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Elementary properties of binary functions

Let I = [a, b] be a closed real interval and let F : I 2 → I be a
binary function (operation).

We may define natural algebraic and
analytic assumptions.
Algebraic:

1. F is idempotent, iff F (x , x) = x holds for every x ∈ I .

2. F has a neutral element, iff there exists an e ∈ I such that
F (e, x) = x and F (x , e) = x for every x ∈ I .

3. F is associative, iff F (F (x , y), z) = F (x ,F (y , z)) for every
x , y , z ∈ I .

4. F is symmetric or commutative, iff F (x , y) = F (y , x) if
∀x , y ∈ I .

Notation: If F : I 2 → I is associative, then we also say that the
pair (I ,F ) is a (2-ary) semigroup.
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Analytic:

1. F is monotone increasing

1.1 in each variable iff

x1 ≤ x2, y1 ≤ y2 ⇒ F (x1, y1) ≤ F (x2, y2) (∀xi , yi ∈ I , i = 1, 2).

1.2 in the first variable iff

x1 ≤ x2 ⇒ F (x1, y) ≤ F (x2, y) (∀xi , y ∈ I , i = 1, 2).

1.3 in the second variable.

2. F is monotone decreasing.

3. F is continuous.
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Czoga la-Drewniak Theorem
First we recall an important characterization of idempotent,
monotone increasing, 2-ary semigroups which have neutral
elements.

Main tool:

Theorem (Czoga la,Drewniak, 1984)

Let I = [a, b] be a closed real interval. If a function F : I 2 → I is
associative, idempotent, monotone which has a neutral element
e ∈ I , then there exits a monotone decreasing function g : I → I ,
with g(e) = e, such that

F (x , y) =


min (x , y), if y < g(x)

max (x , y), if y > g(x)
min (x , y) or max (x , y), if y = g(x)

(1)

Lemma
If F is associative, idempotent and monotone (in each variable)
then it is monotone increasing (in each variable).
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The ’extended’ graph of g
The set Γg denotes the ’extended’ graph of g which is the graph of
g with vertical line segments in the discontinuity points of g .

Formally,

Γg = {(x , y) ∈ I 2 : g(x + 0) ≤ y ≤ g(x − 0)}.

In the points a and b the extended graph Γg defined with the sets

{(a, y) ∈ I 2 : g(a + 0) ≤ y ≤ b},

{(b, y) ∈ I 2 : a ≤ y ≤ g(b − 0)},

respectively.

Lemma
For a g : I → I defined as in the previous theorem the ’extended’
graph Γg is symmetric with respect to the line x = y (diagonal).

This property was introduced by Bernard De Baets et al. They
called a function id-symmetric if the ’extended’ graph is symmetric
w.r.t. the diagonal.
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Characterization of associative, idempotent, monotone
increasing functions with neutral element

Theorem (Mart́ın-Mayor-Torrens,’03; Ruiz-Aguilera-Torrens-De
Baets-Fodor, ’10)

Let I ⊆ R be a closed interval. The function F : I 2 → I is
associative, monotone increasing, idempotent and has a neutral
element e ∈ I

if and only if there exists a decreasing function
g : I → I with g(e) = e such that g is id-symmetric and

F (x , y) =


min (x , y), if y < g(x) or (y = g(x) and x < g2(x))
max (x , y), if y > g(x) or (y = g(x) and x > g2(x))

min (x , y) or max (x , y), if y = g(x) and x = g2(x)

Moreover, in this case F must be commutative except perhaps on
the set of points (x , y) such that y = g(x) and x = g(y).
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n-ary semigroups and basic properties
The n-ary semigroups are generalizations of semigroups. Let X be
a nonempty set.

I Fn : X n → X is (n-)associative if for every x1, . . . , x2n−1 ∈ X
and for every 1 ≤ i ≤ n − 1 we have

Fn(Fn(x1, . . . , xn), xn+1, . . . , x2n−1) =

= Fn(x1, . . . , xi ,Fn(xi+1, . . . , xi+n), xi+n+1, . . . , x2n−1).
(2)

I Fn is idempotent if Fn(a, . . . , a) = a for all a ∈ X .
I Fn has neutral element e if for every x ∈ X and 1 ≤ i ≤ n we

have F (e, . . . , e, x , e, . . . , e) = x , where x is substituted into
the i ’th coordinate.

An important construction: Let (X ,F2) be a binary semigroup and

Fn(x1, . . . , xn) := F2 ◦ F2 ◦ . . . ◦ F2︸ ︷︷ ︸
n−1

(x1, . . . , xn)

= F2(x1,F2(x2, . . . ,F2(xn−1, xn))).

Then Fn is n-associative.
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Dudek-Mukhin’s results

Theorem (Dudek-Mukhin, 2006)

If an n-associative Fn has a neutral element e, then Fn is derived
from an associative function F2 : X 2 → X where
F2(a, b) = Fn(a, e, . . . , e, b). (i.e: Fn = F2 ◦ · · · ◦ F2︸ ︷︷ ︸

n−1

.)

