 1,
guadratic shape functionp:= 2, etc.

k: order of continuity of the “exact” solution (i.e1 € H¥(Q): u possessek square integrable
derivatives

h

u": numerical (approximate) solution

m is the highest order of derivatives appearing in the enexgyession. For elasticityn= 1
since the energy write$ [ (Ui j +Uj,i) Diji (Ui + Ui k)-

e || ||mis them™ Sobolev norm of function, i.e. theH™ norm of-.

With these assumptions,

Theorem 1.3.1.there exists a functiond 7, and a constant ¢ (independent of h, but dependent on
p and u) such that _
lu—Up[m < chMn(PHE=mE=m) (1.9)

It is almost a direct consequence that the eesatisfies the following property

4square integrable functions are said to belong to the spacehey are also known a4.5 functions”.
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Corollary 1.3.2. Fundamental error estimate for elliptic boundary value lplems there exists a
constantc (independent of h, but dependent on p and u) such that

lefm < GHM(PH=ME (1.10)

Proof. Let us comparde||m and||u—Up||m. Since|| - ||m anda(-, -) are equivalent norms, we can find
a constant; € R such that

1 1
Ielm< S ae @) (1.11)

But uy, is the best approximation toin the sense od (Theorem 1.2.2), therefore, for ably € er?,

NI~

1 1
C—a(e, e)% < —a(u—Up,u—Up)2. (1.12)
1 1

Using again the equivalence pf ||, anda(-,-), we can find a constanp € R such that

—~

a(u—Up, u—Up)? < caf|lu—Up|m. (1.13)
Combining this equation with (1.12) and (1.11), we obtain

C2
leflm < C—1||U—Uh||m (1.14)

Lettingc = E—i and using the result of Theorem 1.3.1 we obtain the desisadtre
0]

Let us examine (1.10). First, recall that we wish the leftchaidle to be as small as possible (to
minimise the error). If the right hand side is small, tH&' norm ||e||, of the error,e, is blocked
between 0 and a small number and, consequently, also hastodie

Let us see various possibilities to decrease the magnituthe osight hand side.

Let us first note that for the method to be convergent, we mast h

min(p+1—myr—m) >0 (1.15)

otherwise, the right hand side of (1.10) would not go to zexb & 0 (it would go to infinity).
The condition mirpp+1—m,r —m> 0 can be rewritten

p+1-m>0 and r—m>0, (1.16)

equivalently:

p>m—1 and r>m. (1.17)

Theorem 1.3.3.In words, this means that in order for the finite element megtbaonverge optimally
in norm|| - ||m we must

e select the polynomial order p larger than-il

e make sure that the exact solution, u is such that it is moraleghan the order of nornfj - ||m
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largest element in the mesR

Figure 1.3: The mesh sizk|s the diameter of the smallest circle enclosing the largieshent in the
mesh.
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Theorem 1.3.4.If u is in HP*1 (then r= p+ 1) and the error expression becomes

HeHm < Ehmln(p+17m,rfm) HUHF _ c—:hmln(p+17m,p+lfm) HUH pil= EthrlmeuH bl (118)

Example 1.3.1.Elasticity For elasticity, we have m 1 (only the first derivative of the displacement
u appears in the energy expression). If we measure the ewrthré H' norm (also known as energy
norm), then m= 1. If we further assume that the solution u is ifH, as in Theorem 1.3.4, we can
use Equation (1.18), which becomes

lels =_llelln < TP Yullpra = EhP|ul pya (1.19)
def

One conclusion that we can draw from Equation (1.19), is wian the exact solution u is smooth
enough (in 1, the convergence rate of thelldorm of the finite element error can be increased by
two techniques:

e decreasing h (this is known as h-adaptivity), i.e. decregishe element size

e increasing p (this is known as p-adaptivity), i.e. incre@sthe polynomial order used in the
approximation

However, these techniques are not always successful. Iget back to the error bound:
€]l m < ghMNPETMIY |y (1.20)

Looking at the exponent, we note that if the regularity r @ éxact solution is low, there is no use
increasing the polynomial order p, because m will remain the determining term imin(p+1—
m,r —m). This is why, if the exact solution is “rough” (i.e. has a lowder of continuity), the standard
finite element method is not well-suited, in general, andla¢e be improved. An improvement of this
method is the extended finite element method (XFEM), notbméhich will be given in Section
“Enriched Methods.

1.4 Conclusions

In this chapter, we discussed the various sources of errouinerical simulation, from setting up
the problem, to its numerical solution. We looked at a préoror estimation, which gives us, before
carrying out a calculation, an upper bound (maximum valaejHe error. We saw that the Galerkin
FE solution is optimal in the sense of the bilinear form definthe boundary value problem, and
we learnt that the error of the finite element solution is goed by the degree of continuity of the
exact solution to be approximated, the polynomial ordehefapproximation, the mesh size, and the
norm used to measure the error. We discovered that the FEM geil-suited to solve problems with
rough solutions (see Enriched Methods part of the course).

