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Elementary properties of binary functions

Let / = [a, b] be a closed real interval and let F : /> — /| be a
binary function (operation). We may define natural algebraic and
analytic assumptions.
Algebraic:
1. F is idempotent, iff F(x,x) = x holds for every x € /.
2. F has a neutral element, iff there exists an e € | such that
F(e,x) = x and F(x,e) = x for every x € /.
3. F is associative, iff F(F(x,y),z) = F(x, F(y,z)) for every
x,y,z €l
4. F is symmetric or commutative, iff F(x,y) = F(y, x) if
Vx,y €.
Notation: If F : 12 — | is associative, then we also say that the
pair (I, F) is a (2-ary) semigroup.
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Analytic:

1. F is monotone increasing
1.1 in each variable iff

x1 <x0,0n <yp= F(xi,n) < Flo,ym) (Yx,yieli=1,2).

1.2 in the first variable iff

x1 <xp = F(x,y) < F(x,y) (Vxi,y €1,i=1,2).

1.3 in the second variable.
2. F is monotone decreasing.

3. F is continuous.
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Czogata-Drewniak Theorem
First we recall an important characterization of idempotent,
monotone increasing, 2-ary semigroups which have neutral
elements.
Main tool:

Theorem (Czogata,Drewniak, 1984)

Let | = [a, b] be a closed real interval. If a function F : I> — | is
associative, idempotent, monotone which has a neutral element
e € I, then there exits a monotone decreasing function g : | — 1,
with g(e) = e, such that

min (x, y), ify < g(x)
F(x,y) = max (x, y), ify>g(x) (1)
min (x,y) or max(x,y), ify = g(x)

Lemma
If F is associative, idempotent and monotone (in each variable)
then it is monotone increasing (in each variable).
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The 'extended’ graph of g
The set [, denotes the 'extended’ graph of g which is the graph of
g with vertical line segments in the discontinuity points of g.
Formally,

Mg ={(x.y) € I*: g(x+0) <y < g(x— 0)}.
In the points a and b the extended graph [ defined with the sets
{(a,y) € I : g(a+0) <y < b},

{(b7y) € I2 : QSYSg(b_O)}a
respectively.

Lemma

For a g : | — | defined as in the previous theorem the 'extended’
graph g is symmetric with respect to the line x =y (diagonal).
This property was introduced by Bernard De Baets et al. They
called a function id-symmetric if the 'extended’ graph is symmetric
w.r.t. the diagonal.



Characterization of associative, idempotent, monotone
increasing functions with neutral element

Theorem (Martin-Mayor-Torrens,'03; Ruiz-Aguilera-Torrens-De
Baets-Fodor, '10)
Let | C R be a closed interval. The function F : 1> — | is

associative, monotone increasing, idempotent and has a neutral
element e € |



Characterization of associative, idempotent, monotone
increasing functions with neutral element

Theorem (Martin-Mayor-Torrens,'03; Ruiz-Aguilera-Torrens-De
Baets-Fodor, '10)

Let | C R be a closed interval. The function F : 12 — | is
associative, monotone increasing, idempotent and has a neutral
element e € | if and only if there exists a decreasing function

g : | — | with g(e) = e such that g is id-symmetric



Characterization of associative, idempotent, monotone
increasing functions with neutral element

Theorem (Martin-Mayor-Torrens,'03; Ruiz-Aguilera-Torrens-De
Baets-Fodor, '10)

Let | C R be a closed interval. The function F : 12 — | is
associative, monotone increasing, idempotent and has a neutral
element e € | if and only if there exists a decreasing function

g : | — | with g(e) = e such that g is id-symmetric and

min(xy). if y<g(x) or (y=g(x) and x<gx
Fioy) =9 max(x.y), i y>g(x) or (y=glx) and x>g ?(x
min(x,y) or max(x,y), if y=g(x) and x = g?(x)



Characterization of associative, idempotent, monotone
increasing functions with neutral element

Theorem (Martin-Mayor-Torrens,'03; Ruiz-Aguilera-Torrens-De
Baets-Fodor, '10)

Let | C R be a closed interval. The function F : 12 — | is
associative, monotone increasing, idempotent and has a neutral
element e € | if and only if there exists a decreasing function

g : | — | with g(e) = e such that g is id-symmetric and

min(xy). if y<g(x) or (y=g(x) and x<gx
Fioy) =9 max(x.y), i y>g(x) or (y=glx) and x>g ?(x
min(x,y) or max(x,y), if y=g(x) and x = g?(x)

Moreover, in this case F must be commutative except perhaps on
the set of points (x,y) such that y = g(x) and x = g(y).
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n-ary semigroups and basic properties
The n-ary semigroups are generalizations of semigroups. Let X be
a nonempty set.

» F,: X" — X is (n-)associative if for every xi,...,xop—1 € X
and for every 1 </ < n—1 we have
Fn(Fn(X]_,...,Xn),X,H,l,...,Xanl) — (2)
- n(X].a ceey Xiy Fn(XI'+1a LI 7Xi+n)7XI'+n+17 L 7X2n71)-
> F, is idempotent if Fn(a,...,a) = aforall a € X.
» F, has neutral element e if for every x € X and 1 < i < n we
have F(e,...,e,x,e,...,e) = x, where x is substituted into

the i'th coordinate.
An important construction: Let (X, F,) be a binary semigroup and

Fo(x1,...,xn) == FaoFyo...0Fy(x1,...,xpn)
n—1

= Fa(x1, Fa(x2, ..., Fa(Xn—1,Xn))).

