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Abstract: We establish quantum thermodynamics for open quantum systems weakly coupled to
their reservoirs when the system exhibits degeneracies. The first and second law of thermodynamics
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currents. Using a double quantum dot junction model, local eigenbasis coherences are shown to play
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1. Introduction

The study of nonequilibrium open quantum systems is an active field of research with particular
relevance to routinely-devised systems, such as quantum dots, or electronic circuits [1–4], or assemblies
of cold atoms [5–7], for example. The possibility to monitor thermodynamically-relevant quantities,
such as heat and work, during a single experimental realization has motivated the study of
their fluctuating properties and, thereby, the identification of universal laws satisfied by their
statistics [8–10].

Quantum master equations have been widely used for the study of the thermodynamic properties
of open quantum systems [9,11–13]. They are usually derived for systems weakly interacting with their
reservoirs using the Born–Markov and secular (BMS) approximation [14–16]. The resulting quantum
master equation can be shown to be of the Lindblad form [17]. In absence of degeneracies in the system
Hamiltonian, the density matrix populations in the system energy eigenbasis satisfy a closed stochastic
equation, whereas coherences undergo an independent decay in time [18]. For many processes that
only depend on populations or for steady state dynamics where eigenstates coherences are always
vanishing, a classical stochastic thermodynamics (ST) [19–21] can be easily built for the population
dynamics. This provides a consistent framework for the study of the thermodynamics of open quantum
systems at both the average and the single trajectory level [22–28]. However, various time-dependent
processes do depend on eigenstate coherences. This happens for instance for systems driven by
fast periodic time-dependent forces, where what we just said holds at the level of quasi-energies
instead of eigenenergies [13,29]. It also happens for multi-stroke machines or for systems undergoing
feedback control, where eigenstate coherences can be shown to play an important thermodynamics
role (see, e.g., [30], respectively [31]).

Open quantum systems with degenerate system energies constitute another important case
in which eigenstate coherences come into play already in the weak coupling limit. In this case,
time-dependent driving is not even required, and coherences may survive even at steady state.
Such situations are very important in mesoscopic physics, leading to interesting phenomena, such as
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maximum output power enhancement [32,33]. The aim of this paper is to extend the central results of
stochastic thermodynamics to open quantum systems with degeneracies. When applying the BMS
approximations, while the dynamics of populations and coherences between non-degenerate states
of the system Hamiltonian remains uncoupled, the populations and coherences between degenerate
states remain coupled. We propose consistent definitions for energy, work, heat, entropy and entropy
production for such dynamics. We further obtain the counting statistics of the mechanical work and
energy and particle currents from the aforementioned quantum master equation and derive a finite
time fluctuation theorem that extends its classical counterpart [34] to quantum systems with eigenstate
coherences. We illustrate our results on a degenerate double quantum dot system, which exhibits a
quantum suppression of the particle current due to coherences [35–41]. We show that coherences cause
a bi-modality in the finite time current distribution [38], which is nevertheless compatible with the
fluctuation theorem symmetry.

The paper is organized as follows. The BMS master equation for a general open quantum system
with exact degeneracies is exposed in Section 2.1. The analysis of the nonequilibrium thermodynamics
is presented in Section 2.2, where we establish the energy and entropy balance, as well as the positivity
of entropy production. The thermodynamics analysis is exposed in Section 2.3. An expression for the
work and currents statistics is derived in Section 2.3.1 using the dressed quantum master equation
formalism [9]. We prove a finite-time fluctuation theorem for systems described by the quantum master
Equation (3) in Section 2.3.2. Finally, our approach is applied in Section 3 to study the thermodynamics
of a degenerate double quantum dot connected to two electronic leads. A summary is given in Section 4.

2. General Formalism

2.1. Microscopic Derivation of Lindblad Master Equations

We consider an open quantum system with Hamiltonian H = HS + HR + HI , in terms of system
(HS), reservoir (HR) and interaction (HI) Hamiltonians, respectively. We aim to describe the effective
dynamics of the system with a master equation of the form:

ρ̇S = LρS (1)

for the system density matrix ρS = TrR {ρ} only (here and in the following, TrR {. . .} denotes the
partial trace over the reservoir degrees of freedom). This equation should preserve the density matrix
properties (trace, hermiticity and positivity), at least in an approximate sense. The Lindblad master
equation [17] is the most general master equation that preserves the density matrix properties exactly.
There are multiple ways of obtaining Lindblad master equations from microscopic Hamiltonians
for various parameter regimes [42,43]. Here, we will constrain ourselves to the weak-coupling limit
between system and reservoir, in which the Born, Markov and secular (BMS) approximations [15] can
be applied, the latter often also termed rotating wave approximation. As such, we will be concerned
with systems whose relaxation dynamics is much slower than the fast correlation time of the reservoirs.

Under the aforementioned approximations and for a decomposition of the interaction Hamiltonian:

HI = ∑
α

Aα ⊗ Bα (2)

into system operators Aα and reservoir operators Bα, respectively, the BMS Lindblad master equation
becomes for a single reservoir [44]:

ρ̇S(t) = −i

[
HS + ∑

ab
σabLab, ρS(t)

]
+ ∑

ab,cd
γab,cd

[
LabρS(t)L†

cd −
1
2

{
L†

cdLab, ρS(t)
}]
≡ LρS(t) , (3)
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where we use the fixed eigen-operator basis Lab = |a〉 〈b| of the system Hamiltonian HS |a〉 = Ea |a〉.
We note that this basis is unique when the spectrum of HS is non-degenerate. Here, the matrix elements
of the Lamb shift Hamiltonian σab = σ∗ba and the positive definite matrix γab,cd are given by:

σab = δEb ,Ea ∑αβ ∑c
σαβ(Eb−Ec)

2i 〈c| Aβ |b〉 〈c| A†
α |a〉

∗ ,
γab,cd = δEb−Ea ,Ed−Ec ∑αβ γαβ(Eb − Ea) 〈a| Aβ |b〉 〈c| A†

α |d〉
∗ .

