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Summary 
Numerous studies have demonstrated that the gastrointestinal tract (GIT) microbiota plays 

important roles for the human host. Since the GIT microbiota interfaces with the immune 

system and represents a first line of defense against infectious agents, interest has grown 

in whether the GIT microbiota may influence the outcome of different anticancer 

treatments. In this study, the GIT of pediatric patients with different cancer types as well 

as adult patients with hematologic malignancies undergoing an allogeneic hematopoietic 

stem cell transplantation were sampled throughout their treatment. In order to deeply 

profile not only the composition of the community, but also the functional capacity and 

expression, recently developed wet- and dry-lab methodologies for integrated multi-omic 

analyses were applied. The trajectories of the prokaryotic and microeukaryotic GIT 

communities of the patients were described in detail using 16S, 18S rRNA gene amplicon 

sequencing, as well as metagenomic and metatranscriptomic shotgun sequencing. 

Indeed, changes in the GIT microbiome in response to treatment were detected. Some 

changes that are generally thought to be detrimental for human health were detected 

during treatment, such as a decrease in alpha-diversity, a decrease in relative abundance 

of bacteria associated with health-promoting properties (such as Blautia spp., Roseburia 

spp. and Faecalibacterium spp.), as well as an increase in the relative abundance of 

antibiotic resistance genes. These changes were more pronounced in the adult 

hematology patients than in the pediatric patients, which is likely due to the more intensive 

treatment. Some observations need further investigation in order to explain their 

implication in human health. For example, in the pediatric patients, lower relative 

abundance of Akkermansia muciniphila was associated with mucositis and functional 

gene categories that are linked to bacteriophages or the bacterial defense mechanism 

against bacteriophages were associated with the overall status of the patient and 

mucositis development. Importantly, in both cohorts, high inter-individual but also high 

intra-individual variation in the prokaryotic communities were detected while the 

microeukaryotic community did not exhibit drastic changes. In conclusion, the employed 

integrated multi-omics analysis allowed detailed profiling of the GIT community including 

archaea, bacteria, eukaryotes and viruses as well as the functional potential including 

antibiotic resistance genes. In the future, analysis of the individual-specific processes 

within the GIT microbial community of patients throughout treatment might allow to adjust 

therapy regimens accordingly and improve the overall outcome of the therapy. 
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1 Introduction  

1.1 The human microbiome 

The human body is colonized by a multitude of different microorganisms, commonly 

referred to as the 'microbiota', with their associated genomes being referred to as the 

'microbiome' (Ursell, Metcalf, Parfrey, & Knight, 2013). Various sites such as the skin, the 

oral cavity and the gastrointestinal tract (GIT) are highly colonized by these organisms. 

This ecosystem is assumed to be composed of about 100 trillion microorganisms, 

including 500 – 1500 different species of bacteria, archaea, fungi, unicellular eukaryotes 

and viruses (Hooper & Gordon, 2001; Kinross, von Roon, Holmes, Darzi, & Nicholson, 

2008; Schwiertz, 2016; Sekirov, Russell, Antunes, & Finlay, 2010). The human 

microbiome, especially the GIT microbiome has recently gained much research interest 

worldwide (Figure 1.1.1). For a long time, it was believed that the number of human cells 

that makes up the human body is outnumbered by the number of microorganisms living in 

and on it, by at least a factor of ten (Luckey, 1972). However, this was based on a rough 

estimate and has recently been revised and rectified. According to more recent studies, 

the number of microorganisms associated with the human body is approximately equal to 

the number of human cells (Sender, Fuchs, & Milo, 2016). Recent studies focussing on 

the microbiome of different body sites have highlighted that the community structure of a 

specific body site remains relatively constant within one person and that the inter-

individual variation of the community structure is in general higher than the variation over 

time within one person (The Human Microbiome Project Consortium, 2012; Zhou et al., 

2013).  

 

Figure 1.1.1: Number of published articles including the words 'human microbiome' per year. The plot 
indicates the number of published articles in PuBMed (Medline) including the words 'human microbiome' per 
year (Corlan, 2004). 
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1.1.1 The technology-driven revolution of human microbiome research 

It is known that only a small part of the microorganisms present in the GIT are culturable 

in isolation under laboratory conditions. Therefore, for a long time, culture-dependent 

analyses have allowed to only characterize and inspect a part of the microbiome. Novel 

culture-independent methods have allowed a much deeper characterization of the human 

microbiome. Targeted amplification and sequencing of specific phylogenetic marker genes 

such as 16S (for prokaryotes) and 18S (for eukaryotes) ribosomal ribonucleic acid (rRNA) 

gene or internal transcribed spacer (ITS, mostly used for fungi) has led to a revolution in 

microbiome research. 16S and 18S rRNAs are part of the small ribosomal subunits, 

meaning that they are present in each prokaryotic and eukaryotic organism, respectively. 

Furthermore, they contain conserved regions, allowing the construction of universal 

primers used for polymerase chain reaction (PCR) amplification, as well as hypervariable 

regions (Figure 1.1.2), which can be utilized to identify different species. These traits 

make the 16S rRNA gene the 'gold standard' genetic marker for bacterial phylogeny 

(Case et al., 2007).  

 

Figure 1.1.2: Secondary structure of the 16S ribosomal RNA. Double lines represent variable or 
hypervariable regions, single lines represent highly conserved regions. V1 to V9 represent hypervariable 
regions (Tortoli, 2003). 

Organisms are classified into a hierarchical system, the taxonomic classification. Different 

levels or ranks have been defined. Ideally, taxonomy reflects evolutionary relationships 



1. Introduction 

!3 

among organisms. In the past, bacteria were classified based on their morphologic and 

phenotypic characteristics (e.g. shape, Gram stain, motility) while more recently, gene 

sequences (including the 16S rRNA gene) are used to identify relationships. Table 1.1.1 

includes the taxonomic classification of Escherichia coli as an example.  

Table 1.1.1: Example of the taxonomic classification of Escherichia coli. 

Taxonomic rank Taxon 

Domain Bacteria 

Phylum Proteobacteria 

Class Gammaproteobacteria 

Order Enterobacteriales 

Family Enterobacteriaceae 

Genus Escherichia 

Species Escherichia coli 

 

On one hand, amplicon sequencing has allowed to characterize the composition of the 

microbiome much more in detail than cultivation. Around 80 % of the sequenced taxa had 

not been cultivated before (Eckburg et al., 2005). On the other hand, this method allows to 

solely identify different taxa, whereas culturing of isolates is necessary to describe the 

biological and genetic nature of the organisms. However, the creation of isolate cultures is 

difficult and often even impossible. Reasons for this 'unculturability' include the need for 

specific growth conditions such as nutrients, pH, incubation temperatures, or dependence 

on the presence of other community members (Vartoukian, Palmer, & Wade, 2010).  

The third approach, metagenomics, refers to culture-independent genomic analysis of an 

assemblage of microorganisms. The emergence of high-throughput random shotgun 

sequencing and the continuous decrease in sequencing costs (Figure 1.1.3) have made it 

possible to explore complex communities using metagenomic (MG) sequencing without a 

priori knowledge, without reference database. 
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Figure 1.1.3: Development of DNA sequencing costs over time. The sequencing cost is represented in 
US Dollar per megabase. Data taken from https://www.genome.gov/sequencingcostsdata (Wetterstrand, 
2016). 

The collective genomes of a community within a sample is called the metagenome 

(Handelsman, Rondon, Brady, Clardy, & Goodman, 1998), while the associated RNA is 

called metatranscriptome. Metatranscriptomic (MT) sequencing allows community-wide 

gene expression to be resolved. At a sufficient sequencing depth, de novo MG 

assemblers are now able to assemble genomes of a complex community, such as a fecal 

microbiome (Segata et al., 2013). Large-scale international MG studies (Human 

Microbiome Project, MetaHIT) are concentrating on characterizing the human microbiome 

and the complex interplay between this microbial community and its human host 

(Peterson et al., 2009; The Human Microbiome Project Consortium, 2012). A reference 

gene catalogue of the GIT microbiome has been assembled, including 9.9 Mio non-

redundant genes (Li et al., 2014). The functional potential of the microbiome is estimated 

to be two orders of magnitude greater than that encoded by the human genome 

(Bäckhed, Ley, Sonneburg, Peterson, & Gordon, 2005). Meta-omic studies, combining 

metagenomics and metatranscriptomics are currently arising and will change microbiome 

studies, allowing an even more precise characterization of the community, its functional 

potential and gene expression and thus, its relationship and importance for the human 

host.  
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1.1.2 Characteristics of the human gastrointestinal microbiome 

While every body site has its own unique microbial community, the composition of each 

community varies between individuals and over time, due to external influences such as 

changes in diet, antibiotic administration and important lifestyle changes (Lozupone, 

Stomabaugh, Gordon, Jansson, & Knight, 2012).  

The majority of the microorganisms associated with the human body live in the GIT. This 

organ system includes the most stable and diverse microbiome, the colon being the most 

densely colonized compartment, with densities of around 108 cells per ml in the cecum to 

up to 1012 cells per ml in stool (Dethlefsen, Eckburg, Bik, & Relman, 2006). Although this 

microbiome is considered to be quite stable in healthy individuals, it is difficult to 

determine features of a 'healthy' microbiome, as it might be different for people according 

to their age, geographical location and genetics (Greenhalgh, Meyer, Aagaard, & Wilmes, 

2016). Upon birth, neonates are exposed to a high number of microorganisms which 

influence colonization if the neonate GIT. Gestational age and the mode of delivery affect 

the initial colonization and following succession of the infant GIT (Arboleya et al., 2015; 

Jakobsson et al., 2013). After birth, the first food (breast milk versus formula milk) as well 

as the subsequent diet (including solid food) influences the GIT microbiome (Thompson, 

Monteagudo-Mera, Cadenas, Lampl, & Azcarate-Peril, 2015). Increasingly improved 

hygiene and antibiotic usage in early childhood are believed to negatively affect the GIT 

microbiome (Shen & Wong, 2016). In addition, throughout lifetime, external environmental 

factors such as the living area (urban versus rural environment) (Nakayama et al., 2015), 

siblings (Penders et al., 2006), pets (Azad et al., 2013) and the general familial 

environment further influence the GIT microbiome (Figure 1.1.4). 
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Figure 1.1.4: Generic and age-specific factors which influence the GIT microbiome (Greenhalgh et al., 
2016). 

1.1.3 The gastrointestinal microbiome in human health and disease 

On the one hand, colonization by microorganisms can negatively affect humans, 

infectious diseases being one example. On the other hand, microorganisms perform 

essential functionalities such as carbohydrate metabolism, modulation of epithelial barrier 

function and nutrient absorption (Hollister, Gao, & Versalovic, 2014). In the GIT, they also 

play important roles for the host as for example in shaping the immune system 

(Mazmanian, Cui, Tzianabos, & Kasper, 2005), synthesis of vitamins (Qin et al., 2010), 

providing the host with short-chain fatty acids (SCFAs) (Qin et al., 2010), prevention of 

colonization by pathogens (Ivanov et al., 2009; Stecher & Hardt, 2011) and the 

metabolism of xenobiotics (Maurice, Haiser, & Turnbaugh, 2013) (Figure 1.1.5).  
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Figure 1.1.5: Roles of the GIT microbiome. The GIT microbiome exerts many protective, structural and 
metabolic functions within the host. IgA = Immunoglobulin A; IEC = intestinal epithelial cell (O’Hara & 
Shanahan, 2006). 

Recent MG analysis has shown that the GIT microbial community is mainly comprised of 

bacteria, with 97.6 % of the reads belonging to this domain, while 2.2 % of the reads 

belonged to the archaea and less than 0.01 % to eukaryotes. An additional 0.2 % of the 

reads could be associated with viruses (Zhernakova et al., 2016). The intestinal 

microbiota is primarily composed of four different bacterial phyla, Firmicutes, 

Bacteroidetes, Actinobacteria and Proteobacteria, with Firmicutes and Bacteroidetes 

accounting for more than 90 % of the total bacterial community (Ley, Peterson, & Gordon, 

2006). Proportions between these phyla can vary between individuals and also within one 

individual over time.  

In a healthy person, the GIT microbiota usually includes a balanced composition of 

different organisms, which is essential for human health. These include different 

commensals, symbionts and pathobionts. Commensals are residents that do not provide 

any benefit nor harm to the host. Symbionts are organisms that benefit the host. 

Pathobionts are organisms that do not normally elicit an inflammatory response, but have 

the potential to cause inflammation and lead to disease (Round & Mazmanian, 2009). 

Several factors might lead to a shift and significant alterations in the composition of the 

microbiota with either a decrease in symbionts and commensals and/or an increase in 

pathobionts (Figure 1.1.6). This disruption of the balanced state between the intestinal 

microbes is called dysbiosis. The term 'dysbiosis' was already used in 1890 by Dr. E. E. 

Furney where he related to plant, animal and human resiliency (Furney, 1890). This state 

refers to an altered composition with associated functional changes. In this scenario, 
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production ands serum immunoglobulin levels, smaller Peyer’s
patches and fewer intraepithelial lymphocytes, but increased entero-
chromaffin cell area (Shanahan, 2002). However, reconstitution of
germ-free mice with an intestinal microflora is sufficient to restore
the mucosal immune system (Umesaki et al, 1995). Indeed, colo-
nization of germ-free mice with a single species, Bacteroides
thetaiotaomicron, affects the expression of various host genes that
influence nutrient uptake, metabolism, angiogenesis, mucosal barrier
function and the development of the enteric nervous system (Xu &
Gordon, 2003). Moreover, ligands from commensal bacteria and
commensal-derived symbiosis factors influence the normal devel-
opment and function of the mucosal immune system (Mazmanian 
et al, 2005; Rakoff-Nahoum et al, 2004). Commensal bacteria pro-
foundly influence the development of humoral components of the
gut mucosal immune system (Weinstein & Cebra, 1991) and also
modulate the fine-tuning of T-cell repertoires and T-helper (Th)-cell
type 1 or type 2 cytokine profiles (Cebra, 1999; Shanahan, 2002). Thus,
it is possible that the composition of the colonizing flora influences
individual variations in immunity.

The intestinal microbiome has a metabolic activity that is both
adaptable and renewable (Bocci, 1992). Through the production of
short-chain fatty acids, resident bacteria positively influence

intestinal epithelial cell differentiation and proliferation, and
mediate other metabolic effects (Fig 1B; Shanahan, 2002).
Together, this complex metabolic activity recovers valuable energy
and absorbable substrates for the host, and provides energy and
nutrients for bacterial growth and proliferation. Colonization
increases the uptake of glucose in the intestine and, compared
with colonized mice, germ-free mice require a greater caloric
intake to sustain a normal body weight (Backhed et al, 2004). This
implicates gut bacteria as modulators of fat deposition in the host.

Host–flora communication at the mucosal surface
Host defence requires an accurate interpretation of the micro-
environment to distinguish commensal organisms from episodic
pathogens and a precise regulation of subsequent responses. The
epithelium provides the first sensory line of defence and active sam-
pling of resident bacteria, pathogens and other antigens is mediated
by three main types of immunosensory cell (Fig 2). First, surface
enterocytes serve as afferent sensors of danger within the luminal
microenvironment by secreting chemokines and cytokines that
alert and direct innate and adaptive immune responses to the
infected site (Shanahan, 2005). Second, M cells that overlie lym-
phoid follicles sample the environment and transport luminal 
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Fig 1 | Functions of the intestinal flora. (A) Bacteria density increases in the jejunum/ileum from the stomach and duodenum, and in the large intestine, colon-
residing bacteria achieve the highest cell densities recorded for any ecosystem. The most common anaerobic and aerobic genera are listed. (B) Commensal bacteria
exert a miscellany of protective, structural and metabolic effects on the intestinal mucosa.
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pathobionts can become pathogenic and cause non-specific inflammation and possibly 

diseases (Cerf-Bensussan & Gaboriau-Routhiau, 2010; Round & Mazmanian, 2009).  

Dysbiosis has recently been linked to different diseases or conditions such as 

inflammatory bowel disease, obesity, colorectal cancer, cardiovascular diseases, 

diabetes, allergies, infection and multiple sclerosis (Bollyky et al., 2009; Hill et al., 2012; 

Kamada, Seo, Chen, & Núñez, 2013; Ley, Turnbaugh, Klein, & Gordon, 2006; Manichanh 

et al., 2006; Moore & Moore, 1995; Qin et al., 2012; Z. Wang et al., 2011). Most of these 

conditions involve inflammation, which is a result of an altered immune response, in this 

case as consequence of an altered intestinal microbiome. Thus, immune dysregulation 

and GIT dysbiosis often concur, one as a result of the other.  

 

 
Figure 1.1.6: Factors influencing the GIT microbiome composition and subsequent effects on host 
health (F. Sommer & Bäckhed, 2013). 

As mentioned before (section 1.1.2 and Figure 1.1.4), many factors such as diet, lifestyle, 

hygiene, antibiotics and other medication, shape and influence the GIT microbiome. The 

altered composition of the GIT microbiome can lead to modulation of production of pro-

inflammatory mediators (such as (interleukin) IL-6, IL-12 and tumor necrosis factor (TNF)) 

or anti-inflammatory mediators (such as IL-10), while nucleotide-binding oligomerization 

domain-containing protein 2 (NOD2) polymorphisms have been linked to Crohn's disease 

and GvHD (Penack, Holler, & van den Brink, 2010). This regulation of the immune system 

can in turn influence the GIT microbiome and lead to dysbiosis (Figure 1.1.6). 

Perturbations of the GIT microbiota may allow 'blooms' of harmful bacteria that are usually 

only lowly abundant, contributing to development of a disease. Especially blooms of 

Enterobacteriaceae (such as E. coli, Proteus spp. or Klebsiella spp.) are often observed in 
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a dysbiosis. Additionally, this may result in a vicious cycle of pathobiont blooms induced 

by inflammation and further inflammation induced by pathobionts. 

In individuals with colorectal cancer, the abundance of Fusobacterium nucleatum is 

frequently increased in the fecal microbiome (Castellarin et al., 2011). In both Crohn's 

disease and ulcerative colitis, the two main forms of inflammatory bowel disease, a lower 

diversity in the GIT microbiome as well as changes in the microbiome composition (i.e. an 

increased abundance of mucosal-associated aerotolerant bacteria compared to healthy 

individuals) have been observed (Gevers et al., 2014; Wlodarska, Kostic, & Xavier, 2015).  

Although specific patterns or shifts in the GIT microbial communities could be linked to 

diseases and disorders, often it is still unknown what is cause and consequence. 

Considering the multitude of different microbial populations living in and on the human 

body and the important roles they are playing in health but also in disease, it is clear that a 

precise characterization of the microbial community composition, its functional potential 

and actual expression of genes, but also specifically of changes in the community 

composition throughout time is needed, in order to be able to link these changes to the 

development of a disease or disorder.  

1.1.4 Relationship between the gastrointestinal microbiome and the immune 
system  

The GIT is densely populated with an important variety of microorganisms and they are in 

close contact with the host intestinal mucosa and its innate and adaptive immune 

systems. Here, the immune system helps in maintaining a balanced community of 

commensals, which in turn plays a part in protecting from pathogen invasion, for example 

by occupation of specific niches and by nutrient competition. 

Physical barriers such as the mucus layer (produced by goblet cells), tight junctions and 

secretion of certain anti-microbial peptides (by Paneth cells) regulate the relationship 

between the microbiota and the host (Hooper, Littman, & Macpherson, 2012). Peyer's 

patches are collections of lymphoid follicles in the intestinal mucosa, which harbor 

antigen-presenting cells (such as macrophages and dendritic cells). Together with 

mesenteric lymph nodes and lamina propria lymphocytes, they are part of the gut-

associated lymphoid tissue (GALT) (Cerf-Bensussan & Gaboriau-Routhiau, 2010; Schuijt, 

van der Poll, de Vos, & Wiersinga, 2013). Epithelial cells, dendritic host cells and 

macrophages express pattern recognition receptors (PRRs) such as Toll-like receptors 

(TLRs) and nucleotide-binding oligomerization domain-like receptors (NLRs) which 

recognize microbe-associated molecular patterns (MAMPs), evolutionary conserved 

molecular structures produced by various microorganisms (Clemente, Ursell, Parfrey, & 
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Knight, 2012). Activation of these receptors can induce a spectrum of signalling events 

from a pro-inflammatory cytokine response up to the presentation of antigens to regulatory 

T cells (Tregs). Activation of these Tregs conveys tolerance towards commensal bacteria 

from the initial colonization of the GIT during early life (Fukata, Vamadevan, & Abreu, 

2009). Some GIT bacteria produce SCFAs such as butyrate, propionate and acetate. 

Butyrate is one of the most important energy sources for enterocytes and has important 

anti-inflammatory properties by inhibiting nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB) signaling (Vinolo, Rodrigues, Nachbar, & Curi, 2011). It was also 

shown to upregulate expression of tight junction proteins, thereby strengthening the 

physical epithelial barrier (Peng, Li, Green, Holzman, & Lin, 2009). 

While most bacteria occupy the GIT lumen, segmented filamentous bacteria (SFB) seem 

to be able to penetrate the mucus layer and interact closely with the epithelial cells, 

inducing signaling events that lead to differentiation of T helper (TH) 17 cells (Ivanov et al., 

2009). These are cytokine (mainly IL-17A, IL-17F, IL-21 and IL-22) producing CD4+ 

effector T cells which are specialized in responses to extracellular bacteria and fungi 

(Ouyang, Kolls, & Zheng, 2012). On the other hand, polysaccharide A (PSA) produced by 

Bacteroides fragilis prevents expansion of TH17 cells. It has anti-inflammatory or 

regulatory characteristics, which include induction of IL-producing Tregs cells, which in turn 

suppresses the production of pro-inflammatory cytokines (Troy & Kasper, 2010).  

Additionally, epithelial innate antimicrobial effector molecules, called antimicrobial 

peptides (AMPs) are important effectors of innate immunity and can shape and regulate 

the composition of the GIT community. The peptide RegIIIγ depends on microbiome 

induced TLR signalling. Besides killing Gram-positive bacteria, it also prevents 

overstimulation of the immune system by limiting penetration of bacteria to the epithelial 

surface (Ubeda, Djukovic, & Isaac, 2017). Probiotics such as Bifidobacterium breve 

induce RegIII expression (Natividad et al., 2013). α-defensins are antibacterial peptides 

which are secreted by Paneth cells in response to bacteria or their antigens (Ayabe, 

Ashida, Kohgo, & Kono, 2004). Secretory immunoglobulin A (sIgA) is the most abundant 

class of antibodies in the intestinal lumen. Besides protecting the intestinal epithelium 

from pathogenic bacteria, viruses and toxins, it is also capable of downregulating pro-

inflammatory responses (Mantis, Rol, & Corthésy, 2011).  

Table 1.1.2 includes some of the most common representatives of the GIT microbiome 

along with the generally associated immune response or role in the GIT. However, it 

should be kept in mind that this is only the generally assumed consensus within a healthy 

adult person. Additionally, also commensals can become pathogenic under specific 
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circumstances and specific strains of otherwise nonpathogenic bacteria can harbor 

virulence factors, turning them into pathogens. 

Table 1.1.2: Common bacterial members of the GIT microbiome and the general response in the GIT 

Taxon Response in the GIT 

Roseburia anti-inflammatory (butyrate producer) 

Blautia anti-inflammatory (SCFA producer) 

Faecalibacterium anti-inflammatory (butyrate producer) 

SFB formation of TH17 cells 

Clostridium cluster IV and XIVa induction of Treg cells 

Escherichia pro-inflammatory, TLR4 mediated NF-κB 

activation (response to lipopolysaccharide) 

Bifidobacterium induction of RegIII expression 

Bacteroides induction of Treg cells 

Akkermansia muciniphila mucin degrading, anti-inflammatory 

 

Studies with germ-free (GF) mice show that microbial colonization has consequences on 

the development of the immune system, especially of lymphoid structures (Macpherson & 

Harris, 2004). GF mice develop smaller Peyer's patches than mice grown under specific-

pathogen-free (SPF) conditions and are deficient in secretory immunoglobulin A (IgA) 

(Round & Mazmanian, 2009). A mixture of 17 SCFA-producing bacterial strains from the 

order Clostridiales has been shown to be important for induction of colonic Tregs (Atarashi 

et al., 2013). This indicates how diet, microbes, their products and the immune system are 

interconnected and complexly regulated. 

In short, one role of the immune system is not to extinguish all microorganisms living in 

the GIT but to confer tolerance, establish homeostasis, which includes commensals, 

which exert essential functions on the host as for example in digestion. This homeostasis 

is maintained by an intricate balance of pro-inflammatory cells (like TH1 cells and TH17 

cells) and anti-inflammatory Tregs (Hooper et al., 2012). This highly sensitively regulated 

relationship between the microbiota and the host can be disturbed by many factors (such 

as antibiotic intake, drastic dietary changes or the invasion by pathogens) and this can 

lead to dysbiosis, an imbalance in the intestinal microbial community. Resulting 

inflammation can lead to epithelial damage and a resulting decreased intestinal barrier 

function. In immunocompromised patients, for example in cancer patients during intensive 

treatment, this 'leaky gut' allows translocation of microorganisms and microbial products 
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from the GIT lumen to neighboring tissues and/or bloodstream (Yu et al., 2014), putting 

the host at risk for local and systemic infections and sepsis (Khosravi & Mazmanian, 2013; 

Stecher, Maier, & Hardt, 2013). 

 

1.2 Cancer and anticancer treatment 

1.2.1  Cancer 

Cancer is one of the leading causes of mortality with 8.2 million deaths worldwide in 2012 

(Stewart & Wild, 2014). In adults, 80 % of the cancer types affect the respiratory, 

gastrointestinal and reproductive organs, while in children, less than 5 % of the 

malignancies affect these organs (Imbach, Kühne, & Arceci, 2004). More than 100 types 

of cancer have been categorized, with around 85 % of cancers affecting epithelial cells 

(carcinomas). Cancers derived from mesodermal cells (e.g. bone, muscle cells) are called 

sarcomas and cancers arising of glandular tissue (e.g. breast) are called 

adenocarcinomas (Pecorino, 2012). Every year, around 1 out of 500 children under the 

age of 16 years are diagnosed with childhood cancer, with acute lymphoblastic leukemia 

and brain tumors being the most frequent kinds of childhood cancer, accounting for 47 % 

of all pediatric neoplasia (Imbach et al., 2004). Within the past 30 years, chances for 

longterm survival have significantly increased to over 70 % in pediatric oncology (Imbach 

et al., 2004). Overall, in the United States the 5-year survival rate has increased by 23 % 

within the last 30 years, to now 69 % (Siegel, Miller, & Jemal, 2016). Globally, the cancer 

mortality rate decreases by approximately 1 % per year (Hashim et al., 2016). 

All cancers arise due to changes in the DNA sequence of the cancer cell genomes. 

Tumorigenesis is thought to be a multistep process which is often compared to Darwin's 

theory of evolution, where cells with mutations are selected to survive, due to increased 

replicative and survival abilities (Stratton, Campbell, & Futreal, 2009). In 2000, Hanahan 

and Weinberg defined six key 'hallmarks of cancer', which include: sustained proliferative 

signalling, evasion of growth suppressors, resistance against apoptosis, immortality, 

induction of angiogenesis and inflammation as well as activation of invasion and 

metastasis (Hanahan & Weinberg, 2000). In 2011, emerging hallmarks and enabling 

characteristics were added to this list, including inflammation as tumor-promoting 

characteristic (Hanahan & Weinberg, 2011). 

Mutations leading to this abnormal behaviour can be acquired or inherited. Acquired 

mutations are the most common cause of cancer in adults and can be caused due to 

factors like chemicals in tobacco smoke, ultraviolet radiation and viruses (Hyndman, 
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2016). These mutations often affect tumor suppressor genes, proto-oncogenes or DNA 

repair genes. Tumors of different origins show a high complexity and heterogeneity in their 

patterns of mutations (Luo, Solimini, & Elledge, 2009).  

The lifetime risk of cancer for people has increased over time. In Great Britain, 1 in 2 

people born after 1960 will be diagnosed with some type of cancer during their lifetime 

(Ahmad, Ormiston-Smith, & Sasieni, 2015). Considering this, it is clear that there is an 

urgent need for effective anticancer treatments. However, the high number of different 

types of cancer and their heterogeneity make this very difficult. 

1.2.2  Anticancer therapies 

The main treatment options for malignancies are radiotherapy, chemotherapy and 

surgery. After discovery of X-rays in 1895 by Wilhelm Conrad Röntgen, they were used 

diagnostically and first successful treatments of different skin tissue malignancies were 

reported in 1899 (Tomlinson & Kline, 2005). The most common forms of ionizing radiation 

used for the treatment of cancer are high-energy photons, gamma-rays or X-rays 

(Stockham, Balagamwala, Macklis, Wilkinson, & Singh, 2014). Other types of radiation 

include proton therapy and electron beams (Stockham et al., 2014). While passing 

through cells, energy of the ionizing radiation can directly result in DNA damage or 

indirectly in production of free radicals which provokes DNA damage, and thereby, lead to 

cell death (Baskar, Ann-Lee, Yeo, & Yeoh, 2012). Radiation treatment alone can be 

curative for some kinds of cancer (for example cervix carcinomas, head and neck 

carcinomas) but for others such as for example pediatric tumors and breast carcinomas, it 

is used together with other treatments (Baskar et al., 2012). Often, it is used before 

surgery to shrink the tumor, or after surgery to destroy cancer cells that could not be 

removed surgically.  

Single drugs or combinations of chemotherapy drugs are used for treatment of many 

kinds of cancer, often together with surgery and/or radiotherapy. Chemotherapeutic 

agents either arrest cell growth (cytostatic) or kill rapidly dividing cells (cytotoxic). The 

principle of most cytotoxic drugs is that they attack actively dividing cells, therefore cancer 

cells, which divide more rapidly, are more affected than normal cells (Newman, 2010). 

However, due to the lack of selectivity for cancerous cells, non-malignant cells, especially 

those that undergo rapid division (e.g. hematopoietic, mucosal and gastrointestinal cells), 

are also affected, culminating in some of the side effects like bone marrow suppression 

and mucositis (Tomlinson & Kline, 2005).  

Chemotherapy agents can be classified into cell cycle phase-specific agents 

(antimetabolites and plant derivatives) and cell cycle phase non-specific agents (alkylating 
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agents, antitumor antibiotics, corticosteroids and others) (Tomlinson & Kline, 2005). In 

general, these agents interfere with DNA synthesis, culminating in cell death. There are 

however differences in their modes of action. Antimetabolites are folic acid, pyrimidine or 

purine analogues and interfere with DNA production by inhibiting enzymes needed for 

nucleic acid production. Alkylating agents such as busulfan and cyclophosphamide act by 

attaching an alkyl group to DNA. Angiogenesis inhibitors interfere with the binding of 

angiogenesis-signalling molecules to receptors on endothelial cells (Shewach & Kuchta, 

2009). 

Which drugs and combinations of treatments are used depends on the underlying 

disease, the stage and the status of the patient. In pediatric oncology, dosage is based on 

body size, usually considering surface area or body weight (Ratain, 1998). Trials have 

shown, which combination of drugs (called combination chemotherapy) is most effective 

against a specific malignancy. As an example, in the following I will briefly explain the 

mode of action of different therapeutic agents, which were frequently used in this project 

for treatment of the pediatric patients. One combination often used for treatment of 

Hodgkin's lymphoma in children is 'OEPA', composed of vincristine (oncovin), etoposide, 

prednisone and doxorubicin (adriamycin) (Imbach et al., 2004). Vincristine is a vinca 

alkaloid, which works by binding to the tubulin protein, preventing the polymerization of 

tubulins, stopping the cell from separating chromosomes during metaphase, thereby 

leading to apoptosis. In addition to this, vincristine can also damage DNA and interfere 

with DNA, RNA and protein synthesis (Mohammadgholi, Rabbani-Chadegani, & Fallah, 

2013). Etoposide derives from a toxin found in the American mayapple (also known as 

mandrake) and was first approved for cancer therapy in 1983 (Montecucco, Zanetta, & 

Biamonti, 2015). This cytotoxic cancer drug belongs to the topoisomerase inhibitor drug 

class. Topoisomerases are involved in essential cellular functions such as DNA 

replication, repair and transcription. Etoposide interferes with the topoisomerase II and 

DNA complex (called cleavable complex) and prevents religation of the DNA strands, 

causing DNA strand breaks and thus, apoptosis (Montecucco et al., 2015). Prednisone is 

a glucocorticoid that reduces inflammation and has been shown to cause regression of 

lymphoid tumors (Walsh & Avashia, 1992). Doxorubicin is an anthracycline antitumor 

antibiotic that was first extracted from Streptomyces peucetius var. caesius in the 1970’s. 

Two mechanisms of action are proposed: it can inhibit topoisomerase II-mediated DNA 

repair by intercalation into DNA and it can damage membranes, DNA and proteins via 

production of free radicals (Thorn, Caroline; Oshiro, Connie; Marsh, Sharon; Hernandez-

Boussard, Tina; McLeod, Howard; Klein, Teri; Altman, 2012). 
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Another approach is the activation of the immune system in order to fight cancer cells, in 

the so-called immunotherapy. It can be subdivided into active immunotherapy and 

adoptive immunotherapy. Common targets in this area are immune checkpoint inhibitors 

(ICI), monoclonal antibodies, cancer vaccines and cytokines. Some proteins (like CTLA-4 

and PD-1) on the surface of T cells act like checkpoints or brakes, preventing the cells 

from attacking cancer cells. Checkpoint inhibitors block these checkpoints, allowing the T 

cells to fight cancer (Ott, Hodi, & Robert, 2013). Monoclonal antibodies (a form of targeted 

therapy) identify abnormalities on cancer cell surfaces, bind to them and mark them for 

the immune system, while cancer vaccines help to recognize cancer cells and stimulate 

the immune system. Cytokines including interleukins, interferons and colony-stimulating 

factors all increase the immune system's reaction to cancer cells (S. Lee & Margolin, 

2011).  

1.2.3 Allogeneic stem cell transplantation 

For many relapsed hematologic malignancies, allogeneic hematopoietic stem cell 

transplantation (allo-HSCT) is the only potentially curative treatment (Figure 1.2.1). It 

consists of a preparative conditioning treatment, which often comprises high-dose 

chemotherapy, sometimes combined with total body irradiation. This conditioning has 

three aims: It is used to eradicate the malignancy, to make space to allow engraftment of 

the donor stem cells and to prevent host-versus-graft reactions via immunosuppression 

(Vriesendorp, 2003). These conditioning treatments damage and kill the patient's immune 

cells and often lead to immunodeficiency and myeloablation. The conditioning treatment is 

followed by the stem cell transplantation whereby hematopoietic stem cells (harvested 

from the bone marrow, peripheral blood or umbilical cord blood) from a healthy donor are 

given to the patient intravenously. The stem cells travel to the bone marrow and restore 

hematopoiesis, differentiating into the different types of blood cells. Engraftment is usually 

defined as the first of three consecutive days with an absolute neutrophil count  

> 0.5 * 109/L. The time of engraftment depends on different factors such as the source of 

the graft. It usually occurs around three to four weeks after transplantation. However, 

complete restoration of the immune system can take up to two years.  
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Figure 1.2.1: Allogeneic hematopoietic stem cell transplantation. Donor stem cells are collected after 
treatment with granulocyte colony-stimulating factor (G-CSF). Recipients receive a treatment, which has 
different goals (prevent graft rejection, reduce the number of tumor cells and create a niche for engraftment). 
The patient receives the peripheral-blood stem cells (PBSCs) and engraftment takes place. DC: dendritic cell; 
HSC: hematopoietic stem cell; NK: natural killer (Shlomchik, 2007). 

While the patient's immune cells have failed at recognizing and fighting the cancer cells, 

immune cells from the donor might succeed at eradicating residual cancer cells, an effect 

called graft-versus-cancer (GVC) or graft-versus-tumor (GVT) (Blazar, Murphy, & Abedi, 

2012). However, donor T cells can also respond to proteins on the surface of host cells, 

especially to human leukocyte antigens (HLA) which are encoded by the major 

histocompatibility complex (MHC), resulting in an immunological disorder typically referred 

to as graft-versus-host disease (GvHD) (Ferrara, Levine, Reddy, & Holler, 2009). Class I 

HLA (A, B and C) proteins are expressed on nearly all nucleated cells. Consequently, 

donor selection is mainly based on their HLA profile with preferentially choosing an 

identical donor, although allo-HSCT is also feasible with near-identical donors. However, 

these HLAs are highly polymorphic and in addition to GvHD development, HLA disparity is 
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challenge is initiated. There is no specific pathogen and 
therefore no specific subset of antigen-presenting cells 
(APCs) that present immunogenic antigens. Instead, 
every APC can present self peptides. Also, maturation 
and migration of APCs to secondary lymphoid organs is 
not linked with a target pathogen. Rather, APCs stimu-
lated to mature by any mechanism could be licensed to 
prime allo reactive T cells, and how and which APCs 
are matured could instructively influence the nature of 
GVHD. Unlike responses to infection in which antigen 
can be eliminated, in GVHD self antigen is limitless, and 
in this regard GVHD resembles a chronic viral infection. 
Target antigens are also likely to be almost ubiquitously 
expressed, which is distinct from the tissue tropisms 
associated with most pathogens. In GVHD, there is no 

specific pathogen-induced tissue inflammation that 
might dictate where effector T cells will traffic, although 
tissue damage from conditioning regimens may in part 
have this role5,6. Therefore, activated alloreactive T cells 
might encounter cognate antigens when entering tissues 
that are already inflamed for any reason7.

Because alloantigens are ubiquitous, alloimmune 
responses should be able to engage most, if not all, of 
the repertoire of adaptive immune mechanisms avail-
able to fight infection. This may in part explain why 
(despite the stereotypical manifestations of GVHD) the 
severity, the mixture of organs involved and the histo-
pathology are varied in this disease, both in animal 
models and in clinical transplantation. In particular, 
chronic GVHD in humans has protean manifestations, 
including lacrimal and salivary gland involvement, 
eosinophilic fasciitis, serositis and skin involvement 
similar to that seen in systemic sclerosis8. In turn, this 
may in part explain why the manipulation of nearly 
all immune mediators, for example cytokines, cytolytic 
molecules or co-stimulatory molecules, can alter the 
phenotype of GVHD in mouse models.

Target antigens
Perhaps the most fundamental way in which GVHD 
differs from pathogen-specific immunity is in the 
identity of the target antigens (FIG. 2). The nature of allo-
reactive antigen–T-cell recognition differs depending 
on whether the presenting MHC molecule is matched 
or mismatched with the donor. The precursor fre-
quency of T cells that can recognize a mismatched 
MHC molecule is very high and the molecular expla-
nation for this remains the subject of debate9–11. In one 
extreme, there is some evidence indicating that T-cell 
receptors (TCRs) recognize primarily intact epitopes 
on MHC molecules. In the other extreme, recognition 
can be peptide-dependent, although for individual 
alloreactive T-cell clones there may be peptide promis-
cuity. In either case, in MHC-mismatched transplants 
all MHC-class-I-positive tissues are likely to express 
peptide–MHC class I complexes that are recognized 
by allogeneic donor T cells.

In situations in which the MHC molecules of donors 
and recipients are matched, donor T cells can only 
recognize MHC-bound peptides derived from the 
protein products of polymorphic genes that are present 
in the recipient but not in the donor (known as minor 
histocompatibility antigens (miHAs); some of these miHAs 
were identified in REFS 12–26). The genes encoding 
miHA allelic pairs can be very polymorphic, as is the case 
with the Y chromosome gene SMCY, which differs from 
the X chromosome homologue SMCX by more than 200 
residues, and can generate male-specific H-Y antigens 
restricted to multiple MHC class I molecules in both 
mice and humans13,27. By contrast, the human HA-1 and 
HA-2 miHA allelic pairs differ by single amino acids12,28. 
Genes that are not expressed in the donor but that are 
expressed in the recipient can also generate miHAs24,29, 
as can amino-acid polymorphisms that interfere with 
the processing or post-translational modification of a 
peptide15,20.

Figure 1 | Allogeneic peripheral-blood stem-cell transplantation. Donors receive 
granulocyte colony-stimulating factor (G-CSF) to mobilize haematopoietic stem cells 
(HSCs), which are collected by leukapheresis. Patients (recipients) receive chemotherapy 
(and radiotherapy), which is designed to prevent immunological graft rejection, reduce 
the number of tumour cells (when the allogeneic stem-cell transplantation (SCT) is used 
to treat cancer) and to create niches for HSC engraftment. The leukapheresis product 
(peripheral-blood stem cells (PBSCs)) is then infused intravenously into the recipient. 
Engraftment of donor neutrophils and platelets typically occurs between 10 and 20 days 
post-transplantation, but engrafment of other cell lineages, such as T cells, B cells, 
macrophages, dendritic cells (DCs), Langerhans cells and erythroid cells, may take longer. 
When conditioning regimens are of lower intensity (for example low-dose irradiation), 
patients can remain as mixed donor–recipient chimaeras for months, and donor 
leukocyte infusions may be required to convert this mixed chimerism to a full donor 
chimerism. NK, natural killer.
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also associated with graft failure, delayed immune reconstitution and mortality (Park & 

Seo, 2012). Even with a matched donor, many allo-HSCT receivers develop GvHD, which 

is caused by differences in the minor histocompatibility antigens. As GvHD prophylaxis, T-

cell depletion, monoclonal antibodies and immunosuppression by mycophenolate mofetil, 

cyclosporine and/or tacrolimus is often applied (Ferrara et al., 2009). As the patients are 

immunocompromised due to the treatment, they are prone to severe infections, which is 

the most common cause of mortality after allo-HSCT (Sahin, Toprak, Atilla, Atilla, & 

Demirer, 2016). Therefore, additional supportive treatment includes antibiotic and 

antifungal prophylaxis.  

1.2.4  Side effects 

1.2.4.1   Mucositis 

Mucositis is probably the most common complication of anticancer treatment. Each year, 

it affects over two million people worldwide and occurs in approximately 40 % of patients 

receiving standard chemotherapy and nearly all the patients undergoing high-dose 

chemotherapy and allo-HSCT or radiation for head and neck cancers (Elting et al., 2003; 

Elting, Cooksley, Chambers, & Garden, 2007; Legert, Remberger, Ringdén, Heimdahl, & 

Dahllöf, 2014). It is the painful inflammation and ulceration (disintegration of tissue) of the 

mucosal lining of the GIT. Symptoms evolve gradually, from atrophic lesions to deeper 

ulceration, causing severe pain and diarrhea (Van Sebille et al., 2015; Sonis, 2004). In 

particular, the lesions in the oral cavity can be very painful, requiring parenteral nutrition 

and treatment with narcotics and antibiotics, which may lead to a longer hospital stay. This 

condition often implies reducing the dosages of chemotherapeutics or postponing 

treatment. Ultimately, this can decrease the chance for remission or cure and compromise 

survival outcome in cancer patients. 

In 2004, Sonis introduced a model which divides mucositis pathogenesis into five phases 

(Figure 1.2.2): initiation with formation of reactive oxygen species (ROS), primary damage 

response including induction of messenger molecules, signal amplification, disruption of 

the epithelial barrier with ulceration and finally healing lead by cell proliferation (Sonis, 

2004).  
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Figure 1.2.2: The five stages in the pathobiology of mucositis. (Sonis, 2004) 

More precisely, cytotoxic agents and radiation lead to damage and apoptosis of quickly 

dividing cells, such as cells of the oral and GIT mucosa. Additionally, ROS are formed, 

damaging cells and tissues, while also stimulating macrophages and inflammatory 

pathways. Altogether, different control mechanisms including the transcription factor  

NF-κB are activated, which mediates gene expression and synthesis of different 

inflammatory molecules including pro-inflammatory cytokines (such as TNF-α, IL-6 and IL-

1β) and tissue injury begins. These cytokines further activate NF-κB in other cells, 

marking the signal amplification phase followed by ulceration, the formation of painful 

lesions. At this stage, the loss of mucosal integrity increases the risk for infection, 

especially in neutropenic patients. In most cases, ulcers heal spontaneously once the 

cancer treatment has been halted (Al-Dasooqi et al., 2013; Sonis, 2004).  

1.2.4.2   Graft-versus-host disease 

Graft-versus-host disease is an immunological disorder that mostly affects the skin, GIT 

and liver and is the main complication after allo-HSCT (Ferrara et al., 2009). The severity 

of acute GvHD (aGvHD) is scaled according to the involvement of the three mainly 

affected organs with overall grades ranging from I (mild) to IV (very severe). In 1966, 

Billingham defined three requirements for development of GvHD: (1) the graft must 

contain immunologically competent cells; (2) the recipient must express antigens that are 

not present in the donor; and (3) the recipient must be incapable of immunologically 

eliminating the transplanted cells (Billingham, 1966). 

In general, aGvHD is defined as GvHD occurring within 100 days after allo-HSCT while 

GvHD arising later is defined as chronic GvHD. Symptoms of aGvHD include skin rash, 
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Mucositis

tiate a series of dynamic interactions that push the
process along and, in some cases, amplify activity
within the tissue.

For the sake of convenience, the biological de-
velopment of mucositis can be divided into five
phases: (1) initiation, (2) message generation, (3)
signaling and amplification, (4) ulceration, and (5)
healing (Figure 3).

Initiation. Both DNA and non-DNA damage are
noted almost immediately after exposure to
radiation or chemotherapy. DNA strand breaks are
noted in the epithelium as well as in the cells of
the submucosa, causing a relatively small propor-
tion of cells to die quickly. For the majority of oth-
ers, however, the initial insult starts a cascade of
biological events. Many of these events are medi-
ated by the generation of reactive oxygen species,
which occurs shortly after radiation and chemo-
therapy. Reactive oxygen species have a far-ranging
and broad biological downstream impact.

Message generation. Besides their ability to cause
cellular injury directly, radiation, chemotherapy,
and reactive oxygen species effectively activate a
number of central biological control mechanisms,

Figure 3 Pathobiology of Mucositis: A Five-Stage Process
The biological sequence of mucositis can be arbitrarily divided into five stages or phases: initiation, upregulation and message
generation, amplification and signaling, ulceration, and healing. Initiation is characterized by direct irreversible and reversible
damage to DNA, generation of, and the coincident activation of other pathways that are independent of reactive oxygen spe-
cies. During the upregulation and message generation phase, transcription factors, such as NF-κB, are activated to upregulate a
number of genes in the endothelium, fibroblasts, macrophages, and epithelium, resulting in the production of messaging and
effector proteins, such as pro-inflammatory cytokines and enzymes. Apoptosis and tissue injury ensue, as do a series of biolog-
ically mediated feedback events that result in amplification of injury (amplification and signaling). All of this activity culminates
in ulceration, the stage in which epithelial integrity is destroyed. Not only is this stage the most symptomatic, but bacteria
colonizing the ulcer’s surface potentiate the injury through shed cell-wall products and, in the presence of granulocytopenia,
may cause bacteremias and sepsis. Ultimately, spontaneous healing occurs. This phase also is biologically dynamic, its success
being dependent on effective communication between the mesenchyme and the epithelium.
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including a select group of transcription factors.
Among them, perhaps one of the most important
is NF-κB [33]. Until activated, NF-κB lies dormant
in the cytoplasm. Once activated, it moves to the
nucleus, where it is capable of upregulating up to
200 genes, including genes that code for pro-in-
flammatory cytokines and adhesion molecules. As
these genes are upregulated, effector proteins are
produced and tissue injury begins. Other transcrip-
tion factors are also activated, and each is associ-
ated with the expression of genes and their associ-
ated biologically active proteins. Simultaneously,
sphinogmyelinases (neutral and acidic) and cera-
mide synthase are activated by radiation, chemo-
therapy, and reactive oxygen species. Ceramide-
mediated apoptosis results in the death of
submucosal endothelial cells [22] and fibroblasts.
Fibroblast destruction is associated with the gen-
eration of fibronectin, the production of metallo-
proteinases, and additional apoptosis. All of these
changes occur rapidly and in tissue that clinically
appears normal.

