Generalization of Czogała-Drewniak Theorem for *n*-ary semigroups

Gergely Kiss

Mathematics Research Unit, University of Luxembourg

Joint work with Gábor Somlai

9th International Summer School on Aggregation Operators, University of Skövde, Sweden. June 19-22. 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Let I = [a, b] be a closed real interval and let $F : I^2 \to I$ be a binary function (operation).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Let I = [a, b] be a closed real interval and let $F : I^2 \to I$ be a binary function (operation). We may define natural algebraic and analytic assumptions.

Let I = [a, b] be a closed real interval and let $F : I^2 \to I$ be a binary function (operation). We may define natural algebraic and analytic assumptions.

Algebraic:

Let I = [a, b] be a closed real interval and let $F : I^2 \to I$ be a binary function (operation). We may define natural algebraic and analytic assumptions.

Algebraic:

1. *F* is *idempotent*, iff F(x, x) = x holds for every $x \in I$.

Let I = [a, b] be a closed real interval and let $F : I^2 \to I$ be a binary function (operation). We may define natural algebraic and analytic assumptions.

Algebraic:

- 1. *F* is *idempotent*, iff F(x, x) = x holds for every $x \in I$.
- 2. *F* has a neutral element, iff there exists an $e \in I$ such that F(e, x) = x and F(x, e) = x for every $x \in I$.

Let I = [a, b] be a closed real interval and let $F : I^2 \to I$ be a binary function (operation). We may define natural algebraic and analytic assumptions.

Algebraic:

- 1. *F* is *idempotent*, iff F(x, x) = x holds for every $x \in I$.
- 2. *F* has a neutral element, iff there exists an $e \in I$ such that F(e, x) = x and F(x, e) = x for every $x \in I$.
- 3. *F* is *associative*, iff F(F(x, y), z) = F(x, F(y, z)) for every $x, y, z \in I$.

Let I = [a, b] be a closed real interval and let $F : I^2 \to I$ be a binary function (operation). We may define natural algebraic and analytic assumptions.

Algebraic:

- 1. *F* is *idempotent*, iff F(x, x) = x holds for every $x \in I$.
- 2. *F* has a neutral element, iff there exists an $e \in I$ such that F(e, x) = x and F(x, e) = x for every $x \in I$.
- 3. *F* is associative, iff F(F(x, y), z) = F(x, F(y, z)) for every $x, y, z \in I$.

4. *F* is symmetric or commutative, iff F(x, y) = F(y, x) if $\forall x, y \in I$.

Let I = [a, b] be a closed real interval and let $F : I^2 \to I$ be a binary function (operation). We may define natural algebraic and analytic assumptions.

Algebraic:

- 1. *F* is *idempotent*, iff F(x, x) = x holds for every $x \in I$.
- 2. *F* has a neutral element, iff there exists an $e \in I$ such that F(e, x) = x and F(x, e) = x for every $x \in I$.
- 3. *F* is associative, iff F(F(x, y), z) = F(x, F(y, z)) for every $x, y, z \in I$.
- 4. *F* is symmetric or commutative, iff F(x, y) = F(y, x) if $\forall x, y \in I$.

Notation: If $F : I^2 \to I$ is associative, then we also say that the pair (I, F) is a (2-ary) semigroup.

◆□▶ <圖▶ < ≣▶ < ≣▶ = 9000</p>

1. F is monotone increasing

1. F is monotone increasing

1.1 in *each* variable iff

 $x_1 \le x_2, y_1 \le y_2 \Rightarrow F(x_1, y_1) \le F(x_2, y_2) \ (\forall x_i, y_i \in I, i = 1, 2).$

1. F is monotone increasing

1.1 in *each* variable iff

$$x_1 \leq x_2, y_1 \leq y_2 \Rightarrow F(x_1, y_1) \leq F(x_2, y_2) \ (\forall x_i, y_i \in I, i = 1, 2).$$

1.2 in the first variable iff

$$x_1 \leq x_2 \Rightarrow F(x_1, y) \leq F(x_2, y) \quad (\forall x_i, y \in I, i = 1, 2).$$

1. F is monotone increasing

1.1 in each variable iff

$$x_1 \leq x_2, y_1 \leq y_2 \Rightarrow F(x_1, y_1) \leq F(x_2, y_2) \ (\forall x_i, y_i \in I, i = 1, 2).$$

1.2 in the first variable iff

$$x_1 \leq x_2 \Rightarrow F(x_1, y) \leq F(x_2, y) \quad (\forall x_i, y \in I, i = 1, 2).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1.3 in the second variable.

