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Abstract. The aim of the paper is to investigate the solutions of special inho-
mogeneous linear functional equations by using spectral analysis in a translation
invariant closed linear subspace of additive/multiadditive functions containing the
restrictions of the solutions to finitely generated fields. The application of spectral
analysis in some related varieties is a new and important trend in the theory of
functional equations; especially they have successful applications in case of homo-
geneous linear functional equations. The foundations of the theory can be found
in [1] and [2].We are going to adopt the main theoretical tools to solve some inho-
mogeneous problems due to T. Szostok [5], see also [6] and [7]. They are motivated
by quadrature rules of approximate integration.

1. Introduction and preliminaries

Let C denote the field of complex numbers. We are going to investigate functional
equation

(1) F (y)− F (x) = (y − x)
n∑
i=1

aif(αix+ βiy),

where x, y ∈ C and f, F : C→ C are unknown functions. Equation (1) is motivated
by quadrature rules of approximate integration. The problem is due to T. Szostok
[5], see also [6] and [7]. To formulate the basic preliminary results and facts we
need the notion of generalized polynomials. Let (G, ∗) be an Abelian group; CG

denotes the set of complex valued functions defined on G. A function f : G→ C is
a generalized polynomial, if there is a non-negative integer p such that

(2) ∆g1 . . .∆gp+1f = 0

for any g1, . . . , gp+1 ∈ G. Here ∆g is the difference operator defined by ∆gf(x) =
f(g∗x)−f(x) (x ∈ G), where f ∈ CG and g ∈ G. The smallest p for which (2) holds
for any g1, . . . , gp+1 ∈ G is the degree of the generalized polynomial f . A function
F : Gp → C is p-additive, if it is additive in each of its variables. A function f ∈ CG is
called a generalized monomial of degree p, if there is a symmetric p-additive function
F such that f(x) = F (x, . . . , x) for any x ∈ G. It is known that any generalized
polynomial function can be written as the sum of generalized monomials [11]. By a
general result of M. Sablik [10] any solution of (1) is a generalized polynomial under
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some mild conditions for the parameters in the functional equation. For the proof
of the following result see also Lemma 2 in [6].

Lemma 1.1. Let n ∈ N be a given natural number. Suppose that

(1) α1, . . . , αn, β1, . . . , βn ∈ R or C,
(2) αi + βi 6= 0,
(3)

(3)

∣∣∣∣ αi βi
αj βj

∣∣∣∣ 6= 0, i 6= j, i, j ∈ {1, . . . , n}.

If the functions F, f1, . . . , fn : R→ R or C→ C satisfy functional equation

(4) F (y)− F (x) = (y − x)
n∑
i=1

fi(αix+ βiy), x, y ∈ R or C,

then f1, . . . , fn are generalized polynomial functions of degree at most 2n− 1.

The first and the third conditions also appear in L. Székelyhidi’s result [11]. It
states a similar conclusion under the special choice F = 0, i.e. if

n∑
i=1

fi(αix+ βiy) = 0

and the real (or complex) parameters satisfy condition (3) in Lemma 1.1, then fi’s
are generalized polynomials of degree at most n− 2. Using rational homogenity we
can prove the following statement too (see Lemma 3 in [6]).

Lemma 1.2. Suppose that the functions f, F : R → R or C → C satisfy equation
(1). If the function f is a generalized polynomial, i.e. it is of the form

(5) f(x) =

p∑
j=1

dj(x),

where dj is a monomial of degree j ∈ {1, . . . , p} and d0 is constant then the function
dj also satisfies (1) with some j-additive Fj for any j ∈ {1, . . . , p}.

In what follows we suppose that conditions of Lemma 1.1 are satisfied, i.e. any
solution of (1) is a generalized polynomial of degree at most 2n− 1. Using Lemma
1.2 we may also assume that f is a monomial of degree at most 2n− 1 without loss
of generality. Using the notation

h(x) =
n∑
i=1

aif(αix)

let us choose y = 0 in equation (1): F (0)− F (x) = −xh(x). By substituting x = 0

we have that F (y)− F (0) = y

n∑
i=1

aif(βiy). Therefore

h(x) =
n∑
i=1

aif(αix) =
n∑
i=1

aif(βix) ⇒ F (y)− F (x) = yh(y)− xh(x)
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and, consequently,

(6) (y − x)
n∑
i=1

fi(αix+ βiy) = yh(y)− xh(x), x, y ∈ R or C.

The following theorem shows that h(x) must be of a special form provided that f
is a monomial of degree p.

Theorem 1.3. If the functions f, F : R→ R or C→ C satisfy equation (1) and f
is a monomial of degree p then h(x) = c · xp for some constant c ∈ R or C.

Proof. The proof can be found in [6] (Theorem 1). �

In case of p = 1 (additive solutions) Theorem 1.3 allows us to simplify (6) as

(7)
n∑
i=1

aif(αix+ βiy) = c · (x+ y) (x, y ∈ C).

Note that for any additive solution f the system of equations

c · x =
n∑
i=1

aif(αix) and c · y =
n∑
i=1

aif(βiy)

is equivalent to

c · (x+ y) =
n∑
i=1

aif(αix+ βiy).

Remark 1.4. In case of a monomial solution f of higher degree p > 1

c · xp =
n∑
i=1

aif(αix) and c · yp =
n∑
i=1

aif(βiy)

because of Theorem 1.3 and the alternate substitutions x = 0 and y = 0. Equation
(6) reduces to

(8)
n∑
i=1

aif(αix+ βiy) = c ·
p∑
l=0

xlyp−l (x, y ∈ C).

In what follows we are going to show that spectral analysis can be applied in
translation invariant closed linear subspaces (varieties) of additive functions on some
finitely generated fields containing the restrictions of the solutions of functional
equation (7). Note that the translation invariance is taken with respect to the
multiplicative group structure. We will use spectral analysis in some related varieties
of equation (8) too. The theory has successful applications in case of homogeneous
linear functional equations. The case of c = 0 has been investigated in [1] and [2]. In
this paper we use the same ideas to generalize the results for c 6= 0 (inhomogeneous
case). The spectral analysis provides the existence of nonzero exponential functions
in the varieties of the restricted solutions to finitely generated fields. It is a necessary
condition for the existence of nonzero solutions of the functional equation. The
sufficiency also follows in some special cases which means the complete description
of the solution space. In general we also need the application of spectral synthesis
in the varieties to give the description of the solution space on finitely generated
fields. Since its central objects are the so-called differential operators having a more
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complicated behavior relative to the automorphism solution, the application of the
spectral synthesis is discussed in a forthcoming paper [18] as the continuation of the
present one.

2. Varieties generated by non-trivial solutions of linear functional
equations

Let G be an Abelian group. By a variety we mean a translation invariant closed
linear subspace of CG.

