
Validating a Peer-to-Peer Evolutionary

Algorithm

Juan Luis Jiménez Laredo1, Pascal Bouvry1,
Sanaz Mostaghim2, and Juan Julián Merelo Guervós3

1 Faculty of Sciences, Technology and Communication,
University of Luxembourg, Luxembourg City L-1359, Luxembourg.

e-mail: {juan.jimenez,pascal.bouvry}@uni.lu
2 Karlsruhe Institute of Technologie

Kaiserstrasse 89, Karlsruhe D-76133, Germany.
e-mail: sanaz.mostaghim@kit.edu

3 University of Granada. ATC-ETSIIT
Periodista Daniel Saucedo Aranda s/n 18071, Granada, Spain.

e-mail: jmerelo@geneura.ugr.es

Abstract. This paper proposes a simple experiment for validating a
Peer-to-Peer Evolutionary Algorithm in a real computing infrastructure
in order to verify that results meet those obtained by simulations. The
validation method consists of conducting a well-characterized experiment
in a large computer cluster of up to a number of processors equal to the
population estimated by the simulator. We argue that the validation
stage is usually missing in the design of large-scale distributed meta-
heuristics given the difficulty of harnessing a large number of computing
resources. That way, most of the approaches in the literature focus on
studying the model viability throughout a simulation-driven experimen-
tation. However, simulations assume idealistic conditions that can influ-
ence the algorithmic performance and bias results when conducted in a
real platform. Therefore, we aim at validating simulations by running a
real version of the algorithm. Results show that the algorithmic perfor-
mance is rather accurate to the predicted one whilst times-to-solutions
can be drastically decreased when compared to the estimation of a se-
quential run.

1 Introduction

Given that most computer devices nowadays are connected to the Internet con-
tinuously, volunteer computing systems [2] have arisen as an alternative to su-
percomputers or wide-area grid systems. Volunteer computing systems usually
behave in a centralized fashion which might be a problem when huge numbers
of clients are simultaneously connected, posing a challenge to the server, or con-
verting it into a bottleneck in the case the systems become especially large.
Peer-to-Peer (P2P) systems, where no node has any special role, do take advan-
tage of the nature of the Internet and take more advantage of the bandwidth
each node is connected with [14].



These systems have received much attention from the scientific community
within the last decade. In this context and under the term of P2P optimization,
many optimization heuristics such as Evolutionary Algorithms (EAs), Particle
Swarm (PSO) or Branch-and-bound have been re-designed in order to take ad-
vantage of such computing platforms [16, 13, 5, 3]. The key issue here is that
gathering a large amount of computational devices pose a whole set of practical
problems. Therefore, and to the best of our knowledge, most of the approaches
to P2P optimization –if not all– have been analyzed in simulators rather than
in real environments. That way, this paper aims to go an step further and val-
idate a P2P EA in a real large-scale infrastructure running up to 3008 parallel
individuals.

To that aim, we consider the results published in [8] on the scalability of the
Evolvable Agent model (i.e. a P2P EA model) in a simulated based environment.
Such results are validated using an equally parametrized parallel version of the
algorithm in a real environment4. In order to simplify the experimentation, the
real platform consists of a cluster of homogeneous nodes. This allows the trace
of computer failures and the minimization of asynchronous effects on the perfor-
mance so that the characterization of the real environment mirrors the simulator
settings.

In a first set of experiments, the algorithmic accuracy of the simulations is
tested by running a medium size instance of trap functions [1]. We focus then
on the fine-tuning of the population size and adjust both, simulation-based and
parallel versions to their optimal sizes. Given that both approaches are equally
parametrized, our validation proof relies on showing that the simulations require
the same population size than the parallel version to induce the same progress
in fitness. On the basis of previous results, a second set of experiments is con-
ducted in order to prove the massive scalability of the approach. In this case, the
computational performance of the model is assessed by tackling a larger problem
instance for which the simulator points out large population size requirements.
Here, results show that the parallel version is able to find the problem optimum
in two and half hours in contrast with the estimation of hundred days of the
sequential run.

The rest of the paper is organized as follow. Section 2 provides an overall
description of the Evolvable Agent model. Section 3 explains the setup of the
experiments. Results are analyzed in Section 4. Finally, we reach some conclu-
sions and propose some future lines of work in Section 5.