1. F is monotone increasing

1.1 in each variable iff

$$x_1 \leq x_2, y_1 \leq y_2 \Rightarrow F(x_1, y_1) \leq F(x_2, y_2) \ (\forall x_i, y_i \in I, i = 1, 2).$$

1.2 in the first variable iff

$$x_1 \leq x_2 \Rightarrow F(x_1, y) \leq F(x_2, y) \quad (\forall x_i, y \in I, i = 1, 2).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1.3 in the second variable.

2. *F* is monotone decreasing.

1. F is monotone increasing

1.1 in each variable iff

$$x_1 \leq x_2, y_1 \leq y_2 \Rightarrow F(x_1, y_1) \leq F(x_2, y_2) \ (\forall x_i, y_i \in I, i = 1, 2).$$

1.2 in the first variable iff

$$x_1 \leq x_2 \Rightarrow F(x_1, y) \leq F(x_2, y) \quad (\forall x_i, y \in I, i = 1, 2).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

1.3 in the second variable.

- 2. *F* is monotone decreasing.
- 3. F is continuous.

First we recall an important characterization of idempotent, monotone increasing, 2-ary semigroups which have neutral elements.

First we recall an important characterization of idempotent, monotone increasing, 2-ary semigroups which have neutral elements.

Main tool:

First we recall an important characterization of idempotent, monotone increasing, 2-ary semigroups which have neutral elements.

Main tool:

Theorem (Czogała, Drewniak, 1984)

Let I = [a, b] be a closed real interval. If a function $F : I^2 \rightarrow I$ is associative, idempotent, monotone which has a neutral element $e \in I$,

First we recall an important characterization of idempotent, monotone increasing, 2-ary semigroups which have neutral elements.

Main tool:

Theorem (Czogała, Drewniak, 1984)

Let I = [a, b] be a closed real interval. If a function $F : I^2 \to I$ is associative, idempotent, monotone which has a neutral element $e \in I$, then there exits a monotone decreasing function $g : I \to I$, with g(e) = e, such that

First we recall an important characterization of idempotent, monotone increasing, 2-ary semigroups which have neutral elements.

Main tool:

Theorem (Czogała, Drewniak, 1984)

Let I = [a, b] be a closed real interval. If a function $F : I^2 \to I$ is associative, idempotent, monotone which has a neutral element $e \in I$, then there exits a monotone decreasing function $g : I \to I$, with g(e) = e, such that

$$F(x,y) = \begin{cases} \min(x,y), & \text{if } y < g(x) \\ \max(x,y), & \text{if } y > g(x) \\ \min(x,y) \text{ or } \max(x,y), & \text{if } y = g(x) \end{cases}$$
(1)

First we recall an important characterization of idempotent, monotone increasing, 2-ary semigroups which have neutral elements.

Main tool:

Theorem (Czogała, Drewniak, 1984)

Let I = [a, b] be a closed real interval. If a function $F : I^2 \to I$ is associative, idempotent, monotone which has a neutral element $e \in I$, then there exits a monotone decreasing function $g : I \to I$, with g(e) = e, such that

$$F(x,y) = \begin{cases} \min(x,y), & \text{if } y < g(x) \\ \max(x,y), & \text{if } y > g(x) \\ \min(x,y) \text{ or } \max(x,y), & \text{if } y = g(x) \end{cases}$$
(1)

Lemma

If F is associative, idempotent and monotone (in each variable) then it is monotone increasing (in each variable).

The set Γ_g denotes the 'extended' graph of g which is the graph of g with vertical line segments in the discontinuity points of g.