By the definition of F2, the element e is also a neutral element of
F2.
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Monotonicity

Let X be a partially ordered set. A function Fn : X n → X is called
monotone in the i ’th variable if for every a1, . . . , ai−1, ai+1, . . . , an
the 1-variable functions fi (x) := Fn(a1, . . . , ai−1, x , ai+1, . . . , an)
are all order-preserving or all are order-reversing.

Fn is called monotone if it is monotone in each of its variables.
Fn is called (monotone) increasing if it is monotone increasing in
each of its variables.

Lemma
Let (X ,≤) be a partially ordered set, (X ,F2) be a semigroup and
Fn be derived from F2. If F2 has any of the following properties

1. monotonicity,

2. idempotent,

3. has a neutral element,

then Fn has also.
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Main lemmas

Let X be a chain (i.e.: totally ordered set).

Lemma
Let Fn be n-associative, idempotent, monotone in at least two
variables and derived from F2. Then F2 is also monotone.

Lemma
Let Fn = F2 ◦ · · · ◦ F2 be idempotent and monotone n-associative
function. Then F2 is idempotent as well.

By a previous lemma, if F2 is monotone, idempotent, associative,
then F2 is monotone increasing in each variable. Easily, Fn is also
monotone increasing in each variable.

Example

Let Gn(x1, . . . , xn) =
∑n

i=1(−1)ixi . Then Gn is n-associative and is
not derived from a binary function.
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Counter example on modular lattices

Example

Let k ≥ 3 and X = {m,M} ∪ Zk−1, where Zk−1 is the cyclic group
of order k − 1.

Let M and m be the largest and smallest elements
of X , respectively. The elements of Zk−1 are incomparable but all
larger than m and smaller than M. Let F2 be the following:

F2(x , y) =


M, if x = M or y = M

m, if x = m or y = m and x , y < M

xy , if x , y ∈ Zk−1.

Then F2 is associative and monotone increasing but
non-idempotent. The identity element e of Zk−1 is the neutral
element of (X ,F2). The function Fk is k-associative, monotone
and e is the neutral element and idempotent.

The question is open for distributive lattices.
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Generalization of Czoga la-Drewniak theorem

We denote min(a1, . . . , an) and max(a1, . . . , an) by ∧ni=1ai and
∨ni=1ai , respectively.

Theorem
Let I ⊂ R be a closed subinterval and Fn : I n → I be idempotent,
n-associative, monotone in at least two variables and has a neutral
element. Then there exists monotone decreasing function g such
that g is id-symmetric and for every a1, . . . , an for which
g(ai ) 6= aj (∀i 6= j)

Fn(a1, . . . , an) =

{
∧ni=1ai , if g(∨ni=1ai ) > ∧ni=1ai
∨ni=1ai , if g(∨ni=1ai ) < ∧ni=1ai
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A characterization of idempotent, monotone increasing,
n-ary semigroups with neutral elements

Theorem
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Application

A function F2 : [0, 1]2 → [0, 1] is a uninorm, if it is associative,
commutative, monotone and have a neutral element.

Now we
introduce n-ary uninorms, which are n-associative, commutative,
monotone functions with neutral elements.
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Theorem
The function Un : [0, 1]n → [0, 1] is an idempotent n-ary uninorm
on [0, 1] with neutral element e ∈ [0, 1] if and only if there exists a
decreasing id-symmetric function g : [0, 1]→ [0, 1] with fixed point
e such that

Un(a1, . . . , an) =



∧ni=1ai , if ∧ni=1ai < g(∨ni=1ai )
or ∨ni=1ai < g(∧ni=1ai )

∨ni=1ai if ∧ni=1ai > g(∨ni=1ai )
or ∨ni=1ai > g(∧ni=1ai )

∧ni=1ai or ∨ni=1ai if g(∨ni=1ai ) = ∧ni=1ai
and g(∧ni=1ai ) = ∨ni=1ai

Moreover, if g(∨ni=1ai ) = ∧ni=1ai and g(∧ni=1ai ) = ∨ni=1ai , then the
value of Un(a1, . . . , an) can be chosen to be ∧ni=1ai or ∨ni=1ai
arbitrarily and independently from other points.
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Further developments

A function Fn : X n → X is called conservative if for every
x1, . . . , xn ∈ X

F (x1, . . . , xn) ∈ {x1, . . . , xn}.

Corollary

Let I be a closed interval. For n ≥ 2 let Fn : I n → I be
n-associative, monotone increasing, idempotent n-ary semigroup
and has a neutral element e ∈ I . Then Fn is conservative.

The conservative, symmetric, monotone increasing n-ary
semigroups have been analyzed in a recent paper with Jean-Luc
Marichal and Jimmy Devillet.
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