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We present an approach for computing long-range van der Waals (vdW) interactions between complex
molecular systems and arbitrarily shaped macroscopic bodies, melding atomistic treatments of electronic
fluctuations based on density functional theory in the former with continuum descriptions of strongly shape-
dependent electromagnetic fields in the latter, thus capturing many-body and multiple scattering effects to all
orders. Such a theory is especially important when considering vdW interactions at mesoscopic scales, i.e.,
between molecules and structured surfaces with features on the scale of molecular sizes, in which case the
finite sizes, complex shapes, and resulting nonlocal electronic excitations ofmolecules are strongly influenced
by electromagnetic retardation and wave effects that depend crucially on the shapes of surrounding
macroscopic bodies. We show that these effects together can modify vdW interaction energies and forces,
as well as molecular shapes deformed by vdW interactions, by orders of magnitude compared to previous
treatments based on Casimir-Polder, nonretarded, or pairwise approximations, which are valid only at
macroscopically large or atomic-scale separations or in dilute insulating media, respectively.
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Van der Waals (vdW) interactions play an essential role
in noncovalent phenomena throughout biology, chemistry,
and condensed-matter physics [1–3]. It has long been
known that vdW interactions among a system of polar-
izable atoms are not pairwise additive but instead strongly
depend on geometric and material properties [2,4,5].
However, only recently developed theoretical methods
have made it possible to account for short-range quantum
interactions in addition to long-range many-body screening
in molecular ensembles [3,6–15], demonstrating that non-
local many-body effects cannot be captured by simple,
pairwise-additive descriptions; these calculations typically
neglect electromagnetic retardation effects in molecular
systems. Simultaneously, recent theoretical and experimental
work has characterized dipolar Casimir-Polder (CP) inter-
actions between macroscopic metallic or dielectric objects
and atoms, molecules, or Bose-Einstein condensates, further
extending to nonzero temperatures, dynamical situations,
and fluctuations in excited states (as in so-called Rydberg
atoms) [16–25]. Yet, while theoretical treatments have thus
far accounted for the full electrodynamic response of macro-
scopic bodies (including retardation), they often treat mol-
ecules as point dipoles of some effective bulk permittivities
or as collections of noninteracting atomic dipoles, ignoring
finite size and other many-body electromagnetic effects.
In this Letter, motivated by the aforementioned theo-

retical developments [1,16–18,24–28], we describe an
approach that seamlessly connects atomistic descriptions
of large molecules to continuum descriptions of arbitrary
macroscopic bodies, characterizing their mutual vdW
interactions. In particular, while molecules in proximity

with macroscopic objects require atomistic descriptions of
the latter, and large molecules far from macroscopic objects
require consideration of contributions from vibrational (in
addition to electronic) resonances to the vdW interaction
energy, we focus on a mesoscopic regime involving molecu-
lar sizes and separations on the order of 1–100 nm, where
macroscopic objects can be treated continuously for the
purposes of computing electromagnetic field responses (and
molecular vibrational resonances can be neglected), yet
electromagnetic retardation in conjunction with the finite
sizes, nontrivial shapes, and nonlocal electronic correlations
of large molecules need to be self-consistently considered to
accurately characterize vdW interactions. We specifically
investigate interactions among various large molecules and
gold surfaces, and show that the effect of nonlocal polari-
zation correlations, encapsulated in the ratio of retarded,
many-body (RMB) to pairwise vdW energies (or forces),
causes relative deviations from pairwise treatments ranging
from 20% to over 3 orders of magnitude. Further quantita-
tive differences of over an order of magnitude, along
with additional qualitative deviations when considering
vdW-driven deformations of elongated molecules above
conducting surfaces, are observed when retardation or
finite-size effects are neglected.
Our work is based on an equation for the long-range

dispersive vdW energy of a system of polarizable bodies,
consisting of N microscopic bodies (molecules), labeled by
k and described by electric susceptibilities Vk, and a
collection of continuum bodies (an environment) described
by a collective, macroscopic susceptibility Venv, displayed
schematically in Fig. 1. The energy of such a collection of
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bodies can be obtained from the scattering framework [29]
and written as an integral over imaginary frequency ω ¼ iξ,

