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Abstract—Android malware is now pervasive and evolving
rapidly. Thousands of malware samples are discovered every
day with new models of attacks. The growth of these threats
has come hand in hand with the proliferation of collective
repositories sharing the latest specimens. Having access to a
large number of samples opens new research directions aiming
at efficiently vetting apps. However, automatically inferring a
reference dataset from those repositories is not straightforward
and can inadvertently lead to unforeseen misconceptions. On the
one hand, samples are often mis-labeled as different parties use
distinct naming schemes for the same sample. On the other hand,
samples are frequently mis-classified due to conceptual errors
made during labeling processes. In this paper, we mine Anti-
Virus labels and analyze the associations between all labels given
by different vendors to systematically unify common samples
into family groups. The key novelty of our approach, named EU-
PHONY [20], is that no a-priori knowledge on malware families is
needed. We evaluate EUPHONY using reference datasets and more
than 400 thousands additional samples outside of these datasets.
Results show that EUPHONY can accurately label malware with
a fine-grained clustering of families, while providing competitive
performance against the state-of-the-art.
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I. INTRODUCTION

The popularity of the Android platform with consumers has
made it a prime target of malware developers. In recent years,
new and evolved models of attacks are regularly developed
and thousands of malicious samples are discovered every
month. For classifying malware in the wild, which is central to
mitigation techniques, researchers have proposed approaches
for automatically classifying malware using both supervised
machine learning [4], [15], [16], [28] and clustering [41], [44].
A crucial element in all such approaches to build learning
models for malware classification are reference datasets for
training and evaluating the model. Unfortunately, as Rossow
et al. [35] have pointed out, the literature exhibits several
shortcomings, including a lack a correctness, transparency and
realism in the handling of malware datasets. In particular,
reliable malware labels are a necessary input to guarantee the
quality of both malware detection and classification models.

Malware labeling, however, is not a trivial task. Manual
labeling, where a human analyst inspects the actions of the
malware in a bid to classify them, is prohibitively expensive,
given the number of malware samples discovered every day.
In such a setting, it is reasonable to rely on the collective

judgment of Anti-Virus (AV) vendors who specialize in mal-
ware labeling. However, deriving a unified label from labels
attached to samples by AV vendors is difficult. Inconsistencies
in Anti-Virus (AV) labels are indeed common. This is due to
both naming disagreements [24], [25] across vendors and also
a lack of adopted standards' for naming malware.

Prior work has relied on simple heuristics to come up with
unified labels based on assessment reports of AV vendors.
For the case of labeling malware as benign or malicious,
techniques have labeled a sample as malicious if at least
one AV vendor flags it as malicious or at least majority of
AV vendors have flagged it as malicious [4], [28]. While
such heuristics work for flagging samples as malicious or
benign, labeling samples with the specific class they belong to
is fraught with difficulties. AV vendors can choose different
norms to name classes, prefixing qualifying attributes such
as attack type (e.g., Trojan) or platform (e.g., Android) to
the label. What further complicates things is that it is not
uncommon for typographic and orthographic inconsistencies
to creep into the labeling process not just across vendors but
sometimes even for the same vendor. Consequently, a sample’s
full AV label is a poor indicator of its generic family name.
For example, the family name Adrd is “lost” in the full AV
label Android.Trojan.Adrd.A (B).

In this work, we present EUPHONY [20], a tunable AV
labelling system that can systematically extracts information
from AV labels and learns their patterns and vocabulary
over time. EUPHONY is an inference-based system, which
allows for end-to-end automation, relieving practitioners from
the need to collect, aggregate and verify malware families
manually. EUPHONY’s label-unification scheme is also vendor
agnostic. No specific rules about AV engines (e.g., which label
parts are suffixes to be removed) are encoded in the process
as these rules are inferred from the available AV labels data.

We report in this paper on the following contributions:

o We present the design and implementation of EUPHONY
which aims at clustering malware samples in the wild
and inferring their family names. Evaluated on Geno-
me [47] and Drebin [4] reference datasets of Android
malware, EUPHONY achieves relatively high F-measure
performance of 92.7% and 95.5% respectively.

ICARO and CME conventions are not widely used by AV vendors.



« EUPHONY, in contrast with previous work, is able to
automatically learn the structure and lexicon of AV labels
to iteratively improve its performance on family inference
over time.

« Finally, we provide to the community a new, and larger,
reference dataset of Android malware with labels inferred
by EUPHONY. We also interface EUPHONY with the pub-
lic API of the Androzoo project [3], [42] to regularly pro-
vide the community with up-to-date reference datasets,
allowing for reliable and reproducible experiments within
the community.

II. RELATED WORK

Android Malware and Machine Learning: Research on
Android malware has attracted a lot of attention from the
security community due to the popularity of the platform and
the continuous rise of threats in this ecosystem [18], [19],
[21], [23], [33], [34], [46], [48]. In an effort to automatically
detect and classify malicious apps, several machine learning
approaches have been recently proposed [1], [4], [8], [11],
[14], [22], [30], [36], [45]. These solutions have shown promis-
ing results in closed environments, but they also require a
large dataset of malware samples in order train the system
efficiently.

While such sets are readily available in other domains, they
are not as easy to obtain for security purposes. If we take
the case of Android malware, the main reference dataset,
MalGenome [47] and Drebin [4], are now more than four
years old. Meanwhile, practitioners have collected new apps
from online markets [3] but cannot guarantee that an app is
indeed malicious, or to which family it belongs, without proper
vetting mechanisms. This is a chicken and egg problem which
impers the use of machine learning techniques in the outside
world [38].

Our work addresses this challenge by providing a tool to
associate meaningful families to malware samples and support
these automated analysis techniques.

The Reference Dataset Problem: Reference datasets are
essential to devise new detection patterns and systematically
analyze unknown malware samples. However, despite their
importance, they are rarely fully qualified by the research
community. In an effort to shed light on this issue, Rossow
et al. [35] have studied the methodological rigour of 36
academic publications that rely on malware execution. They
pointed out several shortcomings, including a lack a correct-
ness, transparency and realism in the handling of malware
datasets. Moreover, Sommer and Paxson [38] have raised
similar concerns in an attempt to explain the gap between
closed world and real world experiments.

