Findel: Secure Derivative Contracts for
Ethereum

Alex Biryukov!, Dmitry Khovratovich?, Sergei Tikhomirov?
! alex.biryukov@uni.lu
SnT, University of Luxembourg
2 [xhovratovich,sergey.s.tikhomirov}@gmail.com
SnT, University of Luxembourg

Abstract. Blockchain-based smart contracts are considered a promis-
ing technology for handling financial agreements securely. In order to
realize this vision, we need a formal language to unambiguously de-
scribe contract clauses. We introduce Findel — a purely declarative fi-
nancial domain-specific language (DSL) well suited for implementation
in blockchain networks. We implement an Ethereum smart contract that
acts as a marketplace for Findel contracts and measure the cost of its
operation. We analyze challenges in modeling financial agreements in
decentralized networks and outline directions for future work.

Keywords: blockchain, smart contracts, financial engineering, domain-
specific language

1 Introduction

Financial derivatives — contracts defined in terms of other contracts — play a ma-
jor role in modern economyﬂ Financial industry lacks a universal domain-specific
language. Natural language is unsuitable for expressing contracts due to its in-
herent ambiguity. An influential paper [JES00] is one of many attempts to create
a rigorous DSL that would mitigate disputes and stimulate automated processing
of complex derivatives. It leverages ideas from functional programming and uses
a succinct set of basic building blocks to express financial agreements. A key fea-
ture of this notation is composability: new indefinitely complex derivatives can
be defined based on existing ones. Due to their nested structure, contracts in this
DSL are well-suited for automated processing, including valuation. The authors
do not specify an enforcement mechanism though: execution is performed by an
implicit environment. This work forms the basis for research [Gaill] [Schi4] and
commercial [FSNBQ9] [Mor16] projects.

The idea of smart contracts — computer programs for (semi-)automatic en-
forcement of agreements — dates back to mid-1990s [Sza97]. Blockchain networks,

3 The derivatives market is comparable in size to the world’s GDP. The gross market
value of all outstanding over-the-counter derivatives is $20.7 trillion [Bis16] (2016).
The world GDP in 2015 is $73,9 trillion [Worl6].

notably Ethereum, became the first practical implementation of this idea and
fueled interest in the concept [dC16]. Ethereum is a network of mutually distrust-
ing nodes, which nevertheless establish consensus on the results of computations
without the need of a trusted third party.

An obvious use case for blockchain-based smart contracts is to securely man-
age financial agreements. A naive approach to doing so is to encode the en-
tire logic of an agreement inside a smart contract. Expressing complex clauses
in a general-purpose programming language, like Ethereum’s Solidity, is error-
prone [ABCI16] [Sirl6]. We propose a safer approach that separates the descrip-
tion of a contract from its execution. A user only defines what a contract is ("1
owe you $10 tomorrow”), not how it is executed (”if the timestamp is greater
than tg, ...”). The entire execution logic is implemented inside a smart contract,
which is executed by nodes of a blockchain network. Thus we take the best of
both worlds: unambiguity and composability of a concise declarative DSL, and
trustless execution of blockchain-based smart contracts.

We introduce Findel (Financial Derivatives Language) — a declarative fi-
nancial DSL (Section [2|) capable of expressing most common derivatives (Ap-
pendix |A]). We implement an Ethereum contract that manages Findel contracts
(Section [3) and prove our approach viable in terms of cost (Section .

2 Findel contracts syntax

2.1 Definitions

Definition 1. A Findel contracﬁ C is a tuple (D,1,0), where D is the de-
scription, I is the issuer, and O is the owner (collectively called parties).

Definition 2. A description of a Findel contract is a tree with basic prim-
itives as leaves and composite primitives as internal nodes. The following
BNF grammar defines primitives:

(basic) ::= Zero | One ((currency))

(scale) ::= Scale ((number) , {primitive))

(scaleObs) ::= Scalelbs ((address) , (primitive))

(give) ::= Give ((primitive))

(and) ::= And ((primitive) , (primitive))

(or) ::= 0r ((primitive) , (primitive))

(if) ::= If ((address) , {primitive) , (primitive))

(timebound) ::= Timebound ((timestamp) , (timestamp) , {primitive))

4 We may refer to Findel contracts simply as contracts, when the distinction between
them and Ethereum smart contracts is clear from the context.

(composite) ::= (scale) | (scaleObs) | {give) | {and) | {or) | (if) | (timebound)
(primitive) ::= (basic) | (composite)

We distinguish between composite and basic primitives, because the former
contain other primitives as sub-nodes while the latter do not. Currency, number,
address, and timestamp are implementation dependent data types. D and I can
not be modified after a contract is created.