In the following chapter, we will start looking at technicgui® measure the error a posteriori, and
briefly compare them.



Chapter 2

Some methods to measure the approximation
error

2.1 EXisting a posteriori error estimation techniques

Why do we resort to numerical methods? Usually, the probleeare to solve are too complex for us
to derive closed-form solutions analytically. The problisndiscretised and solved numerically. The
major challenge in estimating the approximation error caiteah by the numerical method of choice
emanates from the obvious fact that the numerical solutiag not be compared to an analytical
solution, since the latter is unknown.

Two routes have emerged from error estimation researchlve slis difficulty: recoveryand
residualbased a posteriori error estimates.

Recovery based error estimation consists in constructingndancedsolution from a suitable
transformation (usually smoothing) of the numerical (rasfution, with the objective to employ this
improved solution as a substitute for the unknown exacttswiuAn obvious requirement for this
enhanced solution is that it be closer to the exact solutian the raw solution.

To understand residual based error estimators, let usaemdgo fix ideas, the simple case of
static solid mechanics, where the problem is to find the stiiekl in the body such that the latter is
in equilibrium with the external forces. Assume that thendead FEM is used to solve this problem
numerically. Residual based error estimators seek the lgyrmeasuring, in each finite element, how
far the numerical stress field is from equilibrium and, cayusmtly, do not require the construction of
an enhanced solution.

A remarkable and often disconcerting feature of recovesetigerror estimation is that witho
additional information than that available in the raw nuneal solution an enhanced solution can
be built and, by comparing it to the raw solution, the errar ba estimated.

In general, the estimated error does not equal the exaat Eoprecovery estimators, this is be-
cause the enhanced solution does not equal the exact soluti@sidual estimation, the computation
of the residual itself must be estimated using a numericahate(usually the same as the original
one being assessed), leading to an additional source of erro

A point in favour of recovery based estimators is that therat the estimated error to the exact
error (known as theffectivity is close to unity. On the other hand, residual based estisatre
usually less effective, but can provide mathematicedr boundswhich, in certain cases can be very
useful, since they prove that the estimated error is lafdgan the exact error. Unfortunately, these
bounds may include constants which are often very difficuletaluate in practice: probably the
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major reason for industry’s preference for residual basemt estimates.
The interested reader can refer to the well-known revieiglardf Professor Ainsworth [1].

2.2 Recovery based error estimation

A posteriori error estimation has the difficult task to measiine error committed by a numerical
solution without knowing what the exact solution is. Theib&dea of recovery based error estimation,
is to construct, with only the information contained inte tiumerical solution, an enhanced solution
that will play the role of the exact solution. The error isrihaefined by the difference between this
improved solution (enhanced solution) and the initiallyastbed numerical solution (raw solution).
This technique was invented by Professor Zienkiewicz aadeported in his famous papers [30-32].

There are several techniques that can be used to obtain lla@asd solution. One of the sim-
plest one is smoothing. The basic idea is depicted in Figutevizhich shows the original solution
(piecewise constant), the improved solution (bold piesevinear line) and the exact solution (dashed
curve). Notice that the improved solution approximatesekect solution much better than the orig-
inal “stair-case” solution. In order to improve the accyratthe enhanced solution, the nodal stress
(strain) fiels can be computed from the stress/strain fididseoneighbouring elements, evaluated at
so-called “superconvergent points.” These points wereodisred by Barlow (Figure 2.2), and are the
points in the element where the derivatives (strain, st@®&smost accurate.

The notion of smoothing, or derivative recovery was extenole Bordas and Duflot to enriched
finite element approximations (See Chapter 4, Figures 4dH4&). On these figures, you can see the
“stair-casing” present in the raw solution, which is sugsesl by smoothing. See also References
[10-13,29].

The smoothing scheme presented in Figure 2.2 is very siraptemany improvements have been
proposed (see [1] for details). A simple improvement wowdddexpress the smoothed stress (strain)
field at each node as the average of the stress (strain) e@laisthe superconvergent point (Barlow
point) of the two neighbouring elements, weighted by thgtlerof the element.

Error estimates based on smoothing techniques are widely iasthe engineering community
(for example, the commercial code UGS/EDS-PLM I-DEAS hastadaption capability for linear
elasticity problems as well as plate and shell formulafions

The assumption of superconvergence is not required foetmetshods to work, and it is possible
to show that averaging (smoothing) based error estimatektte overestimate the error (which is
important for engineering applications).