Several reasons can be put forward to explain the notorious
difficulty of composing such reference datasets. First of all,
researchers need to operate in a adversarial settings [38] where
malware authors rapidly adapt their artifacts to new defense
mechanisms [12], [25]. This forces the community to detect
malware samples through generic techniques instead of careful
dissections, with the risk of missing the specific behaviors of

new malicious samples [10]. Second, the evaluation of system-
atic approaches is sensitive to some underlying assumptions
which themselves are not grounded. For example, the choice of
detection threshold and Anti-Virus engines can largely impact
the characteristics of reference datasets [24]. Several flaws can
also artificially improve the performance of detectors [2] or
mislead the authors about the quality of their output [27].

The goal of our approach is to assist practitioners in the
creation of reference datasets. From the result of AV engines,
our tool can reconcile the output of these engines and create
a vetted reference for other automated techniques.

Prior works on the extraction of AV labels: In the
absence of ground truth datasets, practitioners rely on Anti-
Virus engines to gather malware labels and cluster them
into families [4], [11], [14], [45]. While the collection of
malware labels is greatly facilitated by online services such as
VirusTotal [43], grouping them into families is currently not a
straightforward process. The main reason for this difficulty
is the lack of widely adopted naming conventions by the
industry [9], [10], [26], [29]. In the absence of common
standards, end users must deal with the profusion of naming
schemes and the lack of consensus among AV labels in
malware datasets [7], [24], [31].

To address the issue caused by inconsistent labels, a new
tool-supported solution named AVClass has recently been
proposed by Sebastidn et al. [37]. The authors present system
able to process scan reports from AV vendors and produce a
single label per sample. The authors reported significant per-
formance achievements on a variety of reference datasets [4],
[47] in comparison to prior works [7], [31]. However, the
authors mention that the system requires a ground-truth list
of known malware families to distinguish family names from
generic tokens. This limitation goes back to the chicken-and-
egg problem that we highlighted earlier. Furthermore, their
approach also depends on vendor-specific rules to handle the
removal of some vendor suffixes.

In this paper, we address the same challenge as AVClass.
Nevertheless, we propose an approach tuned to perform well
even when labelled samples are not available. We demonstrate
that, despite the absence of knowledge on malware families
and vendor-specific rules, our approach can compete against
AVClass.

III. DEFINITIONS

We introduce formal definitions of the terms and concepts
that we will refer to throughout the paper.

A. Anti-Virus Labels

Definition 1 (AV Label):

An AV label [ is a sequence of words (i.e., alpha-numerical
tokens) w; divided by separators (i.e., blanks and punctuation
signs) u;. Formally, [ = (w1, u1, ..., Up, Wnt1).
Android.Trojan.Adrd.A (B) is a concrete example of
such a label, where ‘" (dot), ‘(’, )’ (parentheses), and *_’
(space) are the separators and Android, Trojan, Adrd, A,
and B are the words.



Definition 2 (AV Label Field):
A label field f represents the “category"” of a given word w;.
The word Android in Android.Trojan.Adrd.A (B)
indicates the target platform of the malware, while T'rojan
and Adrd indicates respectively its type and family. Overall,
we define 4 fields that match details required in the CARO
naming convention [13]: type (the kind of threat, i.e., trojan,
worm, etc.), platform (the OS that the threat is designed to
work on, i.e., Windows, Android, etc.), family (the group of
threats it is associated with in terms of behavior), information
(extra description of this threat, including its variant).

Grammars described in Tables I and II below provide the
lexing rules used by EUPHONY to tokenize AV labels.

Table I: Grammar 1: Lexing rules for EUPHONY

<family> = [:alpha:]{3,} <type> = [:alpha:]{2,}
<info> = [:alnum:]+ <plat> ;= [:alnum:]{2,}
<sep> = ([:punct:] | [:blank:])+

Table II: Grammar 2: Parsing rules for EUPHONY
<word> 1=  <family> | <type> | <plat> | <info>
<label> = <word> | <sep> | <label>

Definition 3 (AV Labeling Pattern):
Given an AV av, its corresponding AV labeling Pattern, noted
Pav Tepresents the syntax of its labels, i.e., how the different
fields are combined to form its labels.

We provide in Table III some illustrative examples of AV
labels, their fields and their associated labeling patterns.

Table III: Examples of AV labeling Patterns

Label | AV Pattern | Family  Type Plat. Info
Android.Trojan.Adrd <plat>.<type>.<name> adrd trojan  android -
Trojan:/Adrd.b <type>:/<name>.<info> adrd trojan - b
Android:PjApps [Trj] | <plat>:<name> [<type>] pjapps trj android —
Troj.PjApps (kcloud) <type>.<name> (<info>) pjapps troj - kcloud
Android/Adrd.5e2f <plat>/<name>.<info> adrd - android Se2f

B. Sample Set

We define a labeling function label_of which associates a
label to a pair (av, app) of AV and application from a dataset:

Definition 4 (Labeling Function):

Let APP be a set of applications, AV a set of AVs, and £
the set of associated labels.

The function label_of : AV x APP — L maps a pair of
AV and application to a label.

From a given label, we further define a family function
family_of which extracts the family field value. More for-
mally:

Definition 5 (Family Function):

Let AV be a set of AVs, APP a set of applications. Let be
L the set of labels such as £ = label_of(AV, APP), and F
a set of associated family names.

The function family_of : AV x L — F maps a pair of
AV and label to a family name.