A financial company typically has templates for common contracts. Parties
who wish to sign an agreement write their names on a copy of a template and
sign it, making it unique and legally binding. In our model, Findel contracts
represent signed copies while their descriptions represent blank templates.

Traditional contracts usually contain clauses that regulate sub-ideal situa-
tions, i.e., a breach of contract. Findel does not distinguish between ”ideal”
and ”sub-ideal” situations. All right and obligations are expressed uniformly.
Section [3.3] discusses issues related to contract enforcement.

Table |1 informally defines the primitives’ execution semantics.

[Primitive [Informal semantics
Basic
Zero Do nothing.
One(currency) Transfer 1 unit of currency from the issuer to the owner.
Composite
Scale(k, c) Multiply all payments of ¢ by a constant factor k.
ScaleObs(addr, c) Multiply all payments of ¢ by a factor obtained from addr.
Give(c) Swap parties of c.
And(c1, ¢2) Execute c¢; and then execute cs.
Or(c1, ¢2) Give the owner the right to execute either ¢; or ¢z (not both).
If(addr, c1, c2) If b is true, execute c1, else execute ca, where b is a boolean value
obtained from addr.
Timebound(to,t1,¢) |Execute ¢, if the current timestamp is within [to, t1].

Table 1. Findel contract primitives

Table [2] illustrates the composability of Findel’}

2.2 Execution model
Findel contracts have the following lifecycle:

1. The first party issues the contract by specifying D, becoming its issuer.
This is a mere declaration of the issuer’s desire to conclude an agreement
and entails no obligations.

5 INF is a symbol representing infinite time, i.e., to < INF for every to. ¢ is an
implementation dependent constant intended for handling imperfect precision of
time signal in distributed networks.

Contract Definition

At(to, c) Timebound(to — 6, to + 0, ¢)
Before(to, ¢) Timebound(now, to, ¢)
After(to, c) Timebound(to, INF, c)

Sell(n, CURR, c) And(Give(Scale(n, One(CURR))), c)

Table 2. Examples of custom Findel contracts

2. The second party joins the contract, becoming its owner. As a result, both
parties accept certain rights and obligations.
3. The contract is executed immediately as follows:

(a) Let the root node of the contract’s description be the current node.

(b) If the current node is either Or or Timebound with tg > now, postpone
the execution: issue a new Findel contract with the same parties and the
current node as root. The owner can later demand its execution.

(c) Otherwise, execute all sub-nodes recursively{’}

(d) Delete the contract.

The execution outcome is fully determined by description D, execution time
t, and external data S retrieved at time ¢.

2.3 Example

Suppose Alice sells to Bob a zero-coupon (i.e., paying no interest) bond that
pays $11 in one year for $10:

Czep = And(Give(Scale(10, One(USD))), At(now+1 years, Scale(11, One(USD))))
We now show how c,; is executed step by step.

1. And executes; Bob temporarily owns two new contracts:
Alice’s contracts
Alice’s balance 100

Give(Scale(10,One(USD)))

At(now + 1 years, Scale(11, One(USD)))
Bob’s balance 10

2. Give executes; Alice owns a new contract:

Alice’s contracts [Scale(10, One(USD))

Alice’s balance 100

Bob’s contracts |At(now + 1 years, Scale(11, One(USD)))
Bob’s balance 10

Bob’s contracts

5 In case of Or, execute exactly one of the sub-nodes, according to the owner-submitted
value indicating the choice; delete the other one. It is the only primitive that requires
an additional user-supplied argument for execution.

3. Scaled One transfers $10 go from Bob to Alice:

Alice’s contracts
Alice’s balance 110

Bob’s contracts |At(now + 1 years, Scale(11, One(USD)))
Bob’s balance 0

4. In one year Bob claims $11 from Alice:

Alice’s contracts
Alice’s balance 99
Bob’s contracts
Bob’s balance 11

3 Implementation

We develop an Ethereum smart contract, referred to as marketplace, that keeps
track of users’ balances and lets them create, trade, and execute Findel contracts.
The Findel DSL is network-agnostic and can be implemented on top of any
blockchain with sufficient programming capabilities.

3.1 Ethereum overview

Ethereum is a decentralized smart contracts platform [Butl4] [WooI4]. Ethereum
full nodes store data, perform computations, and maintain consensus about the
state of all accounts using a proof-of-work mechanism similar to that in Bit-
coin. Programs (Ethereum smart contracts) are stored on the blockchain as
Ethereum virtual machine (EVM) bytecode, a Turing-complete language. Pro-
grammers write contracts in high-level languages targeting EVM, most popular
being Solidity and Serpent (we use the former).