E ¼ ℏ
2π

Z
∞

0

dξ ln½detðT∞T−1Þ�; ð1Þ

in terms of T operators that depend on the bodies’ suscep-
tibilities as well as on the homogeneous electric Green’s
functionG0ðiξ;x;x0Þ¼½∇⊗∇−ðξ2=c2ÞI�½e−ξjx−x0j=c=4πjx−
x0j� (including retardation) mediating electromagnetic inter-
actions; they encode the scattering properties of the various
bodies, and are given by

T ¼ ½I − ðV þ VenvÞG0�−1ðV þ VenvÞ;
where V ¼ P

kVk. T∞ ¼ T env
Q

kTk, written in terms of
TkðenvÞ ¼ ðI − VkðenvÞG0Þ−1VkðenvÞ, encodes the scattering
response of the bodies in isolation from one another [29].
Though this framework treats molecular and macroscopic
susceptibilities equally, since microscopic and macroscopic
bodies are assumed to be disjoint, it is more efficient to
partition the T operators into blocks belonging to either
molecules or macroscopic objects, allowing a trace over the
macroscopic degree(s) of freedom (d.o.f.). The definitions of
TkðenvÞ imply T−1

kðenvÞ ¼ V−1
kðenvÞ − G0, which means that the

relevant T operators can be written as

T−1 ¼
�
T−1
mol −G0

−G0 T−1
env

�
; T∞ ¼

�
Tmol;∞ 0

0 T env

�
; ð2Þ

thus partitioning the molecular and macroscopic (environ-
mental) d.o.f. These depend on the molecular T operators

T−1
mol ¼

2
666664

T−1
1 −G0 … −G0

−G0 T−1
2 … −G0

..

. ..
. . .

. ..
.

−G0 −G0 … T−1
N ;

3
777775
; ð3Þ

withTmol;∞ ¼ Q
kTk,which are in turn partitioned intoblocks

for each of theN molecular bodies. Given this, the product in
the determinant can be evaluated as

detðT∞T−1Þ ¼ detðTmol;∞T−1
molÞ detðI − G0T envG0TmolÞ

¼ detðTmol;∞T−1
molÞ detðI − GenvVÞ

× detðI − G0VÞ−1; ð4Þ
where we used the property G0T kðenvÞ¼ðI−G0VkðenvÞÞ−1−
I, and consolidated the scattering properties of
the macroscopic bodies into the operator Genv ¼
G0ðI − VenvG0Þ−1, which solves Maxwell’s equations�

∇ × ∇ ×þ ξ2

c2
ðIþ V envÞ

�
Genv ¼ −

ξ2

c2
I ð5Þ

for an imaginary frequency ω ¼ iξ, thereby encoding
the macroscopic d.o.f. purely in the electric field
response. Moreover, as the molecules are all disjoint,
then detðTmol;∞T−1

molÞ ¼ detðI − G0VÞ
Q

k detðI − G0VkÞ−1.
Putting all of these identities together yields the following
expression for the energy:

E ¼ ℏ
2π

Z
∞

0

dξ ln½det ðMM−1
∞ Þ� ð6Þ

where M ¼ I − GenvV and M∞ ¼ Q
kðI − G0VkÞ.

Previous scattering treatments of Eq. (1) in Casimir
physics have been restricted to continuum bodies [29], while
previous microscopic fluctuation-dissipation treatments of
Eq. (6) in vdW physics have been restricted to purely
molecular bodies exhibiting nonretarded interactions in
vacuum [8]. Having demonstrated the equivalence of
Eqs. (1) and (6) for arbitrary bodies [see [30] for an alternate
equivalent derivation of Eq. (6) based on the fluctuation-
dissipation theorem], we accurately describe the d.o.f. of
molecular and continuum bodies interacting at nanometric
and larger separations by seamlessly conjoining [36] recently
discussed ab initio electronic density descriptions ofmolecu-
lar responses [3,6,8,13] with state-of-the-art analytical or
numerical techniques from continuum electrodynamics
[1,26–28]. In particular, classical electrodynamic techniques,
including scattering [29,37,38] and finite-difference [39–41]
methods, can be used to solve Maxwell’s equations (5) and
thereby express the macroscopic field response Genv in a
convenient basis, such as incoming andoutgoingpropagating
planewaves, as is typical of the scattering framework [29], or
via localized functions, e.g., tetrahedral mesh elements, in
brute-force formulations [27,38]. Microscopic bodies, on the
other hand, generally require quantum descriptions, but
recent work has shown that one can accurately represent
their response Vk ¼

