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Deformation Based Curved Shape
Representation

Girum G. Demisse, Djamila Aouada, and Bjorn Ottersten

Abstract—In this paper, we introduce a deformation based representation space for curved shapes in R™. Given an ordered set of
points sampled from a curved shape, the proposed method represents the set as an element of a finite dimensional matrix Lie group.
Variation due to scale and location are filtered in a preprocessing stage, while shapes that vary only in rotation are identified by an
equivalence relationship. The use of a finite dimensional matrix Lie group leads to a similarity metric with an explicit geodesic solution.
Subsequently, we discuss some of the properties of the metric and its relationship with a deformation by least action. Furthermore,
invariance to reparametrization or estimation of point correspondence between shapes is formulated as an estimation of sampling
function. Thereafter, two possible approaches are presented to solve the point correspondence estimation problem. Finally, we propose
an adaptation of k-means clustering for shape analysis in the proposed representation space. Experimental results show that the
proposed representation is robust to uninformative cues, e.g. local shape perturbation and displacement. In comparison to state of the
art methods, it achieves a high precision on the Swedish and the Flavia leaf datasets and a comparable result on MPEG-7, Kimia99

and Kimia216 datasets.

Index Terms—Shape representation, similarity metric, shape matching, deformation.

1 INTRODUCTION

HAPE analysis and modelling finds many applications
Sin computer vision, computational anatomy, and engi-
neering [19], [27], [34], [48]. As a result, different kinds of
feature detectors have been designed in an effort to define
a robust similarity metric and to train classifiers [7], [60].
However, features are usually finite dimensional and shapes
are continuous objects. Hence, in [52] a finite dimensional
object is argued to be inadequate to represent an infinite
dimensional object, theoretically. Alternatively, shapes can
be treated as parametrized functions and a shape space
as a Hilbert space, [30], [37], [38], [52], [64]. In general,
the parametrization approach leads to a nonlinear and
infinite dimensional shape space which, in most cases, is
complemented with a metric and treated as a Riemannian
manifold. There are several advantages in using the Rie-
mannian framework. The first advantage is the treatment
of the shape space as a smooth manifold which is natural
considering the nonlinearity of shapes. Secondly, under the
Riemannian framework, a smoothly varying metric can be
defined on a nonlinear space. Such a metric is essential to
describe distance, area, and other geometric notions in a
nonlinear space. Lastly, given the Riemannian framework,
a nonlinear shape space can be linearised, at least locally,
using the notion of geodesic connections. As a result, shape
analysis problems can be treated with statistical models. De-
spite all the described advantages, there are many potential
metrics one can define over a nonlinear shape space, leading
to different computational and interpenetration challenges.
For instance, the L? metric in an infinite dimensional shape
space gives a zero distance between different shapes. Con-
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Fig. 1: Illustration of the proposed representation. Given a
fixed starting point p;, the curve is reconstructed by the
successive action of the (g1, ,9.—1).

sequently, a wide variety of metrics have been proposed
in an infinite dimensional shape space [37], [38], [39]. Al-
though some of the proposed metrics have an explicit
geodesic equation, some lead to a nontractable geodesic
equation [38]. Moreover, almost all of the proposed metrics
depend on the differentiability of the considered curved
shapes. Thus, self-intersecting shapes or shapes that are
not smooth are often excluded. In this paper, we elaborate
and extend the deformation based curved shape represen-
tation, proposed in [15], that does not impose smoothness
constraints while leading to a simple and explicit geodesic
equation.! In [15], a new curved shape representation is
formulated on the curve’s deformation space, which leads
to a much simpler metric with an explicit solution to its
geodesic equation. The metric has a close relationship with
what is sometimes referred to as effort functional [44], [63].
Hence, it measures the cost of optimally deforming one
curved shape to another as a distance metric. Moreover,

1. The complete MATLAB code can be found at https://github.com/
DemisseG/Curved_shape_representation
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curves are explicitly represented in the deformation space,
which is formulated as a finite dimensional Lie group.
Unlike previous deformation based approaches [14], [19],
[21], [22], [61], the proposed representation does not refer
to a template shape to compute deformations. Instead, the
intrinsic characteristics of a deforming curve are represented
by finitely many rigid transformation matrices. Intuitively,
these transformation matrices capture how a curved shape
bends and stretches through space, see Fig. 1. The main ad-
vantages of representing curves with the proposed approach
are the simplification of the geodesic distance and path be-
tween shapes, which are expressed explicitly. Consequently,
the optimality and computational cost of the distance com-
putation are completely dependent on the point correspon-
dence estimation method. Furthermore, the group operator
of the deformation space can be used to either extract or
apply curve deformations, since the curves themselves are
represented as elements of the deformation space. Lastly,
the induced metric is left invariant and relatively robust to
local noise. Nevertheless, there are some drawbacks. The
estimation of point correspondence is formulated in terms
of computing an optimal sampling function. Hence, the
accuracy of the computed geodesic distance is dependent
on the sample size (number of points). In general, a large
sample size leads to a better performance. This drawback
embodies the fundamental assumption of the approach,
which is any curved shape can be distinctively described by an
arbitrarily large number of discrete points. Computational cost,
on the other hand, is a polynomial function of the sample
size. The main contributions of this paper are summarized
as follows:

1) A relatively simple yet effective representation for
curved shapes, described in [15], is introduced. Particu-
lar to this representation, curves are treated as elements
of the deformation space which is a finite dimensional
Lie group. The representation space assumes only con-
tinuity and not differentiability. Hence, it is inclusive
of curves that are continuous yet not differentiable
everywhere.

2) A similarity metric with an explicit geodesic distance
that is equivalent to the L2-norm is proposed; hence,
simplifying distance computation. Furthermore, impor-
tant practical properties of the metric are discussed and
a relationship with a deformation by a least action is
established.

3) Given the proposed deformation based representation
of curves, two possible approaches for addressing point
correspondence estimation are proposed. Characteris-
tics and advantages of one over the other are discussed.

4) The proposed metric is used for learning a fairly simple
classifier with k-means clustering.

5) Finally, a comparison of the proposed approach with
other shape representation approaches including the
square root velocity (SRV) framework [54] is provided
on several datasets.

The rest of the paper is organized as follows: in Section 2
an overview of related works is presented followed by
a detail description of the proposed shape representation
and the metric it induces in Section 3. Properties and in-
terpretations of the metric are presented in Section 4. In

Section 5, two possible approaches for estimating point cor-
respondence between shapes are presented. In Section 6, the
metric is used for learning a k-means classifier. Experimental
scenarios and results are presented in Section 7. The paper
ends with concluding remarks in Section 8.

2 RELATED WORK

In this section, we present a brief literature review on shape
representations and similarity metrics defined on them. For
a complete and more extensive survey see [64].

