
A PetriNet Mechanism for OLAP in NUMA
Simone Dominico

UFPR, Brazil
sdominico@inf.ufpr.br

Eduardo Cunha de Almeida
UFPR, Brazil

eduardo@inf.ufpr.br

Jorge Augusto Meira
SnT, University of Luxembourg

jorge.meira@uni.lu

ABSTRACT
In the parallel execution of queries in Non-UniformMemory Access
(NUMA), the operating system maps database processes/threads
(i.e., workers) to the available cores across the NUMA nodes. How-
ever, this mapping results in poor cache activity with many minor
page faults and slower query response time when workers and data
are allocated in di�erent NUMA nodes. �e system needs to move
large volumes of data around the NUMA nodes to catch up with
the running workers. Our hypothesis is that we mitigate the data
movement to boost cache hits and response time if we only hand
out to the system the local optimum number of cores instead of all
the available ones. In this paper we present a PetriNet mechanism
that represents the load of the database workers for dynamically
computing and allocating the local optimum number of CPU cores
to tackle such load. Preliminary results show that data movement
diminishes with the local optimum number of CPU cores.

CCS CONCEPTS
•Computer systems organization →Multicore architectures;
•Information systems →Data management systems;

KEYWORDS
Multi-core CPUs; OLAP; Abstract Model; NUMA

1 INTRODUCTION
�e emergence of multi-core hardware combined with the burgeon-
ing ingestion of data sparked the implementation of many new
Database Management Systems (DBMS). But, there are still many
DBMSs designed for symmetric multiprocessing (SMP) without
multi-core requirements in mind [2]. In these DBMSs concurrent
workers (threads or processes) can run across multiple cores with-
out exploring the hardware to its full potential. �e Operating
System (OS) maps the workers to as many cores as possible con-
sidering the hardware almost as “SMP on a chip”. However, this
mapping can be treacherous and eventually muck up performance
due to many reasons. Performance degrades for DBMSs executing
the thread per DBMS worker model [8], like MonetDB and MySQL,
where DBMS workers are mapped onto OS threads, because the
migration of a thread between chips requires �ushing cached data
leading to the loss of cache state [4]. Memory access to move data
around becomes the bo�leneck. In 2009, the cost to hit L3 cache

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
DaMoN’17, Chicago, IL, USA
© 2017 ACM. 978-1-4503-5025-9/17/05. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3076113.3076121

Figure 1: Schematic Diagram of the NUMA Architecture.

between cores in di�erent Non-Uniform Memory Access (NUMA)
nodes went up to 300 CPU cycles in the Intel Xeon 5500 [9] with
direct impact on query processing.

In modern DBMS, the workers of complex queries can run in par-
allel in di�erent CPU-cores across the NUMA nodes. For instance
in the NUMA machine depicted by Figure 1, the workers of query
Qi may run in both nodes 0 and 1. However, if data is allocated
in a di�erent NUMA node from the running workers, it must be
moved around increasing interconnection tra�c. Indeed, there is an
intrinsic urgency to take advantage of NUMA hardware, and many
algorithms for query processing [6, 14] are wri�en from ground
up for the new generation of DBMS. In the other hand, the legacy
DBMSs are still in production in many systems and revisiting their
code is costly and takes time [16].

In this paper, our contribution is a mechanism to allocate CPU
cores across NUMA nodes for alleviating interconnection tra�c in
OLAP. �is mechanism is based on PetriNets with the bene�t of
being lightweight (i.e., implemented as an adjacent matrix) and non-
intrusive to the DBMS and the OS. �e mechanism represents the
load of the database workers for dynamically computing the local
optimum number of CPU cores to tackle such load. Preliminary
results show less interconnection usage among NUMA nodes when
running a microbenchmark of the TPC-H with the local optimum
number of CPU cores allocated by our mechanism.

�is paper is organized as follows: Section 2 presents the prob-
lem of data movement in NUMA. Section 3 presents our PertiNet
mechanism to allocate/release cores. Section 4 presents empirical
results and Section 5 discusses related work. Finally, Section 6
concludes the paper.

2 PROBLEM: DATA MOVEMENT IN NUMA
We ran a microbenchmark to understand the problem of moving
data around NUMA nodes to catch up with the running workers.
We evaluated the usage of interconnection bandwidth and the CPU
load by running the TPC-H query Q6 on the MonetDB DBMS in
1 GB scale factor upon di�erent numbers of concurrent clients.
�ery Q6 has important data access locality pa�ern because the
data generator keeps the same selection propagation on date type
a�ributes across the database. �e restrictions on the o orderdate

DaMoN’17, May 15, 2017, Chicago, IL, USA Simone Dominico, Eduardo Cunha de Almeida, and Jorge Augusto Meira

(a) Average Bandwidth Usage of Interconnection with data in-memory for
TPC-H�ery 6 with Scale Factor 1 GB.