P
pαpjfpihfpj through bases fjfpig of

either exponentially localized (for insulators) or polyno-
mially delocalized (for metals) functions [42], which accu-
rately capture multipolar interactions among electronic wave
functions [3,6,8,13]. The microscopic and macroscopic
d.o.f., regardless of the specific choice of basis representa-
tion, come together in the operator products GVk; when
represented in the p-dimensional molecular basis fjfpig,
their block matrix elements are of the form

hfpjGVkfqi ¼ αq

Z
d3xd3x0fpðxÞGðx;x0Þfqðx0Þ ð7Þ

FIG. 1. Schematic of molecular bodies described by electric
susceptibilities Vn in the vicinity of and interacting with macro-
scopic bodies described by a collective susceptibility V env, where
the interactions aremediated by vacuum electromagnetic fieldsG0.
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(see [30] for more details). The particular molecules we
consider have finite electronic gaps, allowing accurate
description of the bare response via sums over dipolar
ground-state oscillator densities [5,8–10,12,14,43],

fpðiξ;xÞ ¼ ð
ffiffiffiffiffiffi
2π

p
σpðiξÞÞ−3 exp

�
−
ðx − xpÞ2
2σ2pðiξÞ

�
; ð8Þ

centered at the locations xp of each atom p, normalized such
that

R
d3xfp ¼ 1, and featuring aGaussianwidth that, rather

than being phenomenological [44,45], depends on the atomic
polarizability via σpðiξÞ ¼ ½αpðiξÞ=

ffiffiffiffiffiffiffiffiffiffi
72π3

p
�1=3 [8,46]. The

isotropic atomic polarizabilities αp are computed via
density functional theory, as in recent works [8,9], which
include short-range electrostatic, hybridization, and quantum
exchange effects.
The log-determinant formula for the energy (6), for any

basis representation of M and M∞, includes retardation by
construction and accounts for many-body screening and
multiple scattering to all orders, thereby ensuring full
consideration of finite-size, complex shape effects, and
collective polarization excitations owing to long-range
electromagnetic interactions. We demonstrate the impor-
tance of all of these effects by comparing vdW energies (or
forces) obtained from Eq. (6) to those from pairwise or
other approximate treatments in a number of configura-
tions, consisting of one or two molecules above either a
gold half-space or a conical gold tip. While the Green’s
function of the half-space can be computed analytically
[47], the latter is computed using brute-force numerical
techniques [1,26–28], with the dielectric function of gold
taken from [16]. We specifically study a C500-fullerene of
radius 1 nm, a 250-atom 30-nm-long linear carbyne wire,
and a 1944-atom-large 2.6 × 2.9 × 5.5–nm protein associ-
ated with human Huntington’s disease [48–50].
We further compare the RMB energy from Eq. (6) to

typical approximations used in the literature: the non-
retarded vdW energy E0, obtained by evaluating Eq. (6)
with G0 and Genv replaced by their respective quasistatic
(c → ∞) responses, and the CP energy,

ECP ¼ −
ℏ
2π

Z
∞

0

dξTr

�
αGenv

�
Iþ 1

2
αGenv

��
; ð9Þ

which ignores finite-size effects by instead contracting the
dressed susceptibility of the molecular ensemble into
effective dipolar polarizabilities,

α ¼ ⨁
k

X
p;q

hfpjðI − VkG0Þ−1Vkfqi;

thus neglecting higher-order many-body interactions
among the different molecules and surfaces. Finally, we
define a pairwise interaction energy,

EPWS ¼ −
ℏ
2π

Z
∞

0

dξTr

�X
k

VkGenv

�
Iþ 1

2

X
l≠k

V lGenv

��

ð10Þ
which, as in Eq. (9), is obtained as a lowest-order expansion
of Eq. (6) in the scattering; this captures both finite size

and retardation but ignores all high-order many-body inter-
actions, with the sums over k, l running over either individual
or pairs of molecules. When comparing nonretarded andCP
energies to their corresponding pairwise approximations, it
suffices to take the quasistatic limit in Eq. (10) or to let
ðI − VkG0Þ−1 → I for the effective polarizability α in Eq. (9),
respectively.
Figure 2(a) shows the RMB to pairwise energy ratio

