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Chapter 1

Different kinds of errors in

numerical methods

“While verification and validation and uncertainty quantification have been sub-

jects of concern for many years, their further development will have a profound

impact on the reliability and utility of simulation methods in the future. [...] As

they stand now, verification, validation, and uncertainty quantification are chal-

lenging and necessary research areas that must be actively pursued.” — National

Science Foundation (USA) — Simulation-Based Engineering Science, final report

1.1 Why do we need error estimates?

Simulation-based engineering is concerned with solving physical problems of in-

terest to engineers with a computer. Several questions must be answered for this:

(i) How can the physical problem be modelled, i.e. what are the equations de-

scribing the phenomenon? This leads to a mathematical model. (ii) How can these

equations be re-worked into a computational model (finite element, boundary ele-

ment, meshfree, etc.) to be solvable on a computer? Assuming these two questions

were suitably answered and a numerical solution obtained, one might wonder (iii)

“Are the equations solved correctly and what is the error?”

The importance of error estimation when solving physical problems numeri-

cally (discretely) is clear. The first source of error lies in the construction of the

mathematical model, the second, is related to the error committed by the numer-

ical model (discretised version of the mathematical model). Szabó and Babuška

suggest that knowledge of the error is essential to be able to correlate experimen-
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Figure 1.1: Sources of error in simulation.

U Physical object/process

⇓

ε1 −→ Error of the physical theory

⇓
u Mathematical model Au = f

⇓

ε2 −→ Approximation error

⇓
uh Discrete model Ahuh = fh

⇓

ε3 −→ Computational error

⇓
uε

h Numerical solution Ahuε
h = fh + ε.

tal and numerical results: one must ensure that the numerical results are close to

the true solution of the mathematical model, to guarantee that any discrepancy be-

tween the numerical and experimental results can be ascribed to the unsuitability

of the mathematical model. Strouboulis stated clearly the need for accurate error

estimates for extended finite element methods [24].

Numerical methods, the finite element method (FEM) especially, revolution-

alised industrial product development throughout engineering disciplines. The

first error estimation paper dates back to Richardson in 1910 [19], in the context of

finite differences. Shortly after the start of the FEM era, it became evident that val-

idating and verifying the numerical schemes was vital for computer simulation to

play any significant role in engineering analysis. The developments that followed

led to a better understanding of what causes error, how this error is distributed and

how the numerical method or the approximation can be modified to minimize this

error: some key contributions in this respect are [2–4, 14, 16, 18, 27–29].

8



1.2 When the standard FEM works and when it does

not

In this part of the course, we will study the convergence of the finite element

method. At the end of this section, you should be able to assess what the con-

vergence rate of the FEM depends on, how it can be improved, and for which

problems the FEM is not an appropriate method.

Let us write the physical problem in the following abstract form:

Find u ∈ V , such that for all v ∈ V 0 1

a(u,v) = (v, f )+(v,h)Γ (1.1)

where a(·, ·), (·, ·) and (·, ·)Γ are symmetric bilinear forms 2.

For simplicity, but without loss of generality, we will now assume the of the

first term in the right hand side of (1.2) –this corresponds to a linear elasticity

problem without body forces– and we will note (v,h)Γ = F(v), where F is a linear

form (since (·, ·) is bilinear).

Let us now define the approximate finite element problem:

Find uh ∈ Vh, such that for all vh ∈ V 0
h

3

a(uh,vh) = (vh, f )︸ ︷︷ ︸
0 since no body force

+(vh,h)Γ︸ ︷︷ ︸
F(vh)

= F(vh) (1.2)

Define the error due to the finite element approximation e = u− uh, the fol-

lowing theorem holds:

Theorem 1.2.1. Galerkin orthogonality

For all functions vh of V 0
h , a(vh,e) = 0, i.e. the error e is orthogonal to the

space Vh in the sense of the bilinear form a. Or, equivalently, this means that uh is

the orthogonal (in the sense of a) projection of u on the subspace Vh, as depicted

in Figure 1.2.

Theorem 1.2.2. Best approximation property

1a function in V satisfies the essential boundary conditions, a function in V 0 satisfies the

corresponding homogeneous boundary conditions
2for the linear elasticity model problem in one space dimension, x: a(u,v) =

∫
Ω u,xv,xdΩ,

(v, f ) =
∫

Ω v f dΩ and (v,h) =
∫

Γ vhdΓ.
3we assume that the finite element spaces Vh and V 0

h are such that Vh ⊂ V and V 0
h ⊂ V 0
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Any function Uh of Vh is a worse approximant (with respect to the energy norm

associated with the bilinear form a) than the Galerkin finite element solution uh.

Mathematically, for all Uh of Vh:

a(uh −u,uh −u) ≡︸︷︷︸
definition

a(e,e)≤ a(Uh−u,Uh −u) (1.3)

This is known as the best approximation property of the Galerkin finite element

method.

Remark. This best approximation property means that the finite element solution

is a least-squares fit of the exact solution in the sence of the bilinear form a. This

implies that the kth first derivatives of u are fit best (in the sense of a) by the kth

derivative of finite element solution uh. And, from a mechanics point of view, this

means that the strains (stresses) are optimum.

Theorem 1.2.3. Assume that the essential boundary conditions are homogeneous

(i.e. Vh = V 0
h ), then

a(u,u) = a(uh,uh)+a(e,e) (1.4)

Proof.

a(u,u) = a(uh− e,uh − e) = a(uh,uh)−2a(uh,e)+a(e,e) (1.5)

and, by Galerkin orthogonality, we have a(uh,e) = 0, since uh ∈ Vh =︸︷︷︸
by hypothesis

V 0
h ,

which completes the proof.

Corollary 1.2.4. Error in energy and energy of the error From the previous theo-

rem, we can write

a(e,e) = a(u,u)−a(uh,uh) (1.6)

The left hand side is the energy of the error. The right hand side is the error in

energy (with a minus sign). This means that the energy of the error is (−1)× the

error in energy.

Corollary 1.2.5. Underestimation of the strain energy The finite element (strain)

energy a(uh,uh) is less than or equal to the exact (strain) energy a(u,u).

10



Vh

e

u

V

uh

Figure 1.2: The orthogonal (with respect to bilinear form a(·, ·)) projection of the

exact solution u on the finite element space Vh ⊂ V is the finite element solu-

tion uh. On this figure, you can think of e = u−uh as a vectorial identity. In this

figure, the space where the exact solution, u, lives is represented artificially as a

three-dimensional space (in reality it is a space of infinite dimensions). The finite

element subspace is a plane (dimension 2). The error, e is a member of V , and the

finite element solution a member of Vh. Considering the right triangle in the figure,

it can be immediately seen that the length of u (squared) equals the length of uh

(squared) plus the length of e, squared, i.e. a(u,u) = a(uh,uh)+a(e,e) (Theorem

1.2.3). This identity is similar to the Pythagorean theorem in Euclidian spaces.
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Proof. From the above,

a(uh,uh)︸ ︷︷ ︸
finite element energy

= a(u,u)︸ ︷︷ ︸
exact energy

− a(e,e)︸ ︷︷ ︸
≥0 by def. of a

(1.7)

thus,

a(uh,uh)≤ a(u,u) (1.8)

1.3 A priori error estimates in Sobolev Norms

Let Ω be an interval ]a,b[ of R,

Definition 1.3.1. Continuity A function f : Ω → R is said to be of class Ck(Ω)
(i.e. to be k times continuously differentiable) if and only if its kth derivatives exist

and are continuous functions.