(b) Dense mode in the TPC-H�ery-mix [14] with 5 concurrent clients in Scale Factor of
100 GB.

Figure 2: Understanding the Interconnection Problem and Self-Adjusting the Number of Cores to a Given Workload.

a�ribute propagate the selection to the largest table LINEITEM up
to 1 to 36 selection fraction [3].

We ran the experiments on a 4-Node �ad-Core AMD Opteron
8387 2.8 GHz (4∗64KB L1, 4∗512KB L2, 6MB L3) with the nodes
interconnected by HyperTransport link (HT) of 14.4GB/s. �is
machine includes 256GB RAM and 1.8 TB of Disk running Debian
8. We let all the 16 cores available to MonetDB to measure what
happens in the current DBMS/OS setup. We also let the system
with a single core to establish the baseline metrics (e.g., response
time, cache faults). All the �gures present an average of 10 runs.

MonetDB does a good job exploiting data correlations from se-
lections and join instructions. It keeps the interesting tuples from
these operations in a mapping to reduce the volume of intermediary
results. However, the OS still allocates the MonetDB workers across
the nodes with direct impact on interconnection usage.

We can see this NUMA e�ect even with only one client gener-
ating almost 450MB/s of interconnection tra�c (see Figure 2(a)).
When increasing the number of concurrent clients, the tra�c also
increases up to a point when the workers started to share the same
memory bank with some decrease in the interconnection tra�c.

3 THE PRT-PRO IN A NUTSHELL
Our mechanism, called the PetriNet for Core Provisioning (PrT-
PRO), implements a PetriNet to abstract the load behaviour of the
DBMS up against parallel execution of queries. With this abstrac-
tion, the PrT-PRO does not require any modi�cations on the DBMS
or the OS. It monitors the resource consumption of the DBMS work-
ers (e.g., CPU load) and interacts with the OS to allocate or release
the CPU cores (e.g., via the cgroups Linux facility). �e PrT-PRO
is a graph implemented as an adjacent matrix with its edges rep-
resenting the current load of the workers. �e nodes represent
the DBMS performance states and also the state transitions to al-
locate/release the CPU cores. Our aim is to dynamically adapt the
number of cores to the given workload without le�ing all the cores
available to the OS, as depicted by Figure 2(b). For instance, when

93Checks 11ProvisionOverload

u ≥ 70 t1

u
r

r

r < 16
t5

r
u

r

r==16
t6

r

u

r

©«
Post t1 t5 t6
Checks 0 93 93
Over 11 0 0
Provision 0 11 11

ª®¬
Figure 3: Tokensthrough transition in the Overload sub-net
to allocate one core with u = 93%, r = 11 out of rd = 16 cores
and thmax = 70%.

the load of the workers goes up (represented by lines), the PetriNet
reacts to the load and allocates cores for the system (represented by
bars). Otherwise, if the load of the workers goes down, the PetriNet
releases idle cores from the system.

3.1 �e Local Optimum Number of Cores
Formally, the PrT-PRO is a bipartite graph representing the �ow
of tokens from one place downstream to another place around
the net topology. A token represents the number of CPU cores or
their load. For instance, Figure 3 depicts a subset of the PrT-PRO

A PetriNet Mechanism for OLAP in NUMA DaMoN’17, May 15, 2017, Chicago, IL, USA

representing the behavior of an overloaded DBMS. In this particular
state, the system runs with CPU load of u = 93% with r == 11
cores allocated out of rd == 16 in the NUMA nodes. According
to maximum thmax and minimum thmin load constraints de�ned
in the PrT-PRO (i.e., average of the running cores), if the system
is considered overloaded, then the PrT-PRO allocates more cores
to stimulate the system returning to a stable state. �e PrT-PRO
de�nes the di�erent performance states of the DBMS (e.g., Stable,
Idle, Overload) and two additional states (Checks and Provision) to
validate the current load of the workers and take action to allocate
cores.

Our goal is to keep the system with the local optimum number
of cores, because it leads the DBMS to the Stable state and avoids
le�ing the OS freely allocating cores all over the NUMA nodes. We
de�ne the local optimum number of cores, as follows:

∀w ∃ r |(thmin < u < thmax) ∧ p(r) ≥ p(rd) (1)
In our de�nition w is the workload, p(x) is the performance func-

tion and x assumes the number of running r or available cores rd . In
the implementation level, the tokens through and state transitions
update the PrT-PRO matrix. Performance overhead to update this
matrix is negligible.