For a given AV, we put together apps with the same family
name in a set that we call Sample Set. More formally:

Definition 6 (Sample Set):

Let APP = (app1, appa, -..,appy,) be a set of app samples,
and F = (f1, f2,..., fx) a set of associated families. For a
given AV av, the sample set S, s, defines the set of apps
with the same family name f;. More formally,

Vie(l,.. k),
Sav,f; = {app. € APP|family_of(av,app.) = f;}
C. Metrics

Sample sets can be disjoint or overlapping, and may be
imbalanced. For instance the sample sets represented in the
left of Figure 1 are imbalanced as the number of samples
associated to the family name f; by av, is much smaller than
the number of samples associated to family name f; by avy.
Understanding when a sample set is imbalanced is important
when weighting the relevance of a label over another in a
dataset.
each x

represents
a different

app

1) Imbalanced Sample Sets 2) Overlapping Sample Sets

Figure 1: Examples of Sample Sets

Definition 7 (Imbalance Metric):
Given two sample sets Sgy,,r, and Sgy, s, we define the
Imbalance metric as the complement between the minimum
and maximum cardinality of the two sample sets, formalized
in Equation (1)

min(lsava7fi ) |Savb7fj |)

Im(sm}a’f” S(wb’fj) 1 ma$(|5ava,fi ’ |Savb7fj D (1)

When both sets Sy, ,f, and Say,,r, have the same cardinal-
ity, there is no imbalance, and Im is equal to 0. In contrast,
imbalance Im gets close to 1 as S, s, contains fewer apps
and Sgy,, f; contains a lot more.

The right part of Figure 1 depicts overlapping sample sets,
i.e., a scenario where several apps have been associated at
the same time with f; and f; by av, and av, respectively.
This suggests that, despite syntactic differences between both
family names f; and f;, the family names may characterize the
same information (e.g., they point to the same malware). The
notion of overlapping is important to assess whether family
names should be “merged" together. Thus, we define the
exclusion metric which quantifies the degree of overlapping,
or lack thereof.

Definition 8 (Exclusion Metric):

Given two sample sets Sgy,,f, and Sy, s, we define the
Exclusion Metric as the complement of the ratio between 1) the
intersection cardinality of two sample sets Sgy, ¢, and Sgy,, i
2) the cardinality of the smallest sample set. This metric is
formalized by Equation (2).

. |(Sa7/a7f7i n wab»fj”
min(|Sa’Ua7fi |v |S(wznfj |)

E‘T(Savavfi ) Savbyfj) = (2
When the sets Sy, ,r, and Sg.,,r; share no app, there is
no overlapping as their intersection is empty, and Ex is at its
maximum at 1. In contrast, as the overlapping gets higher, Ex
gets close to 0.
Given that family names may contain small syntactic dif-
ferences, we consider a distance function to relax the equality



constraint on strings. To that end, we define our String distance
based on the Sgrensen—Dice index [17].

Definition 9 (Distance Metric of Family Names):
The distance metric of family names is computed as the string
distance between two family names f; and f;:

D(fi, f;) = 1 —dice(fi, f;) 3)

Finally, we measure how two family names f; and f;, given
by the AVs av, and aw, respectively, are far to designate
the same malware family. More specifically, we compute the
distance between two samples sets Sy, r, and Say,.r; by
combining the imbalance, exclusion as well as the string
distance metrics that we introduced. The following equation
provides the formula that we use:

Definition 10 (Sample Set Distance Metric):

Given two sample sets Sgo,,f, and Suy,,r;, we define the
Sample Set Distance Metric as follows:

W(Sava.,fwsavb,fj) =aX Ex(Sava,fm Savb,fj)+
BXIm(Sava,waavb,fj)"'_’yXD(fi7fj) (4)

where «, § and « are weight coefficients for adjusting the
importance of the different metrics leveraged to compute the
sample set distance. First and foremost, we consider that two
family names are close to each other only if there is a strong
overlap (i.e., low exclusion) between their associated sample
sets. Thus, for example, it is not opportune to consider two
family names as similar if they do not occur concurrently for
the same samples. Consequently, the value of o will reflect the
importance of the Ex metric. Second, the imbalance of sample
sets is considered to account for the degree of granularity
within malware families. For example, an AV might assign two
family names to a sample set (e.g., ADRD, Pjapps) while
another AV might use only one (e.g., Pjapps) family name
for all samples in the set. Finally, the impact of typos, which
may increase distances between sample sets, requires the
string distance to be the least weighted. We have empirically
found that a difference of an order of magnitude captures
the best relative importance among the coefficients. Thus, in

1 1 :
EUPHONY, we set a, 3 and v to 1, 75 and {55 respectively.

IV. EUPHONY

Given the lack of consensus among AVs on labeling mali-
cious samples, it is difficult for researchers and practitioners
to collect reference datasets of malware [24]. With EU-
PHONY [20], we propose to unify the family names assigned
by different vendors. We present a summary of EUPHONY’S
workflow in Section IV-A, and provide details of each step in
the following subsections.

A. Overview

Figure 2 illustrates the high-level overview of the architec-
ture of EUPHONY. As input, the tool takes a collection of
AV scanning reports. Such reports can be readily obtained
from online services such as VirusTotal [43], which gathers
shared intelligence from a number of AV engines. Then for
each sample, EUPHONY performs the following tasks:

Multiple family

AV Scan Reports names per samples

First Stage

AVl AV2 AV3 AVl | AV2 Av3

appl|landroid.adrd.a Trojan:/pjapps.1 |pjapps.a [trj] appl|ladrd piapps [pjapps

app2 ||landroid.adrd.a Trojan:/adrd.1  |adrd.a [trj] app2 |ladrd adrd |adrd

app3|fandroid.ginger.a  |Adware:/gbreak.1|ginger.a [ads]
app4/fandroid.anserver.a |Adware:/gbreak.1 [anserver.a [ads]

app3|lginger |gbreak |ginger
Fields app4

app5 [landroid.adrd.a Trojan:/adrd.4 |§inger.b[trj]

anserver |gbreak [anserver
Second Stage ( Clustering of pair (AV, Family Names) )

ginger
0
a,

AV3 ginger

AV3,pjapps

AV2,pjapps
AV2,adrd

AV3,anserver

AV1,ginger

cluster 1

cluster2

Inferred Name
Family app1 fadrd
a |2pp2 [adrd
Ll N
app3 [jginger
Single family [app4 [ginger
name per sample |app5 fadrd

Figure 2: A high-level view of the architecture

Third Stage

Name
Selection

o First stage: AV labels are pre-processed to derive the
family name assigned by each vendor to a given sample.
This task allows EUPHONY to deal with different unstruc-
tured naming patterns used by the AVs and it is motivated
by the lack of convention.