Signaling and amplification. The production of
proteins has two effects, one directly aimed at caus-
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nausea, watery or bloody diarrhea, vomiting and severe abdominal pain. Chronic GvHD 

comprises different symptoms as for example skin dispigmentation, nail dystrophy, vaginal 

sclerosis, weight loss and pericarditis (Ferrara et al., 2009).  

Different factors influence the risk of developing GvHD, such as the source of the graft 

(Bensinger, 2013), recipient age (Hahn et al., 2008), sex disparity between donor and 

recipient (Flowers et al., 2011; Jagasia et al., 2012), related or unrelated donor (Flowers 

et al., 2011) and number and kind of HLA-mismatches (Flowers et al., 2011). GvHD 

occurs in 50-80 % of patients where there is an HLA mismatch, but even with HLA 

identity, 40 % of recipients develop aGvHD, due to differences in the minor 

histocompatibility antigens (Ferrara et al., 2009; Tabbara, Zimmerman, Morgan, & Nahleh, 

2002).  

 

Figure 1.2.3: The pathophysiology of aGvHD. APC: antigen presenting cell; TNFα: tumor necrosis factor α; 
IL 1=interleukin 1; IFN γ=interferon γ; LPS=lipopolysaccharide; Treg=regulatory T cell; Th1=T helper 1 cell; 
CTL=cytotoxic T lymphocyte; Mϕ=macrophage (Ferrara et al., 2009). 

GvHD occurs when donor T cells respond to proteins on the host cells such as the HLAs, 

which are highly polymorphic and individual-specific. Pathophysiology of aGvHD can be 

divided into three phases (Figure 1.2.3). Conditioning damages patient cells and causes 
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The third eff ector phase of the graft-versus-host process 
(fi gure 3) is a complex cascade of cellular mediators (such 
as cytotoxic T lymphocytes and natural killer cells) and 
soluble infl ammatory agents (eg, TNFα, interferon γ, 
interleukin 1, and nitric oxide).2,29 These molecules work 
synergetically to amplify local tissue injury and further 
promote infl ammation and target tissue destruction.

The cellular eff ectors of acute GVHD are mainly 
cytotoxic T lymphocytes and natural killer cells.49 Cytotoxic 
T lymphocytes that prefer to use the Fas and FasL pathway 
of target lysis seem to predominate in GVHD liver 
damage (hepatocytes express large amounts of Fas) 
whereas cells that use the perforin and granzyme 
pathways are more important in the gastrointestinal tract 
and skin.2,74 Chemokines direct migration of donor T cells 
from lymphoid tissues to the target organs in which they 
cause damage. Macrophage infl ammatory protein 1α and 
other chemokines (such as CCL2–CCL5, CXCL2, CXCL9, 
CXCL10, CXCL11, CCL17, and CCL27) are overexpressed 
and enhance homing of cellular eff ectors to target organs 
during experimental GVHD.75 Expression of integrins, 
such as α4β7 and its ligand MADCAM1, is also important 

for homing of donor T cells to Peyer’s patches during 
intestinal GVHD.52,76,77

Microbial products such as lipopolysaccharide, which 
leak through damaged intestinal mucosa or skin, can 
stimulate secretion of infl ammatory cytokines through 
Toll-like receptors.49,78 The gastrointestinal tract is 
especially susceptible to damage from TNFα, and the 
gastrointestinal tract has a major role in amplifi cation 
and propagation of the cytokine storm characteristic of 
acute GVHD.49 TNFα can be produced by both donor and 
host cells and it acts in three diff erent ways: (1) it activates 
APCs and enhances alloantigen presentation; (2) it 
recruits eff ector cells to target organs via induction of 
infl ammatory chemokines; and (3) it directly causes 
tissue necrosis (as its name suggests).79–81

Prevention of GVHD
On the basis of evidence from animal models for the 
central role of T cells in initiation of GVHD, many clinical 
studies of T-cell depletion as prophylaxis for the disease 
were undertaken in the 1980s and 1990s. Three main 
depletion strategies were studied: (1) negative selection 
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Figure 3: Pathophysiology of acute GVHD
IL 1=interleukin 1. IFN γ=interferon γ. LPS=lipopolysaccharide. Treg=regulatory T cell. Th1=T-helper 1 cell. CTL=cytotoxic T lymphocyte. 
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release of inflammatory cytokines (such as TNF-α, IL-1 and IL-6), which leads to 

activation of antigen-presenting cells (APCs, such as dendritic cells, macrophages, 

Langerhans cells and B cells) (Ferrara et al., 2009; Harris, Ferrara, & Levine, 2013). In the 

second step, host APCs activate mature donor cells, producing T helper cell type 1 (TH1) 

cytokines (like interferon γ, IL-2 and TNF-α). In the third phase, TH1 cells activate 

proliferation of activated cytotoxic T lymphocytes and natural killer cells. Local tissue injury 

is amplified by the interplay of these cellular mediators and inflammatory agents.  

1.2.5 Influence of the microbiome on anticancer treatment side effects and on 
treatment outcome  

A relatively new area of investigation is whether the GIT microbiome influences the 

occurrence of side effects during anticancer treatment and the outcome of therapy. 

Especially interesting in this context are development of mucositis and GvHD. The main 

affected organs in both cases are body parts, which are highly colonized by bacteria, such 

as the oral cavity and the GIT, which points towards a possible involvement of bacteria in 

development of those side effects. 

According to the generally accepted model introduced by Sonis, the GIT microbiome plays 

no role in the development and pathophysiology of mucositis (Sonis, 2004). A review by 

van Vliet and co-authors however, suggests an important role of the commensal GIT 

microbiome in the development of inflammatory digestive tract diseases, including 

mucositis (van Vliet et al., 2010). Their review suggests different pathways in which the 

intestinal microbiome can influence development of mucositis, which are listed hereafter. 

Some bacteria or bacterial parts decrease NF-κB activation, herewith they decrease 

production of inflammatory cytokines and influence the inflammatory process. Commensal 

bacteria increase tight junction strength, influence the composition of the mucus layer and 

contribute to epithelial repair. Therefore, they improve the epithelial barrier function in 

different ways. Moreover, the resident microbiota in a healthy intestine regulate the 

expression of immune effector molecules such as IgA (van Vliet et al., 2010). On the other 

hand, anticancer treatment can damage the GIT epithelium, reduce intestinal integrity and 

lead to a loss of barrier function. Tissue damage and translocation of microbes and 

microbial products can elicit an inflammatory response, aggravating mucositis. 

A systematic review by Touchefeu et al. indicates that cytotoxic and radiation therapy 

leads to important changes in the composition of the GIT microbiota, generally with a 

decrease in Bifidobacterium, Clostridium cluster XIVa, Faecalibacterium prausnitzii and an 

increase in Enterobacteriaceae and Bacteroides (Touchefeu et al., 2014). It is suggested 

that these changes might be linked to development of mucositis, diarrhea and bacteremia. 
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As mentioned above, studies have established that NF-κB is implicated in regulation of 

mucositis and is being upregulated in the signal amplification phase (Logan et al., 2008; 

Stringer et al., 2013). Different bacterial molecules such as lipopolysaccharides (LPS) and 

flagellin activate TLRs, which, in turn upregulate the NF-κB pathway. Changes in the 

composition of the GIT microbiome and following activation of TLRs and NF-κB which is 

usually down-regulated by commensals, might link the microbiota to development of 

mucositis. Prophylactic fluconazole mouthwash has been shown to decrease the rate of 

severe mucositis (Rao et al., 2013), indicating that also fungi can amplify mucositis. 

According to the generally accepted pathophysiology of GvHD, the microbiome could also 

be involved in its development or amplification. Both in the first and in the third phase (as 

described in the previous section), pathogen-associated molecular patterns (PAMPs) such 

as LPS could lead to further activation of immune cells and secretion of pro-inflammatory 

cytokines (Ferrara et al., 2009). Additionally, the damaged intestinal mucosa could allow 

translocation of PAMPs and thereby trigger additional inflammatory cytokine production 

causing apoptosis. 

Intensive cancer treatment results in damage to the GIT and decreases its epithelial 

barrier function, which allows microorganisms or bacterial products to enter the blood 

circulation (Fuji, Kapp, & Einsele, 2014; van der Velden et al., 2013). Immune response in 

form of inflammatory cytokine production, followed by sepsis or systemic infections is a 

consequence. Therefore, it used to be a quite common approach to apply total or 

selective gut decontamination on patients receiving allo-HSCT for prevention of GvHD 

development and infection. This is based on fundamental murine studies by van Bekkum 

and colleagues in which they treated mice with irradiation and allogeneic bone marrow 

transplantation. Less severe GvHD respectively no GvHD development was observed in 

mice treated with bacterial decontamination respectively when working with germ-free 

(GF) mice (Van Bekkum & Knaan, 1977; Van Bekkum, Roodenburg, Heidt, & Van der 

Waaij, 1974). However, in clinical practice, incomplete rather than complete 

decontamination is often achieved (Holler et al., 2014). In addition, newer studies have 

shown that a diverse microbiome correlates with a lower occurrence of GvHD and a 

higher survival rate (Jenq et al., 2015; Y Taur et al., 2014).  

Several recent studies, which have focused on the analysis of the microbiota composition 

before and after allo-HSCT observed a drastic loss in microbial diversity in the patient 

after receiving the treatment. This shift was more pronounced in patients who developed 

GIT GvHD (Holler et al., 2014; Jenq et al., 2012). Lower diversity has been linked to 

higher mortality, especially to death due to transplant related causes like infection and 
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GvHD (Y Taur et al., 2014) whereas higher diversity, likewise, has been associated with 

reduced GvHD-related mortality (Jenq et al., 2015). A retrospective study indicated that 

treatment of neutropenic fever with different antibiotics (imipenem-cilastatin and 

piperacillin-tazobactam) was linked to increased GvHD-related mortality at 5 years (Shono 

et al., 2016). Similarly, a recent retrospective study linked early use of antibiotics to higher 

transplant-related mortality (Weber et al., 2017). Although it is not exactly clear how 

diversity relates to the lower mortality, one aspect might be that the normal commensals 

present in a diverse community enhance resistance against infection by GIT pathogens by 

colonization resistance, filling specific ecological niches within the GIT. Likewise, a diverse 

microbial community might contain SCFA producers, which contribute to induction of 

colonic Tregs.  

The onset of GvHD was often accompanied by an increase in the abundance of members 

of the genus Enterococcus (Biagi et al., 2015; Holler et al., 2014) as well as by a reduction 

in abundance of Clostridiales or specific members of this order, including 

Faecalibacterium  spp. and Ruminococcus spp. (Biagi et al., 2015; Jenq et al., 2012; 

Simms-Waldrip et al., 2017). A higher abundance of another Clostridiales member, the 

genus Blautia has been linked to reduced GvHD-related mortality (Jenq et al., 2015). 

Many members of the order Clostridiales (including the genera mentioned beforehand 

Faecalibacterium spp. and Ruminococcus spp.) are known butyrate-producers (Morrison 

& Preston, 2016). Butyrate is known to reinforce the epithelial barrier and inhibit 

inflammatory response (Canani et al., 2011). In this way, depletion of these health-

promoting bacteria might result in higher inflammation rate and thus, onset of GvHD. In a 

recent murine study, butyrate was the main component found to be linked to mitigation of 

GvHD, overall survival and improved intestinal epithelial cell junction integrity (Mathewson 

et al., 2016). The same effect could be observed when administering the mice 17 

rationally selected strains of Clostridia that have been shown to increase amounts of 

butyrate and induction of Treg cells (Atarashi et al., 2013; Mathewson et al., 2016).  

Severe GIT GvHD has been seen to correlate with a loss in Paneth cells in biopsies 

(Levine et al., 2013). α-defensins, the principal AMPs secreted by Paneth cells, play an 

important part in keeping a balanced microbiome by having bactericidal activity against 

noncommensals. Eriguchi et al. observed that Paneth cells in mice were affected by GIT 

GvHD (Eriguchi et al., 2012). Therefore, GIT GvHD itself could lead to a loss in Paneth 

cells, which would in turn promote a dysbiotic state, allowing the overgrowth of pathogens 

and thus, result in an overall decrease in diversity.  
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Although the attention to commensal intestinal bacteria in human health and disease is 

growing, the link between the intestinal microbiome and anticancer treatment-induced 

mucositis and GvHD is still obscure. Understanding the clinical relevance of imbalance in 

the GIT microbiome and further the possibility to restore homeostasis could improve the 

treatment of cancer patients and therefore decrease the overall mortality from cancer.  

1.2.6 Influence of the gastrointestinal microbiome on the efficacy of anticancer 
treatments 

Recently, the GIT microbiome has been shown to influence efficacy of anticancer 

components (Iida et al., 2013; Sivan et al., 2015; Vétizou et al., 2015; Viaud et al., 2013).  

Cyclophosphamide (CTX) is an important cancer drug. This alkylating agent is used for 

treating different kinds of cancer but also autoimmune diseases. It has the ability to initiate 

antitumor immune responses by stimulating the generation of TH1 and TH17 cells which in 

turn control cancer outgrowth (Viaud et al., 2011). Viaud and colleagues showed that 

treatment with antibiotics, for example vancomycin and colistin, decreases the efficacy of 

CTX against MCA205 sarcoma. Also, size reduction of the tumor due to CTX treatment 

was greater in SPF mice than in GF mice (Viaud et al., 2013). In fact, CTX decreases 

intestinal barrier integrity and facilitates translocation of specific Gram-positive bacteria 

into secondary lymphoid organs. Here, these bacteria stimulate an anticancer immune 

response (Viaud et al., 2013) (Figure 1.2.4).  

 

Figure 1.2.4: Influence of the GIT microbiome on tumor promotion and tumor management. GIT 
microbiome can drive tumor development. On the other hand, it can influence the efficacy of 
chemotherapeutic drugs, thus, influence tumor management, CTX = cyclophosphamide; CpG-ODN = CpG-
oligodeoxynucleotides (Modified from Perez-Chanona & Jobin, 2014). 

A similar effect was observed in a study by Iida and colleagues, where mice were 

pretreated with broad-spectrum antibiotics (vancomycin, imipenem and neomycin) before 

being inoculated with subcutaneous tumors and treated with immunotherapy or 

chemotherapy. Comparison of gene expression of three transplantable tumor models in 
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mice treated with these antibiotics showed a down-regulation of genes related to 

inflammation, phagocytosis, antigen presentation and adaptive immune response 

whereas genes related to tissue development, cancer and metabolism were upregulated 

(Iida et al., 2013). Mice treated with antibiotics and GF mice showed reduced tumor 

regression and survival when treated with oxaliplatin and cisplatin, two platinum salts, or 

with CpG-oligodeoxynucleotides (CpG-ODN) (Figure 1.2.4). Oxaliplatin damages tumor 

cells with ROS (Laurent et al., 2005). Mice treated with antibiotics and GF mice displayed 

immune cells producing less ROS-generating enzymes. The GIT microbiome seems to 

play a role in preparing the immune system and the antitumor immune response.  

Recently, two studies have shown that the efficacy of ICIs is also influenced by specific 

bacteria. In both studies, efficacy of ICI was reduced in GF mice and mice treated with 

antibiotics. Polysaccharide A produced by different species of Bacteroides spp. was found 

to induce maturation of intratumoral dendritic cells and TH1 cells. An increased antitumoral 

immune response could be observed when administering these bacteria to wild-type mice 

(Vétizou et al., 2015). In another study, different bifidobacteria were positively linked to the 

amount of antigen-presenting cells in tumors, leading to a better response to ICI treatment 

(Sivan et al., 2015).  

In vitro studies and subsequent in vivo murine studies have shown that the efficacy of 

several chemotherapeutic agents is increased or decreased due to interaction with 

specific bacteria. The available data suggests that specific bacterial enzymes are affecting 

the efficacy of the drugs (Lehouritis et al., 2015). These recent results indicate that the 

microbial composition and products in the intestine influence the efficacy of anticancer 

components, often by influencing the immune system. The ability to increase the efficacy 

of the anticancer treatment regimens would allow to use a less intense treatment or fewer 

cycles, possibly resulting in less adverse side effects and ultimately in a better outcome 

for patients. Altogether, this proves the importance of the microbiome in cancer treatment 

and therapeutic outcome and the perspective of incorporating microbiome in cancer 

treatment, but also the need for further investigations in the field. The GIT microbiome 

could be seen as an additional factor influencing cancer treatment and its outcome and 

should be modulated in a way that it could improve treatment outcome. However, 

currently, this is not possible. Rather, prophylactic broad-spectrum antibiotics are used, 

which do not distinguish between commensals and pathobionts and therefore can 

culminate in dybiosis, potentially eliminating bacteria that could have a beneficial effect on 

treatment outcome. 
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1.3 Antibiotics, antibiotic resistance genes and alternative treatments 

Patients undergoing anticancer treatment are especially prone to infections, as they are 

often neutropenic or completely immunodeficient. Thus, antibiotic treatment is needed as 

prophylaxis or for the treatment of infections. However, the use of antibiotics may trigger 

dysbiosis by selection for pathogens expressing antibiotic resistance genes (ARGs) and 

lead to the emergence of multi-drug resistant (MDR) bacteria. 

The discovery of antibiotics has greatly impacted modern medicine and has helped to 

control infectious diseases that were major causes for morbidity and mortality. As many 

antibiotics and antimicrobial molecules are produced by microorganisms, resistance 

mechanisms have also been present in microbial communities, long before humans have 

started to use antibiotics in clinical settings. For example, ARGs have been identified in a 

cave in New Mexico that had been isolated for 4 million years (Bhullar et al., 2012), in an 

11th century AD mummy (Santiago-Rodriguez et al., 2015), and in 30,000 year-old 

permafrost sediments (D’Costa et al., 2011). This shows that antibiotic resistance 

predates selective pressure of antibiotics usage in clinical settings. However, the recent 

prevalence in the use of antibiotics drives the emergence of higher rate of antibiotic 

resistance by microorganisms and the appearance of MDR organisms, a problem that we 

are facing today (Goossens, Ferech, Vander Stichele, & Elseviers, 2005; Sun, Klein, & 

Laxminarayan, 2012). This in turn has led to an increased risk of fatal infections in 

susceptible patients, as for example in immune compromised cancer patients during 

therapy, who are usually treated with antibiotics as prophylactic agents. Also, antibiotics 

given to livestock or sprayed on fruit trees eventually affect the environmental microbiome 

and favour propagation of resistance mechanisms (Angenent, Mau, George, Zahn, & 

Raskin, 2008; Levy, 2002).  

Antibiotic resistance has recently been listed to one of the greatest threats to human 

health in the World Economic Forum Global Risks report (World Economic Forum, 2016), 

with 700,000 people dying of resistant infections each year (Neill, 2016). In Europe alone, 

around 25,000 patients die yearly as a result of MDR bacterial infections and this adds to 

€ 1.5 billion hospital and treatment costs (ECDC/EMEA, 2009). It is estimated that by 

2050, MDR pathogens will kill 10 million people a year (Neill, 2016). Therefore, there is an 

urgent need for discovery of new antibiotics and modification of existing antibiotics. 

Similarly, there is a high interest in new databases, which allow detection of ARGs in 

sequencing datasets. Updated databases as well as new tools, allowing detection of the 

genes in large MG datasets are currently being developed and published (Jia et al., 2016; 

Lakin et al., 2016). 



1. Introduction 

!26 

Antibiotic resistance can be intrinsic or acquired. Intrinsic resistance is inherent to an 

organism and includes the absence of the antibiotic target, low cell permeability 

preventing access to the target, efflux or inactivation of the drug (Cox & Wright, 2013). 

Resistances can be acquired by mutation of pre-existing target genes or by horizontal 

gene transfer of ARGs via transformation, transduction or conjugation (Blair, J. M. A., 

Webber, M. A., Baylay, A. J., Ogbolu, D. O, Piddock, 2015; Huddleston, 2014). Although it 

is generally assumed that acquired ARGs represent a fitness cost, studies have shown 

that resistant populations can persist even four years after antibiotic treatment, showing 

that carrying these genes does not lead to a reduced fitness (Jakobsson et al., 2010; 

Jernberg, Löfmark, Edlund, & Jansson, 2007; Sjölund, Wreiber, Andersson, Blaser, & 

Engstrand, 2003). Studies have shown that the number of ARGs within an individual's 

microbiome increases over time as the person ages and is exposed to more antibiotics. 

But also in subjects that have never been treated with quinolones (one group of broad-

spectrum antibiotics), 40 % of the bacteria in humans and animals carry corresponding 

resistance genes (Field & Hershberg, 2015). Consequently, the human GIT microbial 

community, even of healthy individuals without antibiotic treatment, comprises a diversity 

of different ARGs (Bartoloni et al., 2004; Gibson, Forsberg, & Dantas, 2014; M. O. A. 

Sommer, Church, & Dantas, 2010).  

Alternatives to currently used traditional antibiotics could consist of bacteriocins, 

microcins, structurally nanoengineered antimicrobial peptide polymers (SNAPPs) and 

phage therapy. Bacteriocins and microcins largely target the same bacterial 

compartments and processes as conventional antibiotics (Cavera, Arthur, Kashtanov, & 

Chikindas, 2015). An advantage is that broad- but also narrow-spectrum bacteriocins 

exist, however as for traditional antibiotics, emergence of resistances is a threat (Cotter, 

Ross, & Hill, 2013). SNAPPs are antimicrobial agents, which interact with microbial 

membranes and therefore elicit less resistance development than traditional antibiotics, 

which act inside of bacterial cells. SNAPPs have recently been shown to be active against 

gram-negative bacteria, incuding different colistin-resistant and multidrug-resistant 

pathogens (Lam et al., 2016). One advantage of phages as treatment is that they usually 

only target a limited range of bacterial strains (Kuntz & Gilbert, 2017). Concerns regarding 

this treatment method however include the possibility of emergence of resistance 

mechanisms or a system able to degrade viral DNA (such as clustered regularly inter-

spaced palindromic repeats (CRISPRs)), as well as the risk of phages carrying and 

transferring ARGs into different bacteria via transduction (Nobrega, Costa, Kluskens, & 

Azeredo, 2015). Also, phages could be recognized and rapidly removed by the immune 
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system. Thus, several questions and concerns have to be solved before phage therapy 

could be applied to humans. 

Commensal bacteria prevent from overgrowth of pathogens in different ways, i.e. by 

activating the innate immune defences, via nutrient competition, occupation of specific 

niches or production of AMPs. Antibiotic treatment allows overgrowth of pathogens not 

only by selecting antibiotic-resistant bacteria, but also by killing bacteria that provide 

colonization resistance. Opening of ecological niches allows proliferation of pathogens. 

Loss of commensals also results in higher availability of nutrients, especially of sugars, 

which favors pathogen expansion. One important example is Clostridium difficile infection 

(CDI), which is a leading cause of hospital-associated diarrhea, causing an estimated cost 

of 5.4 billion US dollars annually (Desai et al., 2016). The two biggest risk factors for this 

infection are antibiotic intake and exposure to this organism (Slimings & Riley, 2014; 

Surawicz et al., 2013). CDI is also a major concern in patients who undergo an allo-HSCT 

(Alonso et al., 2012) with reported ratios of around 15 % or even 18 % (Chopra et al., 

2011; Trifilio, Pi, & Mehta, 2013). It is generally accepted that a severe perturbation 

(dysbiosis, caused by intake of broad-spectrum antibiotics) allows the expansion of 

pathogenic strains of C. difficile. The first treatment of CDI includes different antibiotics 

(metronidazole or vancomycin), however, many patients develop recurrent chronic CDI. 

Fecal microbiota transplantation (FMT) is recently being applied in the treatment of 

patients with recurrent CDI, where cure rates of 90 % have been reported (Brandt et al., 

2012). Intestinal domination of vancomycin-resistant Enterococcus (VRE) is often 

observed in patients undergoing allo-HSCT as result of nosocomial acquisition or 

extensive exposure to broad-spectrum antibiotics. VRE are one of the most frequently 

encountered bloodstream infections in patients undergoing allo-HSCT and this has been 

associated with high mortality in these patients (Kamboj et al., 2010; Y. Taur et al., 2012; 

Y Taur et al., 2014). 
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1.4 Aims of this work  

The GIT microbiome has recently gained a lot of interest and there is growing evidence, 

that this complex community of organisms can affect the efficacy of anticancer treatment, 

development or severity of severe side effects and influence overall treatment outcome. 

1.4.1 Identify changes in the GIT microbiome during treatment 

The first objective of this work is to describe in detail how the GIT microbiome changes 

during different chemotherapy regimens and myeloablative treatment followed by allo-

HSCT. As there is a tight interaction between the host intestinal mucosa and immune 

system and the commensal microbiome, changes in the status of the patient might be 

reflected in dynamics of the GIT microbiome community composition before, during and 

after treatment. 

1.4.2 Discern how the GIT microbiome might be involved in the development of 
anti-cancer treatment side effects 

Recent studies indicate that the GIT microbiome might be implicated in development or 

severity of important treatment side effects, such as mucositis and GvHD (Biagi et al., 

2015; Holler et al., 2014; Touchefeu et al., 2014). Patterns within the microbial community 

might be linked to development of these side effects. Importantly, this knowledge could 

help in the formulation of measures to prevent mucositis and GvHD development. 

1.4.3 Assess if and how metagenomic and metatranscriptomic sequencing could 
be used in personalized medicine 

In addition to taxonomic profiling of the GIT microbiome by 16S and 18S rRNA gene 

amplicon sequencing, this study includes MG and MT sequencing, which allows the 

description of the functional capacity and expression within the community. Additional 

information gathered from these methods could help in expanding our understanding of 

the complex interactions within the GIT microbiome and with its host. Ultimately, this 

knowledge might help in adjusting therapy regimens, thereby improving the overall 

outcome. 

 

To assess the structural and functional changes within the GIT microbiome throughout 

anticancer treatment, fecal samples from patients following different treatment regimens 

were collected at different time points throughout this treatment. An integrated-omics 

approach was used, including 16S, 18S rRNA gene amplicon sequencing, metagenomics 

and metatranscriptomics. 
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Phylogenetic marker gene sequencing (16S and 18S rRNA gene amplicon sequencing) 

allows taxonomic profiling of the microbial community. In addition to marker gene 

sequencing, this study also includes MG sequencing, as it provides information about the 

functional potential of the microbial community or individual taxa within the community. 

This gives further insights into the interaction between the host and the microbiome and 

analysis of for example antibiotic resistance genes, which might play an important role in 

this setting.  

Although culture-independent methods such as rRNA gene amplicon sequencing and 

whole MG sequencing are not yet part of clinical routine, these applications could in the 

future play an important role in diagnostics and in tailoring treatments to the specific 

individual needs. Drastic reductions in sequencing costs (Wetterstrand, 2016) but also in 

time and higher throughput sequencing technologies (Neelapu & Surekha, 2016) now 

permit to apply next-generation sequencing in the clinical setting as diagnostic tool. 

Recent studies have demonstrated how MG sequencing could be applied for example to 

identify and quickly treat foodborne outbreaks of Salmonella (Quick et al., 2015) and 

bioinformatic tools which help to identify pathogens have been developed (Flygare et al., 

2016; Greninger et al., 2015). 

This work gives first insights into the detailed information and knowledge that these 

methods provide and shows the importance of understanding the microbiome dynamics 

for future personalized strategies for anticancer treatment.  
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2 Materials and methods 

Parts of the materials and methods section are taken and modified from a manuscript that 

has been submitted to Translational Research. The respective manuscript is attached in 

the appendix: 

Appendix A.1: Anne Kaysen, Anna Heintz-Buschart, Emilie E. L. Muller, Shaman 

Narayanasamy, Linda Wampach, Cédric C. Laczny, Norbert Graf, Arne Simon, Katharina 

Franke, Jörg Bittenbring, Paul Wilmes, Jochen G. Schneider. (2017) Integrated meta-omic 

analyses of the gastrointestinal tract microbiome in patients undergoing allogeneic stem 

cell transplantation. Translational Research. (in revision). 

 

2.1 Study participants and collection of fecal samples 

The study was approved by the Ethics review board of the Saarland amendment 1 and 2 

(reference number 37/13), and by the Ethics Review Panel of the University of 

Luxembourg (reference number ERP-15-029). Fecal samples were collected by the 

pediatric oncology department and the hematology and oncology department of the 

Saarland University Medical Center. All patients, respectively their parent or guardian 

signed a written informed consent. Fecal samples were collected at different time points 

(TPs) throughout the anticancer treatment. The sampling plan is illustrated in Figure 2.1.1. 

The patients were grouped into different treatment groups (TGs) according to their 

treatment. Pediatric oncology patients with different types of cancer were included into 

TG1 – TG3. Patients within TG1 received a low intensity treatment, TG2 received a 

standard intensity treatment and TG3 underwent an intensive treatment followed by an 

autologous stem cell transplantation (auto-HSCT). In general, the first sample was taken 

at admission, before treatment was started. The second sample was collected after the 

first cycle of treatment at the nadir, the point where the leukocyte count was at its lowest. 

The third sample was taken when the blood counts recovered before the next cycle of 

treatment was started and the last sample was taken after the end of the therapy. For 

patients within TG3 or patients who were switched to TG3, samples were collected before 

and after the auto-HSCT.  

Patients recruited in the hematology and oncology department were grouped into TG4, 

whose treatment includes an intensive immune ablative treatment followed by an 
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allogeneic stem cell transplantation (allo-HSCT). Due to several reasons such as the 

overall health status of the patient or poor nutritional intake (due to loss of appetite, 

mucositis or GvHD), it was especially difficult to collect samples within this TG. Whenever 

possible, the first sample was collected before allo-HSCT (generally during the 

conditioning treatment). The next sample was taken directly after allo-HSCT, the third 

sample was taken around the engraftment period (around one month after allo-HSCT) and 

follow-up samples were taken at later time points. 

 

Figure 2.1.1: Sampling plan. Vertical arrows indicate sampling time points throughout treatment. Blue boxes 
and arrows represent treatment phases for pediatric patients grouped into three different treatment groups 
(TG1 – TG3). Red boxes and arrows indicate the treatment phases for adult patients with hematologic 
malignancies. Abbreviations: TG= treatment group; TP= time point; chemo=chemotherapy; ATG= 
antithymocyte globulin; Auto-HSCT: autologous stem cell transplantation; Allo-HSCT: allogeneic stem cell 
transplantation; GvHD: graft-versus-host disease. 

18 pediatric patients were recruited with the majority belonging to TG2. Anthropometric 

and clinical information on the study participants including age, sex, underlying disease, 

antimicrobial treatment, occurrence of severe mucositis as well as overall treatment 

outcome were collected (Table 2.1.1). As antimicrobial prophylaxis, 

trimethoprim/sulfamethoxazole (cotrimoxazole) was given twice a week, to prevent 

Pneumocystis jirovecii pneumonia. 

27 adult hematology patients were recruited. Anthropometric and clinical information on 

the study participants including age, sex, underlying disease, stem cell donor type, 

conditioning regimen, antimicrobial treatment, aGvHD development and grade as well as 

overall treatment outcome were collected (Table 2.1.2).  

TG1 

TG2 

TG3 

TG4 

Admission Chemo 
(light) Nadir Chemo and 

end of therapy Follow up 

Admission Chemo 
(standard) Nadir Chemo and 

end of therapy Follow up 

Admission Induction 
Chemo 

Mobilization 
Harvesting 

Chemo   
(high dose) Auto-HSCT Follow up 

Admission Conditioning:  
Chemotherapy + ATG Allo-HSCT Recovery of 

blood counts 

GvHD 

Recovery 

Intensity 
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Table 2.1.1: Anthropometric and clinical information of the pediatric study cohort 

Patient Sex Age Underlying 
diseasea 

Treatment 
group 

Mucositis 
(min. grade 3) 

Antimicrobialsb Outcome 1.5 years 
after start of treatment 

P01 f 17 Hodgkin's lymphoma 2 no T/S, P-T alive  
P02 f 13 Ovarian germ cell 

tumor 
2 no T/S alive 

P03 f 16 Nephroblastoma 2 yes T/S alive 
P04 f 3 Nephroblastoma 1 yes T/S, P-T alive  
P05 f 8 Nephroblastoma 2 & 3 no T/S, C deceased day 521, 

tumor progression 
P07 f 4 Nephroblastoma 1 no T/S, C alive 
P08 m 4 Medulloblastoma 2 & 3 no T/S deceased day 364, 

respiratory failure 
P09 m 3 Neuroblastoma 3 yes T/S, P alive 
P10 f 14 Ewing sarcoma 2 no T/S, P-T, AF deceased day 504, 

tumor progression 
P11 f 12 Ewing sarcoma 2 no T/S, P-T deceased day 383, 

tumor progression 
P12 m 19 Relapsed ALL 2 no T/S alive  
P13 m 4 ALL 2 no T/S alive  
P14 f 8 Germ cell tumor of 

the brain 
2 & 3 no T/S alive 

P15 m 8 ALL 2 no T/S alive 
P16 m 14 NHL 2 no T/S alive 
P17 m 14 Large cell NHL 2 yes T/S alive  
P18 f 11 Hodgkin's lymphoma 2 no T/S alive 
P19 m 12 Relapsed ALL 2 yes T/S alive 

a: ALL: acute lymphoblastic leukemia, NHL: non-Hodgkin's lypmphoma 

b: T/S: trimethoprim/sulfamethoxazole, P-T: piperacillin-tazobactam, C: cefuroxime, P: phosphomycin, AF: antifungal 

!
! !
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Table 2.1.2: Anthropometric and clinical information of the study cohort recruited in the hematology department 

 

Patient Sex Age Underlying 
diseasea 

Donor 
relationship 
and HLAb 

Conditioning 
regimenc 

Antimicrobialsd GvHDe, f Outcome 1.5 years 
after allo-HSCT 

A01 m 43 lymphoma MRD FluBuCy F, M, P-T, V Skin I° alive  
A02 m 46 lymphoma MRD FluBuCy AF, M, P-T, V, 

other 
- deceased day 17, 

relapse 
A03 m 56 lymphoma MRD FluBuCy AF, F, M, P-T, 

other 
- deceased day 66, 

relapse 
A04 f 43 AML MUD BuCy AF, F, M, V Skin I° alive  
A05 m 49 lymphoma MMUD FluBuCy AF, F, M, P-T, V Skin II° deceased day 275, 

pneumonia 
A06 m 52 AML MRD BuCy AF, F, M, P-T, 

V, other 
- alive  

A07 f 63 AML MMUD FLAMSA-Bu AF, F, M, P-T, 
V, other 

Skin II°, 
GIT III° 

deceased day 268, 
GvHD 

A08 f 50 AML MUD BuCy AF, F, M, P-T, V  Skin I° alive  
A09 m 30 lymphoma MUD FluBuCy F, M, P-T - deceased day 212, 

pneumonia 
A10 m 54 AML MRD BuCy F, M, P-T Skin I°, 

GIT II° 
alive  

A11 m 58 AML MMUD BuCy AF, M, P-T, V, 
other 

Skin II° alive 

A12 m 57 lymphoma MUD FluBuCy F, M, P-T, V, 
other 

Skin III° alive  

A13 m 57 AML MRD BuCy AF, F, M, V Skin I°, 
lung II° 

alive  

A14 f 22 lymphoma MUD FluBuCy P-T, V, other - alive 
A16 m 67 AML MRD BuCy AF, M, P-T, V, 

other 
Skin II° alive 
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A17 m 66 AML MUD BuCy F, M, V Skin II° alive  
A18 f 67 AML MUD FluBu F, M, P-T, V, 

other 
Skin III°, 
GIT III° 

deceased day 184, 
GvHD 

A19 f 58 myeloma MUD Treo/Flu F, M, P-T - deceased day 39, 
relapse 

A20 m 51 AML MMUD FLAMSA-Bu AF, F, M, P-T, 
V, other 

Skin II°, 
GIT II° 

alive  

A21 f 64 AML MUD Treo/Flu AF, M, P-T, V, 
other 

Skin II° alive  

A25 m 52 lymphoma MUD FluBuCy AF, F, M, P-T, 
V, other 

Skin III° alive 

A27 m 56 CML MRD BuCy AF, F, M, V, 
other 

Skin III°, 
GIT IV°, 
liver III 

deceased day 53, 
GvHD 

A29 f 60 ALL MRD TBI/Cy M, P-T, V - alive 
A34 m 52 AML MMUD Treo/Flu F, M, V, other - alive 
A35 m 45 lymphoma MMUD FluBuCy AF, M, P-T, V, 

other 
- alive 

A41 f 54 AML MMUD Treo/Flu F - alive 
A44 f 24 lymphoma MUD FluBuCy AF, F, M, V, 

other 
- deceased day 4, 

sepsis 
a: AML: acute myeloid leukemia, ALL: acute lymphoblastic leukemia, CML: chronic myeloid leukemia 

b: MRD: matched related, MUD: matched unrelated, MMUD: mismatched unrelated 
c: Bu: busulfan, Cy: cyclophosphamide, Flu: fludarabine, FLAMSA: fludarabine, cytarabine, amsacrine, Treo: treosulfan 
d: AF: antifungal, F: fluoroquinolone, M: meropenem; P-T: piperacillin-tazobactam, V: vancomycin 
e: Organ involvement, stages according to Glucksberg et al. (1974) 
f: Bold: GvHD with summed stages ≥ 4 considered as severe GvHD 

 

 

 



2. Materials and methods 

!36 

2.2 Extraction of biomolecules from fecal samples 

Fecal samples were immediately flash-frozen in liquid nitrogen on-site and preserved at  

-80 °C to ensure integrity of the biomolecules of interest. The general workflow from 

sample collection to data integration is illustrated in Figure 2.2.1. 

 

Figure 2.2.1: General workflow from sample collection to data integration. Original graphics by Linda 
Wampach and from http://support.illumina.com/sequencing/sequencing_instruments/hiseq_2500.html (picture 
of the sequencer). 

Biomolecules were extracted from unthawed subsamples of 150 mg, after pre-treatment 

of the weighed subsamples with 1.5 ml RNAlater-ICE (LifeTechnologies) overnight at  

-20 °C. The biomolecules were extracted from the mixture as described in Roume, Muller, 

et al., 2013; Roume, Heintz-Buschart, Muller, & Wilmes, 2013. Briefly, the mixture was 

homogenized and biomolecules were extracted using the AllPrep DNA/RNA/Protein kit 

(Qiagen) as described in Roume, Heintz-Buschart, et al., 2013. To increase the overall 

yield, DNA fractions were supplemented with DNA extracted from 200 mg subsamples 

using the PowerSoil DNA isolation kit (MO BIO).  
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To samples with a very low yield, an adjusted protocol of the PowerSoil DNA isolation kit 

(MO BIO) was applied, which includes a few additional steps in comparison to the 

standard protocol. It starts with a phenol-chloroform-isoamyl treatment (200 µl) and an 

incubation at 65 °C for 10 minutes. Additional wash steps with ethanol were included. As 

this protocol elutes DNA and RNA, it was always followed by an RNA digestion. 1 µl of a 

100 µg/ml RNase A solution was added per 20 µl of DNA and incubated at 37 °C for 30 

min. Quality and quantity of the DNA were verified using 1 % agarose gel electrophoresis 

with Tris Acetate-EDTA running buffer (Sigma-Aldrich) and the MassRuler DNA Ladder 

Mix (Thermo Fisher Scientific), NanoDrop 2000c spectrophotometer (Thermo Fisher 

Scientific) or Qubit fluorometer (Life Technologies, Carlsbad, CA, USA), following the 

manufacturers' recommendations.  Quality and quantity of RNA extracts were verified 

using the Agilent 2100 Bioanalyzer (Agilent Technologies) or LabChip GXII Touch HT 

(PerkinElmer) following the manufacturers' recommendations. Only fractions with RNA 

integrity number (RIN, Agilent Technologies) > 7 or RNA Quality Score (PerkinElmer) > 6 

were sequenced. Extracted biomolecules were stored at -80 °C until shipment to the 

sequencing center on dry ice. 

2.3 16S and 18S rRNA gene amplicon sequencing 

Amplification and paired-end sequencing of extracted and purified DNA was performed at 

the Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA, Belgium). 

Sequencing with 2 * 300 nt was performed using the V2 MiSeq kit on a MiSeq platform 

(Illumina). The V4 region of the 16S rRNA gene, which allows resolution of bacteria and 

archaea, was amplified using the primers listed in Table 2.3.1. Furthermore, the V4 region 

of the 18S rRNA gene, which allows resolution of eukaryotes, was amplified and 

sequenced using the primers listed in Table 2.3.1. 

Table 2.3.1: Primers used for 16S and 18S rRNA gene amplicon sequencing. 

Amplicon Primer name Sequence Reference 

16S rRNA 515F GTGBCAGCMGCCGCGGTAA L. W. Hugerth, Wefer, et al., 2014  

16S rRNA 805R GACTACHVGGGTATCTAATCC Herlemann et al., 2011 

18S rRNA 574*f CGGTAAYTCCAGCTCYV L. W. Hugerth, Muller, et al., 2014  

18S rRNA 1132R CCGTCAATTHCTTYAART L. W. Hugerth, Muller, et al., 2014 

 

The number of samples that have been sequenced per department are indicated in Table 

2.3.2. 
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Table 2.3.2: Number of patients and sequenced samples per department. 

Department Patients Samples  

Pediatrics 18 60 

Hematology 27 78 

 

2.4 16S and 18S rRNA gene amplicon sequencing data analysis 

16S rRNA gene sequencing reads were processed using the less operational taxonomic 

units scripts (LotuS) pipeline (version 1.34) (Hildebrand, Tadeo, Voigt, Bork, & Raes, 

2014) with default parameters. Within this pipeline, sequences are filtered with a C++ 

program, simple demultiplexer (sdm) and grouped into 'high-' and 'mid-' quality 

sequences. The high quality sequences are used by the software UPARSE (Edgar, 2013) 

to generate operational taxonomic unit (OTU) clusters, while the medium quality 

sequences are mapped to the established list of OTUs. Default sdm options for MiSeq 

sequences were used, consisting of a minimum sequence length (after primer removal 

and trimming) of 170 and a minimal average quality of 27 respectively 20 for high and 

medium quality sequences. Processed reads were clustered into OTUs, taxa with similar 

amplicon sequences at 97 % identity level. For taxonomic assignment, the Ribosomal 

Database Project (RDP) classifier (Q. Wang, Garrity, Tiedje, & Cole, 2007) was used. 

OTUs with a confidence level below 0.8 at the domain level were filtered out, as well as 

OTUs that were not represented by more than 10 reads in any given sample. OTUs that 

were unclassified on phylum level were selected and aligned to the NCBI nucleotide 

collection (nr/nt) database using the BLAST webservice (using program blastn). OTUs 

aligning to human, fungal or other eukaryotic genomes were removed. The final hand-

curated OTU table included 2,789 unique OTUs. Samples with a low number of reads 

(overall < 5,000 reads) were removed, concluding with an average (± standard deviation) 

of 208,000 ± 73,000 sequencing reads in each of the 134 samples.  

To process the 18S rRNA gene sequencing reads, a workflow specifically designed to 

process reads that are not overlapping was used (L. Hugerth, 2015). For classification, the 

PR2 database (Chevenet, Brun, Bañuls, Jacq, & Christen, 2006; Chevenet, Croce, 

Hebrard, Christen, & Berry, 2010; Guillou et al., 2013) was employed. After processing, 

OTUs represented by less than 10 reads in all samples were removed. OTUs belonging to 

the taxa Craniata and Streptophyta were removed, since they were most likely derived 

from human sequences or ingested food. Unclassified OTUs were aligned to the NCBI 
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nucleotide collection (nr/nt) database using the BLAST webservice (using program 

blastn). The results were hand-curated, removing OTUs that were related to human 

sequences, food, plants, viruses or phages. After removing samples from the 18S rRNA 

gene sequencing data due to a low number of reads (overall < 1,000 reads), 1381 unique 

OTUs were represented with an average (± standard deviation) of 69,000 ± 77,000 reads 

in each of the 103 samples.  

2.4.1 Diversity and statistical analyses  

Alpha-diversity describes within-sample diversity of a community. Different indices such 

as richness, evenness and the Shannon diversity index can be calculated to determine 

the diversity of a community within a sample. Richness quantifies how many different 

species or OTUs are present within a community, without taking into account different 

relative abundances. Evenness measures how species or OTUs are distributed in a 

community. The Shannon (or Shannon-Weaver) diversity index takes into account both 

richness and evenness. It is calculated as follows:  

! = !− !!!!"!!!!
!

!!!
 

where pi is the relative abundance of species i and S is the total number of species in the 

community (Shannon & Weaver, 1948). 

Statistical analyses and plots were generated in R (version 3.2.1) (R Development Core 

Team, 2008). Alpha-diversity was determined at the OTU level, by calculating the 

Shannon diversity index and the Chao1 richness estimator after rarefaction, using the 

vegan package (Oksanen et al., 2015). The 16S and 18S rRNA gene sequencing data 

were rarefied to the lowest number of respective reads for any sample. Plots were 

generated using the R base graphics or the ggplot2 package (Wickham, 2009).  

Comparison of diversity and richness was carried out using the non-parametric Wilcoxon 

rank sum test, or, when applicable, Wilcoxon signed-rank test. When p values < 0.05 were 

observed, groups were considered as statistically significantly different. Differential 

analysis of taxa based on 16S rRNA gene sequencing data was performed using the 

DESeq2 package (Love, Huber, & Anders, 2014) and significant differences on taxonomic 

levels were determined using the Wald test, after multiple-testing adjustment with the false 

discovery rate (FDR) method after Benjamini and Hochberg. For further statistics, the 

Fisher's exact test, Spearman's rank correlation coefficient test and the Kolmogorov-

Smirnov test of the stats package were used (R Development Core Team, 2008).  
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2.5 Metagenomic and metatranscriptomic sequencing 

Metagenomic (MG) and metatranscriptomic (MT) sequencing of the extracted DNA and 

RNA fractions was conducted by GATC Biotech AG, European Genome and Diagnostics 

Centre, Germany. Ribosomal RNA (rRNA) was depleted from the RNA fractions using the 

Ribo-Zero Gold rRNA Removal kit (Epidemiology, Illumina) and a strand-specific cDNA 

library was prepared according to standard protocols, optimized by GATC. Libraries 

representing both nucleic acid fractions were sequenced using a 100 bp or 125 bp paired-

end approach on an Illumina HiSeq 2500 using HiSeq V3 reagents. A total of 97 samples 

from 17 pediatric and 21 hematology patients were sequenced. For 41 of those samples, 

MT and MG sequencing was possible, while for 56 samples, only the metagenome could 

be sequenced (Table 2.5.1). 

