Recent results on conservative and symmetric *n*-ary semigroups

Gergely Kiss

Joint work with Jimmy Devillet and Jean-Luc Marichal

University of Luxembourg

55th International Symposium of Functional Equations and Inequalities Chengdu, China, June 11-18, 2017

n-ary semigroups

Definition

Let X be an arbitrary set. An operation $F: X^n \to X$ is said to be (n-)associative if

$$F(x_1, \dots, x_{i-1}, F(x_i, \dots, x_{i+n-1}), x_{i+n}, \dots, x_{2n-1}) = F(x_1, \dots, x_i, F(x_{i+1}, \dots, x_{i+n}), x_{i+n+1}, \dots, x_{2n-1})$$

for all $x_1, \ldots, x_{2n-1} \in X$ and all $i \in \{1, \ldots, n-1\}$.

< 回 ト < 三 ト < 三 ト

n-ary semigroups

Definition

Let X be an arbitrary set. An operation $F: X^n \to X$ is said to be (n-)associative if

$$F(x_1, \dots, x_{i-1}, F(x_i, \dots, x_{i+n-1}), x_{i+n}, \dots, x_{2n-1}) = F(x_1, \dots, x_i, F(x_{i+1}, \dots, x_{i+n}), x_{i+n+1}, \dots, x_{2n-1})$$

for all $x_1, ..., x_{2n-1} \in X$ and all $i \in \{1, ..., n-1\}$.

Natural generalization: For n = 2 we get

$$F(F(x,y),z) = F(x,F(y,z))$$

holds for every $x, y, z \in X$.

A B A A B A

n-ary semigroups

Definition

Let X be an arbitrary set. An operation $F: X^n \to X$ is said to be (n-)associative if

$$F(x_1, \dots, x_{i-1}, F(x_i, \dots, x_{i+n-1}), x_{i+n}, \dots, x_{2n-1})$$

= $F(x_1, \dots, x_i, F(x_{i+1}, \dots, x_{i+n}), x_{i+n+1}, \dots, x_{2n-1})$

for all $x_1, \ldots, x_{2n-1} \in X$ and all $i \in \{1, \ldots, n-1\}$.

Natural generalization: For n = 2 we get

$$F(F(x,y),z) = F(x,F(y,z))$$

holds for every $x, y, z \in X$.

Definition

For a nonempty set X and an associative function $F : X^n \to X$ the pair (X, F) is called *n*-ary semigroup.

Definition

An operation $F: X^n \to X$ is said to be

• reflexive (or idempotent) if F(x,...,x) = x for all $x \in X$;

Definition

An operation $F: X^n \to X$ is said to be

- reflexive (or idempotent) if F(x,...,x) = x for all $x \in X$;
- conservative (or quasitrivial, selective) if F(x₁,...,x_n) ∈ {x₁,...,x_n} for all x₁,...,x_n ∈ X;

Definition

An operation $F: X^n \to X$ is said to be

- reflexive (or idempotent) if F(x,...,x) = x for all $x \in X$;
- conservative (or quasitrivial, selective) if F(x₁,...,x_n) ∈ {x₁,...,x_n} for all x₁,...,x_n ∈ X;
- symmetric if $F(x_1,...,x_n)$ is invariant under any permutation of $x_1,...,x_n$;

< 3 > < 3 >

Definition

An operation $F: X^n \to X$ is said to be

- reflexive (or idempotent) if F(x,...,x) = x for all $x \in X$;
- conservative (or quasitrivial, selective) if F(x₁,...,x_n) ∈ {x₁,...,x_n} for all x₁,...,x_n ∈ X;
- symmetric if F(x₁,...,x_n) is invariant under any permutation of x₁,...,x_n;

Assuming that (X, \leq) is a chain, an operation $F: X^n \to X$ is said to be

• nondecreasing (w.r.t. \leq) if $F(x_1, \ldots, x_n) \leq F(x'_1, \ldots, x'_n)$ whenever $x_i \leq x'_i$ for all $i \in \{1, \ldots, n\}$.