« Second stage: This task aims at structuring the relation-
ship between different family names and provides the
most appropriate associations between them. EUPHONY
analyses both the correlation and the overlap between all
family names to understand (i) mis-labeled and (ii) mis-
classified samples. While mis-labeling a sample generally
happens when AVs use a different naming scheme for
the same family (e.g.: DrotdKungFu vs. DrdKngFu),
mis-classifying a sample is usually associated with a
conceptual error made by an AV—with respect to the
others (e.g., a vendor labels a sample as Ginger M aster
while the others decide that belongs to Drotd KungF'u).

o Third stage This task aims at bringing consensus be-
tween the different vendors and outputs the most ap-
propriate family name for a given sample. Although our
framework can also output a set of family names for a
sample (i.e.: synonyms), for the sake of simplicity, we
only report the most prevalent one.

We next describe the details of each of the component in

EUPHONY as well as the choices made during their design
and implementation.

B. Extraction of Label Fields from Reports

An AV label is an informally structured string concatenating
various pieces of information for describing the malware. In
previous section, we have identified 4 recurrent fields in AV




AV Scan Reports

AV1 AV2 AV3
app1|landroid.adrd.a Trojan:/pjapps.1 [pjapps.a [trj]
app2 |landroid.adrd.a Trojan:/adrd.1 adrd.a [trj]
app3 |landroid.ginger.a  |Adware:/gbreak.1 |ginger.a [ads]
app4|landroid.anserver.a | Adware:/gbreak.1 |anserver.a [ads]
app5 [landroid.adrd.a Trojan:/adrd.4 ginger.b [trj]

Transform
to a flat
sequence

appl —> (AV1,android.adrd.a),(AV2,Trojan:/pjapps.1),(AV3,pjapps.a [trj])

app2 —> (AV1,android.adrd.a),(AV2,Trojan:/adrd.1),(AV3,adrd.a [trj])

app3 —> (AV1,android.ginger.a),(AV2,Adware:/gbreak.1),(AV3,ginger.a [ads])
app4 —> (AV1,android.anserver.a),(AV2,Adware:/gbreak.1),(AV3,anserver.a [ads])
app5 —> (AV1,android.adrd.a),(AV2,Trojan:/adrd.4),(AV3,ginger.b [trj])

Extraction of Label Fields Algorithm 1 Incremental Parsing by EUPHONY

AV1 AV2 AV3
Parse labels Q appl|ladrd pjapps |pjapps
& =»-|app2 adrd adrd |adrd
Extract family names ﬂn&inger gbreak |ginger
app4 [lanserver |gbreak |anserver
‘ appS“adrd adrd |ginger
heuristics rules Multiple family

Initial Knowledge

Figure 3: First stage - extraction of label fields from malware
reports

names per samples

label which are identifiable in labels: family, type, platform
and extra information. Each vendor generally adopts a specific
naming convention to represent and combine these fields in
a string. For example, while some vendors start with the
platform first, followed by the type and the name; other
vendors opt to put the type first or enclose it between square
brackets at the end of the string. We further note that AVs
change their convention over time, varying field ordering and
the punctuation signs that separate fields. In this context, the
normalization of their syntax cannot be achieved consistently
via fixed rules such as regular expressions.

Another important constraint in parsing AV labels is the lack
of a complete, universal and up-to-date lexicon. Indeed, new
types, platforms and family names are constantly added by AV
vendors to describe emergent threats, and refine the description
of old threats. Malware family names in particular are highly
dynamic as new malicious behaviors appear regularly.

With these limitations in mind, we propose a number of
heuristics for mapping AV label tokens to a lexical field.
The overall family name extraction process is described in
Figure 3. Given a collection of AV labels, the system can infer
the most obvious fields and then iteratively move to the most
challenging cases as its knowledge grows. To bootstrap the
process, EUPHONY builds on heuristics-based rules, as well as
a bare amount of vocabulary on some platform names (e.g.,
Android) and types (e.g., trojan). The final output which is the
family names given by each AV to the samples are obtained by
inferring it from the sample’s label for each individual vendor.

1) Parsing algorithm and parameters: The parsing algo-
rithm is at the core of the labeling process and its steps are
described in Algorithm 1. The process takes as input a set
of labels, some defined heuristics and an initial knowledge
database on malware lexicon. First, the algorithm tokenizes
each AV label and initializes the mappings between the
tokens and the different label fields. At this stage, a given
token can be associated to all fields (name, type, platform or
information). To decide the unique field to which it should

1: Mapping < [name, type, plat form, information]
2: function PARSE(knowledgeqp, heuristics, labels)

3 mappings < MAP(Mapping, labels)

4 pqueue < PRIO-QUEUE(mappings)

5: while NOT-EMPTY ?(pqueue) do

6: m < PEEK(pqueue)

7 for H in heuristics do

8 findings + H(knowledgeap, m)

9 MERGE(m, findings)

10: end for

11: if COMPLETE?(m) then

12: ENRICH(knowledgep, m)
13: else

14: PUSH(pqueue, m)

15: end if

16: end while

17: return mappings

18: end function

be assigned, the algorithm proceeds by iteratively eliminating
improper assignment, starting with the easiest cases: the order
of processing is conveyed by a priority queue (line 4), where
mappings with the least amount of unknown fields are pushed
at the head of the queue, while mappings with the most amount
of unknown fields are pushed back at the end of the queue. At
each step, the algorithm takes the first mapping of the queue
(line 6) and applies the heuristics-based rules to collect more
information about the mapping (line 8). Then, it merges this
information to create a new mapping. In case of conflicts, the
merge operation will always keep the oldest knowledge at its
disposal.