Definition 1.3.2. Continuity and boundedness A function f : Ω → R is said to be

bounded on Ω =]a,b[ if and only if there exists a constant c ∈ R (independent on

x), such that, for all x ∈]a,b[, | f (x)|< c.

Definition 1.3.3. Continuity and boundedness A function f : Ω → R is said to be

of class Ck
b(Ω) if and only if it is of class Ck(Ω) and is bounded on Ω.

Definition 1.3.4. Sobolev spaces A Sobolev space of degree k (known as Hk) is a

set of functions with square-integrable4 generalized derivatives until order k.

For an elliptic problem defined on a domain Ω, the approximation error of

a numerically robust and stable primal finite element analysis is known a priori

(before the calculation is performed). Define the following:

• u: exact solution, assumed to possess r square integrable generalised deriva-

tives.

• h: mesh size (diameter of the smallest circle containing the largest element

in the mesh – Figure 1.3)

4square integrable functions are said to belong to the space L2. They are also known as “L2

functions”.
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• p: polynomial order (p ≥ 1) of the finite element approximation (linear

shape functions: p = 1, quadratic shape functions: p = 2, etc.

• k: order of continuity of the “exact” solution (i.e. u ∈ Hk(Ω): u possesses k

square integrable derivatives

• uh: numerical (approximate) solution

• m is the highest order of derivatives appearing in the energy expression. For

elasticity, m = 1 since the energy writes 1
2

∫
Ω

(
ui, j +u j,i

)
Di jkl

(
uk,l +ul,k

)
.

• ‖ · ‖m is the mth Sobolev norm of function ·, i.e. the Hm norm of ·.

With these assumptions,

Theorem 1.3.1. there exists a function Uh ∈ Vh and a constant c (independent of

h, but dependent on p and u) such that

‖u−Uh‖m ≤ chmin(p+1−m,r−m)‖u‖r (1.9)

It is almost a direct consequence that the error, e satisfies the following prop-

erty

Corollary 1.3.2. Fundamental error estimate for elliptic boundary value prob-

lems there exists a constant c̄ (independent of h, but dependent on p and u) such

that

‖e‖m ≤ c̄hmin(p+1−m,r−m)‖u‖r (1.10)

Proof. Let us compare ‖e‖m and ‖u−Uh‖m. Since ‖ · ‖m and a(·, ·) are equivalent

norms, we can find a constant c1 ∈ R such that

‖e‖m ≤
1

c1
a(e,e)

1
2 . (1.11)

But uh is the best approximation to u in the sense of a (Theorem 1.2.2), there-

fore, for any Uh ∈ V 0
h ,

1

c1
a(e,e)

1
2 ≤

1

c1
a(u−Uh,u−Uh)

1
2 . (1.12)
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Using again the equivalence of ‖ · ‖m and a(·, ·), we can find a constant c2 ∈ R

such that

a(u−Uh,u−Uh)
1
2 ≤ c2‖u−Uh‖m. (1.13)

Combining this equation with (1.12) and (1.11), we obtain

‖e‖m ≤
c2

c1
‖u−Uh‖m (1.14)

Letting c̄ = c2
c1

and using the result of Theorem 1.3.1 we obtain the desired

result.

Let us examine (1.10). First, recall that we wish the left hand side to be as small

as possible (to minimise the error). If the right hand side is small, the Hm norm

‖e‖m of the error, e, is blocked between 0 and a small number and, consequently,

also has to be small.

Let us see various possibilities to decrease the magnitude of the right hand

side.

Let us first note that for the method to be convergent, we must have

min(p+1−m,r−m)> 0 (1.15)

otherwise, the right hand side of (1.10) would not go to zero as h → 0 (it would

go to infinity). The condition min p+1−m,r−m > 0 can be rewritten

p+1−m > 0 and r−m > 0, (1.16)

equivalently:

p > m−1 and r > m. (1.17)

Theorem 1.3.3. In words, this means that in order for the finite element method

to converge optimally in norm ‖ · ‖m we must

• select the polynomial order p larger than m−1

• make sure that the exact solution, u is such that it is more regular than the

order of norm ‖ · ‖m

14



h

largest element in the mesh

Figure 1.3: The mesh size, h is the diameter of the smallest circle enclosing the

largest element in the mesh.
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Theorem 1.3.4. If u is in H p+1 (then r = p+1) and the error expression becomes

‖e‖m ≤ c̄hmin(p+1−m,r−m)‖u‖r = c̄hmin(p+1−m,p+1−m)‖u‖p+1 = c̄hp+1−m‖u‖p+1

(1.18)

Example 1.3.1. Elasticity For elasticity, we have m = 1 (only the first derivative

of the displacement u appears in the energy expression). If we measure the error

in the H1 norm (also known as energy norm), then m = 1. If we further assume

that the solution u is in H p+1, as in Theorem 1.3.4, we can use Equation (1.18),

which becomes

‖e‖1 ≡︸︷︷︸
def

‖e‖H1 ≤ c̄hp+1−1‖u‖p+1 = c̄hp‖u‖p+1 (1.19)

One conclusion that we can draw from Equation (1.19), is that when the exact

solution u is smooth enough (in H p+1, the convergence rate of the H1 norm of the

finite element error can be increased by two techniques:

• decreasing h (this is known as h-adaptivity), i.e. decreasing the element size

• increasing p (this is known as p-adaptivity), i.e. increasing the polynomial

order used in the approximation

However, these techniques are not always successful. Let us go back to the

error bound:

‖e‖m ≤ c̄hmin(p+1−m,r−m)‖u‖r (1.20)

Looking at the exponent, we note that if the regularity r of the exact solution is

low, there is no use increasing the polynomial order p, because r−m will remain

the determining term in min(p+ 1−m,r−m). This is why, if the exact solution

is “rough” (i.e. has a low order of continuity), the standard finite element method

is not well-suited, in general, and needs to be improved. An improvement of this

method is the extended finite element method (XFEM), notions of which will be

given in Section “Enriched Methods.”

1.4 Conclusions

In this chapter, we discussed the various sources of error in numerical simulation,

from setting up the problem, to its numerical solution. We looked at a priori er-

ror estimation, which gives us, before carrying out a calculation, an upper bound
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(maximum value) for the error. We saw that the Galerkin FE solution is optimal in

the sense of the bilinear form defining the boundary value problem, and we learnt

that the error of the finite element solution is governed by the degree of continuity

of the exact solution to be approximated, the polynomial order of the approxima-

tion, the mesh size, and the norm used to measure the error. We discovered that

the FEM is not well-suited to solve problems with rough solutions (see Enriched

Methods part of the course).