The set Γ_g denotes the 'extended' graph of g which is the graph of g with vertical line segments in the discontinuity points of g. Formally,

$$\Gamma_g = \{(x, y) \in I^2 : g(x + 0) \le y \le g(x - 0)\}.$$

The set Γ_g denotes the 'extended' graph of g which is the graph of g with vertical line segments in the discontinuity points of g. Formally,

$$\Gamma_g = \{(x, y) \in I^2 : g(x + 0) \le y \le g(x - 0)\}.$$

In the points *a* and *b* the extended graph Γ_g defined with the sets

$$\{(a, y) \in I^2 : g(a + 0) \le y \le b\},\$$

 $\{(b, y) \in I^2 : a \le y \le g(b - 0)\},\$

respectively.

The set Γ_g denotes the 'extended' graph of g which is the graph of g with vertical line segments in the discontinuity points of g. Formally,

$$\Gamma_g = \{(x, y) \in I^2 : g(x + 0) \le y \le g(x - 0)\}.$$

In the points *a* and *b* the extended graph Γ_g defined with the sets

$$\{(a, y) \in I^2 : g(a + 0) \le y \le b\},\$$

 $\{(b, y) \in I^2 : a \le y \le g(b - 0)\},\$

respectively.

Lemma

For a $g: I \rightarrow I$ defined as in the previous theorem the 'extended' graph Γ_g is symmetric with respect to the line x = y (diagonal).

The set Γ_g denotes the 'extended' graph of g which is the graph of g with vertical line segments in the discontinuity points of g. Formally,

$$\Gamma_g = \{(x, y) \in I^2 : g(x + 0) \le y \le g(x - 0)\}.$$

In the points a and b the extended graph Γ_g defined with the sets

$$\{(a, y) \in I^2 : g(a + 0) \le y \le b\},\$$

 $\{(b, y) \in I^2 : a \le y \le g(b - 0)\},\$

respectively.

Lemma

For a $g: I \rightarrow I$ defined as in the previous theorem the 'extended' graph Γ_g is symmetric with respect to the line x = y (diagonal). This property was introduced by Bernard De Baets et al. They called a function *id-symmetric* if the 'extended' graph is symmetric w.r.t. the diagonal.

Theorem (Martín-Mayor-Torrens, '03; Ruiz-Aguilera-Torrens-De Baets-Fodor, '10)

Let $I \subseteq \mathbb{R}$ be a closed interval. The function $F : I^2 \to I$ is associative, monotone increasing, idempotent and has a neutral element $e \in I$

Theorem (Martín-Mayor-Torrens,'03; Ruiz-Aguilera-Torrens-De Baets-Fodor, '10)

Let $I \subseteq \mathbb{R}$ be a closed interval. The function $F : I^2 \to I$ is associative, monotone increasing, idempotent and has a neutral element $e \in I$ if and only if there exists a decreasing function $g : I \to I$ with g(e) = e such that g is id-symmetric

Theorem (Martín-Mayor-Torrens,'03; Ruiz-Aguilera-Torrens-De Baets-Fodor, '10)

Let $I \subseteq \mathbb{R}$ be a closed interval. The function $F : I^2 \to I$ is associative, monotone increasing, idempotent and has a neutral element $e \in I$ if and only if there exists a decreasing function $g : I \to I$ with g(e) = e such that g is id-symmetric and

$$F(x,y) = \begin{cases} \min(x,y), & \text{if } y < g(x) \text{ or } (y = g(x) \text{ and } x < g^2(x) \\ \max(x,y), & \text{if } y > g(x) \text{ or } (y = g(x) \text{ and } x > g^2(x) \\ \min(x,y) \text{ or } \max(x,y), & \text{if } y = g(x) \text{ and } x = g^2(x) \end{cases}$$

Theorem (Martín-Mayor-Torrens,'03; Ruiz-Aguilera-Torrens-De Baets-Fodor, '10)

Let $I \subseteq \mathbb{R}$ be a closed interval. The function $F : I^2 \to I$ is associative, monotone increasing, idempotent and has a neutral element $e \in I$ if and only if there exists a decreasing function $g : I \to I$ with g(e) = e such that g is id-symmetric and

$$F(x,y) = \begin{cases} \min(x,y), & \text{if } y < g(x) \text{ or } (y = g(x) \text{ and } x < g^2(x) \\ \max(x,y), & \text{if } y > g(x) \text{ or } (y = g(x) \text{ and } x > g^2(x) \\ \min(x,y) \text{ or } \max(x,y), & \text{if } y = g(x) \text{ and } x = g^2(x) \end{cases}$$

Moreover, in this case F must be commutative except perhaps on the set of points (x, y) such that y = g(x) and x = g(y).