3.2 �e Core Allocation Modes
In this section, we present two di�erent allocation modes: sparse
and dense for allocating cores in di�erent or in the same NUMA
node respectively. �e de�nition of the allocation mode function is
straightforward. Our function maps a NUMA node with index i to
its jth core and is de�ned by:

core(i, j) = d .i + j,where1 ≤ j ≤ d . (2)
In our function, d is a constant to represent a d-ary node machine

(e.g., d = 4 to represent our 4-Node �ad-Core AMD Opteron
machine). �e Sparse mode iterates over i, j to allocate one core at a
time in a di�erent NUMA node. For instance in our AMD Opteron
machine, we allocate cores sparsely, as follows: {0, 4, 8, 12}. �e
Dense mode iterates over j, i to allocate one core at time in the same
NUMA node. In our example, we allocate cores densely, as follows
{0, 1, 2, 3}.

4 RESULTS
We show preliminary results of our mechanism handing out cores
for the incoming workload to analyze whether the interconnection
bandwidth diminishes and the CPU load goes back to a stable state.

�e PrT-PRO ran with the CPU thresholds set to thmin = 10 and
thmin = 70 following the rules of thumb [11]. �ese thresholds
showed to be the most e�ective ones, once decreasing thmin lets
too many idle cores, while increasing thmax leads to contention
with too many busy cores.

We focus our analysis on a query-mix of simple and complex op-
erations with di�erent degree of parallelism (DOP) [6]. In particular,
we analyze the interconnection bandwidth following the access
pa�erns of the query mix [3]. In the dense mode, Q6 executed en-
tirely in the same NUMA node drawing the lowest interconnection
usage. With 5 clients, we observed 92% less minor page faults and

20.91 IPC compared to 8.68 IPC of MonetDB vanilla (Figure2(a)).
With smaller data movement, the response time speedups of Q6
improved from 1.1x (sparse) to 1.39x (dense).

We also ran a TPC-H query-mix [14] with 100GB database. In
this scenario, MonetDB with the PrT-PRO support required all the
16 cores only for a short time in the test machine and achieved
speedups from 1.06x (sparse) to 1.6x (dense) (Figure2(b)). �is shows
an opportunity for designing DBMS schedulers for NUMA.

5 RELATEDWORK
�ere are considerable research on multi-core hardware for query
processing in the literature. In [1], the authors present a thorough
investigation to understand the CPU consumption of DBMS work-
ers from a black-box perspective in closed-source DBMS. To cover
the lack of access to the source code, the authors investigate cache
data misses, cache instruction misses and CPU stalls. In our work,
we share the same black-box perspective, but for a di�erent reason.
We understand the current e�orts to build new DBMS for multi-
core (e.g., MonetDB1 and Peloton2), but the legacy ones are still in
production for a lot of systems and revisiting their code is costly
and takes time [7, 16]. �erefore, a non-intrusive approach of an
abstract model can be of great interest to database architects. A
non-intrusive approach is used in a di�erent context by the Green-
plum Database optimizer to interact to external DBMS and process
queries over shared nothing machines [13].

A technique to map incoming queries to speci�c cores is pre-
sented by the CARIC-DA tool [15]. �is mapping happens when
a query has been already processed to leverage cached data. �e
di�erence from our mechanism is that CARIC-DA still uses all the
cores to dispatch queries, which leads to large data movement.

Also targeting cache optimization, but more speci�cally the last
level cache (LLC), [10] presents a method called MCC-DB (Mini-
mizing Cache Con�icts in Multi-core Processors for Databases) with
performance improvements of 33% when executing OLAP in Post-
greSQL. MCC-DB classi�es queries in cache-sensitive and cache-
insensitive to feed the query execution scheduler. Similar to our
mechanism, in [5] NUMA cores are allocated one by one to mitigate
access to memory banks in distant nodes when the OS tries to keep
data locality. However, these approaches are intrusive requiring
modi�cations in the source-code of the DBMS (e.g., MonetDB and
PostgreSQL).

Recently, [12] presented an adaptive NUMA-aware data place-
ment scheduling mechanism taking into account database table
information. Although they describe their scheduling mechanism
is black-box, they still require information about the underlying
database to allocate the requested tables in speci�c NUMA nodes.
Another di�erence from our mechanism, they do not a�empt to
�gure out the number of cores to tackle a given workload, instead
they use the complete NUMA setup with direct impact on the in-
terconnection tra�c.

6 CONCLUSION
In this paper, we presented a non-intrusive multi-core alloca-
tion mechanism called PrT-PRO to diminish interconnection usage

1h�ps://www.monetdb.org/Documentation
2h�p://pelotondb.io/

DaMoN’17, May 15, 2017, Chicago, IL, USA Simone Dominico, Eduardo Cunha de Almeida, and Jorge Augusto Meira

among NUMA nodes in OLAP. Preliminary results showed perfor-
mance improvements when the PrT-PRO hands out to the OS the
local optimum number of cores, instead of the current approach
of handing out all the CPU-cores of the hardware all the time. To
hand out the local optimum number of cores, our mechanism keeps
track of the performance states of the DBMS on top of monitoring
facilities.