In [28], Kendall defines shape as what remains after
removing rotation, translation and uniform scaling. Conse-
quently, almost all shape representations have a long stand-
ing goal to be invariant to the mentioned shape preserving
transformations. To that end, the pioneering shape repre-
sentation is a landmark-based shape representation [28].
Landmark-based methods represent a curved shape by a
selected set of points. These points are believed to be dis-
tinctive of the shape and are called landmarks or features.
Subsequently, a curved shape S embedded in R" and rep-
resented by selected m landmarks will be a point in R™".
In such a setting, invariance to translation and scaling is
achieved by centring the m vectors to zero mean and scaling
p € R™” to unit norm [53]. Such a space, according to
Kendall, is called pre-shape space. Later on, invariance to
rotation is achieved by defining an equivalence relationship
between a point p in a pre-shape space and all of its orien-
tations. Thus, the resulting final space, called shape space,
is described by modding out the orientations, R™"/SO(n).
Here, SO(n) describes a group of n-dimensional rotations.
The major drawback of landmark-based approaches is the
need for identifying landmarks, which are often selected
subjectively. This leads to inconsistent representations, as
the same shape can be represented by two completely
different sets of landmark points. Nevertheless, in [10], [17],
[28], an elegant statistical framework in R™"/SO(n) was
introduced for landmark based approaches. Alternatively,
in [30], [38], [54], [61], curved shapes were represented
by a parametrized function leading to an infinite dimen-
sional space. Similar to landmark-based approaches, shape
preserving transformations are filtered from the represen-
tation space. Furthermore, invariance to reparametrization
is achieved by modding out shape preserving diffeomor-
phisms. In the infinite dimensional setting, a shape space is
usually given as Imm(S*, R") /Diff(S'), where Imm(S', R™)
is the space of all parametrized functions immersed in R"
and defined on a 1-dimensional circle, S', while Diff(S')
is the group of diffeomorphisms acting on S!. In such a
space, the distance between shapes is defined by the length
of the geodesic curve connecting them. Consequently, the
simplest possible metric is L?(a,b) = [(a,b)ds, where (-, -)
is a smoothly varying metric tensor, a and b are vector fields
tangent to a curve at the shape space and integrated with
respect to the arc length. Regardless, the geodesic equation
of the L? metric is difficult to solve. Furthermore, a distance
function based on the L? metric can, potentially, lead to
abnormal results; the distance between two different shapes
can be zero [38]. Subsequently, to avoid such abnormalities
a first order Sobolev metric was introduced in [37], [38],
with numerical solutions. In [54], an isomorphism from
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Imm(St, R™)/Diff(S!), with a first order Sobolev metric, to
a Hilbert manifold by a mapping function called square
root velocity (SRV) was proposed. SRV leads to a geodesic
equation with an explicit solution for open curves, while
the geodesic distance for closed curves is computed itera-
tively with a method called path-straightening. In general,
in almost all parametrization approaches, shapes are as-
sumed to be C*(infinitely differentiable) or at least C?,
since most metrics in these shape spaces are defined based
on differential quantities, e.g., a first order Sobolev met-
ric. Consequently, curves that are self-intersecting and not
smooth are excluded. Furthermore, this leads to algorithms
that are sensitive to noise, making a pre-smoothing stage a
necessity [36].

Alternative to both landmark and parametrization ap-
proaches, primarily in the work of Grenander et al. [3], [21],
[22], [61], [62], shapes were studied from a different perspec-
tive; they were studied based on how they deform from one
to another. In [61], a metric defined on a deformation space
is shown to induce a distance metric on a shape space, given
the deformation space is a group and acts transitively on
elements of the shape space. Subsequently, the similarity
between two shapes is measured by a deformation that
minimizes an objective function called effort functional— the
distance between the group’s identity and the given defor-
mation, see [61], [63]. Nevertheless, different approaches
consider different deformation spaces. In [57], [61], the
considered deformation space is a set of C'¢ functions, for
some d > 0. Together with a composition operation, the
space of C'? functions is shown to be an infinite dimen-
sional Lie group. In this deformation space, elastic shape
matching is done by solving a discrete version of the effort
functional with dynamic programming. In [22], a general
pattern theory that analyses configurations generated by
geometric units (lines, points, etc.) based on the deformation
from a template configuration was presented. In this case,
the considered deformation space is a direct product of
matrix Lie groups, see [20] for a brief overview. Recently,
in [19], 3D shapes are modelled based on how they deform
from a template shape by the action of finite dimensional
matrix Lie group. However, in [19], point correspondence
is assumed which is not trivial to achieve. In a more similar
approach to what is presented here, in [29], the Frenet-Serret
frame has been used to represent deformations of a curved
shape. However, the Frenet-Serret frame is applicable only
to curves with a non-vanishing curvature. Later in [23], a
representation where the Frenet-Serret frame is replaced by
the action of a general linear group is presented.

In summary, most deformation based approaches follow
a paradigm called deformable template, where geometric vari-
ations are modelled with respect to a given template shape.
In this paper, we present yet another deformation based
shape representation without a reference template shape.
Consequently, shapes are represented as elements of the
deformation space, which in our case is a finite dimensional
matrix Lie group. Later in the paper, we will detail similari-
ties between our approach and what was proposed in [61].

3 PROPOSED SHAPE REPRESENTATION

Let S be a continuous curved shape, and let S be an approx-
imation of it with z discrete points. For now, we will assume
these points to be sampled with uniform arc length interval.
In addition to being a set of points, S carries an order, i.e.
(p1,-++,pz) # (Dzy--+,p1). However, the order and the
starting point p; of a shape are selected a priori, for now.
Later in the paper, we will discuss the impact of the starting
point and the ordering direction; this is similar to what is
referred to as reparametrization in the literature [37], [54],
[63]. Furthermore, a given curved shape S* is assumed to be
able to deform to another curved shape S?. We denote the
space of such shapes by C. However, not all deformations
are shape altering. In particular, translation with respect to
a fixed frame of reference, uniform scaling and rotation pre-
serve both the shape and the order of points. Consequently,
shape preserving deformations cause redundancy in C and
need to be filtered out. Similarly to [28], translation and
uniform scaling of a given shape, S = (p1,--- ,p,) where
p; € R™, are filtered out as follows

*\ p1—Pp Pz —DP
7pz)_< h ) ) h >’ (1)

where p = 237 1 pi € R", h= /> llpi—pl3 €R,

| - |2 denotes the L2-norm. Deformation due to rotation,
however, cannot be filtered in a preprocessing stage, see [53]
for further details. Consequently, variations due to rotation
are identified by an equivalence relationship. Let 2 € SO(n)
be an n-dimensional rotation matrix; here, SO(n) denotes the
special orthogonal group. Subsequently, the deformation of
a given shape S’ by any R will define an equivalence class
[S7]in C. Thus, [S7] is the set of all shapes that are generated
by rotating S7. However, if the correct point correspondence
between S* and &7 is given then R can be computed by
optimizing

arg min | RS7 — S¥|2. 2
RESO(M)

Subsequently, we identify a given shape S € C by the
following mapping function

G= (91, , if S is a closed curve,
fis)y= 9= o) S ®)
G=(g1, " ,9.—1) ifSisan open curve,
such that
9i X Pi = Pi+1, (4)

where g;—;,... . are transformation matrices that map one
point to another with respect to a fixed coordinate frame.
In this work, we will only consider Euclidean transfor-
mations without reflection and thus G is an element of
SE(n)*, which is a direct product of a Special Euclidean
group. Although (4) is underdetermined, in this work, the
gi=1,... » refer to optimal transformations that preserve the
fixed global frame, see Appendix on computational details.
Intuitively, the representation f(-) attempts to encode every
curve § € C as the path of a travelling particle from a
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fixed starting point, see Fig. 1. The inverse of the mapping
function, for closed curves, is defined as

F7HG) = (p1.g1p1. 20101, ([ [ 90)p). ®)
=1

The inverse for open curves can be defined similarly. More-
over, the representation f(-) also preserves the equivalence
relationship defined in C.