2.1. Varieties of additive solutions. Consider the linear functional equation

(9)
n∑
i=1

aif(αix+ βiy) = c · (x+ y) (x, y ∈ C)

and let a finitely generated subfield K ⊂ C containing the parameters αi, βi (i =
1, . . . , n) be fixed. If V1 is the set of additive functions on K then it is a closed linear
subspace in CK as the following lemma shows; for the proof see [2].

Lemma 2.1. V1 is a closed linear subspace of CK.

Now we are going to determine the smallest closed linear subspace in V1 containing
the additive solutions of (7) on K under c 6= 0. The key step is to consider c as a
free parameter running through the domain C.

Definition 2.2. Let S1 be the subset of V1, where f̃ ∈ S1 if and only if there exists
c̃ ∈ C such that

(10)
n∑
i=1

aif̃(αix+ βiy) = c̃ · (x+ y) (x, y ∈ K).

Lemma 2.3. S1 is a closed linear subspace of V1.

Proof. It is clear that S1 is a linear subspace in V1. Let g̃ : K → C be a function
in the closure of S1. According to Lemma 2.1, the function g̃ is additive. We are
going to show that

n∑
i=1

aig̃(αix) = c̃ · x and
n∑
i=1

aig̃(βiy) = c̃ · y

for some c̃ ∈ C. Since g̃ is in the closure of S1, for any ε > 0 there exists f̃ε ∈ S1

such that

|f̃ε(αix)− g̃(αix)| < ε and |f̃ε(βiy)− g̃(βiy)| < ε

for any element x, y of fixed finite subsets X, Y ⊂ K and αi, βi ∈ K. On the other
hand

(11)
n∑
i=1

aif̃ε(αix) = c̃ε · x and
n∑
i=1

aif̃ε(βiy) = c̃ε · y
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for some c̃ε ∈ C, respectively. First we show that there exists a finite limit c̃ :=
limε→0 c̃ε. If x = 1 then the ∆-inequality says that

|c̃ε1 − c̃ε2| = |
n∑
i=1

aif̃ε1(αi)−
n∑
i=1

aif̃ε2(αi)| ≤

|
n∑
i=1

aif̃ε1(αi)−
n∑
i=1

aig̃(αi)|+ |
n∑
i=1

aif̃ε2(αi)−
n∑
i=1

aig̃(αi)| ≤

n∑
i=1

|ai| · |f̃ε1(αi)− g̃(αi)|+
n∑
i=1

|ai| · |f̃ε2(αi)− g̃(αi)| ≤ λ · (ε1 + ε2),

(12)

where λ =
∑n

i=1 |ai|. By Cauchy criterion, this implies that there exists limε→0 c̃ε =
c̃ <∞. On the other hand

|
n∑
i=1

aig̃(αix)− c̃ · x| ≤

|
n∑
i=1

aig̃(αix)−
n∑
i=1

aif̃ε(αix)|+ |
n∑
i=1

aif̃ε(αix)− c̃ · x| ≤

|
n∑
i=1

aig̃(αix)−
n∑
i=1

aif̃ε(αix)|+ |
n∑
i=1

aif̃ε(αix)− c̃ε · x|+

|c̃ε · x− c̃ · x| ≤ λ · ε+ |c̃ε − c̃| · |x|

(13)

and, in a similar way,

(14) |
n∑
i=1

aig̃(βiy)− c̃ · y| ≤ λ · ε+ |c̃ε − c̃| · |y|.

Taking the limit ε→ 0 we have
n∑
i=1

aig̃(αix) = c̃ · x and
n∑
i=1

aig̃(βiy) = c̃ · y

for any element x, y of finite subsets X, Y ⊂ K and αi, βi ∈ K. Therefore they hold
for any x, y ∈ K. Since by Lemma 2.1 the function g̃ is additive it follows that
g̃ ∈ S1. �

Remark 2.4. The analogue results for c = 0 can be found in [2].

Let K∗ = {x ∈ K : x 6= 0} be the Abelian group with respect to the multiplication
in K. We also put V ∗1 = {f |K∗ : f ∈ V1} and

S∗1 = {f̃ |K∗ : f̃ ∈ S1}.
Lemma 2.5. V ∗1 and S∗1 are varieties in CK∗

.

Proof. It is easy to see that V ∗1 is a variety. Since S1 is a closed linear subspace of
V1 we have that S∗1 is a closed linear subspace of V ∗1 . �

Recall that the translation invariance is taken with respect to the multiplicative
group structure, i.e. if f̃ ∈ S∗1 , then the map τaf̃ : x ∈ K∗ 7→ f̃(ax) also belongs to
S∗1 for every a ∈ K∗.
Definition 2.6. S0

1 is the subspace of S1 that satisfies equation (9) with c = 0.
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2.2. Varieties generated by higher order monomial solutions. Consider the
linear functional equation

(15)
n∑
i=1

aif(αix+ βiy) = cp ·
p∑
l=0

xlyp−l (x, y ∈ C)

and let a finitely generated subfield K ⊂ C containing the parameters αi, βi (i =
1, . . . , n) be fixed. If Vp is the set of p-additive functions on K then it is a closed
linear subspace in CG, where G = K × . . . ×K is the Cartesian product (p-times)
of K with itself; for the proof see [2].

Lemma 2.7. Vp is a closed linear subspace of CG.

Suppose that
f(x) := Fp(x, . . . , x)

is a monomial solution of degree p > 1 of equation

(16)
n∑
i=1

aif(αix+ βiy) = cp ·
p∑
l=0

xlyp−l (x, y ∈ K),

where Fp is a symmetric, p-additive function; cf. equation (8). By the ”binomial
theorem” equation (16) implies that

(17)
n∑
i=1

ai

p∑
l=0

(
p

l

)
Fp,l(αix, βiy) = cp ·

p∑
l=0

xlyp−l,

where the script l shows the number of appearences of the term αix among the
arguments of Fp:

Fp,l(αix, βiy) := Fp( αix, . . . , αix︸ ︷︷ ︸
l − times

, βiy, . . . , βiy).

Since additivity implies rational homogenity, rational substitutions allow us to com-
pare the sides of equation (17) member by member as classical polynomials:

n∑
i=1

aiFp,p(αix, βiy) =
n∑
i=1

aiFp(αix, . . . , αix) = cp · xp,

n∑
i=1

aiFp,0(αix, βiy) =
n∑
i=1

aiFp(βiy, . . . , βiy) = cp · yp,

n∑
i=1

ai

(
p

l

)
Fp,l(αix, βiy) = cp · xlyp−l (l = 1, . . . , p− 1).