�e OS improved data locality when the PrT-PRO gradually
indicates the available cores, but the di�erent data access pa�erns
required di�erent allocation modes. In particular, the Dense mode
presented the best core allocation mode for MonetDB due to its
worker model. When multiple-workers of a query (i.e., threads) are
closed allocated, they share data within the same node and required
less data moved across multiple nodes.

Future work includes assessing whether the PrT-PRO support
is up to the task of indicating to the OS the �t core allocation for
di�erent DBMS architectures: thread per worker (e.g., MonetDB)
or process per worker (e.g., PostgreSQL). Moreover, we plan to
implement an adaptive version of our approach that combines the
dense and sparse modes with di�erent heuristics.

ACKNOWLEDGMENTS
�is work was partly funded by the National Counsel of Techno-
logical and Scienti�c Development (CNPq), grant 441944/2014-0.

REFERENCES
[1] Anastassia Ailamaki, David J. DeWi�, Mark D. Hill, and David A. Wood. 1999.

DBMSs on a Modern Processor: Where Does Time Go?. In VLDB. 266–277.
[2] Spyros Blanas, Yinan Li, and Jignesh M. Patel. 2011. Design and evaluation of

main memory hash join algorithms for multi-core CPUs. In SIGMOD. 37–48.

[3] Peter Boncz, �omas Neumann, and Orri Erling. 2014. TPC-H Analyzed: Hidden
Messages and Lessons Learned from an In�uential Benchmark. In TPCTC. 61–76.

[4] Je�ery A. Brown, Leo Porter, and Dean M. Tullsen. 2011. Fast thread migration
via cache working set prediction. In HPCA-17. 193–204.

[5] Mrunal Gawade and Martin L. Kersten. 2015. NUMA obliviousness through
memory mapping. In DaMoN. 4:1–4:7.

[6] Mrunal Gawade and Martin L. Kersten. 2016. Adaptive query parallelization in
multi-core column stores. In EDBT. 353–364.

[7] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stonebraker.
2008. OLTP �rough the Looking Glass, and What We Found �ere. In SIGMOD.
981–992.

[8] Joseph M. Hellerstein, Michael Stonebraker, and James Hamilton. 2007. Archi-
tecture of a Database System. Found. Trends databases 1, 2 (2007), 141–259.

[9] David Levinthal. 2009. Performance Analysis Guide for Intel Core i7 Processor and
Intel Xeon 5500 processors. Technical Report. Intel Corporation.

[10] Raymond R.-F. Liao and Andrew T. Campbell. 2001. Dynamic Core Provisioning
for �antitative Di�erentiated Service. In IWQoS ’01. 9–26.

[11] U. F. Minhas, R. Liu, A. Aboulnaga, K. Salem, J. Ng, and S. Robertson. 2012. Elastic
Scale-out for Partition-Based Database Systems. In SMDB.

[12] Iraklis Psaroudakis, Tobias Scheuer, Norman May, Abdelkader Sellami, and
Anastasia Ailamaki. 2016. Adaptive NUMA-aware data placement and task
scheduling for analytical workloads in main-memory column-stores. PVLDB 10,
2 (2016), 37–48.

[13] Mohamed A. Soliman, Lyublena Antova, Venkatesh Raghavan, Amr El-Helw,
Zhongxian Gu, Entong Shen, George C. Caragea, Carlos Garcia-Alvarado, Foyzur
Rahman, Michalis Petropoulos, Florian Waas, Sivaramakrishnan Narayanan,
Konstantinos Krikellas, and Rhonda Baldwin. 2014. Orca: a modular query
optimizer architecture for big data. In SIGMOD. 337–348.

[14] Lisa Wu, Andrea Lo�arini, Timothy K. Paine, Martha A. Kim, and Kenneth A.
Ross. 2014. Q100: the architecture and design of a database processing unit. In
ASPLOS. 255–268.

[15] Fang Xi, Takeshi Mishima, editor=”Bhowmick-Sourav S. Yokota, Haruo”, Curtis E.
Dyreson, Christian S. Jensen, Mong Li Lee, Agus Muliantara, and Bernhard �al-
heim. 2014. CARIC-DA: Core A�nity with a Range Index for Cache-Conscious
Data Access in a Multicore Environment. In DASFAA. 282–296.

[16] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael
Stonebraker. 2014. Staring into the Abyss: An Evaluation of Concurrency Control
with One �ousand Cores. PVLDB 8, 3 (2014), 209–220.

	Abstract
	1 Introduction
	2 Problem: Data Movement in NUMA
	3 The PrT-PRO in a Nutshell
	3.1 The Local Optimum Number of Cores
	3.2 The Core Allocation Modes

	4 Results
	5 Related Work
	6 Conclusion
	References