If the superconvergence property is satisfied, it is possdoshow that certain classes of averaging
error estimates are asymptotically exact (when the meshrsgoes to zero).

2.3 Explicit residual based error estimation techniques

These estimators, known as “explicit” (see Ainsworth [bpcause the sole knowledge of the approx-
imate solution suffices to evaluate them.

The general idea is to measure how accurately the bound&ug yaoblem is solved in each
element. Let us imagine we are solving an elasticity probl€he boundary of the domain is split
into two non-overlapping parts: the Dirichlet and the Nenmaoundaries. There will therefore be
three categories of elements: interior elements (for whichhode lies on the boundary); Dirichlet
elements (for which at least one node lies on the bounda/Nemmann elements for which at least
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%

%

Py Finite element nodes

o) Barlow points (superconvergent points)

Figure 2.1: Superconvergent Patch Recovery (SPR). Oti¢fiamsa), improved (enhanced) and exact

solution for linear 1D elements. For an elasticity probléme, field shown could be the stress or strain
field, i.e. the fields obtained by differentiating the dig@ament solution. At each node, the enhanced
solution is constructed as the average of the stress (sualine in the neighbouring elements.

linear triangles f = 1) linear quadranglesp(= 1)

Figure 2.2: Barlow (superconvergent) points for lineaarigular elements and bilinear quadrilateral
elements are located at the centre of the elements.



18 Measurement of the error Chap. 2

Dirichlet boundary

interior elementoj; j =0

Figure 2.3: Element categories for residual based erronasirs.

one node lies on the Neumann boundary. There will also be soxed elements, for which some
nodes are on the Neumann boundary, and other nodes on tehlBitboundary.

For each of these element categories, the residual (diferbetween the solution and the equi-
librium) will be computed in a different way. For interiorezhents, the equilibrium condition must
be verified 6ij j = 0), for Neumann boundaries, the surface tractions mustl éqeamposed trac-
tions (@ijn; =t;), and for the Dirichlet boundary, the imposed displacememist equal the imposed
displacementsf = u;). The basic idea is shown in Figures 2.3 and 2.3.

Explicit error estimators lead to local error indicatorssluding unknown (usually) constants. It is
possible to find bounds for these constants, but these bawadssually such that the error estimator
is pessimistic.

Additionally, to measure the global error, we need to giveeaght to each type of residual,
depicted in Figures 2.3 and 2.3. Choosing these weightg ishwious.
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interior eleme

Figure 2.4: Element categories for residual based erramatirs. Note that the stress continuity
through the element boundaries is part of the residuals tmbguted.
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2.4 Implicit residual base error estimation techniques

Implicit error estimation techniques require the solutadra local (in each element or over a small
group of elements) boundary value problem approximatiegetiuation for the error itself. An esti-
mate of the error is then taken as the norm of the solutionisddlcal boundary value problem.

In implicit error estimators, an auxiliary boundary valuelplem, with the residual as data is used.
This suppresses the difficulty associated with the relatregghting of the residuals (see Section
2.3). However, a disadvantage of this technique is thatqtires solving an additional boundary
value problem numerically, which implies the choice of aaiie approximation scheme. This can
be problematic. Examples of implicit residual methods are:

e the element residual method;

e the subdomain residual method.

The interested reader is referred to the review paper bywrth and Oden [1] and Ainsworth’s
book [2].
2.5 Measuring the adequacy of an error estimator

For simplicity, we restrict here to recovery-based errdinegtes. LetQq be an element in the mesh,
theerror between the raw and the smoothed solution can be measurbd hgtm

efy = \//Q [€"(x) — 3(x) || dx. (2.1)

Since the enhanced solution is different from the exacttewiuthis measure is only aapproxi-
mate error The global approximate error is measured by the sum of graehtal errors on theyy
elements of the mesh

NI (2.2)

We then defin@z’g)eq as the following error norm between the raweMm solution and the exact solution
on element)q

e = \/ /Q " (x) — eexacix)||* dx, (2.3)

and we call this error measure tbeact errorsince it measures the distance between thexeswm so-
lution and the exact solution. Summing over the elementsemiesh, the global exact error writes

e — ee?, (2.4)

Theeffectivity indexof the error estimator is defined as tiagio of the approximate error to the exact
error
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ehs
p— ge'
A good estimator has aeffectivity close to unifywhich means that the measured (approximate) error
is close to the exact error. In other words, the enhancedisnlis close to the exact solution.

0 (2.5)

2.6 Adaptivity or what to do with the error distribution?

The techniques presented briefly above permit the caloulator all elements in the mesh, of the
elemental contribution to the global error. In practice,esngineer wants to limit both the global
and the element-wise error. The error estimators produce eraps, on the whole mesh, similar to
Figure 2.6. In 2.6p adaptivity, in the region of highest error, is shown. Adali@l (mid-side) nodes
are required to support the higher order shape functionsexample ofh adaptivity is shown in
Figure 2.6 and a typical approximation adaptation cycléaas in Figure 2.8.