Proposition 1. If G* and G are the representations of S%, S® €
[S] then G* is equivalent to G® by conjugacy, G* ~ G°.

Proof. Let S = (p%,--- ,p%) and S® = (p%,--- ,p%). Since,
S, 8% € [S7] we can write S = RS, where R € SO(n).
Rotation is an isometry, thus RS® = (Rp{,--- , Rp%). The
representation f(S%) = (g%, -+, g%), such that

b b_ b
9i X Pi = Dit1
= R xpiiq,

can then be expressed in terms of f(S%) as follows

9! x Rxp} = R x g x pf
@ =RxglxR

Thus, f(S8%) and f(S°) are equivalent by conjugacy, i.e.,
F(SY) = RA(S™R. m

As a result, the equivalence relationship defined in C
carries over to the representation space SE(n)?. Compu-
tationally, if two given shapes belong to the same shape
class then the corresponding eigenvalues of the transfor-
mation matrices in f(S®) and f(S%) are similar. Finally,
the representation space of equivalent classes is described
by modding out the rotations as SE(n)?/SO(n), for closed
curves, and SE(n)*~!/SO(n), for open curves. Note that
the representation space still assumes point correspon-
dence or parametrization. Thus, neither SE(n)*/SO(n) nor
SE(n)*~!/SO(n) are invariant to reparametrization; we will
address this issue in Section 5. Moreover, any given shape
that is represented in SE(n)*/SO(n) is deformable to any
other representation in SE(n)* /SO(n).

Let f(S!) be the representation of S' that we want
to deform to S? represented by f(S?). Given the point
correspondence between S' and S2%, we can extract the
deformation of f(S!) to f(S?) as

Gr = f(S*)f(SH 7, (6)

so that GLf(S') = f(S?). Note that f(S')~! is ele-
ment wise inversion of the representation, unlike f _1(8 1)
which is a map from the representation space to C. Since
SE(n)?/SO(n) is a group, the deformation G* is an element
of SE(n)*/SO(n) acting from the left. Alternatively, a defor-
mation that acts from the right is defined as

Gl = F(S) T (S?). @)

Henceforth, we will use G~ and G* to describe deforma-
tions that act from the left and deformations that act from
the right, respectively. Consequently, the deformation space
under consideration is the same as the proposed shape
representation space.

3.1 Distance in SE(n)*

The proposed representation space SE(n)® is a matrix Lie
group, which is not a Euclidean space. As a result, the usual
definition of distance as a straight line does not generalize to
SE(n)?. Alternatively, techniques from differential geometry
can be used to define distance in a curved space. In this
subsection, we will overview concepts from Lie theory and
differential geometry to later develop a distance function in
SE(n), and its direct product group SE(n)*.

A Lie group is a smooth manifold with smooth group op-
erations; that is, the group’s binary operator (z,y) — xy
is C*°. The tangent space at the identity of the group e is
an algebra called Lie algebra, which we will denote by g.
The smooth and invertible binary operator of a Lie group
enables one to define a diffeomorphism onto itself. For
instance, consider a left translation of a Lie group defined
as L, : G — aG,a € G, where GG denotes the Lie group.
Meanwhile, the differential structure, due to Lie groups
being smooth manifolds, enables one to do calculus on a Lie
group. To compute distance, volume and other geometric
notions, however, an additional structure called metric is
needed. Consequently, a Lie group G can be complemented
with a smoothly varying metric tensor (,), making it a
Riemannian manifold. The metric tensor (-, -) is defined at
the tangent space 7,G as (-, )4 : T,G x T,G — R for every
g € G, see [16], [42] for a detailed discussion. Moreover, a
metric tensor on a Lie group is said to be left invariant if the
left translation diffeomorphism is an isometery, i.e., if the
following is true

<$a y>e = <dLa$7dLay>a7 Vo,y € g,Va € G, (8)

where dL, is the derivative of the left translation L,. As
a result, a left invariant Riemannian metric is identified
with (-, ). through the pullback map, dL;!. Subsequently,
the length of a given curve 7 defined on a subset of R,
v : [to, t1] = G, is given as

0y) = / S04t ©)

where () € T,4)G is the derivative of the curve. There
are several possible curves that start y(tp) € M and end at
~(t1) € M; the shortest curve among them is called geodesic
curve. The distance between ~(tg) and ~(¢1) is defined as
the length of the geodesic curve

d(y(to),v(t1)) = Inf{{(v)}.

The derivatives of a given curve <y define a vector field on
the manifold 4. More interestingly, if a vector field §(h)
defined on a Lie group is left invariant, i.e., if the following
is true for h € G

dL.5(h) = #(ah) € TG,

(10)

(11)

then it is parallel along the curve, and its integral curve
~(t) = exp(t¥) is geodesic. If any two points on a manifold
can be connected by a geodesic curve then the manifold is
called geodesically complete or compact.

Similarly, geodesic curves and the geodesic distance can
be defined in SE(n). However, SE(n) is not a compact group
but a semidirect product of a compact group, SO(n), and
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R"™, which can be described in a homogeneous coordinates
as follows
R; v n
g; = 0 E s.t., R; € SO(n), v; € R". (12)

Subsequently, geodesic curves that connect two points in
SO(n) and R", respectively, are defined as

¢r(t) = Ri(R{'Ry)"
©u(t) = v1 + (v2 — v1)t,

where ¢ € [0,1]. It can easily be checked that pg(t) is
geodesic in SO(n), though, not necessarily unique [8], [41],
whereas ¢, (1) is clearly geodesic since R™ is a vector space.
Consequently, in [65] the following curve in SE(n) is proven

to be geodesic.
_ (er(t) »u(t)
ol = (70 2 0)

where ¢t € [0, 1]. Moreover, we can define a Riemannian
metric on the Lie algebra of SE(n) as

(R1,01), (R2,v2))e = (R1, Ra) + (v1,v2),

where R € so(n), the Lie algebra of SO(n). Subsequently, us-
ing (15) and (16), the length of a geodesic curve connecting
91, 92 € SE(n) can be computed by transporting the tangent
vectors with the pullback to the Lie algebra. The geodesic
distance, in this case, reads as

dlgrgn) = [ ULl (@0) L (GOt

Since ¢(t) is a geodesic curve, the tangent vectors ¢(t)
are parallel along ¢(t). Hence, the geodesic distance given
in (17) is simplified as