2 Description of the Model

The Evolvable Agent (EvAg) model (proposed by Laredo et al. in [7]) is a fine-
grained spatially structured EA in which every agent schedules the evolution

4 In order to reproduce experiments, all the source-code –either the simulator or the
parallel version of the algorithm– is available from our Subversion repository at
http://forja.rediris.es/svn/geneura published under GNU public license.



process of a single individual and self-organizes its neighborhood via the news-
cast protocol. As explained by Jelasity and van Steen in [6], newscast runs on
every node and defines the self-organizing graph that dynamically maintains
some constant graphs properties at a virtual level such as a low average path
length or a high clustering coefficient from which a small-world behavior emerges
[15]. This makes the algorithm inherently suited for parallel execution in a P2P
system which, in turn, offers great advantages when dealing with computation-
ally expensive problems at the expected speedup of the algorithm.

Every agent acts at two different levels; the evolutionary level for carrying out
the main steps of evolutionary computation (selection, variation and evaluation
of individuals [4]) and the network level which defines P2P population structure.

The evolutionary level is depicted in Algorithm 1. It shows the pseudo-code of
an EvAgi ∈ [EvAg1 . . . EvAgn] where i ∈ [1 . . . n] and n is the population size.
Despite the model not having a population in the canonical sense, neighbors
EvAgs provide each other with the genetic material that individuals require to
evolve.

Algorithm 1 Pseudo-code of an Evolvable Agent (EvAgi)

Evolutionary level

Indcurrenti
⇐ Initialize Agent

while not termination condition do

Pooli ⇐ Local Selection(NeighborsEvAgi
)

Indnewi
⇐ Recombination(Pooli,Pc)

Evaluate(Indnewi
)

if Indnewi
better than Indcurrenti

then

Indcurrenti
⇐ Indnewi

end if

end while

Local Selection(NeighborsEvAgi
)

[Indcurrenth
∈ EvAgh, Indcurrentk

∈ EvAgk] ⇐ Random selected nodes from the newscast
neighborhood

The key element at this level is the locally executable selection. Crossover and
mutation never involve many individuals, but selection in EAs usually requires a
comparison among all individuals in the population. In the EvAgmodel, the mate
selection takes place locally within a given neighborhood where each agent selects
the current individuals from other agents (e.g. Indcurrenth and Indcurrentk in
Algorithm 1).

Selected individuals are stored in Pooli ready to be used by the recombina-
tion (and eventually mutation) operator. Within this process a new individual
Indnewi

is generated.
In the current implementation, the replacement policy adopts a replace if

worst scheme, that is, if the newly generated individual Indnewi
is better than

the current one Indcurrenti , Indcurrenti becomes Indnewi
, otherwise, Indcurrenti

remains the same for the next generation. Finally, every EvAg iterates until a
termination condition is met.



As previously mentioned, newscast is the canonical underlying P2P protocol
in the EvAg model. It represents the network level of the model that conforms
the population structure. Algorithm 2 shows the newscast protocol in an agent
EvAgi. There are two different tasks that the algorithm carries out within each
node. The active thread which pro-actively initiates a cache exchange once every
cycle and the passive thread that waits for data-exchange requests (the cache
consists in a routing table pointing to neighbor nodes of EvAgi).

Algorithm 2 Newscast protocol in EvAgi

Active Thread
loop

wait one cycle
EvAgj ⇐ Random selected node from Cachei
send Cachei to EvAgj
receive Cachej from EvAgj
Cachei ⇐ Aggregate (Cachei,Cachej)

end loop

Passive Thread
loop

wait Cachej from EvAgj
send Cachei to EvAgj
Cachei ⇐ Aggregate (Cachei,Cachej)

end loop

Every cycle each EvAgi initiates a cache exchange. It uniformly selects at
random a neighbor EvAgj from its Cachei. Then EvAgi and EvAgj exchange
their caches and merge them following an aggregation function. In this case, the
aggregation consists of picking the freshest c items (i.e. c is the maximum degree
of a node. In this paper c = 40) from Cachei ∪ Cachej and merging them into
a single cache that will be replicated in EvAgi and EvAgj .

Within this process, every EvAg behaves as a virtual node whose neigh-
borhood is self-organized at a virtual level with independence of the physical
network. In this paper, we conduct experiments following the ideal case in which
every computing core hosts a single EvAg.