(4)

They depend on the matrix elements of the system coupling operators Aα and the even (γαβ) and
odd (σαβ) Fourier transforms:

γαβ(ω) =
∫

Cαβ(τ)e+iωτdω , σαβ(ω) =
∫

sgn(τ)Cαβ(τ)e+iωτdω (5)

of the reservoir correlation functions (bold symbols denote the interaction picture Bα(τ) = e+iHRτBαe−iHRτ):

Cαβ(τ) =
〈

Bα(τ)Bβ

〉
= TrR

{
Bα(τ)Bβρ̄R

}
, (6)

where ρ̄R denotes the stationary state of the reservoir. For a single reservoir, it is usually chosen as a
thermal reference state:

ρ̄R = e−β(HR−µNR−φR) (7)

in terms of the reservoir thermodynamic grand-potential φR = −β−1 ln Tr
{

e−β(HR−µNR)
}

. It is
characterized by the inverse temperature β and chemical potential µ of the reservoir.

We now summarize a few useful properties of the BMS Lindblad master equation beyond
preservation of the density matrix properties.

First, we observe that coherences ρij ≡ 〈i|ρS(t)|j〉 of basis states i and j with different energies
Ei 6= Ej will evolve decoupled from the populations ρaa ≡ 〈a|ρS(t)|a〉

ρ̇ij = −i
(
Ei − Ej + σii − σjj

)
ρij + ∑

ab
γia,jbρab −

1
2 ∑

ab
γab,aiρbj −

1
2 ∑

ab
γaj,abρib , (8)

which formally results from the Kronecker-delta functions in (4). This implies that for a non-degenerate
system (where Ei 6= Ej implies i 6= j), one can directly show that in the system energy eigenbasis,
the master equation decouples the evolution of all populations and all coherences. Whereas the
coherences are damped and will fade away in the long-term limit, the equation governing the dynamics
of populations in this case just becomes a simple rate equation with transition rates from b to a given
by γab,ab:

ρ̇aa = ∑
b

γab,abρbb −∑
b

γba,baρaa . (9)

Instead, for states with the same energies, the populations of the system density matrix are coupled
to the coherences of the states with the same energy. The treatment that disregards all couplings of the
populations to the coherences will in this paper be denoted the rotating wave approximation (RWA).
In contrast, the treatment that preserves the couplings to the degenerate coherences will be denoted
the secular approximation (BMS).

Second, for a single reservoir in thermal equilibrium (7), the correlation functions acquire
additional analytic properties, so-called Kubo–Martin–Schwinger relations (KMS), which enable
a thermodynamically-consistent description even for degenerate systems. In the absence of chemical
potentials, the KMS relations read:

Cαβ(τ) = Cβα(−τ − iβ) , (10)
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and transfer to the even Fourier transforms as γαβ(+ω) = γβα(−ω)e+βω. In the master equation,
these eventually lead to a detailed balance, and the system thermalizes in the long run with the
temperature of the reservoir, i.e., ρ̄S ∝ e−βHS is a stationary state of the master equation [15].
With a chemical potential and an interaction that conserves the total particle number, i.e., under the
assumption that [HS, NS] = [HR, NR] = [HI , NS + NR] = 0, the KMS relations can be generalized to:

∑̄
α

AᾱCαᾱ(τ) = ∑̄
α

e+βµNS Aᾱe−βµNS Cᾱα(−τ − iβ) , (11)

which is explicitly shown in Appendix A. This leads to the local detailed detailed balance (LDB)
relation among the coefficients:

γab,cd

γdc,ba
= eβ[(Eb−Ea)−µ(Nb−Na)] , (12)

where Ea and Na denote the energy and particle number of state a, respectively. Eventually, these relations
imply equilibration of both the temperature and chemical potential [45], i.e., ρ̄S = e−β(HS−µNS−φS), where
φS = −β−1 ln Tr {exp−β(HS − µNS)}, is one stationary state of the BMS master equation, even in
presence of degeneracies.

We extend our setup by admitting two kinds of drivings.
First, we may allow for a slow external driving of the system Hamiltonian HS → HS(t). However,

this driving must be significantly slower than the decay time of the reservoir correlation functions.
Furthermore, the driving should not lift the degeneracy in the energy spectrum, and the non-degenerate
states should not cross at any time. In other words, the driving should only operate on well-separated
eigenenergies. Under these assumptions, our approximations remain applicable, and we still arrive
at the same microscopically-derived master equation. The only difference is that the previously
constant Hamiltonian and all associated quantities become time-dependent: HS → HS(t), Ea → Ea(t),
Lab → Lab(t), and |a〉 → |a(t)〉 in Equations (3) and (4).

Second, we can consider N multiple reservoirs HR = ∑ν H(ν)
R held at different equilibrium states:

ρ̄R =
⊗

ν

e−βν(H(ν)
R −µνN(ν)

R −φ
(ν)
R ) . (13)

where we introduced the inverse temperatures βν, chemical potentials µν, particle number operators

N(ν)
R and thermodynamic grand-potentials φ

(ν)
R = −β−1

ν ln Tr
{

exp e−βν(H(ν)
R −µνN(ν)

R )

}
of reservoir

ν = 1, . . . , N, N denoting the total number of reservoirs. This directly (or after suitable transformations)
often implies that the Lindblad generator can be additively decomposed in the reservoir index ν.
The master equation in the presence of slow driving and multiple reservoirs can thus be formally
written as:

ρ̇S = L(t)ρS(t) = L0(t)ρS(t) +∑
ν

L(ν)(t)ρS(t) , (14)

where L0(t)ρS(t)=̂ − i [HS(t), ρS(t)] describes the action of the driven system Hamiltonian only.
As discussed before for a single reservoir, the dissipator associated with reservoir ν will obey detailed
balance relations leading to:

L(ν)(t)ρ(ν)eq (t) = 0 , (15)

where we have introduced the time-dependent grand-canonical equilibrium state:

ρ
(ν)
eq (t) = e−βν[HS(t)−µνNS−φ

(ν)
S (t)] (16)
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in terms of the system Hamiltonian HS(t), system particle number operator NS and the system
grand-potentials φ

(ν)
S (t) = −β−1

ν ln Tr
{

e−βν[HS(t)−µνNS]
}

.