- 4 週 ト - 4 三 ト - 4 三 ト

Definition

An operation $F: X^n \to X$ is said to be

- reflexive (or idempotent) if F(x,...,x) = x for all $x \in X$;
- conservative (or quasitrivial, selective) if F(x₁,...,x_n) ∈ {x₁,...,x_n} for all x₁,...,x_n ∈ X;
- symmetric if $F(x_1,...,x_n)$ is invariant under any permutation of $x_1,...,x_n$;

Assuming that (X, \leq) is a chain, an operation $F: X^n \to X$ is said to be

• nondecreasing (w.r.t. \leq) if $F(x_1, \ldots, x_n) \leq F(x'_1, \ldots, x'_n)$ whenever $x_i \leq x'_i$ for all $i \in \{1, \ldots, n\}$.

We also introduce the notation $x, \ldots, x = n \cdot x$.

- 4 同 6 4 日 6 4 日 6

Definition

An operation $F: X^n \to X$ is said to be

- reflexive (or idempotent) if $F(n \cdot x) = x$ for all $x \in X$;
- conservative (or quasitrivial, selective) if F(x₁,...,x_n) ∈ {x₁,...,x_n} for all x₁,...,x_n ∈ X;
- symmetric if F(x₁,...,x_n) is invariant under any permutation of x₁,...,x_n;

Assuming that (X, \leq) is a chain, an operation $F: X^n \to X$ is said to be

• nondecreasing (w.r.t. \leq) if $F(x_1, \ldots, x_n) \leq F(x'_1, \ldots, x'_n)$ whenever $x_i \leq x'_i$ for all $i \in \{1, \ldots, n\}$.

n

We also introduce the notation $x, \ldots, x = n \cdot x$.

A B F A B F

Definition

An operation $F: X^n \to X$ is said to be

- reflexive (or idempotent) if $F(n \cdot x) = x$ for all $x \in X$;
- conservative (or quasitrivial, selective) if F(x₁,...,x_n) ∈ {x₁,...,x_n} for all x₁,...,x_n ∈ X;
- symmetric if F(x₁,...,x_n) is invariant under any permutation of x₁,...,x_n;

Assuming that (X, \leq) is a chain, an operation $F: X^n \to X$ is said to be

• nondecreasing (w.r.t. \leq) if $F(x_1, \ldots, x_n) \leq F(x'_1, \ldots, x'_n)$ whenever $x_i \leq x'_i$ for all $i \in \{1, \ldots, n\}$.

We also introduce the notation $x, \ldots, x = n \cdot x$.

In my talk I focus on conservative, symmetric, nondecreasing *n*-ary semigroups (X, F), where X is a chain.

Definition

An operation $F: X^n \to X$ is said to be

- reflexive (or idempotent) if $F(n \cdot x) = x$ for all $x \in X$;
- conservative (or quasitrivial, selective) if F(x₁,...,x_n) ∈ {x₁,...,x_n} for all x₁,...,x_n ∈ X;
- symmetric if F(x₁,...,x_n) is invariant under any permutation of x₁,...,x_n;

Assuming that (X, \leq) is a chain, an operation $F: X^n \to X$ is said to be

• nondecreasing (w.r.t. \leq) if $F(x_1, \ldots, x_n) \leq F(x'_1, \ldots, x'_n)$ whenever $x_i \leq x'_i$ for all $i \in \{1, \ldots, n\}$.

We also introduce the notation $x, \ldots, x = n \cdot x$.

In my talk I focus on conservative, symmetric, nondecreasing *n*-ary semigroups (X, F), where X is a chain.

Definition

- Let $F: X^n \to X$ be an operation.
 - An element $e \in X$ is said to be a neutral element of F if

$$F((i-1) \cdot e, x, (n-i) \cdot e) = x$$

for all $x \in X$ and all $i \in \{1, \ldots, n\}$.

• • = • • = •

Definition

- Let $F: X^n \to X$ be an operation.
 - An element e ∈ X is said to be a neutral element of F if

$$F((i-1) \cdot e, x, (n-i) \cdot e) = x$$

for all $x \in X$ and all $i \in \{1, \ldots, n\}$.

• The points \underline{x} and \underline{y} of X^n are said to be connected for F if $F(\underline{x}) = F(\underline{y})$.

Definition

- Let $F: X^n \to X$ be an operation.
 - An element e ∈ X is said to be a neutral element of F if

$$F((i-1) \cdot e, x, (n-i) \cdot e) = x$$

for all $x \in X$ and all $i \in \{1, \ldots, n\}$.

- The points \underline{x} and \underline{y} of X^n are said to be connected for F if $F(\underline{x}) = F(\underline{y})$.
- The point <u>x</u> of Xⁿ is said to be isolated for F if it is not connected to another point in Xⁿ.