E=EPWS of various configurations (insets), with the fullerene
interaction (blue line) found to vary only slightly, attaining a
maximum of 1.16 at z ≈ 10 nm; such a small discrepancy
stems from the small size and isotropic shape of the fullerene,
which limits possible nonlocal correlations in its polarization
response. Even weaker relative correlations are observed in
the case of the protein (green line),which—despite its greater
size, number of atoms, and chemical complexity—has a
reduced response compared to semimetallic carbon allo-
tropes [8,9]. To separate the various many-body effects, the
inset of Fig. 2 compares the RMBpower law ∂ lnðEÞ=∂ lnðzÞ
of the fullerene interaction to its counterparts when neglect-
ing either finite size or retardation. As expected, both

FIG. 2. (a) Energy ratio E=EPWS versus z for a fullerene (solid
blue), protein (solid green), or wire in the parallel (solid red) or
perpendicular (solid black) orientations, above the gold plate;
EPWS is the energy obtained by a pairwise approximation defined
in (10). Also shown are the predictions of both CP (dotted red)
and nonretarded (dashed red) approximations for the case of a
parallel wire. Inset: power law ∂ lnðEÞ=∂ lnðzÞ (solid blue) of the
fullerene-plate system with respect to z, compared to both CP
(dotted blue) and nonretarded (dashed blue) approximations.
(b) CP ECP (dotted black) and nonretarded E0 (dashed black)
energies of a perpendicular carbyne wire separated from a gold
plate by a vertical distance z, normalized to the RMB energy E of
Eq. (6), as a function of z.
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approximations become accurate in their corresponding
regimes of validity, with the power law asymptoting to −4
and −1.9 at large and small z, respectively, but fail in the
intermediate, mesoscopic regime z ≈ 10 nm. Even larger
discrepancies arise in the case of the wire, whose large size
and highly anisotropic shape support long-wavelength col-
lective fluctuations. For the parallel wire [Fig. 2(a)] (red
lines), the corresponding energy ratios behave differently in
that the effect of screening is strongest in the quasistatic limit,
which greatly dampens many-body excitations relative to
pairwise approximations and, hence, leads to smaller non-
retarded energy ratios; in contrast, by construction CP
ignores many-body interactions with the surface and thus
screening has a much weaker impact relative to the pairwise
approximation, leading to larger CP energy ratios. At
intermediate z ≈ 10 nm of the order of the wire length,
E=EPWS ≈ 30, with the approximate energy ratios deviating
by 20%. Similar results are observed in the case of a wire in
the perpendicular orientation (black lines), with the pairwise
energy leading to slightly larger discrepancies at short
separations due to the screening and decreasing impact of
atoms farther away from the plate. We further find that the
absolute values of both E0 (dashed black) and ECP (dotted
black) for the perpendicular wire overestimate E by factors of
over 2 [Fig. 2(b)] for z > 10 nm, due to the slower decay of
the Green’s function in the former and lack of screening over
the length (or modes) of the wire in the latter.
We now investigate the mutual vdW interactions among

two fullerenes or parallel wires oriented either parallel or
perpendicular to the gold plate [Fig. 3], focusing primarily
on horizontal separations d on the order of molecular sizes,
where many-body and finite size effects are strongest.
Especially in the case of two wires, the pairwise approxi-
mation is shown to fail by many orders of magnitude, with
the largest energy ratios occurring at asymptotically large z,
i.e., for two molecules in vacuum, while at small z a
decreasing ratio reflects the dominant interactions (and
screening) of the individual molecules with the plate.
The transition and competition between the two limiting
behaviors occurs at mesoscopic z ∼ d, and is more clearly
visible from the plots in Fig. 3(lower inset), which show
E=EPWS versus d at several values of z. In particular, in the
case of parallel wires at mesoscopic z ¼ 10 nm, the
competition leads to a nonmonotonic energy ratio, with
a maximum ratio of 70 occurring at intermediate d ≈ 3 nm.
Comparisons against nonretarded and CP approximations
illustrate behaviors similar to the previous case of a single
wire, with each under- or overestimating the ratios by
approximately 20% or 30%, respectively. Also shown
in Fig. 3(upper inset) is the ratio of the physically
observable horizontal force Fy ¼ −∂E=∂y on the wires
to its pairwise counterpart, plotted against z for parallel
wires at d ¼ 10 nm. Note that by construction, Fy;PWS is
independent of z and, thus, the system experiences an
absolute decrease in the force due to the screening induced
by the plate. Comparing Fy;0 and Fy;CP, we find the
surprising result that in contrast to the energies of a single