3 Experimental Setup

The experimental setup in this paper is based on the simulations performed in
[8] on the scalability of the Evolvable Agent model when tackling trap functions
[1]. In order to validate the model, we will try to reproduce such results in a
parallel infrastructure.

3.1 Simulation settings

A trap function is a piecewise-linear function defined on unitation (the number
of ones in a binary string). There are two distinct regions in search space, one



leading to a global optimum and the other leading to the local optimum (see
Figure 1). In general, a trap function is defined by the following equation:

trap(u(−→x )) =







a
z
(z − u(−→x )), if u(−→x ) ≤ z

b
l−z

(u(−→x )− z), otherwise

(1)

where u(−→x ) is the unitation function, a is the local optimum, b is the global
optimum, l is the problem size and z is a slope-change location separating the
attraction basin of the two optima.

Fig. 1. Generalized l-trap function.

For the following experiments, a 3-trap function was designed with the fol-
lowing parameter values: a = l − 1; b = l; z = l − 1. With these settings, 3-trap
lies in the region between deception and non-deception. Scalability tests were
then performed by juxtaposing m trap functions and summing the fitness of
each sub-function to obtain the total fitness.

Fig. 2. Simulator estimated scalability of the Peer-to-Peer Evolutionary Algorithm
[8] tackling different instances of the 3-trap problem [1]. On the left the estimated
population sizes and the number of evaluations to solution on the right. Results are
obtained for a selectorecombinative version of the algorithm (i.e. no mutation) and
depicted as a function of the length of the chromosome, L.



The bisection method [12] was used for each size m to determine the optimal
population size P , that is, the lowest P for which 98% of the runs solve the
traps functions. To find it, mutation rate is set to 0, so as to search a minimum
population size such that using random initialization it is able to provide enough
building blocks to converge to the optimum without other mechanism besides
recombination and selection.

Figure 2 depicts the simulation-based results for increasing problem instances
of the 3-trap problem (lengths of the chromosomes are L = 12, 24, 36, 48, 60, 150).
As the problem scales, the P2P EA requires of both, a larger population size and
a larger number of evaluations, to guarantee that the optimal solution is found
with a probability of 0.98.

3.2 Parallel version settings

In order to run parallel experiments, we are going to consider two of the problem
instances from previous simulations. The first instance of a medium size, i.e.
L = 48 bits, and the second with L = 150 bits. Table 1 provides the simulator-
based results for both instances that will be used as parameter inputs in the
parallel runs. They characterize the settings of the algorithm to find the optimum
98 out of 100 times, e.g. in order to find the optimum in the L = 48 instance,
the algorithm requires a population size of 390 individuals and a maximum of
140 generations.

Table 1. Simulator-based results for the population size and the respective number of
generations in order to find the problem optimum.

Instance Population Size Avg. n. of generations Max. n. of generation

L = 48 390 85 140

L = 150 3000 173 250

The rest of parameter settings are summarized in Table 2.

Table 2. Parameters of the experiments

Trap instances

Size of sub-function (k) 3
Individual length (L) 48, 150

GA settings

Selection of Parents Binary Tournament
Recombination Uniform crossover, pc = 1.0

Mutation No mutation, pm = 0.0

All experiments in this paper were conducted in the NEC Nehalem cluster
at the HPC center of the University of Stuttgart (see http://www.hlrs.de/



systems/platforms/nec-nehalem-cluster for further details on the architec-
ture). Here, it should be noted that P2P overlay networks behave independently
of the underlying infrastructure they are running in, therefore, a cluster of ho-
mogeneous nodes can be consider a P2P system whenever it runs a P2P engine
in every node. In that sense, using a cluster of homogeneous nodes has the ad-
vantage of simplifying the validation process. First, the side effects of asynchrony
are minimized since every agent is scheduled by a single processor core running
at the same frequency than the rest, and second, the lifetime and load of com-
puters can be monitored so that we can ensure that there are no failures. Both
effects, asynchrony and fault-tolerance to computer failures are left, therefore,
as a future line of research.

4 Analysis of Results

In this section, we conduct two different sets of experiments. The first one focuses
on verifying the results of the simulator in a real parallel platform. To that aim, a
medium size instance of length L = 48 is considered. In a second experiment, we
try to prove the massive scalability of the approach in terms of time speedups.
Given that the goal of parallel Evolutionary Algorithms is to reduce times-to-
solutions of expensive optimization problems, experiments were conducted on
the largest problem instance of length L = 150.