A contract can call other contracts’ functions and send them units of Ether
— the Ethereum native cryptocurrency. To launch a particular function of a
contract, a user must send a well-formed transaction to the Ethereum network.

Each EVM operation has a fixed cost in gas. A user pays upfront for the
maximum amount of gas the computation is expected to consume and gets a
partial refund after a successful execution. If an exception (including ”out of
gas”) occurs, all changes are reverted, but the gas is not refunded.

3.2 Implementation details

Users and balances We implement the objects defined in Section with
struct data types Description and Fincontract. We also introduce the User
type that contains the user’s Ethereum address and balances in all supported
currencies. Users, descriptions and contracts are stored in their respective map-
pings (a generic key-value storage type in Solidity) in the marketplace’s storage.

The ultimate effect of every financial agreement is changing the parties’ bal-
ances (with clauses specifying when and under what conditions it should occur).
We stick to a naive approach: each user is assigned an array of balances for each

supported currency. Although easily implementable, it introduces a single point
of failure: the marketplace holds users’ deposits.

The only primitive that actually transfers value is One. The enforcePayment
function implements its execution. It subtracts a given amount in a given cur-
rency from the issuer’s balance and adds it to the owner’s balance. Our current
implementation does not enforce any constraints on users’ balances that would
prevent them from building up too much debt.

Ownership transfer In addition to issuer and owner (see Definition [I), a
Fincontract contains an auxiliary proposedOwner field. On contract creation,
issuer, owner, and proposedOwner are initialized to msg.sender. To transfer
ownership, the owner sets proposedQwner either to the address of the proposed
new owner or to 0x0. Only the proposed owner can (but does not have to) join
the contract; 0x0 means anyone can do s

Data sources and gateways Ethereum contracts are intentionally isolated
from the broader Internet and can not pull data from the Web, as it can not be
consistently replicated [Grel6]. Asynchronous requests usually solve the problem:
a smart contract records an Ethereum event with request parameters properly
encoded. A daemon process at an Ethereum node listens for such events, parses
requests, and sends them to the Web. The responses are then sent to the re-
questing smart contract on behalf of an Ethereum account affiliated with the
daemon. The submitted data may be accompanied by a proof of authenticity
(say, digital signature on a pre-approved public key)ﬂ

Financial derivatives often use external data. To prevent a malicious or care-
less user from creating a Findel contract using untrusted sources, we need to
guarantee data authenticity.

Definition 3. A gateway is a smart contract that conforms to the API:

— int getValue() Get the latest observed valueﬂ

— uint getTimestamp() Get the timestamp at which the latest value was
observed.

— bytes getProof() Get the authenticity proof for the latest value.

— update() Update the value.

" Beware of front-runners: Bob can monitor the network and try to join a contract
as soon as he sees Alice’s attempt to do so. Depending on the network latency and
miner’s behavior, either transaction can be confirmed.

8 BTCRelay is a prominent example: users submit Bitcoin block headers to a smart
contract, which implies their authenticity from the validity of easily verifiable proof-
of-work. After a header is stored on the Ethereum blockchain, users check with a
Merkle proof that the Bitcoin block contains a given transaction.

9 For simplicity, we only consider 256-bit integers as observable values. Boolean values
can be trivially simulated via integers.

A gateway connects to an external data source and stores the latest value ob-
served along with the time of observation, and, optionally, a cryptographic proof
of authenticity. We do not specify the type of proof a gateway provides. Possible
options include Oraclize [Oral6] / TLSNotary [Tls16] and Reality Keys [Real6].

The marketplace queries a gateway at execution time, if necessary. If the value
is fresh and the proof is valid, the execution proceeds, otherwise it is aborted
and all changes are reverted. Since a Findel contract may use multiple gateways,
the owner is advised to update them all shortly before execution.

A possible improvement would be for a gateway to store not only the latest
observed value, but a sequence of historical data. This would allow for more
straightforward modeling of derivatives that depend on multiple data points,
such as barrier options (execute either ¢; or ¢y depending on whether an observ-
able value touches a pre-defined threshold between acquisition and maturity).

We assume that the original data sources (e.g., feeds of reputable finan-
cial media) are trustworthy. An extra safety catch would be to query multiple
sources, exclude outliers and return an aggregated value. Authenticity of data
sources is guaranteed by a secure connection (e.g., TLS) and the existing PKI for
authentication ([CF14] and [LC16] propose blockchain-based PKI architectures).