(18)

It is well-known that the diagonals determine the symmetric multiadditive functions.
Therefore we can write conditions (18) into the multivariable form

n∑
i=1

aiFp(αix1, . . . , αixp) = cp · x1 · . . . · xp,

n∑
i=1

aiFp(βiy1, . . . , βiyp) = cp · y1 · . . . · yp,

n∑
i=1

ai

(
p

l

)
Fp(αix1, . . . , αixl, βiy1, . . . , βiyp−l) = cp · x1 · . . . · xl · y1 · . . . · yp−l,

(19)
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where l = 1, . . . , p − 1; for the similar trick see [3]. The multivariable form of the
conditions will have an important role to clarify the consequences of (18) for the
properties of the translated mapping

τ~zFp(w1, . . . , wp) := Fp(z1w1, . . . , zpwp).

Note that the symmetry condition is taking to fail by the translation invariance with
respect to the multiplicative group structure.

Definition 2.8. For any p-additive function Fp let us define F σ
p as

F σ
p (w1, . . . , wp) := Fp(wσ(1), . . . , wσ(p)),

where σ is a permutation of the elements 1, . . . , p.

Lemma 2.9. Suppose that f(x) := Fp(x, . . . , x) is a monomial solution of degree
p > 1 of equation (16), where Fp is a symmetric, p-additive function. For any
permutation σ of the elements 1, . . . , p the mapping (τ~zFp)

σ satisfies condition (19)
with c̃p = cp · z1 · . . . · zp and the diagonalization

f̃p(x) := τ~zFp(x, . . . , x)

is a solution of functional equation

(20)
n∑
i=1

aif(αix+ βiy) = c̃p ·
p∑
l=0

xlyp−l (x, y ∈ K).

The proof is a straightforward calculation. Now we are in the position to define
the variety generated by the higher order solutions.

Definition 2.10. Let Sp be the subset of Vp, where F̃p ∈ Sp if and only if there
exists c̃p ∈ C such that

n∑
i=1

aiF̃
σ
p (αix1, . . . , αixp) = c̃p · x1 · . . . · xp,

n∑
i=1

aiF̃
σ
p (βiy1, . . . , βiyp) = c̃p · y1 · . . . · yp,

n∑
i=1

ai

(
p

l

)
F̃σp (αix1, . . . , αixl, βiy1, . . . , βiyp−l) = c̃p · x1 · . . . · xl · y1 · . . . · yp−l

(21)

(l = 1, . . . , p− 1) for any permutation σ of the elements 1, . . . , p.

The condition for any permutation of the variables substitutes the symmetry
condition in the following sense: Sp becomes closed under the usual symmetrization
process (

Sym F̃p

)
(w1, . . . , wn) :=

1

p!

∑
σ

F̃ σ
p (w1, . . . , wp),

where σ runs through the permutations of 1, . . . , p, i.e. the diagonals of the elements
in Sp are the solutions of functional equations of type (20). The problem disappears
in case of p = 1 because there are neither mixed blocks nor positions for variables
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to set free:
n∑
i=1

aiF̃1(αix) = c̃1 · x and
n∑
i=1

aiF̃1(βiy) = c̃1 · y. By adopting the argu-

ments of subsection 2.1 to the multivariate setting on a finitely generated field we
can prove the analogue statements of Lemma 2.3 and Lemma 2.5.

Lemma 2.11. Sp is a closed linear subspace of Vp.

The sets V ∗p and S∗p consist of the restrictions of the elements in Vp and Sp to the
multiplicative group

G∗ := K∗ × . . .×K∗︸ ︷︷ ︸
p-times

,

respectively.

Lemma 2.12. V ∗p and S∗p are varieties in CG∗
.

Remark 2.13. Lemma 2.9 shows that S∗p is the variety in CG∗
generated by the

restrictions of symmetric p-additive functions to G∗ provided that the diagonaliza-
tions are the solutions of functional equation (20) for some c̃p ∈ C. Note that the
translation invariance is taken with respect to the multiplicative group structure of
G∗.

Definition 2.14. S0
p is the subspace of Sp belonging to the homogeneous case c̃p = 0.

2.3. Spectral analysis in the varieties on a discrete Abelian group with
torsion free rank less than continuum. Let (G, ∗) be an Abelian group. A
function m : G→ C is called exponential if it is multiplicative:

m(x ∗ y) = m(x)m(y)

for any x, y ∈ G. If a variety contains an exponential function then we say that
spectral analysis holds in this variety. If spectral analysis holds in each variety on
G, then spectral analysis holds on G. Let r0(G) be the torsion free rank of G. The
following theorem is the main result of [9].

Theorem 2.15. Spectral analysis holds on a discrete Abelian group G if and only
if r0(G) < 2ω.

3. Applications of spectral analysis I

The following proposition [8, Theorem 14.5.1, p. 358]) will be frequently used.

Proposition 3.1. Let K ⊂ C be a finitely generated field and φ : K → C be an
injective homomorphism. Then there exists an automorphism ψ of C such that
ψ|K = φ.

As a consequence of Proposition 3.1 we can also show the following lemma which
can be found in [1]; for the definition of K∗ and S∗1 see subsection 2.1.

Lemma 3.2. If m ∈ S∗1 is an exponential on K∗, then there is an extension of m
to C as an automorphism.
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3.1. Additive solutions of linear functional equations. Using Theorem 2.15
spectral analysis holds in the variety of S∗1 containing the restrictions of additive
solutions of equation (7) as c is running through C. Therefore we can formulate the
following result for the existence of a nontrivial additive solution.

Theorem 3.3. The existence of a nonzero additive solution of (7) implies that there
exist a finitely generated subfield K ⊂ C containing αi and βi (i = 1, . . . , n) and an
automorphism φ : C→ C as the extension of an exponential element in S∗1 such that

(22)
n∑
i=1

aiφ(αix+ βiy) = c̃ · (x+ y) (x, y ∈ K)

for some c̃ ∈ C. Especially,

(23)
n∑
i=1

aiφ(αi) =
n∑
i=1

aiφ(βi) = c̃.

If c̃ = 0 then

(24)
n∑
i=1

aiφ(αix+ βiy) = 0 (x, y ∈ C),

i.e. φ is the solution of the homogeneous equation on C. If c̃ 6= 0 then φ(x) = x
(x ∈ K) and

(25)
n∑
i=1

aiαi =
n∑
i=1

aiβi = c̃ 6= 0.

Conversely, if (25) holds then f := (c/c̃) ·x is a nonzero particular additive solution
of (7) on C.