The *n*-ary semigroups are generalizations of semigroups. Let X be a nonempty set.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The *n*-ary semigroups are generalizations of semigroups. Let X be a nonempty set.

▶ $F_n : X^n \to X$ is (*n*-)associative if for every $x_1, \ldots, x_{2n-1} \in X$ and for every $1 \le i \le n-1$ we have

$$F_n(F_n(x_1,...,x_n),x_{n+1},...,x_{2n-1}) = F_n(x_1,...,x_i,F_n(x_{i+1},...,x_{i+n}),x_{i+n+1},...,x_{2n-1}).$$
(2)

The *n*-ary semigroups are generalizations of semigroups. Let X be a nonempty set.

▶ $F_n : X^n \to X$ is (*n*-)associative if for every $x_1, \ldots, x_{2n-1} \in X$ and for every $1 \le i \le n-1$ we have

$$F_n(F_n(x_1,...,x_n),x_{n+1},...,x_{2n-1}) = F_n(x_1,...,x_i,F_n(x_{i+1},...,x_{i+n}),x_{i+n+1},...,x_{2n-1}).$$
(2)

• F_n is *idempotent* if $F_n(a, \ldots, a) = a$ for all $a \in X$.

The *n*-ary semigroups are generalizations of semigroups. Let X be a nonempty set.

▶ $F_n : X^n \to X$ is (*n*-)associative if for every $x_1, \ldots, x_{2n-1} \in X$ and for every $1 \le i \le n-1$ we have

$$F_n(F_n(x_1,...,x_n),x_{n+1},...,x_{2n-1}) = F_n(x_1,...,x_i,F_n(x_{i+1},...,x_{i+n}),x_{i+n+1},...,x_{2n-1}).$$
(2)

- F_n is *idempotent* if $F_n(a, \ldots, a) = a$ for all $a \in X$.
- F_n has neutral element e if for every x ∈ X and 1 ≤ i ≤ n we have F(e,..., e, x, e, ..., e) = x, where x is substituted into the i'th coordinate.

The *n*-ary semigroups are generalizations of semigroups. Let X be a nonempty set.

▶ $F_n : X^n \to X$ is (n-)associative if for every $x_1, \ldots, x_{2n-1} \in X$ and for every $1 \le i \le n-1$ we have

$$F_n(F_n(x_1,...,x_n),x_{n+1},...,x_{2n-1}) = F_n(x_1,...,x_i,F_n(x_{i+1},...,x_{i+n}),x_{i+n+1},...,x_{2n-1}).$$
(2)

- F_n is *idempotent* if $F_n(a, \ldots, a) = a$ for all $a \in X$.
- F_n has neutral element e if for every x ∈ X and 1 ≤ i ≤ n we have F(e,..., e, x, e, ..., e) = x, where x is substituted into the i'th coordinate.

An important construction: Let (X, F_2) be a binary semigroup and

$$F_n(x_1,...,x_n) := \underbrace{F_2 \circ F_2 \circ ... \circ F_2}_{n-1}(x_1,...,x_n)$$

= $F_2(x_1,F_2(x_2,...,F_2(x_{n-1},x_n))).$

Then F_n is *n*-associative.

Dudek-Mukhin's results

Theorem (Dudek-Mukhin, 2006)

If an n-associative F_n has a neutral element e, then F_n is derived from an associative function $F_2 : X^2 \to X$ where $F_2(a,b) = F_n(a,e,\ldots,e,b)$. (i.e: $F_n = \underbrace{F_2 \circ \cdots \circ F_2}_{n-1}$.)

