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Abstract: Circadian clocks consist of complex networks that coordinate the daily cycle of most
organisms. In light/dark cycles, the clock is synchronized (or entrained) by the environment,
which corresponds to a constant rephasing of the oscillations and leads to a steady state regime.
Some circadian clocks are endogenous oscillators with rhythms of about 24-hours that persist in
constant light or constant darkness. This operating mechanism with and without entrainment
provides flexibility and robustness to the clock against perturbations. Most of the clock-oriented
experiments are performed under constant photoperiodic regime, overlooking the transitory
regime that takes place between light/dark cycles and constant light or darkness. This paper
provides a comparative analysis of the informative potential of the transient time-series data
with the other regimes for clock modelling.
Realistic data were simulated from 2 experimentally validated plant circadian clock models and
sliced into several time windows. These windows represent the di↵erent regimes that take place
before, meanwhile and after the switch to constant light. Then, a network inference tool was
used over each window and its capability of retrieving the ground-truth of the network was
compared for each window. The results suggest that including the transient data to the network
inference technique significally improves its performance.
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1. INTRODUCTION

Most organisms have developed the capability of syn-
chronizing their life cycle to the environment. As regards
plants, the circadian clock regulatory network is respon-
sible for controlling diverse biological processes, such as
photosynthesis and flowering (Michael et al., 2008). Circa-
dian clocks generate oscillations in gene expression and
are able to synchronize to external conditions, such as
temperature and light/dark (L/D) cycles (Dunlap et al.,
2003). Moreover, they have the attribute of being endoge-
nously generated and self-sustaining. When deprived of
external cues, such autonomously sustained oscillations
of gene expression persist with a free-running period of
approximately 24 hours (Zhang and Kay, 2010).

Over the past 20 years, the circadian clock of one plant,
Arabidopsis Thaliana, has been intensively studied. Sev-
eral mathematical models have emerged, which fit the
experimental data, either in light/dark cycles or constant
(light (LL) or dark (DD)) condition, and elucidate the
minimal regulatory structure. Conceptually, the circadian
clock is composed of 3 mains components: a self-sustaining
central oscillator, an input pathway that incorporates the
environment conditions, and an output pathway that ad-
justs the plant’s metabolism. The central oscillator of the

clock consists in a complex network of interlocking genes
activations, inhibitions and feedback loops.

The identification of the functional properties of the in-
dividual components in gene regulatory networks is chal-
lenging, due to the complexity of the interlocked network.
Although several techniques have been developed for in-
ferring genes regulatory networks from time series data
(Aderhold et al., 2014), there has been no comparative
study of the performance resulting from the use of di↵erent
experimental time windows as an input.

During L/D cycles, the circadian central network is en-
trained by the light and gene expressions of similar dynam-
ics are synchronized. Consequently, the identification of
the underlying processes between the genes that compose
the clock can be problematic. Indeed, the small di↵er-
ences in dynamical gene expression rates that could help
distinguishing the subtle regulations of the genes may
have faded. When switching to a constant light input,
the oscillations are not forced and synchronized anymore,
releasing the system to free-running condition. The system
now exhibits several distinct phases where only one was
observed. The transitory regime that follows the switch
to the new constant condition (either constant light or
constant darkness) can be short before establishing the



new regime, as described by several mathematical circa-
dian clock models governed by deterministic di↵erential
equations. However, this time window may have the po-
tential to shortly reveal supplementary dynamics between
the genes that constitute the network.

This paper explores the performance of one network iden-
tification tool to evaluate and compare the informative
potential from each time window for time-series data. We
expect that other tools would lead to the same conclu-
sion. This tool uses linear time-invariant (LTI) models
to describe the causality between pairs of genes. This
technique has several advantages over other inference tech-
niques. Firstly, it is especially useful for poorly-sampled
data corrupted with noise. Secondly, linear models have
been proved to be a good approximation of the nonlin-
ear biological phenomena and less prone to over-fitting
than most nonlinear methods. Thirdly, this technique has
been previously used for the identification of biochemical
models (Dalchau et al. (2010),Herrero et al. (2012)) and
circadian systems (Carignano, 2014). Finally, this tool
has the capability to include hidden variables that are
not part of the input/output pair, such as intermediate
transcription factor, but that are necessary to describe the
biological dynamics between 2 genes.