Proof. Suppose that f is a nonzero additive solution of (7), i.e. f(e) 6= 0 for some
e ∈ C. Let K = Q(α1, . . . , αn, β1, . . . , βn, e) be the extension of Q by the complex
numbers αi, βi and e (i = 1, . . . , n). By Lemma 2.5, S∗1 is a variety in CK∗

. We have
that S∗1 6= {0} because f |K∗ ∈ S∗1 and f(e) 6= 0. Since K∗ is countable we find, by
Theorem 2.15, that S∗1 contains an exponential element φ, i.e.

n∑
i=1

aiφ(αix+ βiy) = c̃ · (x+ y) (x, y ∈ K)

for some c̃ ∈ C. By Lemma 3.2, φ can be extended to an automorphism of C.
Especially

(26) c̃ · x =
n∑
i=1

aiφ(αix) =
n∑
i=1

aiφ(αi)φ(x)

and

(27) c̃ · y =
n∑
i=1

aiφ(βiy) =
n∑
i=1

aiφ(βi)φ(y)

for any x, y ∈ K. Choosing x = y = 1:

(28)
n∑
i=1

aiφ(αi) =
n∑
i=1

aiφ(βi) = c̃.
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If c̃ = 0 then equations (26), (27) and (28) give that φ : C → C is a solution of the
homogeneous equation

n∑
i=1

aif(αix+ βiy) = 0 (x, y ∈ C).

If c̃ 6= 0 then equations (26) and (28) give that φ(x) = x (x ∈ K). The converse
statement is clear. �

Corollary 3.4. If c̃ 6= 0 for an exponential function in S∗1 then the space of the
additive solutions on K is

c

c̃
· x+ S0

1 .

Corollary 3.5. If there are no automorphisms satisfying

n∑
i=1

aiφ(αi) =
n∑
i=1

aiφ(βi) = 0

then S0
1 is trivial for any finitely generated field K ⊂ C containing the parameters

αi and βi (i = 1, . . . , n) and the only nonzero additive solution of (7) on C must be
the proportional of the identity function: f(x) = c′ · x where c′ = c/c̃ provided that

n∑
i=1

aiαi =
n∑
i=1

aiβi = c̃ 6= 0.

Remark 3.6. If c̃ = 0 for any exponential function in S∗1 then the exponentials
give only translation parts in the solution of the inhomogeneous equation on K
and we need to apply spectral synthesis in the variety S∗1 to decide the existence of
a nonzero particular solution of the inhomogeneous equation on finitely generated
fields containing the parameters αi and βi (i = 1, . . . , n); see [18].

Remark 3.7. The size of the subspace S0
1 depends on the existence of an automor-

phism φ : C→ C satisfying

n∑
i=1

aiφ(αi) = 0 and
n∑
i=1

aiφ(βi) = 0.

The so-called characteristic polynomial method helps us to investigate such an ex-
istence problem in terms of polynomials whose coefficients depend algebraically on
the parameters αi and βi (i = 1, . . . , n); [15], see also [1], [13], [16] and [17].

Example 3.8. It is not too hard to find examples such that S0
1 is trivial, see e.g.

section 3 in [15] and section 5 for some explicite examples. In what follows we
present only the extremal cases of the characteristic polynomial method: first of all

reduce equation
n∑
i=1

aiφ(αi) = 0 to

(29) 1 +
n−1∑
i=1

a′iφ(α′i) = 0, where a′i = ai/an and α′i = αi/αn,

i = 1, . . . , n− 1.
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• if the parameters α′1, . . . , α
′
n−1 form an algebraically independent system over

the rationals then the characteristic polynomial is

P1(x1, . . . , xn−1) = 1 +
n−1∑
i=1

a′ixi.

The sufficient and necessary condition for the existence of φ satisfying (29) is that P1

has a root with algebraically independent coordinates over the rationals. It happens
if and only if one of the parameters a′1, . . ., a

′
n−1 is transcendent; [13], see also [16]

and [17].

• If all the parameters α′1, . . . , α
′
n−1 are algebraic over Q then the extension of

the rationals with α′1, . . . , α
′
n−1 is a simple algebraic extension by an algebraic

element u of finite degree. The elements of the extended field can be written
as

α′i = pi(u), where pi ∈ Q[x],

i = 1, . . . , n− 1. This means that the action of φ is uniquely determined by
φ(u). Consider the finite product

F1(a
′
1, . . . , a

′
n−1) =

∏
h

(
1 + a′1p1(sh) + . . .+ a′n−1pn−1(sh)

)
,

where sh runs through the finitely many algebraic conjugates of the element
u.

Using the fundamental theorem of the symmetric polynomials it can be proved
that the right-hand side is a rational polynomial of the variables a′1, . . ., a

′
n−1: the

coefficients are the polynomials of
∑

sh,
∑

sh · sk and so on. Its vanishing is the

sufficient and necessary condition for the existence of φ satisfying (29). The inverse
automorphism allows us to change the role of the parameters to unify the polynomial
for the family of the parameters αi’s and βi’s:

(30)
n∑
i=1

φ−1(ai)αi = 0 and
n∑
i=1

φ−1(ai)βi = 0.

4. Applications of spectral analysis II

In what follows we generalize the previous theorem for the nonzero monomial
solutions of higher degree p > 1 of equation (8)

4.1. The case of higher order monomial solutions. Suppose that

f(x) := Fp(x, . . . , x)

is a nonzero monomial solution of degree p > 1 of equation (8), where Fp is
a symmetric, p-additive function, i.e. f(e) 6= 0 for some e ∈ C. Let K =
Q(α1, . . . , αn, β1, . . . , βn, e) be the extension of Q by the complex numbers αi, βi
and e (i = 1, . . . , n). According to Lemma 2.12, S∗p is a variety in CG∗

, where

G∗ := K∗ × . . .×K∗︸ ︷︷ ︸
p−times

.
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We have that S∗p 6= {0} because Fp|G∗ ∈ S∗p and Fp(e, . . . , e) = f(e) 6= 0. Since G∗

is countable we find, by Theorem 2.15, that S∗p contains an exponential element φ:

φ(x1y1, . . . , xpyp) = φ(x1, . . . , xp) · φ(y1, . . . , yp).

Using the decomposition formula

(31) φ(x1, . . . , xp) = φ(x1, 1, . . . , 1) · φ(1, x2, 1 . . . , 1) · . . . · φ(1, . . . , 1, xp)

the exponential element can be written as the product

φ = φ1 · . . . · φp,

where φj : K∗ → C (j = 1, . . . , p) are exponentials in CK∗
. By Lemma 3.2, each of

them can be extended to an automorphism of C. According to the definition of S∗p
(subsection 2.2) the diagonalization

diag φ(x) := φ1(x) · . . . · φp(x)

is the solution of

(32)
n∑
i=1

aif̃(αix+ βiy) = c̃p ·
p∑
l=0

xlyp−l (x, y ∈ K)

for some c̃p ∈ C. Especially

(33) c̃p · xp =
n∑
i=1

aiφ(αix, . . . , αix) =
n∑
i=1

aiφ(αi, . . . , αi)φ(x, . . . , x)

and

(34) c̃p · yp =
n∑
i=1

aiφ(βiy, . . . , βiy) =
n∑
i=1

aiφ(βi, . . . , βi)φ(y, . . . , y).

Choosing x = y = 1

(35)
n∑
i=1

aiφ(αi, . . . , αi) =
n∑
i=1

aiφ(βi, . . . , βi) = c̃p.