2.7 Conclusions

In this chapter, we learnt how to measure, a posteriorir(#ieecalculations are finished), the error of
a numerical approximation. We learnt about explicit andliaiiperror estimates as well as smooth-
ing (recovery) based and residual based estimates and cednbeem succintly. We also discussed
possibilities to measure the effectivity of an error estona

In the next chapter, we will focus on goal-oriented erroineation, which is useful when the
guantity of interest is not only the global strain energyt, Imossibly, the average stress in a given
subregion of a component, or, as is the case in fracture mashahe value of the crack driving
force, i.e. the stress intensity factor or more generdily @nergy release rate.
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Figure 2.5: Error map. The darkest elements have the highest These elements can theb be subdi-
vided ( refinement), the polynomial order can be increased in tHessamts p refinement — beware!
We saw in Chapter 3.1 that this was useless for low-confiraxaict solutions such as linear elastic
fracture mechanics or other singular solutions. Altexrgdyi nodes can be moved around without
increasing the number of elements, nor changing the appadion order (relocation adaptivity:
adaptivity). Figure provided for example purposes onlis iinlikely that an error distribution looks
like this for a real approximation.
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O

nodes present befogeadaptivity
additional nodes used to increase the polynomial ogler,

Figure 2.6: A simple example qf adaptivity in the region of highest error
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&Mdmonm elements foh adaptivity

Figure 2.7: A simple example dfadaptivity in the region of highest error
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Chapter 3

First notions on goal-oriented error
estimation

3.1 Introduction

In linear elastic fracture mechanics (LEFM), the main qitguff interest is the energy release r&e
along the front (tip) of the cracks. Domain forms of interatenergy integrals [20] are well suited
to the computation of the stress intensity factors requivetbmputeG. One can therefore argue that
it is the error onG committed by the numerical approximation that should besuesd, as opposed
to the traditional error on the energy.

Goal-oriented a posteriori error estimates are well-distadd techniques to help measure and
control thelocal error on a (non)linear functional of interest.

3.2 LEFM problem statement and extended finite element dis-
cretization

3.2.1 LEFM problem

To begin with, we briefly present the linearized elasticitplgem. Therefore, let us first introduce
the isotropic elastic body which is given by the closure obarimled open s& c R* with a piece-
wise smooth and polyhedral bounddrysuch thatr =I'p Uy and'p NIy = 0, wherel'p and
N are the portions of the boundaFywhere Dirichlet and Neumann boundary conditions are im-
posed, respectively. Assuming, for the sake of simpli¢igmnogeneous Dirichlet boundary condi-
tions, all admissible displacements Q — R of the elastic bod{ are elements of the Hilbert space
v ={ve HY(Q)3; v|r, = 0}.

The weak formulation of the linearized elasticity problemhich is also termed the primal prob-
lem throughout this paper—then reads: find 7 such that

alu,v)=F(v) Wwewv (3.1)

with the continuous, symmetric and-elliptic bilinear forma: 7 x 9 — R and the continuous linear
formF : ¥ — R defined by

a(u,v):/Qo(u):s(v)dV (3.2)
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Figure 3.1: Pre-cracked specimen, boundary conditiongidndction as a pyramid function.

and

F(v) = /rNt_-vdA (3.3)

respectively. Hereg = C : € denotes the stress tensor given in terms of the fourth-aideticity
tensorC and the second-order strain tensalefined as the symmetric gradientwfFurthermoret €
[Lo(I'n)]2 are prescribed tractions imposed on the Neumann bourigaryor the sake of simplicity,
body forces are omitted in the above formulation.

3.2.2 TheJ-integral as a crack propagation criterion

As mentioned earlier, in LEFM the energy release rate and-itheegral concept are equivalent. The
J-integral, which is a nonlinear functionat 7 — R, can be derived by a straightforward application
of the concept of material forces, see, e.g., Steinmann. ¢2&J, sinceJ is the projection of the
material forceFm4; acting on the crack tip into the direction of crack propagafigiven in terms of
the unit vectore which is a priori known in this paper due to symmetry condisiavith respect to
both the boundary conditions and the geometry of the elbstily). It is computationally convenient
to use the domain expressionXhfas introduced by Shih et al. [25], which then reads

J(U) = Fmat €| = —/QJ H(ge|) : Z(u)dV. (3.4)

Here,q = q(x,y) (or g= q(x,Y,2) in three space dimensions) represents an arbitrary, pise@on-
tinuously differentiable weighting function with = 1 at the crack tip and) = 0 on the contour
(or surface) ; that bounds the area (or volum@). For exampleg can be conveniently chosen as
a pyramid function as shown in Figure 3.1. Furthermdrelenotes the so-called Newton-Eshelby
stress tensor given by

S=Wil -H".o (3.5)

with specific strain-energy functiofs, second-order identity tensband displacement gradieHt=
Hu. Assuming thag = (10)T, the classical form of thé-integral can be easily obtained.