Definition

- Let $F: X^n \to X$ be an operation.
 - An element e ∈ X is said to be a neutral element of F if

$$F((i-1) \cdot e, x, (n-i) \cdot e) = x$$

for all $x \in X$ and all $i \in \{1, \ldots, n\}$.

- The points \underline{x} and \underline{y} of X^n are said to be connected for F if $F(\underline{x}) = F(\underline{y})$.
- The point <u>x</u> of Xⁿ is said to be isolated for F if it is not connected to another point in Xⁿ.

A neutral element is unique if n = 2

Definition

- Let $F: X^n \to X$ be an operation.
 - An element e ∈ X is said to be a neutral element of F if

$$F((i-1) \cdot e, x, (n-i) \cdot e) = x$$

for all $x \in X$ and all $i \in \{1, \ldots, n\}$.

- The points \underline{x} and \underline{y} of X^n are said to be connected for F if $F(\underline{x}) = F(\underline{y})$.
- The point <u>x</u> of Xⁿ is said to be isolated for F if it is not connected to another point in Xⁿ.

A neutral element is unique if n = 2 and not necessarily unique if $n \ge 3$.

Definition

- Let $F: X^n \to X$ be an operation.
 - An element e ∈ X is said to be a neutral element of F if

$$F((i-1) \cdot e, x, (n-i) \cdot e) = x$$

for all $x \in X$ and all $i \in \{1, \ldots, n\}$.

- The points \underline{x} and \underline{y} of X^n are said to be connected for F if $F(\underline{x}) = F(\underline{y})$.
- The point <u>x</u> of Xⁿ is said to be isolated for F if it is not connected to another point in Xⁿ.

A neutral element is unique if n = 2 and not necessarily unique if $n \ge 3$.

Example

$$F(x_1, x_2, x_3) \equiv x_1 + x_2 + x_3 \pmod{2}$$
 on $X = \mathbb{Z}_2$.

Example (More generally)

$$F(x_1,...,x_n) \equiv x_1 + \cdots + x_n \pmod{(n-1)}$$
 on $X = \mathbb{Z}_{n-1} (n \ge 3)$.

- 4 同 ト 4 ヨ ト 4 ヨ

Example (More generally)

$$F(x_1,...,x_n) \equiv x_1 + \cdots + x_n \pmod{(n-1)}$$
 on $X = \mathbb{Z}_{n-1} (n \ge 3)$.

Proposition

Let X be a chain. If $F : X^n \to X$ is a nondecreasing operation, then F has at most one neutral element.

Example (More generally)

$$F(x_1,...,x_n) \equiv x_1 + \cdots + x_n \pmod{(n-1)}$$
 on $X = \mathbb{Z}_{n-1} (n \ge 3)$.

Proposition

Let X be a chain. If $F : X^n \to X$ is a nondecreasing operation, then F has at most one neutral element.

Proposition

Let $F: X^n \to X$ be a reflexive operation. If $\underline{x} = (x_1, \dots, x_n) \in X^n$ is isolated for F, then necessarily $x_1 = \dots = x_n$.

Example (More generally)

$$F(x_1,...,x_n) \equiv x_1 + \cdots + x_n \pmod{(n-1)}$$
 on $X = \mathbb{Z}_{n-1} (n \ge 3)$.

Proposition

Let X be a chain. If $F : X^n \to X$ is a nondecreasing operation, then F has at most one neutral element.

Proposition

Let $F: X^n \to X$ be a reflexive operation. If $\underline{x} = (x_1, \dots, x_n) \in X^n$ is isolated for F, then necessarily $x_1 = \dots = x_n$.

Corollary

Any conservative operation $F: X^n \to X$ has at most one isolated point.

イロト イポト イヨト イヨト 二日

Proposition

Let $F: X^n \to X$ be a conservative operation and let $e \in X$. If $(n \cdot e)$ is isolated for F, then e is a neutral element.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition

Let $F: X^n \to X$ be a conservative operation and let $e \in X$. If $(n \cdot e)$ is isolated for F, then e is a neutral element.

The converse holds if and only if n = 2.

- E > - E >

Proposition

Let $F: X^n \to X$ be a conservative operation and let $e \in X$. If $(n \cdot e)$ is isolated for F, then e is a neutral element.

The converse holds if and only if n = 2.