(13)
(14)

(15)

(16)

17)

d(g1,92) = (1= 0) x {&(t), 4 (t))e (18)
= (| log(R{ Ra)||% + [lva — v13)"/2,
where || - || denotes the Frobenius norm. Subsequently, we

extend the geodesic curve ¢(t) given in (15) to the direct
product space SE(n)* = SE(n); x - -- x SE(n), as follows

C(g17g2) = (@(t)lv"' 790(t)2)7 (19)

such that o(t); is the geodesic curve between gi € G; and
g? € Go. It can be shown that (19) is a geodesic curve in
the product group, see [16]. A geodesic distance in SE(n)*
follows directly from (19) and is given as

a(glv g2) = (d(givg%)z +e d(g;7g3)2)1/2

In summary, the geodesic path and distance between the
representations of two shapes f(S!) and f(S?) can be com-
puted using (19) and (20), respectively. Nevertheless, the de-
fined geodesic distance (20) is not invariant to parametriza-
tion.

(20)

4 PROPERTIES AND INTERPRETATION

In this section, we present some of the important properties
of the proposed representation and its metric followed by a
discussion on its interpretation and relationship with earlier
works.

St sY
NN O D
() O P

S2 s?
L @ O O Q© O @
o o o o o = &

NN N
o o &

Fig. 3: The first set of shapes shows two examples where S*
deforms to S''. The second set shows the transported defor-
mation to their similar objects S? to give S, respectively.

4.1 Properties

1) The proposed distance metric is left invariant. In general, a
metric p that is defined on a group G is said to be left
invariant if p(a,b) = p(qa, gb),Va,b,q € G, and the defined
metric (20) is left invariant see [40] for further details. The
implication of this is that the distance between two shapes
is invariant to a deformation acting on both shapes from the
left. More concretely, let G’ € SE(n)* be a deformation acting
on the representations of two distinct shapes, f(S!) and
£(8?), then d(f(S"), f(8?)) =2(G'f(S8"),G'f(5?)). This
fact can be observed by plugging the action of G’ into (20),
in which case it will cancel itself out. As discussed in [15],
this property is particularly important in transporting de-
formation between two similar shapes. To clarify further,
we consider below a deformation transportation problem
discussed in [54]. Let S! and S!" be shape contours rep-
resenting exactly the same real world object denoted by
O', except that S' is deformed under some unknown
external factor. For instance, S! and S I can be contours
of O! from a different viewing angle. Furthermore, let O?
denote a similar, but not identical, object to O' with S§2
as its shape contour. Subsequently, given S', S'', and §?
the problem of estimating 82/, a deformed S? under the
same external factor, can be framed as a deformation trans-
portation problem. In [54], the deformation is estimated
by transporting the vector field along the geodesic curve
connecting S' and S’ Alternatively in our framework, the
deformation due to an external factor can be factored out
as G¥ = f(SV)f(S")"!. Consequently, since our metric
is left invariant, 3(f(S'), £(S?)) = o(GL f(SY), G f(S?)).
Thus, f(S?) = GL £(5?), see Fig. 3.

2) The proposed metric does not compute differential quantities
of curved shapes. Most infinite dimensional representations
define a similarity metric based on differential quanti-
ties [37], [54]. However, differential quantities are highly
sensitive to noise and local perturbations. Consequently, a
pre-smoothing stage is necessary before analysing a shape.
On the other hand, pre-smoothing a shape can potentially
filter legitimate features, see Fig. 2. Although the proposed
representation is based on the relative transformation matri-
ces between neighbouring points, it is not as severely sensi-
tive as curvature is, for example, to local perturbations [36].
Hence, needs no pre-smoothing.

3) The proposed representation encodes a given curve by the
relative deformation of points as opposed to absolute deforma-
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Fig. 2: Shapes along the geodesic path between the initial shape (first column) and target shape (last column). The odd rows

show results from our approach while the even rows are results from [

sampled and normalized points. We note that results from [
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Fig. 4: Two pairs of curves. Under AD, the second pair of
curves are more similar than the first, while under RD the
first pair are more similar than the second.

tion of points. To further elaborate, let S* = (pi,---,pl)
and 8? = (p?,---,p?) be two shapes that are scaled and
aligned, see Fig. 4. Subsequently, we define absolute deforma-
tion of points (AD) as the transformation of every p} € S! to
match its corresponding point p? € S2. In earlier works,
such deformations are modelled by displacement vector
fields [2] and in some cases by the action of a matrix Lie
group [19]. If we formulate the matching of each point, from
8! to 82, by the action of rigid transformation matrices then
the AD is given by G = (T1,---,T.) € SE(n)® such that

=GS' = (Tup1, -+, Top)

Alternatively, rather than aligning every matching point, as

is done with AD, one can align the intrinsic properties of
the curves— these are properties of a curve that are mainly
invariant to displacement. In this paper, intrinsic properties
of a given curve are approximated by the relative deforma-
tion of the curve’s points, as defined in (3) by f(-). Hence,
alignment of S' and S? under relative deformation of points
(RD) is given as f(S?) = f(S')GE, where G € SE(n)?, see
Section 3. Subsequently, using (18) the cost of deformation
under RD is given by

Zd e g7, 1/2
HI3MY2.

= (Z og((R;)" R)% + v —v;

i=1

21)

d.(S8',8?) = (22)

]. All shapes are represented by 100 uniformly

] are smoothed and loses local features of the shapes.

where e is the identity of SE(n). While, the cost of deforma-
tion under AD is given as

do(8',8%) = (D _d(e, Ty))"/? (23)
=1

Z (| log(R

Note that d,. is the same as (20). The main difference between
d, and d, is tolerance to displacement- d, emphasizes
intrinsic differences between curves, while d, emphasizes
cost of displacement per point, see Fig 4.

DE + llvil3)H2.

4.2

The proposed distance function, as derived in (20), has a
direct relationship to what is called effort functional [57], [61],
[63]. In general, distance between shapes based on effort
functional is written as

Sl G2\ _ ¢ . &l
ds(S7, %) = min{dy(e, ¢) : S

Interpretation

=9(8%)}, (29
where V is the space of allowed deformations for matching
S2 to 81, d, and dy are distance metrics in the shape and
deformation spaces, respectively. Such formulation leads
to a natural interpretation of distance as a measure of
deformation by least action, hence the term effort functional.
For further mathematical details see [45], [57]. Similarly,
a version of (24) under the proposed representation can
be formulated by explicitly defining the space of defor-
mations ¥ for matching S* and S2. To define ¥ more
precisely, we introduce monotonic and injective maps from
a discrete parameter space to the arc length parametrization
as & : [1,z] — [0, ¢]. Here, £ denotes the length of a curve, z
and ¢ are variables for any positive integer, where the latter
is used as an identifier for different mappings. Given a fixed
z, the mappings have a similar effect as to what are referred
as shape and orientation preserving diffeomorphisms [63],
although in this case there is no guarantee for a mapping to
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F F E<E