In the following chapter, we will start looking at techniques to measure the

error a posteriori, and briefly compare them.
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Chapter 2

Some methods to measure the

approximation error

2.1 Existing a posteriori error estimation techniques

Why do we resort to numerical methods? Usually, the problems we are to solve

are too complex for us to derive closed-form solutions analytically. The problem

is discretised and solved numerically. The major challenge in estimating the ap-

proximation error committed by the numerical method of choice emanates from

the obvious fact that the numerical solution may not be compared to an analytical

solution, since the latter is unknown.

Two routes have emerged from error estimation research to solve this diffi-

culty: recovery and residual based a posteriori error estimates.

Recovery based error estimation consists in constructing an enhanced solu-

tion from a suitable transformation (usually smoothing) of the numerical (raw)

solution, with the objective to employ this improved solution as a substitute for

the unknown exact solution. An obvious requirement for this enhanced solution is

that it be closer to the exact solution than the raw solution.

To understand residual based error estimators, let us consider, to fix ideas, the

simple case of static solid mechanics, where the problem is to find the stress field

in the body such that the latter is in equilibrium with the external forces. Assume

that the standard FEM is used to solve this problem numerically. Residual based

error estimators seek the error by measuring, in each finite element, how far the

numerical stress field is from equilibrium and, consequently, do not require the

construction of an enhanced solution.
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A remarkable and often disconcerting feature of recovery based error estima-

tion is that with no additional information than that available in the raw numer-

ical solution, an enhanced solution can be built and, by comparing it to the raw

solution, the error can be estimated.

In general, the estimated error does not equal the exact error. For recovery

estimators, this is because the enhanced solution does not equal the exact solution.

In residual estimation, the computation of the residual itself must be estimated

using a numerical method (usually the same as the original one being assessed),

leading to an additional source of error.

A point in favour of recovery based estimators is that the ratio of the esti-

mated error to the exact error (known as the effectivity) is close to unity. On the

other hand, residual based estimators are usually less effective, but can provide

mathematical error bounds, which, in certain cases can be very useful, since they

prove that the estimated error is larger than the exact error. Unfortunately, these

bounds may include constants which are often very difficult to evaluate in prac-

tice: probably the major reason for industry’s preference for residual based error

estimates.

The interested reader can refer to the well-known review article of Professor

Ainsworth [1].

2.2 Recovery based error estimation

A posteriori error estimation has the difficult task to measure the error committed

by a numerical solution without knowing what the exact solution is. The basic

idea of recovery based error estimation, is to construct, with only the informa-

tion contained into the numerical solution, an enhanced solution that will play the

role of the exact solution. The error is then defined by the difference between this

improved solution (enhanced solution) and the initially obtained numerical solu-

tion (raw solution). This technique was invented by Professor Zienkiewicz and are

reported in his famous papers [27–29].

There are several techniques that can be used to obtain the enhanced solu-

tion. One of the simplest one is smoothing. The basic idea is depicted in Figure

2.2, which shows the original solution (piecewise constant), the improved solu-

tion (bold piecewise linear line) and the exact solution (dashed curve). Notice that

the improved solution approximates the exact solution much better than the orig-

inal “stair-case” solution. In order to improve the accuracy of the enhanced solu-

tion, the nodal stress (strain) fiels can be computed from the stress/strain fields of

20



Finite element nodes

ε = (5+(−2))/2 = 3
2

ε = 5

ε =−2

Barlow points (superconvergent points)

Figure 2.1: Superconvergent Patch Recovery (SPR). Original (raw), improved (en-

hanced) and exact solution for linear 1D elements. For an elasticity problem, the

field shown could be the stress or strain field, i.e. the fields obtained by differ-

entiating the displacement solution. At each node, the enhanced solution is con-

structed as the average of the stress (strain) value in the neighbouring elements.

the neighbouring elements, evaluated at so-called “superconvergent points.” These

points were discovered by Barlow (Figure 2.2), and are the points in the element

where the derivatives (strain, stress) are most accurate.

The notion of smoothing, or derivative recovery was extended by Bordas and

Duflot to enriched finite element approximations (See Chapter 4, Figures 4.3 and

4.4). On these figures, you can see the “stair-casing” present in the raw solution,

which is suppressed by smoothing. See also References [7–10, 26].

The smoothing scheme presented in Figure 2.2 is very simple, and many im-

provements have been proposed (see [1] for details). A simple improvement would

be to express the smoothed stress (strain) field at each node as the average of the

stress (strain) evaluated at the superconvergent point (Barlow point) of the two

neighbouring elements, weighted by the length of the element.

Error estimates based on smoothing techniques are widely used in the engi-
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linear triangles (p = 1)
linear quadrangles (p = 1)

Figure 2.2: Barlow (superconvergent) points for linear triangular elements and

bilinear quadrilateral elements are located at the centre of the elements.
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neering community (for example, the commercial code UGS/EDS-PLM I-DEAS

has mesh-adaption capability for linear elasticity problems as well as plate and

shell formulations).

The assumption of superconvergence is not required for these methods to

work, and it is possible to show that averaging (smoothing) based error estimates

tend to overestimate the error (which is important for engineering applications).

If the superconvergence property is satisfied, it is possible to show that certain

classes of averaging error estimates are asymptotically exact (when the mesh size,

h goes to zero).

2.3 Explicit residual based error estimation techniques

These estimators, known as “explicit” (see Ainsworth [1]), because the sole knowl-

edge of the approximate solution suffices to evaluate them.

The general idea is to measure how accurately the boundary value problem is

solved in each element. Let us imagine we are solving an elasticity problem. The

boundary of the domain is split into two non-overlapping parts: the Dirichlet and

the Neumann boundaries. There will therefore be three categories of elements:

interior elements (for which no node lies on the boundary); Dirichlet elements

(for which at least one node lies on the boundary) and Neumann elements for

which at least one node lies on the Neumann boundary. There will also be some

mixed elements, for which some nodes are on the Neumann boundary, and other

nodes on the Dirichlet boundary.

For each of these element categories, the residual (difference between the so-

lution and the equilibrium) will be computed in a different way. For interior ele-

ments, the equilibrium condition must be verified (σi j, j = 0), for Neumann bound-

aries, the surface tractions must equal the imposed tractions (σi jn j = t̄i), and for

the Dirichlet boundary, the imposed displacements must equal the imposed dis-

placements (ui = ūi). The basic idea is shown in Figures 2.3 and 2.3.

Explicit error estimators lead to local error indicators, including unknown

(usually) constants. It is possible to find bounds for these constants, but these

bounds are usually such that the error estimator is pessimistic.

Additionally, to measure the global error, we need to give a weight to each

type of residual, depicted in Figures 2.3 and 2.3. Choosing these weights is not

obvious.

23



interior element: σi j, j = 0

Neumann element: σi jn j = t̄i

Dirichlet boundary

Dirichlet element: ui = ūi

Figure 2.3: Element categories for residual based error estimators.
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interior element: σi j, j = 0

Dirichlet element: ui = ūi

Element 1

t(2) = σ
(2)
i j n j

n

−n

Element 2

t(1) = σ
(1)
i j n j

Neumann element: σi jn j = t̄i

Figure 2.4: Element categories for residual based error estimators. Note that the

stress continuity through the element boundaries is part of the residuals to be

computed.
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2.4 Implicit residual base error estimation techniques

Implicit error estimation techniques require the solution of a local (in each element

or over a small group of elements) boundary value problem approximating the

equation for the error itself. An estimate of the error is then taken as the norm of

the solution to this local boundary value problem.