To produce realistic reference time-series data for system
identification, we used the Millar 10 (Pokhilko et al.,
2010) and Millar 12 (Pokhilko et al., 2012) models of
the Arabidopsis circadian clock. These models describe
the central clock through the modelling of 8 to 10 genes
and the intervention of several intermediate transcription
factors. They are nonlinear and mostly based on detailed
dynamics including Michaelis-Menten and Hill equation
dynamics.

2. METHODS

2.1 Generation of Realistic Data

Data were simulated from the Millar 10 and Millar 12
Arabidopsis circadian clock models (see Figure 1). These
models have been simulated for 600 hours in 24-hour L/D
cycles to remove all possible transients. Then, we switched
the photoperiodic regime to constant light for another
108 hours. In order to reproduce realistic data, stochastic
di↵erential equations (SDE) were employed to account for
genes intrinsic noise. SDE simulations of Millar 10 and
Millar 12 models are computationally light, of the order
of several seconds (MacBook Pro). This approach allows
the noise to have a significant impact on the behaviour
of the system (Wilkinson, Guerriero et al. (2012)). How-
ever, estimating the level of process noise is not trivial
since many experiments provide only a few replicates of
the dataset. Hence, a density analysis of the noise has
been performed on 40 000 experimental RNA sequencing
(RNA-Seq) paired data. RNA-Seq is a recently developed
sequencing technology that provides a far more precise
measurement of levels of transcripts than other methods.
Due to the mean-variance dependency of RNA-Seq data,
the noise distribution of this experimental dataset was
computed by comparing the error between 2 datapoints
over their mean (see Figure 2). Finally, the noise param-
eter of the SDE has been tuned to obtain an equivalent

Fig. 1. Models used to obtain the simulated data. Top:
Millar 10. Bottom: Millar 12 (Pokhilko et al., 2012).

Fig. 2. Distribution of the experimental error over mean
for 2 replicates over 40 000 RNAseq datapoints.

distribution of the noise for the simulated data. This
setup allows to reproduce as conscientiously as possible
the desynchronization phenomenon and the damping of
the oscillations resulting from the switch to constant light
(Guerriero et al., 2012). For each simulation, we generated
2 replicates representing 2 L/D cycles followed by 4 cy-
cles with constant light input.In order to match realistic
RNAseq experiments as closely as possible, only one data
point per replicate was selected every 4 hours and only the
mean of the 2 replicates was considered for the following
steps. Then, this subset of the data was resampled using
an interpolating cubic spline algorithm. By doing so, we
could decrease the sampling period to 1 hour, which is a
requirement for our inference algorithm.
We reproduced the aforementioned method by generat-
ing 50 pairs of replicates, thereby reducing the e↵ect of
noise-dependent performances of the network inference
technique. Finally, each dataset was sliced into 10 equally
spaced windows of 48 hours with a step size of 12 hours.
Each window contains 49 (interpolated) data points. The
first window starts at -48 hours and the last window starts
at +60 hours (Figure 3). Constant light input starts at
time 0.



Fig. 3. Setup for data simulation. 48 hours of L/D
data followed by 108 hours of constant light input
were used for network inference. During the [-48h;0]
time period, the light input is alternatively set to 1
and 0 for 12 hours. Afterwards, the light input is set
to 1. The first window corresponds to the [-48h;0] time
period and each of the following window is shifted by
12 hours.

2.2 Network Inference Technique

A network inference technique was applied to the pre-
viously simulated time-series data in order to capture
the dynamical interactions between the genes in di↵erent
photoperiodic conditions. This method was proposed in
(Carignano et al., 2014) and relies on linear time-invariant
(LTI) models describing the input-output interactions be-
tween each pair of genes.

We consider the LTI model

dx

dt

(t) = Ax(t) +Bu(t) +Ke(t)

y(t) = Cx(t) +Du(t) + e(t) (1)

where x 2 Rn is the vector of state variables and e(t) is
the white noise. In this case, the estimation problem is
to identify the matrix A 2 Rn⇥n, vectors B,K 2 Rn⇥1,
C 2 R1⇥n, and scalar D. In this context, first and second
order models (i.e. n = 1 and n = 2) were considered to
represent the underlying dynamics between each pair of
genes. Higher order models do not seem to be necessary to
describe most of the biological processes.
The parameters of the LTI systems are estimated using
the commonly-used prediction error method (PEM), and
its implementation pem in Matlab (Ljung et al., 1998).For
every pair of genes, first and second order LTI models
were computed from the simulated dataset to describe
the corresponding input-output relationship. Then, each
model was characterized by a performance index that
represents its capability of describing the input-output
relationship. To do so, we used the fitness

fitness = 100 ⇤ (1�
P

N
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k

)2
P

N

k=1(yk � ȳ)2
) (2)

where y is the simulated data (output), ȳ is the average
value of the simulated data, and ŷ is the estimated output.
The Matlab function compare can be used to compute the
fitness of the model. A fitness equal to 100% corresponds