S So& Soé Soé.
Fig. 5: Different samplings of a given shape S. The red dots
denote sampled points. The last sampling &, is a uniform

sampling. Note that {; and & do not preserve shape.

preserve shape, see Fig. 5. In other words, the mappings
are sampling functions that select z ordered points from
a continuous curve. Subsequently, S} = &7 o ¢; denotes
ordered sample points from S7 obtained by using ;. Finally,
we define the set of deformations between S' and S?, for a
given z, as ¥ = {GF | 36,,¢; : [(§'0&)G = [(S20 &)}
Consequently, under the framework of the proposed repre-
sentation, distance between two given shapes is given as

4.(81,8) = min o((SD. (D). @)

Moreover, using the left invariance property of the metric
and the definition of ¥, (25) can be simplified as follows

ds(S',8%) = min 2(f(5)), [(5)G") =2(e.G").  (26)

Hence, a version of the effort functional (24) is described
as (26) in the proposed representation space. However,
if §& and &; are given a priori, ¥ will be a singleton—
since G® can be computed directly, as described in (7).
For instance, we have so far assumed a perfect point-to-
point correspondence between shapes. Thus, ¢; and &; are
assumed to be known. Consequently, the proposed metric
can be viewed as measuring the optimal deformation between
two shapes given optimal point correspondence. In this context,
optimal deformation is to be interpreted as the deformation
with the least action. While, optimal point correspondence
stands for the estimation of & and &; such that (25) is
minimized.

5 POINT CORRESPONDENCE ESTIMATION

In general, point correspondence estimation is given by the
solution of the following

arg min{d,((S"), §%) + E(4)},

Pevw

(27)

where ¥ denotes a deformation space, d; is a dissimilarity
metric, and E(-) is an energy term that measures the cost
of the deformation. The objective of (27) is to solve not
only for optimal point matching but for smooth deforma-
tions as well. There are several works in the formulation
and optimization of both d, and E(-). In the deformation
based approaches, the energy term is usually described in
terms of the effort functional given in (24) [61]. However,
there are several elaborate formulations of the energy term
based on elasticity theory [45], [63]. Similarly, extensive
work has been done in formulating a dissimilarity func-
tion. Particular to shape matching, in [12] a dissimilarity
function that is based on curvature is formulated. Later,
in [55] and [50], a symmetric version of what was proposed

in [12] is presented and solved with dynamic program-
ming. Regardless of the dissimilarity function, in [49] it is
shown that restricting the matching solutions to those that
preserve order of points leads to a more accurate result
than the unrestricted case. In this section, we formulate
point correspondence estimation problem as an estimation
of sampling function and propose two possible approaches
to solve it. The general form of shape matching cost (27)
is given as a measure of shape similarity and deformation
cost. However, as shown in (26), the proposed similarity
metric is equivalent to effort functional. Hence, it measures
the cost of deformation as a dissimilarity between shapes.
Subsequently, since G = f(S})~! f(S?) we describe (26) in
terms of the sampling functions as

gnifnb(a f(S})flf(S?))

187

(28)

However, the cost functional given in (28) assumes the
sampling functions preserve shape. On the contrary, if the
sampling function does not preserve shape then (28) will
deviate from the target shape, see Fig. 5. In this work,
instead of insisting on sampling functions that preserve
shape we add a penalty term on (28) so that we get a
constrained objective functional that attempts to balance
optimal point matching and shape preservation. To that end,
let £, denote a uniform sampler and assume that it preserves
shape. Subsequently, the alteration of a given shape S?,
when sampled by ¢;, from a uniformly sampled one is
quantified as

psi (6 &) =D A (0j_1:05) = Y As (D1, p)). (29)

=2 =2

Each term of (29) computes the enclosed area of S' when
sampled by &, and §; using Green’s theorem. Note that
the curves are oriented. Consequently, pgi(-,-) is used to
penalize a sampler that does not preserve area— in case
of non-planar curves one can replace the area preservation
requirement with length preservation requirement which is
less restrictive. Subsequently, the constrained point corre-
spondence cost functional is given as

min{a x (e, f(S)7 /(7)) + B x (ps: (6, &) + ps2 (&, &)}
(30)

We have added weighting factors o and 3 to emphasize
the effect of one over the other- assigning a large value
for 3 leads to an objective functional that prefers samplers
that preserve area even with a high deformation cost and
vice versa for a small 3 value, see Fig. 7. The objective
functional given in (30) is symmetric. Moreover, its solution
can be estimated via dynamic programming, since it can be
decomposed into linearly sequential sub-problems [6]. Sub-
sequently, we propose two possible methods for estimating
point correspondence between shapes based on (30). In the
next subsections, we will consider the optimization of (30)
with dynamic programming, and later we will consider its
optimization constrained to uniform sampling.

5.1 Optimal sampling

In this subsection, we will describe a dynamic programming
based solution for optimal point correspondence estimation
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Index of sampled points: [1,2]
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Fig. 6: Intermediate values of dynamic programming. (a) shows two input shapes. S}, coloured in green, is uniformly
sampled and §?, coloured in red, is to be sampled optimally. (b) shows the search space, defined by the charts U;, and the
cost of selecting a point from S? for the i position with the color coding. (c-e) shows three optimal sampling paths based
on (32) for different values of o and 3. The green path is an optimal for ¢ = 1 and 3 = 0, the red path is an optimal for
a = 0and 8 =1, and finally the yellow path is an optimal sampling for o and 3 values shown below the figures.

Geodesic

3 BB

Parameter values

i BB E GG
e FE GG E

Fig. 7: Geodesic paths for different values of a and /5. Note
the impact of a large 8 value on the deformation (geodesic)
and the final result.

between open curves. Later, we will address the case of
closed curves. As indicated earlier, the objective functional
given in (30) can be solved with dynamic programming in a
polynomial time. To show this fact, we will first describe z
sample points of a shape in a more general form as
Skofj:(thQf" a'rz): .’EieUi, (31)
where x;_; ... . are variables that can take points as a value
from their respective domain U;_; ... ., while the U; C S*
are charts of the curve S*. Hence, the size of U; introduces
a restriction on the search space of the corresponding ;.
In this work, we define the charts U;—; ... . by sliding a
pre-defined window size to cover the whole curve, see
Fig. 6a. The ratio of the window sizes, defined on two
given shapes, determines the constraint on the elasticity of a
deformation from one to another, we denote this ratio by 7.
For instance, If w; and wq are the window sizes defined for
8! and 82, respectively, then we approximate the elasticity
constraint by n = wy/w;, see Fig. 8. Moreover, we fix
the sampling of one of the argument shapes to uniform
sampling. Fixing one of the samplings converts what was
a symmetric objective functional (30) to asymmetric one.
This is computationally efficient, when aligning a set of
shapes, e.g., with a fixed reference shape n-shapes requires
n — 1 alignment operations, whereas a direct one-to-one
alignment requires (n — 1)! alignment operations. Moreover,
we have not seen a significant variation in performance due
to the choice of a particular curve as a reference, see results
in Subsection 7.1 where each shape is used as a reference.

a B 27(;).91 = Z}(jeo@cjesm% -
1 0|3600 b D [p Q %@
oo o S
2091 Jo o o S o
1 10 3.660 %52}@%%@%
s g S S S0 S

Fig. 8: Geodesic paths between two shapes under different
elasticity constraint 7). Note that an objective functional with
an appropriate  value gives a consistent result regardless
of the elasticity constraint.