A pre-existing crack then starts to grow in the directiorepif J exceeds the (known) material
dependent threshol#.

3.2.3 Definitions

In what follows, the following definitions are assumed:

e 7 isthe exact test space
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Figure 3.2: Schematic visualization of the linearizatiohthe J-integral.

e U € 7 is the exact solution to the exact crack problemamrd’ is a test function.

The bilinear forma: ¢ x ¢ — R and the linear functiona : 7 — R were defined in 3.2 for the
linear elasticity model problem. The variational equatfionu is

Findue v |vwe v a(u,v)=F(v) (3.6)

The discretized version of the variational principle nessrthe problem to seeking a solutiopin a
finite-dimensional subspace of, C ¢ and writes

Findup € ¥ | VWh € v a(Up,Vh) = F(Vh) (3.7)

The Lax-Milgram theorem guarantees existence and unigseoa solution for both variational
problems (3.6) and (3.7).

Obviously, the discretized version of the variational pijrke yields a solutioru, which is not
exact, and we note, = u — uy, the discretization erro.

3.3 Goal-oriented error estimate

Our goal is now to evaluate the discretization error on thelieear functionall : 7 — R defined in
3.2.2 committed upon discretization of the variationalgeon, i.e. we seek an estimate of the quantity
J(u) — J(up), which is ourgoal-oriented error measurerhis error measure, however, is non-linear
by definition. Therefore, as shown in Riuter and Stein [23pdam the seminal work by Eriksson et
al. [14] and Becker and Rannacher [8], we first need to lizeatieJ-integraf

which results in the following expression

J(u) —J(un) = Js(u, un; &) (3.8)

with secant formds: ¥ — R, defined as

uuv) = [ ESvds 3.9)

The subtraction is well defined since we proved earlier that # and hence, subtracting, from u is permitted.

2we note that amxact linearizationwhich is a secant formis(u,un; ey), of J, involves the (unknown) exact solution
u and is therefore not computable. We therefore fashioapgmoximate linearizationa tangent linearization &k, as the
linear functionalr (-) obtained by setting = up in Js (3.2)
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see [23]. In the above, the tangent formJaé defined as
J(&(s);eu) = Dud(u)|¢(s) - ey, (3.10)

that is the Gateaux derivative dfwith respect tas in the direction of the discretization errgf and
&(s) =un+sey, s [0,1].

Since the linearizatiods involves the (generally unknown) exact solutionwe next introduce a
computable approximatiady of Js by replacing the exact solutianwith the (known) finite element
solutionuy. Hence, we arrive at the tangent form

Ir(-) = I (up; ) = Is(Un, Un; ) &~ Js(u, u"; ) (3.11)

that holds for small errorg, only. A schematic visualization of the derivations presdrdbove can
be seen in Figure 3.2.
With the above definition at hand, the exact linearizatio(Bot) yields

1
Js(U,up;v) = —/ H(ge) : Cs(&(s)) : H(v)dVds (3.12)
0 JQ;
whereas the associated tangent fakms given by
Jr(v) = —/Q H(ge,) : Cx(ugn) : H(v)dV. (3.13)

In the aboveCs denotes the fourth-order tensor of elastic tangent modabeiated with the Newton-
Eshelby stress tensor defined as

05

C=-—=l®0—-10—H'-C, (3.14)

oH -
see Heintz et al. [16]. Here®" denotes a non-standard dyadic product operator. Forduetabora-
tions on the linearizations of the domain as well as the agrgapression of thd-integral we refer
to Rater and Stein [23].

JT(~) = J/(Uh;-) (3.15)
= Js(Un,Un; ) (3.16)
~ Js(U,Up;-) (3.17)

3.3.1 Duality techniques

We have now derived an approximatiah, for the discretization errod(u) — J(up) committed on
the J integral. How can this error be computed? We follow the stpatof solving arauxiliary dual
problem which we define next. Let us introduce the bilinear fam ¢ x ¥ — R, dual ofa® and
define the following dual problem

Findu*e v |wev a“'(u*,v)=3(v) (3.18)

3a* is dual ofa if and only if for all functionsu andv in 7, a*(u,v) = a(v,u). In the case where the differential
operator present iais self-adjointais symmetric, ané = a*.
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Choosingv = gy, the (unknown) error of the primal problem (3.6) in (3.18 tlual problem rewrites:

Findu* e v |a*(u",ey) = Jr(ey) (3.19)
a(ey,u’) = Jr(ey) (3.20)

Definert: v — 9, a projector. Asiy, C 7/, we can add/subtract any elementgfto/from an element
of 7, in particularru™ to/fromu* and obtain

Findu* e v |Vru® € ¢, a(ey,u"+mu* —1u*) = (e (3.21)
ale,u"—Tu*) —a(g, W) = Jr(ey) (3.22)
€Vh
——

where the second term in (3.22) vanishes due to Galerkimgoaihality (Theorem 1.2.1. We are now
left with the newly expressed dual problem

Findu* e v |vru® € v, a(e,u"—1u*) = Jr(ey) (3.23)

The projectontis arbitrary, and we choose it so thrat* is the finite element solutiom;, € 7/, to the
discrete dual problem defined by

Findup, € ¥h | YWh € ¥ @ (Up,Vh) = It (Vh), (3.24)
and we obtain the final form of the dual problem we created

Findu* € v |a(ey,u” —up) = Jr(ey) (3.25)
aley, &) = Jr(ew) (3.26)

This last form is arepresentatiorof the error on the) integral, but is still not computable since
the exact errorg, and ey« are in general not known. A&omputableerror representation is easily
obtained by replacing the exact primal solutioand its dual counterpaut' by enhanced (recovered,
smoothed) solutions and u*. Defining the approximate erroes = U — up, andej = u* —uy of
the primal and dual problems, respectively, the expres&ody in Equation (3. 26) can then be
approximated by

Findu* € v | a(eg, e5:) ~ a(ey, &) = Jr(ey) (3.27)

Thus, all that remains is to compute the enhanced approixinsi andu*. Note, however, that
only gradients of the solutions appear in the bilinear farenhanced solutions can for instance be
computed by patch recovery techniques, or moving leastreg@pmproximations.

IN SHORT:

The error on the functional of interest, hefavrites J(u) — J(up) = Jr(ey) We now define the
dual bilinear forma* : © x ¢ — R such that, for allu,v in 7/, we havea*(u,v) = a(v,u). Let

4As for the primal problem, the discretized version (3.24)hef dual variational principle (3.23) yields a solutign
which is not exact, and we nogg- = u* — uj, the associated discretization error.
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us define a dual problem as follows: find € 4/, such that, for alv in 7, a*(u*,v) = Jr(v). We
obtainJr (ey) = a*(u*,ey) = a(ey+,&y) = a(u* —uj, &) For the linear elasticity problera(ey-,e,) =
Jo [e(u) —(u})] = C: [e(u) —e(un)]

But, we know neitheg(u) nor g(u*), hence, we use instead a good (smoothed, recovered, en-
hanced) solution for these two field&u*) = €(u};) ande(u) = g(uh)

The error on thd integral functional is approximated by replacemgoy up, the error ord writes

J(u) = J(un) = I(Un) — I(un).



Chapter 4

Measuring the error of extended finite
element approximations

4.1 Need for error analysis of thexFEM

Recently, the finite element method (FEM) was extended. Xtended finite element methodKEM),
based on an enrichment of the standard FEM permits a stfaiglaird treatment of discontinuities
and singularities wheneeither meshing nor remeshing of the evolving discontnsihecessary. The
main idea is to enrich the standard FE approximation looalti special functions that help cap-
ture some known feature of the solution such as discontgsuihrough cracks, material interfaces,
near-crack-tip singularities, boundary layers... Onlyew fyears since its academic inception [9],
computational fracture mechanics software companies lidsfisuch as aeronautics, geomechanics
or the nuclear industry embraced the extended finite elemetttod, which is now implemented in
commercial packages.

As these course notes are written, engineers are depldyengEM to simulate crack propaga-
tion, assess damage tolerance and durability of structunegious engineering disciplines. As was
the case of the FEM-engineers fifty years ago, todayism-engineers are required to assess the ac-
curacy of their calculations, and as the method gains papylthis need will become all the more
acute.

Despite the clear and stated need for validation and veigitaf numerical methods and the
almost immediate uptake afFEM research by industry, no work has been publishedeEm error
estimation, save that of the Pl and his collaborators. Thee@dised Finite Element Method, close
cousin toxFEM has been subject to more attention: [5, 6, 27], but much nesra be done in this
context as well.