Gateways without publicly available source code should not be trusted.

Execution implementation The executeRecursively function implements
the execution logic defined in Section[2:2]and returns true if executed completely
(without creating new contracts) and false otherwise. The execution of an
expired contract (fy < mow) returns true unconditionallyf’] and deletes the
contracdﬂ Every step in the life cycle of a Findel contract issues a system-wide
notification (Event), allowing users to keep track of contracts they are interested
in.

Our implementation deviates from the model (Section in that the exe-
cution of contracts is not guaranteed. Ethereum contracts can not act on their
own: the owner must issue a transaction to trigger execution. The owner may be
unable to do so due to either opportunistic behavior, or technical problems, such
as loss of connectivity or lack of ether. Thus we presume that Findel contracts
are not guaranteed to execut@ We discuss this issue in Section

We model unbounded Findel contracts (i.e., with INF as the upper time
bound) using a global expiration constant inside the marketplace contract. Ev-
ery Findel contract in the Ethereum implementation can only be executed within
expiration time units after creation (e.g., 10 years).

10 By definition, an expired contract is equivalent to Zero.

11 An expired contract should also be deleted even if its owner is offline forever. Our
current implementation does not handle the latter case, though it may be consid-
ered an attack vector due to increasing storage usage. A possible approach is for a
marketplace to offer rewards for keeping track of expired contracts and triggering
their deletion.

12 Compare to [JESOO]: "If you acquire (¢! or ¢2) you must immediately acquire either
¢l or ¢2 (but not both)”. We can not force a user to make this decision.

3.3 Possible improvements

We now discuss the shortcomings of our model and ways to improve it.

Enforcement As mentioned in Section[3.2] Findel contracts are not guaranteed
to execute. At first sight, it is a major problem, as contract must impose obli-
gations on parties. In traditional finance, a trusted third party and, ultimately,
the state law enforcement are responsible for punishing violators. The closest we
can arguably get to enforcement is a conditional penalty implemented inside a
Findel contract itself.

Assume Alice issues and Bob joins the following contract:

C = Before(ty, Or(Give(One(USD)), Give(One(EUR))))

C obliges Bob to give Alice either $1 or € 1 before time t,. If Bob fails to make
a choice on time, Alice does not get the money she was planning to receivﬂ
To prevent it, Alice attaches a ”penalty” clause:

P = After(to, U (cexecuted; Zero, Scale(2, One(USD))))

Cezecuted 18 the address of a gateway that indicates whether a particular
Findel contract was executed. When Bob joins Cpepairy = And(C, Give(P)),
Alice obtains the right to claim $2 from Bob if he fails to fulfil his obligations.

Note that Cpenairy references Cegecuted, Which in turn must be aware of
Chpenaity- Thus the gateway should be either adjustable (with Alice tuning the
gateway with a special transaction) or generic (reports the state of a Findel
contract taking its id as an argument).

Defaulting on debt A concise financial DSL does not prevent borrowers from
defaulting on their debt. It is up to a marketplace to solve this problem.

Requiring a 100% guarantee deposit seems safe, but is questionable from an
economical standpoint. People and organizations borrow money to invest it. The
no-arbitrage principle states that there is no guaranteed way to make a profit.
The investor reward, e.g. interest, is the premium for taking the inevitable risk
of business failure. Thus, this approach hardly makes economical sense.

A marketplace can also mimic the fractional reserve banking model by re-
quiring users to always be able to pay at least n% of their debt and punishing
violators (e.g., by withholding their guarantee deposit). It does not solve the
problem of defaults completely though. In legacy finance, users have a fixed
government-issued identity, allowing banks to maintain a common database of
their credit history. In a decentralized setting, users can create a practically in-
definite number of identities. A production-ready marketplace should therefore
take measures to combat Sybil attacks.

'3 In this particular case, an equivalent contract Give(Or(One(USD),One(EUR)))
solves the issue. In more complex cases this is not necessarily the case.

Modeling balances with Tokens A more refined approach to modeling users’
balances is to use tokens — a de-facto standard APT [Tok16] for implementing
transferable units of value in Ethereum. Tokens are primarily used to represent
company shares during so-called initial coin offerings [[col7]. We assume that
tokens can be freely exchanged to any currency the marketplace operates with.
Given the address T of the Ethereum token contract, any Ethereum contract
can query the balance of any user U, and transfer its tokens (if it has any) to
an arbitrary address. Suppose Alice and Bob are token holders. Alice calls a
standard API function approve to allow Bob to withdraw a certain amount of
tokens from her account. Bob later calls transferFrom to transfer the tokens.
The transfer succeeds if Alice has enough funds.