Subsequently, given a uniformly sampled reference curve
S}, let its representation be f(S!) = (gi, -+ ,g}). Subse-
quently, we solve for optimal sampler of a given curve S?,
with respect to S}, by optimizing (30), which is rewritten as

arg min Z di(ziz1, i),

(32)
& =2
where ¢; is defined as
$i(wi1,2:) = a x d(g], g:)?
+ 8 x (As2(pi-1,p7) — Asz(wio1, 1)), (33)

where z;_; and z; are sampled points of S? using a can-
didate sampler for the (i — 1)!* and i*" position, such that
giTi—1 = x;- Moreover, only the penalty term of S? is added
in (32), since the sampling of S} is fixed to uniform sampling
its penalty is zero. Subsequently, (32) is identified as the
composition of linearly sequential sub-problems. As a result,
its solution is estimated by computing the minimum and
the minimizer of (32) sequentially, see Appendix. Assuming
the same search space size, i.e. Vi,s = |U;|, the optimal
sampling function can be estimated in O(s?z) time for
open curves. The point correspondence estimation, in closed
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Uniform sampling

Optimal sampling

Fig. 9: Optimal vs Uniform sampling. For the optimal case,
the green curves are sampled uniformly, and the curves in
red optimally. Note that the optimal sampler adjusts the
sampling rate while the uniform sampling does not.

curves, follows the same procedure. However, unlike the
open curves the starting point is not known a priori. Hence,
the optimal sampling for every point as a starting point is
computed and the point with the least cost will be chosen
as a starting point along with its sampling solution.

5.2 Uniform sampling

In this subsection, we will present point correspondence es-
timation for uniformly sampled shapes, as discussed in [15].
The approach restricts shape sampling functions to a group
of z-cyclic permutations, given the shapes to be aligned are
uniformly sampled. To elaborate, given two uniformly sam-
pled closed curves S} and S? the estimation of point corre-
spondence is formulated as estimating the starting point and
the orientation of S2; since the sampling rate is uniform it is
not optimized. Subsequently, a family of uniform samplers
is defined as: &% : [0,2] © j — (i + j)mod z € [0, 2], where
mod represents the modulo operation. As a result, for a
fixed orientation the optimal staring point is estimated by
running through all possible starting points and selecting
the one that minimizes the following

T(F(S)). £(82) = min o(f(S]). f(SIoE). (34
Note that (34) is a restricted version of (30). Furthermore,
the approach considers orientation reversing matchings by
generalizing (34) to the following objective functional

arg min(Z(£(S1), /(S5), Z(£(S)). F(S2)),

where — and <, represent ordering in clock-wise and
anti-clockwise direction, respectively. Meanwhile, the point
correspondence between two given open curves is done
by testing only the different end points as a starting
point. The solution of (35) is estimated iteratively using
nested loops. Thus, the time-complexity of aligning closed
curves is O(z%). Moreover, it is worth to note that if
.f(sj*) = (gla e 792) then f(Sf) = (9217 T vgl_l)' In com-
parison, if optimal sampling is used for estimating the point
correspondence between closed shapes the time-complexity
would be O(s?2%). Although computationally efficient, the
uniform sampling gives a meaningful matching only for
shapes with small deformations or linearly elastic deforma-
tions. On the contrary, the optimal sampling scheme gives
consistently meaningful matching even under occlusion and
missing parts, see Fig. 9.

(35)

1 0.8

A
R ::
% 3

N

s

-0.

-0.

-0.6

-0.8

(a) (b)

Fig. 10: Examples of clustering results for k=2. (a) based on
optimal sampling. (b) based on uniform sampling.

6 APPLICATION IN SHAPE ANALYSIS

As discussed in earlier sections, the proposed representation
space, SE(n)?, is a curved space. Nevertheless, it is possible
to fit statistical models and do further shape analysis using
the defined distance metric, (20). Particularly, in [14] an
inhomogeneous time Markov process is used to capture
the statistical properties of a deformable shape represented
in a matrix Lie group. Grouping a collection of data into
distinct clusters is an alternative data analysis technique
that is extensively studied in a wide range of problems.
Apart from the well-known k-means algorithm, there are
several clustering algorithms emphasizing different aspects
of the problem [46], [59]. However, the performance of a
clustering algorithm depends on a goal specific similarity
metric, among other factors. In that regard, we propose (20)
or (35), depending on the assumption, as a similarity metric
to cluster shapes. To that end, we discuss modelling of a
shape class, represented in SE(n)?, by k-means clustering.

6.1 K-means for shape clustering

In k-means clustering, the central idea is to estimate k points
such that the data points around these k centroids are more
similar with each other under the metric being considered.
Moreover, the k points are thought of as the means of
the clusters [35]. Consequently, we will mainly discuss the
computation of arithmetic mean in SE(n)?. Over the past
years, considerable work has been done on characterizing
the mean of several matrices [4], [9], [25]. For our purpose,
however, we will consider Fréchet mean and its local con-
struction called Karcher mean [26], [47]. Fréchet mean is
a generalization of a distribution’s centroid in any metric
space U; it is defined as

min » §(z,y)?, (36)

e =y
where §(-, -) denotes a distance metric. Essentially, it charac-
terizes the mean of a distribution, under a given metric, as
a value that minimizes the dispersion of the dataset. Subse-
quently, by replacing the distance metric (-, -) with (18) we
get the following objective function for computing the mean
of m rigid transformation matrices.

m m
min log(R"R;)||% + min v — 0|3 37
Reso(n);:l [log (R R;)|| %Rn;ll =03 G7)
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The second term of (37) is satisfied by taking the arithmetic
mean, since R" is a vector space. For the first term, however,
an optimal global solution is not ensured. Thus, the local so-
lution of Fréchet mean (Karcher mean) is computed [1], [47]
- a direct product of (37) is optimized to compute the mean
of shape representations. Subsequently, given a prior knowl-
edge of k, expectation-maximization (EM) algorithm is used
to estimate the k mean points and the clusters around them,
see Fig. 10. Note that, results of the EM algorithm depend
on the initialization. If the k is not known a priori alternative
assumptions can be made on the distribution of the data to
automatically estimate k [24]. In general, k-means of shape
clusters are estimated by optimizing the following with EM-
algorithm

m k
minz Zrijb(f(gi’), f(Sj))Qa

j=11i=1

(38)

where f (5’1) is the representation of the estimated mean
shape of the i™" cluster, and r;; is 1 if and only if the ;™
shape is assigned to the i cluster otherwise is 0.

