PROD-F-015-02

Stable 3D XFEM with applications to non
planar crack propagation and inverse problems

K. Agathos! E. Chatzi’ G. Ventura? S. P. A. Bordas®*
Contact:

Doc. ref.:

X-DMS 2017 1



PROD-F-015-02

Problem statement
Weak Form
Global enrichment XFEM
Definition of the Front Elements
Tip enrichment
Weight function blending
Displacement approximation
Vector Level Sets
Crack representation
Level set functions
Point projection
Evaluation of the level set functions
Application to inverse problems
Inverse problem formulation
Parametrization and constraints
Numerical Examples
Convergence study
Crack propagation
Detection of a penny crack in a unit cube
Conclusions

X-DMS 2017

Outline




3D body geomery

Q
Lo

|

Fr=ToUl,Ul,ur,
re=rtur?

PROD-F-015-02
[\

X-DMS 2017 3



Weak form of equilibrium equations

Find u € U such that Vv € V

/a(u):e(v)dQ:/b‘de—&-/f‘vdl_—i- to-vdrt
Q Q e re
where :

U= {u|u € (Hl (Q))3,u = uon ru}

and

V= {vv € (Hl (Q))3,v:0 on ru}
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Global enrichment XFEM

An XFEM variant is introduced which:

» Enables the application of geometrical enrichment to 3D.

» Extends dof gathering to 3D through global enrichment.

» Employs weight function blending.

» Employs enrichment function shifting.
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Front elements

A superimposed mesh is used to provide a p.u. basis.

Desired properties:

» Satisfaction of the partition of unity property.

» Spatial variation only along the direction of the crack front.
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Front elements

tip enriched elements  crack front

INEEP SN T T1-FE mesh
TN » A set of nodes along the crack
I front is defined.
Ry A » Each element is defined by two

nodes.

» A good starting point for front
B element thickness is h.

front element boundaries front element node
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Front elements

Volume corresponding to two consecutive front elements.

front element
boundary

crack front

Different element colors correspond to different front elements.
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Front element shape functions

Linear 1D shape functions are used:

Ne©) = |55 T

where ¢ is the local coordinate of the superimposed element.

Those functions:

» form a partition of unity.

» are used to weight tip enrichment functions.
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Front element shape functions

Definition of the front element parameter used for shape function
evaluation.

front element
boundary

N

front element
node
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Tip enrichment functions

Tip enrichment functions used:

Fi(x) = F; (r,0) = [ﬁsin g,ﬁcosg,ﬁsin gsine,ﬁcosgsin 9}

Tip enriched part of the displacements:

ue(x) = > Ng(x) > Fi (%) exg

KeN's J
where

» Ng are the global shape functions

PROD-F-015-02

» N* is the set of superimposed nodes
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Topological enrichment

The weight function assumes the form:

p(x)= > Nr(x)

TeNtt

where

» Nt are the FE shape functions.

» N'lis a set including all nodes belonging to elements that contain
the crack front.

This definition is identical to the one of Fries (7, 7).
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Geometrical enrichment

The weight function is defined as in (?, 7). Nodal values:

L, g <0
pr=9 (1—-g)", 0<g <1
0, g/>1

where
> r. is the enrichment radius.
» r;i is an additional distance such that r; < re.
» r; are the nodal values of parameter r.

__ h=ri
> — hn=n
gl re—rj
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Geometrical enrichment

Weight function values are obtained through FE interpolation:

e(x)= > Nr(x)er

TeNt

where N/t is the set of tip enriched nodes.
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Weight functions

Weight functions for a) topological and b) geometrical enrichment.
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Weight functions

Weight function for jump enrichment:
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Weight functions

Enrichment strategies used for tip and jump enrichment.

Topological enrichment Geometrical enrichment

crack surface crack surface

crack front crack front

Y

A N i

\ ] N v
\ - \
\ 1
=l

g a) b)
E . Tip enriched element D Blending element D Jump enriched element
goz ® Tip enriched node ¢ Tip and jump enriched node B Jump enriched node
a
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Displacement approximation

u(x)=> N (x)u+3(x) > Ny(x)(H(x)— Hs)by+
leN JeNi

+ @ (x) ( Z NE ( x)ZF

KeNs

_ Z NT(X) Z N;g((XT)ZFJ(XT)) CKj

TeNt KeNs

where:

N is the set of all nodes in the FE mesh.
N7 is the set of jump enriched nodes.