On the other hand

c̃p · xlyp−l =
n∑
i=1

ai

(
p

l

)
φ(αix, . . . , αix︸ ︷︷ ︸

l times

, βiy, . . . , βiy) =

n∑
i=1

ai

(
p

l

)
φ(αi, . . . , αi︸ ︷︷ ︸

l times

, βi, . . . , βi)φ(x, . . . , x︸ ︷︷ ︸
l times

, y, . . . , y).

(36)

Choosing x = y = 1

(37)
n∑
i=1

ai

(
p

l

)
φ(αi, . . . , αi︸ ︷︷ ︸

l times

, βi, . . . , βi) = c̃p

and equation (37) holds for any permutation σ of the indices, i.e.

(38)
n∑
i=1

ai

(
p

l

)
φσ(1)(αi) · . . . · φσ(l)(αi) · φσ(l+1)(βi) · . . . · φσ(p)(βi) = c̃p.
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If c̃p = 0 then equations (33)-(38) give that diag φ is the solution of the homogeneous
equation

n∑
i=1

aif(αix+ βiy) = 0 (x, y ∈ C).

If c̃p 6= 0 then equations (36) and (37) imply that

xlyp−l = φ(x, . . . , x︸ ︷︷ ︸
l − times

, y, . . . , y).

Choosing l = 1 and y2 = . . . yp = 1 we can conclude that φ1(x) = x and so on:
φ1(x) = . . . = φp(x) = x (x ∈ K). Theorem 3.3 has the following analogue.

Theorem 4.1. The existence of a nonzero monomial solution of degree p > 1 of
(8) implies that there exist a finitely generated subfield K ⊂ C containing αi and βi
(i = 1, . . . , n) and some automorphisms φi : C→ C (i = 1, . . . , p) as the extensions
of the functions in the decomposition formula (31) of an exponential function φ in
S∗p such that

(39)
n∑
i=1

aidiag φ(αix+ βiy) = c̃p ·
p∑
l=0

xlyp−l (x, y ∈ K),

for some c̃ ∈ C. Especially

n∑
i=1

aiφ1(αi) · . . . · φp(αi) =
n∑
i=1

aiφ1(βi) · . . . · φp(βi) =

n∑
i=1

ai

(
p

l

)
φσ(1)(αi) · . . . · φσ(l)(αi) · φσ(l+1)(βi) · . . . · φσ(p)(βi) = c̃p,

(40)

where l = 1, . . . , p − 1 and σ is an arbitrary permutation of the indices. If c̃p = 0
then

(41)
n∑
i=1

aidiag φ(αix+ βiy) = 0 (x, y ∈ C),

i.e. diag φ is the solution of the homogeneous equation on C. If c̃p 6= 0 then φ1(x) =
. . . = φp(x) = x (x ∈ K) and

(42)
n∑
i=1

aiα
p
i =

n∑
i=1

aiβ
p
i =

n∑
i=1

ai

(
p

l

)
αliβ

p−l
i = c̃p 6= 0 (l = 1, . . . , p− 1).

Conversely, if (42) holds then f(x) := (c/c̃p) · xp is a nonzero particular monomial
solution of degree p of (8) on C.

Corollary 4.2. If c̃p 6= 0 for an exponential function in S∗p then the space of the
monomial solutions of degree p on K is

c

c̃p
· xp + diag S0

p ,

where diag means the diagonalizations of the elements of the set.
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Corollary 4.3. If there are no automorphisms satisfying
n∑
i=1

aiφ1(αi) · . . . · φp(αi) =
n∑
i=1

aiφ1(βi) · . . . · φp(βi) =

n∑
i=1

ai

(
p

l

)
φσ(1)(αi) · . . . · φσ(l)(αi) · φσ(l+1)(βi) · . . . · φσ(p)(βi) = 0,

(43)

then S0
p is trivial for any finitely generated field K ⊂ C containing the parameters

αi and βi (i = 1, . . . , n) and the only nonzero monomial solution of degree p of (8)
on C must be the proportional of the pth power function:

f(x) = c′ · xp, where c′ = c/c̃p

provided that
n∑
i=1

aiα
p
i =

n∑
i=1

aiβ
p
i =

n∑
i=1

ai

(
p

l

)
αliβ

p−l
i = c̃p 6= 0 (l = 1, . . . , p− 1).

Remark 4.4. If c̃p = 0 for any exponential function in S∗p then the diagonalizations
of the exponentials give only translation parts in the solution of the inhomogeneous
equation on K and we need to apply spectral synthesis in the variety S∗p to decide
the existence of a nonzero particular monomial solution of degree p of the inhomo-
geneous equation on finitely generated fields containing the parameters αi and βi
(i = 1, . . . , n); see [18].

Remark 4.5. The size of the subspace S0
p depends on the existence of automor-

phisms φ1, . . . , φp : C→ C satisfying
n∑
i=1

aiφ1(αi) · . . . · φp(αi) =
n∑
i=1

aiφ1(βi) · . . . · φp(βi) =

n∑
i=1

ai

(
p

l

)
φσ(1)(αi) · . . . · φσ(l)(αi) · φσ(l+1)(βi) · . . . · φσ(p)(βi) = 0,

(44)

where l = 1, . . . , p−1 and σ is an arbitrary permutation of the indices. The so-called
characteristic polynomial method helps us to investigate such an existence problem
in terms of polynomials whose coefficients depend algebraically on the parameters
αi and βi (i = 1, . . . , n); [15], see also [1], [13], [16] and [17].

Example 4.6. It is not too hard to find examples such that S0
p is trivial, see e.g. a

necessary and sufficient condition for S0
2 6= {0} in [3] provided that βi = 1− αi and

i = 1, . . . , 4; see also [14]. The special choice βi = 1 − αi (i = 1, . . . , n) allows us
to conclude a descending tendency in the space of the solutions of the homogeneous
equation in general: the existence of a nonzero monomial solution of degree p > 1
implies the existence of nonzero monomial solutions of degree p − 1, . . . , 1 too; see
[1] and [3]. Therefore S0

1 = {0} implies that S0
p = {0}, cf. Example 3.8 and section

5.

Example 4.7. Theorem 4.1 motivates the problem of the existence of a monomial
solution of the form φp, where φ is an automorphism of C. It is solved in Proposition
3.9 of [1] by constructing a counterexample: there is a linear functional equation
with a solution of degree two but there is no any solution of the form φ2, where φ is
an automorphism of C.
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5. Examples

The common feature of the following examples is that for any p = 1, . . . , 2n−1 the
space S0

p belonging to the restricitions of the solutions of the homogeneous equation
is trivial in case of any finitely generated field K ⊂ C containing the parameters αi
and βi (i = 1, . . . , n). This means that each of them contains only the identically
zero function and the inhomogeneous equation can be solved by spectral analysis; cf.
Corollary 3.5 and Corollary 4.3. Therefore we present all solutions of the following
functional equations defined on R or C. The examples show how our method is
working in explicite cases: the selection is based on our motivating papers [5], [6]
and [7]. In what follows we suppose that conditions of Lemma 1.1 are satisfied.