We suggest the following procedure. A Findel contract’s issuer approves the
marketplace with the number of tokens he is potentially liable with. The mar-
ketplace implements enforcePayment by calling transferFrom thus trying to
withdraw tokens from the issuer and send them to the owner. Certainly, for the
execution to complete, the owner must either have enough tokens in the account,
or execute another Findel contract to fill it up. Thus we delegate the banking
functionality to the token smart contract and free the marketplace from holding
and transferring money [Khol6].

Multi-party contracts We might want to extend the Findel contracts model
to support more than two parties. An example of a three-party contract is buying
a car with insurance. A user can only buy a car while simultaneously signing
an insurance contract. We can express the two contracts (buyer — car dealer,
buyer — insurance company) in Findel DSL, but executing them atomically is
non-trivial. A possible way would be to use a gateway that keeps track of the
state of Findel contracts. If insuranceSigned indicates whether a user joined the
insurance contract, then buying with insurance looks like this (assuming CAR
is a token representing the ownership over a car):

If (insuranceSigned, And(Give(Scale(P, One(USD)), One(CAR))), Zero)

Local client In order to communicate with a Findel marketplace, users need
client-side software. Besides communicating with the Ethereum network, it might
also implement other functions:

— Create and store Findel contracts locally.

— Calculate the current value and other properties of Findel contracts based on
assumptions about external data (e.g., the € / $ exchange rate is between 1.0
and 1.2) or valuation techniques such as the lattice binomial model [CRR79].

— Keep track of relevant Findel contracts and perform actions depending on
their state (e.g., if ¢; gets executed, join ¢3).

— Store a predefined list of addresses of trusted gateways, similar to a list of
trusted certificate authorities in web browsers.

3.4 Platform limitations

A Turing-complete programming language does not mean that all a programmer
can think of can be implemented inside an Ethereum contract. Gas costs aside,
the Ethereum network architecture implies certain limitations.

Lack of precise clock Timing is important for almost all financial contracts.
Clock synchronization is a hard problem in decentralized systems, even more so
if participants can profit from manipulating timestamps. Blocks in Ethereum are
produced every 15 seconds; block timestamps provide causal ordering. Solidity
contains keywords for time units, but timestamps are ultimately controlled by
miners.

Imperative paradigm Functional programming paradigm is well suited for
developing embedded DSLs [Gib13]. The original papers by Peyton Jones et al.
as well as all existing implementations of their DSL use functional languages
(Haskell [JESO0] [JEO3] [vS07], OCaml [Lex00], Scala [Wall2] [Chal5]). In con-
trast, Solidity and Serpent are imperative. Functional languages for Ethereum
are in a very early stage of development [FpE17].

Underdeveloped type system Ethereum supports neither decimal nor floating-
point typesizl, which often model amounts of money and currency exchange rates
respectively. The only numeric data types in Solidity are integers of various bit
lengths. Moreover, Solidity lacks type parameters, which could be useful for
Gateways (i.e., Gateway<int>).

4 (Gas costs

Every computational step in Ethereum is charged in terms of gas. Despite the
use of expensive permanent storage operations, the cost of running our imple-
mentation is not prohibitively high for a proof-of-concept.

We measure gas costs of managing common Findel contracts as assessed
by the Browser-solidity compiler [BrolG}E for a marketplace supporting two
currencies (referred to as USD and EUR and not tied to any asset). The difference
between transaction and execution cost is that the former includes the overhead
of creating a transaction (i.e., a call from a client) and the latter does not (i.e., a
call from another contract) [Rev16].

4.1 Setup and helper functions

Registering a user implies initializing the user’s balances to zero for all supported
currencies. For testing purposes, we implement a gateway that uses the current
timestamp as data source and calculates a single keccak256 hash as a dummy
authenticity proof.

14 A likely rationale: rounding issues break consensus.
15 Solidity version: 0.4.4+commit.4633f3de. Emscripten.clang

Operation Transaction cost |Execution cost
Create a marketplace smart contract 2221599 1681095
Register a user 79462 58190

Check user’s balance 47667 26395

Get contract info 24407 959

Get description info 24706 1258

Update a gateway 36922 15650

Table 3. Cost of setup and helper functions (in gas units)

4.2 Managing common derivatives

In our measurements, we omit cases where parties split the execution cost. We
assume that the issuer only pays for contract creation and issuance whereas
the owner pays for the execution. For simple Findel contracts, two Ethereum
transactions (one from each party) represent the whole lifecycle of a Findel
contract. In more complex cases, when a contract executes in multiple steps, we
sum up all costs that the owner bears to execute it completely. We also do not
account for gateway update costs.