Table 2.5.1: Number of patients, samples, MGMT and MG only datasets per department. 

Department Patients Samples MGMT MG 

Pediatrics 17 54 32 22 

Hematology 21 43 9 34 

 

Detailed timelines indicating for each patient the day at which a sample was taken, as well 

as the sequencing method that could be applied to this sample are illustrated in Figure 

2.5.1 (pediatric department) and Figure 2.5.2 (hematology department). Vertical color 

shadings in Figure 2.5.2 indicate the time periods defined as specific TPs. 16S and 18S 

rRNA gene sequencing was performed for each sample, while it is indicated in the figures 

only if MG and MT sequencing were not possible.  
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Figure 2.5.1: Sampling timeline for pediatric patients. Timelines indicate the days samples were taken (in 
relation to the first sample). 16S and 18S rRNA gene amplicon sequencing was performed on all samples and 
additionally, applied metagenomic (MG) and metatranscriptomic (MT) sequencing is indicated for each 
sample. 
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Figure 2.5.2: Sampling timeline for patients recruited at the hematology department. The timeline 
indicates the day the samples were taken (in relation to allo-HSCT at day 0). 16S and 18S rRNA gene 
amplicon sequencing was performed on all samples and additionally, applied metagenomic (MG) and 
metatranscriptomic (MT) sequencing is indicated for each sample. 

2.6 Processing and assembly of metagenomic and metatranscriptomic 

datasets 

MG and MT datasets were processed using the Integrated Meta-omic Pipeline (IMP) 

(Narayanasamy et al., 2016a). For datasets from patient A07 (section 3.3), version 1.1 

was used. All other patient datasets were processed using version 1.2.2. Published 

human GIT microbiome MG and MT read data from four healthy individuals was obtained 

from the NCBI Sequence Read Archive [MG: SRX247379, SRX247391, SRX247401, 
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2014). These sequencing reads were processed using IMP version 1.2.1 (Narayanasamy 
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Figure 2.6.1: Overview of the IMP workflow. Cylinders represent input and ouput. Rectangles represent 
processes. MG: metagenomic, MT: metatranscriptomic, NLDR-GS: genomic signature non-linear 
dimensionality reduction (Narayanasamy et al., 2016b). 
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(Laczny et al., 2015; Laczny, Pinel, Vlassis, & Wilmes, 2014), variant calling, functional 

annotation of predicted genes, and provides information on the depth of coverage of 

genes based on the MG and MT datasets (Figure 2.6.1). 

In a first step, raw reads are being preprocessed, including removal of adapter 

sequences, bad quality reads, ribosomal RNA (for MT datasets) and reads mapping to the 

human genome. This is followed by the assembly of preprocessed MG and MT reads. 

This 'iterative assembly' includes several assembly rounds, each time including reads that 

were unmappable in the previous step, thereby increasing the amount of information used 

in the final set of contigs, the final assembly. The initial MG and MT reads are mapped 

back onto the final contigs, resulting alignment information is used in different analysis 

procedures such as variant calling and determination of depth of coverage. The average 

depth of coverage Dx of a gene or contig x is determined both for the metagenome and 

the metatranscriptome by calculating the average number of reads mapping to each 

nucleotide within a gene, respectively in a contig.  

!! = !
!!

!"#$%ℎ!
 

where rx is the number of reads mapping to a gene or contig x at each nucleotide.  

Here, gene expression of a gene x is calculated as the ratio of average 

metatranscriptomic depth of coverage to the average metagenomic depth of coverage for 

individual genes x.  

!! = !
!!(!")
!!(!")

 

An additional output of the pipeline are VizBin maps, which will be explained in the 

following paragraph. 

2.7 Population-level binning of contigs from the co-assembly and 

inference of population size 

To analyze and compare the population-level structure of the microbial communities 

based on the assembled genomic information, contigs were binned into (partial) 

population-level genomes. Using VizBin (Laczny et al., 2015, 2014), 2D embeddings 

based on BH-SNE (Barnes-Hut Stochastic Neighborhood Embedding) of the pentamer 

frequency profiles of all contigs of at least 1,000 nt were produced, as part of IMP. In 

these embeddings, contigs with similar genomic signatures (pentamer frequencies) are 

closer together, hence, individual clusters of contigs represent individual populations 

(Muller et al., 2014). Population-level clusters were selected following the method 
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described in Heintz-Buschart et al., 2016. In short, the automatic workflow is based on 

DBSCAN (Ester, Kriegel, Sander, & Xu, 1996). Clusters were selected based on 

neighborhood points in a first step. Using a collection of 107 single-copy marker genes or 

'essential genes' (Albertsen et al., 2013), completeness and homogeneity of clusters were 

determined. By analyzing the MG depth of coverage of these essential genes, clusters 

with multiple copies of the same genes were further divided. Resulting bins are referred to 

as 'population-level genomes' in the following.  

Within a community, the relative population size of a cluster (i) was determined by dividing 

the number of MG reads mapping to the contigs forming this cluster (ci), by the total 

number of MG reads mapping to all the contigs used in the assembly (C) according to the 

following formula: 

!! = !
!! ∗ !100

!  

2.8 Taxonomic affiliation of reconstructed population-level genomes 

Taxonomic affiliations of population-level genomes were determined using complementary 

methods. Contigs forming the population-level genomes were first aligned to NCBI 

nucleotide collection (nr/nt) database using the BLAST webservice (Madden, 2002). 

Parameters were left at default (using program megablast), and the output was analyzed 

using the MEtaGenome ANalyzer (MEGAN) (D. Huson, Mitra, & Ruscheweyh, 2011). 

Whenever the rpoB gene could be recovered within a population-level genome, the 

closest neighbor was determined in the nucleotide collection (nr/nt) database using the 

MOLE-BLAST webservice (Boratyn et al., 2014). Additionally, AMPHORA2 (Wu & Scott, 

2012) was used to identify the taxonomic affiliation of up to 31 bacterial or 104 archaeal 

phylogenetic marker genes. 

2.9 Reassembly 

Population-level genomes were reassembled using all MG and MT reads mapping to the 

contigs of the population-level genomes with the same taxonomic assignment. 

Reassembly of all recruited reads was carried out using SPAdes (Bankevich et al., 2012) 

(version 3.5.0) using standard parameters. MG and MT reads were subsequently mapped 

to the contigs forming this reassembly to determine expression levels and variant density. 
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2.10 Sequence comparison of population-level genomes 

The average nucleotide identity (ANI) calculator ('ANI Average Nucleotide Identity', at 

http://enve-omics.ce.gatech.edu/ani/; Goris et al., 2007) was used with standard settings 

to compare the reassembly from population-level genomes to publicly available reference 

genomes. A gene-wise protein sequence comparison of different population-level 

genomes was performed using the RAST server (Aziz et al., 2008) using standard 

parameters. 

2.11 Detection of antibiotic resistance genes 

Antibiotic resistance genes (ARGs) within a community or population were searched 

against Resfams version 1.2 (Gibson et al., 2014) using HMMer version 3.1b2 (Eddy, 

2011). We used the core version of the Resfams database, which includes 119 protein 

families. In accordance with the HMMer user manual, only identified genes with a bitscore 

higher than the binary logarithm of the total number of genes (of the community or 

population) were retained. 

2.12 Variant identification and density 

Variants were identified in population-level reassembled genomes using SAMtools 

mpileup (H. Li et al., 2009) with default settings, which include the calling of single 

nucleotide variants (SNVs) as well as the identification of small insertions/deletions 

(indels). The output was filtered using a conservative heuristic established in Eren et al., 

2015, which takes into account the ratio of the frequencies of both bases and the depth of 

coverage at the corresponding nucleotide position, in order to reduce the effect of 

sequencing errors. 

Variant density (V) in a population i was calculated by dividing the number of single 

nucleotide variant and indel positions (P) by the relative population size, more precisely 

the ratio between reads mapping to the population-level genomes (ci) and total number of 

reads (C). 

!! = !
!!
!!
!
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2.13 Extraction, sequencing and analysis of bacterial DNA from a blood 

culture 

A bacterium was isolated from a patient's blood using the BD BACTEC FX system 

(Becton Dickinson) following the manufacturer's recommendations, by a consultant in 

medical microbiology from the institute for medical microbiology and hygiene of the 

Saarland University Medical Center. It was identified as a multidrug-resistant E. coli. 

Subcultures were grown on TSA blood agar plates and on MacConkey agar plates. DNA 

was isolated from a culture grown in standard growth medium (TSB, BHI or LB) using the 

Maxwell 16 Tissue LEV Total RNA Purification Kit on a Maxwell 16 MDx Instrument 

(Promega) according to manufacturer's instructions.  

DNA was sequenced on an Illumina MiSeq, 300 bp paired-end at GIGA. The genome was 

assembled using SPAdes (Bankevich et al., 2012) and ARGs were identified using 

Resfams, as described previously. Using ANI, nucleotide identity between E. coli 

genomes from GIT samples and the E. coli genome from the isolate were assessed. 

Using PanPhlAn (Scholz et al., 2016) and the provided database including 118 E. coli 

reference strains, their relation was assessed based on their gene set. While the 

PanPhlAn database includes 31,734 genes, only genes present in 10 or more genomes 

were included, resulting in 7,845 genes for comparison. 

2.14 Virus profiling 

The analysis tool ViromeScan (Rampelli et al., 2016) was separately applied to trimmed 

and filtered MG and MT reads to identify reads that map to eukaryotic viral genomes. 

Default parameters were used along with the eukaryotic DNA/RNA reference database 

which includes genomes of viruses that have the human as natural host, in addition to 

viruses of other vertebrates, invertebrates, fungi algae and plants. The database excluded 

bacteriophages. The relative abundance of the viral community in each sample was 

calculated as percentage of reads mapping to viral genomes of the total number of reads. 

2.15 Read-based taxonomic analyses 

Metagenomic operational taxonomic units (mOTUs) analysis for taxonomic profiling was 

performed on trimmed and filtered paired MG and MT reads individually using the MOCAT 

pipeline (Kultima et al., 2012; Sunagawa et al., 2013). This was used with standard 

parameters and the mOTU.v1.padded reference database including 10 single-copy 

marker genes (Sunagawa et al., 2013). 
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2.16 Functional analyses 

Within IMP, Prokka was used for functional annotation (Seemann, 2014), with Prodigal for 

gene prediction (Hyatt et al., 2010). Additionally, KEGG (Kyoto Encyclopedia of Genes 

and Genomes) orthologous groups (KOs) were annotated as described in Heintz-Buschart 

et al., 2016 (Kanehisa, Sato, Kawashima, Furumichi, & Tanabe, 2016). The featureCounts 

tool of the Subread package was used to count (MG or MT) reads mapping to the 

predicted genes (Liao, Smyth, & Shi, 2014). Differential analysis of functional gene 

categories and enzymes was performed using the DESeq2 package (Love et al., 2014) 

and significant differences on functional gene abundances were determined using the 

Wald test, after multiple-testing adjustment with FDR method after Benjamini and 

Hochberg. Additionally, KOs were grouped according to their KEGG pathway affiliation. 

Heatmaps were plotted using the heatmap.2 function from the gplots package.  

!
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3 Results and discussion 

This chapter is divided into three sections, based on different patient cohorts that are 

focussed on in the individual sections. The first section focuses on patients from the 

pediatric department who underwent different anticancer treatments. The second section 

focuses on the adult hematology patients who underwent an allo-HSCT and the third 

section focuses on one specific adult patient. Each section first describes the general 

changes observed in the GIT microbiome community throughout the treatment, including 

assessment of alpha-diversity and changes on different taxonomic levels. The following 

parts describe the viral community and functional properties of the GIT microbiome, 

especially trends observed in the abundance of ARGs. The last part focuses on the 

possible link between the microbiome and development of mucositis or GvHD. 

 

3.1 Meta-omic analyses of the gastrointestinal tract microbiome in 

pediatric patients undergoing different anticancer treatments 

The first section focuses on the changes within the GIT microbiome of pediatric oncology 

patients undergoing anticancer treatment with different intensities and is based on 60 

fecal samples collected from 18 different patients. After processing and filtering of the 16S 

rRNA gene amplicon sequences (as described in section 2.4), 58 datasets were left for 

the following analyses, with 243,000 ± 75,000 (mean ± standard deviation) sequences per 

sample. Similarly, 67,500 ± 76,000 sequences per sample of the 40 sets of 18S rRNA 

gene sequencing data were retained. Of 32 samples, MG and MT combined datasets 

could be produced. Additionally, 22 MG-only datasets were produced. After processing 

with IMP (as described in section 2.6) which included filtering out low quality reads and 

reads mapping to the human genome, per dataset, 56,000,000 ± 21,000,000 MG 

sequences and 50,000,000 ± 15,000,000 MT sequences were kept for the following 

analyses. Co-assemblies of the preprocessed MG and MT reads were constructed which 

comprised longer contiguous sequences (contigs). For MG-only datasets, MG-only 

assemblies were contructed. Within the co-assemblies and MG-only assemblies, 158,500 

± 75,000 genes were predicted. 
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3.1.1 Patient characteristics and treatment 

Anthropometric and clinical information of the ten female and eight male patients included 

in the following analyses are provided in Table 2.1.1, and a summarized overview is 

presented in Table 3.1.1. At the start of the treatment, the patients aged between 3 and 19 

years (median 11.5). They were grouped into different treatment groups (TGs) according 

to the intensity of their treatment. Patients within TG1 received a treatment with low 

intensity, TG2 received a standard intensive treatment and TG3 underwent an intensive 

treatment followed by an autologous stem cell transplantation (auto-HSCT). Four patients 

were treated for nephroblastoma, four for acute lymphoblastic leukemia, two for Hodgkin's 

lymphoma, two for Ewing sarcoma, two for non-Hodgkin's lymphoma, one for ovarian 

germ cell tumor, one for germ cell tumor of the brain, one for neuroblastoma and one for 

medulloblastoma. Of the eighteen patients enrolled in the study, two were grouped into 

TG1, fifteen were grouped into TG2 and one into TG3. Three patients were changed from 

TG2 to TG3 during the course of their treatment. They first received a standard treatment 

and later an auto-HSCT. Five patients developed mucositis with minimum grade 3, 

meaning occurrence of severe, painful ulcers needing pain medication, with impaired 

intake of solid food. 1.5 years after start of the treatment, fourteen patients were still alive 

while four had deceased due to tumor progression or respiratory failure. 

Table 3.1.1: Summarized anthropometric and clinical information of the pediatric study cohort 

Underlying disease! Number of patients Treatment group! Age!
Nephroblastoma 4 2, 1, 2 & 3, 1 16, 3, 8, 4 
Acute lymphoblastic leukemia 4 2, 2, 2, 2 19, 4, 8, 12 
Hodgkin's lymphoma 2 2, 2 17, 11 
Ewing sarcoma 2 2, 2 14, 12 
Non-Hodgkin's lymphoma 2 2, 2 14, 14 
Ovarian germ cell tumor 1 2 13 
Germ cell tumor of the brain 1 2 & 3 8 
Neuroblastoma 1 3 3 
Medulloblastoma 1 2 & 3 4 
!
3.1.2 Changes in the prokaryotic GIT microbiome in pediatric patients throughout 
cancer treatment 

Based on 16S rRNA gene amplicon sequencing of DNA extracted from 60 fecal samples 

of the patients, the prokaryotic (bacterial and archaeal) community was assessed. After 

filtering and removal of samples with a low number of reads (as described in section 2.4), 

58 of the sequenced samples were kept for the following analyses. The overall 14 most 

abundant genera within all 58 samples were identified to get an overview of the 
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composition of the GIT microbiome of the patients (Figure 3.1.1). The samples were 

usually dominated by few different genera, the most abundant ones being Bacteroides, 

Faecalibacterium and Parabacteroides. For some patients, the different samples taken at 

different time points (TPs) did not reveal drastic differences, but rather an individual 

specific composition, such as for example P02 revealing a high relative abundance of the 

genus Prevotella, at all four TPs, which expanded over a time period of over three 

months. For other patients, such as P15, strong differences in the composition between 

different TPs could be observed. 

 

Figure 3.1.1: Relative abundance of the 14 most abundant bacterial genera in fecal samples from 
pediatric cancer patients, grouped according to patient. Genera which were not comprised in the 14 most 
abundant genera are combined as 'others'. Operational taxonomic units (OTUs) which could not be classified 
at the genus level are grouped as 'unknown'. Patient ID and sampling time point (TP) are indicated below 
each respective bar and are colored according to the patient. 

In the following, the samples were grouped according to the TG and according to the TP 

within the TG (Figure 3.1.2). In TG1 and TG2, the first sample was taken at admission, 

before treatment was started. The second sample was collected after the first cycle of 

treatment at the nadir, the point where the leukocyte count is at its lowest. The third 

sample was taken when the blood counts recovered before the next cycle of treatment 

was started and the last sample was taken after the end of the therapy. For patients within 

TG3 or patients who were switched to TG3, samples were collected before and after the 
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auto-HSCT. No clear specificity of the relative abundance of bacteria distinct to individual 

TGs or TPs was apparent.  

 

Figure 3.1.2: Relative abundance of the 14 most abundant bacterial genera in fecal samples from 
pediatric cancer patients. Samples are grouped according to TPs within TG: (A) TG1, (B) TG2 and (C) TG3. 
Genera which were not comprised in the 14 most abundant genera are combined as 'others'. OTUs which 
could not be classified at the genus level are grouped as 'unknown'. Patient ID and sampling TP are indicated 
below each respective bar and are colored according to the patient. 

Differentially abundant OTUs between TP1 (before treatment) and TP2 (lowest leukocyte 

count after first cycle of treatment) were assessed. For this analysis, patients from TG2 

were included, as this TG comprised the highest number of patients. Between those TPs, 

27 differentially abundant bacterial OTUs were identified (absolute log2 fold change ≥ 1, 

FDR-adjusted p value < 0.05). Table 3.1.2 displays the 13 OTUs with the lowest adjusted 
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p value (< 0.02, Wald test, FDR-adjusted). A negative fold change indicates a lower 

relative abundance in samples collected after treatment (TP2).  

Table 3.1.2: Differentially abundant bacterial OTUs in samples from collection TP1 and TP2  

 

While the observed decrease in Clostridium cluster XIVa is in agreement with 

observations in other studies (Touchefeu et al., 2014), a different study observed an 

increase in the relative abundance of Akkermansia spp. after chemotherapy (Zwielehner 

et al., 2011), which is contrary to the current observation. Some members of the families 

Ruminococcaceae and Lachnospiraceae have beneficial, health-promoting properties 

(Ying Taur, 2016) and loss of these bacteria might have negative effects on the host. 

However, here, both decreases and increases in the relative abundance of different OTUs 

belonging to these families were observed. 

No correlations between the relative abundances of bacterial taxa (on any taxonomic 

level) and any clinical markers (including data such as calprotectin level, number or 

relative abundance of leukocytes, thrombocytes, CD3+ cells or C-reactive protein) were 

detected (Spearman's rank correlation test with multiple-testing adjustment). Similarly, no 

links between prokaryotic diversity and the clinical data were found. 

Bacterial Shannon diversity and Chao1 richness for each TP within each TG at OTU level 

were assessed after rarefaction (Figure 3.1.3). Quite drastic differences in diversity in TG1 

(Figure 3.1.3A) were observed with a median diversity of 2.6 at TP1, increasing to 3.3 at 

TP4. A similar pattern was observed for bacterial richness (Figure 3.1.3B). No statistically 

significant differences were found between different TPs in this TG. However, this TG 

comprised only two patients. With a higher number of patients and samples, the observed 

OTU Taxon log2 fold change adjusted p value 

OTU_17 Prevotella sp. -3.12 0.001 
OTU_135 Prevotella sp. -2.87 0.013 
OTU_46 Ruminococcaceae (family) -2.77 0.002 
OTU_76 Parasutterella sp. -2.62 0.002 
OTU_11 Akkermansia sp. -2.45 0.002 
OTU_194 Lachnospiraceae incertae sedis -2.37 0.002 
OTU_90 Clostridium cluster XIVa -2.22 0.002 
OTU_30 Flavonifractor sp.  1.49 0.013 
OTU_33 Clostridium cluster XVIII 1.49 0.013 
OTU_384 Clostridiales (order) 1.88 0.013 
OTU_31 Lachnospiraceae (family) 2.06 0.002 
OTU_52 Clostridium cluster XI 2.20 0.003 
OTU_35 Lactobacillus sp. 4.13 5.15E-07 
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pattern might look different, possibly more similar to the pattern observed in TG2. In TG2, 

a slight decrease in diversity throughout treatment was observed (Figure 3.1.3C). 

Bacterial richness displayed more pronounced changes with a significant decrease from 

TP1 to TP2 (samples of the same individuals: p value 0.017, Wilcoxon signed-rank test 

and over all patients: p value 0.018, Wilcoxon rank sum test, Figure 3.1.3D). In TG3, no 

drastic changes in diversity or richness could be observed (Figure 3.1.3E and Figure 

3.1.3F). Both diversity and richness were in general lower in this TG than in the other 

TGs. This might be due to the higher intensity of the treatment and due to previous 

treatments of these patients. 

 

Figure 3.1.3: Changes within gastrointestinal bacterial community structure in patients receiving 
different anticancer treatments. Boxplots depicting (A, C and E) diversity (Shannon diversity index) and (B, 
D and F) richness (Chao1 richness estimator) per collection time point (TP), for prokaryotes in (A, B) TG1, (C, 
D) TG2 and (E, F) TG3 (determined by 16S rRNA gene amplicon sequencing) The number of samples per 
collection TP is indicated above each box. Diversity and richness were determined after rarefaction of the 
dataset (* when p value < 0.05, Wilcoxon rank sum test).  
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As the GIT microbiome of infants and young children is unstable and reaches a state 

similar to that of adults at around 3-4 years (Greenhalgh et al., 2016; Voreades, Kozil, & 

Weir, 2014), I was wondering whether a difference in age of the patients was reflected in 

the microbiome. TG1 and TG3 displayed an overall lower richness than TG2 and included 

a higher ratio of younger patients. Both patients included in TG1, and one out of four 

patients in TG3, while only two out of fifteen patients in TG2, were 3 or 4 years old at 

beginning of treatment. In the following, patients were grouped according to their age with 

five patients belonging to the group with younger patients (3 or 4 years old). All remaining 

thirteen patients belonged to the group with older patients (8 years or older). A significant 

difference in richness was observed when grouping the samples independently of the TP 

(p value 0.0025, Wilcoxon rank sum test), with a lower richness for the samples from 

younger patients (Figure 3.1.4A). Richness was also plotted per TP as boxplots (Figure 

3.1.4B and Figure 3.1.4C) or as connected points (Figure 3.1.4D and Figure 3.1.4E) 

illustrating the development of richness per patient throughout the treatment. 

In general, a lower bacterial richness was observed in younger patients, and the richness 

was already lower at TP1, before treatment start. In the younger patients, a striking 

decrease in richness was observed at TP3. In the older patients, bacterial richness was 

generally higher and showed no specific pattern. In some of the older patients, a low level 

of richness was observed at some point during treatment, similar to the richness observed 

in samples from younger patients. These results indicate that richness was indeed related 

to age. In our study however, richness did change throughout the treatments indicating 

that the treatment also had a large effect on bacterial richness. 

 



3. Results and discussion 

!56 

  

Figure 3.1.4: Bacterial richness in young and older children. Boxplots depicting richness (Chao1 richness 
estimator) in samples from (A) young (3-4 years, left) and older (8-19 years, right) patients. (B, C) Boxplots 
depicting richness of the same samples and patients per TP. (D, E) Richness per TP and patient indicated as 
point connected with lines. 

The GIT microbiome is usually temporally stable and inter-individual differences 

significantly higher than intra-individual differences (Brandt et al., 2012; Heintz-Buschart et 

al., 2016). Here, to compare the intra-individual to inter-individual distance between 

microbial profiles, Bray-Curtis dissimilarity was determined based on the OTUs obtained 

from 16S rRNA gene sequencing data. The intra-individual distance describes the 

variation between the microbial profiles of different TPs from each patient while the inter-

individual distance indicates the variation between the microbial profiles from different 

patients. A slightly higher inter-individual dissimilarity was observed (p value 0.024, 

Wilcoxon rank sum test, Figure 3.1.5).  

Earlier studies with healthy individuals have shown that without the influence of external 

factors, the inter-individual dissimilarity was significantly higher than intra-individual 
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differences, because of the stability of the GIT microbiome. Here, the intra-individual 

dissimilarity was high, indicating that the treatment did have a strong effect on the GIT 

microbial community. As the TGs were exposed to different intensities of treatment, a 

higher intra-individual distance in TGs with the more intense treatment might be expected. 

However, no statistically significant differences between the intra-individual distances in 

the three TGs were detected. Similarly, a higher diversity or richness at TP1 might be a 

predictor of a more stable bacterial community, which would be less affected by the 

following treatment. However, no correlation between the diversity or richness at TP1 and 

the following changes in terms of intra-individual dissimilarity was observed. Diversity or 

richness at TP1 is therefore not predictive of the level of changes within the GIT microbial 

community throughout treatment. 

 

Figure 3.1.5: Comparison of intra-individual to inter-individual distances between bacterial profiles 

3.1.3 Changes in the microeukaryotic populations of pediatric patients throughout 
cancer treatment 

While other studies have focussed on the prokaryotic community only, here, also the 

microeukaryotic community composition was assessed using 18S rRNA gene amplicon 

sequencing of DNA extracted from 60 fecal samples of the patients. During the filtering 

steps, food related reads, such as reads mapping to plants (e.g the genera Fragaria 

(strawberry) or Solanum (potato and tomato)) as well as reads mapping to the human 

genome were removed. For some samples, the majority of the reads were human or food 

related, hence, these datasets were removed due to a low number of reads after filtering. 
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38 samples were kept for further analyses. The 14 most abundant taxa were identified to 

get an overview of the composition of the GIT microeukaryotic community of the patients 

(Figure 3.1.6). Most samples were dominated by the taxon Ascomycota, which includes 

the most common microeukaryotic representatives within the human GIT, such as 

Candida spp. and Saccharomyces spp. Some samples included other taxa, for example 

P01_TP3 showed relative high levels of Blastocystis spp., a unicellular, nonflagellated 

member of the Stramenopiles belonging to the taxon Opalinata (Scanlan et al., 2014), 

which is a common member of the GIT microbiome. In P18_TP1, a common flagellate 

protozoan parasite, Dientamoeba fragilis belonging to the taxon Parabasalia was 

detected. BLAST analysis revealed that some of the abundant OTUs included in the group 

'unknown' also represented Dientamoeba fragilis. Infections with Dientamoeba fragilis can 

remain asymptomatic but can also cause abdominal symptoms such as pain, nausea and 

diarrhea (Elbakri, Al-qahtani, & Samie, 2015). 

 

Figure 3.1.6: Relative abundance of the 14 most abundant microeukaryotic taxa in fecal samples from 
pediatric cancer patients grouped according to patient. Taxa which are not comprised in the 14 most 
abundant taxa are combined as 'others'. OTUs which could not be classified at any taxonomic level are 
grouped as 'unknown'. Patient ID and sampling TP are indicated below each respective bar and are colored 
according to the patient. 

In the following, the samples were grouped according to the TG and according to the TP 

within the TG (Figure 3.1.7). In some samples, a large proportion of reads was grouped as 

'unclassified', meaning that those OTUs could not be classified at the genus level. They 

could however be classified at higher levels and the largest part of these OTUs belonged 

to the taxon Ascomycota. No clear differences in the relative abundance of 

microeukaryotes specific to individual TGs or TPs were apparent. Some patients (such as 

P07, in Figure 3.1.7A and P15, in Figure 3.1.7B) showed similar microeukaryotic 

community compositions at each TP while others (such as P01 in Figure 3.1.7B) revealed 

a more unique community composition at different TPs. 
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Figure 3.1.7: Relative abundance of the 14 most abundant microeukaryotic genera in fecal samples 
from pediatric cancer patients. Samples are grouped according to TPs within TG: (A) TG1, (B) TG2 and (C) 
TG3. Taxa which were not comprised in the 14 most abundant genera are combined as 'others'. OTUs which 
could not be classified at the genus level are grouped as 'unclassified'. OTUs which could not be classified at 
any taxonomic level are grouped as 'unknown'. Patient ID and sampling TP are indicated below each 
respective bar and are colored according to the patient. 
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In order to determine whether the microeukaryotic community evolved in the same way as 

the prokaryotic community, diversity and richness of the microeukarotic community were 

determined on the OTU level after rarefaction (Figure 3.1.8). No statistically significant 

differences in diversity or richness between different TPs within the TGs were determined. 

Overall, the microeukaryotic community exhibited a lower diversity and richness than the 

prokaryotic community. No correlation between prokaryotic and eukaryotic diversity or 

richness was detected (Spearman's rank correlation test). Development over time of both 

diversity and richness of the microeukaryotic community was different from the 

development of the prokaryotic community (Figure 3.1.3), which indicates that both 

communities were differently affected by the treatment.  

 

Figure 3.1.8: Changes in the gastrointestinal microeukaryotic community structure in patients 
receiving different anticancer treatments. Boxplots depicting (A, C and E) diversity (Shannon diversity 
index) and (B, D and F) richness (Chao1 richness estimator) per collection time point (TP), for 
microeukaryotes in (A, B) TG1, (C, D) TG2 and (E, F) TG3 (determined by 18S rRNA gene amplicon 
sequencing). The number of samples per collection TP is indicated above each box. Diversity and richness 
were determined after rarefaction of the dataset. 
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3.1.4 Variability of GIT microbiome trajectories throughout treatment 

As apparent from the overview of the prokaryotic community composition in each sample 

(Figure 3.1.1), the GIT microbiome from some patients underwent pronounced changes 

throughout treatment while the microbiome of other patients stayed relatively stable. A 

principal component analysis (PCA) on the genus level revealed similar trends (Figure 

3.1.9). One patient whose samples clustered relatively closely together (P02, marked in 

light brown in Figure 3.1.9) and one patient whose samples were quite dispersed on the 

PCA plot, especially in regards to PC1 (P05, marked in blue in Figure 3.1.9) were selected 

for a closer evaluation. Their respective samples are encircled in Figure 3.1.9. Overall, the 

samples also did not group according to the collection TP, or according to parameters 

characterizing the patient's status, such as the occurrence of mucositis, a low number of 

leukocytes, a reduced overall status or overall outcome. 

 

Figure 3.1.9: Principal component analysis (PCA) for GIT prokaryotic community composition. Each 
dot represents a sample colored according to which patient it derived from. PCA was performed on genus 
level, based on 16S rRNA gene amplicon sequencing.  

In P02, the most abundant OTUs (such as Prevotella sp., Dialister sp. and 

Faecalibacterium sp.) were the same at each TP (Figure 3.1.10A), diversity stayed quite 

high (Figure 3.1.10C), as did the richness (ranging between 445 and 610). Within the 
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cohort, patient P02 displayed the lowest mean Bray-Curtis dissimilarity between the TPs 

(0.22). In P05, the most abundant OTUs differed at each TP (Figure 3.1.10B) and there 

were important changes in diversity between the TPs (Figure 3.1.10D) as well as in 

richness (ranging from 188 to 526). Mean intra-individual dissimilarity for this patient was 

0.54. 

 

Figure 3.1.10: Variation of the microbial community structure over the course of the treatment in 
pediatric patients. (A) and (B) Relative proportions of the 14 most abundant operational taxonomic units 
(OTUs) based on 16S rRNA gene sequencing. The remaining OTUs are summarized as 'others'. (C) and (D) 
Prokaryotic diversity represented by Shannon diversity index at sampling TPs throughout the treatment. (E) 
and (F) Relative proportions of the 14 most abundant metagenomic operational taxonomic units (mOTUs) 
based on MG sequencing. The remaining mOTUs are summarized as 'others'. Plots represent the 
corresponding results for patient P02 (panels A, C and E) and patient P05 (panels B, D and F).  

For the 54 samples where MG sequencing data was available, metagenomic operational 

taxonomic units (mOTUs) were identified for taxonomic profiling. For most of the abundant 

mOTUs, classification at species level was possible. While the bacterial abundance profile 

based on 16S rRNA gene sequencing and MG sequencing largely coincide for P02 

(Figure 3.1.10A and Figure 3.1.10E), more differences are observed for P05 (Figure 

3.1.10B and Figure 3.1.10F). For example, the most abundant OTU at TP4 based on 16S 
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rRNA gene sequencing was classified as Escherichia/Shigella sp., while this seemed to 

be only lowly abundant at TP4 in the MG sequencing dataset. 

MG sequencing does not only allow taxonomic profiling but also functional profiling, which 

will be described in the next parts.  

3.1.5 Detection of antibiotic resistance genes 

Many cancer patients are immunocompromised, either due to the underlying disease, or 

due to the anticancer treatment. Therefore, they are often prone to infection, hence, 

prophylactic antibiotics or an antibiotic treatment during neutropenia or at occurrence of 

fever are often given. However, antibiotic resistance and especially the emergence of 

multi-drug resistant bacteria represent a threat. For the 54 samples with available MG 

datasets, antibiotic resistance genes (ARGs) were detected within the predicted genes 

using the Resfams database (section 2.11) and their relative abundance (percentage of 

ARGs relative to the total number of genes) was calculated (Figure 3.1.11A). The mean 

relative abundance and standard deviation within these 54 samples was 0.26 ± 0.06 %.  

While most patients received only trimethoprim/sulfamethoxazole (cotrimoxazole) 

regularly to prevent Pneumocystis jirovecii pneumonia, some patients received also other 

antibiotics. For example, patient P01 was treated with piperacillin/tazobactam before TP1, 

patient P07 before TP3, patient P04 before TP2 and TP3 and patient P05 was treated 

with cefuroxime before TP1 and TP2. For the majority of patients, a slight increase in 

relative abundance of ARGs was observed (Figure 3.1.11A and Figure 3.1.11C), however, 

also other patterns were observed as for example a decrease for P01, and a decrease 

followed by an increase for P07 and P14 (Figure 3.1.11A). Within TG1 (Figure 3.1.11B) 

the relative abundance of ARGs stayed relatively constant while a decrease followed by 

an increase was observed in TG3 (Figure 3.1.11D). However, due to the low number of 

samples within these TGs, these observations cannot be fully attributed to the respective 

treatments. In TG2, a statistically significant increase from TP1 to TP2 (p value 0.034, 

Wilcoxon rank sum test) and from TP1 to TP3 (p value 0.045, Wilcoxon rank sum test) 

was observed (Figure 3.1.11C). To summarize, especially in TG2 (which included the 

highest number of patients), an increase in the relative abundance of ARGs throughout 

treatment was observed. 
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Figure 3.1.11: Relative abundance of antibiotic resistance genes in fecal samples from pediatric 
cancer patients. (A) Samples grouped according to patient. IDs are colored according to the patient. (B – D) 
Samples combined according to TP within (B) TG1, (C) TG2 and (D) TG3. (B-D) The number of samples per 
collection TP is indicated above each plot (* when p value < 0.05, Wilcoxon rank sum test). 

3.1.6 Virome profiling within the GIT microbiome of pediatric cancer patients 

Apart from prokaryotes and eukaryotes, the GIT community also harbors viruses which 

play a part in human health and disease (Popgeorgiev, Temmam, Raoult, & Desnues, 

2013). Even viruses which are usually not harmful for their host can pose a serious threat 

in immunocompromised patients (Sahin et al., 2016). Shotgun sequencing may allow their 

detection and treatment, before they become harmful. On average, 0.014 ± 0.012 % MG 

and 0.033 ± 0.058 % MT reads were mapped onto viral genomes within the 54 (for MG) 

and 32 (for MT) samples.  
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Figure 3.1.12: Relative abundance of reads mapping to viral genomes. Boxplots depict MG (A, C and E) 
or MT (B and D) reads mapping to viral genomes grouped per TP within TG1 (A and B), TG2 (C and D) and 
TG3 (E). The number of samples per collection TP is indicated above each box. For TG3, only two MT 
datasets from one patient were available, hence it was not possible to construct boxplots. 

Compared to the average, one sample (P01_TP1, Figure 3.1.12C) contained many reads 

mapping to viral DNA genomes (0.087 %). The most abundant viruses found in this 

sample included viruses with large genomes belonging to the clade Megaviridae, such as 

the Phaeocystis globosa virus (Santini et al., 2013), which infects the unicellular algae 

Phaeocystis (however this was not detected in the 18S rRNA gene sequences), or the 

Acanthamoeba polyphage moumouvirus infecting the amoeba Acanthamoeba polyphage 
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(which was also not detected in the 18S rRNA gene sequences) (Yoosuf et al., 2012). 

Different Entomopoxviriniae were detected, which infect insects (Afonso et al., 1999).  

Sample P01_TP4 (Figure 3.1.12D) contained many reads (0.31 %) mapping to RNA 

viruses, compared to the average. Tobamovirus, the pepper mild mottle virus (PMMoV) 

was found to account for 96 % of the RNA reads mapping to viral genomes within this 

sample. This is among the most important pathogens of peppers (Capsicum spp.) and is 

commonly detected in high abundance in fecal samples (Colson et al., 2010; Zhang et al., 

2006). Although it is generally assumed that plant-associated viruses do not become 

resident in the GIT and are not pathogenic for humans, it cannot be completely excluded 

(Balique, Lecoq, Raoult, & Colson, 2015). In one study, the presence of PMMoV was 

linked to clinical symptoms such as abdominal pains and fever (Colson et al., 2010). 

However, abdominal pain could simply be linked to the consumption of pepper. 

As for some samples, the majority of the reads mapping to viral genomes contained plant-

associated viruses which were taken up via nutrition, or viruses, which infect insects or 

amoeba, the same analyses were repeated but mapping against human-associated 

viruses only (Figure 3.1.13). On average, 0.0004 ± 0.0003 % MG and 0.0009 ± 0.0006 % 

MT reads were mapped onto viral genomes within the 54 (for MG), respectively 32 (for 

MT) samples. 

Sample P14_TP5 contained the highest ratio of MG reads (0.002 %) mapping to human-

associated viral genomes, compared to the other samples. 66 % of those reads mapped 

to Betapapillomavirus. This virus has previously been detected in fecal samples (Di Bonito 

et al., 2015; Ma et al., 2014) and does not necessarily provoke any symptoms in the host. 

Patient P14 developed herpes zoster, a painful skin rash, directly after collection of the 

third sample. This is caused by the human herpesvirus 3, or herpes zoster virus. This 

virus was detected in P14_TP3 (2.24 * 10-5 % of the total number of reads), P14_TP4 

(8.22 * 10 -6 %) and P14_TP5 (1.79 * 10-4 %).  

One sample with a high RNA viral load was P15_TP2, where the human Coronavirus was 

detected. This virus commonly infects the human respiratory tract or GIT, has been 

isolated from fecal samples and has been observed to be shed for many months (Clarke, 

Caul, & Egglestone, 1979; Zhang et al., 2006). In P13_TP1 (69 %), P13_TP2 (2 %) but 

not in P13_TP3, Enterovirus of the order Picornaviridae was detected. This virus is 

thought to be swallowed, followed by replication in the intestinal mucosa, crossing the 

intestinal barrier to reach the blood. Most infections are asymptomatic, but symptoms can 

present as symptoms of a common summer cold to a threatening encephalitis (Tapparel, 

Siegrist, Petty, & Kaiser, 2013).  
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To summarize, shotgun sequencing allows deep profiling of the GIT microbiome, including 

the virome and might enable their detection and treatment, before they become harmful. 

 

Figure 3.1.13: Relative abundance of reads mapping to human-associated viral genomes. Boxplots 
depict MG (A, C and E) or MT (B and D) reads mapping to human-associated viral genomes grouped per TP 
within TG1 (A and B), TG2 (C and D) and TG3 (E). The number of samples per collection TP are indicated 
above each box. For TG3, only two MT datasets from one patient were available, hence it was not possible to 
construct boxplots. 
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3.1.7 Does the microbiome influence development of mucositis? 

3.1.7.1 Differences on taxonomic level 

It has been hypothesized that the GIT microbiome might be involved in development of 

mucositis, a severe side effect of anticancer treatment. In the next part, I will focus on this 

subject. Mucositis is generally associated with the treatment, with intensive chemotherapy 

and/or radiation leading to higher incidence of mucositis. Five out of eighteen patients 

developed severe mucositis, three of these belonged to TG2, one to TG1 and one 

belonged to TG3. No link between the TG and occurrence of severe mucositis could be 

made. Similarly, no link between prokaryotic diversity or richness and development of 

mucositis was found.  

Differentially abundant prokaryotic taxa between patients who developed mucositis and 

those who did not were identified based on 16S rRNA gene datasets. Since a specific 

microbial community profile might possibly play a part in the development of mucositis, 

and the community could also be altered after the active phase of mucositis, not only 

samples from TPs with active mucositis (n=3), but all the samples from patients who 

developed mucositis (n=13), were included for the following analyses and compared to 

samples from patients who did not develop severe mucositis (n=45). 68 different OTUs 

were observed to be differentially abundant. Table 3.1.3 includes 34 OTUs with the lowest 

adjusted p value (< 0.02, Wald test, FDR-adjusted). A negative fold change indicates a 

lower relative abundance in samples from patients with mucositis.  
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Table 3.1.3: Differentially abundant OTUs in relation to mucositis  

OTU Taxon log2 fold change adjusted p value 
OTU_54 Phascolarctobacterium sp. -4.91 5.88E-11 
OTU_94 Lachnospiracea incertae sedis -3.35 4.03E-05 
OTU_278 Alistipes sp. -3.18 0.001 
OTU_28 Bacteroides sp. -2.92 1.75E-04 
OTU_366 Anaerorhabdus sp. -2.81 0.003 
OTU_135 Prevotella sp. -2.8 0.017 
OTU_466 Phascolarctobacterium sp. -2.8 0.02 
OTU_488 Oxalobacter sp. -2.79 0.006 
OTU_82 Prevotella sp. -2.74 0.004 
OTU_72 Ruminococcus sp. -2.61 0.003 
OTU_52 Clostridium cluster XI -2.47 1.02E-04 
OTU_78 Lachnospiracea incertae sedis -2.39 0.003 
OTU_139 Sutterella sp. -2.32 0.013 
OTU_17 Prevotella sp. -2.3 0.016 
OTU_55 Clostridium sensu stricto -2.23 9.37E-05 
OTU_191 Roseburia sp. -2.23 0.002 
OTU_262 Clostridium cluster XlVa -2.2 0.02 
OTU_203 Escherichia/Shigella sp. -2.16 0.002 
OTU_92 Clostridium sensu stricto -1.98 0.006 
OTU_33 Clostridium cluster XVIII -1.85 0.001 
OTU_359 Clostridium cluster XVIII -1.81 0.006 
OTU_32 Clostridium cluster XI -1.73 0.003 
OTU_12 Erysipelotrichaceae incertae sedis -1.58 0.003 
OTU_45 Blautia sp. -1.58 0.02 
OTU_3 Escherichia/Shigella sp. -1.41 0.004 
OTU_286 Erysipelotrichaceae incertae sedis -1.41 0.016 
OTU_242 Clostridium cluster XlVa 1.23 0.006 
OTU_532 Eggerthella sp. 1.42 0.004 
OTU_75 Eggerthella sp. 1.55 0.003 
OTU_160 Clostridium cluster IV 1.59 0.016 
OTU_10 Clostridium cluster XlVa 1.64 2.41E-04 
OTU_115 Clostridium sensu stricto 2.81 0.005 
OTU_127 Erysipelotrichaceae incertae sedis 3.12 8.22E-05 
OTU_376 Alistipes sp. 3.36 0.004 

 

While OTU_278, belonging to the genus Alistipes was observed to be less abundant in 

samples from patients with mucositis, OTU_376, also classified as the genus Alistipes, 

showed increased levels in these patients. Similarly, different OTUs classified into the 

genus Clostridium or Clostridium cluster XIVa showed differing directions of change. 

Some of the OTUs that were less abundant in the samples from patients with mucositis 
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belonged to genera which are among the most common members of the GIT microbiome, 

such as the genera Bacteroides, Prevotella, Ruminococcus and Escherichia (Arumugam 

et al., 2011). Other OTUs with a lower relative abundance in patients with mucositis were 

bacteria, which are usually considered to have health-promoting properties, such as the 

acetate- or butyrate-producing genera Blautia and Roseburia.  

When comparing only the samples that were collected when patients had active severe 

mucositis (n=3) against all the other samples (n=55), a significant decrease in only one 

genus, Akkermansia, was observed (log2 fold change -3.35, FDR-adjusted p value 0.04, 

Figure 3.1.14). Akkermansia muciniphila is a mucin-degrading bacterium which resides in 

the mucus layer and uses the proteins of the epithelial mucus layer as its main source of 

carbon and nitrogen (Reunanen et al., 2015). Lower levels of A. muciniphila have been 

observed in patients with ulcerative colitis and Crohn's disease, indicating that this 

organism is important for human GIT health and inversely correlated with inflammation 

(Derrien, Belzer, & de Vos, 2016; Png et al., 2010; Schneeberger et al., 2015; Wu & Scott, 

2012). Also, it was observed that A. muciniphila strengthens the epithelial barrier function 

(Reunanen et al., 2015). On the one hand, loss of this bacterium could add to the 

impaired integrity due to treatment-provoked damage and facilitate translocation of 

bacteria and bacterial products such as LPS. On the other hand, chemotherapy induced 

damage of the intestinal epithelial wall and a concomitant decrease of mucin, could lead 

to a decrease in relative abundance of A. muciniphila, as the mucus layer is its most 

important nutrient source (Yamamoto, Ishihara, Takeda, Koizumi, & Ichikawa, 2013). In 

this scenario, the decrease in relative abundance of A. muciniphila would only represent a 

consequence of the treatment and the damage, rather than being a cause of mucositis 

development or its aggravation.  