Fig. 4. Identification of causality between one pair
of genes expressions simulated with the Mil-
lar 10 model. Transients data from the [12h;60h]
window are used in this example. (A) and (B) show
the identification of first order LTI systems when the
input u(t) is associated with PRR7 and NI, respec-
tively. The last column in each row depicts the output
y(t) of the resulting LTI system (blue) and the true
output (grey). The output of the estimated system
in (A) matches NI’s expression with a fitness of 90%
while the other system in (B) fails to describe PRR7’s
expression accurately with an associated fitness of
32%. If the threshold of acceptance is lower than 90%,
the causal relationship between PRR7 and NI will
be considered as a true positive. However, NI does
not regulate PRR7 and, if the acceptance threshold
is below 32%, this relationships will appear as a false
positive.

to a perfect identification. A high fitness suggests that
most of the dynamics of the system were captured. Then,
the causal relationship between these genes is validated.
Hence, this technique requires to define a threshold of
acceptance to select the most significant models. The
identification of causality between two simulated genes ex-
pressions using LTI systems (and their respective fitness)
is illustrated in Figure 4. In this example, time-series gene
expression data of genes PRR7 and NI were computed
through SDE simulations of the Millar 10 model. Note
that these genes are both nonlinearly regulated by multiple
inputs but we only consider the PRR7-NI input-output
pair.

The Millar 10 and Millar 12 systems are respectively
composed of 8 and 10 genes, which leads to 56 and 90
models to evaluate for each replicate, order, and time
window. Although LTIs parameters estimation requires
low computation time, the large number of systems to
be identified makes the overall process time-consuming.
Hence, 2 days were required to collect the corresponding
data using the Parallel Computing Toolbox from Matlab
on 12 workers. Performance of the network inference
technique was evaluated by comparing the number of false
positives to the number of true positives. The number
of true positives corresponds to the sum of the correctly
inferred causal relationships of the network while the
number of false positives corresponds to the sum of non-
existing links that were wrongly inferred. A causal link is
identified if it has been validated either by the first order
model or the second order one.



The two thresholds of acceptance x1, x2 2 [0, 100] (based
on the fitness of the 1st and 2nd order models) have been
set to optimize the performance that can be obtained
for each time window. Starting from 100%, thresholds
were progressively decreased for each order independently.
The optimal number of false positives FP

⇤ resulting from
a given number of true positive TP

⇤ is obtained by a
combination of the thresholds such that:

FP

⇤ = min
x1,x2

FP (x1, x2)

subject to TP (x1, x2) = TP

⇤

In other words, we considered the thresholds x1, x2 such
that FP

⇤ is minimized through the multiple combina-
tion of thresholds that return the same TP

⇤. Then, we
computed a Receiver Operating Characteristic (ROC) by
plotting the true positive rate (number of true positives
divided by number of links) against the false positive rate
(number of false positives divided by number of missing
links) at various threshold settings. The value of the Area
Under the ROC curve (AUROC) indicates the perfor-
mance of the network reconstruction.

3. RESULTS

Figures 5 and 6 display the optimal ROC curves resulting
from the optimization of the 2 thresholds for each time
window, for the Millar 10 and 12 models, respectively. To
facilitate visualization and understanding of the results,
only the median value over all of the randomly replicated
SDE simulations were shown here. However, the fitness of
the identified systems obtained with di↵erent replicates is
within a range of 5% to 10% (around the median value),
so that we observed very similar overall performance.

These figures show that the results obtained with di↵erent
time windows are not equivalent. Interestingly, the best
result corresponds to the [0;48h] window (upper green
curve) for the two models. This is the window that includes
the transients data after 12 hours (see Figure 3). Data
from this time window yield significantly improved results,
when compared to the other ROC curves obtained with
steady states data. With window [24h;72h] for the Millar
10 model, we observe in the left part of the figure a steep
curve of performance showing 30% of correctly estimated
links without any false positive. This curve is outperformed
by the [0;48h] window curve at a true positive rates equal
to 0.55. On the other hand, free-running oscillations win-
dows (i.e. [36h;84h] to [60h;108h]) display similar shapes
but show a decrease in performance, when compared to
transient data. Finally, entrained data do not seem to con-
tain enough information to retrieve accurately the ground-
truth of the Millar 10 circadian network. We also observe
that the di↵erent windows lead to the identification of the
same links, with a few exceptions. Finally, for the Millar
10 model, the L/D windows seem to globally provide the
worst results. The performances obtained from the data
under constant light condition seem to lie in between
the performances obtained with transient and L/D steady
state conditions.