4.1 Test-Case 1: Validating Results of the Simulator

In order to validate the results obtained by the simulator for the L = 48 in-
stance, the P2P Evolutionary Algorithm was distributed in the NEC Nehalem
cluster using a fine-grained parallelization in which every agent was scheduled in
an independent thread, each running in its own processor. As described in [9],
such settings stand for a worst-case scenario in which the fitness evaluations are
computationally heavy. In advance, there are no restrictions limiting the number
of agents per processor. Both algorithms (i.e. simulator-based algorithm and the
parallel version) were equally parametrized and only differ on the population
sizes P tested for the parallel approach.

Figure 3 depicts the average progress of the fitness convergence of the parallel
runs for different population sizes P = 50, 100, 200, 300, 400. Given that the
simulator predicts an optimal population size of P = 390, we aim at investigating
the improvements on the fitness as the population size increases from P = 50
to P = 400. Results show that the smaller population sizes are not able to find
the problem optimum (set to 48). However, for P = 400 the algorithm is able to
track the optimal solution 8 times out of 10 as roughly estimated by the simulator
(i.e. simulator actually predicts a success rate of 0.98 for P = 390). Taking into
account the side effects of asynchrony and communications in the parallel version,
we can conclude that the simulator-based results can be considered as a good
estimate of the parallel performance of the algorithm.



Fig. 3. Test-case 1. Best fitness convergence for the L = 48 instance using different
population sizes (P ). Results are averaged from 10 independent runs.

4.2 Test-Case 2: Testing the Massive Scalability of the Approach

In this experiment, we tackle the largest problem instance with a length of
L = 150. The complexity of the instance is so high that the simulator estimates
a population size of P = 3000 for the problem to be solved. However, and de-
spite trap functions being algorithmically-complex problems (i.e. NP-hard), they
are computationally lightweight. To emulate realistic time-consuming problems
(e.g. the simulation guided optimization proposed by Ruiz et al. in [11] where
the fitness function takes 6.5 seconds), we add a delay routine in every fitness
evaluation that takes 16 seconds. Adding a delay routine aims reproducing heavy-
loaded scenarios in which the ratio between communications and computation
decreases. With these settings and according to the results in the simulator, the
algorithm will require that 3000 individuals evolve during an average number of
173 generations to reach the optimum. In terms of time, that would translates
into 100 days of sequential computation.

With the aim of reducing the time of convergence, the algorithm was paral-
lelized using 3008 agents, each one running in a thread. The entire population
was deployed in 188 computers, having 8 cores each and implementing hyper-
threading with 2 threads per core. Note that the 8 extra individuals to the
estimated 3000 are due to the composition of the architecture in which the par-
allelism extends to the microprocessor level –as McNairy and Bhatia describe in
[10]– by adding several cores per processor and through hyper-threading tech-
nology.

Figure 4 depicts the convergence of the algorithm as a function of time. It
shows how the algorithm is able to find optimality –the problem optimum is set
to 150– after 2.5 hours of parallel processing which demonstrates that way the
massive scalability of the approach.



Fig. 4. Test-case 2. Fitness convergence for 3008 agents (P = 3008) in the L = 150
instance. The problem optimum is set to 150 and is found after 8900 seconds.

5 Conclusions

In this paper, we have conducted experiments for the validation of a Peer-to-Peer
Evolutionary Algorithm in a cluster of homogeneous nodes. A common approach
for designing such a kind of models is to use a simulation-driven experimentation
given the difficulties of accessing a large amount of computers for testing. There-
fore, model characterizations remain valid only under certain set of assumptions
and the viability of the approaches is subject to the scope of the simulator.

In order to validate a model, we propose to reproduce results from simulations
in a real-world system so that they can approach the predicted values. In that
context, two simple experiments were conducted in a real infrastructure using a
parallel version of the Peer-to-Peer Evolutionary Algorithm. The first experiment
shows that the parallel version performs roughly the same than an equally-
parametrized simulator-based run from which the validation of the model can
be drawn. Specifically, the population size of the parallel version is adjusted to
the same values of the simulations having an equivalent performance in fitness
convergence. The second experiment focuses on determining the scalability of
the parallel approach for large problem instances which, additionally, require of
large population sizes. In this case, a massively parallel run is conducted in 3008
computing cores, each hosting an individual. The problem optimum is found
after two and half hours of parallel execution in contrast to the estimate of one
hundred days run if computed sequentially.