In implicit error estimators, an auxiliary boundary value problem, with the

residual as data is used. This suppresses the difficulty associated with the rela-

tive weighting of the residuals (see Section 2.3). However, a disadvantage of this

technique is that it requires solving an additional boundary value problem numer-

ically, which implies the choice of a suitable approximation scheme. This can be

problematic. Examples of implicit residual methods are:

• the element residual method;

• the subdomain residual method.

The interested reader is referred to the review paper by Ainsworth and Oden

[1] and Ainsworth’s book [2].

2.5 Measuring the adequacy of an error estimator

For simplicity, we restrict here to recovery-based error estimates. Let Ωq be an

element in the mesh, the error between the raw and the smoothed solution can be

measured by the norm

ehs
Ωq

=

√∫
Ωq

∥∥εh(x)− εs(x)
∥∥2

dx. (2.1)

Since the enhanced solution is different from the exact solution, this measure is

only an approximate error. The global approximate error is measured by the sum

of the elemental errors on the nelt elements of the mesh

ehs =

√√√√
nelt

∑
q=1

ehs
Ωq

2
. (2.2)

We then define ehe
Ωq

as the following error norm between the raw XFEM solution

and the exact solution on element Ωq
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ehe
Ωq

=

√∫
Ωq

∥∥εh(x)− εexact(x)
∥∥2

dx, (2.3)

and we call this error measure the exact error since it measures the distance be-

tween the raw XFEM solution and the exact solution. Summing over the elements

in the mesh, the global exact error writes

ehe =

√√√√
nelt

∑
q=1

ehe
Ωq

2
. (2.4)

The effectivity index of the error estimator is defined as the ratio of the approxi-

mate error to the exact error

θ =
ehs

ehe
. (2.5)

A good estimator has an effectivity close to unity, which means that the measured

(approximate) error is close to the exact error. In other words, the enhanced solu-

tion is close to the exact solution.

2.6 Adaptivity or what to do with the error distri-

bution?

The techniques presented briefly above permit the calculation, for all elements in

the mesh, of the elemental contribution to the global error. In practice, an engineer

wants to limit both the global and the element-wise error. The error estimators

produce error maps, on the whole mesh, similar to Figure 2.6. In 2.6, p adaptivity,

in the region of highest error, is shown. Additional (mid-side) nodes are required

to support the higher order shape functions. An example of h adaptivity is shown

in Figure 2.6 and a typical approximation adaptation cycle is shown in Figure 4.2.

2.7 Conclusions

In this chapter, we learnt how to measure, a posteriori (after the calculations are

finished), the error of a numerical approximation. We learnt about explicit and

implicit error estimates as well as smoothing (recovery) based and residual based
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Figure 2.5: Error map. The darkest elements have the highest error. These ele-

ments can theb be subdivided (h refinement), the polynomial order can be in-

creased in these elements (p refinement – beware! We saw in Chapter 3.1 that

this was useless for low-continuity exact solutions such as linear elastic fracture

mechanics or other singular solutions. Alternatively, nodes can be moved around

without increasing the number of elements, nor changing the approximation order

(relocation adaptivity: r-adaptivity). Figure provided for example purposes only,

it is unlikely that an error distribution looks like this for a real approximation.
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nodes present before p adaptivity

additional nodes used to increase the polynomial order, p

25%

Figure 2.6: A simple example of p adaptivity in the region of highest error
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13%
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Additional elements for h adaptivity
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Figure 2.7: A simple example of h adaptivity in the region of highest error
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Add elements (nodes) Increase polynomial order Move nodes

p adaptivity r adaptivity e adaptivityh adaptivity

Use more enrichment functions per node
Enrich more nodes

step-enriched nodes
tip-enriched nodes

meshed

does not need to be
note that the crack

Initial discretisation D0

Shaded elements: higher error

Estimate the local (e) and global (E) error

Improved discretisation Dn

If e > ethres or E > Ethres

If e < ethres and E < Ethres

END

Figure 2.8: Adaptivity, a schematic explanation.

estimates and compared them succintly. We also discussed possibilities to measure

the effectivity of an error estimator.

In the next chapter, we will focus on goal-oriented error estimation, which

is useful when the quantity of interest is not only the global strain energy, but,

possibly, the average stress in a given subregion of a component, or, as is the case

in fracture mechanics, the value of the crack driving force, i.e. the stress intensity

factor or more generally, the energy release rate.

31



32



Chapter 3

First notions on goal-oriented error

estimation

3.1 Introduction

In linear elastic fracture mechanics (LEFM), the main quantity of interest is the

energy release rate G along the front (tip) of the cracks. Domain forms of interac-

tion energy integrals [17] are well suited to the computation of the stress intensity

factors required to compute G. One can therefore argue that it is the error on G

committed by the numerical approximation that should be measured, as opposed

to the traditional error on the energy.

Goal-oriented a posteriori error estimates are well-established techniques to

help measure and control the local error on a (non)linear functional of interest.

3.2 LEFM problem statement and extended finite

element discretization

3.2.1 LEFM problem

To begin with, we briefly present the linearized elasticity problem. Therefore, let

us first introduce the isotropic elastic body which is given by the closure of a

bounded open set Ω ⊂ R
3 with a piecewise smooth and polyhedral boundary Γ

such that Γ = Γ̄D ∪ Γ̄N and ΓD ∩ΓN = /0, where ΓD and ΓN are the portions of

the boundary Γ where Dirichlet and Neumann boundary conditions are imposed,
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respectively. Assuming, for the sake of simplicity, homogeneous Dirichlet bound-

ary conditions, all admissible displacements u : Ω̄ → R of the elastic body Ω̄ are

elements of the Hilbert space V = {v ∈ [H1(Ω)]3 ; v|ΓD
= 0}.

The weak formulation of the linearized elasticity problem—which is also termed

the primal problem throughout this paper—then reads: find u ∈ V such that

a(u,v) = F(v) ∀v ∈ V (3.1)

with the continuous, symmetric and V -elliptic bilinear form a : V ×V → R and

the continuous linear form F : V → R defined by

a(u,v) =

∫
Ω

σ(u) : ε(v)dV (3.2)

and

F(v) =
∫

ΓN

t̄ ·vdA, (3.3)

respectively. Here, σ = C : ε denotes the stress tensor given in terms of the fourth-

order elasticity tensor C and the second-order strain tensor ε defined as the sym-

metric gradient of u. Furthermore, t̄ ∈ [L2(ΓN)]
3 are prescribed tractions imposed

on the Neumann boundary ΓN . For the sake of simplicity, body forces are omitted

in the above formulation.