Operation Create and issue Join and execute
Tx cost Exec cost |Tx cost Exec cost

One 184239 177967 58493 93602
Currency exchange (fixed rate) 663149 656877 101878 138430
Currency exchange (market rate) 300842 294570 59822 96196
Zero-coupon bond 373783 367511 143891 201750
Bond with two coupons 939566 933294 346871 477100
European option 519628 513356 278191 411103
Binary option 402359 396087 59826 96204

Table 4. Cost of handling Findel contracts for common derivatives (in gas units)

As of January 2017, the gas cost 10~? ether per unit [Eth17]; the price of
ether fluctuated around $10 [Worl7]. That brings the cost of a typical Findel
contract operation (10° — 10° gas units) to 1.8 — 18 US cent.

5 Related work

[Sch13] and [Hvil0] review financial DSLs and related projects. [STM16] and [CBB16]
explore approaches to smart contract programming languages.

5.1 Composable contracts by Peyton Jones et al.

Our work is inspired by the composable contracts as defined in [JEO03], from
which we borrow some of our primitives (Zero, One, Scale, And, Or). It turns out

though that this notation is not directly transferable to blockchain environments
(at least to Ethereum) due to the way it formalizes temporal conditions (when,
until). Blockchains differ substantially from traditional centralized marketplaces
in how they model conditions. For this reason we introduced I f and Timebound
primitives to express causal and temporal conditions respectively.

5.2 Logic Portfolio Theory by Steffen Schuldenzucker

Steffen Schuldenzucker in [Schl6] proposes an axiomatic approach to proving
no-arbitrage relationships between contracts based on the notation from [JE03].
Using a rigorously defined algebra of contracts, he proves well-known financial
theorems, such as the put-call parity. Formal semantics of Findel can be intro-
duced using a similar approach. This would enable formal verification techniques
that could substantially increase confidence in the safety of our language.

5.3 Preliminary draft by Nick Szabo

Smart contracts pioneer Nick Szabo in [Sza02] presents ”a mini-language” that
can be characterized as a middle ground between programming and legal speak.
The basic building block is a right (e.g., to receive $100 now). Rights are com-
bined using well-defined operators (when, then, also, with — analogous to our
primitives) and performed depending on external events. Parties are assumed
to have a trusted source of real-world information. The language is not purely
declarative: contracts may perform calculations and save values in state vari-
ables, which allows for more ﬂexibility@

6 Conclusion

Smart contracts in public blockchain networks seem to be a perfect match for
modeling financial agreements. Their unique value proposition is trustless exe-
cution, which reduces counterparty risks. We introduced Findel — a declarative
financial DSL built upon ideas from previous research in financial engineer-
ing. Formalizing contract clauses using Findel makes them unambiguous and
machine-readable. We proved Ethereum to be a suitable platform for trading
and executing Findel contracts.

Nevertheless, the whole smart contract field is still in its infancy. Program-
mers who wish to implement a usable smart contract for handling financial
agreements need to be aware of the forthcoming challenges: from fundamen-
tal limitations of the blockchain network architecture to imperfect development
environment.

16 Szabo makes a case against state variables in general, stating that ”they should be
avoided unless utterly necessary”.

References

ABC16. Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks
on ethereum smart contracts. TACR Cryptology ePrint Archive, 2016:1007,
2016.

Bis16. Statistical release. otc derivatives statistics at end-june 2016, 2016. https:
//www.bis.org/publ/otc_hyl1611.pdf.

Brol6. Browser-solidity online compiler, 2016. |https://ethereum.github.io/
browser-solidity/|

Butl4. A next-generation smart contract and decentralized application platform,
2014. https://github.com/ethereum/wiki/wiki/White-Paper.

CBB16. Christopher D. Clack, Vikram A. Bakshi, and Lee Braine. Smart contract
templates: foundations, design landscape and research directions. CoRR,
abs/1608.00771, 2016.

CF14. Sophia Yakoubov Conner Fromknecht, Dragos Velicanu. A decentralized
public key infrastructure with identity retention. Cryptology ePrint Archive,
Report 2014/803, 2014. http://eprint.iacr.org/2014/803.

Chals. Shahbaz Chaudhary. Adventures in financial and software engineering, 2015.
https://falconair.github.io/2015/01/30/composingcontracts.html.