 

Figure 3.1.14: Relative abundance of the genus Akkermansia in samples from TPs with active 
mucositis compared to TPs without mucositis (* FDR-adjusted p value < 0.05, Wald test).  
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3.1.7.2 Differences on the functional level 

Recently, several studies have stressed the importance of SCFAs, especially of butyrate, 

as energy source for colonocytes, possibly reinforcing epithelial barrier function 

(Mathewson et al., 2016; Peng et al., 2009). The list of differentially abundant OTUs 

(Table 3.1.3) includes many known important SCFA producers. Therefore, I was 

interested in whether a difference in the potential for production of butyrate by the 

microbiome was apparent in the samples of patients who developed severe mucositis and 

those who did not. Presence and expression of the genes coding for the three enzymes 

catalyzing the final step in butyrate production (buk, but and ato) were compared (Vital, 

Howe, & Tiedje, 2014). Median copy number of the three genes on MG level was higher in 

the samples from patients with mucositis (0.029 % relative abundance) than in the 

samples from patients without severe mucositis (0.016 %). On MT level, transcript levels 

were slightly higher in samples from patients without mucositis (0.027 % compared to 

0.025 %). However, both on MG and on MT level, no statistically significant differences 

were observed between both groups. 

In the 54 MG and 32 MT datasets, differentially expressed functions between samples 

from patients with mucositis and those without were detected. Genes from different 

bacterial genomes with the same functions were grouped together. These will in the 

following be referred to as 'functional gene categories'. Differential analysis of functional 

gene categories in the MG datasets between both groups resulted in 15 differentially 

abundant functional gene categories including an apparent increase in the peptidoglycan-

associated lipoprotein precursor in samples from patients without mucositis (log2 fold 

change ≥ 1, FDR-adjusted p value < 0.05, Figure 3.1.15). This precursor contains a 

characteristic LVAC motif, which is cleaved during translocation across the cytoplasmic 

membrane. One role of this lipoprotein is to link the outer membrane to the peptidoglycan 

layer. The peptidoglycan-associated lipoprotein is a TLR2 agonist and is highly conserved 

in different genera (Liang et al., 2005). Lipoproteins are PAMPS, which are usually 

associated with bacterial pathogenicity and the possibility to cause inflammatory 

responses and even sepsis. It seems counter-intuitive that a gene associated with this 

should be found to be increased in samples from patients who did not develop severe 

mucositis. Possibly, the intestinal barrier in these patients was more resistant, less 

damaged by the treatment and therefore these patients did not develop severe mucositis 

despite the risk posed by these PAMPs.  



3. Results and discussion 

!72 

 

Figure 3.1.15: One differentially abundant functional gene category on MG level when grouping 
according to development of severe mucositis (* FDR-adjusted p value < 0.05, Wald test). 

In the MT dataset, 59 functional gene categories were differentially expressed when 

grouping according to occurrence of severe mucositis. Some of these genes, which could 

possibly be implicated in the development of the side effect are illustrated in Figure 3.1.16. 

One functional gene category with higher expression in samples from patients with 

mucositis was the integration host factor (IHF) subunit alpha (Figure 3.1.16A). IHF is a 

DNA-binding protein and plays a role in several cellular functions in gram-negative 

bacteria. It was shown to positively regulate virulence gene expression in different 

bacteria (Porter & Dorman, 1997; Stonehouse, Kovacikova, Taylor, & Skorupski, 2008). 

The alpha subunit of this gene showed a higher expression level in samples from patients 

with mucositis. Similarly, the type II secretion system protein F expression was higher in 

samples from patients with mucositis (Figure 3.1.16B) and this secretion system has also 

been associated with bacterial virulence (Sandkvist, 2001). Both functions being 

implicated in bacterial virulence could initiate a cascade of inflammatory processes and 

therefore be involved in the development of mucositis. 

Other functional gene categories which were more highly expressed in samples from 

patients without severe mucositis were associated with bacteriophages (such as the 

phage P2 GpU, the phage tail tube protein FII and the baseplate J-like protein, Figure 

3.1.16C, D and E) or with the prokaryotic defense mechanism against bacteriophages 

(such as the CRISPR-associated protein Cas6, Figure 3.1.16F), indicating that 

bacteriophages might play a role in the prevention of mucositis. Studies have shown that 

bacteriophages can decrease the level of ROS produced by phagocytes (Przerwa et al., 

M
uc

os
iti

s

no
M

uc
os

iti
s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

●●● ●

●

●

●

●

●● ●● ●●

●
●●●● ●●●

●●

●
●
●●●● ●●● ●●●● ●

●
●

●

●

●

●

●

●

●● ●●●●
●

●

TP1 TP2 TP3 TP4 TP5
adj p−val = 5.4e−03

Pe
pt

id
og

ly
ca

n−
as

so
ci

at
ed

 li
po

pr
ot

ei
n 

pr
ec

ur
so

r
R

el
at

iv
e 

ab
un

da
nc

e 
[%

] 
Peptodiglycan-associated 

lipoprotein precursor 
       ** 



3. Results and discussion 

!73 

2006). This process involves not only phages and phagocytes, but an intermediate step 

with phage-LPS interaction, thus, implicating the GIT microbiome as well as the host 

immune system (Kaur et al., 2012). ROS are believed to play a role in the first and second 

stages of mucositis development, initiation and the primary damage response (Sonis, 

2004). Presence of bacteriophages as well as the bacteria in the patients' GIT might have 

resulted in lower ROS production and therefore contributed towards the prevention of 

severe mucositis in these patients.  

As phages cannot actively move toward their host, the targeted bacterial community has 

to be above a so called 'replication threshold', allowing the phage to encounter its host by 

chance. This scenario is also called 'kill the winner', where more abundant bacteria are 

targeted. In this scenario, bacteriophages could possibly act as regulator of the microbial 

ecosystem, maintaining bacterial diversity (De Paepe, Leclerc, Tinsley, & Petit, 2014). 

Functional gene categories detected in these samples (phage tail tube protein FII, phage 

P2 GpU and baseplate J-like protein, Figure 3.1.16B, C and D) are associated with the 

bacteriophage P2. This is a temperate phage, meaning that it can insert its genome into 

the host genome and be maintained as prophage (lysogenic cycle) or use the host cell to 

produce phage progenies and finally lyze the host cell (lytic cycle). This phage has been 

shown to infect E. coli, as well as Shigella, Klebsiella, Yersinia and Serratia (Kahn et al., 

1991). Phage therapy has been suggested as alternative to antibiotics to fight bacterial 

infections. Here, patients who did not develop severe mucositis might have had higher 

titers of these bacteriophages, helping to maintain a diverse bacterial community. As this 

was detected in the MT dataset, the presence of viral RNA indicates active production of 

phage progenies, thus a lytic cycle with lysis of the bacterial host cell.  
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Figure 3.1.16: Selection of differentially abundant functional gene categories on MT level when 
grouping according to development of severe mucositis. Relative abundances of (A) integration host 
factor subunit alpha (B) putative type II secretion system protein F (C) phage P2 GpU (D) phage tail tube 
protein FII (E) baseplate J-like protein and (F) CRISPR associated protein Cas6 (* FDR-adjusted p value < 
0.05, Wald test). 
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3.1.8 Functional changes in the GIT microbiome in relation to the overall health 
status 

At each TP, the status of the patient was defined either as 'stable' or as 'reduced'. The 

reduced status could include different clinical symptoms such as fever, neurological 

symptoms (for example agitation), efflorescence of the skin or other symptoms. In the MG 

dataset, 136 functional gene categories were differentially abundant when accounting for 

the status of the patient, with p value < 0.01. These included many functional gene 

categories with normal bacterial cellular functions, where a link to the status of the patient 

could not be made. Examples of functional gene categories which could possibly be 

implicated in the patient's overall condition are illustrated in Figure 3.1.17. These include 

two genes associated with bacterial pathogenicity and one gene playing a part in the 

prokaryotic defense mechanism against phages. Type IV secretion systems can for 

example mediate injection of virulence proteins into mammalian cells or contribute to the 

spread of ARGs among pathogenic bacteria (Fronzes, Christie, & Waksmas, 2009; 

Wallden, Rivera-Calzada, & Waksman, 2010). Type IV pili are involved in adherence to 

different surfaces and in pathogenicity (Bieber et al., 1998). Both genes were more 

abundant in patients whose status was reduced which indicates the possible activity of 

pathogens and their implication in the overall health status of the patients (Figure 3.1.17A 

and Figure 3.1.17B). The CRISPR-associated gene Csn2 (Figure 3.1.17C) is involved in 

spacer acquisition in the type II CRISPR system, so in the first stage of the immune 

response against bacteriophages (Nam, Kurinov, & Ke, 2011; Sapranauskas et al., 2011). 

So far, this gene has not been detected in a wide range of bacterial species. A higher 

bacterial diversity in the GIT microbiome of patients with a stable health status could 

possibly be linked to a higher detection of this functional gene category. Incidentally, the 

median diversity of the bacterial community was higher in samples from patients with a 

stable health status than in samples from patients with reduced health status (2.77 in 

stable, 2.30 in reduced, p value 0.024, Wilcoxon rank sum test). However, there was no 

statistically significant correlation between the relative abundance of this functional gene 

category and the bacterial diversity. 

On MT level, grouping according to the status of the patient did not reveal differentially 

abundant functional gene categories. 
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Figure 3.1.17: Selection of differentially abundant functional gene categories on MG level when 
grouping according to the status of the patient. Relative abundances of (A) type IV secretion lipoprotein 
(B) type IV pilin biogenesis protein and (C) CRISPR-associated protein Cas_Csn2 (** FDR-adjusted p value < 
0.01, Wald test). 

3.1.8.1 Case study – a patient with severe mucositis 

In the following, I will focus on a patient who developed severe mucositis, patient P04. 

This patient, 3 years old at diagnosis, was treated with a light chemotherapy (TG1) for 

nephroblastoma. Fecal samples were collected at day 0 (TP1, beginning of treatment), 16 

(TP2, after first cycle of treatment, lowest leukocyte count), 55 (TP3, before next cycle of 

treatment) and 359 (TP4, after end of therapy). The patient received 

trimethoprim/sulfamethoxazole to prevent Pneumocystis jirovecii pneumonia and 

piperacillin-tazobactam around TP2 and TP3 (for 2, respectively 3 days) because the 

patient had developed a fever (reason unknown). At TP2, when the leukocyte count was 

low (500/µl), the patient developed severe mucositis, which included impaired intake of 

solid food and needing pain medication. From this patient, MG and MT data from four TPs 

were produced. Although this patient received antibiotics, including a broad spectrum 

antibiotic (piperacillin-tazobactam), no drastic changes were observed in the bacterial 

community composition (Figure 3.1.18A). The biggest differences in the relative 
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Akkermansia was detected in each sample and accounted for 2.70 %, 0.01%, 5.89 % and 

0.01 % relative abundance, respectively. The observed changes in the microbial 

community including the evolution of high abundance of the genus Bifidobacterium to 

higher abundance of the genus Bacteroides might have been age related (Ottman, Smidt, 

de Vos, & Belzer, 2012). Shannon diversity of the bacterial population, both on MG and on 

MT level stayed relatively high throughout the treatment with values ranging between 2.8 

and 3.4 (Figure 3.1.18B). 

 

Figure 3.1.18: Variation of the microbial community structure over the course of the treatment in a 
patient who developed severe mucositis. (A) Relative proportions of the 14 most abundant metagenomic 
OTUs (mOTUs), based on MG and (C) MT reads. The remaining OTUs are summarized as 'others'. (B) 
Bacterial diversity represented by Shannon diversity index at sampling TPs throughout the treatment, based 
on MG (circle) and MT (square) reads. (D) Ratio of the MT to MG relative proportion of the 13 most abundant 
mOTUs (in both datasets). The size of the dot indicates the ratio. Absence of a dot indicates that the organism 
was not detected in the MT dataset. 

Compared to the median intra-individual variability as indicated by the Bray-Curtis 

dissimilarity index (Figure 3.1.5), patient P04 showed relatively little variation between 

different TPs with a Bray-Curtis dissimilarity index of 0.23 between TP1 and TP2, 0.33 

between TP2 and TP3 and 0.43 between TP3 and TP4. Although this patient developed 

severe mucositis, the core microbiome appears to have stayed relatively unaffected and 

stable, indicating that the colonic microbiome might not be strongly affected by the 

treatment and mucositis. Treatment and mucositis might have stronger effects on bacteria 
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such as the mucin-degrading Akkermansia muciniphila, which adheres to the intestinal 

epithelium (Reunanen et al., 2015).  

Comparing the 14 most abundant mOTUs on MG and on MT levels (Figure 3.1.18A and 

Figure 3.1.18C), 13 mOTUs were found to agree. Some mOTUs (such as Bacteroides 

dorei/vulgatus and Bacteroides fragilis) were even positioned at the same rank on MG and 

MT level. For most mOTUs however, their abundance rank was not exactly the same on 

MG and MT level. In Figure 3.1.18D, the ratio of the MT to MG reads that were mapped 

onto a specific mOTU, is represented. This representation indicates that the relative 

activity of the mOTUs varied over time and that the organism displaying the highest 

activity differed at each TP. This also demonstrates that the organism showing the highest 

relative abundance in a sample cannot be expected to also display the highest activity. 

Thus, the most abundant organisms might not be the most important ones within an 

ecosystem. This new layer of information (MT sequencing) might be important in order to 

reveal the microbial activity and its possible implications in human health. 

 

 

! !
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3.2 Meta-omic analyses of the gastrointestinal tract microbiome in adult 

patients undergoing allogeneic stem cell transplantation 

The second section focuses on the changes within the GIT microbiome of hematology 

oncology patients undergoing an allogeneic stem cell transplantation (allo-HSCT). The 

results within this chapter are based on 78 fecal samples collected from 27 patients. After 

processing and filtering of the 16S rRNA gene amplicon sequences, 76 datasets were left, 

with 183,000 ± 55,000 (mean ± standard deviation) reads per sample. 73,000 ± 79,000 

18S rRNA gene amplicon sequences per sample were retained for 61 datasets. 

In order to compare the changes within the GIT during and following treatment, specific 

time frames relative to the day of transplantation were defined as time points (TP). These 

time frames are visualized in (Figure 2.5.2 in section 2.5). The first TP (TP1) includes 

samples that were taken up to two weeks before the transplantation. TP2 includes 

samples that were collected within one week after transplantation, TP3 includes samples 

that were collected around engraftment (3-6 weeks after transplantation). TP4 includes 

samples that were taken later, between 100 and 260 days after transplantation. Together, 

these TPs included 62 samples from 24 different patients. 

Of 9 samples, MG and MT combined datasets could be produced. Additionally, 34 MG 

datasets were produced. After processing with IMP which included filtering out low quality 

reads and reads mapping to the human genome, per dataset 47,000,000 ± 18,000,000 

MG sequences and 61,000,000 ± 23,000,000 MT sequences were kept for the following 

analyses and assembly. From the assemblies, 92,000 ± 71,500 genes per sample were 

predicted. 

 

3.2.1 Patient characteristics and treatment 

Anthropometric and clinical information of the seventeen male and ten female patients 

included in the following analyses are provided in Table 2.1.2. The patients were between 

22 and 67 years old (median 54). Fourteen patients were treated for acute myeloid 

leukemia (AML), ten were treated for lymphoma, one for acute lymphoblastic leukemia 

(ALL), one for chronic myleloid leukemia (CML) and one for myeloma. Eleven patients 

received stem cells from a matched unrelated donor, nine donors were matched and 

related and seven were mismatched and unrelated. Ten patients were conditioned with 

fludarabine (Flu), busulfan (Bu) and cyclophosphamide (Cy). Nine patients were treated 

with BuCy, one with FluBu, three with treosulfan (Treo) and Flu, one with total body 

irradiation (TBI) and Flu, one with TBI and Cy and two with FLAMSA-Bu (Flu, cytarabine, 
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amsacrine, Bu). Of the 27 patients, sixteen developed GvHD. Of those, six developed 

GvHD with implication of two or more organs and of those, four patients developed severe 

GvHD (with summed stages ≥ 4). 1.5 years after allo-HSCT, nine patients had deceased; 

three due to relapse, three due to GvHD, two due to pneumonia and one due to sepsis. 

The sex of the patient was not determined as risk factor for higher GvHD grade 

(Kolmogorov-Smirnov test). No correlation between the sex or the age of the patient and 

the overall outcome was determined (Fisher's exact test). In this cohort, the ratio of 

patients who deceased was higher in lymphoma patients than in leukemia patients 

compared to a random distribution. The grade of GvHD was positively correlated with the 

age of the patient (p value 0.042, Spearman's rho 0.393).  

3.2.2 Changes in the prokaryotic GIT microbiome of patients undergoing allo-
HSCT 

The prokaryotic (bacterial and archaeal) community composition was assessed based on 

16S rRNA gene amplicon sequencing of DNA extracted from 78 fecal samples from 27 

patients. After filtering and removal of samples with a low number of reads (as described 

in section 2.4), 76 of the sequenced samples were kept for the following analyses. The 

overall 14 most abundant orders within all 76 samples were identified to get an overview 

of the composition of the GIT microbiome of the patients (Figure 3.2.1). Overall, the 

majority of the samples displayed a high relative abundance of Bacteroidales, often in 

combination with a high abundance of Clostridiales. Some samples were almost 

completely dominated by Lactobacillales (such as A05_4, A08_2, A13_1, A18_4, A20_2, 

A27_3, A29_3 and A35_3), while others displayed high relative abundance of 

Enterobacteriales (as A05_5, A07_2, A08_3 and A11_1). Even on this taxonomic level, 

drastic changes in the GIT microbiome composition in different samples from one patient 

were observed. For example, A03 displayed high relative abundance of Burkholderiales in 

the second sample (90 %), which made up only 0.01 % in the first sample, or A41 which 

showed a high relative abundance of Verrucomicrobiales in the first sample (40 %) which 

decreased to 0.03 % and 0.23 % in the second and third sample, respectively. For other 

patients such as A21, no drastic changes from one sample to the next were observed. 
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Figure 3.2.1: Relative abundance of the 14 most abundant bacterial orders in fecal samples from patients undergoing an allogeneic stem cell transplantation 
(allo-HSCT), grouped according to patient. Orders which were not comprised in the 14 most abundant orders are combined as 'others'. OTUs which could not be 
classified at the order level are grouped as 'unknown'. Patient ID and number of the sample are indicated below each respective bar and colored according to the 
patient.  
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In the following, the samples were grouped according to the TP (Figure 3.2.2). Only 

samples for which the collection fell into one of the defined time periods (as displayed in 

Figure 2.5.2) were included and designated TP1-4. Analyses based on these TPs 

included 62 samples from 24 different patients. In these barplots, the 14 most abundant 

genera are displayed. For some samples, dominance of one genus was observed, often 

by Enterococcus spp.(e.g. A08_TP2 and A29_TP4), Escherichia/Shigella spp. (e.g. 

A08_TP3 and A29_TP3) and sometimes by Lactobacillus spp. (A27_TP3). On this 

taxonomic level, the drastic changes between TPs from one patient are even more 

apparent than on the level of orders. Similarly, large changes between samples from 

different patients were observed, indicating that both the initial composition of the GIT 

microbiome but also the changes throughout treatment are individual-specific. No clear 

specificity of the relative abundance of bacteria specific to individual TGs or TPs was 

apparent. 

Overall, the majority of the reads were assigned to the domain bacteria, with only an 

average of 0.06 % ± 0.42 % reads over the 62 samples being assigned to the domain 

archaea. Archaea were detected in 21 out of 62 samples and comprised three different 

genera, the most abundant genus being Methanobrevibacter, followed by Methanosarcina 

and Methanosaeta.  
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Figure 3.2.2: Relative abundance of the 14 most abundant bacterial genera in fecal samples from 
patients undergoing an allo-HSCT. Samples are grouped according to TPs: (A) TP1, (B) TP2, (C) TP3 and 
(D) TP4. Genera which were not comprised in the 14 most abundant genera are combined as 'others'. OTUs 
which could not be classified at the genus level are grouped as 'unknown'. Patient ID and sampling TP are 
indicated below each respective bar and are colored according to the patient. 
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As the taxonomic overview revealed drastic changes within the community, I wondered 

whether this was also reflected in diversity and richness. Figure 3.2.3 represents bacterial 

Shannon diversity and Chao1 richness for each TP, which were assessed after 

rarefaction. Drastic changes both in diversity (Figure 3.2.3A) and richness (Figure 3.2.3B) 

were observed. A decrease in median diversity from 2.9 at TP1 to 1.7 at TP2 (samples of 

all patients: p value 0.007, Wilcoxon rank sum test and samples from the same 

individuals: p value 0.02, Wilcoxon signed-rank test) and a further decrease to 1.6 at TP3 

(TP1 to TP3: p value 0.0006, Wilcoxon rank sum test, p value 0.001 Wilcoxon signed-rank 

test) were observed, followed by an increase to 2.2 at TP4. The variation of the diversity 

within each TP was high, ranging for example between 0.43 and 3.89 at TP1 and from 

0.09 to 3.59 at TP4.  

The same trends were observed for the bacterial richness, decreasing from median 

richness of 280 to 229 (p value 0.04, Wilcoxon rank sum test, 0.03 Wilcoxon signed-rank 

test), to 155 (TP1 to TP3: p value 0.001, Wilcoxon rank sum test, 0.002 Wilcoxon signed-

rank test, TP2 to TP3: p value 0.03, Wilcoxon rank sum test and Wilcoxon signed rank-

test) and increasing to 204 at TP4. 

 

Figure 3.2.3: Changes within gastrointestinal bacterial community structure in patients undergoing 
allo-HSCT. Boxplots depicting (A) diversity (Shannon diversity index) and (B) richness (Chao1 richness 
estimator) per collection time point (TP), for prokaryotes (determined by 16S rRNA gene amplicon 
sequencing). The number of samples per collection TP is indicated above each box. Diversity and richness 
were determined after rarefaction of the dataset. (* when p value < 0.05, ** when p value < 0.01, Wilcoxon 
rank sum test) 

In the following, the same patients and corresponding samples were grouped according to 

the overall outcome and to their collection TP (as visualized in Figure 2.5.2 in section 2.5). 

This included 24 patients of whom, 17 patients had survived (1.5 years after allo-HSCT) 
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while 7 patients had deceased due to different reasons, such as relapse, GvHD or 

pneumonia.  

 

Figure 3.2.4: Shannon diversity indices of samples from patients who survived 1.5 years after allo-
HSCT (S) compared to those who deceased (M). The samples are grouped per collection TP. The number 
of samples per collection TP is indicated above each box. Diversity was determined  after rarefaction of the 
(16S rRNA gene amplicon sequencing) dataset. 

For both groups, a statistically significant decrease in diversity from TP1 to TP3 was 

observed (Figure 3.2.4). No statistically significant difference between diversity in both 

groups at any TP was detected. However, at TP3 (around engraftment), a trend towards 

lower diversity in patients who later deceased compared to those who survived, was 

observed. This link between lower diversity at engraftment and higher mortality rate was 

also seen in a study including 80 patients (Y Taur et al., 2014). Possibly, antibiotic usage 

led to a lower diversity and its pressure selected pathogens, which could result in sepsis 

or infection. It is however not known whether this link between microbial diversity and the 

outcome is directly causal. An intermediate link in the form of infection and antibiotics 

might exist, meaning that possibly a severe infection required intensive antibiotic 

treatment, resulting in a lower bacterial diversity. Hence, the link between infection and 

outcome would only be indirectly reflected in the diversity index. Also, microbial diversity is 

more likely to be linked to mortality due to for example infection, pneumonia, sepsis or 

GvHD, than to mortality due to relapse. Due to the low number of patients in this group (7) 

however, I did not further discern the reasons for mortality in this analysis.  
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Similarly, the patients were in the following grouped according to development of severe 

GvHD (with summed stages ≥ 4) or no GvHD at all (Figure 3.2.5).  

 

Figure 3.2.5: Shannon diversity indices of samples from patients who did not develop GvHD (-) 
compared to those who developed severe GvHD (+). The samples are grouped per collection TP. The 
number of samples per collection TP is indicated above each box. Diversity was determined after rarefaction 
of the (16S rRNA gene amplicon sequencing) dataset. 

A statistically significant decrease in diversity from TP1 to TP2 in patients without GvHD 

(p value 0.006, Wilcoxon rank sum test) was observed. At TPs 1, 2 and 3, median 

diversity in both groups was similar, while at TP4, patients who had developed severe 

GvHD displayed a higher bacterial diversity. However, at TP4, both groups included only 2 

samples, each. No link between bacterial diversity at TP1 and subsequent development of 

severe GvHD was identified. Hypothesizing that a GIT microbial dysbiosis (possibly 

caused by usage of several broad-spectrum antibiotics) with selection of pathogens would 

be implicated in initiation of GvHD (Khoruts et al., 2016), a lower Shannon diversity index 

in patients who developed severe GvHD would be expected. This was however not the 

case, median diversities in both groups stayed similar. GIT microbial diversity was 

therefore not predictive of development of severe GvHD. As the risk of developing GvHD 

is influenced by different factors such as the number of HLA-mismatches and sex disparity 

between donor and recipient, one should also account for these factors. Further grouping 

according to this was however not done due to the low number of patients with severe 

GvHD.  

As drastic changes on different taxonomic levels and in bacterial diversity and richness 

had been observed, I wondered whether this was also reflected in the intra-individual and 
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inter-individual distance between microbial profiles. Bray-Curtis dissimilarity was 

determined based on the OTUs obtained from 16S rRNA gene sequencing data. High 

intra-individual dissimilarities were observed, reflecting the marked changes in individual 

microbial profiles. Still, a statistically significantly higher inter-individual dissimilarity (p 

value 0.003, Wilcoxon rank sum test) was observed (Figure 3.2.6). Both the intra- and the 

inter- individual dissimilarity in the adult hematology patients were higher than the ones 

observed in patients from the pediatric department (Figure 3.1.5) indicating even stronger 

perturbations in the GIT microbial community compositions in this patient cohort as well as 

strong effects of the intensive treatments on the GIT microbial community. Prokaryotic 

diversity at TP1 was negatively correlated with the dissimilarity index between TP1 and 

the following TP (p value 0.028, Spearman's rho -0.452). This indicates that a diverse 

microbiome was more stable and less affected by the treatment, while a GIT community 

with a low diversity underwent more drastic changes due to the treatment. 

 

Figure 3.2.6: Comparison of intra-individual to inter-individual distances between bacterial profiles. 

As the biggest changes in diversity and richness were observed from TP1 to TP3, I 

wondered whether this was reflected by general changes in relative abundance of specific 

taxa over the whole cohort. Between those TPs, 30 differentially abundant bacterial 

genera were identified (absolute log2 fold change ≥ 1, FDR-adjusted p value < 0.05, Table 

3.2.1). A negative fold change indicates a decrease in abundance in samples from TP3 
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(n=16) compared to TP1 (n=24). Of those 30 genera, 14 genera decreased and 16 genera 

increased in relative abundance from TP1 to TP3. Figure 3.2.7 illustrates examples of 

bacterial genera, which decreased in relative abundance from TP1 to TP3.  

Table 3.2.1: Differentially abundant bacterial genera in samples from collection TP1 and TP3 

Genus log2 fold change adjusted p value 

Roseburia -2.32 1.90E-10 
Dorea -2.20 1.20E-04 
Barnesiella -2.15 0.002 
Butyricicoccus -1.89 1.20E-04 
Blautia -1.58 4.11E-05 
Dialister -1.55 0.012 
Gemella -1.55 0.012 
Collinsella -1.42 0.016 
Lachnospiracea incertae sedis -1.38 0.004 
Parabacteroides -1.26 0.004 
Ruminococcus -1.25 0.002 
Bifidobacterium -1.20 0.005 
Gemmiger -1.06 0.022 
Faecalibacterium -1.03 0.022 
Flavonifractor 1.02 0.020 
Prevotella 1.13 0.045 
Enterococcus 1.15 0.045 
Lactobacillus 1.16 0.008 
Streptophyta 1.40 0.020 
Corynebacterium 1.45 0.008 
Clostridium sensu stricto 1.53 0.002 
Acinetobacter 1.69 0.008 
Lactococcus 1.87 3.25E-04 
Rothia 2.07 1.58E-04 
Elizabethkingia 2.29 0.015 
Clostridium cluster XI 2.29 1.39E-06 
Brevundimonas 2.30 0.025 
Erysipelotrichaceae incertae sedis 2.44 1.06E-09 
Flavobacterium 2.45 1.20E-04 
Staphylococcus 2.51 5.87E-06 

 

After treatment, a decrease in the abundance of several bacterial genera that are 

considered to have health-promoting properties, such as Blautia spp., and the butyrate 

producers Roseburia spp. and Faecalibacterium spp., was observed. These, as well as 

Dorea spp. have been shown to diminish inflammation by modulation of the NF-κB 
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pathway (Lakhdari et al., 2011). Another decreased genus, Barnesiella, was shown to 

confer resistance to domination by vancomycin-resistant Enterococcus (Ubeda et al., 

2013). On the other hand, an increase in for example the genera Enterococcus, 

Clostridium cluster XI, Lactobacillus and Staphylococcus was observed. Overall, the GIT 

microbiome composition after treatment might harbor a higher risk for infection and GvHD. 

 

Figure 3.2.7: Examples of differentially abundant genera in samples from TP1 (n=24) and TP3 (n=16). 
Relative abundances of (A) Roseburia, (B) Blautia, (C) Faecalibacterium and (D) Dorea (* FDR-adjusted p 
value < 0.05, ** < 0.01, Wald test).  

3.2.3 Changes in the microeukaryotic GIT microbiome of patients undergoing allo-
HSCT 

The microeukaryotic community composition was assessed using 18S rRNA gene 

amplicon sequencing of DNA extracted from 78 fecal samples of the patients. During the 

filtering steps, food-related reads as well as reads matching to the human genome were 

removed. Samples with a low number of reads after this filtering step were removed. 41 

datasets were kept for further analyses. The 14 most abundant taxa were identified to get 
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an overview of the composition of the GIT microeukaryotic community of the patients 

(Figure 3.2.8). Overall, the most abundant taxon was Ascomycota. Sample A12_1 

contained mostly Dinophyceae. Some samples (A05_3, A11_2, A18_3, A18_5, A19_1 

and A21_1) displayed a similar combination of different taxa (including 

Oligohymenophorea, Prostomatea, Phylopharyngea and others). 

 

 

Figure 3.2.8: Relative abundance of the 14 most abundant microeukaryotic taxa in fecal samples from 
patients undergoing allo-HSCT, grouped according to patient. Taxa which were not comprised in the 14 
most abundant taxa are combined as 'others'. OTUs which could not be classified at any taxonomic level are 
grouped as 'unknown'. Patient ID and number of the sample are indicated below each respective bar and are 
colored according to the patient. 

In the following, the samples were grouped according to the TPs and different sequencing 

control data were included in this representation (Figure 3.2.9). The first four controls 

included extraction controls from different extraction batches. The last control (NTC) 

included a sequencing control (no template control, Figure 3.2.9E). The first extraction 

control (NC) contained only few human associated reads, which were removed during the 

filtering steps. The other controls included many reads that could not be classified at the 

genus level, as well as genera that were not or only lowly abundant in the patients' 

samples. Most samples from the patients included mainly the genus Saccharomyces, next 

to organisms, which could not be classified at this taxonomic level. On higher taxonomic 

levels, they were mostly assigned to Ascomycota.  

0

20

40

60

80

100

A0
1_

1
A0

1_
2

A0
1_

3
A0

1_
4

A0
2_

1
A0

2_
2

A0
3_

2
A0

4_
1

A0
4_

2
A0

4_
3

A0
5_

2
A0

5_
3

A0
5_

4
A0

5_
5

A0
6_

2
A0

7_
2

A0
7_

3
A0

8_
1

A0
8_

2
A0

8_
4

A0
9_

1
A0

9_
2

A0
9_

3
A0

9_
4

A1
0_

3
A1

1_
1

A1
1_

2
A1

2_
1

A1
2_

2
A1

3_
2

A1
7_

1
A1

7_
2

A1
8_

1
A1

8_
2

A1
8_

3
A1

8_
4

A1
8_

5
A1

9_
1

A1
9_

2
A2

0_
1

A2
0_

2
A2

1_
1

A2
1_

2
A2

1_
3

A2
1_

4
A2

5_
1

A2
5_

2
A2

7_
1

A2
7_

2
A2

7_
3

A2
9_

1
A2

9_
2

A3
4_

1
A3

4_
2

A3
4_

3
A3

4_
4

A3
5_

1
A3

5_
2

A4
1_

1
A4

1_
2

A4
1_

3

Ab
un

da
nc

e 
of

 e
uk

ar
yo

te
s 

[%
] Ascomycota

unknown
Oligohymenophorea
Dinophyceae
Prostomatea
Phyllopharyngea
Cercozoa_X
Spirotrichea
Discosea−Flabellinia
Litostomatea
Plagiopylea
Filosa−Thecofilosea
Cryptomycota
Oomycota
others

P0
2_

TP
1

P0
2_

TP
2

P0
2_

TP
3

P0
2_

TP
4

0

20

40

60

80

100

%
 a

bu
nd

an
ce

 o
f O

TU
s

OTU_17
OTU_28
OTU_29
OTU_5
OTU_39
OTU_46
OTU_15
OTU_11
OTU_18
OTU_72
OTU_6
OTU_14
OTU_76
OTU_132
15

Ascomycota 
unknown 
Oligohymenophorea 
Dinophyceae 
Prostomatea 
Phyllopharyngea 
Cercozoa 
Spirotrichea 
Discosea-Flabellina 
Litostomatea 
Plagiopylea 
Filosa-Thecofilosea 
Cryptomycota 
Oomycota 
others 



3. Results and discussion 

!91 

 

Figure 3.2.9: Relative abundance of the 14 most abundant microeukaryotic genera in fecal samples 
from patients undergoing allo-HSCT. Samples are grouped according to TPs: (A) TP1, (B) TP2, (C) TP3 
and (D) TP4. Taxa which were not comprised in the 14 most abundant genera are combined as 'others'. 
OTUs which could not be classified at the genus level are grouped as 'unclassified'. OTUs which could not be 
classified at any taxonomic level are grouped as 'unknown'. Patient ID and sampling TP are indicated below 
each respective bar and are colored according to the patient. (E) includes the relative abundance of 
microeukaryotes sequenced in different extraction and sequencing controls. 
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Some samples, such as A34_TP1, A08_TP2, A27_TP3 and A21_TP4 mostly contained 

reads assigned to the genus Candida. No clear difference in the relative abundance of 

microeukaryotes specific to individual TPs was apparent. As in the previous 

representation, several samples displayed a similar taxonomic composition including a 

high ratio of unclassified microeukaryotic genera, as well as reads assigned to the genera 

Vorticella, Prorodon and others. However, the different extraction and sequencing controls 

included in Figure 3.2.9E did not show this specific composition of genera, indicating that 

it was not artifactual. No explanation for this peculiar composition of microeukaryotic taxa 

in different samples was found.  

As the prokaryotic community displayed drastic changes in terms of diversity and richness 

from one TP to another, I wondered whether the microeukaryotic community showed 

similar trends. Diversity and richness of the microeukarotic community were determined 

on OTU level after rarefaction (Figure 3.2.10). No statistically significant differences in 

diversity or richness between different TPs were observed. Overall, in the microeukaryotic 

community, a lower median diversity (ranging between 1.3 and 1.7) and lower median 

richness (ranging between 65 and 90) than in the prokaryotic community (Figure 3.2.3) 

were observed. No drastic changes between different TPs were observed, indicating that 

the microeukaryotic community was not strongly affected by the treatment.  

 

Figure 3.2.10: Changes in the gastrointestinal microeukaryotic community structure in patients 
undergoing allo-HSCT. Boxplots depicting (A) diversity (Shannon diversity index) and (B) richness (Chao1 
richness estimator) per collection time point (TP), for microeukaryotes (determined by 18S rRNA gene 
amplicon sequencing). The number of samples per collection TP is indicated above each box. Diversity and 
richness were determined after rarefaction of the dataset. 

When grouping the patients according to antifungal treatment, a slightly lower median 

diversity at TP2 (1.24 against 1.41) in patients who were treated with antifungals, 

TP1 TP2 TP3 TP4

0

50

100

150

200

250

300

C
ha

o1
 ri

ch
ne

ss
 e

st
im

at
or

n= 19 n= 13 n= 13 n= 7

TP1 TP2 TP3 TP4

0

1

2

3

4

Sh
an

no
n 

di
ve

rs
ity

 in
de

x

n= 19 n= 13 n= 13 n= 7A B 
n= 19   n=12    n=13    n=7 n= 19   n=12    n=13    n=7 



3. Results and discussion 

!93 

compared to no antifungal treatment was observed. However, this difference was not 

statistically significant. 

3.2.4 Virome profiling within the GIT microbiome of hematology cancer patients 

Besides 16S and 18S rRNA gene amplicon sequencing, which allow identification of 

prokaryotes and eukaryotes, this project also included MG and MT shotgun sequencing of 

the samples. This allows identification of viruses, which are also numerous in the GIT 

community. While many of them do not pose problems in healthy individuals, they might 

represent a serious threat in immunocompromised and immunosuppressed patients 

(Sahin et al., 2016). 

On average (± standard deviation), 0.017 % ± 0.014 % MG and 0.089 % ± 0.171 % MT 

reads were mapped onto viral genomes within the 43 MG, respectively 9 MT samples 

(Figure 3.2.11A and Figure 3.2.11B). One of the highest ratios of MG reads mapping onto 

viral genomes was found in A18_3 (0.055 %), with 25 % of those reads mapping to the 

torque teno virus, which is very common in the human population and has been 

suspected to cause several pathologies. However, due to its ubiquitous state in the 

population, it is difficult to discern its pathogenic potential (Kincaid, Burke, Cox, de Villiers, 

& Sullivan, 2013; Okamoto, 2009). The highest ratio of MT reads mapping to viral 

genomes was detected in A11_2 (TP4), adding up to 0.54 %. 98 % of these reads 

mapped to Tobamovirus genomes, including the tomato mosaic virus and the pepper mild 

mottle virus. 

As many reads mapped to plant-associated viruses, the same analyses were repeated, 

but with human-associated viral genomes only (Figure 3.2.11C and Figure 3.2.11D). On 

average, 0.0012 % ± 0.0036 % MG and 0.005 % ± 0.012 % MT reads were mapped onto 

human-associated viral genomes within the 43 MG, respectively 9 MT samples. The 

highest ratio of MG reads mapping to human-associated viruses was detected in A18_4 

(0.018 %), with 86 % of those reads mapping to the BK polyomavirus. This is a widepread 

virus and infections are usually harmless. However, infection in immunocompromised 

individuals can have severe consequences, such as hemorrhagic cystitis (Bennett, 

Broekema, & Imperiale, 2012; Dropulic & Jones, 2008). In sample A34_4, 42 % of the 

viral reads mapped to cytomegalovirus, which can cause severe colitis in 

immunosuppressed patients with symptoms similar to those of GIT GvHD such as 

diarrhea and abdominal pain (Jacobsohn & Vogelsang, 2007; Sahin et al., 2016).  

Within the MT datasets, one sample showed a drastically higher ratio of reads mapping to 

viral genomes than the average: A07_3 (0.039 %). These reads mainly mapped to the 

Torque teno virus (89 %), which has a ssDNA genome which should not be detected in 
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the MT datasets. However, during an active phase in which the virus replicates, viral RNA 

of this virus might also be detected. Incidentally, this virus was also detected within the 

MG dataset of this sample and accounted for 78 % of the viral reads. Other human RNA 

viruses detected include for example the human enteric coronavirus (in A06_1).  

To summarize, shotgun sequencing allows deep profiling of the GIT microbiome, including 

the virome and might enable detection of for example the cytomegalovirus, which can 

cause serious infections after allo-HSCT which are difficult to treat (Kharfan-Dabaja et al., 

2012). 

 

Figure 3.2.11: Relative abundance of reads mapping to viral genomes. Boxplots depict MG (A, and C) or 
MT (B and D) reads mapping to viral genomes grouped per TP. (A and B) include reads mapping to all 
eukaryote-associated viruses. (C And D) include reads mapping to human-associated viruses. The number of 
samples per collection TP is indicated above each box.  

3.2.5 Variability of GIT microbiome trajectories in patients throughout treatment 

In the following, I will focus on the 43 MG datasets obtained from 21 patients. Within those 

43 MG datasets, after filtering out reads mapping to the human genome, on average, 

82.88 % (median 94.24 %) ± 24.90 % reads were retained, which were of microbial origin. 
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Only for few samples (A05_4, A18_3, A27_3, A29_3 and A35_3), less than 50 % of the 

reads were retained as the rest mapped to the human genome. This high amount of 

human DNA within the sequenced sample indicates the presence of human cells in the 

corresponding fecal samples, which could be due to the presence of intestinal epithelial 

cells and might indicate a bad health status of the patient. The detection of high amounts 

of human DNA did not always coincide with the occurrence of GIT GvHD and did not 

correlate with the overall outcome.  

The overview of the most abundant bacteria in different samples (Figure 3.2.1) as well as 

the intra-individual dissimilarity index (Figure 3.2.6), both based on 16S rRNA gene 

sequencing, indicated big changes from one collection TP to the next. A principal 

component analysis (PCA) based on metagenomic OTUs (mOTUs) identified in MG 

sequencing data revealed similar trends (Figure 3.2.12) as samples from the individual 

patients do not cluster together. 

 

Figure 3.2.12: Principal component analysis (PCA) for GIT prokaryotic community composition. Each 
dot represents a sample colored according to the corresponding patient. PCA was performed based on the 
metagenomic operational taxonomic units (mOTUs) identified in MG sequencing data. Samples from patient 
A21 and from patient A27 are highlighted. 
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In the following, I will focus on two patients (A21 and A27) who displayed strongly 

diverging evolutions of their health status. The corresponding samples are highlighted in 

Figure 3.2.12 and Figure 3.2.13. 

 

Figure 3.2.13: Variation of the microbial community structure over the course of the treatment in two 
hematology patients. (A) and (B) Relative proportions of the 14 most abundant metagenomic operational 
taxonomic units (mOTUs) based on MG sequencing. The remaining mOTUs are summarized as 'others'. (C) 
and (D) Bacterial diversity represented by Shannon diversity index in different samples taken throughout the 
treatment. Days of the collection TP relative to allo-HSCT are indicated below the plot. Plots represent the 
corresponding results for patient A21 (panels A and C) and patient A27 (panels B and D). 

Patient A21 was 64 years old at the beginning of treatment and was treated with a 

treosulfan/fludarabine conditioning regimen for acute myeloid leukemia. The graft was 

from a matched unrelated donor. The patient developed light GvHD with implication only 

of the skin (stage II°) and was still alive two years after allo-HSCT. The most abundant 

mOTUs in all four samples included different species of the genera Bacteroides, as well 

as Veillonella and Ruminococcus (Figure 3.2.13A). Enteroccocus faecium was detected in 

each sample, however never in high abundance. This patient was already treated with 

many different antibiotics (piperacillin/tazobactam, meropenem, vancomycin, linezolid) 

before the first sample was collected and the intensive antibiotic treatment was continued 

for some time, which might have lead to the overall relatively low bacterial diversity 

(Shannon diversity index), ranging between 0.9 (A21_2) and 1.9 (A21_4) (Figure 

3.2.13C). Although one species was dominating in sample A21_2, the majority of the 

other bacteria did not disappear completely but were still detectable. The number of 
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different mOTUs detected from sample 1 to sample 4 evolved from 31, over 48, to 41 and 

finally 34.  

Patient A27 was 56 years old at beginning of the treatment and was treated with a 

busulfan/cyclophosphamide conditioning regimen for chronic myeloid leukemia. The graft 

was harvested from a matched related donor. 22 days after allo-HSCT, the patient 

developed severe GvHD (skin stage III°, GIT IV°, liver III°). The patient deceased 53 days 

after allo-HSCT due to steroid-resistant GvHD. Some of the most abundant taxa in the 

first two samples included different species of the genus Bacteroides, Alistipes sp. and 

Parabacteroides distasonis. Bacterial diversity was relatively high at the beginning of the 

treatment with a Shannon diversity index of 2.6 in the first sample and 2.4 in the second 

sample. The third sample (collected three days after onset of GvHD) had an extremely low 

diversity (0.3), in which only eight different taxa could be detected (Figure 3.2.13D). Of the 

eight different taxa identified in the third sample, only the lowest abundant (Clostridium 

butyricum, 0.04 %) was a strictly anaerobic bacterium. All the other bacteria were 

facultative anaerobic bacteria (such as Lactobacillus johnsonii, L. rhamnosus, 

Enterococcus faecium and Streptococcus thermophilus).  

After quality filtering, 84 % of the MG reads from the third sample were removed, as they 

mapped to the human genome. The collection of this sample coincided with severe 

aGvHD implicating the GIT. Thus, the sample could have contained human cells, possibly 

intestinal epithelial cells. This sample was dominated by L. jonhsonii, which was also 

detected in the first samples but in low relative abundance. Considering that the third 

sample contained a large proportion of human DNA and the microbial community 

composition is represented in relative abundance, in relation to the total bacterial DNA 

within the sample, this probably means that there were only very little bacteria left in the 

GIT and almost only facultative aerobic bacteria were able to survive, which can possibly 

be linked to aGvHD (Jenq et al., 2012).  

This detailed look at the taxonomic GIT community profiles of two patients again makes 

clear how drastic but also how individual-specific the changes within the microbial 

community can be, especially in such a heterogeneous cohort undergoing intensive 

treatments. 

As in the PCA plot (Figure 3.2.12), the samples did not cluster according to the patients, I 

wondered whether the samples clustered according to their collection TP. Figure 3.2.14 

represents the same analysis, a PCA plot based on the mOTUs identified in MG 

sequencing data. Here, the samples are colored according to their collection TP. No clear 

clustering is observed in this plot. However, the TP1 samples (dark blue) tend to be 
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separate from samples from other TPs. The main drivers are indicated and show that the 

main driver for TP1 samples was Ruminococcus sp. 5_1_39BFAA. One sample from TP1 

is closer to the samples from later TPs. This is A13_TP1, which has a very high relative 

abundance of Enterococcus spp. (Figure 3.2.2), which is the main driver guiding the 

samples from later TPs in this opposite direction of the plot. Different species of the genus 

Bacteroides act as additional drivers. Loss of health-promoting bacteria such as 

Ruminococcus spp. as well as expansion of Enterococcus spp. after allo-HSCT has been 

observed in several studies (Biagi et al., 2015; Holler et al., 2014; Ubeda et al., 2010).  

 

 

Figure 3.2.14: Principal component analysis (PCA) for GIT prokaryotic community composition. Each 
dot represents a sample colored according to the collection TP. PCA was performed based on the 
metagenomic operational taxonomic units (mOTUs) identified in MG sequencing data. The main drivers are 
indicated. 