Counter example

Let $X = \{a, b, e\}$ and let $F: X^3 \to X$ be defined as

 $F(x, y, z) = \begin{cases} a, & \text{if there are more } a \text{'s than } b \text{'s among } x, y, z, \\ b, & \text{if there are more } b \text{'s than } a \text{'s among } x, y, z, \\ e, & \text{otherwise.} \end{cases}$

The operation F is conservative and has e as the neutral element. However, we have F(e, e, e) = F(a, b, e) and hence the point (e, e, e) is not isolated for F.

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Why are neutral elements so important?

Definition

Let $F: X^n \to X$ and $H: X^2 \to X$ be associative operations. F is said to be derived from (or reducible to) H if $F(x_1, \ldots, x_n) = x_1 \circ \cdots \circ x_n$ for all $x_1, \ldots, x_n \in X$, where $x \circ y = H(x, y)$.

Why are neutral elements so important?

Definition

Let $F: X^n \to X$ and $H: X^2 \to X$ be associative operations. F is said to be derived from (or reducible to) H if $F(x_1, ..., x_n) = x_1 \circ \cdots \circ x_n$ for all $x_1, ..., x_n \in X$, where $x \circ y = H(x, y)$.

Theorem (Dudek-Mukhin)

Let X be a nonempty set. A function $F : X^n \to X$ can be derived from an associative function $H : X^2 \to X$ if and only if F has a neutral element or there can be adjoin a neutral element to X for F.

Why are neutral elements so important?

Definition

Let $F: X^n \to X$ and $H: X^2 \to X$ be associative operations. F is said to be derived from (or reducible to) H if $F(x_1, \ldots, x_n) = x_1 \circ \cdots \circ x_n$ for all $x_1, \ldots, x_n \in X$, where $x \circ y = H(x, y)$.

Theorem (Dudek-Mukhin)

Let X be a nonempty set. A function $F : X^n \to X$ can be derived from an associative function $H : X^2 \to X$ if and only if F has a neutral element or there can be adjoin a neutral element to X for F.

Corollary

If $F: X^n \to X$ is associative and has a neutral element $e \in X$, then F is derived from the associative operation $H: X^2 \to X$ defined by $H(x, y) = F(x, (n-2) \cdot e, y)$.

イロト イポト イヨト イヨト

G. Kiss

Conservative, symmetric *n*-ary semigroups

ISFE 55 10 / 17

The case when $F: X^n \to X$ is an associative, monotone, reflexive function that has a neutral element was well understood.

(日) (同) (三) (三)

The case when $F: X^n \to X$ is an associative, monotone, reflexive function that has a neutral element was well understood. In this presentation we extend the investigation:

Proposition

Let X be a chain and $F : X^n \to X$ be an associative, reflexive, nondecreasing function that has a neutral element. Then F is conservative.

Let X be a chain. If $G: X^2 \rightarrow X$ is conservative, symmetric, and nondecreasing, then it is associative.

A B F A B F

Let X be a chain. If $G: X^2 \rightarrow X$ is conservative, symmetric, and nondecreasing, then it is associative.

Theorem (Main theorem)

Let X be a chain and let $F: X^n \to X \ (n \ge 3)$ be a conservative, symmetric, and nondecreasing function. The following assertions are equivalent.

Let X be a chain. If $G: X^2 \rightarrow X$ is conservative, symmetric, and nondecreasing, then it is associative.

Theorem (Main theorem)

Let X be a chain and let $F: X^n \to X \ (n \ge 3)$ be a conservative, symmetric, and nondecreasing function. The following assertions are equivalent. (i) F is associative

Let X be a chain. If $G: X^2 \rightarrow X$ is conservative, symmetric, and nondecreasing, then it is associative.

Theorem (Main theorem)

Let X be a chain and let $F: X^n \to X$ $(n \ge 3)$ be a conservative, symmetric, and nondecreasing function. The following assertions are equivalent. (i) F is associative (i.e.: (X, F) is a n-ary semigroup).

Let X be a chain. If $G: X^2 \rightarrow X$ is conservative, symmetric, and nondecreasing, then it is associative.

Theorem (Main theorem)

Let X be a chain and let $F: X^n \to X \ (n \ge 3)$ be a conservative, symmetric, and nondecreasing function. The following assertions are equivalent.

(i) F is associative (i.e.: (X, F) is a n-ary semigroup).

(ii)
$$F((n-1)\cdot x, y) = F(x, (n-1)\cdot y)$$
 for all $x, y \in X$.