Results obtained from the identification of Millar 12 time
windows data show an even more distinct results between

Fig. 5. ROC Curves resulting from the network
identification for each time window, for Millar
10 Model. The dark and light blue dotted lines
correspond to the performance of the system inferred
from the four first windows of L/D cycles data while
the red dotted curves identify the performance of the
LL windows. Finally, the green and orange dotted
lines stand for the transient data starting from [0;48h]
to [36h;84h]

transients and steady state data. Window [12;60] pro-
vides the second best performance while the next window
[24;72], however, does not yield better result than L/D
data. In this case, data related to the entrained system
seem to be more informative than data related to the
free-running system. Furthermore, [48;96] window fails to
correctly identify a large amount of the components of the
network and the related ROC curve goes under the random
identification curve.

Overall, a common trend appears between the 2 models:
the best results are obtained when transients data are
included in the window. This suggests that transient
dynamics contain more information on the underlying
regulation network. However, it is unclear why the window
that includes the transients after 12 hours produce better
results than the [12h;60h] time window in both models,
which supposedly includes transient data only. Moreover,
it seems that the best ratio of true positives over false
positives is almost always obtained when a true light cycle
is initially included in the identification process.

These results have been summarized in Table 1, which
displays the AUROC value obtained with each window.

Table 1. AUROC values (IQR)

Window (hours) AUROC Millar 10 AUROC Millar 12

-48 to 0 0.70[0.65 - 0.74] 0.64 [0.61 - 0.68]
-36 to 12 0.68 [0.66 - 0.70] 0.62 [0.60 - 0.64]
-24 to 24 0.73 [0.70 - 0.76] 0.62 [0.58 - 0.64]
-12 to 36 0.73 [0.71 - 0.75] 0.61 [0.59 - 0.63]
0 to 48 0.82 [0.78 - 0.84] 0.73 [0.70 - 0.75]
12 to 60 0.75 [0.74 - 0.76] 0.66 [0.63 - 0.68]
24 to 72 0.77 [0.75 - 0.79] 0.62 [0.58 - 0.64]
36 to 84 0.74 [0.73 - 0.77] 0.60 [0.57 - 0.62]
48 to 96 0.73 [0.70 - 0.75] 0.55 [0.52 - 0.58]
60 to 108 0.74 [0.72 - 0.77] 0.59 [0.55 - 0.63]



Fig. 6. ROC Curves resulting from the network
identification for each time window, for Millar
12 Model

Table 1 shows more accurately the discrepancies between
the di↵erent ROC curves for the two models. As it has been
observed previously, the best results are obtained with
the transient [0;48h] data. This observation is consistent
between the two models. Furthermore, the time-series
provided by the two first windows yield AUROC values
below 0.70 for the Millar 10 model, which is relatively low.
In comparison, the performances obtained with the two
last windows are slightly better.

This trend is reversed for the Millar 12 model, where the
AUROC value computed with the free-running data is
below 0.60, which almost corresponds to random identi-
fication. We note also that the window [24h;72h] provides
similar results than the entrained data, which is surprising.

4. CONCLUSION

The identification of the network based on windowed sim-
ulations of realistic data from Millar 10 and Millar 12
models allowed us to give a statistical comparison of the
informative potential of the transient data. Millar 12 is a
more recent circadian clock mathematical model, whose
mechanism is di↵erent and more complex than Millar 10.
Although the performances obtained with the two models
are di↵erent, common characteristics can be retrieved from
the network identification tool. These characteristics sug-
gest that the dynamics involved in the transitory regime
provide further information for system identification, in
comparison to the other regimes.

Further experiments are required to understand in details
the discrepancies that a↵ect the performance obtained
from di↵erent time-windows and models. In addition, the
use of a combination of di↵erent windows to improve the
performance of the overall network identification should
also be further investigated in details. Moreover, future
work will test other network inference methods to confirm
that the results are not biased towards the method used
in this paper. Nevertheless, this paper shows that using
the transitory range of data for system identification
in circadian modelling has the potential to improve the
precision of the estimated network.
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