Then F, is n-associative.
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Theorem (Dudek-Mukhin, 2006)

If an n-associative F,, has a neutral element e, then F, is derived
from an associative function F, : X2 — X where
Fa(a,b) = Fp(a,e,...,e,b). (ie: Fp=Fro---0F,.)

n—1
By the definition of F;, the element e is also a neutral element of
F>.
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Monotonicity

Let X be a partially ordered set. A function F, : X7 — X is called
monotone in the i'th variable if for every a1, ...,ai_1,3i+1,--.,an
the 1-variable functions fi(x) := Fn(a1,...,3i-1,X,8j4+1,---,an)
are all order-preserving or all are order-reversing.

F, is called monotone if it is monotone in each of its variables.

Fn is called (monotone) increasing if it is monotone increasing in
each of its variables.

Lemma
Let (X, <) be a partially ordered set, (X, F2) be a semigroup and
F, be derived from Fy. If F5 has any of the following properties

1. monotonicity,
2. idempotent,
3. has a neutral element,

then F, has also.
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Main lemmas

Let X be a chain (i.e.: totally ordered set).

Lemma
Let F,, be n-associative, idempotent, monotone in at least two
variables and derived from F». Then F, is also monotone.

Lemma

Let F, = Fr0---0 F be idempotent and monotone n-associative
function. Then F, is idempotent as well.

By a previous lemma, if F> is monotone, idempotent, associative,
then F5 is monotone increasing in each variable. Easily, F, is also
monotone increasing in each variable.

Example
Let Go(x1,...,Xn) = >.1_1(—1)'x;. Then G, is n-associative and is
not derived from a binary function.
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Counter example on modular lattices

Example

Let k >3 and X = {m, M} U Zx_1, where Z,_1 is the cyclic group
of order k — 1. Let M and m be the largest and smallest elements
of X, respectively. The elements of Z,_1 are incomparable but all

larger than m and smaller than M. Let F;, be the following:

M, ifx=Mory=M
Fo(x,y)=<m, ifx=mory=mand x,y <M
xy, ifx,y € Zx 1.

Then F; is associative and monotone increasing but
non-idempotent. The identity element e of Zx_1 is the neutral
element of (X, F2). The function Fj is k-associative, monotone
and e is the neutral element and idempotent.

The question is open for distributive lattices.
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Generalization of Czogata-Drewniak theorem

We denote min(ay, ..., a,) and max(ai,...,an) by A7 ;a; and
ViI_;a;, respectively.

Theorem

Let I C R be a closed subinterval and F,, : I" — | be idempotent,
n-associative, monotone in at least two variables and has a neutral
element. Then there exists monotone decreasing function g such
that g is id-symmetric and for every ai, ..., a, for which

g(ai) # aj (Vi #J)

E (31 R ) _ { /\?:13,', ifg(\/,’-’zla,-) > /\f’:la,-
mes »en Vi_iai, ifg(\/,-zla,-) < Aja;
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Let | be as above. Let F, : I" — | be an idempotent n-ary
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a neutral element iff there exists monotone decreasing function g
such that g is id-symmetric and



A characterization of idempotent, monotone increasing,
n-ary semigroups with neutral elements

Theorem

Let | be as above. Let F, : I" — | be an idempotent n-ary
semigroup, which is monotone increasing in each variable and has
a neutral element iff there exists monotone decreasing function g
such that g is id-symmetric and

N_1ai, if g(Vi_iai) > AlLja
or g(Al_ja;) < VI ia;

Fn(a ap) = Vitiai if g(Viiiai) < AjLqaj
n\d1,.-.,dn or (/\n a.)>vn a:
8\ N\j=1di i=14i

Viijai or Alqa, if g(Viijai) = Aljai
and g(A_ja;) =V a;
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Application

A function F, : [0,1]?> — [0,1] is a uninorm, if it is associative,
commutative, monotone and have a neutral element. Now we
introduce n-ary uninorms, which are n-associative, commutative,
monotone functions with neutral elements.



Theorem
The function U,

:[0,1]" — [0, 1] is an idempotent n-ary uninorm

on [0, 1] with neutral element e € [0, 1] if and only if there exists a
decreasing id-symmetric function g : [0, 1] — [0, 1] with fixed point

e such that

Un(a1,...,an) =

n .
/\,-218,,

n .
Vi_1d;

n . n :
ANi—1di or V,_;aj

i )
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if AN_jai > g(\/ ,)
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Theorem

The function U, : [0,1]" — [0,1] is an idempotent n-ary uninorm
on [0, 1] with neutral element e € [0, 1] if and only if there exists a
decreasing id-symmetric function g : [0, 1] — [0, 1] with fixed point

e such that
/\?:13/',
VI a;
Un(a1,...,an) = =1

n . n :
ANi—1di or V,_;aj

Moreover, if g(VI_,a;) = A!_;a; and g(

i )
or VI_ja;i < g(A_,ai)
if /\n —1di > g(\/ :)
or \/” la, > g(AL 1a,-)
Zf g( ) - /\, 131
and g(A ,:131) =Vi,aj

AP_ja;) = VI_,aj, then the

value of Uy(a1,...,an) can be chosen to be A7_ja; or V!_; a;
arbitrarily and independently from other points.
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X1y...,Xp € X
F(xi,...,xn) € {x1,...,xn}.

Corollary

Let | be a closed interval. For n> 2 let F, : 1" — | be
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The conservative, symmetric, monotone increasing n-ary
semigroups have been analyzed in a recent paper with Jean-Luc
Marichal and Jimmy Devillet.
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