CRR79. John C Cox, Stephen A Ross, and Mark Rubinstein. Option pricing: A
simplified approach. Journal of financial Economics, 7(3):229-263, 1979.

dC16. Michael del Castillo. Jp morgan, credit suisse among 8 in lat-
est bank Dblockchain test, 2016. http://www.coindesk.com/
jp-morgan-credit-suisse-among-8-in-latest-bank-blockchain-test/.

Eth17. Ethstats, 2017. https://ethstats.net/.

FpE17. Functional programming for ethereum, 2017. https://github.com/
fp-ethereum/fp-ethereum,

FSNBO09. Simon Frankau, Diomidis Spinellis, Nick Nassuphis, and Christoph Burgard.
Commercial uses: Going functional on exotic trades. Journal of Functional
Programming, 19(01):27-45, 20009.

Gaill. Jean-Marie Gaillourdet. A software language approach to derivative con-
tracts in finance. 2011. http://ceur-ws.org/Vol-7560/yrs06.pdf.
Gib13. Jeremy Gibbons. Functional programming for domain-specific languages.

In CEFP, volume 8606 of Lecture Notes in Computer Science, pages 1-28.
Springer, 2013.

Grel6. Gideon Greenspan. Why many smart contract use cases
are simply impossible, 2016. http://www.coindesk.com/
three-smart-contract-misconceptions/.

Hvil0. Tom Hvitved. A survey of formal languages for contracts. In Fourth

Workshop on Formal Languages and Analysis of Contract—Oriented Soft-
ware (FLACOS10), pages 29-32. Citeseer, 2010.

Icol7. Icos, token sales, crowdsales, 2017. |https://www.smithandcrown.com/
icos/.
JEO3. Simon L. Peyton Jones and Jean-Marc Eber. How to write a financial con-

tract. The Fun of Programming, 2003.

JES00. Simon L. Peyton Jones, Jean-Marc Eber, and Julian Seward. Composing
contracts: an adventure in financial engineering, functional pearl. In ICFP,
pages 280-292. ACM, 2000.

Khol6. Dmitry Khovratovich. debt.sol, 2016.
https://gist.github.com/khovratovich/45f68082b556b45eb64e8e1c3eb82892,

https://www.bis.org/publ/otc_hy1611.pdf
https://www.bis.org/publ/otc_hy1611.pdf
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://github.com/ethereum/wiki/wiki/White-Paper
http://eprint.iacr.org/2014/803
https://falconair.github.io/2015/01/30/composingcontracts.html
http://www.coindesk.com/jp-morgan-credit-suisse-among-8-in-latest-bank-blockchain-test/
http://www.coindesk.com/jp-morgan-credit-suisse-among-8-in-latest-bank-blockchain-test/
https://ethstats.net/
https://github.com/fp-ethereum/fp-ethereum
https://github.com/fp-ethereum/fp-ethereum
http://ceur-ws.org/Vol-750/yrs06.pdf
http://www.coindesk.com/three-smart-contract-misconceptions/
http://www.coindesk.com/three-smart-contract-misconceptions/
https://www.smithandcrown.com/icos/
https://www.smithandcrown.com/icos/
https://gist.github.com/khovratovich/45f68082b556b45eb64e8e1c3eb82892

LC16.

Lex00.
Morl6.
Oral6.
Real6.
Rev16.
Sch13.

Sch14.

Sch16.

Sirl6.

STM16.

Sza97.

Sza02.

Tls16.
Tok16.

vS07.

Wall2.

Wool4.

Worl6.

Worl7.

Karen Lewison and Francisco Corella. Backing rich credentials with a
blockchain pki, 2016. https://pomcor.com/techreports/BlockchainPKI.
pdfl

Ocaml at lexifi, 2000. https://www.lexifi.com/blogs/ocaml.

Sofus Mortensen. Universal contracts, 2016. https://github.com/corda/
corda/tree/master/experimental/src.

Oraclize, 2016. http://www.oraclize.it/\

Reality keys, 2016. https://www.realitykeys.com/.

Raine Rupert Revere. What is the difference between transaction
cost and execution cost in browser solidity?, 2016. https://ethereum.
stackexchange.com/q/5812/5113|

Todd Schiller. Financial domain-specific language listing, 2013. http://wuw.
dslfin.org/resources.htmll

Steffen Schuldenzucker. Decomposing contracts. 2014. http://www.ifi.
uzh.ch/ce/people/schuldenzucker/decomposingcontracts.pdfl

Steffen Schuldenzucker. An axiomatic framework for no-arbitrage relation-
ships in financial derivatives markets. 2016. http://www.ifi.uzh.ch/ce/
publications/LPT.pdf.