Besides taxonomic profiling, MG sequencing also allows functional profiling, which will be 

described in the next parts.  
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3.2.6 Detection of antibiotic resistance genes 

Due to the underlying disease and/or the intensive conditioning treatment, hematology 

patients undergoing an allo-HSCT are immunocompromised, at least from the day the 

conditioning treatment takes effect, until engraftment takes place. As they are prone to 

infection, they are usually treated with prophylactic antibiotics, and treatment is continued 

during neutropenia or at occurrence of fever. Intensive antibiotic treatment can favor 

emergence of multi-drug resistant (MDR) bacteria. For the 43 samples where MG data 

was available, ARGs were detected (as described in section 2.11) and their relative 

abundance (percentage of ARGs relative to the total number of genes) was calculated 

(Figure 3.2.15). The mean relative abundance and standard deviation within these 43 

samples was 0.33 % ± 0.11 %. As indicated in Table 2.1.2, the patients were treated with 

several antibiotics including broad-spectrum antibiotics such as fluoroquinolones and 

meropenem. Treatment with these antibiotics sometimes continued for several weeks. For 

almost all of the patients, an increase in the ratio of ARGs from one TP to the next is 

observed (Figure 3.2.15). Only in patient A08, a strong decrease was observed between 

A08_3 and A08_4. These samples were collected more than 7 months apart, during which 

the patient was only heavily and regularly treated with antibiotics for around a month. 

Except for four samples (A05_1, A27_1, A27_3 and A18_3), the ratio of ARGs within the 

samples from patients was higher than the ratio within four reference microbiomes from 

healthy individuals (RHM1-4). All of the ARGs identified within the sample with the highest 

ARG ratio, A29_3, belonged to one population-level genome. This was the only 

population-level genome that could be reconstructed within this sample. It was classified 

as Enterococcus faecium. During processing of this MG dataset, only 5.22 % of the 

(quality filtered) reads were retained, as the rest mapped to the human genome.  

 

Figure 3.2.15: Relative abundance of antibiotic resistance genes in fecal samples from patients 
undergoing allo-HSCT. Samples are grouped according to patient. The labels are colored according to the 
patient. RHM1-4 represent the relative abundance of ARGs in 4 reference microbiomes from healthy 
individuals. 
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A drastic increase in the relative abundance of ARGs from TP1 to TP2 was observed 

(Figure 3.2.16), although the difference was not statistically significant, which might be 

due to the low number of samples at TP2 (n=4). Significant increases were observed from 

TP1 to TP3 (samples from all the patients: p value 0.013, Wilcoxon rank sum test and 

samples from the same individuals: p value 0.014, Wilcoxon signed-rank test) and from 

TP1 to TP4 (p value 0.008, Wilcoxon rank sum test). The biggest increase was observed 

from TP1 to TP2, probably because the intensive antibiotic treatment had begun in the 

time span between collection of both samples. The median ARG ratio at TP3 was lower 

than at TP2, (but still higher than at TP1). Here, the range of ARG ratio between different 

samples was high, going from 0.20 % to 0.54 %. This might be due to different intensities 

and duration of antibiotic treatment in the patients. Also at TP4, median ARG ratio was 

higher than at TP1 but lower than at TP2.  

 

Figure 3.2.16: Relative abundance of antibiotic resistance genes in fecal samples from patients 
undergoing allo-HSCT. Samples are combined according to TP. The number of samples per collection TP is 
indicated above each plot. 

3.2.7 Changes in the functional potential of the GIT microbiome during treatment 

As the biggest changes in bacterial diversity and richness were observed from TP1 to TP3 

(Figure 3.2.3), I wondered whether this was reflected in the functional potential of the GIT 

microbiome. Within the MG datasets, functions were detected. Genes with similar 

functions from different bacterial genomes were grouped together. These will in the 

following be referred to as 'functional gene categories'.  

A total of 12,917 different functional gene categories were detected. Large differences in 

the number of functional gene categories between different TPs were detected. The 
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number of different functional gene categories (measured by the Chao1 richness 

estimator) at each TP indicated a decrease from a median value of around 7,000 at TP1 

to 5,400 at TP2 (TP1 to TP2: p value 0.014, Wilcoxon rank sum test) and further to around 

5,000 at TP3 (TP1 to TP3: p value 0.0005, Wilcoxon rank sum test).  

 

Figure 3.2.17: Richness of functional gene categories at different TPs. Boxplot depicting richness (Chao1 
richness estimator) per collection time point (TP) of different functional gene categories. The number of 
samples per collection TP is indicated above each box. Richness was determined after rarefaction of the 
dataset. (* when p value < 0.05, ** when p value < 0.01, Wilcoxon rank sum test)  

730 functional gene categories were found to be differentially abundant in the MG 

datasets between TP1 (n=17) and TP3 (n=10), with FDR-adjusted p values < 0.05 and 

absolute log2 fold change ≥ 1. Of those, 530 were decreased at TP3. As seen in Figure 

3.2.17, in samples from TP3, there was a loss of around 2000 functional gene categories. 

Results of the differential analysis indicate, that the functional gene categories that were 

lost, were not always the same in every sample, which again shows that there is a large 

inter-individual variation and can probably be linked to the high taxonomic inter-individual 

variation within the GIT microbiome. 

Upon further filtering, 64 functional gene categories were found to be differentially 

abundant with FDR-adjusted p value < 0.01 and absolute log2 fold change ≥ 3 (Figure 

3.2.18). Of those, only 1 functional gene category (the putative carnobacteriocin-B2 

immunity protein) were found to be increased, all the other functional gene categories 

displayed a decreased abundance at TP3. In healthy humans, even if there are changes 

within the composition of the GIT microbiome, the functional profile usually stays relatively 

stable (The Human Microbiome Project Consortium, 2012). Contrary to this, the functional 

capacity of the GIT microbiome of the adult hematology patients underwent drastic 
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changes throughout treatment. The decrease in abundance of a high number of functional 

gene categories at TP3 can probably be linked to a loss in diversity and richness of the 

GIT microbiome (Figure 3.2.3). In the less complex ecosystems in samples collected 

around one month after allo-HSCT, also the functional potential of this community seems 

to be decreased. The functional gene categories that displayed a statistically significantly 

lower abundance at TP3 included various functions such as genes needed for flagella 

construction, chaperones, spore formation, metabolic pathways (such as cellobiose 

degradation, sulfur metabolism) and many others, which is probably linked to loss of 

several bacterial populations.  
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Figure 3.2.18: Heatmap of differentially abundant functional gene categories between collection TP1 
and TP3 with FDR-adjusted p value < 0.01 and absolute log2 fold change ≥ 3. Samples from collection 
TP3 are highlighted in green. Heatmap of normalized functional gene category abundances is scaled as 
indicated in the color key. The dendrogram represents a hierarchical clustering with Ward's minimum variance 
method of the euclidian distance between the abundances displayed in the heatmap. 
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3.2.8 Does the microbiome influence development of GvHD? 

One aim of this project was to assess whether the GIT microbiome is involved in 

development or aggravation of GvHD. Of the 27 patients, sixteen developed GvHD. Of 

those, four patients developed severe GvHD (with summed stages ≥ 4), considered as 

severe GvHD. 

Previously detected differences of relative genus abundances between TP1 and TP3 

(Table 3.2.1) encompassed a shift towards a GIT microbiome composition that might lead 

to a more inflammatory environment, thereby potentially harbouring a higher risk for GvHD 

development. As a specific composition of the GIT microbiome could potentially play part 

in development of GvHD, I compared the early samples (TP1 and TP2) from patients who 

later developed severe GvHD (n=12), to those who never developed GvHD (n=14). Ten 

genera were found to be differentially abundant with five being decreased in samples from 

patients who later developed severe GvHD (Table 3.2.2). The highest difference in 

relative abundance was seen for the genus Akkermansia, with a 10-fold reduction in 

samples from patients who did develop GvHD. As previously described in relation to 

mucositis development (section 3.1.7.1), this bacterium strengthens the epithelial barrier 

function and is inversely correlated with onset of inflammation (Derrien et al., 2016; Png et 

al., 2010; Schneeberger et al., 2015; Wu & Scott, 2012). Thus, loss of this bacterium 

could have led to impaired integrity and higher translocation of microbial products, 

possibly adding to initiation of GvHD. On the other hand, damage of the intestinal 

epithelial wall might have led to a decrease in the availability of the main nutrient source 

for Akkermansia (mucin), and thereby caused this decrease in relative abundance of 

Akkermansia. In this scenario, possibly a higher damage of the intestinal epithelial wall in 

these patients would represent a factor leading to GvHD development. In general, the 

differences observed in the GIT microbiome between both groups do not point towards a 

higher microbiome-induced inflammatory environment in the GIT of patients who later 

developed severe GvHD. 
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Table 3.2.2: Differentially abundant bacterial genera in (TP1 and TP2) samples from patients with 
severe GvHD compared to those who never developed GvHD 

 

 

In the following, I compared samples that were collected while or after the patient had 

developed severe GvHD (n=3) against samples from patients who did not develop GvHD 

(n=21), including all TPs. Only two genera were differentially abundant, the genus 

Lactobacillus being more abundant in samples from patients with GvHD (2.71 log2 fold 

change, FDR-adjusted p value 0.013) and the genus Streptococcus less abundant (-2.36 

log2 fold change, FDR-adjusted p value 0.013). In patients with GvHD, an increase in 

facultative anaerobic (aerotolerant) Lactobacillales has been observed and it was 

suggested, that they might be able to occupy this opening niche, in contrast to obligate 

anaerobes (Jenq et al., 2012). Here however, contradicting trends were observed, with 

increase in one facultative anaerobe and decrease in another facultative anaerobe. In the 

samples from early collection TPs from patients who later developed severe GvHD (Table 

3.2.2), both genera were decreased. This indicates that, rather than being involved in 

development of GvHD, physiological changes within the GIT during onset of GvHD might 

have enabled an expansion of Lactobacillus spp.  

When comparing samples collected from patients during or after onset of severe GvHD 

(n=3) to samples from patients who did not develop GvHD (n=15), 797 functional gene 

categories (with FDR-adjusted p value < 0.01 and absolute log2 fold change ≥ 2) were 

found to be differentially abundant. Of those, only 5 functional gene categories were more 

abundant in samples from patients with GvHD. Similar to the changes in the functional 

profile throughout treatment in general, a drastic loss in the functional potential was 

observed in samples from patients during or after onset of severe GvHD. 

To get a better overview of what pathways those functions belong to, the functional gene 

categories were annotated for corresponding KEGG orthologous groups (KOs). Applying 

Genus log2 fold change adjusted p value 

Akkermansia -3.32 1.29E-06 
Bilophila -2.67 0.006 
Lachnoanaerobaculum -1.88 0.040 
Streptococcus -1.61 0.005 
Lactobacillus -1.56 0.030 
Parabacteroides 1.45 0.034 
Coprococcus 1.70 0.040 
Mogibacterium 1.83 0.050 
Alistipes 2.18 0.001 
Barnesiella 2.31 0.034 
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the same analysis on these KOs as previously, 646 were found to be differentially 

abundant (FDR-adjusted p value < 0.05 and absolute log2 fold change ≥ 1), with only 41 

being higher abundant in samples from patients with GvHD and 605 lower abundant. The 

KOs with lower abundance are illustrated in Figure 3.2.19. The corresponding pathways 

which were enriched (meaning that a significantly higher number of KOs belonging to this 

pathway were observed in the differentially abundant set than expected by chance, 

adjusted p value < 0.05, hypergeometric test) are indicated with colored lines.  

 

Figure 3.2.19: Heatmap of differentially abundant KOs between samples from patients with severe 
active GvHD and samples from patients who never developed GvHD (with FDR-adjusted p value < 0.05 
and negative log2 fold change ≥ 1). Heatmap of normalized gene abundances is scaled as indicated in the 
color key. Pathway correspondence of the KOs is indicated next to the heatmap. At the top of the heatmap, 
samples from patients with severe GvHD are marked in red, samples from patients without GvHD are marked 
in white. Samples from patients without GvHD are ordered according to the patient ID. 
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Figure 3.2.20A represents the ratio of KOs with significantly decreased abundance in 

samples from patients with GvHD compared to the total number of KOs per pathway. 

Figure 3.2.20B represents the number of significantly differentially abundant KOs in 

samples from patients with GvHD compared to the total number of KOs detected in the 18 

samples included in this analysis. A higher ratio of differentially abundant KOs belonging 

to these mentioned pathways (Figure 3.2.20A and Figure 3.2.19) than the overall ratio of 

differentially abundant KOs (Figure 3.2.20B), is observed. 

 

Figure 3.2.20: Barplots indicating number of differentially abundant KOs in samples from patients with 
GvHD, compared to the total number of KOs per pathway. (A) Ratios of KOs with decreased abundance 
are represented in red, total numbers of KOs per pathway are represented in blue. Corrresponding pathways 
are indicated below each bar. (B) Ratio of differentially abundant KOs (red) compared to the total number of 
KOs (blue). 

These pathways included some that are generally needed by bacterial cells, such as two-

component systems or the carbon metabolism. However, also genes belonging to the 

propanoate and the butanoate metabolism pathway were overrepresented within the 

functions with lower abundances in samples from patients with GvHD. This might indicate 

lower production of butyrate and propionate, two SCFAs, which are associated with 

important health-related functions, for example promoting absorption of electrolytes and 
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fluid (Scheppach, 1994). As mentioned above, a higher relative abundance of the genus 

Lactobacillus was detected in samples from patients with GvHD, which mainly produce 

lactate. This is usually converted by other bacteria into acetate, propionate and butyrate. If 

these bacteria and the corresponding pathways are missing or down-regulated however, 

lactate might accumulate in the GIT. In feces from individuals with ulcerative colitis for 

example, high concentrations of lactate have been detected and linked to diarrhea 

(Hashizume, Tsukahara, Yamada, Koyama, & Ushida, 2003; Vernia et al., 1988). Thus, 

changes within the GIT microbiome community and functional capacity during GvHD 

could further worsen the status of the patient. 
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3.3 Case study: Patient A07 – severe GvHD and dysbiosis 

This section focuses on a specific patient who underwent an allo-HSCT, developed 

severe GvHD in parallel with a marked GIT microbial dysbiosis. Parts of the results and 

discussion section focussing on this are taken and slightly modified from a manuscript that 

has been submitted to Translational Research. The respective manuscript is attached in 

the appendix: 

Appendix A.1: Anne Kaysen, Anna Heintz-Buschart, Emilie E. L. Muller, Shaman 

Narayanasamy, Linda Wampach, Cédric C. Laczny, Norbert Graf, Arne Simon, Katharina 

Franke, Jörg Bittenbring, Paul Wilmes, Jochen G. Schneider. (2017) Integrated meta-omic 

analyses of the gastrointestinal tract microbiome in patients undergoing allogeneic stem 

cell transplantation. Translational Research. (in revision). 

 

3.3.1 Patient A07 – description of treatment and status of the patient 

We chose to focus on patient A07, a patient who displayed a marked reduction in bacterial 

diversity with high relative abundances of opportunistic pathogens (Figure 3.3.1A and 

Figure 3.3.1B) and a fatal treatment outcome. This 63 year old patient had acute myeloid 

leukemia with deletion 7q. The patient was refractory to conventional induction (3+7) and 

salvage chemotherapy with high-dose cytarabine and mitoxantrone and therefore needed 

further treatment. FLAMSA-Bu (Schmid, Schleuning, Ledderose, Tischer, & Kolb, 2005), a 

modified sequential conditioning regimen for refractory acute myeloid leukemia was used 

(Fludarabine 30 mg/m² day -11 to -8, Cytarabine 2000 mg/m² day -11 to -8, Amsacrine 

100 mg/m² day -11 to -8 and Busulfan 3,2 mg/kg day -7 to -4) for remission induction and 

transplantation. She received peripheral blood stem cells from a single HLA-C antigen 

mismatched unrelated donor. After engraftment on day 26, bone marrow was 

hypocellular, but free of leukemia. Planned immunosuppression consisted of 

antithymocyte globulin (ATG) on day -4 to -2, mycophenolate mofetil until day 28 and 

cyclosporine until day 100.  

A high level of C-reactive protein (CRP) before and around allo-HSCT was observed 

which decreased slightly but stayed considerably high throughout the entire observation 

period (Figure 3.3.1C). After leukocyte depletion around allo-HSCT, the count increased 

to around 3600/µl 20 days after allo-HSCT and further increased to a normal value around 

80 days after-HSCT. However, high fluctuations and later a decrease in the leukocyte 

count were observed (Figure 3.3.1C).  
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As the patient had prolonged neutropenia due to refractory leukemia and intensive 

chemotherapy, various antibiotics and antifungals were used to treat infectious 

complications before and during transplantation. More specifically beginning from day -17 

she received piperacillin/tazobactam for neutropenic fever and this was changed to 

meropenem on day -14 for refractory fever. On day -11, vancomycin was added and on 

day -4, meropenem was exchanged for tigecycline. Additionally, the patient was treated 

with a fluoroquinolone (levofloxacin), ceftazidime and liposomal amphotericin B (Figure 

3.3.1D).  

 

Figure 3.3.1: Variation of the microbial community structure over the course of the allo-HSCT 
treatment in patient A07. (A) Relative proportions of the 10 most abundant operational taxonomic units 
(OTUs) based on 16S rRNA gene sequencing. The remaining OTUs are summarized as 'others'. Similar 
shades of the colors represent genera belonging to the same phylum. (B) Prokaryotic (triangle) and eukaryotic 
(circle) diversity represented by Shannon diversity index at sampling TPs throughout the treatment. (C) C-
reactive protein (CRP) blood levels (green line) and leukocyte blood count (blue line). (D) Drugs (antibiotics, 
antifungals and antithymocyte globulin) administered throughout the treatment. Along the x-axis, days relative 
to the day of transplantation are indicated. Abbreviations: Vancom=vancomycin; Tigecycl=tigecycline; 
Fluoroq=fluoroquinolone; Antif=antifungal; ATG=antithymocyte-globulin. 
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74 days after allo-HSCT, the patient developed aGvHD overall grade III, skin stage II and 

GIT stage III. As the patient did not respond to 2 mg/kg prednisolone and deteriorated 

rapidly, ATG (5 mg/kg body weight) was administered for four days as second line GvHD 

treatment. A partial remission of intestinal GvHD was noted with reduction of diarrhea 

from > 20 stools per day to 4-5 per day. She was bedridden with general fatigue and 

malaise. With continuous signs of infection and lower back pain an MRI scan of the spine 

showed a paravertebral abscess which was removed surgically on day 126.  

A MDR Escherichia coli was isolated both from the abscess and from a blood culture, and 

was analyzed further. After surgery the patient's health status improved, she was able to 

walk again and could be discharged from hospital at day 209. She was readmitted on day 

260 with suspected sepsis. The patient deceased at day 268 due to GvHD and systemic 

inflammatory response syndrome suspected to be bacterial sepsis. However, no pathogen 

could be recovered from blood cultures. 

In order to explore the treatment-induced effects on the GIT microbiome in more detail 

and relate them to the detrimental treatment outcome, we used a meta-omic approach 

including MG and MT analyses in addition to rRNA gene amplicon sequencing. For this 

patient, samples at later time points were available, i.e. four months after allo-HSCT, 

which allowed investigation of the GIT microbiome over an extended period of time.  

3.3.2 Patient A07 – changes in the microbial community structure during the 
treatment 

Fecal samples were taken, as indicated in Figure 3.1.1D, at days -13 (sample A07-1), day 

75 (sample A07-2) and day 119 (sample A07-3). The prokaryotic diversity decreased 

markedly after allo-HSCT (Figure 3.3.1B). Similarly, in sample A07-1 177 different OTUs 

were detected, while A07-2 and A07-3 only contained 62 and 79 OTUs, respectively.  

Dominant OTUs of sample A07-1 reappeared in A07-3, more precisely several OTUs 

representing Bacteroides spp., Escherichia/Shigella sp. and Enterococcus sp. (Figure 

3.3.1A). However, many of the less abundant OTUs, belonging to 25 different genera, 

disappeared entirely, including for example Anaerostipes and Clostridium cluster IV. 

OTUs with decreased abundance in sample A07-3 (compared to sample A07-1) 

represented 50 genera, for example Alistipes, Barnesiella, Blautia, Clostridium cluster 

XIVa and cluster XI, Prevotella, Roseburia and Ruminococcus. In addition, OTUs 

belonging to the genus Lactobacillus exhibited a 10-fold increase in relative abundance. 

Furthermore, different OTUs belonging to the genus Bacteroides increased in relative 

abundance resulting in a total relative abundance of Bacteroides spp. in A07-3 of 63 % 

compared to a total relative abundance of 27 % in A07-1 (Figure 3.3.1A). This difference 
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was mainly due to the increase in relative abundance of two Bacteroides OTUs, with an 

increase from 2.2 % to 23.5 % and from 0.9 % to 11.1 %, respectively. In total, 19 different 

OTUs belonging to the genus Bacteroides were detected in the first sample, 23 different 

OTUs in the last sample, and only 5 different Bacteroides OTUs were identified in the 

second sample which accounted for 0.07 % overall. One OTU belonging to the domain 

archaea could be identified, Methanobrevibacter smithii, which accounted for 3.4 % total 

relative abundance in A07-1. Similar to the short-term developments observed in the 

whole cohort and described before, the eukaryotic microbial community did not exhibit 

pronounced changes over time (Figure 3.2.10 and Figure 3.3.1B). Taken together, a 

drastic decrease in prokaryotic diversity, with relative expansion of few bacteria, including 

potential pathogens, was observed.  

Only one study so far has followed the GIT microbiome trajectories up to three months 

after allo-HSCT (Biagi et al., 2015). Contrary to this study, which observed that the 

richness and metabolic capacity of the microbial community recovered after two months 

(Biagi et al., 2015), our study found that the GIT microbial community in patient A07 did 

not regain its initial composition even four months after allo-HSCT, which is likely linked to 

the detrimental treatment outcome. Diversity was still decreased and many bacterial taxa 

remained absent or at drastically decreased relative levels. Taxa with decreased relative 

abundance were mainly bacteria whose presence in the human GIT is associated with 

health-promoting properties (such as butyrate production) and whose absence has been 

linked to negative consequences (such as inflammation) (Abreu & Peek, 2014; Jiang et 

al., 2015; Perez-Chanona & Jobin, 2014). The genus Blautia for instance, has been linked 

to reduced aGvHD-associated death and improved overall survival (Jenq et al., 2015) and 

the genus Barnesiella with resistance to intestinal domination with vancomycin-resistant 

enterococci in allo-HSCT patients (Ubeda et al., 2013). On the other hand, potential 

pathogens like Fusobacterium sp. and Proteus sp. appeared in the post-treatment 

sample, which were not detected in the first sample. Consecutive loss in intestinal barrier 

integrity could have allowed a GIT-borne E. coli to cause a paravertebral abscess. 

Coinciding with the development of severe aGvHD (expressed by severe diarrhea) 75 

days after allo-HSCT, 16S rRNA gene amplicon sequencing revealed a GIT microbiome in 

a notably dysbiotic state with a low diversity and dominance of two opportunistic 

pathogens, E. coli and E. faecium. The dominance of E. faecium has been observed to be 

quite common in allo-HSCT recipients and has been linked to higher occurrence of 

bacteremia and/or GIT GvHD (Holler et al., 2014; Y. Taur et al., 2012). A high relative 

abundance of E. faecium is also observed in sample A07-2. Broad-spectrum antibiotic 
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therapy, which has been associated with higher GvHD-related mortality (Shono et al., 

2016), can reduce mucosal innate immune defences through elimination of commensal 

microbes, thereby allowing the expansion of specific bacterial taxa, such as E. faecium, 

which carry multiple antibiotic resistance mechanisms (Brandl et al., 2008; Ubeda & 

Pamer, 2012). Our findings suggest that this specific population expanded in response to 

antibiotic treatment.  

Bacteroides spp. are normal commensals of the human GIT microbiome, they usually 

make up around 25 % of the community, as it is the case in sample A07-1 (Figure 3.3.1A). 

However, they can also cause infections with associated mortality (Wexler, 2007). 

Bacteroides spp. might be able to penetrate the colonic mucus and persevere within crypt 

channels. These reservoirs might persist even during antibiotic treatment (S. M. Lee et al., 

2013). Different species of the genus Bacteroides produce bacteriocins (Avelar et al., 

1999; Booth, Johnson, & Wilkins, 1977; Nakano, Ignacio, Fernandes, Fukugaiti, & Avila-

campos, 2006), a trait that might have made it possible for these bacteria to repopulate 

the GIT and expand after the dysbiosis in A07-2, occupying specific niches, resulting in a 

relative abundance of 63 % in A07-3 (day 119).  

3.3.3 Population-level structure of the pre- and post-treatment microbial 
community 

Coupled MG and MT datasets of samples A07-1 (pre-treatment) and A07-3 (post-

treatment) were generated and analyzed in order to inspect the changes in the GIT 

microbiome and the effects of allo-HSCT and concurrent antibiotics use after an extended 

period of time. As a comparison, samples from four healthy individuals (referred to as 

'reference healthy microbiomes' or 'RHMs') were analyzed in the same way.  

To gain a comprehensive overview of the populations present in either sample, a method 

for automated binning of the contigs based on the BH-SNE embedding was employed. 

This binning method allowed the identification of 134 and 14 individual population-level 

genomic complements, representing individual populations, in the pre-treatment and post-

treatment samples, respectively (Figure 3.3.2). The visual impressions of the two 

embeddings reflect the drastic change in the GIT microbiome, in particular the decrease in 

diversity with the representation of the post-treatment sample A07-3 being exceptionally 

sparse (Figure 3.3.2B). The most abundant populations were identified as Escherichia 

coli, Enterococcus faecium, Lactobacillus reuteri, Lactobacillus rhamnosus and several 

species assigned to the genus Bacteroides, which is in agreement with the 16S rRNA 

gene sequencing-based results (Figure 3.3.1A).  
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Representation of both samples within a single plot allows visual discrimination of clusters 

that are specific to one sample, or present in both samples (Figure 3.3.2C). In accordance 

with the results from 16S rRNA gene sequencing (Figure 3.3.1A), the majority of the 

clusters were only found in the pre-treatment sample, while other clusters comprised 

contigs from both samples and two clusters in the post-treatment sample were identified 

as Lactobacillus reuteri and Lactobacillus rhamnosus, which were either not present, or 

lowly abundant in sample A07-1 (Figure 3.3.2C).  

Facultative anaerobes such as members of the orders Lactobacillales and 

Enterobacteriales are often observed to increase in relative abundance after treatment 

while obligate anaerobes such as members of the order Clostridiales often decrease in 

abundance (Jenq et al., 2012). Lactobacillus rhamnosus and Lactobacillus reuteri (which 

were detected in sample A07-3) are both often combined in probiotic formulations and are 

commonly considered safe and even beneficial through inhibition of potential pathogen 

(such as E. coli and E. faecium) expansion (Borriello et al., 2003; Servin, 2004; Spinler et 

al., 2008). Bacteria found in probiotic formulations, especially Lactobacillus species have 

occasionally also caused bloodstream infections (Cohen et al., 2016). Our data suggest 

that probiotics should be administered with great caution and should be subject to further 

investigations to clearly ensure safety of their usage. 

Given the potential role of opportunistic pathogens in aGvHD (Penack et al., 2010), we 

were specifically interested in two opportunistic pathogens that were found in both 

samples and whose genomes could be recovered with high completeness. We identified 

populations of Escherichia coli and Enterococcus faecium, which were inspected further. 

The population-level genomes from both samples were reassembled to allow direct 

comparison of identified variants as well as of the complement of ARGs encoded by them 

and detected in each sample.  
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Figure 3.3.2: BH-SNE-based visualization of genomic fragment signatures of microbial communities 
present in samples of patient A07. Points represent contigs ≥ 1000 nt. Clusters are formed by contigs with 
similar genomic signatures. (A) Visualization of pre-treatment sample contigs. (B) Visualization of post-
treatment sample contigs. (A and B) Points within clusters are colored according to the cluster completeness, 
based on the number of unique essential genes. Lines within the colored bar indicate the number of clusters 
at each percentage of completeness. (C) Combined visualization of contigs derived from pre-treatment 
sample (A07-1, blue squares) and post-treatment (A07-3, red crosses) samples. The inset displays a 
magnification of a section of the plot representing two populations (Lactobacillus reuteri and Lactobacillus 
rhamnosus), which are only present in the post-treatment sample. In each representation, clusters 
representing Escherichia coli and Enterococcus faecium are indicated. 

3.3.4 Evidence for selective pressure at the strain-level 

To uncover evidence of possible selective sweeps in the populations of interest (the 

opportunistic pathogens Escherichia coli and Enterococcus faecium), caused by 

administration of antibiotics, we performed a gene-wise protein sequence comparison of 

the different population-level genomes. This analysis revealed that 97.4 % of the genes 

found in the different population-level genomes of E. coli, reconstructed from samples 
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A07-1 and A07-3, were 100 % identical and only 1.1 % of the genes were less than 95 % 

identical. In E. faecium, only 76 % of the genes were completely identical and 13.2 % of 

the genes showed less than 95 % identity.  

The average MG depths of coverage indicated that the population size of E. coli was 

smaller after allo-HSCT (Figure 3.3.3A), while the population size of E. faecium remained 

rather constant (Figure 3.3.3C). In E. coli, a similarly high number of variants was 

identified in both the pre- and post-treatment samples, with an important overlap of 

variants identified in both populations (Figure 3.3.3C), whereas only a few variants were 

present in E. faecium of both samples (Figure 3.3.3D). A similar pattern of variant 

distributions in both samples was observed for E. coli (Figure 3.3.3E and Figure 3.3.3G), 

while the variant pattern in E. faecium (Figure 3.3.3F and Figure 3.3.3H) changed 

between both samples. Observed nucleotide variant frequencies and patterns of variant 

distributions indicated that the E. coli populations were composed of different strains in 

both samples, which persisted over the course of the treatment. In contrast, E. faecium 

was mainly represented by a single strain in each sample, and the strain of the first 

sample was replaced by a different strain in the second sample.  

!
!
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!
Figure 3.3.3: Number and distribution of variants in Escherichia coli and Enterococcus faecium. (A 
and C) Violin plots representing distribution of depth of coverage of the contigs contained in each population-
level genome. (B and D) Venn diagrams indicating the number of variant positions exclusive to each sample 
respectively the number of variant positions found in both samples. (E and F) Representation of exemplary 
sections of the reassembled population-level genomes with aligned reads of both samples highlighting 
occurrences of variants in each population, visualized with the Integrative Genomics Viewer. Length of the 
represented section is indicated as well as the average MG depth of coverage of each reconstructed 
population-level genome. (G and H) Histogram of the variant frequencies of the minor nucleotide at all variant 
positions. Panels on the left represent results for E. coli, panels on the right represent results for E. faecium. 
Blue figure elements refer to the pre-treatment sample (A07-1), red figure elements refer to the post-treatment 
sample (A07-3). 
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3.3.5 Coupled metagenomic and metatranscriptomic analysis of antibiotic 
resistance genes in the pre- and post-treatment samples from patient A07 

The relative abundance of detected ARGs (percentage of ARGs relative to the total 

number of genes, Figure 3.3.4A) in the post-treatment sample (0.39 %) was significantly 

higher than the relative abundance of ARGs in the pre-treatment sample (0.28 % ARGs, p 

value 6.9 *10-4, Fisher's exact test) while the relative abundances of ARGs of both the pre- 

and post-treatment sample were higher than the average relative abundance in the RHMs 

(0.20 % ± 0.01 %, p value 5.601 * 10-7 and 3.278 * 10-10). Moreover, the expression of 

ARGs was higher in both samples from patient A07 when compared to the RHMs (Figure 

3.3.4B).  

 

Figure 3.3.4: Expression levels and relative abundances of antibiotic resistance genes (ARGs). (A) 
Percentage of identified ARGs (in relation to total number of genes) in the pre-treatment (A07-1) and post-
treatment (A07-3) sample and in the GIT microbiomes of four healthy untreated individuals (RHMs; ** p value 
< 0.01, Fisher's exact test). (B) Histogram of the ratios of metatranscriptomic (MT) to metagenomic (MG) 
depths of coverage of ARGs in the pre-treatment and post-treatment sample and in the RHMs. (C) 
Histograms of the ratios of MT to MG depths of coverage of ARGs in population-level genomes of Escherichia 
coli and of Enterococcus faecium in the pre- and post-treatment samples. Bars representing the number of 
ARGs at a specific expression rate in the pre-treatment sample are blue, bars representing the genes in the 
post-treatment sample are red. For the RHMs, the average of four datasets is represented with standard 
deviation as error bar.  
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3.3.6 Identification of antibiotic resistance genes in population-level genomes of 
opportunistic pathogens 

Given the higher number and expression of ARGs in the post-treatment sample of patient 

A07, we were interested whether this could also be detected in the specific populations E. 

coli and E. faecium. Within the population-level genome of E. coli, 31 ARGs were 

identified in both samples and 2 additional genes were detected in the post-treatment 

sample only. In E. faecium, 25 ARGs were identified in both samples of which 21 genes 

were identical in both samples (summaries of the ARGs identified in each population-level 

genome are listed in Table 3.3.1 and Table 3.3.2). In E. coli, 20 of the 31 ARGs that were 

found in both samples, exhibited higher levels of expression in the post-treatment sample 

while in E. faecium, 18 out of 21 ARGs showed higher expression post-HSCT (Figure 

3.3.4C). Although patient A07 was only treated with antibiotics until day 18 (Figure 

3.3.1D), expression of the ARGs was in general higher in the post-treatment sample, both 

in the whole sample (Figure 3.3.4B), as well as in the specific populations (Figure 3.3.4C).  

Table 3.3.1: ARGs identified in population-level genomes of GIT E. coli from patient A07. 

Resfams_ID 
Number of 
Genes Resfam Family Name Mechanism 

RF0005 1 AAC6-Ib 
Aminoglycoside Modifying 
Enzyme 

RF0007 3 ABCAntibioticEffluxPump ABC Transporter 

RF0027 1 ANT3 
Aminoglycoside Modifying 
Enzyme 

RF0035 1 baeR Gene Modulating Resistance 
RF0053 1 ClassA Beta-Lactamase 
RF0055 1 ClassC-AmpC Beta-Lactamase 
RF0056 1 ClassD Beta-Lactamase 
RF0065 1 emrB MFS Transporter 
RF0088 1 macA ABC Transporter 
RF0089 1 macB ABC Transporter 
RF0091 1 marA Gene Modulating Resistance 
RF0098 1 MexE RND Antibiotic Efflux 
RF0101 1 MexX RND Antibiotic Efflux 
RF0112 1 phoQ Gene Modulating Resistance 
RF0115 6 RNDAntibioticEffluxPump RND Antibiotic Efflux 
RF0121 1 soxR Gene Modulating Resistance 
RF0147 1 tolC ABC Transporter 
RF0168 6 TE_Inactivator Antibiotic Inactivation 
RF0172 1 APH3'' Phosphotransferase 
RF0173 1 APH3' Phosphotransferase 
RF0174 1 ArmA_Rmt rRNA Methyltransferase 
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Table 3.3.2: ARGs identified in population-level genomes of GIT E. faecium from patient A07. 

Resfams_ID 
Number of 
Genes Resfam Family Name Mechanism 

RF0004 1 AAC6-I 
Aminoglycoside Modifying 
Enzyme 

RF0007 9 ABCAntibioticEffluxPump ABC Transporter 

RF0033 1 APH3 
Aminoglycoside Modifying 
Enzyme 

RF0066 1 emrE Other Efflux 

RF0067 1 
Erm23SRibosomalRNAMethylt
ransferase rRNA Methyltransferase 

RF0104 1 MFSAntibioticEffluxPump MFS Transporter 

RF0134 1 
Tetracycline_Resistance_MFS
_Efflux_Pump Tetracycline MFS Efflux 

RF0154 1 vanR Gylcopeptide Resistance 
RF0155 2 vanS Gylcopeptide Resistance 
RF0168 1 TE_Inactivator Antibiotic Inactivation 

RF0172 2 APH3'' 
Aminoglycoside Modifying 
Enzyme 

RF0173 2 APH3' 
Aminoglycoside Modifying 
Enzyme 

RF0174 6 ArmA_Rmt Aminoglycoside Resistance 
 

In E. coli, three different genes conferring resistance against β-lactams were identified, 

one of which was only detected in the post-treatment sample, which might have been 

acquired due to selective pressure given the administration of three different β-lactam 

antibiotics during the treatment.  

Observed nucleotide variant frequencies and patterns of variant distributions indicated 

that the treatment may have constituted a genetic bottleneck for E. faecium, culminating in 

the observed lower genetic diversity. This also suggests that two different mechanisms 

influenced the respective compositions of E. coli and E. faecium populations. While the E. 

coli population remained relatively unaffected, the E. faecium population underwent a 

selective sweep in response to the antibiotic treatment with selection of a specific 

genotype expressing ARGs. Overall, our observations indicate that antibiotic pressure and 

associated selection of bacteria encoding ARGs are likely essential factors in governing 

the observed expansion in opportunistic pathogens. 

3.3.7 Genomic characterization of a blood culture E. coli isolate and comparison 
to GIT populations 

The genomes of a blood culture isolate and GIT population-level genomes of E. coli from 

patient A07 exhibited an average nucleotide identity of 100 %. A heatmap and 

corresponding dendrogram based on the E. coli pangenomes indicated that the genomes 

of the E. coli isolated from patient A07 and genomes from the GIT MG data were closer 
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related to each other than to any other reference E. coli (Figure 3.3.5). In the genome of 

the E. coli isolate, the same ARGs as in the pre- and post-treatment GIT E. coli could be 

identified, with 4 additional ARGs compared to the post-treatment GIT E. coli.  

The overlap of ARGs identified in each genome further indicates their association. These 

findings are a proof for the potential fatal effects of dysbiosis associated pathogen 

dominance in the GIT and subsequent systemic infections on patient survival. 

 

Figure 3.3.5: Gene set profiles of the 118 reference strains and 3 E. coli isolated from patient A07 
(marked in red). Each row represents a gene (blue: present, yellow: absent), each column represents a 
strain.  

 

Gene
absent
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E. coli isolated 
from patient A07
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4 Conclusion and perspectives 

4.1 Is there a general response of the GIT microbiome to anticancer 

treatment and is the GIT microbiome implicated in development of treatment 

side effects? 

Different studies analyzing the GIT microbiome using 16S rRNA gene amplicon 

sequencing, in relation to changes in response to different anticancer treatments have 

been published (Biagi et al., 2015; Montassier et al., 2014). However, these studies have 

included different cohorts with several underlying diseases, various treatments and also 

varying analysis methods. Therefore, it is not surprising that the results are not 

necessarily in complete agreement. A systematic review (Touchefeu et al., 2014) lists a 

decrease in Bifidobacterium spp., Clostridium cluster XIVa, Faecalibacterium prausnitzii 

and an increase in Enterobacteriaceae and Bacteroides spp. as the most commonly 

observed changes after different anticancer treatments, including different combinations of 

cytotoxic and radiation therapies. In the current study, the changes within the GIT 

microbiome of the pediatric patients did not agree with these findings, except for a slight 

decrease in one member of the Clostridium cluster XIVa (Table 3.1.2).  

In samples from patients who developed mucositis, a decrease in one OTU classified in 

the Clostridium cluster XIVa and a decrease in Bacteroides sp. was observed, among 

other changes (Table 3.1.3). This was observed over all TPs including the TP before the 

treatment, thus, these differences were not likely due to the treatment. However, these 

GIT microbiome profiles might have contributed to mucositis development. In samples 

from patients who had severe mucositis, Akkermansia muciniphila was decreased. This 

bacterium was shown to strengthen the epithelial barrier function and is assumed to have 

anti-inflammatory properties (Derrien et al., 2016; Reunanen et al., 2015; Schneeberger et 

al., 2015). Thus, loss of this bacterium could lead to increased translocation of microbial 

molecules and favor an inflammatory response, thereby contributing to mucositis 

development. On the other hand, the decrease could represent a consequence of the 

damaged epithelium and a degradation of the mucus layer, which is its most important 

nutrient source (Yamamoto et al., 2013). In this case, the observed decrease in relative 

abundance of this bacterium would only represent a consequence of mucositis. 

To this date, this is the first study of MG and MT datasets of fecal samples from cancer 

patients. On the MT level, differentially abundant functional gene categories in samples 

from patients with mucositis were detected, which included functions associated with 
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bacteriophages, suggesting a potential role of these entities in the development of 

mucositis. Further investigations are needed in order to validate this finding and elucidate 

a mechanism.  

In the adult patient cohort, a decrease in many bacterial genera that are generally 

associated with health-promoting properties, such as Bifidobacterium spp., 

Faecalibacterium spp., Dorea spp., Roseburia spp., Blautia spp. and Barnesiella spp. was 

observed, along with many other changes (Table 3.2.1), which is partly in agreement with 

results commonly found in previous studies (Touchefeu et al., 2014). 

Similar to the observations in the pediatric cohort, the relative abundance of Akkermansia 

municiphila was decreased in samples from patients who later developed severe GvHD. 

As mentioned before, lower levels of this bacterium might have contributed inflammation 

or to a weaker intestinal epithelial barrier and thus enabled translocation of bacterial 

components and activation of the pro-inflammatory cascade. In other studies, onset of 

GvHD was accompanied by an increase in the abundance of Enterococcus spp. (Biagi et 

al., 2015; Holler et al., 2014) and a reduction in Faecalibacterium spp. and Ruminococcus 

spp. (Biagi et al., 2015; Jenq et al., 2012). In this study, trends in the abundance of these 

taxa were not observed with regards to GvHD but more generally over time. In the current 

study, Ruminococcus spp. was shown to be characteristic of samples collected at TP1 

(Figure 3.2.12), while Enterococcus spp. was more abundant in later TPs.  

One general response to treatment that was observed in both cohorts was a decrease in 

alpha-diversity of the prokaryotic GIT community (measured by the Shannon diversity 

index and the Chao1 richness estimator in Figure 3.1.3 and Figure 3.2.3). This decrease 

was substantially more pronounced in the adult patients undergoing allo-HSCT, which 

could be due to the intensive conditioning treatment, but also due to the antibiotic 

treatment. Furthermore, a general decrease in the functional potential was observed 

including a decrase in relative abundance or loss of various metabolic and cellular 

functions, which is probably linked to the decrease in microbial diversity and associated 

loss in bacterial populations (Figure 3.2.17 and Figure 3.2.18). This is the first study to 

show this decrease in functional capacity in these patients' GIT microbiomes. Overall, a 

detailed look at changes in samples from patients who have been sampled more 

frequently might help to discern and detect mechanisms that are involved in development 

of treatment side effects. Therefore, it might be useful to add this layer of information in 

future studies.  

A decrease in alpha-diversity after allo-HSCT (Figure 3.2.3) was also observed in other 

studies and lower diversity at engraftment was linked to higher transplant-related mortality 
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(Y Taur et al., 2014). This was also observed in this study (Figure 3.2.4). This raises 

questions and concerns regarding intensive antibiotic treatment after allo-HSCT, which of 

course has a drastic effect on microbial diversity. Based on the observation, one strategy 

to avoid a treatment-induced intestinal domination by pathogens could consist in the 

tailored administration of several, rather than single probiotic strains, composed based on 

the individual GIT microbiome changes during therapy. A different approach to restore 

specific beneficial microbes could consist in fecal microbiome transplantation, either as 

'autologous' (transplanting the pre-transplant microbiome) or 'allogeneic' graft (from the 

donor of the stem cells or a relative of the patient). A randomized trial of autologous fecal 

microbiome transplantation (FMT) for prevention of Clostridium difficile infection after allo-

HSCT is currently recruiting participants (https://clinicaltrials.gov/ct2/show/NCT02269150). 

This auto-FMT could possibly also prevent other treatment-related side effects. FMT with 

the patient's spouse or relative as donor was successfully performed on four allo-HSCT 

patients with steroid-resistant aGvHD of the GIT. In three cases, a complete response 

was observed along with one partial response (Kakihana et al., 2016). Preservation or re-

establishment of a diverse microbiome able to inhibit expansion of potential pathogens 

might be a new approach to avoid treatment related side effects. Bacteria with anti-

inflammatory properties, such as several members of the class Clostridia, might help in 

regulating the immune response by induction of Treg and IL-10 and lower the incidence or 

severity of GvHD and mucositis. Specifically Blautia spp. (a member of the class Clostridia 

with anti-inflammatory properties) was linked to lower GvHD-related mortality and 

improved overall survival after allo-HSCT (Jenq et al., 2015). 

In both cohorts, the microeukaryotic and the archaeal community did not display drastic 

changes in response to the treatment (section 3.1.3, section 3.2.2 and section 3.2.3). No 

correlation between bacterial diversity and microeukaryotic diversity was found which 

indicates that the individual microbial communities were differently affected by the 

treatment. 

In both cohorts, a high intra-individual dissimilarity but also inter-individual dissimilarity 

between different GIT bacterial profiles were observed (Figure 3.1.5 and Figure 3.2.6). 

Here, individual-specific changes rather than general trends within the GIT microbiome 

following treatment were observed. Additionally, as there is a high complexity within this 

ecosystem including numerous interactions between the GIT microbiome, the host 

immune system, treatment and dietary changes, it is not possible to relate development of 

mucositis or GvHD to one factor (the microbiome) alone. In this study, it was not possible 



4. Conclusion and perspectived 

!126 

to detect changes in the GIT microbiome leading to development or aggravation of the 

side effects. 

4.2 How important are SCFAs? 

Numerous studies have focused on and discovered new effects of short-chain fatty acids 

(SCFAs), especially of butyrate, on the human body and implications in human health. For 

example, butyrate is important for maintenance of the intestinal barrier and it is a histone 

deacetylase inhibitor (Davie, 2003). Thereby, butyrate acts as an anti-inflammatory agent, 

inhibiting NF-κB activation (Inan et al., 2000). In patients with inflammatory bowel 

diseases, similar GIT microbial profiles were found as in patients with GvHD; marked by 

reduced richness, lower abundance of butyrate producers (such as members of the 

Clostridium clusters IV and XIVa) (Kolho et al., 2015; Zama et al., 2016). In a recent 

murine study, butyrate or a bacterial community including butyrate-producing Clostridia, 

were shown to mitigate GvHD (Mathewson et al., 2016), suggesting an important role of 

butyrate and butyrate-producers in relation to GvHD. 

In this project, in general, a decrease in the relative abundance of many SCFA producers 

was observed, in response to the allo-HSCT (Table 3.2.1). However, this was not 

observed when grouping according to development of severe GvHD (section 3.2.8). On 

this level, no link between SCFA-producers and GvHD was found. In both cohorts within 

the metagenome and metatranscriptome, no statistically significant differences in the copy 

number of the genes coding for the three enzymes catalyzing the final step in butyrate 

production were detected when grouping according to the occurrence of severe mucositis 

or GvHD (section 3.1.7.2). In samples from patients with active GvHD, a statistically 

significant decrease in the relative abundances of some genes belonging to different 

SCFA biosynthetic pathways was observed. These pathways included the propionate and 

butyrate biosynthesis pathway (Figure 3.2.19). Still, with the current study results, no 

direct link between the SCFA-producers in the GIT microbiome and occurrence of 

treatment side effects can be made. As it seems, there are more factors playing a role in 

development of these side effects and the interconnection between the microbiome, the 

health status of the patient and especially the immune system is more complicated. 