5.1. The first example. In their paper [5] the authors consider functional equation

(45) F (y)− F (x) = (y − x) (f(αx+ βy) + f(βx+ αy)) ,

i.e. n = 2, a1 = a2 = 1, α1 = α, α2 = β, β1 = β, β2 = α. Using Lemma 1.1,
Lemma 1.2 and Theorem 1.3 the solutions are generalized polynomials of degree at
most 3. Therefore we should solve the following functional equations:

(46) f(αx+ βy) + f(βx+ αy) = c0,

(47) f(αx+ βy) + f(βx+ αy) = c1 · (x+ y),

(48) f(αx+ βy) + f(βx+ αy) = c2 · (x2 + x · y + y2),

(49) f(αx+ βy) + f(βx+ αy) = c3 · (x3 + x2 · y + x · y2 + y3)

for some constants belonging to the possible values of p = 0, 1, 2, 3. Equation (46)
is trivial; the solutions are the constant functions (monomial terms of degree zero).

Lemma 5.1. For any p = 1, 2, 3 we have that S0
p belonging to the solutions in

the homogeneous case c̃p = 0 is trivial for any finitely generated subfield K ⊂ C
containing the parameters αi and βi (i = 1, 2).

Proof. In case of p = 1 the non-zero element in S0
1 implies the existence of an

automorhism φ : C→ C such that
2∑
i=1

aiφ(αi) =
2∑
i=1

aiφ(βi) = 0 ⇒ φ(α) + φ(β) = 0,

i.e. α = −β which contradicts to condition (3) in Lemma 1.1. In case of p = 2 the
non-zero element in S0

2 implies the existence of automorphisms φ1, φ2 : C→ C such
that

2∑
i=1

aiφ1(αi)φ2(αi) =
2∑
i=1

aiφ1(βi)φ2(βi) =
2∑
i=1

ai

(
2

1

)
φσ(1)(αi)φσ(2)(βi) = 0

for any permutation σ of the indices; see Theorem 4.1. Especially this system of
equations reduces to

φ1(α)φ2(α) + φ1(β)φ2(β) = 2φ1(α)φ2(β) + 2φ1(β)φ2(α) = 0

because of the symmetric roles of α and β. Introducing the notations

ωi = φi

(
α

β

)
, where i = 1, 2
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it follows that

(50) ω1 · ω2 + 1 = 2(ω1 + ω2) = 0

and, consequently ω2
1 = 1, i.e. α = ±β which contradicts to condition (3) in

Lemma 1.1. In case of p = 3 the non-zero element in S0
3 implies the existence of

automorphisms φ1, φ2, φ3 : C→ C such that

2∑
i=1

aiφ1(αi)φ2(αi)φ3(αi) =
2∑
i=1

aiφ1(βi)φ2(βi)φ3(βi) =

2∑
i=1

ai

(
3

1

)
φσ(1)(αi)φσ(2)(βi)φσ(3)(βi) =

2∑
i=1

ai

(
3

2

)
φσ(1)(αi)φσ(2)(αi)φσ(3)(βi) = 0

for any permutation σ of the indices. Especially this system of equations reduces to

ω1 · ω2 · ω3 + 1 = 3 (ω1 + ω2 · ω3) = 3 (ω3 + ω1 · ω2) =

3 (ω2 + ω1 · ω3) = 0
(51)

because of the symmetric roles of α and β, where

ωi = φi

(
α

β

)
and i = 1, 2, 3.

Therefore ω2
1 = 1, i.e. α = ±β which contradicts to condition (3) in Lemma 1.1. �

Using the previous lemma we obtain each monomial term in the solution of equa-
tion (45) must be the proportional of xp (p = 1, 2, 3) provided that the parameters
satisfy conditions of Theorem 3.3 and Theorem 4.1 under the choice φ(x) = x,
φ1(x) = φ2(x) = x and φ1(x) = φ2(x) = φ3(x) = x, respectively:

(i) there is an additive (monomial term of degree 1) term in the solution if and
only if

2∑
i=1

aiαi =
2∑
i=1

aiβi = c̃1 6= 0 ⇒ α + β = c̃1 6= 0,

It is obviously true because of condition (3) in Lemma 1.1.
(ii) There is a monomial term of degree 2 in the solution if and only if

2∑
i=1

aiα
2
i =

2∑
i=1

aiβ
2
i =

2∑
i=1

ai

(
2

1

)
αiβi = c̃2 6= 0 ⇒

α2 + β2 = 2 (α · β + β · α) = c̃2 6= 0,

i.e. α2 + β2 = 4αβ 6= 0.
(iii) There is a monomial term of degree 3 in the solution if and only if

2∑
i=1

aiα
3
i =

2∑
i=1

aiβ
3
i =

2∑
i=1

ai

(
3

1

)
αiβ

2
i =

2∑
i=1

ai

(
3

2

)
α2
iβi = c̃3 6= 0 ⇒

α3 + β3 = 3
(
α2 · β + β2 · α

)
= c̃3 6= 0,

i.e. α2 − αβ + β2 = 3αβ 6= 0 ⇒ α2 + β2 = 4αβ 6= 0.
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Therefore the spectral analysis presents the results of Theorem 2 (v) and (vi) in [5].
Note that condition α2 + β2 = 4αβ implies the fraction α/β to be 2 ±

√
3. The

discussion of the exceptional cases α = ±β or β = 0 can be found in Theorem 2 (i)
- (iv) of [5]. In these cases condition (3) of Lemma 1.1 is taking to fail.

Remark 5.2. If condition (3) in Lemma 1.1 is taking to fail then there can be more
general solutions: under the choice α = −β, equation (45) is satisfied by any odd
functions with F = constant; cf. Remark 3 in [6].

5.2. The second example. In their paper [6] the authors consider functional equa-
tion

(52) F (y)− F (x) = (y − x)
n∑
i=1

aif(αix+ (1− αi)y),

where
∑n

i=1 ai 6= 0 and βi = 1− αi (i = 1, . . . , n). In what follows we also suppose
that the parameters αi’s are different to satisfy condition (3) in Lemma 1.1; see
remark 5.2. Using Lemma 1.1, Lemma 1.2 and Theorem 1.3 the solutions are gen-
eralized polynomials of degree at most 2n− 1. Therefore we should solve functional
equations of type

(53)
n∑
i=1

aif(αix+ (1− αi)y) = cp

p∑
l=0

xpyp−l,

where p = 0, 1, . . . , 2n−1 and
∑n

i ai 6= 0. The following Lemma shows that condition∑n
i ai 6= 0 means the disqualification of non-zero solutions of the homogeneous

equation.