Proposition (Martin-Mayor-Torrens, Couceiro-Devillet-Marichal)

Let X be a chain. If $G: X^2 \rightarrow X$ is conservative, symmetric, and nondecreasing, then it is associative.

Theorem (Main theorem)

Let X be a chain and let $F: X^n \to X \ (n \ge 3)$ be a conservative, symmetric, and nondecreasing function. The following assertions are equivalent.

- (i) F is associative (i.e.: (X, F) is a n-ary semigroup).
- (ii) $F((n-1) \cdot x, y) = F(x, (n-1) \cdot y)$ for all $x, y \in X$.

(iii) There exists a conservative and nondecreasing operation $G: X^2 \to X$ such that

$$F(x_1,\ldots,x_n) = G(\bigwedge_{i=1}^n x_i,\bigvee_{i=1}^n x_i), \qquad x_1,\ldots,x_n \in X.$$
(1)

Proposition (Martin-Mayor-Torrens, Couceiro-Devillet-Marichal)

Let X be a chain. If $G: X^2 \rightarrow X$ is conservative, symmetric, and nondecreasing, then it is associative.

Theorem (Main theorem)

Let X be a chain and let $F: X^n \to X \ (n \ge 3)$ be a conservative, symmetric, and nondecreasing function. The following assertions are equivalent.

- (i) F is associative (i.e.: (X, F) is a n-ary semigroup).
- (ii) $F((n-1) \cdot x, y) = F(x, (n-1) \cdot y)$ for all $x, y \in X$.

(iii) There exists a conservative and nondecreasing operation $G: X^2 \to X$ such that

$$F(x_1,\ldots,x_n) = G(\bigwedge_{i=1}^n x_i,\bigvee_{i=1}^n x_i), \qquad x_1,\ldots,x_n \in X.$$
(1)

Moreover, the operation G is unique, symmetric, and associative in assertion (iii).

G. Kiss

Consequences

Corollary

Let X be a chain. If $F: X^n \to X$ is of the form (1), where $G: X^2 \to X$ is conservative, symmetric and nondecreasing, then F is associative and derived from G.

Consequences

Corollary

Let X be a chain. If $F: X^n \to X$ is of the form (1), where $G: X^2 \to X$ is conservative, symmetric and nondecreasing, then F is associative and derived from G.

Corollary

Let X be a chain. If $F : X^n \to X$ is a conservative, symmetric, nondecreasing and associative, then F has a neutral element or we can adjoin one.

Consequences

Corollary

Let X be a chain. If $F: X^n \to X$ is of the form (1), where $G: X^2 \to X$ is conservative, symmetric and nondecreasing, then F is associative and derived from G.

Corollary

Let X be a chain. If $F : X^n \to X$ is a conservative, symmetric, nondecreasing and associative, then F has a neutral element or we can adjoin one.

Back to the neutral element

Proposition

Let X be a chain and let $e \in X$. Assume that $F: X^n \to X$ is of the form (1), where $G: X^2 \to X$ is conservative, nondecreasing and symmetric. Then the following assertions are equivalent.

- (i) e is a neutral element of F.
- (ii) e is a neutral element of G.
- (iii) The point (e, e) is isolated for G.

(iv) The point $(n \cdot e)$ is isolated for F.

Back to the neutral element

Proposition

Let X be a chain and let $e \in X$. Assume that $F: X^n \to X$ is of the form (1), where $G: X^2 \to X$ is conservative, nondecreasing and symmetric. Then the following assertions are equivalent.

- (i) e is a neutral element of F.
- (ii) e is a neutral element of G.
- (iii) The point (e, e) is isolated for G.

(iv) The point $(n \cdot e)$ is isolated for F.

Corollary

Let X and F as above. Then F has a neutral element iff there exists an isolated point for F.

The single-peaked ordering

Proposition (Ackerman)

Let X be a set and $H: X^2 \to X$ be an associative, conservative, symmetric function, then there exists a linear ordering \leq on X such that F is the maximum operation on (X, \leq) .

The single-peaked ordering

Proposition (Ackerman)

Let X be a set and $H: X^2 \to X$ be an associative, conservative, symmetric function, then there exists a linear ordering \leq on X such that F is the maximum operation on (X, \leq) .