3.2.2 The J-integral as a crack propagation criterion

As mentioned earlier, in LEFM the energy release rate and the J-integral concept

are equivalent. The J-integral, which is a nonlinear functional J : V → R, can be

derived by a straightforward application of the concept of material forces, see, e.g.,

Steinmann et al. [23], since J is the projection of the material force Fmat acting

on the crack tip into the direction of crack propagation (given in terms of the unit

vector e|| which is a priori known in this paper due to symmetry conditions with

respect to both the boundary conditions and the geometry of the elastic body). It

is computationally convenient to use the domain expression of J, as introduced by

Shih et al. [22], which then reads

J(u) = Fmat · e|| =−

∫
ΩJ

H(qe||) : Σ̃(u)dV. (3.4)

Here, q = q(x,y) (or q = q(x,y,z) in three space dimensions) represents an arbi-

trary, piecewise continuously differentiable weighting function with q = 1 at the
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Figure 3.1: Pre-cracked specimen, boundary conditions and q-function as a pyra-

mid function.

crack tip and q = 0 on the contour (or surface) ΓJ that bounds the area (or volume)

ΩJ. For example, q can be conveniently chosen as a pyramid function as shown

in Figure 3.1. Furthermore, Σ̃ denotes the so-called Newton-Eshelby stress tensor

given by

Σ̃ =WsI−HT ·σ (3.5)

with specific strain-energy function Ws, second-order identity tensor I and dis-

placement gradient H = ∇u. Assuming that e|| = (10)T , the classical form of the

J-integral can be easily obtained.

A pre-existing crack then starts to grow in the direction of e|| if J exceeds the

(known) material dependent threshold Jc.

3.2.3 Definitions

In what follows, the following definitions are assumed:

• V is the exact test space

• u ∈ V is the exact solution to the exact crack problem and v ∈ V is a test

function.

The bilinear form a : V ×V → R and the linear functional F : V → R were

defined in 3.2 for the linear elasticity model problem. The variational equation for

u is

Find u ∈ V | ∀v ∈ V a(u,v) = F(v) (3.6)

The discretized version of the variational principle restricts the problem to seeking

a solution uh in a finite-dimensional subspace of Vh ⊂ V and writes
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Figure 3.2: Schematic visualization of the linearizations of the J-integral.

Find uh ∈ Vh | ∀vh ∈ Vh a(uh,vh) = F(vh) (3.7)

The Lax-Milgram theorem guarantees existence and uniqueness of a solution for

both variational problems (3.6) and (3.7).

Obviously, the discretized version of the variational principle yields a solution

uh which is not exact, and we note eu = u−uh the discretization error.1

3.3 Goal-oriented error estimate

Our goal is now to evaluate the discretization error on the non-linear functional

J : V →R defined in 3.2.2 committed upon discretization of the variational prob-

lem, i.e. we seek an estimate of the quantity J(u)− J(uh), which is our goal-

oriented error measure. This error measure, however, is non-linear by definition.

Therefore, as shown in Rüter and Stein [20] based on the seminal work by Eriks-

son et al. [11] and Becker and Rannacher [6], we first need to linearize the J-

integral2

which results in the following expression

J(u)− J(uh) = JS(u,uh;eu) (3.8)

1The subtraction is well defined since we proved earlier that Vh ⊂ V and hence, subtracting uh

from u is permitted.
2we note that an exact linearization, which is a secant form, JS(u,uh;eu), of J, involves the

(unknown) exact solution u and is therefore not computable. We therefore fashion an approximate

linearization, a tangent linearization of J, as the linear functional JT (·) obtained by setting u = uh

in JS (3.2)
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with secant form JS : V → R, defined as

JS(u,uh;v) =
∫ 1

0
J′(ξ(s);v)ds, (3.9)

see [20]. In the above, the tangent form of J is defined as

J′(ξ(s);eu) = DuJ(u)|ξ(s) · eu, (3.10)

that is the Gâteaux derivative of J with respect to u in the direction of the dis-

cretization error eu and ξ(s) = uh + seu, s ∈ [0,1].
Since the linearization JS involves the (generally unknown) exact solution u,

we next introduce a computable approximation JT of JS by replacing the exact

solution u with the (known) finite element solution uh. Hence, we arrive at the

tangent form

JT (·) = J′(uh; ·) = JS(uh,uh; ·)≈ JS(u,u
h; ·) (3.11)

that holds for small errors eu only. A schematic visualization of the derivations

presented above can be seen in Figure 3.2.

With the above definition at hand, the exact linearization of (3.4) yields

JS(u,uh;v) =−

∫ 1

0

∫
ΩJ

H(qe||) : CΣ(ξ(s)) : H(v)dVds, (3.12)

whereas the associated tangent form JT is given by

JT (v) =−

∫
ΩJ

H(qe||) : CΣ(u1h) : H(v)dV. (3.13)

In the above, CΣ denotes the fourth-order tensor of elastic tangent moduli associ-

ated with the Newton-Eshelby stress tensor defined as

CΣ =
∂Σ̃

∂H
= I⊗σ− I⊗σ−HT ·C, (3.14)

see Heintz et al. [13]. Here, "⊗" denotes a non-standard dyadic product operator.

For further elaborations on the linearizations of the domain as well as the contour

expression of the J-integral we refer to Rüter and Stein [20].

JT (·) = J′(uh; ·) (3.15)

= JS(uh,uh; ·) (3.16)

≈ JS(u,uh; ·) (3.17)
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3.3.1 Duality techniques

We have now derived an approximation, JT for the discretization error J(u)−
J(uh) committed on the J integral. How can this error be computed? We follow

the strategy of solving an auxiliary dual problem, which we define next. Let us

introduce the bilinear form a∗ : V ×V → R, dual of a3 and define the following

dual problem

Find u∗ ∈ V | ∀v ∈ V a∗(u∗,v) = JT (v) (3.18)

Choosing v = eu, the (unknown) error of the primal problem (3.6) in (3.18), the

dual problem rewrites:

Find u∗ ∈ V | a∗(u∗,eu) = JT (eu) (3.19)

a(eu,u
∗) = JT (eu) (3.20)

Define π : V → Vh a projector. As Vh ⊂ V , we can add/subtract any element of

Vh to/from an element of V , in particular πu∗ to/from u∗ and obtain

Find u∗ ∈ V | ∀πu∗ ∈ Vh a(eu,u
∗+πu∗−πu∗) = JT (eu) (3.21)

a(eu,u
∗−πu∗)−a(eu, πu∗

︸︷︷︸
∈Vh

)

︸ ︷︷ ︸
=0

= JT (eu) (3.22)

where the second term in (3.22) vanishes due to Galerkin orthogonality (Theorem

1.2.1. We are now left with the newly expressed dual problem

Find u∗ ∈ V | ∀πu∗ ∈ Vh a(eu,u
∗−πu∗) = JT (eu) (3.23)

The projector π is arbitrary, and we choose it so that πu∗ is the finite element

solution u∗
h ∈ Vh to the discrete dual problem defined by4

3a∗ is dual of a if and only if for all functions u and v in V , a∗(u,v) = a(v,u). In the case

where the differential operator present in a is self-adjoint, a is symmetric, and a = a∗.
4As for the primal problem, the discretized version (3.24) of the dual variational principle