2.2. Average Thermodynamics

The change of the system energy under the quantum master equation dynamics can be
decomposed as:

Ė = d
dt Tr {HS(t)ρ(t)}

= Tr
{

ḢSρ
}
+ ∑ν µνTr

{
NSL(ν)ρ

}
+ ∑ν Tr

{
(HS(t)− µνNS)L(ν)ρ

}
= Ẇ + ∑ν Q̇(ν) ,

(17)

where we omit the system index S on the density matrix and the time dependence in the Liouvillians
L(ν) for brevity. The work performed on the system contains a mechanical contribution (Ẇm) due
to the external driving and a chemical one (Ẇc) due to the particle transfers with the reservoirs,
Ẇ = Ẇm + Ẇc, where:

Ẇm = Tr
{

ḢSρ
}

, and Ẇc = ∑
ν

µνTr
{

NSL(ν)ρ
}

. (18)

The heat current entering the system from reservoir ν is:

Q̇(ν) = Tr
{
(HS(t)− µνNS)L(ν)ρ

}
. (19)

After having established the first law, we now turn to the second law and introduce the
von Neumann entropy, which represents the system entropy:

S(t) = −Tr {ρ ln ρ} . (20)

Its time evolution is given by:

Ṡ = − d
dt

Tr {ρ ln ρ} = −Tr {ρ̇ ln ρ} , (21)

where we used Tr
{

ρ d
dt ln ρ

}
= 0 (this can be shown using the fact that the density matrix can be

diagonalized by unitary transformation). Using the Lindblad generator, one can directly see that the
Hamiltonian driving does not directly contribute to the change of entropy, so that we have:

Ṡ = −∑
ν

Tr
{[
L(ν)ρ

]
ln ρ
}

. (22)

The entropy production is then given by the sum of the system entropy change plus the entropy
change in the reservoirs (caused by the heat flows):

Ṡi ≡ Ṡ−∑
ν

βνQ̇(ν) ≥ 0. (23)

This expression can be proven to be positive by using Spohn’s inequality [46], but we also provide
a direct proof in Appendix B.

We finish with a note on the Shannon entropy of the system, which by construction depends
on the basis SSh = −∑i ρii ln ρii. For master equations in the rotating wave approximation, the basis
chosen is the energy eigenbasis. This Shannon entropy does not depend on the eigenstate coherences,
which anyway evolve independently of the populations. Furthermore, it is larger than or equal to the
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von Neumann entropy. Indeed, the relative entropy between a density matrix and its diagonal part
ρD reads:

D(ρ, ρD) = Tr {ρ ln ρ− ρ ln ρD} = −S + SSh− Tr {(ρ− ρD) ln ρD} . (24)

Since (ρ− ρD) only contains off-diagonal matrix elements, whereas ln ρD has only entries on the
diagonal, we have that:

Tr {(ρ− ρD) ln ρD} = ∑
ij
(ρ− ρD)ij (ln ρD)ji = ∑

i
(ρ− ρD)ii (ln ρD)ii = 0 . (25)

Since the relative entropy is non-negative D(ρ, ρD) ≥ 0 under dynamics generated by a Lindblad
master equation as we consider here, it follows that S ≤ SSh. Note however that Ṡ and ṠSh do not obey
a general inequality. Similarly, the correct entropy production rate (23) and a Shannon-based entropy
production rate ṠSh

i = ṠSh−∑ν βνQ̇(ν) are not generally related by an inequality.

2.3. Fluctuating Thermodynamics

2.3.1. Counting Statistics

Within the same approximations used to derive the quantum master equation, one can derive
the full counting statistics for the energy and matter transfers using the dressed master equation
formalism [9,38]. The measurement scheme corresponds to two point projective measurements of the
energy H(ν)

R and particle number N(ν)
R in the reservoirs ν = 1, . . . , N. The energy and particle transfer

generating function G({ξν}, {λν}, t) is then obtained by taking the trace of the dressed density matrix
of the system ρ({ξν}, {λν}, t):

G({ξν}, {λν}, t) = Tr {ρ({ξν}, {λν}, t)} , (26)

where the counting field vectors {ξν} = {ξ1, ξ2, . . . , ξN} and {λν} = {λ1, λ2, . . . , λN} account for,
respectively, the energy and matter currents out of the reservoirs. The dressed system density matrix
satisfies the dressed quantum master equation:

ρ̇({ξν}, {λν}, t) = L({ξν}, {λν}, t)ρ({ξν}, {λν}, t)
≡ −i

[
HS(t) + ∑ab ∑ν̃ σ

(ν̃)
ab (t)Lab(t), ρ({ξν}, {λν}, t)

]
+ ∑ab,cd ∑ν̃ γ

(ν̃)
ab,cd(t)×[

Cab,cd(ξν̃, λν̃, t)Lab(t)ρ({ξν}, {λν}, t)L†
cd(t)−

1
2
{

L†
cd(t)Lab(t), ρ({ξν}, {λν}, t)

}]
,

(27)

whose dressed Liouvillian depends on the counting fields. The factors:

Cab,cd(ξν, λν, t) = exp {[iξν(Eb(t)− Ea(t)) + iλν(Nb − Na)]} , (28)

contain the counting fields keeping track of the energy and matter transfers with the reservoirs.
The dressed quantum master Equation (3) reduces to the regular quantum master equation for the
system reduced density matrix when the counting fields are set equal to zero, i.e., {ξν} = {λν} = {0}.
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The joined distribution for the energy and matter currents out of the reservoirs P({J(ν)E }, {J(ν)M }, t)
is obtained by using the Fourier transform:

P({J(ν)E }, {J(ν)M }, t) =
∫ ∞

−∞

[
∏

ν

t
dξν

2π

] ∫ 2π

0

[
∏

ν

t
dλν

2π

]
ei ∑ν(ξν∆Eν+λν∆Nν)G({ξν}, {λν}, t), (29)

where ∆Eν and ∆Nν are the energy and particle number changes in reservoir ν over a duration t and
J(ν)E = ∆Eν/t and J(ν)M = ∆Nν/t denote the corresponding energy and matter currents, respectively.