4.3 Could shotgun sequencing of the GIT microbiome revolutionize 

personalized medicine? 

Metagenomic sequencing allows description of the composition of the GIT microbiome 

including identification of potential pathogens. One advantage in comparison to 16S 
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and/or 18S rRNA gene amplicon sequencing is that with MG sequencing, genomic 

fragments from all domains of life and even of DNA viruses are contained within one 

dataset. 16S rRNA gene sequencing, in contrast, does not allow to draw conclusions on 

the actual composition of the GIT community as eukaryotes and viruses are not resolved. 

In addition, the total community size or the proportion of human DNA content are not 

measured. All of this information is retained in MG sequencing datasets. In this project, for 

example the presence of high amounts of human DNA in several samples was noticed 

(sample A27_3, Figure 3.2.13 and section 3.2.5), which in turn indicates that the overall 

microbial content was low. 

MG sequencing allows identification of potential pathogens without culturing. Culturing 

can lead to false negatives, as some bacteria are difficult to culture (Vartoukian et al., 

2010). Also, culturing does not reflect relative abundance. In addition, MG sequencing 

allows identification of all the ARGs comprised within the microbial community, i.e. the 

resistome. As observed in this study, there was an important increase in the ratio of ARGs 

within the community throughout treatment (Figure 3.1.11 and Figure 3.2.15), which was 

especially pronounced in the adult hematology patients and this can probably be linked to 

the intensive antibiotic treatment. A specifically tailored treatment could then be chosen, in 

response to the detected pathogens and corresponding ARGs. Although this may sound 

good in theory, we are still far away from being able to apply this workflow in the clinical 

setting. Especially immunocompromised patients are in a critical state, where timely 

actions and direct treatments are a necessity. At the onset of fever, indicating an infection, 

immediate action is crucial. At this point, it is not possible to wait for results of processed 

sequencing data, identifying the infecting pathogen and corresponding ARGs. However, if 

the first choice of treatment (empiric treatment) fails, these results may help to find a 

suitable medication (informed treatment). Furthermore, if next-generation sequencing 

became cheaper and faster, the changes in the microbiome of patients could be 

monitored and dangerous bacteria could be recognized and kept at bay before a fever or 

infection were to develop. Implementation of screening of ARGs and potential pathogens 

in baseline samples (at admission) as well as at sign of infection could possibly help to 

find the appropriate treatment and infection control measures, thereby improve patient 

treatment. Such a workflow could potentially result in faster and more reliable diagnostics 

(Figure 4.3.1). 
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Figure 4.3.1: Workflow suggesting possible usage of shotgun sequencing in personalized medicine to 
compile individually tailored treatments. 

Furthermore, MG sequencing allows detection and identification of viruses before they 

pose a threat to the patient. Often, symptoms of viral infections can vary and be quite 

unspecific, making it difficult to discern the virus causing the symptoms. For example, the 

symptoms of cytomegalovirus colitis, diarrhea and abdominal pain, are very similar of 

those of aGvHD. Therefore, a biopsy is advised at suspicion of infection (Jacobsohn & 

Vogelsang, 2007). Another method to detect viral infection is an antibody assay, however, 

in immunocompromised patients this test might result in a false negative result due to a 

low antibody response (Woods, 2013). Similarly, culturing of viruses (in cell culture) can 

be difficult and lead to false negatives if only a low number of viruses is present, which 

would then be growing slowly and take up to weeks to eventuate in a positive result. 

Shotgun sequencing allows early detection of viruses in a non-invasive and exhaustive 

way (section 3.1.6 and section 3.2.4).  

As seen in this study and mentioned previously, shotgun sequencing allows identification 

of ARGs (section 3.1.5 and section 3.2.6). A suggested response following this would be a 

specifically tailored antibiotic treatment. The majority of the currently used antibiotics 

however, are not specific to particular pathogens. Modes of action for example are the 

inhibition of cell wall synthesis (e.g. meropenem) or the inhibition of nucleic acid synthesis 

(e.g. fluoroquinolones). Generally, the fact that antibiotics have broad-spectrum activity is 

seen as an advantage. However, treatment with prophylactic broad-spectrum antibiotics 

will not only kill pathogenic and opportunistic bacteria, but also important beneficial and 

commensal bacteria. Resulting antibiotic pressure can lead to microbial dysbiosis and 

emergence of MDR bacteria, a threat that is well known. Therefore, development of other 

narrow-spectrum treatments is indispensable. Alternatives to currently used traditional 
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antibiotics have been presented in section 1.3. Another option for changing the 

composition of the microbiome may be the ingestion of specific beneficial microbes, i.e. 

probiotics. Generally, probiotics are defined as living microbes, which confer benefits to 

the host. Mainly lactobacilli and bifidobacteria are used as probiotics. In this study, the 

relative abundance of Lactobacillus spp. was in general higher in patients with severe 

aGvHD than in those without GvHD (section 3.2.8), as for example in A27_3 (Figure 

3.2.13) and A07_3 (Figure 3.3.1). The results in this project suggest, that the high relative 

abundance of this bacterial genus was a consequence of GvHD, rather than a cause. 

Bloodstream infection with Lactobacillus spp. has been observed in patients, including 

patients after allo-HSCT (Cohen et al., 2016; Salminen et al., 2004). Although their 

administration is generally considered safe (Ladas et al., 2016), these organisms and their 

interaction in particular with the immunocompromised host should be further investigated. 

Similarly, FMT is recently being applied in the treatment of patients with multiple recurrent 

Clostridium difficile infections (CDI), where cure rates of 90 % have been reported (Brandt 

et al., 2012). However, FMT has yet to be further investigated and improved before 

becoming a standard therapy option. In order to apply this method to patients undergoing 

cancer treatment, mechanisms of action need to be better understood. This is especially 

important in immunocompromised patients such as patients undergoing an allo-HSCT. 

After allo-HSCT, immunologic recovery occurs gradually, over time. On one hand, it might 

be beneficial to have an 'intact' GIT microbiome from a healthy donor, which could 

positively influence development of the hematopoietic cells and immune recovery. On the 

other hand, it is not known how the patient's newly acquired immune system might react 

to a completely foreign microbiome, even though the donor might be in good health. 

In short, if cost and turnaround time of shotgun sequencing could be addressed, it could 

potentially allow exhaustive profiling of the GIT microbiome of patients including members 

of all domains of life, as well as viruses and ARGs and thereby enable individually tailored 

treatments. 

4.4 General challenges for GIT microbiome studies in the clinical setting 

Numerous studies applying high-throughput sequencing such as rRNA gene amplicon 

sequencing on fecal samples have characterized the human GIT microbiome in detail and 

suggested that the GIT microbiome performs many important functions for the host, and 

that alterations and disorders in the microbial community can be associated to different 

diseases. Eventually, this deep insight into the human-microbiome interaction might 

enable the application of high-throughput sequencing in the clinical setting. However, a 
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standardized procedure and methodology should be put in place before it can be used in 

personalized medicine. Several recent studies have compared how different steps in 

microbiome studies influence the results (Blekhman et al., 2016; Gerasimidis et al., 2016; 

Walker et al., 2015). These factors include: storage (flash-freezing samples versus 

keeping them at room temperate, addition of preservation buffers, storage at -20 °C or  

-80°C), the period of storage, the extraction method, sequencing method (including the 

choice of primers for example for amplicon sequencing) and the pipeline used for 

processing of the reads (for example mothur (Schloss et al., 2009), QIIME (Caporaso et 

al., 2010) or LotuS (Hildebrand et al., 2014)). All of those steps have been shown to 

introduce bias and influence the final output. Within individual studies therefore, one is 

usually mindful to use the same strategy for all of the samples, which allows comparison 

of the results within the study. However, it is a general aim in research to share the gained 

knowledge and build upon it. Usage of different strategies makes it difficult or impossible 

to truly compare results from different studies. However, it is difficult to establish a general 

workflow that accounts for everybody's needs. While the majority of the studies only focus 

on DNA, it would be crucial to add and integrate different omic data (such as RNA, 

proteins or metabolites). In this case, a framework that allows extraction of all of those 

biomolecules from one undivided subsample would be ideal (Roume, Muller, et al., 2013; 

Roume, Heintz-Buschart, et al., 2013).  

To reduce some of the introduced bias, the same storage method, and a generally applied 

lysis protocol, allowing disruption of the cell walls of the different organisms present in one 

sample could be set in place. After lysis, subsequent extraction of DNA only or of different 

biomolecules (DNA, RNA, proteins and metabolites), according to the needs of the 

individual project would be possible. Additionally, if raw sequencing data of individual 

projects were publicly available, they could be processed using different pipelines, making 

the results from different studies more comparable. 

In the GIT microbiome field, fecal samples are generally used as proxy for the content of 

the large intestine, as they are easier to collect than for example biopsies. However, they 

might not accurately reflect the microbial community in the colon as for example 

organisms living in the mucus layer might be underrepresented in the sample. 

Additionally, transit time and stool consistency influence microbial richness (Vandeputte et 

al., 2016). Thus, it has to be kept in mind that fecal samples might not represent the exact 

reality. A solution to get a more representative overview of the actual microbial community 

within the colon is the IntelliCap (MediMetrics), an electronic capsule, which allows 
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sampling within the GIT in a non-invasive way. The included pH temperature sensors 

enable position tracking and thereby sampling from different locations within the GIT. 

Also, different subsamples from one fecal sample result in high variability of the different 

microbial taxa (Gorzelak et al., 2015; D. H. Huson et al., 2016). In order to circumvent 

some of these difficulties in this study, we applied an extraction method that allows 

extraction of DNA and RNA from one undivided sample was applied (Roume, Muller, et 

al., 2013; Roume, Heintz-Buschart, et al., 2013). Also, the same sequencing 

methodologies were applied for individual samples and each dataset type was processed 

using the same pipeline, in order to allow comparison of the different results. Different 

omic layers (rRNA gene amplicon sequencing, metagenomic and metatranscriptomic 

datatsets) were produced and analyzed, allowing higher confidence. In addition, 

metagenomic sequencing is less bias prone than rRNA gene amplicon sequencing, as 

this method does not include PCR amplification (Shakya et al., 2013). 

4.5 Challenges in this study 

In this project, two different departments were included to be able to include a higher 

number of patients, resulting in two different patient cohorts, each cohort displaying high 

levels of heterogeneity in itself. The patients in these cohorts had different underlying 

diseases and received different antibiotic and anticancer treatments. Thus, many 

confounding factors could have influenced the GIT microbiome, which makes it difficult to 

link the observed changes to one factor alone. For example, the GIT microbiome has 

been shown to evolve throughout lifetime and to display different patterns according to the 

age of the host. Even within the pediatric department, where the age of the patients 

ranged only from 3 to 19 years, this effect could be observed. Younger children (3-4 

years) displayed a microbial community with a lower diversity and richness (Figure 3.1.4 

(Ringel-Kulka et al., 2013)). It was noticed that the lower richness was not related to the 

treatment group, but mainly to the age of the patient. The treatment however did also 

have an influence on richness. 

It has been observed that the GIT microbiome of healthy individuals is strikingly stable 

over time and also capable of reverting roughly to its initial state, even after external 

influences have induced changes in the complex ecosystem (David et al., 2014; Heintz-

Buschart et al., 2016). However, in this study, a high inter-individual but also a high intra-

individual variation and dissimilarity between different GIT microbial profiles were 

observed (Figure 3.1.5 and Figure 3.2.6). Currently, large-scale studies including a higher 

number of patients usually conduct analyses based solely on the mean or median over 
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the whole cohort or individual study groups. Considering the huge variation that was 

observed between different patients and the very individual-specific patterns that were 

observed in this study (for example illustrated in Figure 3.1.10), averages were often not 

representative of any member of the cohort. Therefore, detailed personalized profiles 

were presented and discussed. The compelling individual-specific results suggest, that 

one way to resolve the dynamics within the microbiome following treatments should 

include studies focussing on patient dynamics individually. Similary, in the future, 

treatments should be more individually tailored (as suggested in Figure 4.3.1). 

In this study, high fluctuations in different blood counts, as well as in the GIT, especially in 

patients undergoing an allo-HSCT, were observed (for example in patient A07, Figure 

3.3.1). In order to relate changes in the composition of the GIT microbiome to the status of 

the immune system, a more frequent sampling scheme (ideally daily), would have to be 

adopted. For future studies, it would be interesting to include only a low number of 

patients, but to sample them frequently, over a longer time period. This has been done in 

other studies, focusing for example on the GIT microbiome of healthy individuals or of 

newborn babies (David et al., 2013, 2014; Palmer, Bik, DiGiulio, Relman, & Brown, 2007). 

4.6 Perspectives 

As observed in this study, many factors influence the complex microbial ecosystem in the 

GIT. Already in a simple bacterial population with a single taxon, there is a complicated 

interconnection and signalling network between the microorganisms resulting in 

responses of the population to simple parameters such as nutrient availability, 

temperature and pH. In general in the clinical setting, as it was the case in this project, a 

complex ecosystem of microorganisms, interacting with each other, but being also 

influenced by factors such as dietary changes of the host, drastic changes of the status of 

the immune system and treatment with chemotherapeutics and antibiotics, is studied. In 

this system, new layers and levels of interconnections are added, resulting in a highly 

intricate network.  

To get an overview of the mechanisms within the microbiome, in this project, in addition to 

taxonomic profiling, assessment of the functional potential within the microbial community 

was included, adding a whole new level of information. However, the current study design 

does not allow identification of causality. It was not possible to identify whether changes in 

the GIT microbiome composition led to the development or aggravation of adverse effects, 

a worse outcome, or changes in the status of the immune system, or, if the latter resulted 

in further changes in the microbiome. In order to find out specific causalities and 
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mechanisms, a much more simplified and controlled system might be more suitable. 

Mouse studies allow a more controlled environment with less confounding factors, 

frequent sampling and also the analysis of the GIT content instead of the stool samples. 

However, as for example mice are different from humans in anatomy, genetics and 

physiology, murine studies can never mimic human systems (Nguyen TL, Vieira-Silva S, 

Liston A, 2015). Another possibility would be the usage of a microfluidics-based co-culture 

device such as HuMiX (Shah et al., 2016), which allows growth of bacteria, intestinal 

epithelial cells and human immune cells in different chambers, separated by membranes, 

which allow molecular cross-talk. Thus, interactions between those layers can be 

examined in a controlled environment with specific user-defined properties. Distinct 

bacterial communities (mimicking either a healthy GIT microbiome or a community in a 

dysbiotic state including potential pathogens) can be introduced or a non confluent layer 

of epithelial cells and membranes with larger pores, mimicking a 'leaky gut'. Observational 

studies in the clinical setting are still important and are needed. Validation of specific 

observations in different clinical studies is difficult, as heterogeneous patient cohorts in 

different studies might not reflect the same results. Ideally, studies in different settings, 

using different methodologies, would complement each other and finally allow integration 

of the knowledge. 

In order to tackle the complexity of this highly interconnected network, in a future study, 

only a small number of patients, ideally with similar age, disease and treatment should be 

included and followed throughout their treatment with a high sampling frequency. In order 

to get from observation to causality, specific, interesting findings could then be further 

analyzed using a meta-omic approach and validated using different methods. For 

example, concerning the results from this study, lactobacilli present in high abundance in 

patients after allo-HSCT could be isolated and cultured together with human (epithelial 

and immune) cells, to see if they were able to elicit an immune response, using cytokine 

detection assays and transcriptomics. The amount of SCFA (especially butyrate) in fecal 

samples as well as in the serum could be determined in order to see if the observed 

decrease in SCFA-producing bacteria actually resulted in lower amounts of SCFA.  

Despite extensive research efforts in the field of GIT microbiome, also in the context of 

cancer development and treatment, we are still only at the beginning of understanding this 

complex ecosystem and its interconnection with human health and disease. Clearly, the 

GIT microbiome plays an important role in human health and disease and carries the 

potential to be used as therapeutic agent (in the form of probiotics or FMT), emphasizing 

the importance and value of future research in this field. The results from this project 
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indicate that integrated omics, including different layers of information are needed to 

understand the complex mechanisms and interconnection of the GIT microbiome and its 

host. Ultimately, exhaustive personalized analyses could possibly enable an accordingly 

tailored treatment in the future. 
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Esch/Belvaux, 06.02.2017

Dear Dr. Laurence,

Please find enclosed our manuscript entitled “Integrated meta-omic analyses of the 
gastrointestinal tract microbiome in patients undergoing allogeneic stem cell transplantation” 
which we would like to submit as Research Article for publication in Translational Research. 
Our manuscript touches upon the scientifically challenging role of the gut microbiome in 
health and disease in a clinically extremely vulnerable patient entity, i.e. people undergoing 
an allogeneic stem cell transplantation for the treatment of malignant diseases. We think that 
this manuscript will be of interest to the readership of Translational Research because of 
several important reasons:

1. The high clinical relevance:  the observed changes in the gastrointestinal 
microbiome, especially the apparent enrichment in facultative pathogens expressing 
antibiotic resistance genes suggests that prophylactic antibiotic administration may 
adversely affect overall treatment outcome. We even present novel data suggesting that 
bacteria commonly considered as safe microorganisms (lactobacilli) may produce adverse 
effects during a stem cell transplantation. Our analyses may initiate follow up studies that 
might enable clinicians to adjust the therapy regimens according to individuals.
2. The main findings: while we observed a drastic decrease in bacterial diversity, the 
eukaryotic community seemed to be more resilient against the intensive treatment. 
Furthermore, no specific pattern in response to treatment was found in the archaeal 
populations. Additionally, detailed metagenomic and metatranscriptomic analyses of 
samples from one patient highlight the long-term effects that this intensive treatment has on 
the gastrointestinal microbiome. We further observed a clear enrichment in the copy 
numbers and expression of antibiotic resistance genes.
3. The novelty of the analysis approach and the dataset: According to our knowledge, 
the manuscript describes the first detailed analysis of the changes in the gastrointestinal 
microbiome of patients undergoing an allogeneic stem cell transplantation. The study 
includes information on all three domains of life in addition to metagenomic and 
metatranscriptomic data of samples from one specific patient who displayed an extensive 
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dysbiosis with enrichment in facultative pathogens and who deceased due to treatment side-
effects.

The reported material reflects our own original research and has not been submitted for 
publication elsewhere. We declare that we do not have any conflicts of interest in relation to 
the presented research. The manuscript has been read and approved by all of the authors.

Thank you very much in advance for considering our manuscript and we look forward to 
hearing from you soon.

Yours sincerely,

Jochen G. Schneider
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47 Abstract 

48 In patients undergoing allogeneic hematopoietic stem cell transplantation 

49 (allo-HSCT), treatment-induced changes to the gastrointestinal tract (GIT) 

50 microbiome have been linked to adverse treatment outcomes, most notably 

51 graft-versus-host disease (GvHD). However, it is not known whether this 

52 relationship is directly causal. Here, we performed an integrated meta-omic 

53 analysis to gain deeper insight into GIT microbiome changes during allo-

54 HSCT and accompanying treatments. We used 16S and 18S rRNA gene 

55 amplicon sequencing to resolve archaea, bacteria and eukaryotes in the GIT 

56 microbiomes of 16 patients undergoing allo-HSCT for treatment of 

57 hematologic malignancies. This study reveals a major shift in the GIT 

58 microbiome after allo-HSCT, including a marked reduction in bacterial 

59 diversity but limited changes among eukaryotes and archaea. An integrated 

60 analysis of metagenomic and metatranscriptomic data was performed on 

61 samples collected from one patient before and after treatment for acute 

62 myeloid leukemia. This patient developed severe GvHD, which led to death 

63 nine months after allo-HSCT. In addition to a drastically decreased bacterial 

64 diversity, the post-treatment sample showed a higher overall number and 

65 higher expression levels for antibiotic resistance genes (ARGs). An organism 

66 causing a paravertebral abscess was shown to be linked to the GIT dysbiosis, 

67 suggesting loss of intestinal barrier integrity. The apparent selection for 

68 bacteria expressing ARGs suggests that prophylactic antibiotic administration 

69 may adversely affect overall treatment outcome. Detailed analyses including 

70 information about the selection of pathogenic bacteria expressing ARGs may 

71 help to support clinicians in tailoring the procedural therapy protocols in a 
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72 personalized fashion to improve overall outcome in the future.

73

74 Introduction

75 Humans live in a close relationship with microorganisms that are referred to 

76 as the “microbiome”, comprising bacteria, archaea and eukaryotes. The most 

77 densely populated human body habitat is the gastrointestinal tract (GIT), 

78 which is estimated to contain 500 – 1000 different microbial species.1 The GIT 

79 microbiome plays a myriad of important roles in human physiology, including 

80 for example in the digestion of food, the synthesis of vitamins, the production 

81 of short-chain fatty acids and the prevention of colonization by pathogens 

82 through exclusion.2 It is generally accepted that, within a healthy human GIT, 

83 a homeostatic state exists among the different microorganisms which is tightly 

84 regulated by the host's immune system.3–5 However, perturbations, such as 

85 the intake of antibiotics, infections or immunosuppression, can lead to a 

86 disruption of this balanced state, typically referred to as "dysbiosis".3,6 In a 

87 dysbiotic state, pathogens can overgrow the community.6 Furthermore, 

88 reduced intestinal barrier function can facilitate translocation of 

89 microorganisms and microbial products from the GIT lumen to mesenteric 

90 lymph nodes and/or the bloodstream,7 putting the host at risk for local 

91 infections and sepsis.6,8

92 Allogeneic hematopoietic stem cell transplantation (allo-HSCT) represents an 

93 effective treatment for several hematologic malignancies. It is preceded by an 

94 intense conditioning regimen, consisting of either total body immune ablative 

95 irradiation or high doses of chemotherapy, to facilitate engraftment of 

96 transplanted stem cells. Allo-HSCT is known to greatly impact stability and 
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97 integrity of the GIT microbiome.9 A substantial loss in bacterial diversity and 

98 the dominance of single bacterial taxa have been observed in patients 

99 undergoing allo-HSCT.9 

100 Supportive care of patients receiving allo-HSCT includes prophylactic broad-

101 spectrum antibiotic treatment,10 an intervention that also influences the GIT 

102 microbiome by selection for potential pathogens carrying antibiotic resistance 

103 genes (ARGs)11 as well as driving transfer of ARGs among commensal 

104 bacteria, including many opportunistic pathogens.12 In addition, loss of the 

105 normal bacterial GIT community following antibiotic treatment can facilitate 

106 expansion of yeasts including invasive Candida albicans infections with 

107 potentially fatal consequences.13,14

108 The intensive conditioning treatment for allo-HSCT may lead to mucositis 

109 along the GIT, which culminates in the formation of painful ulcers, dysphagia 

110 and diarrhea.15 The most significant complication of allo-HSCT is acute graft-

111 versus-host disease (aGvHD) which affects 35 % - 50 % of patients and is a 

112 major cause of mortality.16 GvHD, a systemic, inflammatory disease, is 

113 provoked by a complex anti-allogeneic immune response, which primarily 

114 affects the skin, liver and GIT.17 Glucksberg et al.18 divided each organ 

115 involvement into four stages from mild to severe. These are integrated into an 

116 overall grade of GvHD, where I-II are considered as mild and III-IV are 

117 considered as severe. Usually, intestinal GvHD dominates the clinical picture 

118 in severe aGvHD, which typically occurs within 100 days after allo-HSCT and 

119 is initiated by alloreactive donor T cells that recognize antigens on host 

120 cells.19
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121 It has been suggested that the GIT microbiome might be implicated in the 

122 development or exaggeration of aGvHD, as the damaged GIT epithelial 

123 barrier in patients undergoing allo-HSCT allows translocation of 

124 microorganisms or pathogen-associated-molecular patterns (PAMPs).20 

125 These PAMPs can activate antigen-presenting cells and thereby lead to 

126 alloactivation and proliferation of donor T cells which trigger aGvHD.20 

127 Antibiotic treatment has been shown to have ambiguous effects on treatment 

128 outcome. On the one hand, a low bacterial diversity at engraftment, possibly 

129 caused by a preceding combination of chemotherapy, total body irradiation 

130 and broad spectrum antibiotics has been linked to a worse outcome.21 On the 

131 other hand, GIT decontamination using antimicrobials has been observed to 

132 lower the rate of aGvHD.22,23

133 Previous studies have investigated changes in the bacterial community 

134 structures of the GIT microbiome directly after allo-HSCT or conditioning 

135 treatment.21,24–26 However, it is not yet known how GIT microbial communities 

136 including archaea and eukaryotes evolve over longer periods of time and what 

137 effects the disruption of the microbiome, for example through the 

138 administration of antibiotic regimens, has on the human host with respect to 

139 aGvHD and overall treatment outcome. 

140 Recent advances in high-throughput next-generation sequencing allow for a 

141 detailed analysis of the GIT microbiome in the context of allo-HSCT and 

142 treatment outcome. Here, a meta-omic approach was used to provide an 

143 exhaustive view of the changes which occur in the GIT microbial community 

144 of patients with hematologic malignancies undergoing allo-HSCT treatment. 

145 We expand upon previous studies by analyzing changes not only in the 
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146 bacterial populations, but also among archaea and eukaryotes, thereby 

147 covering all three domains of life. Additionally, we present a detailed analysis 

148 of metagenomic (MG) and metatranscriptomic (MT) data from one patient with 

149 a fatal treatment outcome, including identification of ARGs, corresponding 

150 expression levels and genetic variation in dominant bacterial populations. This 

151 study serves as a proof of concept for future meta-omic studies of the GIT 

152 microbiome in the context of allo-HSCT treatment and other intensive medical 

153 treatments. 

154

155 Material and methods

156 Study participants and fecal sample collection

157 The study was approved by the Ethics review board of the Saarland 

158 amendment 1 and 2 (reference number 37/13), and by the Ethics Review 

159 Panel of the University of Luxembourg (reference number ERP-15-029). After 

160 provision of written informed consent, 16 patients undergoing allo-HSCT were 

161 enrolled in the study. 

162 For microbial diversity and richness analyses, patients were included only if 

163 fecal samples were obtained from at least two of the following time points: i) 

164 up to eight days before allo-HSCT (designated time point (TP) 1), ii) directly 

165 after allo-HSCT (up to four days after allo-HSCT, designated TP2) and/or iii) 

166 around the time of engraftment between day 20 and day 33 after allo-HSCT 

167 (designated TP3). One additional patient was selected for a detailed analysis 

168 of the effects of the treatment over an extended period of time. From this 

169 patient, samples were collected 13 days before allo-HSCT, as well as 75 and 

170 119 days after allo-HSCT. Fecal samples were immediately flash-frozen on-
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171 site and preserved at -80 °C to ensure integrity of the biomolecules of interest.

172

173 Extraction of biomolecules from fecal samples

174 DNA and RNA were extracted from unthawed subsamples of 150 mg, after 

175 pre-treatment of the weighed subsamples with 1.5 ml RNAlater-ICE 

176 (LifeTechnologies) overnight at -20 °C. The biomolecules were extracted from 

177 the mixture as described previously, using the AllPrep DNA/RNA/Protein kit 

178 (Qiagen).27,28 To increase the overall yield, DNA fractions were supplemented 

179 with DNA extracted from 200 mg subsamples using the PowerSoil DNA 

180 isolation kit (MO BIO). The quality and quantity of the DNA extracts were 

181 verified using 1 % agarose gel electrophoresis and NanoDrop 2000c 

182 spectrophotometer (Thermo Fisher Scientific), while RNA extracts were 

183 verified using Agilent 2100 Bioanalyzer (Agilent Technologies). Only fractions 

184 with RNA integrity number (RIN, Agilent Technologies) > 7 were sequenced. 

185 Extracted biomolecules were stored at -80 °C until sequencing.

186

187 16S and 18S rRNA gene amplicon sequencing and data analysis

188 Amplification and paired-end sequencing of extracted and purified DNA was 

189 performed on an Illumina MiSeq platform at the Groupe Interdisciplinaire de 

190 Génoprotéomique Appliquée (GIGA, Belgium). The V4 region of the 16S 

191 rRNA gene, which allows resolution of bacteria and archaea, was amplified 

192 and sequenced using the primers 515F_GTGBCAGCMGCCGCGGTAA and 

193 805R_GACTACHVGGGTATCTAATCC29,30 with paired-end reads of 300 nt 

194 each. The V4 region of the 18S rRNA gene was amplified and sequenced 

195 using the primers 574*f and 1132r (574*f_CGGTAAYTCCAGCTCYV 
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196 1132r_CCGTCAATTHCTTYAART31) to resolve the eukaryotic community 

197 structure.

198 16S rRNA gene sequencing reads were processed using the LotuS pipeline32 

199 (version 1.34) with default parameters. Processed reads were clustered into 

200 operational taxonomic units (OTUs), designating taxa with similar amplicon 

201 sequences at 97 % identity level. For taxonomic assignment of 16S rRNA 

202 gene amplicon sequencing data, the Ribosomal Database Project (RDP) 

203 classifier33 was used. OTUs with a confidence level below 0.8 at the domain 

204 level were filtered out, as well as OTUs that were not represented by more 

205 than 10 reads in any given sample. 

206 To process the 18S rRNA gene sequencing reads, a workflow specifically 

207 designed to process reads that are not overlapping was used.34 For 

208 classification of 18S rRNA gene amplicon sequencing data, the PR2 

209 database35–37 was employed. After processing, OTUs represented by less 

210 than 10 reads in all samples were removed as well as unclassified OTUs and 

211 OTUs belonging to the taxon Craniata, since they were most likely derived 

212 from human sequences. For following analyses, the 16S and 18S rRNA gene 

213 sequencing data were rarefied to the lowest number of respective reads for 

214 any sample (16S to 71,051 reads and 18S to 1,020 reads).

215 Statistical analyses and plots were generated in R (version 3.2.1).38 Microbial 

216 alpha-diversity and richness were determined at the OTU level, by calculating 

217 the Shannon diversity index and the Chao1 index after rarefaction, using the 

218 vegan package.39 Statistical comparison of diversity and richness was carried 

219 out using the Kruskal-Wallis test, the non-parametric Wilcoxon rank sum test, 

220 or, when applicable, Wilcoxon signed-rank test. When P values < 0.05 were 



10

221 observed, groups were considered as statistically significantly different. 

222 Differential analysis of taxa based on 16S rRNA gene sequencing data was 

223 performed using the DESeq2 package40 and significant differences on 

224 taxonomic levels were determined using the Wald test, after multiple-testing 

225 adjustment.

226

227 Metagenomic and metatranscriptomic sequencing, processing and 

228 assembly

229 MG and MT sequencing of the extracted DNA and RNA fractions was 

230 conducted by GATC Biotech AG, Konstanz, Germany. Ribosomal RNA 

231 (rRNA) was depleted from the RNA fractions using the Ribo-Zero Gold rRNA 

232 Removal kit (Epidemiology, Illumina) and a strand-specific cDNA library was 

233 prepared according to standard protocols, optimized by GATC. Libraries 

234 representing both nucleic acid fractions were sequenced using a 100 bp 

235 paired-end approach on an Illumina HiSeq 2500 using HiSeq V3 reagents. 

236 MG and MT datasets were processed using a newly in-house developed 

237 workflow, the Integrated Meta-omics Pipeline (IMP) version 1.1.41 

238 Within IMP, the average depth of coverage Dx of a gene or contig x was 

239 determined both for the metagenome and the metatranscriptome by 

240 calculating the average number of reads mapping to each nucleotide within a 

241 gene, respectively in a contig. 

242 𝐷𝑥 =  
∑𝑟𝑥
𝑙𝑒𝑛𝑔𝑡ℎ𝑥

243 where rx is the number of reads mapping to a gene or contig x at each 

244 nucleotide. 
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245 Here, gene expression of a gene x was calculated as the ratio of average 

246 metatranscriptomic depth of coverage to the average metagenomic depth of 

247 coverage for individual genes x. 

248 𝐸𝑥 =  
𝐷𝑥(𝑀𝑇)
𝐷𝑥(𝑀𝐺)

249 Published human GIT microbiome MG and MT read data from four healthy 

250 individuals was obtained from the NCBI Sequence Read Archive [MG: 

251 SRX247379, SRX247391, SRX247401, SRX247405; MT: SRX247335, 

252 SRX247345, SRX247349, SRX247340].42 The sequencing reads were 

253 processed using IMP version 1.2.1.41 Data from the individuals "X310763260", 

254 "X316192082", "X317690558" and "X316701492" are in the following referred 

255 to as the "reference healthy microbiome", averaged as "RHMs" or individually 

256 referred to as "RHM1", "RHM2", "RHM3" and "RHM4".

257

258 Population-level binning of contigs from the co-assembly

259 To analyze and compare the population-level structure of the microbial 

260 communities based on the assembled genomic information, contiguous 

261 sequences (contigs) were binned into (partial) population-level genomes. 

262 Using VizBin,43,44 2D embeddings based on BH-SNE of the contigs of at least 

263 1,000 nt were produced, as part of IMP. In these embeddings, contigs with 

264 similar genomic signatures are closer together, hence, individual clusters of 

265 contigs represent individual microbial populations.45 Population-level clusters 

266 were selected following the method described in Heintz-Buschart et al.46 

267 Resulting bins are referred to as “population-level genomes” in the following. 

268 Within a community, the relative population size of a cluster (i) was 

269 determined by dividing the number of MG reads mapping to the contigs 
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270 forming this cluster (ci), by the total number of MG reads mapping to all the 

271 contigs used in the assembly (C) according to the following formula:

272 𝑁𝑖 =  
𝑐𝑖 ∗  100

𝐶

273

274 Taxonomic affiliation of reconstructed population-level genomes

275 Taxonomic affiliation of population-level genomes was determined using 

276 complementary methods. Contigs forming the population-level genomes were 

277 first aligned to the NCBI nucleotide collection (nr/nt) database using the 

278 BLAST webservice.47 Parameters were left at default (using program 

279 megablast), and the output was analyzed using the MEtaGenome ANalyzer 

280 (MEGAN version 5.10.5).48 Whenever the rpoB gene could be recovered 

281 within a population-level genome, the closest neighbour (in terms of sequence 

282 identity) was determined in the nucleotide collection (nr/nt) database using the 

283 MOLE-BLAST webservice.49 Additionally, AMPHORA250 was used to identify 

284 the taxonomic affiliation of up to 31 bacterial or 104 archaeal phylogenetic 

285 marker genes.

286

287 Reassembly

288 Population-level genomes were reassembled using all MG and MT reads 

289 mapping to the contigs of the population-level genomes with the same 

290 taxonomic assignment. Reassembly of all recruited reads was carried out 

291 using SPAdes51 (version 3.5.0) using standard parameters. MG and MT reads 

292 were subsequently mapped to the contigs forming this reassembly to 

293 determine expression levels and variant density. 

294
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295 Sequence comparison of population-level genomes

296 The average nucleotide identity (ANI) calculator52 was used with standard 

297 settings to compare the reassembly from population-level genomes to publicly 

298 available reference genomes. A gene-wise protein sequence comparison of 

299 different population-level genomes was performed using the RAST server53 

300 using standard parameters.

301

302 Detection of antibiotic resistance genes

303 Antibiotic resistance genes (ARGs) within a community or population were 

304 searched against Resfams version 1.254 using HMMer version 3.1b255. We 

305 used the core version of the Resfams database, which includes 119 protein 

306 families. In accordance with the HMMer user manual, only identified genes 

307 with a bitscore higher than the binary logarithm of the total number of genes 

308 (of the community or population) were retained.

309

310 Variant identification 

311 Variants were identified in population-level reassembled genomes using 

312 SAMtools mpileup56 with default settings, which include the calling of single 

313 nucleotide variants (SNVs) as well as the identification of small 

314 insertions/deletions (indels). The output of SAMtools mpileup was filtered 

315 using a conservative heuristic established in Eren et al.57 which takes into 

316 account the ratio of the frequencies of both bases and the depth of coverage 

317 at the corresponding nucleotide position, in order to reduce the effect of 

318 sequencing errors.

319
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320 Extraction, sequencing and analysis of bacterial DNA from a blood 

321 culture

322 DNA was extracted from a blood culture of an organism identified as a 

323 multidrug-resistant E. coli and sequenced on an Illumina MiSeq, 300 bp 

324 paired-end at GIGA. The genome was assembled with SPAdes.51 Using 

325 PanPhlAn58 and the provided database including 118 E. coli reference strains, 

326 their relation was assessed based on their gene set. While the PanPhlAn 

327 database includes 31,734 genes, only genes present in 10 or more genomes 

328 were considered, resulting in 7,845 genes for comparison.

329

330 Availability of data and materials

331 Reassembled population-level genomes of Escherichia coli (ID 

332 6666666.166711) and Enterococcus faecium (ID 6666666.166708) are 

333 accessible via the RAST guest account (http://rast.nmpdr.org, login: guest; 

334 password: guest). For samples A07-1 and A07-3, preprocessed MG and MT 

335 reads (after adapter trimming, quality filtering, rRNA removal and removal of 

336 reads mapping to the human genome) were submitted to the NCBI Sequence 

337 Read Archive (SRA) repository under the BioProject ID PRJNA317435 

338 (http://www.ncbi.nlm.nih.gov/bioproject/317435). Supplementary tables are 

339 archived on Zenodo (https://doi.org/10.5281/zenodo.268914).

340

341 Results 

342 Patient characteristics and treatment

343 Anthropometric and clinical information of the ten female and six male 

344 patients included in the study are provided in Table 1. They were between 30 
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345 and 67 years old (median 55). Five patients with relapsed or refractory 

346 lymphoma received FluBuCy (fludarabine, busulfan, cyclophosphamide) as 

347 conditioning treatment, six acute myeloid leukemia (AML) patients received 

348 BuCy (busulfan, cyclophosphamide), one myeloma and one comorbid AML 

349 patient received Treo/Flu (treosulfan, fludarabine), one comorbid AML patient 

350 received FluBu (fludarabine, busulfan) and two refractory AML patients 

351 received FLAMSA-Bu (fludarabine, amsacrine, busulfan) conditioning 

352 treatment. Grafts from eight full match unrelated, three mismatch unrelated 

353 and five sibling donors were used. 1.5 years after allo-HSCT, ten patients 

354 were still alive, while six patients had deceased. Twelve patients developed 

355 aGvHD and were treated with steroids (0.5 – 2 mg/kg/day). Three of them 

356 progressed to at least grade III aGvHD. 

357 As a prophylactic treatment, patients received a fluoroquinolone antibiotic 

358 during leukopenia. At occurrence of fever, patients were treated with 

359 piperacillin-tazobactam, followed by meropenem and subsequently 

360 vancomycin, if necessary. In case of suspected fungal infection, patients also 

361 received antifungal treatment with liposomal amphotericin B or caspofungin 

362 (Table 1). 

363

364 Changes within the GIT microbiome of patients undergoing allo-HSCT

365 We assessed the diversity and richness in the microbial community separately 

366 for the prokaryotic (bacteria and archaea; 16S rRNA gene sequencing) and 

367 eukaryotic (18S rRNA gene sequencing) community structures. The 

368 prokaryotic communities showed a drastic and statistically significant 

369 decrease in diversity from TP1 to TP3 (Fig. 1A). Similar to the observed 
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370 changes in terms of diversity, prokaryotic richness (Fig. 1B) decreased over 

371 the course of the study, with a significant decrease between TP1 and TP3 

372 over all samples. Differences in average relative abundance on different 

373 taxonomic levels were tested. On the genus level, average decreases of 119-, 

374 47- and 44-fold in the relative abundances of the genera Roseburia, 

375 Bifidobacterium and Blautia (Fig. 1C) were observed from TP1 to TP3. On the 

376 order level, a decrease in Bacteroidales relative abundance was observed in 

377 parallel with an increase in Bacillales (Fig. 1D). Only one OTU belonging to 

378 the domain archaea could be identified, the methanogen Methanobrevibacter 

379 smithii.59 It was detected in 13 out of the total 35 samples (and 10 out of 15 

380 patients) with a total of 914 reads.60

381 The analysis of the eukaryotic community did not reveal statistically significant 

382 differences for Shannon diversity (Fig. 1E) or Chao1 richness (Fig. 1F) 

383 between the different TPs. Both indices stayed relatively constant from TP1 to 

384 TP2 and even increased slightly at TP3 with no apparent statistically 

385 significant difference being observed for the 8 patients who underwent 

386 antifungal treatments. Overall, per sample, around 99 % of classified 

387 eukaryotic OTUs belonged to the fungal domain with the majority representing 

388 the genera Saccharomyces, Candida and Kluyveromyces. Only few different 

389 and lowly abundant protists could be identified, including a Vorticella sp., 

390 Prorodon teres, and a Phytophthora sp.60 We observed a lower prokaryotic 

391 diversity at TP of engraftment in patients who deceased (within 1.5 years after 

392 allo-HSCT), than in those who survived (Fig. 1G).

393 In summary, we found a general decrease in bacterial diversity after allo-

394 HSCT while the eukaryotic community stayed relatively stable throughout the 
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395 treatment. To further explore the effects of treatment on the structure and 

396 function of the GIT microbiome, we applied a detailed meta-omic approach on 

397 one patient.

398

399 Patient A07 - description of treatment and status of the patient

400 We chose to focus on patient A07, a patient who displayed a marked 

401 reduction in bacterial diversity with high relative abundances of opportunistic 

402 pathogens (Fig. 2A and 2B) and a fatal treatment outcome. This 63 year old 

403 patient had acute myeloid leukemia with deletion 7q. The patient was 

404 refractory to conventional induction (3+7) and salvage chemotherapy with 

405 high-dose cytarabine and mitoxantrone and therefore needed further 

406 treatment. FLAMSA-Bu,61 a modified sequential conditioning regimen for 

407 refractory acute myeloid leukemia was used (fludarabine 30 mg/m² day -11 to 

408 -8, cytarabine 2000 mg/m² day -11 to -8, amsacrine 100 mg/m² day -11 to -8 

409 and busulfan 3,2 mg/kg day -7 to -4) for remission induction and 

410 transplantation. She received peripheral blood stem cells from a single HLA-C 

411 antigen mismatched unrelated donor. After engraftment on day 26, bone 

412 marrow was hypocellular, but free of leukemia. Planned immunosuppression 

413 consisted of antithymocyte globulin (ATG) on day -4 to -2, mycophenolate 

414 mofetil until day 28 and cyclosporine until day 100. 

415 A high level of C-reactive protein (CRP) before and around allo-HSCT was 

416 observed which decreased slightly but stayed considerably high throughout 

417 the entire observation period60 (Fig. 2C). After leukocyte depletion around 

418 allo-HSCT, the count increased to around 3600/μl 20 days after allo-HSCT 

419 and further increased to a normal value around 80 days after allo-HSCT. 
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420 However, high fluctuations and later a decrease in the leukocyte count were 

421 observed60 (Fig. 2C). 

422 As the patient had prolonged neutropenia due to refractory leukemia and 

423 intensive chemotherapy, various antibiotics and antifungals were used to treat 

424 infectious complications before and during transplantation. More specifically, 

425 beginning from day -17 she received piperacillin/tazobactam for neutropenic 

426 fever and this was changed to meropenem on day -14 for refractory fever. On 

427 day -11, vancomycin was added and on day -4, meropenem was exchanged 

428 for tigecycline. Additionally, the patient was treated with a fluoroquinolone 

429 (levofloxacin), ceftazidime and liposomal amphotericin B (Fig. 2D). 

430 74 days after allo-HSCT, the patient developed aGvHD overall grade III, skin 

431 stage 2 and GIT stage 3. As the patient did not respond to 2 mg/kg 

432 prednisolone and deteriorated rapidly, ATG (5 mg/kg body weight) was 

433 administered for four days as second line GvHD treatment. A partial remission 

434 of intestinal GvHD was noted with reduction of diarrhea from > 20 stools per 

435 day to 4-5 per day. She was bedridden with general fatigue and malaise. With 

436 continuous signs of infection and lower back pain an MRI scan of the spine 

437 showed a paravertebral abscess, which was removed surgically on day 126. 

438 A multidrug-resistant Escherichia coli was isolated both from the abscess and 

439 from a blood culture, and was analyzed further. After surgery, the patient's 

440 health status improved, she was able to walk again and could be discharged 

441 from hospital at day 209. She was readmitted on day 260 with suspected 

442 sepsis. The patient deceased at day 268 due to GvHD and systemic 

443 inflammatory response syndrome suspected to be bacterial sepsis. However, 

444 no pathogen could be recovered from blood cultures.
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445 In order to explore the treatment-induced effects on the GIT microbiome in 

446 more detail and relate them to the detrimental treatment outcome, we used a 

447 meta-omic approach including MG and MT analyses in addition to rRNA gene 

448 amplicon sequencing. For this patient, samples at later time points were 

449 available, i.e. four months after allo-HSCT, which allowed investigation of the 

450 GIT microbiome over an extended period of time. 

451

452 Patient A07 - changes in the microbial community structure during the 

453 treatment

454 Fecal samples were taken, as indicated in Fig. 2D, at days -13 (sample A07-

455 1), day 75 (sample A07-2) and day 119 (sample A07-3). The prokaryotic 

456 diversity decreased markedly after allo-HSCT (Fig. 2B). Similarly, in sample 

457 A07-1 177 different OTUs were detected, while A07-2 and A07-3 contained 

458 only 62 and 79 OTUs, respectively. 

459 Dominant OTUs of sample A07-1 reappeared in A07-3, more precisely 

460 several OTUs representing Bacteroides spp., Escherichia/Shigella sp. and 

461 Enterococcus sp. (Fig. 2A). However, many of the less abundant OTUs, 

462 belonging to 25 different genera disappeared entirely, including for example 

463 Anaerostipes and Clostridium cluster IV.60 OTUs with decreased abundance 

464 in sample A07-3 (compared to sample A07-1) represented 50 genera, for 

465 example Alistipes, Barnesiella, Blautia, Clostridium cluster XIVa and cluster 

466 XI, Prevotella, Roseburia and Ruminococcus. In addition, OTUs belonging to 

467 the genus Lactobacillus exhibited a 10-fold increase in relative abundance. 

468 Furthermore, different OTUs belonging to the genus Bacteroides increased in 

469 relative abundance resulting in a total relative abundance of Bacteroides spp. 
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470 in A07-3 of 63 % compared to a total relative abundance of 27 % in A07-1 

471 (Fig. 2A). This difference was mainly due to the increase in relative 

472 abundance of two Bacteroides OTUs, with an increase from 2.2 % to 23.5 % 

473 and from 0.9 % to 11.1 %, respectively. In total, 19 different OTUs belonging 

474 to the genus Bacteroides were detected in the first sample, 23 different OTUs 

475 in the last sample, and only 5 different Bacteroides OTUs were identified at 

476 TP2 which accounted for 0.07 % overall. One OTU belonging to the domain 

477 archaea could be identified, Methanobrevibacter smithii, which accounted for 

478 3.4 % total relative abundance in A07-1. Similar to the short-term 

479 developments observed in the whole cohort and described above, the 

480 eukaryotic microbial community did not exhibit pronounced changes over time 

481 (Fig. 2B). Taken together, a drastic decrease in prokaryotic diversity, with 

482 relative expansion of few bacteria, including potential pathogens, was 

483 observed. 