(3.23) yields a solution u∗
h which is not exact, and we note eu∗ = u∗−u∗

h the associated discretiza-

tion error.
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Find u∗
h ∈ Vh | ∀vh ∈ Vh a∗(u∗

h,vh) = JT (vh), (3.24)

and we obtain the final form of the dual problem we created

Find u∗ ∈ V | a(eu,u
∗−u∗

h) = JT (eu) (3.25)

a(eu,eu∗) = JT (eu) (3.26)

This last form is a representation of the error on the J integral, but is still not com-

putable since the exact errors eu and eu∗ are in general not known. A computable

error representation is easily obtained by replacing the exact primal solution u

and its dual counterpart u∗ by enhanced (recovered, smoothed) solutions ũ and

ũ∗. Defining the approximate errors eũ = ũ−uh and e
ũ∗ = ũ∗−u∗

h of the primal

and dual problems, respectively, the expression for JT in Equation (3.26) can then

be approximated by

Find u∗ ∈ V | a(eũ,eũ∗)≈ a(eu,eu∗) = JT (eu) (3.27)

Thus, all that remains is to compute the enhanced approximations ũ and ũ∗.

Note, however, that only gradients of the solutions appear in the bilinear form a.

Enhanced solutions can for instance be computed by patch recovery techniques,

or moving least square approximations.

IN SHORT:

The error on the functional of interest, here J writes J(u)− J(uh) = JT (eu)
We now define the dual bilinear form a∗ : V ×V →R such that, for all u,v in V ,

we have a∗(u,v) = a(v,u). Let us define a dual problem as follows: find u∗ ∈ V ,

such that, for all v in V , a∗(u∗,v) = JT (v). We obtain JT (eu) = a∗(u∗,eu) =
a(eu∗,eu)= a(u∗−u∗

h,eu) For the linear elasticity problem, a(eu∗,eu)=
∫

Ω

[
ε(u∗)− ε(u∗

h)
]

:

C : [ε(u)− ε(uh)]
But, we know neither ε(u) nor ε(u∗), hence, we use instead a good (smoothed,

recovered, enhanced) solution for these two fields ε(u∗)≡ ε(u∗
h) and ε(u)≡ ε(uh)

The error on the J integral functional is approximated by replaceing uh by uh,

the error on J writes J(u)− J(uh)≡ J(ũh)− J(uh).
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Chapter 4

Measuring the error of extended

finite element approximations

needs to revise this whole section

4.0.1 Error estimation

“While verification and validation and uncertainty quantification have been sub-

jects of concern for many years, their further development will have a profound

impact on the reliability and utility of simulation methods in the future. [...] As

they stand now, verification, validation, and uncertainty quantification are chal-

lenging and necessary research areas that must be actively pursued.” — National

Science Foundation (USA) — Simulation-Based Engineering Science, final report

4.1 Why do we need error estimates?

Simulation-based engineering is concerned with solving physical problems of in-

terest to engineers with a computer. Several questions must be answered for this:

(i) How can the physical problem be modelled, i.e. what are the equations de-

scribing the phenomenon? This leads to a mathematical model. (ii) How can these

equations be re-worked into a computational model (finite element, boundary ele-

ment, meshfree, etc.) to be solvable on a computer? Assuming these two questions

were suitably answered and a numerical solution obtained, one might wonder (iii)

“Are the equations solved correctly and what is the error?”
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Figure 4.1: Sources of error in simulation.

U Physical object/process

⇓

ε1 −→ Error of the physical theory

⇓
u Mathematical model Au = f

⇓

ε2 −→ Approximation error

⇓
uh Discrete model Ahuh = fh

⇓

ε3 −→ Computational error

⇓
uε

h Numerical solution Ahuε
h = fh + ε.

The importance of error estimation when solving physical problems numeri-

cally (discretely) is clear. The first source of error lies in the construction of the

mathematical model, the second, is related to the error committed by the numer-

ical model (discretised version of the mathematical model). Szabó and Babuška

suggest that knowledge of the error is essential to be able to correlate experimen-

tal and numerical results: one must ensure that the numerical results are close to

the true solution of the mathematical model, to guarantee that any discrepancy be-

tween the numerical and experimental results can be ascribed to the unsuitability

of the mathematical model. Strouboulis stated clearly the need for accurate error

estimates for extended finite element methods [24].

Numerical methods, the finite element method (FEM) especially, revolution-

alised industrial product development throughout engineering disciplines. The

first error estimation paper dates back to Richardson in 1910 [19], in the context of

finite differences. Shortly after the start of the FEM era, it became evident that val-

idating and verifying the numerical schemes was vital for computer simulation to

play any significant role in engineering analysis. The developments that followed

led to a better understanding of what causes error, how this error is distributed and

how the numerical method or the approximation can be modified to minimize this

error: some key contributions in this respect are [2–4, 14, 16, 18, 27–29].
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4.1.1 Need for error estimation in the XFEM

As this book is written, engineers are deploying the XFEM to simulate crack prop-

agation, assess damage tolerance and durability of structures in various engineer-

ing disciplines. As was the case of the FEM-engineers fifty years ago, today’s

“XFEM-engineers” are required to assess the accuracy of their calculations, and

as the method gains popularity, this need will become all the more acute. In the

rest of this section we present basic methods to estimate the discretisation error

in X-FEM and in Chapter ??, we present advanced methods based on statically

admissible recovery and goal-oriented error measures.

4.1.2 A posteriori error estimation techniques

Why do we resort to numerical methods? Usually, the problems we are to solve

are too complex for us to derive closed-form solutions analytically. The problem

is discretised and solved numerically. The major challenge in estimating the ap-

proximation error committed by the numerical method of choice emanates from

the obvious fact that the numerical solution may not be compared to an analytical

solution, since the latter is unknown.

Two routes have emerged from error estimation research to solve this diffi-

culty: recovery and residual based a posteriori error estimates.

Recovery based error estimation consists in constructing an enhanced solu-

tion from a suitable transformation (usually smoothing) of the numerical (raw)

solution, with the objective to employ this improved solution as a substitute for

the unknown exact solution. An obvious requirement for this enhanced solution is

that it be closer to the exact solution than the raw solution.

To understand residual based error estimators, let us consider, to fix ideas, the

simple case of static solid mechanics, where the problem is to find the stress field

in the body such that the latter is in equilibrium with the external forces. Assume

that the standard FEM is used to solve this problem numerically. Residual based

error estimators seek the error by measuring, in each finite element, how far the

numerical stress field is from equilibrium and, consequently, do not require the

construction of an enhanced solution.

A remarkable and often disconcerting feature of recovery based error estima-

tion is that with no additional information than that available in the raw numer-

ical solution, an enhanced solution can be built and, by comparing it to the raw

solution, the error can be estimated.

In general, the estimated error does not equal the exact error. For recovery
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estimators, this is because the enhanced solution does not equal the exact solution.

In residual estimation, the computation of the residual itself must be (ARE WE

SURE?) estimated using a numerical method (usually the same as the original one

being assessed), leading to an additional source of error.