To calculate the counting statistics of the mechanical work, a projective measurement in the
system Hamiltonian HS(t) is required. The generating function for the associated counting statistics
can be written as: [9]

G(α, t) = Tr
{

eiαHS(t)
(
T exp

∫ t

0
dτL(τ)

)(
e−iαHS(0)ρ(0)

)}
, (30)

where the counting field α counts the energy changes in the system.
Since the mechanical work is the system energy change minus the total energy that has flown to

the reservoirs, the generating function for mechanical power and energy and matter currents can be
written as [47]:

G(α, {ξν}, {λν}, t) = Tr
{

eiαHS(t)
(
T exp

∫ t

0
dτL({ξν − α}, {λν}, τ)

)(
e−iαHS(0)ρ(0)

)}
, (31)

where α is now the mechanical work counting field. Furthermore, T exp {·} denotes the time-ordered
exponential and ρ(0) the initial density matrix of the system. By Fourier transform, we get the
corresponding probability distribution:

P(w, {J(ν)E }, {J(ν)M }, t) = (32)∫ ∞

−∞

dα

2π

∫ ∞

−∞

[
∏

ν

t
dξν

2π

] ∫ 2π

0

[
∏

ν

t
dλν

2π

]
eiαw+i ∑ν(ξν∆E(ν)+λν∆N(ν))G(α, {ξν}, {λν}, t),

where w denotes the mechanical work performed on the system over time t.

2.3.2. Finite-Time Fluctuation Theorem

We now consider the generating function (31) when the system is driven by a time-dependent
protocol, HS(τ) for τ ∈ [0, t], and initially at equilibrium with reservoir ν = 1:

ρ
(1)
eq (0) = e−β1[HS(0)−µ1NS−φ

(1)
S (0)]. (33)

We also consider the corresponding backward process where the system is driven by the
time-reversed protocol, H̃S(τ) = HS(t− τ) for τ ∈ [0, t] and initially at equilibrium with reservoir
ν = 1 at the final time of the forward protocol:

ρ
(1)
eq (t) = e−β1[HS(t)−µ1NS−φ

(1)
S (t)]. (34)

Since the Liouvillian depends parametrically on time through the system Hamiltonian,
the generating function for the backward process is given by:

G̃(α, {ξν}, {λν}, t) = Tr
{

eiαH̃S(t)
(
T exp

∫ t

0
dτ L̃({ξν − α}, {λν}, τ)

)(
e−iαH̃S(0)ρ

(1)
eq (t)

)}
, (35)
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where L̃({ξν − α}, {λν}, τ) = L({ξν − α}, {λν}, t− τ). In the following, we take reservoir ν = 1 as a
reference for the energy and particle number counting. Accordingly, we set ξ1 = λ1 = 0 and introduce
the new counting field vectors {ξν}′ = {ξ2, ξ3, . . . , ξN} and {λν}′ = {λ2, λ3, . . . , λN}. Using the LDB
relation (12), we find the symmetry relation:

L†({ξν − α}′, {λν}′, τ) = e−β1µ1NSL({iAε
ν + ξν − (iβ1 + α)}′, {−iAn

ν + λν}′, τ)e+β1µ1NS (36)

expressed in terms of the thermodynamic affinities:

AE
ν = β1− βν, AN

ν = −β1µ1 + βνµν, (37)

and where L† denotes the conjugate transpose in the system Liouville space, that is
Tr
{
|a1〉〈a2|L† (|a3〉〈a4|)

}
= Tr {|a3〉〈a4|L (|a1〉〈a2|)}, where |ai〉 for i = 1, . . . , 4 are arbitrary quantum

states in the system Hilbert space.
This symmetry (36) combined with the initial conditions (33) and (34) implies the finite-time

fluctuation theorem:

G(α, {ξν}′, {λν}′, t) = Tr
{

eiαHS(t)
(
T e
∫ t

0 L̃({ξν−α}′,{λν}′,t−τ)dτ
)

e−iαHS(0)ρ
(1)
eq (0)

}
= Tr

{
eiαHS(0)ρ

(1)
eq (0)

(
T e
∫ t

0 L̃
†({ξν−α}′,{λν}′,τ)dτ

)
e−iαHS(t)

}∗
= Tr

{
ei(α+iβ1)HS(0)

(
T e
∫ t

0 L
†({iAE

ν+ξν−(iβ1+α)}′,{−iAN
ν +λν}′,τ)dτ

)
×

e−i(α+iβ1)HS(t)ρ
(1)
eq (t)

}∗
e−β1∆φ1

= G̃(iβ1 + α, {−iAE
ν + ξν}′, {−iAN

ν + λν}′, t)∗ e−β1∆φ1

= G̃(iβ1− α, {−iAE
ν − ξν}′, {−iAN

ν − λν}′, t) e−β1∆φ1 ,

(38)

where ∆φ
(1)
S = φ

(1)
S (t)− φ

(1)
S (0). At the probability level, the finite time fluctuation theorem is given by:

ln
P(+w, {+J(ν)E }′, {+J(ν)M }′, t)

P̃(−w, {−J(ν)E }′, {−J(ν)M }′, t)
= β1(w−∆φ

(1)
S ) +

N

∑
ν=2

(
AE

ν J(ν)E + AN
ν J(ν)M

)
t , (39)

where P(+w, {+J(ν)E }′, {+J(ν)M }′, t) =
∫

dJ(1)E
∫

dJ(1)N P(w, {J(ν)E }, {J(ν)M }, t) and P̃(−w, {−J(ν)E }′, {−J(ν)M }′, t)
denotes the corresponding probability distribution along the backward process. This fluctuation
theorem (39) holds for any given time t and is exclusively expressed in terms of the mechanical power
and the energy and matter currents. It is the quantum analogue of the classical result derived in [34].

3. Degenerate Single Quantum Dot Circuit

We now illustrate our formalism by considering a specific model consisting of two degenerate
quantum dots connected to two electron leads; see Figure 1. After defining the model, we first study
its average thermodynamics. We then compare its counting statistics with and without eigenstate
coherences and show that both satisfy the finite time fluctuation theorem derived above.
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(a) (b)

Figure 1. (a) Illustration of the double quantum dot system with degenerate on-site energies ε and
Coulomb-interaction U (dashed). The leads are described by Fermi functions fL/R(ω) that depend on
lead temperatures and chemical potentials. The peculiar feature of the system is that it is possible to
tunnel directly into a superposition of the singly-charged states, described by the rate γ =

√
ΓAΓB.