484

485 Metagenomic and metatranscriptomic data generation

486 Coupled MG and MT datasets of samples A07-1 (pre-treatment) and A07-3 

487 (post-treatment) were generated and analyzed in order to inspect the changes 

488 in the GIT microbiome and the effects of allo-HSCT and concurrent antibiotics 

489 use after an extended period of time. As a comparison, samples from four 

490 healthy individuals (referred to as "reference healthy microbiomes" or 

491 "RHMs") were analyzed in the same way.60 

492

493 Population-level structure of the pre- and post-treatment microbial 

494 communities 
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495 To gain a comprehensive overview of the populations present in either 

496 sample, a method for automated binning of the contigs based on the BH-SNE 

497 embedding was employed. This binning method allowed the identification of 

498 134 and 14 individual population-level genomic complements, representing 

499 individual populations, in the pre-treatment and post-treatment samples, 

500 respectively (Fig. 3A and 3B). The visual impressions of the two embeddings 

501 reflect the drastic change in the GIT microbiome, in particular the decrease in 

502 diversity with the representation of the post-treatment sample A07-3 being 

503 exceptionally sparse (Fig. 3B). The most abundant populations were identified 

504 as Escherichia coli, Enterococcus faecium, Lactobacillus reuteri, Lactobacillus 

505 rhamnosus and several species assigned to the genus Bacteroides, which is 

506 in agreement with the 16S rRNA gene sequencing-based results (Fig. 2A). 

507 Representation of both samples within a single plot allows visual 

508 discrimination of clusters that are specific to one sample, or present in both 

509 samples (Fig. 3C). In accordance with the results from 16S rRNA gene 

510 sequencing (Fig. 2A), the majority of the clusters were only found in the pre-

511 treatment sample, while other clusters comprised contigs from both samples 

512 and two clusters in the post-treatment sample were identified as Lactobacillus 

513 reuteri and Lactobacillus rhamnosus, which were either not present, or lowly 

514 abundant in sample A07-1 (Fig. 3C). 

515 Given the potential role of opportunistic pathogens in aGvHD,20 we were 

516 specifically interested in two opportunistic pathogens that were found in both 

517 samples and whose genomes could be recovered with high completeness. 

518 We identified populations of Escherichia coli and Enterococcus faecium, 

519 which were inspected further. The population-level genomes from both 
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520 samples were reassembled to allow direct comparison of identified variants as 

521 well as of the complement of antibiotic resistance genes (ARGs) encoded by 

522 them and detected in each sample. 

523

524 Evidence for selective pressure at the strain-level 

525 To uncover evidence of possible selective sweeps in the populations of 

526 interest (the opportunistic pathogens Escherichia coli and Enterococcus 

527 faecium), caused by administration of antibiotics, we performed a gene-wise 

528 protein sequence comparison of the different population-level genomes. This 

529 analysis revealed that 97.4 % of the genes found in the different population-

530 level genomes of E. coli, reconstructed from samples A07-1 and A07-3, were 

531 100 % identical and only 1.1 % of the genes were less than 95 % identical. In 

532 E. faecium, only 76 % of the genes were completely identical and 13.2 % of 

533 the genes showed less than 95 % identity. 

534 The MG depth of coverage and number of variants in each sample are 

535 displayed in Fig. 4A and 4B for E. coli and in 4C and 4D for E. faecium. The 

536 average MG depths of coverage (Fig. 4E and 4F) indicated that the population 

537 size of E. coli was smaller after allo-HSCT (in sample A07-3), while the 

538 population size of E. faecium remained rather constant. In E. coli, a similarly 

539 high number of variants was identified in both the pre- and post-treatment 

540 samples, with an important overlap of variants identified in both populations 

541 (Fig. 4B), whereas only a few variants were present in E. faecium of both 

542 samples (Fig. 4D). A similar pattern of variant distributions (Fig. 4E and 4G) in 

543 both samples was observed for E. coli, while the variant pattern in E. faecium 

544 (Fig. 4F and 4H) changed between both samples. Observed nucleotide 
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545 variant frequencies and patterns of variant distributions indicated that the E. 

546 coli populations were composed of different strains in both samples, which 

547 persisted over the course of the treatment. In contrast, E. faecium was mainly 

548 represented by a single strain in each sample, and the strain of the first 

549 sample was replaced by a different strain in the second sample. 

550

551 Coupled metagenomic and metatranscriptomic analysis of antibiotic 

552 resistance genes in pre- and post-treatment samples from patient A07

553 The relative abundance of detected ARGs (percentage of ARGs relative to the 

554 total number of genes, Fig. 5A) in the post-treatment sample (0.39 %) was 

555 significantly higher than the relative abundance of ARGs in the pre-treatment 

556 sample (0.28 % ARGs, P value 6.9 *10-4, Fisher's exact test) while the relative 

557 abundances of ARGs of both the pre- and post-treatment sample were higher 

558 than the average relative abundance in the RHMs60 (0.20 % ± 0.01 %, P 

559 value 5.601 * 10-7 and 3.278 * 10-10). Moreover, the expression of ARGs was 

560 higher in both samples from patient A07 when compared to the RHMs (Fig. 

561 5B). 

562

563 Identification of antibiotic resistance genes in population-level genomes 

564 of opportunistic pathogens

565 Given the higher number and expression of ARGs in the post-treatment 

566 sample of patient A07, we were interested in whether this could also be 

567 detected in the specific populations E. coli and E. faecium. Within the 

568 population-level genome of E. coli, 31 ARGs were identified in both samples 

569 and 2 additional genes were detected in the post-treatment sample only. In E. 
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570 faecium, 25 ARGs were identified in both samples of which 21 genes were 

571 identical in both samples (summaries of the ARGs identified in each 

572 population-level genome are listed in Table 2 and Table 3).60 In E. coli, 20 of 

573 the 31 ARGs that were found in both samples, exhibited higher levels of 

574 expression in the post-treatment sample while in E. faecium, 18 out of 21 

575 ARGs showed higher expression post-HSCT.60 Although patient A07 was only 

576 treated with antibiotics until day 18 (Fig. 2D), expression of the ARGs was in 

577 general higher in the post-treatment sample, both in the whole sample (Fig. 

578 5B), as well as in the specific populations (Fig. 5C). 

579

580 Genomic characterization of a blood culture Escherichia coli isolate and 

581 comparison to GIT populations 

582 The genomes of a blood culture isolate and GIT population-level genomes of 

583 E. coli from patient A07 exhibited an average nucleotide identity of 100 %. A 

584 heatmap and corresponding dendrogram based on the E. coli pangenomes 

585 indicated that the genomes of the E. coli isolated from patient A07 and 

586 genomes from the GIT MG data were closer related to each other than to any 

587 other reference E. coli (Fig. S1). In the genome of the E. coli isolate, the same 

588 ARGs as in the pre- and post-treatment GIT E. coli could be identified, with 4 

589 additional ARGs compared to the post-treatment GIT E. coli. 

590

591 Discussion

592 Short-term structural changes in the gastrointestinal microbiome 

593 following an allogeneic stem cell transplantation
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594 We observed a strong impact of allo-HSCT and accompanying treatment 

595 including antibiotic use on the GIT microbiome, with a marked decrease in 

596 bacterial diversity. The observed diversity indices are in agreement with 

597 values found in an earlier study.9 The observed trend of a reduced bacterial 

598 diversity at engraftment in patients who did not survive (Fig. 1G), is in 

599 accordance with a study focussing on this link.21 A significant decrease in 

600 important short-chain-fatty-acid (SCFA) producers62–64 (the three bacterial 

601 genera Roseburia, Bifidobacterium and Blautia, Fig. 1C) was observed. 

602 SCFAs, especially the histone deacetylase inhibitor butyrate, are the main 

603 energy source for colonocytes,62 as well as anti-inflammatory agents which 

604 regulate NF-κB activation in colonic epithelial cells.62 Additionally, butyrate 

605 enhances the intestinal barrier function by regulating assembly of epithelial 

606 tight junctions65 and a recent study showed that local administration of 

607 exogenous butyrate mitigated GvHD in mice.66 Depletion of these important 

608 bacteria has been highlighted to pose an additional risk for developing GvHD 

609 or infections after allo-HSCT.26,67 Therefore, in addition to damage in epithelial 

610 cells due to chemotherapy, loss in SCFA-producing bacteria could further 

611 compromise intestinal barrier integrity and facilitate translocation of bacteria 

612 and PAMPs. 

613 We found that fungi were the most prominent eukaryotes and that the 

614 eukaryotic diversity was stable during the treatment and thus not affected by 

615 antibiotic treatment and ensuing changes in bacterial community structure. 

616 However, antibiotic treatment might indirectly increase the risk for invasive 

617 fungal infections, by opening niches to these organisms, which were 

618 previously occupied by commensal bacteria. Although we did not observe any 
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619 clear treatment-induced effects on the eukaryotic communities in the patient 

620 samples analyzed, it is nonetheless important to also account for the 

621 eukaryotes in future studies as overgrowth thereof has previously been linked 

622 to adverse treatment outcomes.14 

623

624 Long-term effect of allogeneic stem cell transplantation on the 

625 gastrointestinal microbiome

626 Employing detailed integrated meta-omic analyses of the samples from one 

627 patient, we demonstrate the effects of allo-HSCT and accompanying 

628 treatment on the GIT microbiome and consequently on the patient over an 

629 extended period of time. Only one study so far has followed the GIT 

630 microbiome trajectory up to three months after allo-HSCT.68 Contrary to this 

631 study, which observed that the richness and metabolic capacity of the 

632 microbial community recovered after two months,68 our study found that the 

633 GIT microbial community in patient A07 did not regain its initial composition 

634 even four months after allo-HSCT, which is likely linked to the detrimental 

635 treatment outcome. Diversity was still decreased and many bacterial taxa 

636 remained absent or at drastically decreased relative levels. Taxa with 

637 decreased relative abundance were mainly bacteria whose presence in the 

638 human GIT is associated with health-promoting properties (such as butyrate 

639 production) and whose absence has been linked to negative consequences 

640 (such as inflammation).69–71 The genus Blautia for instance, has been linked 

641 to reduced aGvHD-associated death and improved overall survival26 and 

642 Barnesiella with resistance to intestinal domination with vancomycin-resistant 

643 enterococci in allo-HSCT patients.72 On the other hand, potential pathogens 
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644 like Fusobacterium sp. and Proteus sp. appeared in the post-treatment 

645 sample, which were not detected in the first sample. Consecutive loss in 

646 intestinal barrier integrity could have allowed a GIT-borne E. coli to cause a 

647 paravertebral abscess.

648 Coinciding with the development of severe aGvHD (expressed by severe 

649 diarrhea) 75 days after allo-HSCT, 16S rRNA gene amplicon sequencing 

650 revealed a GIT microbiome in a notably dysbiotic state with a low diversity 

651 and dominance of two opportunistic pathogens, E. coli and E. faecium. The 

652 dominance of E. faecium has been observed to be quite common in allo-

653 HSCT recipients and has been linked to higher occurrence of bacteremia 

654 and/or GIT GvHD.9,24 A high relative abundance of E. faecium is also 

655 observed in sample A07-2. Broad-spectrum antibiotic therapy, which has 

656 been associated with higher GvHD-related mortality,73 can reduce mucosal 

657 innate immune defences through elimination of commensal microbes, thereby 

658 allowing the expansion of specific bacterial taxa, such as E. faecium, which 

659 carry multiple antibiotic resistance mechanisms.74–76 Our findings suggest that 

660 this specific population expanded in response to antibiotic treatment. 

661 Bacteroides spp. are normal commensals of the human GIT microbiome, they 

662 usually make up around 25 % of the community, as it is the case in sample 

663 A07-1 (Fig. 2A). However, they can also cause infections with associated 

664 mortality.77 Bacteroides spp. might be able to penetrate the colonic mucus 

665 and persevere within crypt channels. These reservoirs might persist even 

666 during antibiotic treatment.78 Different species of the genus Bacteroides 

667 produce bacteriocins,79–81 a trait that might have made it possible for these 

668 bacteria to repopulate the GIT and expand after the dysbiosis in A07-2, 
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669 occupying specific niches, resulting in a relative abundance of 63 % in A07-3 

670 (day 119). 

671 Facultative anaerobes such as members of the orders Lactobacillales and 

672 Enterobacteriales are often observed to increase in relative abundance after 

673 treatment while obligate anaerobes such as members of the order 

674 Clostridiales often decrease in abundance.82 Lactobacillus rhamnosus and 

675 Lactobacillus reuteri (which were detected in sample A07-3) are both often 

676 combined in probiotic formulations and are commonly considered safe and 

677 even beneficial through inhibition of potential pathogen (such as E. coli and E. 

678 faecium) expansion.83–85 Even in patients undergoing allo-HSCT, 

679 Lactobacillus plantarum administration has not been found to result in higher 

680 incidence of bacteremia or aGvHD.86 However, bacteria found in probiotic 

681 formulations, especially Lactobacillus species have occasionally also caused 

682 bloodstream infections.87 Our data suggest that probiotics should be 

683 administered with great caution and should be subject to further investigations 

684 to clearly ensure safety of their usage.

685

686 Identification of antibiotic resistance genes in population-level genomes 

687 of opportunistic pathogens and evidence for selective pressure at the 

688 strain-level

689 A higher ratio of ARGs within the microbial community was observed post-

690 treatment, even a few months after the antibiotic treatment was concluded 

691 (Fig. 5A). Importantly, the observed expression of ARGs was higher in the 

692 post-treatment sample (Fig. 5B) when compared to the pre-treatment sample. 

693 Strains that carry mutations which lead to higher expression of ARGs might 
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694 have been selected for by the antibiotic treatment.88 In E. coli, three different 

695 genes conferring resistance against β-lactams were identified, one of which 

696 was only detected in the post-treatment sample, which might have been 

697 acquired due to selective pressure given the administration of three different 

698 β-lactam antibiotics during the treatment. 

699 Observed nucleotide variant frequencies and patterns of variant distributions 

700 indicated that the treatment may have constituted a genetic bottleneck for E. 

701 faecium, culminating in the observed lower genetic diversity. This also 

702 suggests that two different mechanisms influenced the respective 

703 compositions of E. coli and E. faecium populations. While the E. coli 

704 population remained relatively unaffected, the E. faecium population 

705 underwent a selective sweep in response to the antibiotic treatment with 

706 selection of a specific genotype expressing ARGs. Overall, our observations 

707 indicate that antibiotic pressure and associated selection of bacteria encoding 

708 ARGs are likely essential factors in governing the observed expansion in 

709 opportunistic pathogens.

710 Interestingly, the multidrug-resistant E. coli that was isolated from a blood 

711 culture, was closely related to the GIT-borne E. coli population. The overlap of 

712 ARGs identified in each genome further indicates their association. These 

713 findings are a proof for the potential fatal effects of dysbiosis associated 

714 pathogen dominance in the GIT and subsequent systemic infections on 

715 patient survival.

716 Based on our observation, one strategy to avoid a treatment-induced 

717 intestinal domination by pathogens could consist in the tailored administration 

718 of several, not single probiotic strains, composed in dependence of the 
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719 individual GIT microbiome changes during therapy. A different approach could 

720 consist in fecal microbiome transplantation, either as "autologous" 

721 (transplanting the pre-transplant microbiome) or "allogeneic" graft (from the 

722 donor of the stem cells). Preservation of a diverse microbiome, able to inhibit 

723 expansion of potential pathogens, might be a new approach to avoid 

724 treatment related side effects tolerance or improve the overall efficacy of the 

725 therapy.
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1016 Figure legends

1017 Figure 1 Changes of gastrointestinal microbial community structure in 

1018 patients receiving allo-HSCT. Boxplots depicting (A, E) diversity (Shannon 

1019 diversity index) and (B, F) richness (Chao1 richness estimator) per collection 

1020 time point (TP), for (A, B) prokaryotes (determined by 16S rRNA gene 

1021 amplicon sequencing) and (E, F) eukaryotes (determined by 18S rRNA gene 

1022 amplicon sequencing), respectively. The number of samples per collection TP 

1023 is indicated above each box. Diversity and richness were determined after 

1024 rarefaction of the dataset. Statistically significant decrease in prokaryotic 

1025 diversity between TP1 and TP3 (P value 0.014 in Kruskal-Wallis rank sum 

1026 test) and in prokaryotic richness between TP1 and TP3 (P value 0.026, 

1027 Wilcoxon rank sum test) was observed. (C) Changes in relative abundance of 

1028 three bacterial genera between TP1 and TP3. Genera with at least 1.5-fold 

1029 decrease, adjusted P value < 0.05 and a relative abundance of at least 5 % in 

1030 one sample are included (adjusted P value 0.0025, 0.026 and 3.68 * 10-5, 

1031 Wald test). (D) Changes in relative abundance of two bacterial orders 

1032 between TP1 and TP3 (adjusted P value 0.0054 and 0.009, Wald test). (G) 

1033 Prokaryotic diversity at TP1 and TP3 in relation to outcome 1.5 years after 

1034 allo-HSCT. Samples from five patients who survived (S) and three patients 

1035 who deceased (M) are represented. (C, D and G) Data from all eight patients 

1036 who had samples collected at TP1 and TP3 are displayed. Collection TP1 

1037 includes samples that were taken (up to eight days) before allo-HSCT. TP2 

1038 includes samples that were taken up to four days after the transplantation. 

1039 TP3 includes samples that were taken between day 20 and day 33 after the 

1040 transplantation. Significant differences between TPs are indicated by asterisks 



43

1041 (* P value < 0.05, ** P value < 0.01).

1042

1043 Figure 2 Variation of the microbial community structure over the course 

1044 of the allo-HSCT treatment in patient A07. (A) Relative proportions of the 

1045 10 most abundant operational taxonomic units (OTUs) based on 16S rRNA 

1046 gene sequencing. The remaining OTUs are summarized as "others". Similar 

1047 shades of the colors represent genera belonging to the same phylum. (B) 

1048 Prokaryotic (triangle) and eukaryotic (circle) diversity represented by Shannon 

1049 diversity index at sampling TPs throughout the treatment. (C) C-reactive 

1050 protein (CRP) blood levels (green line) and leukocyte blood count (blue line). 

1051 (D) Drugs (antibiotics, antifungals and antithymocyte globulin) administered 

1052 throughout the treatment. Along the x-axis, days relative to the day of 

1053 transplantation are indicated. Abbreviations: Vancom=vancomycin; 

1054 Tigecycl=tigecycline; Fluoroq=fluoroquinolone; Antif=antifungal; 

1055 ATG=antithymocyte-globulin.

1056

1057 Figure 3 BH-SNE-based visualization of genomic fragment signatures of 

1058 microbial communities present in samples of patient A07.

1059 Points represent contigs ≥ 1000 nt. Clusters are formed by contigs with similar 

1060 genomic signatures. (A) Visualization of pre-treatment sample contigs. (B) 

1061 Visualization of post-treatment sample contigs. (A and B) Points within 

1062 clusters are colored according to the reconstructed genomes' completeness, 

1063 based on the number of unique essential genes. Lines within the colored bar 

1064 indicate the number of clusters at each percentage of completeness. (C) 

1065 Combined visualization of contigs derived from pre-treatment sample (A07-1, 
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1066 blue squares) and post-treatment (A07-3, red crosses) samples. The inset 

1067 displays a magnification of a section of the plot representing two populations 

1068 (Lactobacillus reuteri and Lactobacillus rhamnosus), which are only present in 

1069 the post-treatment sample. In each representation, clusters representing 

1070 Escherichia coli and Enterococcus faecium are indicated.

1071

1072 Figure 4 Number and distribution of variants in Escherichia coli and 

1073 Enterococcus faecium. (A and C) Violin plots representing distribution of 

1074 depth of coverage of the contigs contained in each population-level genome. 

1075 (B and D) Venn diagrams indicating the number of variant positions exclusive 

1076 to each sample respectively the number of variant positions found in both 

1077 samples. (E and F) Representation of exemplary sections of the reassembled 

1078 population-level genomes with aligned reads of both samples highlighting 

1079 occurrences of variants in each population, visualized with the Integrative 

1080 Genomics Viewer. Length of the represented section is indicated as well as 

1081 the average MG depth of coverage of each reconstructed population-level 

1082 genome. (G and H) Histogram of the variant frequencies of the minor 

1083 nucleotide at all variant positions. Panels on the left represent results for E. 

1084 coli, panels on the right represent results for E. faecium. Blue figure elements 

1085 refer to the pre-treatment sample (A07-1), red figure elements refer to the 

1086 post-treatment sample (A07-3).

1087

1088 Figure 5 Expression levels and relative abundances of antibiotic 

1089 resistance genes (ARGs). (A) Percentage of identified ARGs (in relation to 

1090 total number of genes) in the pre-treatment (A07-1) and post-treatment (A07-
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1091 3) sample and in the GIT microbiome of four healthy untreated individuals 

1092 (RHMs; ** P value < 0.01, Fisher's exact test). (B) Histogram of the ratios of 

1093 metatranscriptomic (MT) to metagenomic (MG) depths of coverage of ARGs 

1094 in the pre-treatment and post-treatment sample and in the RHMs. (C) 

1095 Histograms of the ratios of MT to MG depths of coverage of ARGs in 

1096 population-level genomes of Escherichia coli and of Enterococcus faecium in 

1097 the pre- and post-treatment samples. Bars representing the number of ARGs 

1098 at a specific expression rate in the pre-treatment sample are blue, bars 

1099 representing the genes in the post-treatment sample are red and bars 

1100 representing the genes in the RHMs are green. For the RHMs, the average of 

1101 four datasets is represented with standard deviation as error bar. 

1102

1103 Appendix

1104 Figure S1. Gene set profiles of the 118 reference strains and 3 E. coli 

1105 isolated from patient A07 (highlighted in red and marked with a light blue box). 

1106 Each row represents a gene (blue: present, yellow: absent), each column 

1107 represents a strain. 

1108



Table 1: Anthropometric and clinical information of the study cohort

Patient Sex Age Underlying 
diseasea

Donor relationship 
and HLAb

Conditioning 
regimenc

Antimicrobialsd GvHDe, f Outcome 1.5 years after allo-
HSCT

A01 m 43 lymphoma MRD FluBuCy F, M, P-T, V Skin I° alive 
A03 m 56 lymphoma MRD FluBuCy AF, F, M, P-T, other - deceased day 66, relapse
A04 f 43 AML MUD BuCy AF, F, M, V Skin I° alive 
A05 m 49 lymphoma MMUD FluBuCy AF, F, M, P-T, V Skin II° deceased day 275, pneumonia
A06 m 52 AML MRD BuCy AF, F, M, P-T, V, other - alive 
A07 f 63 AML MMUD FLAMSA-Bu AF, F, M, P-T, V, other Skin II°, GIT III° deceased day 268, GvHD
A08 f 50 AML MUD BuCy AF, F, M, P-T, V Skin I° alive 
A09 m 30 lymphoma MUD FluBuCy F, M, P-T - deceased day 212, pneumonia
A10 m 54 AML MRD BuCy F, M, P-T Skin I°, GIT II° alive 
A12 m 57 lymphoma MUD FluBuCy F, M, P-T, V, other Skin III° alive 
A13 m 57 AML MRD BuCy AF, F, M, V Skin I°, lung II° alive 
A17 m 66 AML MUD BuCy F, M, V Skin II° alive 
A18 f 67 AML MUD FluBu F, M, P-T, V, other Skin III°, GIT III° deceased day 184, GvHD
A19 f 58 myeloma MUD Treo/Flu F, M, P-T - deceased day 39, relapse
A20 m 51 AML MMUD FLAMSA-Bu AF, F, M, P-T, V, other Skin II°, GIT II° alive 
A21 f 64 AML MUD Treo/Flu AF, M, P-T, V, other Skin II° alive 

a: AML: acute myeloid leukemia

b: MRD: matched related, MUD: matched unrelated, MMUD: mismatched unrelated

c: Bu: busulfan, Cy: cyclophosphamide, Flu: fludarabine, FLAMSA: fludarabine, amsacrine, Treo: treosulfan

d: AF: antifungal, F: fluoroquinolone, M: meropenem; P-T: piperacillin-tazobactam, V: vancomycin

e: Organ involvement, stages according to Glucksberg et al.18

f: Bold: aGvHD with summed stages ≥ 4 considered as severe aGvHD



Table 2: Antibiotic resistance genes identified in population-level genomes of 

GIT E. coli from patient A07

Resfams_ID
Number 
of Genes Resfam Family Name Mechanism

RF0005 1 AAC6-Ib
Aminoglycoside 
Modifying Enzyme

RF0007 3 ABCAntibioticEffluxPump ABC Transporter

RF0027 1 ANT3
Aminoglycoside 
Modifying Enzyme

RF0035 1 baeR
Gene Modulating 
Resistance

RF0053 1 ClassA Beta-Lactamase
RF0055 1 ClassC-AmpC Beta-Lactamase
RF0056 1 ClassD Beta-Lactamase
RF0065 1 emrB MFS Transporter
RF0088 1 macA ABC Transporter
RF0089 1 macB ABC Transporter

RF0091 1 marA
Gene Modulating 
Resistance

RF0098 1 MexE RND Antibiotic Efflux
RF0101 1 MexX RND Antibiotic Efflux

RF0112 1 phoQ
Gene Modulating 
Resistance

RF0115 6 RNDAntibioticEffluxPump RND Antibiotic Efflux

RF0121 1 soxR
Gene Modulating 
Resistance

RF0147 1 tolC ABC Transporter
RF0168 6 TE_Inactivator Antibiotic Inactivation
RF0172 1 APH3'' Phosphotransferase
RF0173 1 APH3' Phosphotransferase
RF0174 1 ArmA_Rmt rRNA 

Methyltransferase



Table 3: Antibiotic resistance genes identified in population-level genomes of 

GIT E. faecium from patient A07

Resfams_ID
Number 
of Genes Resfam Family Name Mechanism

RF0004 1 AAC6-I
Aminoglycoside 
Modifying Enzyme

RF0007 9 ABCAntibioticEffluxPump ABC Transporter

RF0033 1 APH3
Aminoglycoside 
Modifying Enzyme

RF0066 1 emrE Other Efflux

RF0067 1
Erm23SRibosomalRNAM
ethyltransferase

rRNA 
Methyltransferase

RF0104 1 MFSAntibioticEffluxPump MFS Transporter

RF0134 1
Tetracycline_Resistance_
MFS_Efflux_Pump

Tetracycline MFS 
Efflux

RF0154 1 vanR
Gylcopeptide 
Resistance

RF0155 2 vanS
Gylcopeptide 
Resistance

RF0168 1 TE_Inactivator Antibiotic Inactivation

RF0172 2 APH3''
Aminoglycoside 
Modifying Enzyme

RF0173 2 APH3'
Aminoglycoside 
Modifying Enzyme

RF0174 6 ArmA_Rmt
Aminoglycoside 
Resistance
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IMP: a pipeline for reproducible reference-
independent integrated metagenomic and
metatranscriptomic analyses
Shaman Narayanasamy1†, Yohan Jarosz1†, Emilie E. L. Muller1,2, Anna Heintz-Buschart1, Malte Herold1,
Anne Kaysen1, Cédric C. Laczny1,3, Nicolás Pinel4,5, Patrick May1 and Paul Wilmes1*

Abstract

Existing workflows for the analysis of multi-omic microbiome datasets are lab-specific and often result in sub-optimal
data usage. Here we present IMP, a reproducible and modular pipeline for the integrated and reference-independent
analysis of coupled metagenomic and metatranscriptomic data. IMP incorporates robust read preprocessing, iterative
co-assembly, analyses of microbial community structure and function, automated binning, as well as genomic
signature-based visualizations. The IMP-based data integration strategy enhances data usage, output volume,
and output quality as demonstrated using relevant use-cases. Finally, IMP is encapsulated within a user-friendly
implementation using Python and Docker. IMP is available at http://r3lab.uni.lu/web/imp/ (MIT license).

Keywords: Multi-omics data integration, Metagenomics, Metatranscriptomics, Microbial ecology, Microbiome,
Reproducibility

Background
Microbial communities are ubiquitous in nature and
govern important processes related to human health and
biotechnology [1, 2]. A significant fraction of naturally
occurring microorganisms elude detection and investiga-
tion using classic microbiological methods due to their
unculturability under standard laboratory conditions [3].
The issue of unculturability is largely circumvented
through the direct application of high-resolution and
high-throughput molecular measurements to samples
collected in situ [4–6]. In particular, the application of
high-throughput next-generation sequencing (NGS) of
DNA extracted from microbial consortia yields metage-
nomic (MG) data which allow the study of microbial
communities from the perspective of community struc-
ture and functional potential [4–6]. Beyond metage-
nomics, there is also a clear need to obtain functional
readouts in the form of other omics data. The sequen-
cing of reverse transcribed RNA (cDNA) yields

metatranscriptomic (MT) data, which provides informa-
tion about gene expression and therefore allows a more
faithful assessment of community function [4–6]. Al-
though both MG and MT data allow unprecedented in-
sights into microbial consortia, the integration of such
multi-omic data is necessary to more conclusively link
genetic potential to actual phenotype in situ [4, 6]. Given
the characteristics of microbial communities and the
resulting omic data types, specialized workflows are re-
quired. For example, the common practice of subsamp-
ling collected samples prior to dedicated biomolecular
extractions of DNA, RNA, etc. has been shown to inflate
variation, thereby hampering the subsequent integration
of the individual omic datasets [7, 8]. For this purpose,
specialized wet-lab methods which allow the extraction
of concomitant DNA, RNA, proteins, and metabolites
from single, unique samples were developed to ensure
that the generated data could be directly compared
across the individual omic levels [7, 8]. Although stan-
dardized and reproducible wet-lab methods have been
developed for integrated omics of microbial communi-
ties, corresponding bioinformatic analysis workflows
have yet to be formalized.
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1Luxembourg Centre for Systems Biomedicine, 7, avenue des
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Narayanasamy et al. Genome Biology  (2016) 17:260 
DOI 10.1186/s13059-016-1116-8



Bioinformatic analysis methods for MG and MT NGS
data can be broadly classified into reference-dependent or
reference-independent (de novo) methods [5]. Reference-
dependent methods are based on the alignment/mapping
of sequencing reads onto isolate genomes, gene catalogs,
or existing MG data. A major drawback of such methods
is the large number of sequencing reads from uncultured
species and/or divergent strains which are discarded dur-
ing data analysis, thereby resulting in the loss of poten-
tially useful information. For example, based on analyses
of MG data from the human gut microbiome (arguably
the best characterized microbial community in terms of
culture-derived isolate genomes), approximately 43% of
the data are typically not mappable to the available isolate
genomes [9]. Conversely, reference-independent meth-
odologies, such as approaches based on de novo assem-
blies, enable the retrieval of the actual genomes and/or
potentially novel genes present in samples, thereby
allowing more of the data to be mapped and exploited
for analysis [4, 5, 10]. Furthermore, it has been demon-
strated that the assembly of sequencing reads into lon-
ger contiguous sequences (contigs) greatly improves the
taxonomic assignments and prediction of genes as
opposed to their direct identification from short se-
quencing reads [11, 12]. Finally, de novo MG assem-
blies may be further leveraged by binning the data to
resolve and retrieve population-level genomes, includ-
ing those from hitherto undescribed taxa [13–21].
Given the advantages of reference-independent

methods, a wide array of MG-specific assemblers such as
IDBA-UD [22] and MEGAHIT [23] have been developed.
Most MT data analyses involve reference-based [24–26]
or MG-dependent analysis workflows [27–29]. A com-
parative study by Celaj et al. [12] demonstrated that
reference-independent approaches for MT data analyses
are also applicable using either specialized MT assemblers
(e.g., IDBA-MT [12, 30]), MG assemblers (e.g., IDBA-UD
[22, 30, 31] and MetaVelvet [12, 32]) or single-species
transcriptome assemblers (e.g., Trinity [12, 33]). In all
cases, the available assemblers are able to handle the un-
even sequencing depths of MG and MT data. Although
dedicated assembly methods have been developed for MG
and MT data, formalized pipelines allowing the integrated
use of both data types are not available yet.
Automated bioinformatic pipelines have so far been

mainly developed for MG data. These include
MOCAT [34] and MetAMOS [10], which incorporate
the entire process of MG data analysis, ranging from
preprocessing of sequencing reads, de novo assembly,
and post-assembly analysis (read alignment, taxo-
nomic classification, gene annotation, etc.). MOCAT
has been used in large-scale studies such as those
within the MetaHIT Consortium [35, 36], while MetA-
MOS is a flexible pipeline which allows customizable

workflows [10]. Both pipelines use SOAPdenovo [37]
as the default de novo assembler, performing single-
length kmer-based assemblies which usually result in
fragmented (low contiguity) assemblies with low gene
coverage values [38].
Multi-omic analyses have already provided new insights

into microbial community structure and function in various
ecosystems. These include studies of the human gut micro-
biome [28, 39], aquatic microbial communities from the
Amazon river [27], soil microbial communities [40, 41],
production-scale biogas plants [29], hydrothermal vents
[42], and microbial communities from biological wastewa-
ter treatment plants [43, 44]. These studies employed differ-
ing ways for analyzing the data, including reference-based
approaches [27, 28, 42], MG assembly-based approaches
[29, 40], MT assembly-based approaches [42], and inte-
grated analyses of the meta-omic data [39, 42–44].
Although these studies clearly demonstrate the power
of multi-omic analyses by providing deep insights into
community structure and function, standardized and
reproducible computational workflows for integrating
and analyzing the multi-omic data have so far been un-
available. Importantly, such approaches are, however,
required to compare results between different studies
and systems of study.
Due to the absence of established tools/workflows to

handle multi-omic datasets, most of the aforementioned
studies utilized non-standardized, ad hoc analyses,
mostly consisting of custom workflows, thereby creating
a challenge in reproducing the analyses [10, 45–47].
Given that the lack of reproducible bioinformatic work-
flows is not limited to those used for the multi-omic
analysis of microbial consortia [10, 45–47], several ap-
proaches have recently been developed with the explicit
aim of enhancing software reproducibility. These include
a wide range of tools for constructing bioinformatic
workflows [48–50] as well as containerizing bioinfor-
matic tools/pipelines using Docker [29, 46–48].
Here, we present IMP, the Integrated Meta-omic

Pipeline, the first open source de novo assembly-based
pipeline which performs standardized, automated, flex-
ible, and reproducible large-scale integrated analysis of
combined multi-omic (MG and MT) datasets. IMP in-
corporates robust read preprocessing, iterative co-
assembly of metagenomic and metatranscriptomic data,
analyses of microbial community structure and function,
automated binning, as well as genomic signature-based vi-
sualizations. We demonstrate the functionalities of IMP
by presenting the results obtained on an exemplary data
set. IMP was evaluated using datasets from ten different
microbial communities derived from three distinct
environments as well as a simulated mock microbial com-
munity dataset. We compare the assembly and data inte-
gration measures of IMP against standard MG analysis
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strategies (reference-based and reference-independent) to
demonstrate that IMP vastly improves overall data usage.
Additionally, we benchmark our assembly procedure
against available MG analysis pipelines to show that IMP
consistently produces high-quality assemblies across all
the processed datasets. Finally, we describe a number of
particular use cases which highlight biological applications
of the IMP workflow.

Results
Overview of the IMP implementation and workflow
IMP leverages Docker for reproducibility and deploy-
ment. The interfacing with Docker is facilitated through
a user-friendly Python wrapper script (see the “Details of
the IMP implementation and workflow” section). As
such, Python and Docker are the only prerequisites for
the pipeline, enabling an easy installation and execution
process. Workflow implementation and automation is
achieved using Snakemake [49, 51]. The IMP workflow
can be broadly divided into five major parts: i) prepro-
cessing, ii) assembly, iii) automated binning, iv) analysis,
and v) reporting (Fig. 1).
The preprocessing and filtering of sequencing reads is

essential for the removal of low quality bases/reads, and
potentially unwanted sequences, prior to assembly and
analysis. The input to IMP consists of MG and MT (the
latter preferably depleted of ribosomal RNA prior to se-
quencing) paired-end reads in FASTQ format (section
“Input data”). MG and MT reads are preprocessed inde-
pendently of each other. This involves an initial quality
control step (Fig. 1 and section “Trimming and quality
filtering”) [52] followed by an optional screening for
host/contaminant sequences, whereby the default
screening is performed against the human genome while
other host genome/contaminant sequences may also be
used (Fig. 1 and section “Screening host or contaminant
sequences”). In silico rRNA sequence depletion is exclu-
sively applied to MT data (Fig. 1 and section “Ribosomal
RNA filtering”).
The customized assembly procedure of IMP starts with

an initial assembly of preprocessed MT reads to generate
an initial set of MT contigs (Additional file 1: Figure S1).
MT reads unmappable to the initial set of MT contigs
undergo a second round of assembly. The process of as-
sembling unused reads, i.e., MG or MT reads unmappable
to the previously assembled contigs, is henceforth referred
to as “iterative assembly”. The assembly of MT reads is
performed, first as transcribed regions are covered much
more deeply and evenly in MT data. The resulting MT-
based contigs represent high-quality scaffolds for the
subsequent co-assembly with MG data, overall leading to
enhanced assemblies [43]. Therefore, the combined set of
MT contigs from the initial and iterative MT assemblies
are used to enhance the subsequent assembly with the

MG data. MT data are assembled using the MEGAHIT de
novo assembler using the appropriate option to prevent
the merging of bubbles within the de Bruijn assembly
graph [23, 36]. Subsequently, all preprocessed MT and
MG reads, together with the generated MT contigs, are
used as input to perform a first co-assembly, producing a
first set of co-assembled contigs. The MG and MT reads
unmappable to this first set of co-assembled contigs then
undergo an additional iterative co-assembly step. IMP
implements two assembler options for the de novo co-
assembly step, namely IDBA-UD or MEGAHIT. The con-
tigs resulting from the co-assembly procedure undergo a
subsequent assembly refinement step by a contig-level as-
sembly using the cap3 [53] de novo assembler. This aligns
highly similar contigs against each other, thus reducing
overall redundancy by collapsing shorter contigs into
longer contigs and/or improving contiguity by extending
contigs via overlapping contig ends (Additional file 1:
Figure S1). This step produces the final set of contigs. Pre-
processed MG and MT reads are then mapped back
against the final contig set and the resulting alignment in-
formation is used in the various downstream analysis pro-
cedures (Fig. 1). In summary, IMP employs four measures
for the de novo assembly of preprocessed MG and MT
reads, including: i) iterative assemblies of unmappable
reads, ii) use of MT contigs to scaffold the downstream
assembly of MG data, iii) co-assembly of MG and MT
data, and iv) assembly refinement by contig-level as-
sembly. The entire de novo assembly procedure of IMP
is henceforth referred to as the “IMP-based iterative
co-assembly” (Additional file 1: Figure S1).
Contigs from the IMP-based iterative co-assembly

undergo quality assessment as well as taxonomic annota-
tion [54] followed by gene prediction and functional anno-
tation [55] (Fig. 1 and section “Annotation and assembly
quality assessment”). MaxBin 2.0 [20], an automated bin-
ning procedure (Fig. 1 and section “Automated binning”)
which performs automated binning on assemblies pro-
duced from single datasets, was chosen as the de facto
binning procedure in IMP. Experimental designs involving
single coupled MG and MT datasets are currently the
norm. However, IMP’s flexibility does not forego the im-
plementation of multi-sample binning algorithms such as
CONCOCT [16], MetaBAT [18], and canopy clustering
[15] as experimental designs evolve in the future.
Non-linear dimensionality reduction of the contigs’

genomic signatures (Fig. 1 and section “Non-linear di-
mensionality reduction of genomic signatures”) is per-
formed using the Barnes-Hut Stochastic Neighborhood
Embedding (BH-SNE) algorithm allowing visualization
of the data as two-dimensional scatter plots (henceforth
referred to as VizBin maps [13, 56]). Further analysis
steps include, but are not limited to, calculations of the
contig- and gene-level depths of coverage (section
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“Depth of coverage”) as well as the calling of genomic
variants (variant calling is performed using two distinct
variant callers; section “Variant calling”). The informa-
tion from these analyses are condensed and integrated
into the generated VizBin maps to produce augmented
visualizations (sections “Visualization and reporting”).
These visualizations and various summaries of the out-
put are compiled into a HTML report (examples of the
HTML reports available via Zenodo [57]).

Exemplary output of IMP (using the default IDBA-UD
assembler) based on a human fecal microbiome dataset
is summarized in Fig. 2. The IMP output includes taxo-
nomic (Fig. 2a) and functional (Fig. 2b, c) overviews.
The representation of gene abundances at the MG and
MT levels enables comparison of potential (Fig. 2b) and
actual expression (Fig 2c) for specific functional gene
categories (see Krona charts within HTML S1 [57]). IMP
provides augmented VizBin maps [13, 56], including, for

Fig. 1 Schematic overview of the IMP pipeline. Cylinders represent input and output while rectangles represent processes. Arrows indicate the flow
between input, processes, and output. MG— Metagenomic data, MT— Metatranscriptomic data, rRNA— ribosomal RNA, NLDR-GS— genomic
signature non-linear dimensionality reduction. Processes, input, and output specific to MG and MT data are labeled in blue and red, respectively.
Processes and output that involve usage of both MG and MT data are represented in purple. A detailed illustration of the “iterative
co-assembly” is available in Additional file 1: Figure S1
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Fig. 2 (See legend on next page.)
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example, variant densities (Fig. 2d) as well as MT to MG
depth of coverage ratios (Fig. 2e). These visualizations
may aid users in highlighting subsets of contigs based on
certain characteristics of interest, i.e., population hetero-
geneity/homogeneity, low/high transcriptional activity,
etc. Although an automated binning method [20] is in-
corporated within IMP (Fig. 2f ), the output is also com-
patible with and may be exported to other manual/
interactive binning tools such as VizBin [56] and Anvi’o
[17] for additional manual curation. Please refer to the
HTML reports for additional examples [57].
The modular design (section “Automation and modu-

larity”) and open source nature of IMP allow for
customization of the pipeline to suit specific user-
defined analysis requirements (section “Customization
and further development”). As an additional feature,
IMP also allows single-omic MG or MT analyses (sec-
tion “Details of the IMP implementation and work-
flow”). Detailed parameters for the processes implemented
in IMP are described in the section “Details of the IMP
implementation and workflow” and examples of detailed
workflow schematics are provided within the HTML
reports [57].

Assessment and benchmarking
IMP was applied to ten published coupled MG and MT
datasets, derived from three types of microbial systems,
including five human fecal microbiome samples (HF1,
HF2, HF3, HF4, HF5) [28], four wastewater sludge micro-
bial communities (WW1, WW2, WW3, WW4) [43, 44],
and one microbial community from a production-scale
biogas (BG) plant [29]. In addition, a simulated mock
(SM) community dataset based on 73 bacterial genomes
[12], comprising both MG and MT data was generated to
serve as a means for ground truth-based assessment of
IMP (details in section “Coupled metagenomic and meta-
transcriptomic datasets”). The SM dataset was devised
given the absence of a standardized benchmarking dataset
for coupled MG and MT data (this does solely exist for
MG data as part of the CAMI initiative (http://www.cami-
challenge.org)).
Analysis with IMP was carried out with the two avail-

able de novo assembler options for the co-assembly step
(Fig. 1; Additional file 1: Figure S1), namely the default
IDBA-UD assembler [22] (hereafter referred to as IMP)
and the optional MEGAHIT assembler [23] (henceforth

referred to as IMP-megahit). IMP was quantitatively
assessed based on resource requirement and analytical
capabilities. The analytical capabilities of IMP were eval-
uated based on data usage, output volume, and output
quality. Accordingly, we assessed the advantages of the
iterative assembly procedure as well as the overall data
integration strategy.

Resource requirement and runtimes
IMP is an extensive pipeline that utilizes both MG and
MT data within a reference-independent (assembly-
based) analysis framework which renders it resource-
and time-intensive. Therefore, we aimed to assess the
required computational resource and runtimes of IMP.
All IMP-based runs on all datasets were performed on

eight compute cores with 32 GB RAM per core and
1024 GB of total memory (section “Computational plat-
forms”). IMP runtimes ranged from approximately 23 h
(HF1) to 234 h (BG) and the IMP-megahit runtimes
ranged from approximately 21 h (HF1) up to 281 h (BG).
IMP was also executed on the Amazon cloud computing
(AWS) infrastructure, using the HF1 dataset on a machine
with 16 cores (section “Computational platforms”)
whereby the run lasted approximately 13 h (refer to
Additional file 1: Note S1 for more details). The analysis
of IMP resulted in an increase in additional data of around
1.2–3.6 times the original input (Additional file 2: Table
S1). Therefore, users should account for the disc space for
both the final output and intermediate (temporary) files
generated during an IMP run. Detailed runtimes and data
generated for all the processed data sets are reported in
Additional file 2: Table S1.
We further evaluated the effect of increasing resources

using a small scale test dataset (section “Test dataset for
runtime assessment”). The tests demonstrated that re-
duced runtimes are possible by allocating more threads
to IMP-megahit (Additional file 2: Table S2). However,
no apparent speed-up is achieved beyond allocation of
eight threads, suggesting that this would be the optimal
number of threads for this particular test dataset. Con-
trastingly, no speed-up was observed with additional
memory allocation (Additional file 2: Table S3). Apart
from the resources, runtime may also be affected by the
input size, the underlying complexity of the dataset and/
or behavior of individual tools within IMP.