7 EXPERIMENTAL RESULTS

In this section, we present two main experimental scenarios
and a concrete computational time cost of the approach.
In Subsection 7.1, an evaluation of the accuracy and rep-
resentativeness of the proposed approach is presented. In
Subsection 7.2, the impact of occlusion, sampling point
variation, and local perturbation on the proposed approach
is presented. In Subsection 7.3, the computational cost of our
approach and [54] is presented.

7.1 Shape retrieval

Given a query shape, a shape retrieval system tries to rank
shapes in a given database according to their similarity
to the query. Usually, such systems are solely based on a
distance metric rather than a mathematical model of shape
categories. Hence, the performance of a shape retrieval sys-
tem highlights the representativeness of the used distance
metric. As a result, we present the evaluation of a shape
retrieval system that is based on the proposed distance
metric (34) and (32) on different datasets.

Flavia leaf dataset: The dataset contains 32 types of leaf
species with a total of 1907 examples see Fig. 11a. In [31]
a leave-one-out test scenario was performed on the dataset
to evaluate an elastic similarity metric derived from SRV-
framework [54]. Leave-one-out is a setup where every leaf
is used as a query against the rest of the dataset. To compare
our approach with other methods, we also replicate the
leave-one-out scenario with Mean Average Precision (MAP)
used as a performance measure. For this experiment, every
leaf shape is represented by z = 200 points that are uni-
formly sampled from its boundary. Table 3 summarizes the
result of our approach and results reported in [31] and [43].
Although our method achieved high MAP, it is not neces-
sarily inclusive of all relevant informations; precision drops
as recall goes to 1, see Fig. 12a. Nonetheless, it outperformed
the elastic shape metric and the Gaussian elastic metric,
discussed in [31], in terms of MAP. One possible reason for
this is that we do not pre-smooth the data and thus local

details are more likely to be captured with our method.
Swedish leaf: The Swedish leaf dataset contains 1125 ex-
ample leaves from 15 leaf types. The example shapes are
distributed uniformly; there are 75 example leaves from
each species. To compare our approach with other methods,
we follow the same experimental scenario discussed in [31],
[43] , which is nearest neighbour classification. We randomly
select 25 leaf shapes from each type and use the left out 50
for testing. We repeat the experiment 100 times and take
the average classification rate. In all of the 100 experiments,
the shapes are represented by z = 200 uniformly sampled
points. Our method achieved an average classification rate
of 99.50 with 0.01287 standard deviation. Table. 4 shows
the comparison of our result with other shape matching
methods. We note that performance of a nearest neighbour
classifier is not an explicit measure of a similarity metric’s
performance, as the classification is based on the best result
among elements of a group. Consequently, in Fig. 12a we
show the precision-recall (PR) curve of a retrieval result
obtained by performing the leave-one-out experimental sce-
nario on the dataset. Note that, the area under the PR
curve is smaller in the Swedish leaf case as compared to
the area under the PR curve for the Flavia leaf dataset.
In general, we observe that the inter-class similarity in the
Flavia leaf dataset is high as compared to the Swedish leaf
dataset making discrimination in Flavia difficult, see Fig. 11.
However, the intra-class variation in the Swedish dataset is
mainly due to nonlinear elastic deformations, whereas in
the Flavia it is mainly due to a combination of rotation and
scaling. Hence, distance metric based on uniform sampling,
see Subsection 5.2, does not perform well in the Swedish
leaf dataset as compared to the Flavia leaf dataset, in terms
of precision and recall.

Generic shapes: To evaluate the impact of optimal sam-
pling based point correspondence estimation, we tested our
approach on generic shape datasets, MPEG-7 [32], Kimia99
and Kimia216 [51]. The MPEG-7 dataset contains 70 shape
classes each containing 20 elements, Kimia99 is composed of
9 shape classes with 11 examples each, and Kimia216 con-
tains 18 class of shapes with 12 examples. All the datasets
are composed of shape categories with variations due to
different view point and/or large deformations. As a result,
these datasets pose a significantly challenging problem than
either the Flavia or the Swedish leaf dataset do. We evaluate
our approach, on all datasets, by replicating the experimen-
tal scenario described in [5] and [58], which is similar to the
leave-one-out. In the case of Kimia99 and Kimia216 retrieval
accuracy is measured by counting the overall results of the
top 10 (in Kimia99) and top 11 (in Kimia216) retrievals from
the same class, excluding the query shape [58]. Meanwhile,
retrieval accuracy on the MPEG-7 dataset is measured based
on what is called “Bull’s eye score”— Bull’s eye score takes
the overall percentage of retrieval results, among the first
40, that belong to the same class as the query [58]. In all
datasets, we evaluate our approach for z = 100 using
both uniform and optimal sampling—for the optimal case
the query shape is sampled uniformly and each element
from the dataset are sampled optimally using (32). More
importantly, in both cases, matching starting points and
shape orientation are estimated as discussed in Section 5.2
and 3, respectively. Furthermore, = 0.1, « = 1, and
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Methods Ist 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
SC[7] 97 91 8 8 8 77 75 66 56 37
Shock graph [51] 99 99 99 98 98 97 9% 95 93 82
Height functions [58] 99 99 9 99 98 99 99 9% 95 88
Symbolic representation [13] 99 99 99 98 99 98 98 95 96 94
Our method with optimal sampling | 99 99 97 97 97 98 93 90 79 53
Our method with uniform sampling | 91 81 73 75 63 57 51 44 35 30

TABLE 1: Retrieval results on Kimia99 shape dataset.

Methods Ist 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

SC[7] 214 209 205 197 191 178 161 144 131 101 78

Shock graph [51] 216 216 216 215 210 210 207 204 200 187 163

Skeleton graph matching [5] 216 216 215 216 213 210 210 207 205 191 177
Our method with optimal sampling | 216 216 208 205 203 193 192 178 169 162 123
Our method with uniform sampling | 212 210 188 181 174 165 159 151 141 132 120

TABLE 2: Retrieval results on Kimia216 shape dataset.

k=4 0*9¥

(@ ()

Fig. 11: Examples of different leaf types. (a) from the Flavia
leaf dataset. (b) from the Swedish leaf dataset.
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Fig. 12: (a) PR curves on the Flavia and the Swedish leaf
dataset. (b) PR curves under different noise magnitudes
introduced to the original fighter jet planes dataset.