Mainly for simplicity, we consider in this paper a tunnel-coupling configuration with only two different
tunneling rates (bold solid and thin dotted). To avoid a bistable regime, we note that we require
ΓA 6= ΓB; (b) Graph associated with the master Equation (41). Solid arrows correspond to conventional
transition rates obeying an LDB relation for each reservoir ν ∈ {L, R}; they are proportional to Γνt/νb
as indicated. Dashed arrows connect populations with the coherences; they do not correspond to
traditional rates, but vanish as γν → 0, thus effectively decoupling populations and coherences in the
local basis.

3.1. Model

We consider a double quantum dot with no direct tunneling between the dots, but exactly
degenerate on-site energies. In general, it is well known that exact degeneracies may give rise to rich
dynamics [36,48]. For our particular model, it is from a transport perspective also well known that
negative differential conductance may arise from the Coulomb interaction due to coherences [35,37–39].
The effect has been observed experimentally [40] and is also present beyond the sequential tunneling
regime [41]. A distinctive feature of this system is that the attached fermionic contacts allow for
electron jumps into superposition states. The system, interaction and reservoir Hamiltonians read:

HS = ε
(
d†

t dt + d†
bdb
)
+ Ud†

t dtd†
bdb ,

HI = ∑ν∈{L,R} ∑i∈{t,b} ∑k
[
tkνidic†

kν + t∗kνickνd†
i
]

,
HR = ∑kν εkνc†

kνckν .
(40)

Here, the on-site energies ε of the top (t) and bottom (b) dot are degenerate, and U denotes their
Coulomb interaction. The tkν,i denote the tunneling amplitudes into mode k of lead ν with energy εkν

from dot i (top or bottom). It is visible that both leads may trigger electronic jumps into both dots.
First, we remark that for charged states, not all superposition states are allowed. In particular,

we cannot form superpositions of differently-charged states, such that coherences between,
e.g., the empty and doubly-occupied states can be neglected from the beginning. Formally, they will
evolve in a decoupled (and damped) fashion, but in reality, they cannot be created in a system-local
state and will therefore vanish throughout. Denoting the diagonal matrix elements of the empty, the top
occupied, the bottom occupied and the doubly-occupied state by ρ0, ρt, ρb, and ρ2, respectively, and the
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admissible coherences between the singly-charged states by ρtb and ρbt = ρ∗tb, the BMS Lindblad
master Equation (3) becomes (see Appendix C for more details on the derivation):

ρ̇0 = − [(ΓLt + ΓLb) fL + (ΓRt + ΓRb) fR] ρ0

+ [ΓLt(1− fL) + ΓRt(1− fR)] ρt + [ΓLb(1− fL) + ΓRb(1− fR)] ρb

+ [γL(1− fL) + γR(1− fR)] ρtb + [γ∗L(1− fL) + γ∗R(1− fR)] ρbt ,

ρ̇t = −
[
ΓLt(1− fL) + ΓRt(1− fR) + ΓLb f U

L + ΓRb f U
R

]
ρt

+ [ΓLt fL + ΓRt fR] ρ0 +
[
ΓLb(1− f U

L ) + ΓRb(1− f U
R )
]

ρ2

+
1
2

[
γL( f U

L − (1− fL)) + γR( f U
R − (1− fR))− iγLΣL − iγRΣR

]
ρtb

+
1
2

[
γ∗L( f U

L − (1− fL)) + γ∗R( f U
R − (1− fR)) + iγ∗LΣL + iγ∗RΣR

]
ρbt ,

ρ̇b = −
[
ΓLb(1− fL) + ΓRb(1− fR) + ΓLt f U

L + ΓRt f U
R

]
ρb

+ [ΓLb fL + ΓRb fR] ρ0 +
[
ΓLt(1− f U

L ) + ΓRt(1− f U
R )
]

ρ2

+
1
2

[
γL( f U

L − (1− fL)) + γR( f U
R − (1− fR)) + iγLΣL + iγRΣR

]
ρtb

+
1
2

[
γ∗L( f U

L − (1− fL)) + γ∗R( f U
R − (1− fR))− iγ∗LΣL − iγ∗RΣR

]
ρbt ,

ρ̇2 = −
[
(ΓLt + ΓLb)(1− f U

L ) + (ΓRt + ΓRb)(1− f U
R )
]

ρ2

+
[
ΓLb f U

L + ΓRb f U
R

]
ρt +

[
ΓLt f U

L + ΓRt f U
R

]
ρb

−
[
γL f U

L + γR f U
R

]
ρtb −

[
γ∗L f U

L + γ∗R f U
R

]
ρbt ,

ρ̇tb = −1
2

[
(ΓLt + ΓLb)( f U

L + (1− fL)) + (ΓRt + ΓRb)( f U
R + (1− fR))

−iΓLtΣL + iΓLbΣL − iΓRtΣR + iΓRbΣR

]
ρtb

+ [γ∗L fL + γ∗R fR] ρ0 −
[
γ∗L(1− f U

L ) + γ∗R(1− f U
R )
]

ρ2

+
1
2

[
γ∗L( f U

L − (1− fL)) + γ∗R( f U
R − (1− fR))− iγ∗LΣL − iγ∗RΣR

]
ρt

+
1
2

[
γ∗L( f U

L − (1− fL)) + γ∗R( f U
R − (1− fR)) + iγ∗LΣL + iγ∗RΣR

]
ρb ,

ρ̇bt = ρ̇∗tb , (41)

where we used the wide-band limit for the tunneling rates:

Γνi(ω) = 2π ∑k
∣∣tkν,i

∣∣2δ(ω− εkν)→ Γνi ,
γν(ω) = 2π ∑k tkν,tt∗kν,bδ(ω− εkν)→ γν .