Corollary

An operation $F: X^n \to X$ is conservative, symmetric, associative, and derived from a conservative and associative operation $H: X^2 \to X$ iff there exists a linear ordering \leq on X such that F is the maximum operation on (X, \leq) , *i.e.*,

$$F(x_1,\ldots,x_n) = x_1 \vee_{\leq} \cdots \vee_{\leq} x_n, \qquad x_1,\ldots,x_n \in X.$$
(2)

The single-peaked ordering

Proposition (Ackerman)

Let X be a set and $H: X^2 \to X$ be an associative, conservative, symmetric function, then there exists a linear ordering \leq on X such that F is the maximum operation on (X, \leq) .

Corollary

An operation $F: X^n \to X$ is conservative, symmetric, associative, and derived from a conservative and associative operation $H: X^2 \to X$ iff there exists a linear ordering \leq on X such that F is the maximum operation on (X, \leq) , i.e.,

$$F(x_1,\ldots,x_n) = x_1 \vee_{\leq} \cdots \vee_{\leq} x_n, \qquad x_1,\ldots,x_n \in X.$$
(2)

Definition

In this case if (X, \leq) is a chain, then we say that new ordering \leq is single-peaked w.r.t. \leq .

G. Kiss

Consider the real operation $F: [0,1]^2 \rightarrow [0,1]$ defined as

$$F(x,y) = \begin{cases} x \lor y, & \text{ if } x + y \ge 1, \\ x \land y, & \text{ otherwise }. \end{cases}$$

・ロン ・四 ・ ・ ヨン ・ ヨン

(3)

Consider the real operation $F:[0,1]^2 \rightarrow [0,1]$ defined as

$$F(x,y) = \begin{cases} x \lor y, & \text{if } x + y \ge 1, \\ x \land y, & \text{otherwise} \end{cases}$$
(3)

Denoting the single-peaked linear ordering on $\left[0,1\right]$ by $\preceq,$ then

$$x \leq y \quad \Leftrightarrow \quad \left(y \leq x < 1 - y \text{ or } 1 - y \leq x \leq y\right), \qquad x, y \in [0, 1].$$

< 回 ト < 三 ト < 三 ト

Consider the real operation $F:[0,1]^2 \rightarrow [0,1]$ defined as

$$F(x,y) = \begin{cases} x \lor y, & \text{if } x + y \ge 1, \\ x \land y, & \text{otherwise} \end{cases}$$
(3)

Denoting the single-peaked linear ordering on $\left[0,1\right]$ by $\preceq,$ then

$$x \leq y \iff (y \leq x < 1 - y \text{ or } 1 - y \leq x \leq y), \qquad x, y \in [0, 1].$$

So for every $x \in [0,1]$, there is no $y \in [0,1]$ such that x < y < 1 - x or 1 - x < y < x.

・ 同 ト ・ 三 ト ・ 三 ト

Consider the real operation $F:[0,1]^2 \rightarrow [0,1]$ defined as

$$F(x,y) = \begin{cases} x \lor y, & \text{if } x + y \ge 1, \\ x \land y, & \text{otherwise} \end{cases}$$
(3)

Denoting the single-peaked linear ordering on [0,1] by \leq , then

$$x \leq y \quad \Leftrightarrow \quad (y \leq x < 1 - y \text{ or } 1 - y \leq x \leq y), \qquad x, y \in [0, 1].$$

So for every $x \in [0,1]$, there is no $y \in [0,1]$ such that x < y < 1 - x or 1 - x < y < x. From this observation one can show that the chain $([0,1], \leq)$ cannot be embedded into the reals (\mathbb{R}, \leq) .

Thank you for your kind attention.

.∃ >

N. L. Ackerman.

A characterization of quasitrivial *n*-semigroups. To appear in *Algebra Universalis*.

D. Black. On the rationale of group decision-making. *J Polit Economy*, 56(1):23-34, 1948

M. Couceiro, J. Devillet, and J.-L. Marichal. Characterizations of idempotent discrete uninorms. Submitted for publication. arXiv:1701.07253

W. A. Dudek and V. V. Mukhin.

On *n*-ary semigroups with adjoint neutral element. *Quasigroups and Related Systems*, 14:163-168, 2006.

G. Kiss and G. Somlai.

A characterization of n-associative, monotone, idempotent functions on an interval that have neutral elements.

Semigroup Forum, doi:10.1007/s00233-017-9876-3.

J. Martín, G. Mayor, and J. Torrens. On locally internal monotonic operations.

Fuzzy Sets and Systems 137:27-42, 2003.

걸 동 김 걸