Lemma 5.3. For any p ≥ 1 we have that S0
p belonging to the solutions in the homo-

geneous case c̃p = 0 is trivial for any finitely generated subfield K ⊂ C containing
the parameters αi and βi (i = 1, . . . , n).

Proof. Substituting x = y in equation

(54)
n∑
i=1

aif(αix+ (1− αi)y) = 0

we have that f(x) = 0 because of
∑n

i=1 ai 6= 0. �

Remark 5.4. Equation (54) is widely studied under the condition
∑n

i=1 ai = 0; [1],
[3], see also [14]. The special choice βi = 1− αi (i = 1, . . . , n) allows us to conclude
a descending tendency in the space of the solutions of the homogeneous equation
in general: the existence of a nonzero monomial solution of degree p > 1 implies
the existence of nonzero monomial solutions of degree p − 1, . . . , 1 too; see [1] and
[3], Example 4.6. This means that condition

∑n
i=1 ai 6= 0 is essential to conclude

Lemma 5.3; cf. Remark 2 in [6].

Remark 5.5. The proof of Lemma 5.3 is also working in a more general situation
according to the rational homeogenity of p-additive functions: let us choose rational
numbers r1, . . . rn such that the elements

r1 = (r1, . . . , rn), . . . , r2n−1 := (r2n−11 , . . . , r2n−1n )

belong to the half-space defined by 〈α,x〉 > 0, where α = (α1, . . . , αn). If βi = ri−αi
(i = 1, . . . , n) then, by repeating the steps of the proof of Lemma 5.3, it can be easily
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seen that S0
p is trivial for any p = 1, . . . , 2n − 1. The construction is the general

version of Remark 4 in [6].

Using the previous lemma we obtain each monomial term in the solution of equa-
tion (52) must be the proportional of xp (p = 1, . . . 2n − 1) (see also Theorem 1 in
[6]). Now we apply conditions of Theorem 3.3 and Theorem 4.1 under the choice
φ(x) = x, φ1(x) = φ2(x) = x, . . ., φ1(x) = φ2(x) = . . . = φp(x) = x, respectively:

(55)
n∑
i=1

aiα
p
i =

n∑
i=1

ai(1− αi)p =
n∑
i=1

ai

(
p

l

)
αli(1− αi)p−l = c̃p 6= 0,

where l = 1, . . . , p− 1. Under the choice l = p− 1 we have that
n∑
i=1

ai

(
p

p− 1

)
αp−1i (1− αi) = c̃p ⇒

n∑
i=1

aiα
p−1
i =

p+ 1

p
c̃p =: c̃p−1.

If l = p− 2 then
n∑
i=1

ai

(
p

p− 2

)
αp−2i (1− αi)2 = c̃p ⇒

n∑
i=1

aiα
p−2
i =

p+ 1

p− 1
c̃p.

Under the choice l = p− 3:
n∑
i=1

ai

(
p

p− 3

)
αp−3i (1− αi)3 = c̃p ⇒

n∑
i=1

aiα
p−3
i =

p+ 1

p− 2
c̃p

and so on. Therefore system (55) is equivalent to

n∑
i=1

aiα
p
i = c̃p

n∑
i=1

aiα
p−1
i =

p+ 1

p
c̃p = c̃p−1

n∑
i=1

aiα
p−2
i =

p+ 1

p− 1
c̃p =

p

p− 1
c̃p−1

n∑
i=1

aiα
p−3
i =

p+ 1

p− 2
c̃p =

p

p− 2
c̃p−1

...

(56)

System (56) shows a kind of descending tendency in this case. If the solution of (52)
contains a monomial term of degree p with c̃p 6= 0 then we also have a monomial
term of degree p− 1 with c̃p−1 6= 0.

5.3. The third example. Using some linear substitutions, it can be easily seen
that the homogeneous equation (54) is equivalent to

(57)
n∑
i=1

aif(x+ βiy) = 0

for some parameters βi’s. Therefore we are motivated to investigate the inhomo-
geneous case under the choice of the parameters αi = 1 (i = 1, . . . , n). Consider
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functional equation

(58) F (y)− F (x) = (y − x)
n∑
i=1

aif(x+ βiy),

where
∑n

i=1 ai 6= 0 and βi’s are different parameters. According to the equivalence
of (57) and (54) in the homogeneous case there is no need to repeat the investigation
of S0

1 , . . . , S
0
p . We can directly conclude that each monomial term in the solution of

equation (58) must be the proportional of xp (p = 1, . . . 2n − 1) as the solution of
the functional equations of type

(59)
n∑
i=1

aif(x+ βiy) = cp

p∑
l=0

xpyp−l,

where p = 0, 1, . . . , 2n − 1 and
∑n

i ai 6= 0. Using conditions of Theorem 3.3 and
Theorem 4.1 under the choice φ(x) = x, φ1(x) = φ2(x) = x, . . ., φ1(x) = φ2(x) =
. . . = φp(x) = x, respectively:

n∑
i=1

ai =
n∑
i=1

aiβ
p
i =

n∑
i=1

ai

(
p

l

)
βp−li = c̃p 6= 0,

where l = 1, . . . , p − 1. Observe that for any p = 1, . . . , 2n − 1 we have a universal
constant c̃p because of c̃p =

∑n
i=1 ai (p = 1, . . . , 2n − 1). This means that the

solution must be the proportional of xp for a uniquely determined value of the power
p. Therefore there is no descending tendency and the family of the parameters αi
and 1−αi (i = 1, . . . , n) or αi = 1 and βi (i = 1, . . . , n) represent essentially different
classes of functional equations in the inhomogeneous case.

5.4. The fourth example. In their paper [7] the authors consider functional equa-
tion

(60) F (y)− F (x) = (y − x) (af(x) + (1− a)f(λx+ (1− λ)y)) ,

i.e. n = 2, a1 = a, a2 = 1− a, α1 = 1, α2 = λ, β1 = 0, β2 = (1− λ), where λ 6= 0, 1
and a 6= 0. Using Lemma 1.1, Lemma 1.2 and Theorem 1.3 the solutions are
generalized polynomials of degree at most 3. Therefore we should solve functional
equations

(61) af(x) + (1− a)f(λx+ (1− λ)y) = c0,

(62) af(x) + (1− a)f(λx+ (1− λ)y) = c1 · (x+ y),

(63) af(x) + (1− a)f(λx+ (1− λ)y) = c2 · (x2 + x · y + y2),

(64) af(x) + (1− a)f(λx+ (1− λ)y) = c3 · (x3 + x2 · y + x · y2 + y3)

for some constants belonging to the possible values of p = 0, 1, 2, 3. Equation (61) is
trivial; the solutions are the constant functions (monomial terms of degree zero). The
translation parts of a non-zero particular solution of the inhomogeneous equations
depends on the size of S0

1 , S0
2 and S0

3 . We are going to prove that all of them are
trivial:

2∑
i=1

aiφ(αi) =
2∑
i=1

aiφ(βi) = 0
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implies that
a+ (1− a)φ(λ) = (1− a) (1− φ(λ)) = 0,

i.e. λ = 1 (which is a contradiction) or a = 1 and a = 0 at the same time. The
contradictions show that S0

1 contains only the identically zero function. Using that
φ(1) = 1 and φ(0) = 0 for any automorphism of C the second order conditions

2∑
i=1

aiφ1(αi)φ2(αi) =
2∑
i=1

aiφ1(βi)φ2(βi) =
2∑
i=1

ai

(
2

1

)
φσ(1)(αi)φσ(2)(βi) = 0

give the same contradictions as above because of λ 6= 0, 1. This means that S0
2 is

trivial. The third order conditions
2∑
i=1

aiφ1(αi)φ2(αi)φ3(αi) =
2∑
i=1

aiφ1(βi)φ2(βi)φ3(βi) =

2∑
i=1

ai

(
3

1

)
φσ(1)(αi)φσ(2)(βi)φσ3(βi) =

2∑
i=1

ai

(
3

2

)
φσ(1)(αi)φσ(2)(αi)φσ(3)(βi) = 0

can be also given as a simple system of equations because of β1 = 0. An easy
computation shows that S0

3 is trivial. As the next step consider the particular
nonzero solutions of equations (62), (63) and (64).

(i) For the existence of the additive (monomial term of degree 1) term in the
solution it is sufficient and necessary that

2∑
i=1

aiαi =
2∑
i=1

aiβi = c̃1 6= 0.

Especially a+ (1− a)λ = (1− a)(1− λ) = c̃1 6= 0, i.e. a 6= 1 and

(65) 2λ = 1− a

1− a
implies that a 6= 1/2 because of λ 6= 0, 1.

(ii) For the existence of the monomial term of degree 2 in the solution it is
sufficient and necessary that

2∑
i=1

aiα
2
i =

2∑
i=1

aiβ
2
i =

2∑
i=1

ai

(
2

1

)
αiβi = c̃2 6= 0.

Especially a+ (1− a)λ2 = (1− a)(1−λ)2 = 2λ(1−λ) = c̃2 6= 0, i.e. λ = 1/4
and a = 1/3. Note that (65) is satisfied under these special values, i.e. we
can see the descending tendency too.

(iii) For the existence of the monomial term of degree 3 in the solution it is
sufficient and necessary that

2∑
i=1

aiα
3
i =

2∑
i=1

aiβ
3
i =

2∑
i=1

ai

(
3

1

)
αiβ

2
i =

2∑
i=1

ai

(
3

2

)
α2
iβi = c̃3 6= 0.

Especially

a+ (1− a)λ3 = (1− a)(1− λ)3 = 3(1− a)λ(1− λ)2 =



SPECTRAL ANALYSIS OF INHOMOGENEOUS LINEAR EQUATIONS 21

3(1− a)λ2(1− λ) = c̃3 6= 0.

Therefore
a

1− a
+ λ3 = (1− λ)3 = 3λ(1− λ)2 = 3λ2(1− λ).

From equation
3λ(1− λ)2 = 3λ2(1− λ)

it follows that λ = 1/2 which contradicts to equation

(1− λ)3 = 3λ(1− λ)2

and there is no monomial term of degree 3 in the solution; cf. Theorem 8 in
[7].

5.5. The fifth example. In their paper [7] the autors consider functional equation

(66) F (y)− F (x) = (y − x) (af(λx+ (1− λ)y) + (1− a)f((1− λ)x+ λy)) ,

i.e. n = 2, a1 = a, a2 = 1 − a, α1 = λ, α2 = 1 − λ, β1 = (1 − λ), β2 = λ, where
λ 6= 0, 1 and a 6= 0. Using Lemma 1.1, Lemma 1.2 and Theorem 1.3 the solutions
are generalized polynomials of degree at most 3. Since it is a special case of the
second example with

∑2
i=1 ai = 1 6= 0 we can directly conclude that S0

1 , S0
2 and S0

3

are trivial. To avoid some unnecessary repetitions we summarize the basic results
(see example 5.2):

(i) for the existence of the additive (monomial term of degree 1) term in the
solution it is sufficient and necessary that

aλ+ (1− a)(1− λ) = a(1− λ) + (1− a)λ = c̃1 6= 0.

Equation aλ+ (1− a)(1− λ) = a(1− λ) + (1− a)λ implies that

(1− 2a)(1− 2λ) = 0,

i.e. a = 1/2 or λ = 1/2.
(ii) For the existence of the monomial term of degree 2 in the solution it is

sufficient and necessary that

aλ2 + (1− a)(1− λ)2 = a(1− λ)2 + (1− a)λ2 =

2aλ(1− λ) + 2(1− a)(1− λ)λ = c̃2 6= 0.

Since we know that the descending tendency holds in the space of the solu-
tions it is enough to check the values a = 1/2 or λ = 1/2 as we have seen in
(i). If a = 1/2 then we have that

6λ2 − 6λ+ 1 = 0, i.e. λ12 =
3±
√

3

6
.

In case of λ = 1/2 we have a contradiction:

a

4
+

1− a
4

=
a

4
+

1− a
4

=
a

2
+

1− a
2

= c̃2 6= 0.

(iii) For the existence of the monomial term of degree 3 in the solution it is
sufficient and necessary that

aλ3 + (1− a)(1− λ)3 = a(1− λ)3 + (1− a)λ3 =

3aλ(1− λ)2 + 3(1− a)(1− λ)λ2 =

3aλ2(1− λ) + 3(1− a)(1− λ)2λ = c̃3 6= 0.
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According to the descending tendency it is enough to check the values

a =
1

2
and λ12 =

3±
√

3

6
.

A direct computation shows that they satisfy the necessary and sufficient
conditions; cf. Theorem 9 in [7].

6. Concluding remarks

The application of the spectral analysis in the solution of linear functional equa-
tions provides a unified method of treatment of the equations in both the homo-
geneous and inhomogeneous cases. In case of inhomogeneous problems this gives
a necessary condition for the existence of the nonzero solutions. The sufficiency
also follows in some special cases and the spectral analysis allows us to describe all
solutions provided that S0

1 , . . ., S0
2n−1 are trivial, i.e. they contain only the identi-

cally zero function. It depends only on the algebraic properties of the parameters.
These algebraic properties are accumulated in the characteristic polynomial of the
functional equation; see Remark 3.7 and Example 3.8 (theoretical examples). An
explicite example for non-trivial S0

1 can be found in section 3 of [15]. In this case we
need the so-called spectral synthesis to decide the existence of the nonzero particular
solution of the functional equation. On the other hand the spectral synthesis helps
us to describe the entire space of the solutions on a large class of finitely generated
fields; see [18].
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