(42)

Whereas the tunneling rates Γνi are rates in the traditional sense Γνi ≥ 0 and describe tunneling
processes into top- and bottom-localized electronic states, respectively, this is different for the
unconventional complex-valued rates γν. Formally, we see that the γν mediate the coupling between
coherences and populations and, thus, allow the system to jump, e.g., from the empty state into a
superposition of the singly-charged states. Depending on the microscopic details of the coupling,
the phases of the tunneling amplitudes in Equation (42) may interfere destructively (such that γν → 0,
which is equivalent to taking the RWA limit) or constructively (when all tunneling amplitudes are
equal, we have |γν|2 = ΓνtΓνb). This last limit of constructive interference γν →

√
ΓνtΓνb will be used

here as the wide-band limit of the secular approximation.
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The thermal reservoir properties are contained in the Fermi functions and Lamb-shift terms:

fν = 1
eβν(ε−µν)+1

, f U
ν = 1

eβν(ε+U−µν)+1
,

Σν = 1
π<

[
Ψ
(

1
2 + i βν(ε+U−µν)

2π

)
−Ψ

(
1
2 + i βν(ε−µν)

2π

)]
,

(43)

where Ψ(x) denotes the digamma function.
We stress a few things before proceeding. First, as the master equation is of the Lindblad form

by construction, the density matrix properties will be preserved. Second, we see that the dissipator
is additive in the reservoirs L = LL + LR. Each dissipator annihilates its associated Gibbs state,
cf. Equation (15). Consequently, at global equilibrium (βL = βR and µL = µR), the thermal Gibbs
state (with vanishing coherences) is the stationary state. Finite coherences in the steady state can
however arise in nonequilibrium setups, as will be discussed below. Finally, we mention that the total
Liouvillian becomes bistable when ΓLt = ΓLb = ΓL and ΓRt = ΓRb = ΓR, and we will in the following
avoid this situation. The graph of the master equation is depicted in Figure 1b.

3.2. Model Thermodynamics

In what follows, we will consider mainly for simplicity the limit ΓLt = ΓRb = ΓA and ΓLb = ΓRt = ΓB
and γ =

√
ΓAΓB (or, for the RWA limit, γ = 0); see Figure 1a. We assume ΓA 6= ΓB, so that we will not

consider the bistable situation in the present paper [38].
We can extract the time-dependent energy and matter currents into and from both reservoirs,

e.g., from the full counting statistics methods, as discussed in Section 2.3.1. In Appendix C.2,
we provide the required counting fields exemplarily for transitions triggered by the left junction.
Alternatively, we may also use definitions analogous to the heat current (19) to calculate energy and
matter currents. In Figure 2, we plot the time-dependent matter and energy currents for our model
versus the potential difference.

Previous investigations of this particular model [37,38] have already revealed a significant
suppression of the steady state matter current due to coherences. The suppression of the currents
is linked to a pure nonequilibrium steady state arising at low temperatures βLU = βRU � 1
when ∆µ = µL − µR = ±(2ε + U), which for our particular parameters can be understood
analytically; see Appendix C.4. Here, we complete this picture by the time-dependent evolution
and the time-dependent energy current. Most important, we note the striking difference between the
steady-state currents of energy and matter currents of the BMS (solid and dashed black) and the RWA
(dotted black) versions. Interestingly, the time-dependent average current obtained in the current
suppression valley within the BMS approximation first approaches the steady-state value obtained
within the RWA approximation, before ultimately converging to the steady-state value given within
the BMS master equation (see bottom right inset of Figure 2).

Furthermore, from the time-dependent solution of the master Equation (3), we can compute the
Shannon entropy (in the original energy eigenbasis {|0〉 , |t〉 , |b〉 , |2〉}) and the von Neumann entropy
(basis independent). Since the first neglects the coherences, these will obviously differ in regions where
coherences are present; see Figure 3.

In particular, we can see that the steady-state von Neumann entropy vanishes when
∆µ = ±(2ε +U), whereas the Shannon entropy does not, which nicely illustrates that the
system reaches a stationary pure state at this nonequilibrium configuration; cf. Appendix C.4.
The time-dependent von Neumann entropy of the system as calculated within the BMS and RWA
relates in a similar fashion as described above for the time-dependent average current out of the
left reservoir (bottom left inset of Figure 3). For a bias voltage out of the current suppression valley,
entropies computed within the BMS and RWA remain approximately equal at all times. Within the
current suppression valley, the former mirrors the later at short times before converging to its own
steady-state value (vanishing system entropy at the current suppression point ∆µ = ±(2ε +U)).
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Figure 2. Plot of the matter current entering the system from the left junction for different times (legend)
versus dimensionless bias ∆µ = µL − µR for the initially completely mixed state. For small times,
the current is not point-symmetric, since the system content dominates the dynamics. For intermediate
times, the current first approaches the steady-state RWA limit (dotted). For larger times, the coherences
induce a large valley of current suppression, with a minimum at ∆µ∗ = ±(2ε + U). The energy
currents (upper left inset, same color coding) behave similarly. The bottom right inset compares
the time-dependent average matter current obtained within the BMS and the RWA approximation,
for two different values of the potential difference ∆µ indicated by vertical lines in the main plot.
Parameters were chosen as βΓA = 0.1, βΓB = 0.225, βε = 10 and βU = 50.
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Figure 3. Plot of the von Neumann (solid) and Shannon (dashed) entropies for different times (legend)
versus dimensionless bias for the initially completely mixed state. Initially (grey), both entropies are
constant and coincide with the maximum value of ln(4) (dimension of the Hilbert space). As coherences
build up, they start to differ until they reach different steady states. Consistent with the pure delocalized
steady state at the current suppression point (see Appendix C.4), the steady-state von Neumann entropy
vanishes (solid black), whereas the Shannon entropy does not (dashed black). The dotted curve shows
the steady-state entropy (Shannon) for the RWA rate equation. The time evolution of the von Neumann
system entropy is illustrated in the bottom left inset for two values of the potential bias taken at the
corresponding vertical lines of the main plot. The parameters were chosen as in Figure 2.

From the difference between the change of the system entropy and the heat currents, we can
obtain the entropy production rate, Equation (23), which we plot in Figure 4.
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Figure 4. Top: Plot of the (positive) dimensionless entropy production rate for different times (solid
curves) versus dimensionless bias β∆µ for the initially completely mixed state. For small times,
the entropy production rate does not vanish anywhere since the system is not equilibrated. For large
times, the steady-state entropy production rate (bold) is approached, which inherits the minima from
the energy and matter currents (bottom). In contrast, the RWA version (dotted black) does not exhibit
the coherence-induced dips. Bottom: For orientation, we also plot the dimensionless matter (red)
and energy (green) currents and the rescaled absolute value of the coherences (thin dotted magenta).
Parameters were chosen as in Figure 2.