If the mapping is complete at the end of this operation
(line 11), i.e. if each token is associated to a single field,
this mapping is removed from the queue and its information
pieces are extracted to enrich the knowledge database (line
12). Otherwise, the mapping is pushed back in the queue to
be processed at a later iteration (line 14). Once the queue is
empty, the mapping list is returned with the complete list of
associations (line 17). To force early termination, EUPHONY
provides a parameter for setting a maximum number of
iterations performed by the algorithm.

2) Heuristics rules and initial database: We now provide
details on the parameters of the algorithm. In our current im-
plementation, we rely on 10 heuristic rules to find associations
between words and fields. These rules are listed in Table IV.

Property

Action

Word is associated to a known field in the database  associate the same field

1

2 Word is suffixed by -ware word is a type

3 Word is between parenthesis word is an info

4 Word is between square brackets word is a type or info

5 Only one family, type and platform per label enforce when field is found

6  Word is a synonym of a type or platform in the associate the same field
database (e.g. troj, trojan)

7 Word is the last token not associated to a field word is a family

8  Words are part of common word sentence words are info

9 Label is compatible with a pattern of the same AV associate fields based on pattern

1

common word: information,

other word: family

Table IV: Heuristics for mapping words to fields.

0 Given two remaining tokens, one is a common word
and the other is not

Let’s consider two of the rules to illustrate the associated
action. Rule 1 is the most straightforward heuristic. During
its execution, EUPHONY accesses the database to check if the
word is already associated to a particular field. In particular,
the word Android is commonly known to match with the field
platform. Thus, Rule 1 can leverage existing knowledge to



identify obvious fields. Rule 9, on the other hand, is tuned to
create more knowledge by inferring the field of an unknown to-
ken. For example, given the AV label ‘ransom.android.pjapps’
and its incomplete mapping [ransom: ?, android: platform,
pjapps: family], the algorithm can know at this stage that
ransom is likely a type, and yield the following AV labeling
pattern: ‘<type>.<platform>.<name>’. This inference
is validated by correlating with mappings for all samples of
the same AV. Once the mapping is complete, the inferred
information will be added to the database and support the
identification of more tokens.

To bootstrap the inference process, our algorithm requires
an initial lexicon about malware labels. Generally, a small but
widely accepted lexicon can be found online in specialised
knowledge bases. We stress that, in EUPHONY, such a lexicon
does not have to be exhaustive for our algorithm to work
properly. For example, in our experimental setting, we have
leveraged a limited lexicon including only most well know
types, platforms and information enumerated by the Microsoft
Malware Protection Center?. Table V provides statistics and
examples of tokens contained in this list. In particular, we ob-
served that important words such as “Android”, “Malware” or
family names are not present. We demonstrate the automated
nature of the inference system by relying only on this available
lexicon without any modifications of its entries.

Field # of Entries Example

TYPE 34 adware, backdoor, spyware, trojan, worm
PLATFORM 74 linux, androidos, iphoneos, java, win32
INFORMATION 18 dll, rootkit, plugin, pak, gen

Table V: Initial database entries

C. Grouping of Similar Labels

After parsing malware labels to identify family names given
by different AVs to each sample, EUPHONY builds a graph rep-
resenting the association links between family names based on
their assignment on same samples. Then, based on a threshold
parameter that determines the granularity of grouping, clusters
of family names are separated. Figure 4 provides an overview
of the process. In the rest of the paper, we will often use the
terms ‘“name” instead of the full expression “family name”.

1) Associating family names: At the end of the previous
stage, EUPHONY has a new dataset where each sample is asso-
ciated with multiple malware family names reported by AVs.
These potentially syntactically different names may include
mis-labeling noises and mis-classification errors, which make
the process of selecting unique names more difficult.

We study the associations between AV family names to
group together commonly related names. We found that the
most natural method to analyze potential associations was to
construct a weighted graph G = (N, E'), where a node n € N
represents a name that an AV assigned: n = (av,, name), and
an edge e = [(avq, name,), (avy, name,)] € E indicates that
both AVs av, and av, have labeled a same sample with name,,
and name, respectively. From the information attached to a

2Malware Naming Conventions: http://bit.ly/2f3vKlu
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node, EUPHONY can identify the corresponding Sample Set
Sav, name and computes, for each node, the size of its sample
set (i.e., the number of times the family name is given by
that AV in the dataset). It also computes, for each edge, the
overlapping between the related sample sets (i.e., the number
of times AVs agree on the name given at that node). Both
pieces of information are then used to compute the Imbalance
and Exclusion metric, and eventually the Sample Set Distance
metric, also taking into account the string distance between
family names, as defined earlier in Section III-C. Imbalance
and Exclusion metric values are used as edge attributes in
the graph, while the Sample Set Distance metric value is
used as the edge weight (in Figure 4 only the edge weight
is represented). Note that the weight of an edge represents the
degree to which the sample sets associated to the connected
nodes are dissimilar: the lower the weight, the more likely
both sample sets belong to the same cluster.

2) Grouping family names: Given the large number of
associations that we have observed among family names in
our datasets, we expect the weighted graph to be highly
connected and thus include very few identifiable sub-graphs.
For instance, a generic name can create additional edges with
more specific names and thus tie together components that
were otherwise weakly related. Processing mistakes during
label fields extraction can also introduce fake associations
among family names. It is therefore important to remove such
undesired associations from the graph and only keep sub-
graphs with strongly related nodes. To that end, we build a
technique that comprises two successive steps, referred to as
TRIM and CUT:

o In the TRIM step, we use Prim’s algorithm [32] to
transform the graph into a Minimum Spanning Tree (i.e.,
the sum of its edge weights is minimum). The goal
of this operation is to reduce the complexity of the
original structure and keep the most similar edges as
long as they do not introduce cycles in the graph. The
complexity of this algorithm is O(|E|log|N|) in our
current implementation.

o The CUT step takes the tree structure and applies a filter
function to remove edges whose weight exceed a given
threshold value. As a result, the input tree is divided into
connected components that can be interpreted as clusters
of strongly related family names. The complexity of this
algorithm is O(|E|) in our implementation.