Dudek-Mukhin's results

Theorem (Dudek-Mukhin, 2006)

If an n-associative F_n has a neutral element e, then F_n is derived from an associative function $F_2 : X^2 \to X$ where $F_2(a, b) = F_n(a, e, ..., e, b)$. (i.e: $F_n = \underbrace{F_2 \circ \cdots \circ F_2}_{n-1}$.)

By the definition of F_2 , the element e is also a neutral element of F_2 .

Let X be a partially ordered set. A function $F_n : X^n \to X$ is called monotone in the *i*'th variable if for every $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n$ the 1-variable functions $f_i(x) := F_n(a_1, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_n)$ are all order-preserving or all are order-reversing.

Let X be a partially ordered set. A function $F_n : X^n \to X$ is called monotone in the *i*'th variable if for every $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n$ the 1-variable functions $f_i(x) := F_n(a_1, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_n)$ are all order-preserving or all are order-reversing. F_n is called *monotone* if it is monotone in each of its variables.

Let X be a partially ordered set. A function $F_n : X^n \to X$ is called monotone in the *i*'th variable if for every $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n$ the 1-variable functions $f_i(x) := F_n(a_1, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_n)$ are all order-preserving or all are order-reversing. F_n is called monotone if it is monotone in each of its variables. F_n is called (monotone) increasing if it is monotone increasing in each of its variables.

Let X be a partially ordered set. A function $F_n : X^n \to X$ is called monotone in the *i*'th variable if for every $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n$ the 1-variable functions $f_i(x) := F_n(a_1, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_n)$ are all order-preserving or all are order-reversing.

 F_n is called *monotone* if it is monotone in each of its variables. F_n is called *(monotone) increasing* if it is monotone increasing in each of its variables.

Lemma

Let (X, \leq) be a partially ordered set, (X, F_2) be a semigroup and F_n be derived from F_2 . If F_2 has any of the following properties

- 1. monotonicity,
- 2. idempotent,
- 3. has a neutral element,

then F_n has also.

Let X be a chain (i.e.: totally ordered set).

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Let X be a chain (i.e.: totally ordered set).

Lemma

Let F_n be n-associative, idempotent, monotone in at least two variables and derived from F_2 . Then F_2 is also monotone.

Let X be a chain (i.e.: totally ordered set).

Lemma

Let F_n be n-associative, idempotent, monotone in at least two variables and derived from F_2 . Then F_2 is also monotone.

Lemma

Let $F_n = F_2 \circ \cdots \circ F_2$ be idempotent and monotone n-associative function. Then F_2 is idempotent as well.

Let X be a chain (i.e.: totally ordered set).

Lemma

Let F_n be n-associative, idempotent, monotone in at least two variables and derived from F_2 . Then F_2 is also monotone.

Lemma

Let $F_n = F_2 \circ \cdots \circ F_2$ be idempotent and monotone n-associative function. Then F_2 is idempotent as well.

By a previous lemma, if F_2 is monotone, idempotent, associative, then F_2 is monotone increasing in each variable. Easily, F_n is also monotone increasing in each variable.

Let X be a chain (i.e.: totally ordered set).

Lemma

Let F_n be n-associative, idempotent, monotone in at least two variables and derived from F_2 . Then F_2 is also monotone.

Lemma

Let $F_n = F_2 \circ \cdots \circ F_2$ be idempotent and monotone n-associative function. Then F_2 is idempotent as well.

By a previous lemma, if F_2 is monotone, idempotent, associative, then F_2 is monotone increasing in each variable. Easily, F_n is also monotone increasing in each variable.

Example

Let
$$G_n(x_1,...,x_n) = \sum_{i=1}^n (-1)^i x_i$$
.

Let X be a chain (i.e.: totally ordered set).

Lemma

Let F_n be n-associative, idempotent, monotone in at least two variables and derived from F_2 . Then F_2 is also monotone.

Lemma

Let $F_n = F_2 \circ \cdots \circ F_2$ be idempotent and monotone n-associative function. Then F_2 is idempotent as well.

By a previous lemma, if F_2 is monotone, idempotent, associative, then F_2 is monotone increasing in each variable. Easily, F_n is also monotone increasing in each variable.