Beyond the evident sanity check that it is positive, we see that even at steady state, coherences
between the degenerate states may survive in a nonequilibrium setup, which goes along with a
suppression of the steady-state entropy production rate.

We now briefly consider how our model can operate as a thermoelectric device. We consider
the situation in which a thermal gradient is applied between the reservoirs (βL > βR) to drive a
current against a chemical potential bias (∆µ = µL − µR > 0). Denoting the electronic and energy
current entering the system from the left reservoir by JM and JE (dropping the reservoir index L),
the thermoelectric efficiency of this process is defined as the ratio between the generated power
P = −JM∆µ and the heat extracted from the hot right reservoir −(JE − µR JM):

η =
JM∆µ

JE − µR JM
∗Θ(−JM∆µ) . (44)

The Heaviside function is introduced to indicate that this efficiency is only meaningful in regions
of positive power. Positivity of the steady-state entropy production rate implies, as usual, that this
efficiency is upper-bounded by the Carnot efficiency, η ≤ 1− βR/βL. A strong thermoelectric effect
requires a large temperature gradient, which in our model reduces the impact of the coherences.
In Figure 5, we observe numerically that the region of positive power is outside the region where
quantum coherences suppress the current. To obtain a non-negligible power output, we have
to consider parameter ranges where the coherences do not significantly modify the energetics.
Consequently, the BMS and RWA results are qualitatively the same. In particular, the quantum
efficiencies (γν =

√
ΓνtΓνb, solid black) and classical efficiencies (γν = 0, dashed black) are rather

close, although the quantum efficiency is always smaller than the classical one. We have numerically
observed this inequality also for other parameters.
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Figure 5. Comparison of efficiency (black), matter current from left to right (red) and generated
power (green) for the Born–Markov and secular (BMS) master equation (solid) and the rotating wave
approximation (RWA) rate equation (thin dashed) versus dimensionless bias voltage. The thin dotted
line denotes the absolute value of the coherence. The region of finite efficiency is marked by a
non-dominating role of coherences in which the RWA and BMS efficiencies are similar. We notice
that the quantum (BMS) efficiency is below the classical (RWA) efficiency. Parameters were chosen as
in Figure 2.

3.3. Statistics and Fluctuation Theorem

The generating function of work and currents (31) can be evaluated numerically by solving
the dressed quantum master Equation (27) for the specific model (40), namely Equation (C9).
The corresponding joined probability distribution is then obtained by a Fourier transform.

As an illustration, we now consider the system introduced in Section 3.1 in the isothermal regime
β = βL = βR. The initial condition of the system is taken as the grand canonical equilibrium with
respect to the right reservoir:

ρ(0) = exp
[
−β(HS − µRNS − φR

S )
]

, (45)

where the equilibrium grand-potential is φR
S = −β−1 ln Tr {exp [−β(HS − µRNS)]} and where

NS = d†
t dt + d†

bdb is the particle number operator in the system.
The distribution P(∆n, τ) of the particle changes in the left reservoir ∆n = JMτ during time

τ is numerically evaluated for three different values of the measurement time. The results from
the master equation in the secular approximation are compared to those obtained from the RWA
master Equation (9), in which one neglects the influence of quantum coherences on the dynamics and
current statistics. In Figure 6, we see that the distributions obtained in the former case (i.e., BMS)
exhibit a bimodal behavior in the transient regime, which approaches a long-tail distribution for
large times. This was observed in a wide range of parameters close to the current suppression point
∆µ∗ = ±(2ε + U). Qualitatively, this can be well understood from the fact that the system is close
to a bistable configuration, associated with a near-block form of the Liouvillian: whereas one block
supports a finite steady-state current, the current associated with the other subspace (with a dark
state) vanishes, and telegraph-type averaging over the two distributions yields the visible long-tail
distribution [49,50]. The diagonal initial state (45) then also explains why the long-term distribution
starts at ∆n = 1: since the dark state is a superposition of the two singly-charged states, at least a
single jump event is required to create it. This effect is totally absent in the latter case (i.e., RWA),
where the distribution has the usual bell-shape whose drift gives the finite average current at steady
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state. The BMS drift instead is, as expected, very small, close to the current suppression point when
coherences are taken into account (see Section 2.2). The BMS distribution is thus non-trivial and
converges to a distribution with a large tail. This example shows that not only average currents are
affected by sustained coherences, but also their statistics.
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Figure 6. Probability distributions of the number of particles flowing out of the left reservoir during
four different time intervals τ as obtained from the dressed quantum master Equation (27) applied
to our model. The initial condition on the system density matrix is the grand canonical equilibrium
distribution with respect to the right reservoir (45). The long tail of the long-term distribution (blue)
results from telegraph-noise averaging over a δ-peak at ∆n = 1 (trapped dark state) and a distribution
conventionally propagating to the right. Chemical potentials were chosen as βµL = −βµR = 30.
Other parameters where chosen as in Figure 2.

For our choice of initial condition (45), the statistics of the current flowing out of the left reservoir
must satisfy the fluctuation symmetries (38) and (39). In the present case, the fluctuation relation (39)
reduces to the finite-time fluctuation theorem for the net number of particles transferred to the left
reservoir (∆n = JMτ):

ln
P(+∆n, τ)

P(−∆n, τ)
= β∆µ ∆n, (46)

where ∆µ = µL − µR. Since we first numerically evaluate the current generating function
G(λ, τ) = τ−1 ∑∆n P(∆n, τ)e−iλ∆n and due to the highly oscillating integrals involved in obtaining the
distribution P(∆n, τ) at large particle number changes ∆n, it is however simpler to test the equivalent
fluctuation theorem symmetry (38), which here reduces to:

G(λ, τ) = G(iβ∆µ− λ, τ). (47)

This symmetry is indeed verified by the generating functions of the distributions shown in
Figure 6. We note that the fluctuation theorem is also satisfied by the generating function obtained
within the RWA (Figure 7) even though the two statistics significantly differ. The fact that the statistics
obtained within the RWA also satisfies a finite time (FT) directly results from the fact that transition
rates of the stochastic master Equation (9) satisfy the LDB relation (12).
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Figure 7. Probability distributions of the number of particles flowing out of the left reservoir during
four different time intervals τ obtained within the rotating wave approximation, that is neglecting
the influence of quantum coherences ρtb and ρbt on the statistics. The initial condition on the system
density matrix is the grand canonical equilibrium distribution with respect to the right reservoir (45).
Chemical potentials were chosen as βµL = −βµR = 30. Other parameters were chosen as in Figure 2.