Nt is the set of tip enriched nodes.
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N* is the set of nodes in the superimposed mesh.
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Vector Level Sets

A method for the representation of 3D cracks is introduced which:
» Produces level set functions using geometric operations.
» Does not require integration of evolution equations.

Similar methods:

» 2D Vector level sets (7, 7).

» Hybrid implicit-explicit crack representation (?, ?).
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Crack front

Crack front at time t:

» Ordered series of line segments t;

> Set of points x;

PROD-F-015-02

X-DMS 2017 20



Crack front advance

Crack front at time t + 1:

» Crack advance vectors s! at points x;

» New set of points x/ ™1 = x! +s!
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Crack surface advance

Crack surface advance:
Xit+1

» Sequence of four sided bilinear

segments.

t+1
i

> Vertexes: Xj, X, 1, x,tjrrll X
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Kink wedges

Discontinuities (kink wedges) are present:

» Along the crack front (a).

» Along the advance vectors (b).

kink wedge kink wedge
4

2 / [N
Y e N .

crack front

crack front
advance vector
crack front

crack front
advance vector
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Level set functions

crack front
crack surface

Definition of the level set functions
at a point P:

f distance from the crack surface.

g distance from the crack front.
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Point projection

t+1

t+1
X

Element parametric equations ¢ (u,v), u,v € [-1,1]:

Ox g1 (u,v)xj + g2 (u,v)xf, 1 + g3 (u,v) :trll + g (u, v) X
¢y =g (u,v)yf + g (u,v)yi +as(u, V)y;¥1-%gn(u,V)yE+1

¢, =g (u,v)zf +g(u,v)zf, +g3(u,v) 25T + ga(u,v) 2]

PROD-F-015-02

where gj (u,v), u,v € [—1,1] are linear shape functions.
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Point projection

Equation of the tangent plane Mgy at (uo, vp):

X — ¢x (o, v0) ¥ — ¢y (t0,v0) z — ¢z (o, vo)
det | ¢x,u (U0, w0) &y, (U0, vo) ¢zu(Uo,v0) | =0
bx,v (U0, Vo) by.v (U0, vo) ¢2,v (U0, Vo)

Normal vector to the parametric surface at (ug, vp):

n (UO, Vo) = (A, B, C)

where A, B, C are the minors of the previous matrix at (ug, vp).
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Point projection

Point P can be expressed as:

P=P (u,v)+An(u,v)
where:

P’ the projection of the point to the surface.

A unknown parameter.

The above is solved for u, v and A to obtain the projection.
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Evaluation of the level set functions

At each step t:

» For each point all crack advance segments are tested.

» If for a certain element u, v € [—1,1] then the point is projected
on that element.

» If u ¢ [—1,1] for all elements then the projection lies on the
advance vector.

» If v ¢ [—1,1] for all elements then the projection lies either:

— at a previous crack advance segment
— at the crack front at time t — 1 or ¢t
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Evaluation of the level set functions

Level set function f:

f=P_P
where P’ is either:

» Projection to an element of the crack surface

» Closest point projection to a kink wedge

Level set function g:

g=P-P

where P’ is a closest point projection to the crack front
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Detection of cracks in existing structures

Measurements are available

A computational model is employed

The difference between the two is minimized

Information regarding the cracks is obtained

X-DMS 2017
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Inverse problem

Mathematical formulation:

Find jB; such that
F (r(Bi)) — min
where

B Parameters describing the crack geometry

r () Norm of the difference between measurements and
computed values

F Some function of the residual

PROD-F-015-02

The CMA-ES algorithm is employed to solve the problem.
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Inverse problem

Solution process:

— Generation of initial population (5;) with CMA-ES

— Fitness function (F (r (3;))) evaluation using XFEM and
measurements

— Population is updated with CMA-ES

— The procedure is repeated until convergence

PROD-F-015-02

X-DMS 2017 32



Inverse problem

During the optimization proccess:

> A large number of crack geometries is tested

» The computational model is solved several times

> An efficient and robust method is required
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Problem parametrization

Elliptical cracks are considered:

Parameters:

» Coordinates of center
z point xo ({x0, Y0, 20})

X0 » Rotation about the
three axes 0,0, and 0,

» Lengths a and b
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Problem parametrization

Scaling of parameters:

_l’_

pi = Pi —;piz Piy ;ph sin (BI )

.
Sl

N[ X
~_

where:

B; are design variables
p; are geometrical parameters of the crack

pi,, i, are lower and upper values for the parameters
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Convergence study