D. Inference of Family Name per Sample

In the last stage, we study the relation between the different
family names to assess the prevalence of predominant naming
schemes used by the different AVs. In particular, we created a
list of associations that put in relation all family names within
the cluster where they are grouped together. More specifically,
we first associate a single name to each cluster. This name is
inferred as the most frequent name present in the cluster by
taking into account the attribute of each node. In the step
illustrated at the bottom of Figure 4, cluster 1 is associated to
adrd and cluster 2 to ginger. Then, each family name present

Table VI: Datasets used in our evaluation

Reference \ Wild  Samples  Families  Anti-Virus Collection Period
MalGenome [47] X 1262 44 58 08/2008 - 10-2010
Drebin [4] X 5260 178 57 08/2010 - 10/2012
Androzoo [3] v 402600  unknown 63 01/2015 - 08/2016

in a cluster is replaced by the cluster name. For instance,
in Figure 4, pjapps given by AV2 is replaced by adrd.
More generally, in this example, all occurrences of pjapps are
replaced by adrd and all occurrences of anserver or gbreak
by ginger.

Once the replacements are done, to infer a single family
name per sample, we implement a majority voting where we
compute the frequency of each family name and select the
most frequent one per sample. In case of a tie, we use the
highest frequency of the names within the dataset to choose
between the candidates and break the conflict.

V. EVALUATION

This section reports EUPHONY’s results on Android mal-
ware. We first evaluate the performance of EUPHONY against
two reference datasets widely used in the literature. Next, we
investigate the potential of our system when confronted with
large scale scenarios of malware found in the wild. For the
sake of completeness, we describe the dataset and metrics used
and we compare our results against the state-of-the-art.

A. Datasets and Metrics

The evaluation of EUPHONY is based on two different sets
of samples: (i) reference datasets, and (ii) an in the wild
dataset. We next describe the source of each of the datasets
used (see Table VI for a summary) and the metrics used to
evaluate our approach.

Reference datasets: These datasets have been distributed
by the research community together with a reference ground
truth of malware families, and have been widely used in the
literature recently [4], [16], [28]. For our study, we consider
MalGenome [47], a dataset manually vetted and collected
between 2008 and 2010, and which includes 1262 samples
regrouped into 44 families. Similarly to previous work [37],
we update this dataset by grouping into a single family all vari-
ants of DroidKungFu (DroidKungFul, DroidKungFu2,
DroidKungFusApp, etc). Additionally, we also consider
Drebin [4], a dataset collected between 2010 and 2012, and
which includes all samples from MalGenome as well as an
additional set of 3998 more samples. Drebin includes 178
families.

In-the-wild dataset: We collected recent samples from
Androzoo [3], a repository that shares samples from a variety
of sources as well as their AV labels provided by VirusTotal.
For our study, we leveraged the public download API and
retrieved 402 600 samples created between January 2015 and
August 2016°. We ensured that all samples were classified as
malware by at least one AV*,

3Androzoo bases its timeline on the DEX compilation date.
4Overall, the samples were labeled by 63 AVs



Evaluation metrics: Let S be a sample dataset, G =
{G1,...,Gs} be the set of s “ground-truth” clusters from S,
and C = {C},...,Cy} be the set of n clusters output by a
given tool over S. Similarly to previous work [37], we define

the following metrics:
o Precision: Prec =+ x Y% maxy=1,.._s(|C; N Gil)
e Recall: Rec =137 max;—1__.(|C; NGyl

S

. — Precx Rec
e Fl-score: F'1 =2 x PrectRec

While precision measures the effectiveness of a tool to map
outputted clusters into ground-truth clusters, recall quantifies
the effectiveness of the tool to map ground-truth clusters
into outputted clusters. Finally, the F-Measure represents the
harmonic mean between precision and recall.

For the purpose of this paper, we first investigate the
precision and recall reported when clustering malware samples
in the reference datasets. This allows us to quantitatively
compare our approach with previous work [37]. We then use
the samples collected in the wild to evaluate a number of
statistical metrics such as the number of families, the number
of singletons and the most relevant labels.

.....

B. Performance Evaluation
100

F1 score

0.04 0.06
Threshold value

Figure 5: Parameter selection for threshold value

0.08 0.10

EUPHONY uses a threshold to control the clustering sensi-
tivity by breaking edges whose weight exceeds the given value.
On Figure 5, we observed that a threshold of 0.07 represented
a good trade-off between nose-reduction and accuracy.

We now evaluate the performance reported over the refer-
ence datasets (see Section V-A). The leftmost part of Table VII
shows the precision, recall and F1 measure for EUPHONY.
Results show that clustering MalGenome is, overall, more
challenging than clustering Drebin, with a F1 measure of
92.7% and 95.5% respectively. This can be explained by
looking at the precision, which shows that not all predicted
clusters can be mapped to their respective reference clusters.
Interestingly, the score obtained for the recall indicates that
almost all referenced clusters (i.e., 99.7% of the malware fam-
ilies) in MalGenome have been correctly predicted. Instead,
only 96.1% of the referenced clusters in Drebin have been
correctly predicted.

When analyzing MalGenome results, we observe that some
AVs prefer to combine together some reference clusters to
form one single super-family. For instance, families ADRD
(22 samples) and Pjapps (58 samples), are perceived as
one large family called Pjapps® (with 80 samples). Sim-
ilarly, BaseBridge (122 samples) and AnserverBot (187
samples) are perceived as Basebridge* (with 309 samples).
This is actually understandable as authors in [47] believe that
Anserver Bot actually evolved from BaseBridge, inheriting
common features. Other recent works have also confirmed this

and pointed out that some other families are also strongly
related to each other [41]. Based on this, one can conclude
that the perception of the AVs is, in some general cases, more
coarse grained. Thus, they can treat two similar clusters as one
single family. We refer the reader to Section VI for further
discussions.