As future lines of work, we aim at investigating the parallel approach in a
bigger set of scenarios taking into account the effects of heterogeneous comput-
ers on the algorithmic performance. We find that asynchrony, communication
latencies and computer failures are the main issues to circumvent in order to
deploy the algorithm in ad-hoc networks as they are Internet-based volunteer
systems.



Acknowledgments

This work was supported by the Luxembourg FNR GreenIT Project (C09/IS/05),
Spanish Ministry of Science Projects TIN2008-05941 and TIN2011-28627-C04
and Andalusian Regional Project P08-TIC-03903.

References

1. David H. Ackley. A connectionist machine for genetic hillclimbing. Kluwer Aca-
demic Publishers, Norwell, MA, USA, 1987.

2. David P. Anderson. Boinc: A system for public-resource computing and storage.
In 5th IEEE/ACM International Workshop on Grid Computing, pages 4–10, 2004.

3. M. Biazzini and A. Montresor. Gossiping de: A decentralized heuristic for function
optimization in p2p networks. In ICPADS’10, pages 468 –475, 2010.

4. Agoston E. Eiben and J. E. Smith. Introduction to Evolutionary Computing.
SpringerVerlag, 2003.

5. Y. Guo, J. Cheng, Y. Cao, and Y. Lin. A novel multi-population cultural algorithm
adopting knowledge migration. Soft Comput., 15(5):897–905, 2011.

6. Márk Jelasity and Maarten van Steen. Large-scale newscast computing on the
Internet. Technical Report IR-503, Vrije Universiteit Amsterdam, Department of
Computer Science, Amsterdam, The Netherlands, October 2002.

7. J.L.J. Laredo, P.A. Castillo, A.M. Mora, and J.J. Merelo. Exploring population
structures for locally concurrent and massively parallel evolutionary algorithms.
In IEEE Congress on Evolutionary Computation (CEC2008), WCCI2008 Proceed-
ings, pages 2610–2617. IEEE Press, Hong Kong, June 2008.

8. J.L.J. Laredo, A. E. Eiben, Maarten van Steen, and Juan Julián Merelo Guervós.
Evag: a scalable peer-to-peer evolutionary algorithm. Genetic Programming and
Evolvable Machines, 11(2):227–246, 2010.

9. J.L.J. Laredo, D. Lombraña, F. Fernández de Vega, M.G. Arenas, and J.J. Merelo.
A peer-to-peer approach to genetic programming. In EuroGP, volume 6621 of
Lecture Notes in Computer Science, pages 108–117. Springer, 2011.

10. C. McNairy and R. Bhatia. Montecito: a dual-core, dual-thread itanium processor.
IEEE Micro, 25(2):10–20, 2005.

11. P. Ruiz, B. Dorronsoro, G. Valentini, F. Pinel, and P. Bouvry. Optimisation of the
enhanced distance based broadcasting protocol for manets. Journal of Supercom-
puting, 2011. To appear.

12. K. Sastry. Evaluation-relaxation schemes for genetic and evolutionary algorithms.
Technical Report 2002004, University of Illinois at Urbana-Champaign, Urbana,
IL., 2001.

13. I. Scriven, D. Ireland, A. Lewis, S. Mostaghim, and J. Branke. Asynchronous mul-
tiple objective particle swarm optimisation in unreliable distributed environments.
In IEEE Congress on Evolutionary Computation (CEC2008), 2008.

14. R. Steinmetz and K Wehrle. Peer-to-Peer Systems and Applications, chapter What
is this Peer-to-Peer about?, pages 9–16. Springer, 2005.

15. D.J. Watts and S.H. Strogatz. Collective dynamics of ”small-world” networks.
Nature, 393:440–442, 1998.

16. W. R. M. U. K. Wickramasinghe, M. van Steen, and A. E. Eiben. Peer-to-peer
evolutionary algorithms with adaptive autonomous selection. InGECCO ’07, pages
1460–1467, New York, NY, USA, 2007. ACM Press.