A point in favour of recovery based estimators is that the ratio of the esti-

mated error to the exact error (known as the effectivity) is close to unity. On the

other hand, residual based estimators are usually less effective, but can provide

mathematical error bounds, which, in certain cases can be very useful, since they

prove that the estimated error is larger than the exact error. Unfortunately, these

bounds may include constants which are often very difficult to evaluate in prac-

tice: probably the major reason for industry’s preference for residual based error

estimates.

4.1.3 Error estimation for XFEM: challenges

Estimating the error for XFEM for problems with rough (discontinuous or/and sin-

gular solutions) raises key challenges that join existing difficulties associated with

FEM error estimation. The enhanced solution of recovery based error estimation

must be constructed so that it follows the discontinuities and singularities em-

bedded in the XFEM approximation used to obtain the raw numerical solution. In

residual based estimation, the residual requires integration along the discontinuity

boundary, which may be complex, and is not meshed explicitly. The presence of

the singularity requires very special care to be given to the numerical integration

to compute the residual and the energy norm of the error.

4.1.4 Definitions

On element Ωq, the approximate error between the raw and the smoothed solution

is measured by the norm

ehs
Ωq

=

√∫
Ωq

∥∥εh(x)− εs(x)
∥∥2

dx (4.1)

The global approximate error is measured by the sum of the element-wise errors

on the nelt elements of the mesh

ehs =

√√√√
nelt

∑
q=1

ehs
Ωq

2
(4.2)
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Define ehe
Ωq

as the following error norm between the raw XFEM solution and the

exact solution on element Ωq. We call this error the exact error:

ehe
Ωq

=

√∫
Ωq

∥∥εh(x)− εexact(x)
∥∥2

dx (4.3)

The global exact error is

ehe =

√√√√
nelt

∑
q=1

ehe
Ωq

2
(4.4)

The global error efficiency index of the estimator is defined as the ratio of the

approximate error to the exact error

θ =
ehs

ehe
(4.5)

A good estimator has an effectivity close to unity, which means that the mea-

sured error is close to the exact error. In other words, the enhanced solution is

close to the analytical solution.

4.2 e-adaptivity

In XFEM, the selection of enriched nodes is flexible. Typically, to obtain optimal

convergence rates, nodes within an area, independent of the mesh size, around the

feature of interest must be enriched. The choice of the enrichment field is also

flexible since any function can be used in practice. Of course, the functions cho-

sen should not be linearly dependent. For “large” enrichment radii, where “many”

nodes are enriched, the potential for some of the equations of the linear system to

be linear dependent increases and the system can become ill-conditioned. Precon-

ditioners are available to alleviate this.

This means that in XFEM, adaptivity can be much simplified: this is the goal

of what Bordas and Duflot coined enrichment (e) adaptivity [7,8,10]. e-adaptivity

has the potential to revolutionise the way we think about adapting our approxi-

mations to our physical problems. For instance, we showed in [7, 8, 10] that the

approximation space can easily be adapted by suitably tuning the enrichment ra-

dius around crack fronts and by suitably selecting the enrichment functions. This
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process does not require remeshing and can be a very simple way to locally in-

crease the polynomial order.

We believe that this concept can be ported to the non-enriched numerical tech-

niques to provide very flexible means to locally enrich an approximation. From an

initial guess at the solution using a standard numerical technique, an initial error

distribution can be obtained. Further, locally, it is possible to extract key zones of

interest (high gradients, boundary layers, “almost discontinuous” behaviours with

sharp variations) and deduce what enrichment functions are required in these re-

gions. The initial approximation can now be enriched locally by these functions

and the error recomputed.

The next steps are (i) the development of adaptivity schemes where the mesh

is refined (h), the polynomial order increased (p) the enrichment radius and en-

richment functions tailored to the error distribution (e). We aim to devise rational

techniques in which a combination of h, p and e adaptivity, applied in an or-

der to be defined, optimise the approximation. (ii) the development of adaptivity

techniques for evolving fronts. (iii) in our paradigm, the selection of the enrich-

ment functions is itself the outcome of a preliminary numerical solution. Instead of

refining the mesh or increasing the polynomial order, adequate enrichment func-

tions will be selected, based on the knowledge of the error distribution, and used

to improve the approximation for the next step in the adaptive procedure.
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Add elements (nodes) Increase polynomial order Move nodes

p adaptivity r adaptivity e adaptivityh adaptivity

Use more enrichment functions per node

Enrich more nodes

step-enriched nodes

tip-enriched nodes

meshed
does not need to be

note that the crack

Initial discretisation D0

Shaded elements: higher error

Estimate the local (e) and global (E) error

Improved discretisation Dn

If e > ethres or E > Ethres

If e < ethres and E < Ethres

END

Figure 4.2: Adaptivity, a schematic explanation.
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4.2.1 Need for error measures with specific goals

As previously stated, XFEM is employed industrially for fracture mechanics and

reliability assessment, primarily in the context of linear elastic fracture mechanics

(LEFM) e.g. [?]. The presence of initial defects (or cracks) is assumed, and their

growth is governed by parameters known as stress intensity factors, which are

sufficient to describe the state of stress in the vicinity of the crack fronts (see ??).

From these, the fatigue life of a component may be determined by semi-empirical

laws (e.g. Paris). Consequently, in LEFM, the critical quantities of interest are the

stress intensity factors, which determine whether the material fails, the crack paths

and the structure’s fatigue life. The stress intensity factors are here the quantity

of interest and an adequate numerical method should minimise the error on this

quantity of interest.

It is not evident that if the error in energy (EE) is minimised, then, the error on

the stress intensity factors (SIFE) will also be minimal, even if experience shows

that it will be reduced. The error distribution yielded by EE-minimisers will be

quite different from that of an SIFE minimiser. Mathematics allow to eradicate this

difficulty by providing goal-oriented error estimates. Such estimates date back

to [12], and provide a means to minimise the error on a given quantity of interest

(average stress in a region, displacement at a point, stress intensity factors...).

Through our on-going collaboration with leading experts in goal-oriented

error estimation, (Korotov, Stein, Rüter), we propose to devise goal-oriented error

estimators with the aim to tailor XFEM approximation to the specific purposes of

analysing cracks propagating in linear elastic media.

The first steps in goal-oriented error estimates for linear elastic fracture me-

chanics in a FE context were taken by Rüter and Stein [21]. This work is based on

the solution of a dual problem with the same left hand side, while the right hand

side is computed based on the goal of the adaptive procedure.

4.3 Basic features of the error estimates

The rest of this chapter proposes and compares two recovery based error estima-

tion techniques for extended finite element methods, XFEM, or, more generally,

methods based on extrinsic partition of unity enrichment. The applications shown

are in fracture mechanics, but the ideas are general and apply to any extrinsic

enrichment scheme.

The first estimator employs derivative recovery with intrinsically enriched eX-
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tended Moving Least Squares (XMLS) approximants and diffraction to account

for the discontinuity through the crack. MLS derivative recovery in finite elements

was first proposed in [25] of which this work is a generalization. The smoothness

of the recovered derivatives is identical to that of the MLS weight function, in the

examples proposed, they are C1.

