On conservative and associative operations on finite chains 55th ISFE

Jimmy Devillet

in collaboration with Miguel Couceiro and Jean-Luc Marichal

University of Luxembourg

Connectedness and Contour Plots

Let X be a nonempty set and let $F: X^2 \to X$

Definition

• The points $(x, y), (u, v) \in X^2$ are connected for F if

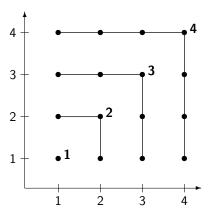
$$F(x,y) = F(u,v)$$

• The point $(x, y) \in X^2$ is *isolated for F* if it is not connected to another point in X^2

Connectedness and Contour Plots

For any integer $n \ge 1$, let $L_n = \{1, ..., n\}$ endowed with \le

Example. $F(x,y) = \max\{x,y\}$ on L_4



Graphical interpretation of conservativeness

Definition

 $F: X^2 \to X$ is said to be

conservative if

$$F(x,y) \in \{x,y\}$$

• reflexive if

$$F(x,x) = x$$

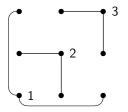
Graphical interpretation of conservativeness

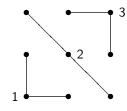
Let
$$\Delta_X = \{(x, x) \mid x \in X\}$$

Proposition

 $F: X^2 \to X$ is conservative iff

- it is reflexive
- every point $(x,y) \notin \Delta_X$ is connected to either (x,x) or (y,y)





Graphical interpretation of the neutral element

Definition. An element $e \in X$ is said to be a *neutral element* of $F: X^2 \to X$ if

$$F(x,e) = F(e,x) = x$$

Proposition

Assume $F: X^2 \to X$ is reflexive.

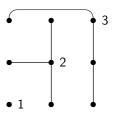
If $(x,y) \in X^2$ is isolated, then it lies on Δ_X , that is, x = y

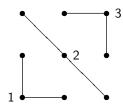
Graphical interpretation of the neutral element

Proposition

Assume $F: X^2 \to X$ is conservative and let $e \in X$.

Then e is a neutral element iff (e, e) is isolated



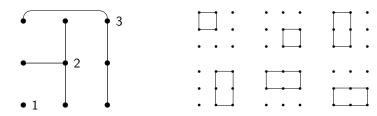


Graphical test for associativity under conservativeness

Proposition

Assume $F: X^2 \to X$ is conservative. The following assertions are equivalent.

- (i) F is associative
- (ii) For every rectangle in X^2 that has only one vertex on Δ_X , at least two of the remaining vertices are connected

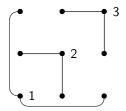


Graphical test for non associativity under conservativeness

Proposition

Assume $F \colon X^2 \to X$ is conservative. The following assertions are equivalent.

- (i) F is not associative
- (ii) There exists a rectangle in X^2 with only one vertex on Δ_X and whose three remaining vertices are pairwise disconnected



Graphical test for non associativity under conservativeness

Proposition

Assume $F: X^2 \to X$ is conservative. The following assertions are equivalent.

- (i) F is not associative
- (ii) There exists a rectangle in X^2 with only one vertex on Δ_X and whose three remaining vertices are pairwise disconnected

A class of associative operations

Recall that $L_n = \{1, ..., n\}$, with the usual ordering \leq

We are interested in the class of operations $F: L_n^2 \to L_n$ that

- have a neutral element $e \in L_n$
- and are
 - reflexive
 - associative
 - symmetric
 - nondecreasing in each variable

A first characterization

Theorem (De Baets et al., 2009)

 $F\colon L_n^2\to L_n$ with neutral element $e\in L_n$ is reflexive, associative, symmetric, and nondecreasing iff there exists a nonincreasing map $g\colon [1,e]\to [e,n]$, with g(e)=e, such that

$$F(x,y) = \begin{cases} \min\{x,y\}, & \text{if } y \leq \overline{g}(x) \text{ and } x \leq \overline{g}(1), \\ \max\{x,y\}, & \text{otherwise}, \end{cases}$$

where $\overline{g}: L_n \to L_n$ is defined by

$$\overline{g}(x) = \begin{cases} g(x), & \text{if } x \leq e, \\ \max\{z \in [1, e] \mid g(z) \geq x\}, & \text{if } e \leq x \leq g(1), \\ 1, & \text{if } x > g(1) \end{cases}$$

A second characterization

Theorem

Assume $F: L_n^2 \to L_n$ is symmetric and nondecreasing. Then F is conservative iff it is reflexive, associative and has a neutral

element $e \in L_n$

Corollary

There are exactly 2^{n-1} conservative, symmetric, and non-decreasing operations on L_n

Single-peaked linear orderings

Definition. (Black, 1948) A linear ordering \leq on L_n is said to be *single-peaked* (w.r.t. the ordering \leq) if for any $a,b,c\in L_n$ such that a < b < c we have $b \prec a$ or $b \prec c$

Example. The ordering \leq on

$$L_4 = \{1 < 2 < 3 < 4\}$$

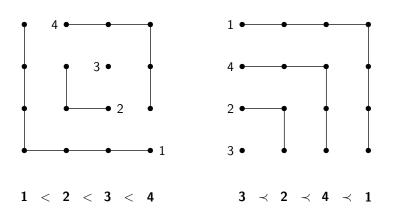
defined by

$$3 \prec 2 \prec 4 \prec 1$$

is single-peaked w.r.t. \leq

Note: There are exactly 2^{n-1} single-peaked linear orderings on L_n .

Single-peaked linear orderings



A third characterization

Theorem

Let $F: L_n^2 \to L_n$. The following assertions are equivalent.

- ullet F is reflexive, associative, symmetric, nondecreasing, and has a neutral element $e \in L_n$
- F is conservative, symmetric, and nondecreasing
- there exists a single-peaked linear ordering \leq on L_n such that

$$F = \max_{\prec}$$

Selected references

B. De Baets, J. Fodor, D. Ruiz-Aguilera, and J. Torrens. Idempotent uninorms on finite ordinal scales. *Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems*, 17(1):1–14, 2009.

S. Berg and T. Perlinger. Single-peaked compatible preference profiles: some combinatorial results. *Social Choice and Welfare* 27(1):89–102, 2006.

D. Black. On the rationale of group decision-making. J Polit Economy, 56(1):23-34, 1948

D. Black. The theory of committees and elections. Kluwer Academic Publishers, Dordrecht. 1987.

M. Couceiro, J. Devillet, and J.-L. Marichal. Characterizations of idempotent discrete uninorms. Submitted for revision, arXiv:1701.07253

E. Czogała and J. Drewniak. Associative monotonic operations in fuzzy set theory. Fuzzy Sets and Systems, 12(3):249–269, 1984.