As for the results obtained with Drebin, we found some
cases where the AVs agree on using a more fine-grained
definition of some families than the one given in the ref-
erence ground-truth. For example, most of the samples
from the reference family Opfake (952 samples) are sub-
divided into two sub-families, i.e.: Opfake (546 samples)
and SMSSend (25 samples). Similarly, most of the samples
in Fxploit LinuxLotoor (70 samples) are sub-divided into
three sub-families: Lotoor* (58 samples), Ginger Break (9
samples) and AsRoot (8 samples).

Comparison against the state-of-the-art: To provide further
insights on the performance achieved by EUPHONY, we com-
pare our results with AVClass [37]. Since the authors have an-
alyzed their approach on MalGenome and Drebin datasets, we
use the results in their paper as our evaluation baseline (Table
VII, AVClass Config 1). We also replicate their experiments by
taking into account the difference between the inputs require-
ments of both tools. On one hand, EUPHONY uses a small
list of some well-known words (not including family names)
about malware labels. On the other hand, AVClass requires a
list of malware families to construct a set of generics tokens
and aliases. These sets are built in a two-step process. First,
AVClass uses the list of malware families to distinguish these
family tokens from other so-called generics tokens (e.g. types,
platforms, information, ...). Second, AVClass strips generics
tokens from malware labels to discover aliases among malware
family names. Finally, the sets of generics tokens and aliases
are leveraged to produce the final output of the tool: a single
family name per malware sample using a plurality voting.
Several factors may thus impact the performance of AVClass,
including i) the exhaustiveness of the inputted list of malware
families, and ii) the error rate in the generation of the sets of
generics and aliases. Consequently, we consider three different
scenarios for our evaluation:

o An updated version of AVClass—we use the last version
of the tool released on GitHub [6], taking into account
recent code fixes, as well as updates to complete the list
of generic terms and aliases [5]. The results are reported
in Table VII, AVClass Config 2.

o An automatic inference of aliases only—we use the
authors script with the default settings to generate a list
of aliases based on our two reference datasets (Table VII
Config 3).

« An automatic inference of both generics and aliases—
we use the authors scripts with the default settings on
the union of our two reference datasets to build the
knowledge necessary to AVClass’s functioning (Table VII
Config 4).

All results are reported in Table VII. For all four config-

urations, EUPHONY performs better than AVClass in terms




Table VII: Performance of EUPHONY and comparison against the State-of-the-art (in %)

EUPHONY \

AVClass

AVClass Config 1
as reported in [37]

AVClass Config 2
with default files in Git

AVClass Config 4
new generics & aliases

AVClass Config 3
new aliases only

Dataset | Prec  Rec F1 # Prec  Rec F1 | Prec  Rec F1 | Prec  Rec F1 | Prec  Rec F1
MalGen. 86.7 99.7 92.7 33 87.2 988 926 86.5 98.0 91.9 86.2 99.0 92.1 539 652 59.0
Drebin 95.0 96.1 95.5 142 952 925 939 954 93.0 94.2 956 906 930 | 29.6 69.8 41.6

of F1 score (harmonic mean between precision and recall).
Nonetheless, we observed that their precision is comparable
to ours in those configurations where prior knowledge (aliases
and generic terms) is provided. When we inferred both (i)
aliases, and (ii) aliases and generic terms using the samples
given in the reference datasets (i.e.: MalGenome and Drebin)?,
we observed that the performance drops drastically. Typical
families included in Config. 4 are: android (537 samples),
trojan (377 samples) and basebridge (68 samples). This shows
that the performance of AVClass is driven by the input of
an initial knowledge—which should be collected by the final
user. In contrast, EUPHONY does not require any guiding
process and/or pre-defined knowledge of the families. The
only prior knowledge required by our framework is a basic
understanding of some common types of malware (i.e., trojan,
virus, etc.), execution platforms (i.e., android, linux, Win32,
etc) and information (e.g. dll, pak, gen).

C. Evaluation on Samples in the Wild

This section reports our experiments in the wild. We analyze
the number of samples that EUPHONY can group together
with respect to AVClass. Note that in this section we report
results using the same experimental setting used above (see
Appendix ??). As for AVClass, we choose the most favorable
configuration®. Table VIII summarizes the results obtained on
the Androzoo dataset.

Table VIII: Results for Androzoo (402 600 samples)

‘ Labeled Clusters  Singletons  Runtime
EuPHONY | 319100 735 165 216s
AVClass 178471 453 135 114s

Results show that EUPHONY managed to cluster 79% of
the samples (319100 out of 402600). In contrast, AVClass
clustered 44% (178471 out of 402600). This means that
a practitioner using AVClass would not obtain labels for
more than half of the recent dataset. This can be partly
explained by the strategy used by AVClass to handle generic
terms in labels, as well as aliases in family names. On the
contrary our approach does not present distinctions between
generic and specific malware families, and may thus find more
associations. This can further provide a better understanding of
the appropriate set of samples in every cluster. In this regard,
EUPHONY has split the dataset into 735 clusters and produces
165 clusters with one single sample (namely, singletons).

SNote that AVClass published results [37] were obtained using knowledge
on aliases and generics that was built from larger datasets

OThis is, using the default lists of aliases and generics collected by the
authors. These lists may have been manually improved to guarantee the
labeling system out of the lab

Table IX: TOP 10 clusters EUPHONY & AVClass

AVClass

EUPHONY |

Family Samples \ Family Samples
dowgin 37739 | kuguo 38532
kuguo 25005 | dowgin 22643
addisplay 20862 | secapk 20492
jiagu 20705 | airpush 13209
anydown 19621 | jiagu 8987
secapk 18224 | smsreg 8427
generic 17836 | feiwo 7399
agent 17596 | revmob 6376
inmobi 16203 | leadbolt 5348
airpush 13267 | anydown 5147

Instead, AVClass proposed 453 clusters and 135 singletons.
Note that the runtime overhead of EUPHONY is negligible
compared to AVClass, even in this setting where the creation
of generics tokens and aliases for AVClass was skipped.