The second is a generalization to enriched approximations of the simple con-

cept of global derivative recovery introduced in [14, 18] for the finite element

method. The starting point of global derivative recovery is the remark that when

only C0 continuity of functions in the trial space is assumed in finite element meth-

ods, the strain and stress fields are discontinuous through element boundaries. The

principle presented in [14,18] is to construct an enhanced stress field interpolated

with the same ansatzt functions as the displacements, and such that the L2 norm

over the whole domain of the difference between the enhanced and original finite

element strains (stresses) is minimized. Through global minimization, we obtain

an enhanced strain field, which is a better aproximant to the exact solution, itself

unknown.

In both techniques, comparing the orginal (raw) XFEM strains to the enhanced

strains, as in standard recovery-based error estimation [27], we define a local

(element-wise) error which can be used to drive adaptive strategies.

The conclusions of the studies, reported in detail in [8], [7] [10] are that: (i)

both XMLS and XGR methods yield error estimates which are valid, i.e. their

effectivity tends to zero as the mesh is refined, (ii) the XMLS method yields

smoother recovered fields than XGR, (iii) XGR is cheaper computationally than

XMLS, at least in its initial formulation, (iv) XGR is more easily implemented in

existing codes, and is well-suited to engineering analysis.

4.4 Essential results

For the sake of conciseness, we will only recall the key results associated with both

estimators, and show how they are applied to three dimensional fracture problems.

The readers are referred to [7, 8, 10] for details on the formulation and more nu-

merical illustrations.

4.4.1 Extended moving least squares (XMLS) recovery

• The recovered strain/stress fields are C1.
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• In [7, 8], we show the necessity for the addition of the near-tip fields to

the MLS basis, if these functions are not added, the effectivity index of the

proposed error indicator does not tend to unity as the mesh is refined.

• For problems where the exact solution is not known, and thus where the

effectivity index cannot be computed, we check that the L2 norm of the

difference between the raw XFEM strain field and the XMLS recovered

strain field converges to zero with a rate close to the optimal rate of 1.0 as

the mesh size tends to zero, as long as a fixed area is enriched around the

crack tip during mesh refinement. If only the crack tip element is enriched,

the convergence rate is close to 1/2, which is the strength of the crack tip

stress singularity. This corroborates the findings of References [5,15]. Note

that the higher the enrichment radius, the lower the error, the straighter the

convergence line, and the closer to optimal the convergence rate is.

• Larger XMLS recovery smoothing lengths lead to higher effectivity indices,

but we believe that the increase is not significant enough to justify the addi-

tional computational cost.

• In [7, 8], we show the superiority of the XMLS recovered solution with the

now standard Superconvergent Patch Recovery (SPR) of [27], for fracture

problems.

4.4.2 eXtended Global Recovery (XGR)

• The recovered strain/stress fields are C0.

• The L2 norm of the difference between the XGR strain and the raw XFEM

strain vanishes upon mesh refinement.

• More importantly, we show that the effectivity index of the error indica-

tor converges toward unity upon mesh refinement. This proves that the ap-

proximate error converges to the exact error, and, therefore, that the error

indicator is indeed a correct measure of the error.

• The larger the XFEM enrichment radius, the closer the convergence rate is

to 1. This corroborates earlier findings in the context of the XMLS recovery

technique [7, 8] and is explained by the fact that larger enrichment radii

lead to more accurate solutions, thus more accurate recovered solutions,

and therefore an approximate error which is close to the exact error.
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• Comparing the converged values of the effectivity index for XGR to that ob-

tained for XMLS and published in [7,8], we note that the XGR effectivities

converge between 93 and 96%, whereas the XMLS effectivities are in the

vicinity of 99%. For the whole range of mesh sizes, the XMLS effectivities

are better than the XGR effectivities, this is due to the fact that the XMLS

approximation is C2 where as the XGR approximation is only C0. We also

notice that the XMLS results are less sensitive to the value of the enrich-

ment radius than the XGR results. This is not surprising, since the XMLS

recovery is built with a global intrinsic enrichment of the MLS approxima-

tion, whereas the enrichment used for the strain recovery in XGR is only

active in a small1 ball (tube) around the crack tip (front).

4.5 Three-dimensional illustrations

4.5.1 XMLS application

We show in this section the recovered derivatives for a 3D edge crack under com-

bined tension and torsion loading. The domain is [−1,1]× [−1,1]× [−0.5,0.5]
(x× y× z). The crack is defined by the equation y = 0,x ≤ 0, its front is along the

z axis. We show both the raw and enhanced strain field on the deformed configura-

tion, so that the values on the faces of the crack, and along its front may be better

identified. On face y = 1, tractions are imposed as follows: ty = 1, tx = 4z(1− x2)
and tz = 4x(0.25− z2). On face y = −1, tractions ty = −1, tx = −4z(1− x2) and

tz =−4x(0.25− z2) are imposed. Additionally, six nodal displacements are fixed

so as to avoid rigid body modes. Figure 4.3 compares the deformation field ob-

tained with the XFEM (a) to the recovered (smoothed) deformation field obtained

through MLS derivative recovery. The results are quite satisfying.

4.5.2 XGR application

In this section, we summarize the three-dimensional example of a quarter-circular

crack emanating from a hole in a cylindrical shell subjected to a uniform internal

pressure. The elements are linear tetrahedral elements. In this problem, elements

in a tube centered on the crack front and with a variable radius renr are enriched

with near-tip fields. The results are very interesting. They show that increasing the

enrichment radius from rcrack/5 (roughly one element size) to rcrack decreases the

1with respect to the domain size
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(a) Raw XFEM deformation field (b) Smoothed (recovered) deformation

field

Figure 4.3: XMLS: deformed configuration and strain field for the combined ten-

sion/torsion loading case of the 3D crack. The smoothing fulfills its role nicely.

error, and reduces the size of the peak error zone. For renr = rcrack, the estimated

error around the crack front is approximately the same as the error on the other,

uncracked side of the hole. This corroborates our findings in two dimensions, as

well as the conclusions drawn in References [5, 15]. Results are shown in Figure

4.4.

4.6 Conclusions

We presented the basic results of our study of two a posteriori error estimates

for the extended finite element method (XFEM). They suggest a strategy for

h−adaptivity in enriched finite element methods, and hint at a new approximation

adaptation scheme specifically taylored to enriched approximations. Indeed, it is

clear that the error should be minimized by first evaluating the optimal XFEM

enrichment radius renr
2 and, second, if the overall or/and local errors are still

above the tolerance specified for the analysis at hand, proceed to h− or/and p−
refinement, while keeping the enrichment radius constant. This procedure of esti-

mating the optimal enrichment radius can be seen as a generalization of h− and

2this optimal enrichment radius is problem dependent. In our experience, it is situated in the

vicinity of the length of the crack.
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(a) raw XFEM strain field (b) XGR strain field

Figure 4.4: XGR: quarter-circular crack emanating from a hole in a cylindrical

shell under internal pressure; the enrichment radius renr is equal to the radius of

the quarter-penny crack.

p− adaptivity to encompass the non-polynomial functions present in the XFEM

approximation. This new adaptivity could be coined enrichment-adaptivity, or e-

adaptivity, and is subject to on-going research.
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