7
e

m node where boundary conditions are applied

Uniform normal and shear loads of magnitude 1 are applied at I't.
Problem dimensions: L, = L, = 2L, = 0.4 units and a = 0.1 unit.
Material parameters: £ = 100 units and v = 0.3.

vV v VY

Mesh consists of ny, x n, x n, hexahedral elements,
ny =n, =2n, =nand ne {21,41,61,81,101}.
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L, and energy norms
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L, and energy norms

Convergence rates

re = 0.00|r. =0.02|r, = 0.04
XFEM E 0.492 0.911 1.015
XFEM L, 1.009 1.824 1.976

CGE-XFEM E| 0.635 | 0.957 | 1.014

CGE-XFEM L| 1.265 | 1.890 | 1.930
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21x41x41,1=0.04

1% R =K

p

—&XFEM
—+CGE-XFEM

0 10 20 30 40950 60 70 80 90

Stress intensity factors

41x81x81, r=0.04

A_'\.+

10 20 30 40950 60 70 80 90

O%O

10 20 30 4‘095‘0 60 70 80 90
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Conditioning

Condition numbers for three different enrichment radii.

S)
=]

-®-FEM (slope=1.983)
—a—XFEM, re=0.00(s| ope=0.114)

—v—XFEM, 1 =0.02 (slope=4.819)
- XFEM, re=0.04 (slope=5.876)

.3y =~ CGE-XFEM, re=0.00 (slope=1.991)

- -~ CGE-XFEM, re=0.02 (slope=2.080)

___________ -4~ CGE-XFEM, r_=0.04 (slope=1.658)

10

scaled condition number

10%=="~

21 41 61 81 101
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Edge crack in a beam

Edge crack in a beam under three point bending.
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Geometrical parameters:

L =260 mm, L1 =240 mm, H =60 mm, d = 10 mm, o = 20 mm
Material parameters:

E=21x10° N/mm? v =0.0
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Edge crack in a beam

An unstructured tetrahedral mesh is used:
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Edge crack in a beam

Energy release rates along the crack front:

15

14 &

13+

O

12 +
— Exact vaue

1y —= XFEM, 1 =0
- GE-XFEM, 1,24

10 1 1 1 1 1 1 1 1 1
-05 -04 -03 -02-01 0 01 02 03 04 05
z/d
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Inclined edge crack in a beam

Inclined edge crack in a beam under three point bending.
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Geometrical parameters:

L =260 mm, L1 =240 mm, H =60 mm, d =10 mm, = 20 mm,
8 = 45°

Material parameters:

E=21x10°N/mm? v=0.3
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Inclined edge crack in a beam

PROD-F-015-02

X-DMS 2017 45



Inclined edge crack in a beam
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Inclined edge crack in a beam
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Inclined edge crack in a beam
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Inclined edge crack in a beam
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Inclined edge crack in a beam
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Inclined edge crack in a beam
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Inclined edge crack in a beam
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Inclined edge crack in a beam
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Inclined edge crack in a beam
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Inclined edge crack in a beam
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Inclined edge crack in a beam
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Inclined edge crack in a beam
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Inclined edge crack in a beam

PROD-F-015-02

X-DMS 2017 45



Inclined edge crack in a beam
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Inclined edge crack in a beam
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Inclined edge crack in a beam
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Inclined edge crack in a beam
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Inclined edge crack in a beam
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Inclined edge crack in a beam
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Inclined edge crack in a beam
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Inclined edge crack in a beam

(a) (b) (c)
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Penny crack in a cube

Geometry and sensors:

I
I
. —_
I
I
. —_
|
I
. —_
I
1
-
N\
— .
AN
Mo
N\
e e e AR

\ \ \ N
bl Bkl e LR o )
P \ \ \ W
s I | I Y
s / v}*&
Ve K «M’b‘

B Sensor locations

PROD-F-015-02

X-DMS 2017 47



Penny crack in a cube

Optimization problem convergence:

10%¢ : : :

fitness function
H
o

500 1000 1500 2000
evaluations
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Penny crack in a cube

Best solution after different numbers of iterations

Initial guess 500 evaluations 1000 evaluations

— Actual crack

1500 evaluations 2000 evaluations — Detected crack
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Conclusions

A method was presented which:

Utilizes a novel form of enrichment.

v

v

Provides improved conditioning.

v

Enables the use of geometrical enrichment.

v

Provides high accuracy and optimal convergence.

v

Was combined to vector level sets to solve crack propagation
problems

v

Was applied to inverse problems.
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