Table IX shows the Top 10 clusters (in terms of size) for
both EUPHONY and AVClass. Both approaches report clusters
of the same order of magnitude, and with similar family
names. This indicates that EUPHONY reach to similar conclu-
sions than AVClass for the most popular families, but without
prior knowledge on generic families. We can also observe that
our approach can deal with generic AV labels. For instance,
a common field used by AVs is “trojan.androidos.generic.a”,
with 94 255 occurrences (4%). We can further observe 576 261
occurrences (23%) of the string “gen” in the list of labels.
This contrast with the most occurring family, Dowgin, with
311593 times (14%). This explains the lack of coverage
reported by AVClass. We position here that being aware of
theses types of clusters are important to filter out samples that
might interfere with the proper classification of other clusters.
In practice, adware and other type of grayware [40] could
be identified. Nevertheless, to account for corner cases where
a generic term is selected as a family name, practitioners can
inject into EUPHONY their knowledge on how a specific tokens
must be associated to label field. Since a significant portion
of samples remained unlabeled by AVClass and EUPHONY,
we only consider the subset of samples that are labeled by
both tools to investigate the similarities and differences among
reported clusters. We provide in Table X the statistics on
the new Top-10 clusters (dropping samples that are unlabeled
by either tool) and information on the extent to which they
overlap. Most top families strongly overlap. For example,
Dogwin, the most prevalent family in EUPHONY, overlaps
with the also-labeled Dogwin family in AVClass with a ratio
of 95%. For 7 of the top-10 clusters given by EUPHONY,
we find that the corresponding cluster by AVClass overlaps at
over 85%. If we take the particular case of samples labeled as
Kuguo by AVClass, EUPHONY splits them into mainly three
families (kuguo, addisplay, hiddeninstall) with an overlap
of 99%, 54% and 93% respectively.



Table X: TOP 10 clusters of EUPHONY compared to AVClass

AVClass |

EUPHONY | Intersection

Family samples ‘ Family samples ‘ samples  overlap (in %)
dowgin 33297 dowgin 22617 21035 93.0
kuguo 24273 kuguo 38532 24072 99.2
secapk 17889 secapk 20492 17825 99.6
addisplay 11203 kuguo 38532 6055 54.0
airpush 10055 airpush 13202 10017 99.6
Jjiagu 7215 Jjiagu 8987 7211 99.9
smsreg 6294 smsreg 8427 5819 92.5
agent 6088 feiwo 7399 1014 16.7
revmob 6061 revmob 6376 6058 99.9
generic 5663 | anydown 5147 1890 36.7

VI. DISCUSSION

Threat intelligence sharing is essential to further research
on malware detection and classification. Online services such
as VirusTotal already contribute to this effort by providing
diversified AV labels for any uploaded sample. Building
reference datasets, either manually or leveraging AV labels,
remains challenging. With EUPHONY [20], we propose an
approach for automatically building such datasets by inferring
sample labels from a set of labels provided by non-consensual
AVs. EUPHONY improves over AVClass by overcoming its
main limitations of requiring a substantial initial knowledge
on malware families and antivirus vendors to bootstrap the
labeling process.

A. Use Case in the wild

As new malware families appear, reference datasets need
to be regularly updated with no a-priori knowledge on the
aliases and generic terms that AV vendors now use to label
samples. From a small and relatively stable list of common
tokens, EUPHONY can (1) infer missing information on tokens
in AV label strings using heuristics, and (2) group similar
families together according to a comprehensive distance metric
that takes into account typos in naming, imbalance in label
assignment among AV sample sets, and overlapping of sets.

While EUPHONY can be used off-the-shelf, without any
requirement of expertise on malware labels, advanced users
may also build on top of our framework and specify their
own heuristics, metrics or knowledge of malware labels.

B. Familial Ties

As it can be observed on MalGenome and Drebin, family
names extracted from AV labels suggest that some clusters
overlap, indicating ties among families. Indeed, a reasonable
proportion of samples from a given reference cluster C, may
be labeled by AVs using a family name associated to another
reference cluster C,’. Such familial ties are challenging to
properly address by a labeling system, as they indicate that
there may be a hierarchy in families, with super-families
regrouping others. EUPHONY handles the case of family ties
by taking into account the imbalance in label occurrences
within sample sets to decide on the opportunity to merge them.
The threshold value, on the one hand, further controls the
sensitivity of the clustering process, but, on the other hand, can
lead to more labeling errors which EUPHONY cannot estimate
on in-the-wild datasets.

7Out of the 7504 AV labels assigned to samples in the AnserverBot
folder of MalGenome, 2575 actually use * Base Bridgex as the family name,
which however is the name of another folder in MalGenome

C. Towards a Better Ground-truth

The creation of better ground-truth datasets is an important
objective to support the development and the deployment
of new machine-learning based systems. In future work, we
would like to provide a clearer interpretation of the relation
between malware families and their structural features. In
particular, we are planing to analyze the prevalence of features
across families. Recent approaches [39] have shown to be
very efficient at identifying syntactic and resource-centric
features that can characterize Android malware. We position
that adding these features as input to our algorithm—and in
addition to the AV labels—could contribute to alleviate dis-
agreements among AV vendors. We also intend to compare this
against traditional clustering systems that would not consider
AV labels to understand to what extent labels are essential
artifacts.

VII. CONCLUSION

In this paper, we presented the design and implementation
of EUPHONY [20], an automated labeling system for Android
malware. This approach is the first attempt to break the vicious
circle which requires practitioners to possess a well-studied
reference of malware to operate on new and unknown samples.
Thus, we hope to lift an important limitation that impers the
development of the most recent auto-learning techniques.

EUPHONY can operate with minimum knowledge on mal-
ware label lexicon and infer malware families with a high
precision. Moreover, it can handle inconsistencies observed in
Anti-Virus labels and allow a fine tuning of the granularity of
families.

We contribute to the community’s effort towards building
reliably assessed approaches, by establishing a long-needed
framework for regularly updating reference datasets with most
recent samples, retrieved via the public API of shared reposi-
tories such as Androzoo [3], that we automatically label with
EUPHONY.
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