1 = 20 in all of the optimal sampling based point matchings.
In Table. 1 and 2 we compare our result with other ap-
proaches evaluated on Kimia99 and Kimia216. On MPEG-7,
retrieval based on the uniform sampling approach achieved
a bull’s eye score of 68.02%, while retrieval based on the
optimal sampling approach achieved 84.17%. We note that
retrieval results based on optimal samplings achieve a bet-
ter score than results based on uniform samplings, in all
three datasets. In general, given a large n and a small
B (relative to «) retrieval based on an optimal sampling
should perform better than retrieval based on a uniform
sampling. Nevertheless, we stress that the reported optimal ) )
sampling based results are based on estimates of the starting ~ Fig- 13: Impact of 3 on partial shape matching. In a.ll of
point and the shape orientation alignment from the uniform the abhove examples, 7 = 37.~46- Each row shows (?ptlmal
sampling approach. Hence, the optimal sampling inherits sampling of a shape, shown in red, to match the uniformly
misalignment errors from the uniform sampling, especially sampled shape shc.>wn in green. Note that, a large value of
in cases of large deformations, which lead to performance f3 leads to a matching that favours area preservation.
degradation.
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Methods MAP
Angle function [30] 45.87
Shape context [7] 47.00
TSLA [43] 69.93
Elastic metric with 200 points [31] 81.86
Gaussian elastic metric with 200 points [31] | 92.37
Our method with 200 points 94.11

TABLE 3: MAP on the Flavia leaf dataset. Our result is
highlighted at the bottom.

Methods Recognition rate
Fourier descriptors [33] 89.60
Shape-Tree [18] 96.28
TSLA [43] 96.53
Elastic metric with 200 points [31] 99.18
Our approach with 200 points 99.50

TABLE 4: Nearest-neighbour recognition rate on the
Swedish leaf dataset. Our result is highlighted at the bottom.

7.2 Robustness

In this subsection, we test the robustness of the proposed
similarity metric to local noise and sampling size variations,
and the effectiveness of optimal sampling under occlusion.
To that end, we use shapes from fighter jets dataset [50],
Mythological creatures [11], and 1070-Shape dataset that
can be found at http://vision.lems.brown.edu/content/
available-software-and-databases.

Local shape perturbations: In general, local perturbation
of a curved shape with a noise that does not alter the
shape degrades the performance of a shape alignment and
retrieval system. Consequently, we evaluate the tolerance of
the proposed approach to local perturbations on fighter jets
dataset [56]. The dataset contains 7 types of fighter jets each
with 30 examples. The main cause of intra-class variation
is deforming parts of the plane and rotation. We begin our
experiment by introducing an additive white Gaussian noise
to the shapes of the fighter jets. We denote the standard
deviation of the noise by o. For all subsequent experiments,
the contour of each shape is approximated by uniformly
sampled z = 200 points. Next, we do a leave-one-out test
scenario where the original (noise free) dataset is queried
by every shape from datasets corrupted by noise with
different distributions. Table. 5 summarizes the computed
MAP values and Fig. 12b shows their respective precision-
recall curve. In general, the proposed similarity metric is
tolerant to local perturbations that do not alter the shape
significantly.

Correspondence estimation under occlusion: Shapes can
exhibit partial similarity due to occlusions or nonlinear elas-
tic deformations, see Fig. 13. Thus, a point correspondence
estimation method has to be able to handle nonlinear elastic
deformations. For instance, the uniform sampling, discussed
in Subsection 5.2, is constrained to linear elastic deforma-
tions, thus it fails to match shapes that are partially similar,
see Fig. 9. Alternatively, the optimal sampling, presented in

o 0 0.5 1.5 2.5
MAP | 9711 | 96.72 | 89.95 | 83.27

TABLE 5: MAP on the fighter jets dataset with a Gaussian
noise of different standard deviations.
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Fig. 14: Impact of sampling size under the optimal and the
uniform sampling based point correspondence estimation.

Subsection 5.1, can be tuned to perform well by adjusting
B in (32). To illustrate this, we select example shapes with
partial similarity from Mythological creatures and 1070-shape
datasets. Subsequently, in Fig. 13 we show matching results
for different values of 3. In all the matching scenarios,
the elasticity constraint 7 is held constant to 37.46. Hence,
the solution search space is fixed. Nevertheless, in case
of occlusion or partial matching, we note that forcing the
sampler to preserve area when that is clearly not the case
leads to point mismatching, hence, a small value should be
assigned to (3.

Effects of sampling size: The proposed approach casts the
point correspondence estimation problem as a sampling
function estimation problem, hence the sampling function
is optimized and not given. However, the number of points
z is selected a priori. Here, we investigate the impact of
having different values of z on the optimal point corre-
spondence estimation and its accuracy. In general approx-
imating a shape, especially one with intricate structure, by
a small number of points leads to a less detailed result.
Nevertheless, it is desirable to have a consistent distance
for different sample sizes. To that end, Fig. 14 shows how
the distance between two open curves, shown in Fig. 15,
varies under different sampling sizes for both the uniform
and the optimal sampling. The result is obtained by varying
z while the rest of the parameters are fixed a = 1, 8 = 10.
We observe that the distance under the optimal sampling
is more consistent relative to the uniform sampling based
distance.

7.3 Computational cost

As discussed earlier, the geodesic distance between two
given curves can be computed explicitly. Hence, the com-
putational cost of a geodesic distance is completely depen-
dent on the computational cost of the point correspondence
estimation approaches, which are O(s?2%) and O(z?) for
the optimal and the uniform sampling, respectively. The
entire proposed approach, from the computation of the
representation matrices up to the optimal sampling esti-
mation, is implemented in MATLAB R2014a running on an
Intel core i7-3540M with 3.0 GHzx4 processing speed and
7.7 GB RAM with Ubuntu 14.04 64-bit operating system.
Henceforth, the reported computation cost is for shapes
approximated by z = 100 sampled points and includes
the cost of computing the representation f(-) and the pre-
processing stage. Subsequently, the geodesic distance (20)
computation, assuming established point correspondence,
takes 0.1045 seconds. Point correspondence estimation, un-
der the uniform sampling, between two closed curves,
shown in Fig. 2 first row, takes 11.1346 seconds. The same
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Fig. 15: A geodesic path from the first to the last curve. These
curves are used in estimating the effects of sample size.

matching problem is estimated with a C++ implementation
of SRV framework [54] running on the same machine in
2.0298 seconds. Meanwhile, the optimal sampling of open
curves or closed curves with a known starting point and
orientation has taken 64.5833 seconds for n = 7.013. In
general, the computational cost of the optimal sampling is
much higher than both SRV and the uniform sampling.

8 CONCLUSION

We have presented a deformation based representation ap-
proach for curved shapes. The approach considers curves to
be elements of a finite dimensional matrix Lie group. Such
a representation led to an explicit geodesic equation and
a left invariant distance metric. As a result, the geodesic
curve and distance between shapes can be computed in
a closed form and statistical analysis of shapes can be
done in a finite dimensional matrix space. Furthermore,
there is less restriction on the family of curves being con-
sidered as compared to other parametrization approaches;
ours does not require curves to be differentiable as long
as there is continuity in a topological sense. However,
curves with changing topology are beyond the scope of
the representation. Moreover, two possible solutions for
point correspondence estimation are presented. In both so-
lutions, the problem of point correspondence is treated as
a sampling function estimation problem. Although compu-
tationally expensive, the optimal sampling estimation pro-
vides an explicit control over elasticity constraint through
weighting constants and window sizes. Experimental re-
sults show that the approach gives a discriminative rep-
resentation that is robust to local perturbation, displace-
ment and occlusion. Mainly, in comparison to the SRV
framework the MATLAB implementation of the approach is
slower.
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