molecule, the screening by the plate makes retardation
more rather than less relevant to the force at small z, leading
to an ≈10% decrease in the force magnitude.
Finally, we consider more complex molecular and

macroscopic geometries; we start with the energy of a
molecule above a gold conical tip [Fig. 4(a)] by comparing
it to that of a gold plate at the same vertical separation z,
with Genv in the former computed through the use of a free,
surface-integral Maxwell solver, SCUFF-EM [51,52]. The
finite cone has a base diameter of 54 nm and a height of
50 nm from the base to the bottom of a hemispherical tip of

FIG. 3. Energy ratio E=EPWS versus vertical distance z for two
fullerenes at fixed horizontal separation d ¼ 3 nm (solid blue) or
two wires at d ¼ 10 nm, in either the parallel (solid red) or
perpendicular (solid black) orientations, above a gold plate. Top
inset: horizontal-force ratioFy=Fy;PWS versus z for the parallel wires
at d ¼ 10 nm. Bottom inset: E=EPWS versus d for the fullerenes and
the parallel wires at several values of z; also shown are the
corresponding ratios obtained via CP (dot-dashed red) and non-
retarded (dashed red) approximations, specifically for z ¼ 10 nm.

FIG. 4. (a) Energy Econe of either a fullerene (solid blue) or
carbyne wire (solid red/black) above a gold cone, normalized to
the energy Eplate of the same molecule but separated from a gold
plate by the same surface-surface vertical distance z. (b) Energy
variations 1 − EðβÞ=Eð0Þ, with (solid black) or without (dashed
black) retardation, for a clamped long vertical carbyne wire as a
function of dimensionless curvature β. Inset schematically shows
the wire shape for β ¼ 0.5.
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diameter 20 nm. The ratios decrease with increasing z as the
finite molecules sample first the slope and then the finite
size of the cone, leading to the dipolar limit. At small z, the
fullerene and perpendicular wire interact primarily with the
proximate surface of the tip, so the ratios approach 1 as in a
proximity approximation. By contrast, the ratio for a
parallel wire is nonmonotonic, decreasing with z at short
separations because in this configuration the wire excita-
tions in the limit z → 0 still sample the finite curvature of
the tip and conical slope. Next, we consider the impact
of retardation on the deformation of a longer carbyne wire
of length l ¼ 240 nm oriented vertically at z ¼ 80 nm
above a perfectly conducting plane [Fig. 4(b)]. For illus-
tration, we consider wire shapes parameterized along the
wire length by the angle θðsÞ ¼ π=2 − βs=l, where β ≥ 0
represents a dimensionless curvature, thereby enforcing a
fixed wire length and vertical slope at the bottom of the
wire. We find, quite surprisingly, that while the retarded
energy decreases monotonically with increasing β, as
expected from a wire that curves toward the plane, the
nonretarded energy exhibits the opposite behavior in the
range 0 < β ≲ π=2, demonstrating the dramatic impact that
retardation can have in this geometry; with more complex
parameterizations θðsÞ, one could for instance study the
impact of retardation on vdW-driven molecular deforma-
tions and wetting transitions near macroscopic bodies.
In conclusion, we have demonstrated a unifying approach

to computing vdW interactions among molecules and
macroscopic bodies that accounts for many-body and multi-
ple-scattering effects to all orders. By comparing against
commonplace pairwise, CP, and nonretarded approxima-
tions, we quantified the impact of nonlocality, finite size, and
retardation on the vdWenergy between molecules and either
a planar or conical macroscopic body. We have consistently
found larger deviations in approximate interactions for long,
semimetallic molecules such as carbyne wires, whereas
compact, insulating molecules such as many proteins are
reasonably well described as effectively dilute dielectric
particles, allowing these low-order approximations to be
more valid. In the future, one might consider more complex
macroscopic bodies, such as periodic gratings [17,18] that
may elicit larger differences between RMB and approximate
interactions even for compact biomolecules, as well as
extend these results to incorporate the effects of infrared
molecular resonances [16].

This material is based upon work supported by the
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No. DGE 1148900.
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