Example

Let $G_n(x_1, \ldots, x_n) = \sum_{i=1}^n (-1)^i x_i$. Then G_n is *n*-associative and is not derived from a binary function.

Example

Let $k \ge 3$ and $X = \{m, M\} \cup Z_{k-1}$, where Z_{k-1} is the cyclic group of order k-1.

Example

Let $k \ge 3$ and $X = \{m, M\} \cup Z_{k-1}$, where Z_{k-1} is the cyclic group of order k - 1. Let M and m be the largest and smallest elements of X, respectively. The elements of Z_{k-1} are incomparable but all larger than m and smaller than M.

Example

Let $k \ge 3$ and $X = \{m, M\} \cup Z_{k-1}$, where Z_{k-1} is the cyclic group of order k - 1. Let M and m be the largest and smallest elements of X, respectively. The elements of Z_{k-1} are incomparable but all larger than m and smaller than M. Let F_2 be the following:

$$F_2(x,y) = \begin{cases} M, & \text{if } x = M \text{ or } y = M \\ m, & \text{if } x = m \text{ or } y = m \text{ and } x, y < M \\ xy, & \text{if } x, y \in Z_{k-1}. \end{cases}$$

Example

Let $k \ge 3$ and $X = \{m, M\} \cup Z_{k-1}$, where Z_{k-1} is the cyclic group of order k - 1. Let M and m be the largest and smallest elements of X, respectively. The elements of Z_{k-1} are incomparable but all larger than m and smaller than M. Let F_2 be the following:

$$F_2(x,y) = \begin{cases} M, & \text{if } x = M \text{ or } y = M \\ m, & \text{if } x = m \text{ or } y = m \text{ and } x, y < M \\ xy, & \text{if } x, y \in Z_{k-1}. \end{cases}$$

Then F_2 is associative and monotone increasing but non-idempotent. The identity element e of Z_{k-1} is the neutral element of (X, F_2) . The function F_k is k-associative, monotone and e is the neutral element and idempotent.

Example

Let $k \ge 3$ and $X = \{m, M\} \cup Z_{k-1}$, where Z_{k-1} is the cyclic group of order k - 1. Let M and m be the largest and smallest elements of X, respectively. The elements of Z_{k-1} are incomparable but all larger than m and smaller than M. Let F_2 be the following:

$$F_2(x,y) = \begin{cases} M, & \text{if } x = M \text{ or } y = M \\ m, & \text{if } x = m \text{ or } y = m \text{ and } x, y < M \\ xy, & \text{if } x, y \in Z_{k-1}. \end{cases}$$

Then F_2 is associative and monotone increasing but non-idempotent. The identity element e of Z_{k-1} is the neutral element of (X, F_2) . The function F_k is k-associative, monotone and e is the neutral element and idempotent.

The question is open for distributive lattices.

We denote min (a_1, \ldots, a_n) and max (a_1, \ldots, a_n) by $\wedge_{i=1}^n a_i$ and $\vee_{i=1}^n a_i$, respectively.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We denote min (a_1, \ldots, a_n) and max (a_1, \ldots, a_n) by $\wedge_{i=1}^n a_i$ and $\vee_{i=1}^n a_i$, respectively.

Theorem

Let $I \subset \mathbb{R}$ be a closed subinterval and $F_n : I^n \to I$ be idempotent, n-associative, monotone in at least two variables and has a neutral element.

We denote min (a_1, \ldots, a_n) and max (a_1, \ldots, a_n) by $\wedge_{i=1}^n a_i$ and $\vee_{i=1}^n a_i$, respectively.

Theorem

Let $I \subset \mathbb{R}$ be a closed subinterval and $F_n : I^n \to I$ be idempotent, n-associative, monotone in at least two variables and has a neutral element. Then there exists monotone decreasing function g such that g is id-symmetric and for every a_1, \ldots, a_n for which $g(a_i) \neq a_j \ (\forall i \neq j)$

We denote min (a_1, \ldots, a_n) and max (a_1, \ldots, a_n) by $\wedge_{i=1}^n a_i$ and $\vee_{i=1}^n a_i$, respectively.