4.2 Need for error measures with specific goals

As previously statedkFEM is employed industrially for fracture mechanics and relighassessment,
primarily in the context of linear elastic fracture mect@n{LEFM). The presence of initial defects
(or cracks) is assumed, and their growth is governed by petexsiknown astress intensity factoys
which are sufficient to describe the state of stress in thiaitycof the crack fronts. From these, the
fatigue life of a component may be determined by semi-emgdifaws (e.g. Paris). Consequently, in
LEFM, the critical quantities of interest are the stressmsity factors, which determine whether the
material fails, the crack paths and the structure’s fatigaeThe stress intensity factors are here the
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guantity of interesaind an adequate numerical method should minimise the emrtri® quantity of
interest.

It is not evident that if the error in energy (EE) is minimis#ten, the error on the stress intensity
factors (SIFE) will also be minimal, even if experience skdhat it will be reduced. The error distri-
bution yielded by EE-minimisers will be quite different fncthat of an SIFE minimiser. Mathematics
allow to eradicate this difficulty by providingoal-oriented error estimateSuch estimates date back
to [15], and provide a means to minimise the error on a giveantjty of interest (average stress in a
region, displacement at a point, stress intensity factprs.

Through our on-going collaboration with leading expertsgoal-oriented error estimation,
(Korotov, Stein, Riter), we propose to devise goal-origmeor estimators with the aim to tailor
XFEM approximation to the specific purposes of analysing crackpamating in linear elastic me-
dia.

The first steps igoal-oriented error estimates for linear elastic fractureechanics in a FE con-
text were taken by Ruter and Stein [24], and recent work by Dr Bgrdacollaboration with Dr
Duflot, from the CENAERQO started extending these technigoiésexFEM [12]. This work is based
on the solution of a dual problem with the same left hand sidhéle the right hand side is computed
based on thgoal of the adaptive procedure.

4.3 Basic features of the error estimates

The rest of this chapter proposes and compares@wovery based error estimatidachniques for
extended finite element methods, XFEE¥ more generally, methods basedextrinsic partition of
unity enrichmentThe applications shown are in fracture mechanics, butdbas are general and
apply to any extrinsic enrichment scheme.

The first estimator employs derivative recovery with ingigally enriched eXtended Moving Least
Squares (XMLS) approximants and diffraction to accounttfar discontinuity through the crack.
MLS derivative recovery in finite elements was first propoisg@8] of which this work is a general-
ization. The smoothness of the recovered derivatives r#iickd to that of the MLS weight function,
in the examples proposed, they &¢

The second is a generalization to enriched approximatibtesimple concept ajlobal deriva-
tive recoveryintroduced in [17, 21] for the finite element method. Thetsigrpoint of global deriva-
tive recovery is the remark that when oy continuity of functions in the trial space is assumed
in finite element methods, the strain and stress fields aceuliguous through element boundaries.
The principle presented in [17,21] is to construciegrancedstress field interpolated with the same
ansatzt functions as the displacements, and such thas th@mover the whole domaiaf the differ-
ence between the enhanced and original finite elements{stresses) is minimized. Through global
minimization, we obtain an enhanced strain field, which ity aproximant to the exact solution,
itself unknown.

In both techniques, comparing the orginal (raw) XFEM ssaio the enhanced strains, as in
standard recovery-based error estimation [30], we defimea (element-wise) error which can be
used to drive adaptive strategies.

The conclusions of the studies, reported in detail in [11Q] [13] are that: (i) both XMLS and
XGR methods yield error estimates which are valid, i.e.rtle#ectivity tends to zero as the mesh
is refined, (ii) the XMLS method yields smoother recoverettiighan XGR, (iii) XGR is cheaper
computationally than XMLS, at least in its initial formulan, (iv) XGR is more easily implemented
in existing codes, and is well-suited to engineering angalys
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4.4 Essential results

For the sake of conciseness, we will only recall the key tssagsociated with both estimators, and
show how they are applied to three dimensional fracturelprob. The readers are referred to [10,11,
13] for details on the formulation and more numerical illatbns.

4.4.1 Extended moving least squares (XMLS) recovery

e The recovered strain/stress fields @ie

e In [10, 11], we show the necessity for the addition of the ftgafields to the MLS basis, if
these functions are not added, the effectivity index of ttogpsed error indicator does not tend
to unity as the mesh is refined.

e For problems where the exact solution is not known, and thhes@the effectivity index cannot
be computed, we check that the norm of the difference between the raw XFEM strain field
and the XMLS recovered strain field converges to zero withta ckose to the optimal rate
of 1.0 as the mesh size tends to zero, as long as a fixed areadsegharound the crack tip
during mesh refinement. If only the crack tip element is drail; the convergence rate is close
to 1/2, which is the strength of the crack tip stress singulafikys corroborates the findings of
References [7,18]. Note that the higher the enrichmenusatie lower the error, the straighter
the convergence line, and the closer to optimal the connersgyeate is.

e Larger XMLS recovery smoothing lengths lead to higher éffy indices, but we believe that
the increase is not significant enough to justify the addéla@omputational cost.

e In [10, 11], we show the superiority of the XMLS recoveredusmn with the now standard
Superconvergent Patch Recovery (SPR) of [30], for fraghuoblems.