(See figure on previous page.)
Fig. 2 Example output from the IMP analysis of a human microbiome dataset (HF1). a Taxonomic overview based on the alignment of contigs
to the most closely related genomes present in the NCBI genome database (see also HTML report S1 [57]). a, b Abundances of predicted genes
(based on average depths of coverage) of various KEGG Ontology categories represented both at the MG (b) and MT (c) levels (see also Krona
charts within HTML report S1). d–f Augmented VizBin maps of contigs ≥1 kb, representing contig-level MG variant densities (d), contig-level ratios
of MT to MG average depth of coverage (e), and bins generated by the automated binning procedure (f). Please refer to the HTML reports [57]
for additional examples
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Data usage: iterative assembly
De novo assemblies of MG data alone usually result in a
large fraction of reads that are unmappable to the assem-
bled contigs and therefore remain unused, thereby leading
to suboptimal data usage [43, 58–60]. Previous studies
have assembled sets of unmappable reads iteratively to
successfully obtain additional contigs, leading to an overall
increase in the number of predicted genes, which in turn
results in improved data usage [43, 58–60]. Therefore,
IMP uses an iterative assembly strategy to maximize NGS
read usage. In order to evaluate the best iterative assembly
approach for application within the IMP-based iterative
co-assembly strategy, we attempted to determine the
opportune number of assembly iterations in relation to
assembly quality metrics and computational resources/
runtimes.
The evaluation of the iterative assembly strategy was

applied to MG and MT datasets. For both omic data
types, it involved an “initial assembly” which is defined
as the de novo assembly of all preprocessed reads.
Additional iterations of assembly were then conducted
using the reads that remained unmappable to the gener-
ated set of contigs (see section “Iterative single-omic as-
semblies” for details and parameters). The evaluation of
the iterative assembly procedure was carried out based
on the gain of additional contigs, cumulative contig
length (bp), numbers of genes, and numbers of reads
mappable to contigs. Table 1 shows the evaluation results
of four representative data sets and Additional file 2:

Table S4 shows the detailed results of the application of
the approach to 11 datasets. In all the datasets evaluated,
all iterations (1 to 3) after the initial assembly lead to an
increase in total length of the assembly and numbers of
mappable reads (Table 1; Additional file 2: Table S4).
However, there was a notable decline in the number of
additional contigs and predicted genes beyond the first it-
eration. Specifically, the first iteration of the MG assembly
yielded up to 1.6% additional predicted genes while the
equivalent on the MT data yielded up to 9% additional
predicted genes (Additional file 2: Table S4). Considering
the small increase (<1%) in the number of additional con-
tigs and predicted genes beyond the first assembly iter-
ation on one hand and the extended runtimes required to
perform additional assembly iterations on the other
hand, a generalized single iteration assembly approach
was retained and implemented within the IMP-based it-
erative co-assembly (Fig. 1; Additional file 1: Figure S1).
This approach aims to maximize data usage without dras-
tically extending runtimes.
Despite being developed specifically for the analysis of

coupled MG and MT datasets, the iterative assembly
can also be used for single omic datasets. To assess
IMP’s performance on MG datasets, it was applied to
the simulated MG datasets from the CAMI challenge
(http://www.cami-challenge.org) and the results are
shown in Additional file 1: Figure S2. IMP-based MG as-
sembly using the MEGAHIT assembler on the CAMI
dataset outperforms well-established MG pipelines such

Table 1 Statistics of iterative assemblies performed on MG and MT datasets
MG iterative assembly MT iterative assembly

Dataset Iteration Number of
contigs
(≥1 kb)

Cumulative length
of assembled
contigs (bp)

Number of
predicted
genes

Number of
mapped reads

Number of
contigs (all)

Cumulative length
of assembled
contigs (bp)

Number of
predicted
genes

Number of
mapped
reads

SM Initial assembly 29063 182673343 186939 18977716 13436 8994518 13946 822718

1 16 483336 329 9515 1286 502535 1272 16038

2 6 213094 126 3425 48 18460 49 656

3 1 86711 47 1536 0 0 0 0

HF1 Initial assembly 27028 145938650 154760 20715368 40989 45300233 66249 17525586

1 15 966872 274 39839 2471 969614 2238 329400

2 −1 26822 5 1276 26 10315 24 45642

3 0 4855 0 172 3 1640 6 54788

WW1 Initial assembly 14815 77059275 81060 6513708 45118 22525759 49859 8423603

1 28 3146390 1136 73511 2115 723904 1589 529441

2 2 175634 114 4031 250 82048 201 13335

3 1 30032 16 572 31 10280 18 65866

BG Initial assembly 105282 545494441 593688 109949931 47628 27493690 60566 3754432

1 417 10998269 3902 456821 3956 1397409 3061 130131

2 5 335313 219 21647 717 250223 754 12766

3 7 79022 20 2511 24 9060 22 5827

Results for all datasets available in Additional file 2: Table S2
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as MOCAT in all measures. In addition, IMP-based it-
erative assemblies also exhibit comparable performance
to the gold standard assembly with regards to contigs
≥1 kb and number of predicted genes (http://www.cami-
challenge.org). Detailed results of the CAMI assemblies
are available in Additional file 2: Table S5. However, as
no MT and/or coupled MG and MT datasets so far exist
for the CAMI challenge, the full capabilities of IMP
could not be assessed in relation to this initiative.

Data usage: multi-omic iterative co-assembly
In order to assess the advantages of integrated multi-omic
co-assemblies of MG and MT data, IMP-based iterative co-

assemblies (IMP and IMP-megahit) were compared against
MG-only-based assemblies which include single-omic itera-
tive MG assemblies generated using IMP (referred to as
IMP_MG) and standard MG assemblies by MOCAT (here-
after referred to as MOCAT_MG) and MetAMOS (here-
after referred to as MetAMOS_MG). Furthermore, the
available reads from the human fecal microbiome dataset
(preprocessed with IMP) were mapped to the MetaHIT
Integrated Gene Catalog (IGC) reference database [35] to
compare the data usage of the different assembly proce-
dures against a reference-dependent approach.
IMP-based iterative co-assemblies consistently re-

cruited larger fractions of properly paired MG (Fig. 3a)
and/or MT (Fig. 3b) reads compared to single-omic

a

c

b

d

Fig. 3 Assessment of data usage and output generated from co-assemblies compared to single-omic assemblies. Heat maps show (a) fractions of
properly mapped MG read pairs, (b) fractions of properly mapped MT read pairs, (c) numbers of contigs ≥1 kb, and (d) numbers of unique predicted
genes. IMP and IMP-megahit represent integrated multi-omic MG and MT iterative co-assemblies while IMP_MG, MOCAT_MG, and MetAMOS_MG
represent single-omic MG assemblies. All numbers were row Z-score normalized for visualization. Detailed results available in Additional file 2: Table S5
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assemblies. The resulting assemblies also produced
larger numbers of contigs ≥1 kb (Fig. 3c), predicted non-
redundant unique genes (Fig. 3d), and, even more im-
portant, complete genes as predicted with start and stop
codon by Prodigal [61] (Additional file 2: Table S5).
Using the reference genomes from the SM data as
ground truth, IMP-based iterative co-assemblies resulted
in up to 25.7% additional recovery of the reference ge-
nomes compared to the single-omic MG assemblies
(Additional file 2: Table S5).
IMP-based iterative co-assemblies of the human fecal

microbiome datasets (HF1–5) allowed recruitment of
comparable fractions of properly paired MG reads and an
overall larger fraction of properly paired MT reads com-
pared to those mapping to the IGC reference database
(Table 2). The total fraction (union) of MG or MT reads
mapping to either IMP-based iterative co-assemblies and/
or the IGC reference database was higher than 90%, thus
demonstrating that the IMP-based iterative co-assemblies
allow at least 10% of additional data to be mapped when
using these assemblies in addition to the IGC reference
database. In summary, the complementary use of de novo
co-assembly of MG and MT datasets in combination with
iterative assemblies enhances overall MG and MT data
usage and thereby significantly increases the yield of
useable information, especially when combined with com-
prehensive reference catalogs such as the IGC reference
database.

Assembly quality: multi-omic iterative co-assembly
In order to compare the quality of the IMP-based itera-
tive co-assembly procedure to simple co-assemblies, we
compared the IMP-based iterative co-assemblies against
co-assemblies generated using MetAMOS [10] (hence-
forth referred to as MetAMOS_MGMT) and MOCAT
[34] (henceforth referred to as MOCAT_MGMT).

Although MetAMOS and MOCAT were developed for
MG data analysis, we extended their use for obtaining
MG and MT co-assemblies by including both MG and
MT read libraries as input (section “Execution of pipe-
lines”). The assemblies were assessed based on con-
tiguity (N50 length), data usage (MG and MT reads
mapped), and output volume (number of contigs above
1 kb and number of genes; Additional file 2: Table S5).
Only the SM dataset allowed for ground truth-based
assessment by means of aligning the generated de novo
assembly contigs to the original 73 bacterial genomes
used to simulate the data set (section “Simulated
coupled metagenomic and metatranscriptomic dataset”)
[12, 54]. This allowed the comparison of two additional
quality metrics, i.e., the recovered genome fraction and
the composite performance metric (CPM) proposed by
Deng et al. [62].
Assessments based on real datasets demonstrate

comparable performance between IMP and IMP-
megahit while both outperform MetAMOS_MGMT
and MOCAT_MGMT in all measures (Fig. 4a–c). The
ground truth assessment using the SM dataset shows
that IMP-based iterative co-assemblies are effective in
recovering the largest fraction of the original reference ge-
nomes while achieving a higher CPM score compared to
co-assemblies from the other pipelines. Misassembled
(chimeric) contigs are a legitimate concern within exten-
sive de novo assembly procedures such as the IMP-based
iterative co-assembly. It has been previously demonstrated
that highly contiguous assemblies (represented by high
N50 lengths) tend to contain higher absolute numbers of
misassembled contigs compared to highly fragmented as-
semblies, thereby misrepresenting the actual quality of
assemblies [38, 62, 63]. Therefore, the CPM score was de-
vised as it represents a normalized measure reflecting both
contiguity and accuracy for a given assembly [62]. Based
on the CPM score, both IMP and IMP-megahit yield as-
semblies that balance high contiguity with accuracy and
thereby outperform the other methods (Fig. 4c, d). In
summary, cumulative measures of numbers of contigs
≥1 kb, N50 lengths, numbers of unique genes, recovered
genome fractions (%), and CPM scores (the latter two
were only calculated for the SM dataset), as well as the
mean fractions (%) of mappable MG and MT reads, show
that the IMP-based iterative co-assemblies (IMP and
IMP-megahit) clearly outperform all other available
methods (Fig. 4e; Additional file 2: Table S5).

Use-cases of integrated metagenomic and
metatranscriptomic analyses in IMP
The integration of MG and MT data provides unique
opportunities for uncovering community- or population-
specific traits, which cannot be resolved from MG or
MT data alone. Here we provide two examples of

Table 2 Mapping statistics for human microbiome samples
Reference Average MG pairs

mapping (%)
Average MT pairs
mapping (%)

IGC 70.91 53.57

IMP 70.25 86.21

IMP-megahit 70.62 83.33

IMP_MG 68.08 58.54

MetAMOS_MG 57.31 37.34

MOCAT_MG 36.73 36.68

IMP + IGC 92.66 95.77

IMP-megahit + IGC 92.80 93.24

Average fractions (%) of properly paired reads from the human microbiome
datasets (HF1–5) mapping to various references, including IMP-based iterative
co-assemblies (IMP and IMP-megahit) and single-omic co-assemblies (IMP_MG,
MetAMOS_MG, and MOCAT_MG) as well as the IGC reference database. IMP +
IGC and IMP-megahit + IGC reports the total number of properly paired reads
mapping to IMP-based iterative co-assemblies and/or the IGC reference
database. Refer to Additional file 2: Table S3 for detailed information
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insights gained through the direct inspection of results
provided by IMP.

Tailored preprocessing and filtering of MG and MT data
The preprocessing of the datasets HF1–5 included filter-
ing of human-derived sequences, while the same step
was not necessary for the non-human-derived datasets,
WW1–4 and BG. MT data analyzed within this article
included RNA extracts which were not subjected to wet-
lab rRNA depletion, i.e., BG [29], and samples which
were treated with wet-lab rRNA removal kits (namely
HF1–5 [28] and WW1–4 [43]). Overall, the removal of
rRNA pairs from the MT data showed a large variation,
ranging from as low as 0.51% (HF5) to 60.91% (BG),
demonstrating that wet-lab methods vary in terms of

effectiveness and highlighting the need for such MT-
specific filtering procedures (Additional file 1: Note S2;
Additional file 2: Table S6).

Identification of RNA viruses
To identify differences in the information content of
MG and MT complements, the contigs generated using
IMP were inspected with respect to coverage by MG
and MT reads (Additional file 2: Table S7). In two exem-
plary datasets HF1 and WW1, a small fraction of the
contigs resulted exclusively from MT data (Additional
file 2: Table S7). Longer contigs (≥1 kb) composed exclu-
sively of MT reads and annotated with known viral/bac-
teriophage genes were retained for further inspection
(Table 3; complete list contigs in Additional file 2: Table S8

a d

eb

c

Fig. 4 Assessment of the IMP-based iterative co-assemblies in comparison to MOCAT- and MetAMOS-based co-assemblies. Radar charts summarizing
the characteristics of the co-assemblies generated using IMP, MetAMOS, and MOCAT pipelines on: a human fecal microbiome, b wastewater sludge
community, c biogas reactor, d simulated mock community. IMP co-assemblies were performed with two de novo assembler options, IDBA_UD and
MEGAHIT, whereas MetAMOS and MOCAT were executed using default settings. Assessment metrics within the radar charts include number of contigs
≥1 kb, N50 length (contiguity, cutoff 500 bp), number of predicted genes (unique), and fraction of properly mapped MG and MT read pairs. N50
statistics are reported using a 500-bp cutoff. Additional ground truth assessments for simulated mock dataset included recovered genome
fractions (%) and the composite performance metric (CPM) score with a cutoff of 500 bp [62]. e Summary radar chart reflecting the cumulative
measures and mean fraction of properly mapped MG and MT read pairs from all analyzed 11 datasets while incorporating ground truth-based
measures from the simulated mock dataset. Higher values within the radar charts (furthest from center) represent better performance. Detailed
information on the assembly assessments is available in Additional file 2: Table S5
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and S9). A subsequent sequence similarity search against
the NCBI NR nucleotide database [64] of these candidate
contigs revealed that the longer contigs represent almost
complete genomes of RNA viruses (Additional file 2: Table
S10 and S11). This demonstrates that the incorporation of
MT data and their contrasting to the MG data allow the
identification and recovery of nearly complete RNA viral
genomes, thereby allowing their detailed future study in a
range of microbial ecosystems.

Identification of populations with apparent high
transcriptional activity
To further demonstrate the unique analytical capabilities
of IMP, we aimed to identify microbial populations with
a high transcriptional activity in the HF1 human fecal
microbiome sample. Average depth of coverage at the
contig- and gene-level is a common measure used to
evaluate the abundance of microbial populations within
communities [14, 16, 43]. The IMP-based integrative
analysis of MG and MT data further extends this meas-
ure by calculation of average MT to MG depth of cover-
age ratios, which provide information on transcriptional
activity and which can be visualized using augmented
VizBin maps [56].
In our example, one particular cluster of contigs within

the augmented VizBin maps exhibited high MT to MG
depth of coverage ratios (Additional file 1: Figure S3). The
subset of contigs within this cluster aligned to the genome
of the Escherichia coli P12B strain (henceforth referred to
as E. coli). For comparison, we also identified a subset,
which was highly abundant at the MG level (lower MT
to MG ratio), which aligned to the genome of Collin-
sella intestinalis DSM 13280 strain (henceforth referred

to as C. intestinalis). Based on these observations, we
highlighted the subsets of these contigs in an aug-
mented VizBin map (Fig. 5a). The C. intestinalis and E.
coli subsets are mainly represented by clear peripheral
clusters which exhibit consistent intra-cluster MT to
MG depth of coverage ratios (Fig. 5a). The subsets were
manually inspected in terms of their distribution of
average MG and MT depths of coverage and were com-
pared against the corresponding distributions for all
contigs. The MG-based average depths of coverage of
the contigs from the entire community exhibited a bell-
shape like distribution, with a clear peak (Fig. 5b). In
contrast, MT depths of coverage exhibited more spread,
with a relatively low mean (compared to MG distribution)
and no clear peak (Fig. 5b). The C. intestinalis subset dis-
plays similar distributions to that of the entire community,
whereas the E. coli subset clearly exhibits unusually high
MT-based and low MG-based depths of coverage (Fig. 5b).
Further inspection of the individual omic datasets revealed
that the E. coli subset was not covered by the MG contigs,
while approximately 80% of the E. coli genome was
recoverable from a single-omic MT assembly (Fig. 5c). In
contrast, the C. intestinalis subset demonstrated genomic
recovery in all co-assemblies (IMP, IMP-megahit,
MOCAT_MGMT, MetAMOS_MGMT) and the single-
omic MG assemblies (IMP_MG, MOCAT_MG, MetA-
MOS_MG; Fig. 5c).
As noted by the authors of the original study by

Franzosa et al. [28], the cDNA conversion protocol used
to produce the MT data is known to introduce approxi-
mately 1–2% of E. coli genomic DNA into the cDNA as
contamination which is then reflected in the MT data.
According to our analyses, 0.12% of MG reads and

Table 3 Contigs with a likely viral/bacteriophage origin/function reconstructed from the metatranscriptomic data
Sample Contig ID* Contig length Average contig depth

of coverage
Gene product Average gene depth

of coverage

HF1 Contig_34 6468 20927 Virus coat protein (TMV like) 30668

Viral movement protein (MP) 26043

RNA-dependent RNA polymerase 22578

Viral methyltransferase 18817

Contig_13948 2074 46 RNA-dependent RNA polymerase 41

Viral movement protein (MP) 56

WW2 Contig_6405 4062 46 Tombusvirus p33 43

Viral RNA-dependent RNA polymerase 42

Viral coat protein (S domain) 36

Contig_7409 3217 21 Viral RNA-dependent RNA polymerase 18

Viral coat protein (S domain) 21

Contig_7872 2955 77 Hypothetical protein 112

Phage maturation protein 103

*Contigs of ≥1 kb and average depth of coverage ≥20 were selected
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1.95% of MT reads derived from this sample could be
mapped onto the E. coli contigs, which is consistent with
the numbers quoted by Franzosa et al. [28].
Consistent recovery of the E. coli genome was also ob-

served across all other assemblies of the human fecal
microbiome datasets (HF2–5) which included their
respective MT data (Additional file 1: Figure S4;
Additional file 2: Table S12). The integrative analyses of
MG and MT data within IMP enables users to efficiently

highlight notable cases such as this and to further inves-
tigate inconsistencies and/or interesting characteristics
within these multi-omic datasets.

Discussion
The microbiome analysis workflow of IMP is unique in
that it allows the integrated analysis of MG and MT
data. To the best of our knowledge, IMP represents the
only pipeline that spans the preprocessing of NGS reads

a

b

c

Fig. 5 Metagenomic and metatranscriptomic data integration of a human fecal microbiome. a Augmented VizBin map highlighting contig
subsets with sequences that are most similar to Escherichia coli P12b and Collinsella intestinalis DSM 13280 genomes. b Beanplots representing
the densities of metagenomic (MG) and metatranscriptomic (MT) average contig-level depth of coverage for the entire microbial community and
two subsets (population-level genomes) of interest. The dotted lines represent the mean. c Recovered portion of genomes of the aforementioned
taxa based on different single-omic assemblies and multi-omic co-assemblies (Additional file 2: Table S5)
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to the binning of the assembled contigs, in addition to
being the first automated pipeline for reproducible
reference-independent metagenomic and metatranscrip-
tomic data analysis. Although existing pipelines such as
MetAMOS or MOCAT may be applied to perform co-
assemblies of MG and MT data [44], these tools do not
include specific steps for the two data types in their pre-
and post-assembly procedures, which is important given
the disparate nature of these datasets. The use of Docker
promotes reproducibility and sharing, thereby allowing re-
searchers to precisely replicate the IMP workflow with
relative ease and with minimal impact on overall perform-
ance of the employed bioinformatic tools [29, 46–48]. Fur-
thermore, static websites will be created and associated
with every new version of IMP (Docker image), such that
users will be able to download and launch specific ver-
sions of the pipeline to reproduce the work of others.
Thereby, IMP enables standardized comparative studies
between datasets from different labs, studies, and environ-
ments. The open source nature of IMP encourages a
community-driven effort to contribute to and further im-
prove the pipeline. Snakemake allows the seamless inte-
gration of Python code and shell (bash) commands and
the use of make scripting style, which are arguably some
of the most widely used bioinformatic scripting languages.
Snakemake also supports parallel processing and the abil-
ity to interoperate with various tools and/or web services
[49, 51]. Thus, users will be able to customize and en-
hance the features of the IMP according to their analysis
requirements with minimal training/learning.
Quality control of NGS data prior to de novo assem-

blies has been shown to increase the quality of down-
stream assembly and analyses (predicted genes) [63]. In
addition to standard preprocessing procedures (i.e., re-
moval of low quality reads, trimming of adapter se-
quences and removal), IMP incorporates additional
tailored and customizable filtering procedures which ac-
count for the different sample and/or omic data types.
For instance, the removal of host-derived sequences in
the context of human microbiomes is required for pro-
tecting the privacy of study subjects. The MT-specific in
silico rRNA removal procedure yielded varying fractions
of rRNA reads between the different MT datasets des-
pite the previous depletion of rRNA (section “Tailored
preprocessing and filtering of MG and MT data”), indi-
cating that improvements in wet-lab protocols are ne-
cessary. Given that rRNA sequences are known to be
highly similar, they are removed in IMP in order to miti-
gate any possible misassemblies resulting from such
reads and/or regions [65, 66]. In summary, IMP is de-
signed to perform stringent and standardized prepro-
cessing of MG and MT data in a data-specific way,
thereby enabling efficient data usage and resulting in
high-quality output.

It is common practice that MG and MT reads are
mapped against a reference (e.g., genes, genomes, and/or
MG assemblies) [28, 29, 40] prior to subsequent data in-
terpretation. However, these standard practices lead to
suboptimal usage of the original data. IMP enhances
overall data usage through its specifically tailored itera-
tive co-assembly procedure, which involves four mea-
sures to achieve better data usage and yield overall
larger volumes of output (i.e., a larger number of contigs
≥1 kb and predicted unique and complete genes).
First, the iterative assembly procedure leads to in-

creases in data usage and output volume in each add-
itional iterative assembly step (section “Data usage:
iterative assembly”). The exclusion of mappable reads
in each iteration of the assembly serves as a means of
partitioning the data, thereby reducing the complexity
of the data and overall, resulting in a higher cumula-
tive volume of output [60, 63, 67].
Second, the initial assembly of MT-based contigs en-

hances the overall assembly, as transcribed regions are
covered much more deeply and evenly in MT data,
resulting in better assemblies for these regions [43]. The
MT-based contigs represent high-quality scaffolds for
the subsequent co-assembly with MG data.
Third, the co-assembly of MG and MT data allows the

integration of these two data types while resulting in a
larger number of contigs and predicted complete genes
against which, in turn, a substantially higher fraction of
reads can be mapped (section “Data usage: multi-omic
iterative co-assembly”). Furthermore, the analyses of the
human fecal microbiome datasets (HF1–5) demonstrate
that the numbers of MG reads mapping to the IMP-
based iterative co-assemblies for each sample are
comparable to the numbers of reads mapping to the
comprehensive IGC reference database (Table 2). Previ-
ously, only fractions of 74–81% of metagenomic reads
mapping to the IGC have been reported [35]. However,
such numbers have yet to be reported for MT data, in
which case we observe lower mapping rates to the IGC
reference database (35.5–70.5%) compared to IMP-based
assemblies (Additional file 2: Table S3). This may be at-
tributed to the fact that the IGC reference database was
generated from MG-based assemblies only, thus creating
a bias [35]. Moreover, an excess of 90% of MG and MT
reads from the human fecal datasets (HF1–5) are
mappable to either the IGC reference database and/or
IMP-based iterative co-assemblies, emphasizing that a
combined reference-based and IMP-based integrated-
omics approach vastly improves data usage (Table 2).
Although large fractions of MG and/or MT reads can be
mapped to the IGC, a significant advantage of using a de
novo reference-independent approach lies within the fact
that reads can be linked to genes within their respective
genomic context and microbial populations of origin.
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Exploiting the maximal amount of information is espe-
cially relevant for microbial communities with small
sample sizes and which lack comprehensive references
such as the IGC reference database.
Fourth, the assembly refinement step via a contig-level

assembly with cap3 improves the quality of the assemblies
by reducing redundancy and increasing contiguity by col-
lapsing and merging contigs (section “Assembly quality:
multi-omic iterative co-assembly”). Consequently, our re-
sults support the described notion that the sequential use
of multi-kmer-based de Bruijn graph assemblers, such as
IDBA-UD and MEGAHIT, with overlap-layout-consensus
assemblers, such as cap3, result in improved MG assem-
blies [38, 62] but importantly also extend this to MG and
MTco-assemblies.
When compared to commonly used assembly strat-

egies, the IMP-based iterative co-assemblies consisted of
a larger output volume while maintaining a relatively
high quality of the generated contigs. High-quality as-
semblies yield higher quality taxonomic information and
gene annotations while longer contigs (≥1 kb) are a pre-
requisite for unsupervised population-level genome re-
construction [14, 19, 56] and subsequent multi-omics
data integration [39, 43, 44]. Throughout all the different
comparative analyses which we performed, IMP per-
formed more consistently across all the different datasets
when compared to existing methods, thereby emphasiz-
ing the overall stability and broad range of applicability
of the method (section “Assembly quality: multi-omic it-
erative co-assembly”).
Integrated analyses of MG and MT data with IMP pro-

vide the opportunity for analyses that are not possible
based on MG data alone, such as the detection of RNA vi-
ruses (section “Identification of RNA viruses”) and the
identification of transcriptionally active populations (sec-
tion “Identification of populations with apparent high
transcriptional activity”). The predicted/annotated genes
may be used for further analyses and integration of add-
itional omic datasets, most notably metaproteomic data
[39, 43, 44]. Furthermore, the higher number of complete
genes improves the downstream functional analysis, be-
cause the read counts per gene will be much more accur-
ate when having full length transcript sequences and will
increase the probability to identify peptides. More specific-
ally, the large number of predicted genes may enhance the
usage of generated metaproteomic data, allowing more
peptides, and thus proteins, to be identified.

Conclusions
IMP represents the first self-contained and standardized
pipeline developed to leverage the advantages associated
with integrating MG and MT data for large-scale ana-
lyses of microbial community structure and function in
situ [4, 6]. IMP performs all the necessary large-scale

bioinformatic analyses, including preprocessing, assembly,
binning (automated), and analyses within an automated,
reproducible, and user-friendly pipeline. In addition, we
demonstrate that IMP vastly enhances data usage to pro-
duce high-volume and high-quality output. Finally, the
combination of open development and reproducibility
should promote the general paradigm of reproducible re-
search within the microbiome research community.

Methods
The details of the IMP workflow, implementation, and
customizability are described in further detail. We also
describe the additional analyses carried out for assess-
ment and benchmarking of IMP.

Details of the IMP implementation and workflow
A Python (v3) wrapper script was implemented for user-
friendly execution of IMP via the command line. The
full list of dependencies, parameters (see below), and
documentation is available on the IMP website (http://
r3lab.uni.lu/web/imp/doc.html). Although IMP was de-
signed specifically for integrated analysis of MG and MT
data, it can also be used for single MG or MT analyses
as an additional functionality.

Reproducibility
IMP is implemented around a Docker container that
runs the Ubuntu 14.04 operating system, with all rele-
vant dependencies. Five mounting points are defined for
the Docker container with the -v option: i) input direc-
tory, ii) output directory, iii) database directory, iv) code
directory, and v) configuration file directory. Environ-
ment variables are defined using the -e parameter, in-
cluding: i) paired MG data, ii) paired MT data, and iii)
configuration file. The latest IMP Docker image will be
downloaded and installed automatically upon launching
the command, but users may also launch specific ver-
sions based on tags or use modified/customized versions
of their local code base (documentation at http://r3lab.
uni.lu/web/imp/doc.html).

Automation and modularity
Automation of the workflow is achieved using Snake-
make 3.4.2 [49, 51], a Python-based make language
implemented specifically for building reproducible bio-
informatic workflows and pipelines. Snakemake is inher-
ently modular and thus allows various features to be
implemented within IMP, including the options of i) exe-
cuting specific/selected steps within the pipeline, ii)
check-pointing, i.e., resuming analysis from a point of
possible interruption/termination, iii) analysis of single-
omic datasets (MG or MT). For more details regarding
the functionalities of IMP, please refer to the documen-
tation of IMP (http://r3lab.uni.lu/web/imp/doc.html).
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Input data
The input to IMP includes MG and/or MT FASTQ paired
files, i.e., pairs-1 and pairs-2 are in individual files. The
required arguments for the IMP wrapper script are metage-
nomic paired-end reads (“-m” options) and/or metatran-
scriptomic paired-end reads (“-t” option) with the specified
output folder (“-o” option). Users may customize the com-
mand with the options and flags described in the documen-
tation (http://r3lab.uni.lu/web/imp/doc.html) and in the
“Customization and further development” section.

Trimming and quality filtering
Trimmomatic 0.32 [52] is used to perform trimming and
quality filtering of MG and MT Illumina paired-end
reads, using the following parameters: ILLUMINACLIP:
TruSeq3-PE.fa:2:30:10; LEADING:20; TRAILING:20;
SLIDINGWINDOW:1:3; MAXINFO:40:0.5; MINLEN:40.
The parameters may be tuned via the command line or
within the IMP config file. The output from this step in-
cludes retained paired-end and single-end reads (mate
discarded), which are all used for downstream processes.
These parameters are configurable in the IMP config file
(section “Customization and further development”)

Ribosomal RNA filtering
SortMeRNA 2.0 [68] is used for filtering rRNA from the
MT data. The process is applied on FASTQ files for both
paired- and single-end reads generated from the trimming
and quality filtering step. Paired-end FASTQ files are in-
terleaved prior to running SortMeRNA. If one of the
mates within the paired-end read is classified as an rRNA
sequence, then the entire pair is filtered out. After running
SortMeRNA, the interleaved paired-end output is split
into two separate paired-end FASTQ files. The filtered se-
quences (without rRNA reads) are used for the down-
stream processes. All available databases provided within
SortMeRNA are used for filtering and the maximum
memory usage parameter is set to 4 GB (option: “-m
4000”), which can be adjusted in the IMP config file (sec-
tion “Customization and further development”).

Read mapping
The read mapping procedure is performed using the
bwa mem aligner [69] with settings: “ -v 1” (verbose output
level), “-M” (Picard compatibility) introducing an auto-
mated samtools header using the “-R” option [69]. Paired-
and single-end reads are mapped separately and the
resulting alignments are merged (using samtools merge
[70]). The output is written as a binary aligment map
(BAM) file. Read mapping is performed at various steps in
the workflow, including: i) screening for host or contamin-
ant sequences (section “Screening host or contaminant
sequences”), ii) recruitment of unmapped reads within the
IMP-based iterative co-assembly (section “Extracting

unmapped reads”), and iii) mapping of preprocessed
MG and MT reads to the final contigs. The memory
usage is configurable in the IMP config file (section
“Customization and further development”).

Extracting unmapped reads
The extraction of unmapped reads (paired- and single-
end) begins by mapping reads to a given reference
sequence (section “Read mapping”). The resulting BAM
file is used as input for the extraction of unmapped
reads. A set of paired-end reads are considered unmap-
pable if both or either one of the mates do not map to
the given reference. The unmapped reads are converted
from BAM to FASTQ format using samtools [70] and
BEDtools 2.17.0—bamToFastq utility [71]. Similarly, un-
mapped single-end reads are also extracted from the
alignment information.

Screening host or contaminant sequences
By default, the host/contaminant sequence screening is
performed by mapping both paired- and single-end reads
(section “Read mapping”) onto the human genome ver-
sion 38 (http://www.ncbi.nlm.nih.gov/projects/genome/
assembly/grc/), followed by extraction of unmapped reads
(section “Extracting unmapped reads”). Within the IMP
command line, users are provided with the option of i) ex-
cluding this procedure with the “--no-filtering” flag, ii)
using other sequence(s) for screening by providing the
FASTA file (or URL) using “--screen” option, or iii) speci-
fying it in the configuration file (section “Customization
and further development”).

Parameters of the IMP-based iterative co-assembly
The IMP-based iterative co-assembly implements MEGA-
HIT 1.0.3 [23] as the MT assembler while IDBA-UD 1.1.1
[22] is used as the default co-assembler (MG and MT),
with MEGAHIT [23] as an alternative option for the co-
assembler (specified by the “-a” option of the IMP com-
mand line). All de novo assemblies are performed on
kmers ranging from 25-mers to 99-mers, with an incre-
mental step of four. Accordingly, the command line
parameters for IDBA-UD are “--mink 25 --maxk 99 --step
4 - -similar 0.98 - -pre-correction” [22]. Similarly, the
command line parameters for MEGAHIT are “--k-min 25
- -k-max 99 - -k-step 4”, except for the MT assemblies
which are performed with an additional “--no-bubble” op-
tion to prevent merging of bubbles within the assembly
graph [23]. Furthermore, contigs generated from the MT
assembly are used as “long read” input within the “-l” flag
of IDBA-UD or “-r” flag of MEGAHIT [22, 23]. Kmer
ranges for the IDBA-UD and MEGAHIT can be adjusted/
specified in the configuration file (section “Customization
and further development”). Cap3 is used to reduce the re-
dundancy and improve contiguity of the assemblies using
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a minimum alignment identity of 98% (“-p 0.98”) with a
minimum overlap of 100 bases (“-o 100”), which are ad-
justable in the configuration file (section “Customization
and further development”). Finally, the extraction of reads
that are unmappable to the initial MT assembly and initial
co-assembly is described in the “Extracting unmapped
reads” section.

Annotation and assembly quality assessment
Prokka 1.11 [55] with the “- -metagenome” setting is used
to perform functional annotation. The default BLAST and
HMM databases of Prokka are used for the functional an-
notation. Custom databases may be provided by the user
(refer to the “Databases” and “Customization and further
development” sections for details).
MetaQUAST 3.1 [54] is used to perform taxonomic an-

notation of contigs with the maximum number of down-
loadable reference genomes set to 20 (“--max-ref-number
20”). In addition, MetaQUAST provides various assembly
statistics. The maximum number of downloadable refer-
ence genomes can be changed in the IMP config file (see
“Customization and further development” for details).

Depth of coverage
Contig- and gene-wise depth of coverage values are calcu-
lated (per base) using BEDtools 2.17.0 [71] and aggregated
(by average) using awk, adapted from the CONCOCT
code [16] (script: map-bowtie2-markduplicates.sh; https://
github.com/BinPro/CONCOCT) and is non-configurable.

Variant calling
The variant calling procedure is performed using Sam-
tools 0.1.19 [70] (mpileup tool) and Platypus 0.8.1 [72],
each using their respective default settings and which
are non-configurable. The input is the merged paired-
and single-end read alignment (BAM) against the final
assembly FASTA file (section “Read mapping”). The out-
put files from both the methods are indexed using tabix
and compressed using gzip. No filtering is applied to the
variant calls, so that users may access all the information
and filter it according to their requirements. The output
from samtools mpileup is used for the augmented
VizBin visualization.

Non-linear dimensionality reduction of genomic signatures
VizBin [56] performs non-linear dimensionality reduction
of genomic signatures onto contigs ≥1 kb, using default
settings, to obtain two-dimensional embeddings. Parame-
ters can be modified in the IMP config file (section
“Customization and further development”).

Automated binning
Automated binning of the assembled contigs is per-
formed using MaxBin 2.0. Default setting are applied

and paired-end reads are provided as input for abun-
dance estimation [20]. The sequence length cutoff is set
to be same as VizBin (section “Non-linear dimensionality
reduction of genomic signatures”) and is customizable
using the config file (section “Customization and further
development”).

Visualization and reporting
IMP compiles the multiple summaries and visualizations
into a HTML report [57]. FASTQC [73] is used to
visualize the quality and quantity of reads before and after
preprocessing. MetaQUAST [54] is used to report assem-
bly quality and taxonomic associations of contigs. A
custom script is used to generate KEGG-based [74] func-
tional Krona plots by running KronaTools [75] (script:
genes.to.kronaTable.py, GitHub URL: https://github.com/
EnvGen/metagenomics-workshop). Additionally, VizBin
output (two-dimensional embeddings) is integrated with
the information derived from the IMP analyses, using a
custom R script for analysis and visualization of the
augmented maps. The R workspace image is saved such
that users are able to access it for further analyses. All
the steps executed within an IMP run, including pa-
rameters and runtimes, are summarized in the form of
a workflow diagram and a log-file. The visualization
script is not configurable.

Output
The output generated by IMP includes a multitude of
large files. Paired- and single-end FASTQ files of prepro-
cessed MG and MT reads are provided such that the
user may employ them for additional downstream ana-
lyses. The output of the IMP-based iterative co-assembly
consists of a FASTA file, while the alignments/mapping
of MG and MT preprocessed reads to the final co-
assembly are also provided as BAM files, such that users
may use these for further processing. Predicted genes
and their respective annotations are provided in the vari-
ous formats produced by Prokka [55]. Assembly quality
statistics and taxonomic annotations of contigs are pro-
vided as per the output of MetaQUAST [54]. Two-
dimensional embeddings from the NLDR-GS are pro-
vided such that they can be exported to and further cu-
rated using VizBin [56]. Additionally, abundance and
expression information is represented by contig- and
gene-level average depth of coverage values. MG and
MT genomic variant information (VCF format), includ-
ing both SNPs and INDELs (insertions and deletions), is
also provided. The results of the automated binning
using MaxBin 2.0 [20] are provided in a folder which
contains the default output from the program (i.e., fasta
files of bins and summary files).
The HTML reports [57], e.g., HTML S1 and S2, com-

pile various summaries and visualizations, including, i)
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augmented VizBin maps, ii) MG- and MT-level func-
tional Krona charts [75], iii) detailed schematics of the
steps carried out within the IMP run, iv) list of parame-
ters and commands, and v) additional reports (FASTQC
report [73], MetaQUAST report [54]). Please refer to the
documentation of IMP for a detailed list and description
of the output (http://r3lab.uni.lu/web/imp/doc.html).

Databases
The IMP database folder (db) contains required data-
bases required for IMP analysis. The folder contains the
following subfolders and files with their specific content:

i. adapters folder — sequencing adapter sequences.
Default version contains all sequences provided
by Trimmomatic version 0.32 [52]

ii. cm, genus, hmm, and kingdom folders — contains
databases provided by Prokka 1.11 [55]. Additional
databases may be added into the corresponding
folders as per the instructions in the Prokka
documentation (https://github.com/tseemann/
prokka#databases)

iii. sortmerna folder — contains all the databases
provided in SortMeRNA 2.0 [68]. Additional
databases may be added into the corresponding
folders as per the instructions in the SortMeRNA
documentation (http://bioinfo.lifl.fr/RNA/sortmerna/
code/SortMeRNA-user-manual-v2.0.pdf)

iv. ec2pathways.txt — enzyme commission (EC) number
mapping of amino acid sequences to pathways

v. pathways2hierarchy.txt — pathway hierarchies used
to generated for KEGG-based functional Krona
plot (section “Visualization and reporting”)

Customization and further development
Additional advanced parameters can be specified via the
IMP command line, including specifying a custom config-
uration file (“-c” option) and/or specifying a custom data-
base folders (“-d” option). Threads (“- -threads”) and
memory allocation (“--memcore” and “- -memtotal”) can be
adjusted via the command line and the configuration file.
The IMP launcher script provides a flag (“- -enter”) to
launch the Docker container interactively and the option to
specify the path to the customized source code folder (“-s”
option). These commands are provided for development
and testing purposes (described on the IMP website and
documentation: http://r3lab.uni.lu/web/imp/doc.html). Fur-
ther customization is possible using a custom configuration
file (JSON format). The customizable options within the
JSON file are specified in individual subsections within the
“Details of the IMP implementation and workflow” section.
Finally, the open source implementation of IMP allows
users to customize the Docker image and source code of
IMP according to their requirements.

Iterative single-omic assemblies
In order to determine the opportune number of itera-
tions within the IMP-based iterative co-assembly strat-
egy an initial assembly was performed using IMP
preprocessed MG reads with IDBA-UD [22]. Cap3 [53]
was used to further collapse the contigs and reduce the
redundancy of the assembly. This initial assembly was
followed by a total of three assembly iterations, whereby
each iteration was made up of four separate steps: i) ex-
traction of reads unmappable to the previous assembly
(using the procedure described in the “Extracting un-
mapped reads” section), ii) assembly of unmapped reads
using IDBA-UD [22], iii) merging/collapsing the contigs
from the previous assembly using cap3 [53], and iv) evalu-
ation of the merged assembly using MetaQUAST [54].
The assembly was evaluated in terms of the per-iteration
increase in mappable reads, assembly length, numbers of
contigs ≥1 kb, and numbers of unique genes.
Similar iterative assemblies were also performed for

MT data using MEGAHIT [23], except CD-HIT-EST
[76] was used to collapse the contigs at ≥95% identity
(“-c 0.95”) while MetaGeneMark [77] was used to pre-
dict genes. The parameters and settings of the other pro-
grams were the same as those defined in the “Details of
the IMP implementation and workflow” section.
The aforementioned procedures were applied to all the

datasets analyzed within this article. The merged contig
sets (non-redundant) from the first iteration of both the
MG and MT iterative assemblies were selected to repre-
sent the IMP single-omics assemblies (IMP_MG and
IMP_MT) and were compared against co-assemblies.

Execution of pipelines
MetAMOS v1.5rc3 was executed using default settings.
MG data were provided as input for single-omic assem-
blies (MetAMOS_MG) while MG and MT data were
provided as input for multi-omic co-assemblies (MetA-
MOS_MGMT). All computations using MetAMOS were
set to use eight computing cores (“-p 8”).
MOCAT v1.3 (MOCAT.pl) was executed using de-

fault settings. Paired-end MG data were provided as in-
put for single-omic assemblies (MOCAT_MG) while
paired-end MG and MT data were provided as input
for multi-omic co-assemblies (MOCAT_MGMT). All
computations using MOCAT were set to use eight
computing cores (“-cpus 8”). Paired-end reads were first
preprocessed using the read_trim_filter step of MOCAT
(“-rtf”). For the human fecal microbiome datasets (HF1–5),
the preprocessed paired- and single-end reads were add-
itionally screened for human genome-derived sequences
(“-s hg19”). The resulting reads were afterwards assembled
with default parameters (“-gp assembly -r hg19”) using
SOAPdenovo.

Narayanasamy et al. Genome Biology  (2016) 17:260 Page 17 of 21



IMP v1.4 was executed for each dataset using different
assemblers for the co-assembly step: i) default setting
using IDBA-UD, and ii) MEGAHIT (“-a megahit”). Add-
itionally, the analysis of human fecal microbiome data-
sets (HF1–5) included the preprocessing step of filtering
human genome sequences, which was omitted for the
wastewater sludge datasets (WW1–4) and the biogas
(BG) reactor dataset. Illumina TruSeq2 adapter trimming
was used for wastewater dataset preprocessing since the
information was available. Computation was performed
using eight computing cores (“- -threads 8”), 32 GB
memory per core (“--memcore 32”) and total memory of
256 GB (“- -memtotal 256 GB”). The customized param-
eters were specified in the IMP configuration file (exact
configurations listed in the HTML reports [57]). The
analysis of the CAMI datasets were carried using the
MEGAHIT assembler option (“-a megahit”), while the
other options remained as default settings.
In addition, IMP was also used on a small scale dataset

to evaluate performance of increasing the number of
threads from 1 to 32 and recording the runtime (“time”
command). IMP was launched on the AWS cloud com-
puting platform running the MEGAHIT as the assembler
(“-a megahit”) with 16 threads (“- -threads 16”) and
122 GB of memory (“--memtotal 122”).

Data usage assessment
Preprocessed paired-end and single-end MG and MT
reads from IMP were mapped (section Read mapping)
onto the IMP-based iterative co-assemblies and IMP_MG
assembly. Similarly, preprocessed paired-end and single-
end MG and MT reads from MOCAT were mapped onto
the MOCAT co-assembly (MOCAT_MGMT) and the
MOCAT single-omic MG assembly (MOCAT_MG).
MetAMOS does not retain single-end reads; therefore,
preprocessed MG and MT paired-end reads from MetA-
MOS were mapped onto the MetAMOS co-assembly
(MetAMOS_MGMT) and MetAMOS single-omic MG
assembly (MetAMOS_MG).
Preprocessed MG and MT reads from the human fecal

datasets (HF1–5) were mapped using the same parameters
described in the “Read mapping” section to the IGC refer-
ence database [35] for evaluation of a reference-based ap-
proach. Alignment files of MG and MT reads mapping to
the IMP-based iterative co-assemblies and the aforemen-
tioned alignments to the IGC reference database were
used to report the fractions of properly paired reads
mapping in either IMP-based iterative co-assembly, IGC
reference database, or both. These fractions were then
averaged across all the human fecal datasets (HF1–5).

Assembly assessment and comparison
Assemblies were assessed and compared using Meta-
QUAST by providing contigs (FASTA format) from all

different (single- and multi-omic) assemblies of the same
dataset as input [54]. The gene calling function (“-f”) was
utilized to obtain the number of genes which were
predicted from the various assemblies. An additional par-
ameter within MetaQUAST was used for ground truth
assessment of the simulated mock (SM) community assem-
blies by providing the list of 73 FASTA format reference ge-
nomes (“-R”). The CPM measure was computed based on
the information derived from the results of MetaQUAST
[54]. In order to be consistent with the reported values (i.e.,
N50 length), the CPM measures reported within this article
are based on alignments of 500 bp and above, unlike the
1-kb cutoff used in the original work [62]. Prodigal was
also used for gene prediction to obtain the number of
complete and incomplete genes [61].

Analysis of contigs assembled from MT data
A list of contigs with no MG depth of coverage together
with additional information on these contigs (contig
length, annotation, MT depth of coverage) was retrieved
using the R workspace image, which is provided as part
IMP output (sections “Visualization and reporting” and
“Output”). The sequences of these contigs were ex-
tracted and subjected to a BLAST search on NCBI to de-
termine their potential origin. Furthermore, contigs with
length ≥1 kb, average depth of coverage ≥20 bases, and
containing genes encoding known virus/bacteriophage
functions were extracted.

Analysis of subsets of contigs
Subsets of contigs within the HF1 dataset were identified
by visual inspection of augmented VizBin maps gener-
ated by IMP. Specifically, detailed inspection of contig-
level MT to MG depth of coverage ratios was carried
out using the R workspace provided as part of IMP out-
put (sections “Visualization and reporting” and “Out-
put”). The alignment information of contigs to isolate
genomes provided by MetaQUAST [54] was used to
highlight subsets of contigs aligning to genomes of the
Escherichia coli P12B strain (E. coli) and Collinsella
intestinalis DSM 13280 (C. intestinalis).
An additional reference-based analysis of MetaQUAST

[54] was carried out for all the human fecal microbiome
assemblies (HF1–5) by providing the genomes of E. coli
P12B and C. intestinalis DSM 13280 as reference (flag:
“-R”) to assess the recovery fraction of the aforemen-
tioned genomes within the different assemblies.

Computational platforms
IMP and MetAMOS were executed on a Dell R820 ma-
chine with 32 Intel(R) Xeon(R) CPU E5-4640 @ 2.40GHz
physical computing cores (64 virtual), 1024 TB of DDR3
RAM (32 GB per core) with Debian 7 Wheezy as the op-
erating system. MOCAT, IMP single-omic assemblies, and
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additional analyses were performed on the Gaia cluster of
the University of Luxembourg HPC platform [78].
IMP was executed on the Amazon Web Services

(AWS) cloud computing platform using EC2 R3 type
(memory optimized) model r3.4xlarge instance with 16
compute cores, 122 GB memory, and 320 GB of storage
space running a virtual Amazon Machine Image (AMI)
Ubuntu v16.04 operating system.
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Additional file 1: Supplementary figures and notes. Figures S1–S3 and
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