Theorem

Let $I \subset \mathbb{R}$ be a closed subinterval and $F_n : I^n \to I$ be idempotent, n-associative, monotone in at least two variables and has a neutral element. Then there exists monotone decreasing function g such that g is id-symmetric and for every a_1, \ldots, a_n for which $g(a_i) \neq a_j \ (\forall i \neq j)$

$$F_n(a_1,\ldots,a_n) = \begin{cases} \wedge_{i=1}^n a_i, & \text{if } g(\vee_{i=1}^n a_i) > \wedge_{i=1}^n a_i \\ \vee_{i=1}^n a_i, & \text{if } g(\vee_{i=1}^n a_i) < \wedge_{i=1}^n a_i \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem

Let I be as above. Let $F_n : I^n \to I$ be an idempotent n-ary semigroup, which is monotone increasing in each variable and has a neutral element iff

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

Let I be as above. Let $F_n : I^n \to I$ be an idempotent n-ary semigroup, which is monotone increasing in each variable and has a neutral element iff there exists monotone decreasing function g such that g is id-symmetric and

Theorem

Let I be as above. Let $F_n : I^n \to I$ be an idempotent n-ary semigroup, which is monotone increasing in each variable and has a neutral element iff there exists monotone decreasing function g such that g is id-symmetric and

$$F_{n}(a_{1},\ldots,a_{n}) = \begin{cases} \wedge_{i=1}^{n}a_{i}, & \text{if } g(\vee_{i=1}^{n}a_{i}) > \wedge_{i=1}^{n}a_{i} \\ & \text{or } g(\wedge_{i=1}^{n}a_{i}) < \vee_{i=1}^{n}a_{i} \\ & \text{visc} g(\wedge_{i=1}^{n}a_{i}) < \wedge_{i=1}^{n}a_{i} \\ & \text{or } g(\wedge_{i=1}^{n}a_{i}) > \vee_{i=1}^{n}a_{i} \\ & \text{visc} g(\wedge_{i=1}^{n}a_{i}) > \vee_{i=1}^{n}a_{i} \\ & \text{visc} g(\wedge_{i=1}^{n}a_{i}) = \wedge_{i=1}^{n}a_{i} \\ & \text{and } g(\wedge_{i=1}^{n}a_{i}) = \vee_{i=1}^{n}a_{i} \end{cases}$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ▲国 ● ● ●

Application

A function $F_2 : [0,1]^2 \rightarrow [0,1]$ is a *uninorm*, if it is associative, commutative, monotone and have a neutral element.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Application

A function $F_2 : [0, 1]^2 \rightarrow [0, 1]$ is a *uninorm*, if it is associative, commutative, monotone and have a neutral element. Now we introduce *n*-ary uninorms, which are *n*-associative, commutative, monotone functions with neutral elements.

Theorem

The function $U_n : [0,1]^n \to [0,1]$ is an idempotent n-ary uninorm on [0,1] with neutral element $e \in [0,1]$ if and only if there exists a decreasing id-symmetric function $g : [0,1] \to [0,1]$ with fixed point e such that

$$U_{n}(a_{1},...,a_{n}) = \begin{cases} \wedge_{i=1}^{n}a_{i}, & \text{if } \wedge_{i=1}^{n}a_{i} < g(\vee_{i=1}^{n}a_{i}) \\ & \text{or } \vee_{i=1}^{n}a_{i} < g(\wedge_{i=1}^{n}a_{i}) \\ \vee_{i=1}^{n}a_{i} & \text{if } \wedge_{i=1}^{n}a_{i} > g(\vee_{i=1}^{n}a_{i}) \\ & \text{or } \vee_{i=1}^{n}a_{i} > g(\wedge_{i=1}^{n}a_{i}) \\ \wedge_{i=1}^{n}a_{i} & \text{or } \vee_{i=1}^{n}a_{i} > g(\vee_{i=1}^{n}a_{i}) = \wedge_{i=1}^{n}a_{i} \\ & \text{and } g(\wedge_{i=1}^{n}a_{i}) = \vee_{i=1}^{n}a_{i} \end{cases}$$