4.4.2 eXtended Global Recovery (XGR)

e The recovered strain/stress fields @ge

e Thel, norm of the difference between the XGR strain and the raw XKin vanishes upon
mesh refinement.

e More importantly, we show that the effectivity index of theag indicator converges toward
unity upon mesh refinement. This proves that #pproximate errorconverges to thexact
error, and, therefore, that the error indicator is indeed a comsasure of the error.

e The larger the XFEM enrichment radius, the closer the cayarese rate is to 1. This corrobo-
rates earlier findings in the context of the XMLS recovenhtgque [10,11] and is explained
by the fact that larger enrichment radii lead to more aceusatiutions, thus more accurate
recovered solutions, and therefore an approximate errarhws close to the exact error.

e Comparing the converged values of the effectivity indexX@R to that obtained for XMLS
and published in [10, 11], we note that the XGR effectivittesverge between 93 and 96%,
whereas the XMLS effectivities are in the vicinity of 99%.rkbe whole range of mesh sizes,
the XMLS effectivities are better than the XGR effectivitjehis is due to the fact that the
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(a) Raw XFEM deformation field (b) Smoothed (recovered) deformation field

Figure 4.1: XMLS: deformed configuration and strain field thoee combined tension/torsion loading
case of the 3D crack. The smoothing fulfills its role nicely.

XMLS approximation iSC, where as the XGR approximation is ory. We also notice that
the XMLS results are less sensitive to the value of the enrasit radius than the XGR results.
This is not surprising, since the XMLS recovery is built wélglobal intrinsic enrichment of
the MLS approximation, whereas the enrichment used for tifansrecovery in XGR is only
active in a small ball (tube) around the crack tip (front).

4.5 Three-dimensional illustrations

4.5.1 XMLS application

We show in this section the recovered derivatives for a 3Deextgck under combined tension and
torsion loading. The domain is-1,1] x [-1,1] x [-0.5,0.5] (x x y x Z). The crack is defined by
the equatiory = 0,x < 0, its front is along the axis. We show both the raw and enhanced strain
field on the deformed configuration, so that the values ondhed of the crack, and along its front
may be better identified. On fage= 1, tractions are imposed as followtg= 1, ty = 4z(1 — x?) and

t, = 4x(0.25— 7%). On facey = —1, tractionsty = —1, ty = —4z(1— x?) andt, = —4x(0.25— %) are
imposed. Additionally, six nodal displacements are fixeasto avoid rigid body modes. Figure 4.1
compares the deformation field obtained with the XFEM (ahtorecovered (smoothed) deformation
field obtained through MLS derivative recovery. The resaitsquite satisfying.

4.5.2 XGR application

In this section, we summarize the three-dimensional exarph quarter-circular crack emanating
from a hole in a cylindrical shell subjected to a uniform mit& pressure. The elements are linear

lwith respect to the domain size
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(a) raw XFEM strain field (b) XGR strain field

Figure 4.2: XGR: quarter-circular crack emanating from &ho a cylindrical shell under internal
pressure; the enrichment radigs, is equal to the radius of the quarter-penny crack.

tetrahedral elements. In this problem, elements in a tubteosd on the crack front and with a vari-
able radiusreny are enriched with near-tip fields. The results are very @stieng. They show that
increasing the enrichment radius frag,ck/5 (roughly one element size) tg 4k decreases the er-
ror, and reduces the size of theak error zoneForren = rerack, the estimated error around the crack
front is approximately the same as the error on the otheragiked side of the hole. This corroborates
our findings in two dimensions, as well as the conclusions/drim References [7, 18]. Results are
shown in Figure 4.2.

4.6 Conclusions

We presented the basic results of our study of two a posteriar estimates for the extended finite el-
ement method (XFEM). They suggest a strategynfeadaptivity in enriched finite element methods,
and hint at a new approximation adaptation scheme spedbjfteglored to enriched approximations.
Indeed, itis clear that the error should be minimized by &wstluating the optimal XFEM enrichment
radius ren® and, second, if the overall or/and local errors are stillattbe tolerance specified for the
analysis at hand, proceedhe or/andp— refinement, while keeping the enrichment radius constant.
This procedure of estimating the optimal enrichment radas be seen as a generalizatiorhef

and p— adaptivity to encompass the non-polynomial functions gmes the XFEM approximation.
This new adaptivity could be coineshrichment-adaptivityor e-adaptivity and is subject to on-going
research.

2this optimal enrichment radius is problem dependent. Ineoperience, it is situated in the vicinity of the length of
the crack.
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