Emin Giin Sirer. Thoughts on the dao hack, 2016. http://
hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/.
Pablo Lamela Seijas, Simon Thompson, and Darryl McAdams. Scripting
smart contracts for distributed ledger technology. Cryptology ePrint Archive,
Report 2016/1156, 2016. http://eprint.iacr.org/2016/1156.

Nick Szabo. Formalizing and securing relationships on public networks, 1997.
http://journals.uic.edu/ojs/index.php/fm/article/view/548.

Nick Szabo. A formal language for analyzing contracts, 2002. http://
nakamotoinstitute.org/contract-language/.

Tlsnotary, 2016. https://tlsnotary.org/.

Ethereum improvement proposal: Token standard, 2016. https://github.
com/ethereum/EIPs/issues/20.

Anton van Straaten. Composing contracts, 2007. https://web.archive.
org/web/20130814194431/http://contracts.scheming.org.

Channing Walton. Scala contracts project, 2012. https://github.com/
channingwalton/scala-contracts/wiki.

Gavin Wood. FEthereum: A secure decentralised generalised transaction
ledger, 2014. http://gavwood. com/paper.pdf.

Gross domestic product 2015, 2016. |http://databank.worldbank.org/
data/download/GDP.pdf.

Worldcoinindex, 2017. https://www.worldcoinindex.com/coin/ethereum.

A Examples

— A fixed-rate currency exchange: the owner sells €10 for $11.

And(Give(Scale(10, One(EUR))), Scale(11, One(USD))

— A market-rate currency exchange: the owner sells €10 at market rate
as reported by the gateway at addr.

Scale(10, And(Give(One(EUR)), ScaleObs(addr, One(USD))))

https://pomcor.com/techreports/BlockchainPKI.pdf
https://pomcor.com/techreports/BlockchainPKI.pdf
https://www.lexifi.com/blogs/ocaml
https://github.com/corda/corda/tree/master/experimental/src
https://github.com/corda/corda/tree/master/experimental/src
http://www.oraclize.it/
https://www.realitykeys.com/
https://ethereum.stackexchange.com/q/5812/5113
https://ethereum.stackexchange.com/q/5812/5113
http://www.dslfin.org/resources.html
http://www.dslfin.org/resources.html
http://www.ifi.uzh.ch/ce/people/schuldenzucker/decomposingcontracts.pdf
http://www.ifi.uzh.ch/ce/people/schuldenzucker/decomposingcontracts.pdf
http://www.ifi.uzh.ch/ce/publications/LPT.pdf
http://www.ifi.uzh.ch/ce/publications/LPT.pdf
http://hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/
http://hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/
http://eprint.iacr.org/2016/1156
http://journals.uic.edu/ojs/index.php/fm/article/view/548
http://nakamotoinstitute.org/contract-language/
http://nakamotoinstitute.org/contract-language/
https://tlsnotary.org/
https://github.com/ethereum/EIPs/issues/20
https://github.com/ethereum/EIPs/issues/20
https://web.archive.org/web/20130814194431/http://contracts.scheming.org
https://web.archive.org/web/20130814194431/http://contracts.scheming.org
https://github.com/channingwalton/scala-contracts/wiki
https://github.com/channingwalton/scala-contracts/wiki
http://gavwood.com/paper.pdf
http://databank.worldbank.org/data/download/GDP.pdf
http://databank.worldbank.org/data/download/GDP.pdf
https://www.worldcoinindex.com/coin/ethereum

— A zero-coupon bond: the owner receives $100 at .

Timebound(ty — 4, to + 0, Scale(100, One(USD)))

— A bond with coupons: the owner receives $1000 (face value) in three years
(maturity date) and two coupon payments of $50 at regular intervals before
the maturity date.

And(At(now + 3 years, ¢rqce), And(At(now + 1 years, cepp), At(now + 1 years, cepn)))
where

Cface = Scale(1000,0ne(USD)), cepn = Scale(50, One(USD))

— A future (a forwarﬂ: parties agree to execute the underlying contract ¢
at to.

Timebound(ty — d,ty + 9, ¢)

— An option: the owner can choose at (European option) or before (American
option) time ¢ty whether to execute the underlying contract c.

Timebound(ty — d, to + 0, Or(c, Zero))

Timebound(now, tg + §, Or(c, Zero))

— A binary option: the owner receives $10 if a predefined event took place
at to and nothing otherwise.

If (addr, Scale(10, One(U S D)), Zero)

17 In traditional finance, a future is a standardized contract while a forward is not.
This distinction is not relevant for our model.

	Findel: Secure Derivative Contracts for Ethereum