Theorem

The function $U_n : [0,1]^n \to [0,1]$ is an idempotent n-ary uninorm on [0,1] with neutral element $e \in [0,1]$ if and only if there exists a decreasing id-symmetric function $g : [0,1] \to [0,1]$ with fixed point e such that

$$U_{n}(a_{1},...,a_{n}) = \begin{cases} \wedge_{i=1}^{n}a_{i}, & \text{if } \wedge_{i=1}^{n}a_{i} < g(\vee_{i=1}^{n}a_{i}) \\ & \text{or } \vee_{i=1}^{n}a_{i} < g(\wedge_{i=1}^{n}a_{i}) \\ \vee_{i=1}^{n}a_{i} & \text{if } \wedge_{i=1}^{n}a_{i} > g(\vee_{i=1}^{n}a_{i}) \\ & \text{or } \vee_{i=1}^{n}a_{i} > g(\wedge_{i=1}^{n}a_{i}) \\ \wedge_{i=1}^{n}a_{i} & \text{or } \vee_{i=1}^{n}a_{i} & \text{if } g(\vee_{i=1}^{n}a_{i}) = \wedge_{i=1}^{n}a_{i} \\ & \text{and } g(\wedge_{i=1}^{n}a_{i}) = \vee_{i=1}^{n}a_{i} \end{cases}$$

Moreover, if $g(\vee_{i=1}^{n}a_i) = \wedge_{i=1}^{n}a_i$ and $g(\wedge_{i=1}^{n}a_i) = \vee_{i=1}^{n}a_i$, then the value of $U_n(a_1, \ldots, a_n)$ can be chosen to be $\wedge_{i=1}^{n}a_i$ or $\vee_{i=1}^{n}a_i$ arbitrarily and independently from other points.

Further developments

A function $F_n : X^n \to X$ is called *conservative* if for every $x_1, \ldots, x_n \in X$ $F(x_1, \ldots, x_n) \in \{x_1, \ldots, x_n\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Further developments

A function $F_n : X^n \to X$ is called *conservative* if for every $x_1, \ldots, x_n \in X$ $F(x_1, \ldots, x_n) \in \{x_1, \ldots, x_n\}.$

Corollary

Let I be a closed interval. For $n \ge 2$ let $F_n : I^n \to I$ be n-associative, monotone increasing, idempotent n-ary semigroup and has a neutral element $e \in I$. Then F_n is conservative.

Further developments

A function $F_n : X^n \to X$ is called *conservative* if for every $x_1, \ldots, x_n \in X$ $F(x_1, \ldots, x_n) \in \{x_1, \ldots, x_n\}.$

Corollary

Let I be a closed interval. For $n \ge 2$ let $F_n : I^n \to I$ be n-associative, monotone increasing, idempotent n-ary semigroup and has a neutral element $e \in I$. Then F_n is conservative. The conservative, symmetric, monotone increasing *n*-ary semigroups have been analyzed in a recent paper with Jean-Luc

Marichal and Jimmy Devillet.

- E. Czogala, J. Drewniak, Associative monotonic operations in fuzzy set theory, *Fuzzy Sets and Systems* **12** (1984) 249-269.
- J. Devillet, G. Kiss, J-M. Marichal, Characterizations of quasitrivial symmetric nondecreasing associative operations, submitted.
- W.A.Dudek, V.V. Mukhin, On *n*-ary semigroups with adjoint neutral element, *Quasigroups and Related Systems* **14** (2006) 163-168.

G. Kiss, G. Somlai, Characterization of monotone, idempotent *n*-ary semigroups with neutral element, *Semigroup Forum*, doi:10.1007/s00233-017-9876-3.

J. Martin, G. Mayor, J. Torrens, On locally internal monotonic operations, *Fuzzy Sets and Systems* **137** (2003) 27-42.

D. Ruiz-Aguilera, J. Torrens, B. De Baets, J. Fodor, Some Remarks on the Characterization of Idempotent Uninorms, Chapter of *Computational Intelligence for Knowledge-Based Systems Design* (2010) 425-434.

Thank you for your kind attention!