4. Summary

In the present paper, we established the nonequilibrium thermodynamics of open quantum
systems exhibiting degeneracies and described by quantum master Equation (3). We established the
first and and second law, as well as a finite-time fluctuation theorem solely expressed in terms of
the mechanical work and the energy and particle counting statistics. Using a simple model with
two degenerate quantum dots, we showed that eigenbasis coherences at steady state can generate
non-trivial counting statistics, such as bi-modality and diverging second and higher cumulants.
These findings will help to elucidate the role of coherences in stochastic thermodynamics. A remaining
open issue is to be able to treat close-to-degenerate eigenstates within the quantum master equation
formalism. This is particularly important to treat drivings, which can induce crossings between the
system eigenenergies.
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Appendix A. KMS Condition with Chemical Potentials

We essentially just use the invariance of the trace under permutations. In particular, we can write:

Cᾱα(−τ − iβ) = 1
Z TrR

{
e−iHR(τ+iβ)Bᾱe+iHR(τ+iβ)Bαe−βHR e+βµNR

}
= 1

Z TrR
{

e+iHRτ Bαe−iHRτe+βµNR Bᾱe−βHR
}

.
(A1)
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The complication for µ 6= 0 is that NR and Bᾱ do not commute. However, when we compute
the sum:

Sα(τ) ≡ ∑ᾱ e+βµNS Aᾱe−βµNS Cᾱα(−τ − iβ)

= 1
Z TrR

{
e+iHRτ Bαe−iHRτe+βµ(NR+NS) [∑ᾱ AᾱBᾱ] e−βµNS e−βHR

}
= 1

Z TrR
{

e+iHRτ Bαe−iHRτ [∑ᾱ AᾱBᾱ] e+βµNR e−βHR
}

= ∑ᾱ AᾱCαᾱ(τ) ,

(A2)

we see that we can use that the interaction conserves the total particle number, which proves
Equation (11). Fourier transformation then yields the relation:

∑̄
α

Aᾱγαᾱ(ω) = ∑̄
α

e+βµNS Aᾱe−βµNS γᾱα(−ω)e+βω . (A3)

Inserting this in the fraction of the dampening coefficients, we obtain:

γab,cd
γdc,ba

=
∑αᾱ γαᾱ(Eb − Ea) 〈a| Aᾱ |b〉 〈c| A†

α |d〉
∗

∑αᾱ γᾱα(−(Eb − Ea)) 〈a| Aᾱ |b〉 〈c| A†
α |d〉

∗

=
∑αᾱ γαᾱ(Eb − Ea) 〈a| Aᾱ |b〉 〈c| A†

α |d〉
∗

∑α 〈a| [∑ᾱ γᾱα(−(Eb − Ea))Aᾱ] |b〉 〈c| A†
α |d〉

∗

=
∑αᾱ γαᾱ(Eb − Ea) 〈a| Aᾱ |b〉 〈c| A†

α |d〉
∗

e−β(Eb−Ea) ∑α 〈a|
[
∑ᾱ γαᾱ(Eb − Ea)e−βµNS Aᾱe+βµNS

]
|b〉 〈c| A†

α |d〉
∗

= eβ(Eb−Ea)e−βµ(Nb−Na) ,

(A4)

which proves Equation (12).

Appendix B. Positivity of Entropy Production

In order to establish the positivity of the entropy production defined by (23), we first note that the
heat flow (19) out of reservoir ν can be written as:

βνQ̇(ν) = −Tr
{[
L(ν)ρ

] [
ln ρ

(ν)
eq

]}
. (B1)

The entropy production itself can then be expressed as:

Ṡi = −∑
ν

Tr
{[
L(ν)ρ

] [
ln ρ− ln ρ

(ν)
eq

]}
≥ 0. (B2)

Spohn’s inequality [46] states that each individual ν contribution in this last expression is
non-negative, but we demonstrate this explicitly below.

Completely positive and trace-preserving maps, like the evolution V generated by
Lindblad generators, are contractive, i.e., they decrease the distance between any two states
D(VA, VB) ≤ D(A, B). This also holds for more general distances, such as the quantum relative
entropy [51]:

D(ρ ‖ σ) ≡ Tr {ρ [ln ρ− ln σ]} . (B3)

Choosing A = ρ(t), B = ρ
(ν)
eq (t) and V(t + ∆t, t) as the propagator associated with

ρ̇ = L(ν)(t)ρ from time t to t + ∆t, it follows that V(t + ∆t, t)ρ(t) = ρ(t + ∆t) by construction and
V(t + ∆t, t)ρ(ν)eq (t) = ρ

(ν)
eq (t) +O{∆t2}. Consequently, we have:
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0 ≥ 1
∆t

[
D(V(t + ∆t, t)ρ(t) ‖ V(t + ∆t, t)ρ(ν)eq (t))− D(ρ(t) ‖ ρ

(ν)
eq (t))

]
= 1

∆t

[
D(ρ(t + ∆t) ‖ ρ

(ν)
eq (t) +O{∆t2})− D(ρ(t) ‖ ρ

(ν)
eq (t))

]
= 1

∆t

[
Tr {ρ(t + ∆t) ln ρ(t + ∆t)} − Tr

{
ρ(t + ∆t) ln ρ

(ν)
eq (t)

}
−Tr {ρ(t) ln ρ(t)}+ Tr

{
ρ(t) ln ρ

(ν)
eq (t)

} ]
+O{∆t}

∆t→0−→ d
dt Tr {ρ ln ρ} − Tr

{
ρ̇ ln ρ

(ν)
eq

}
= Tr

{
ρ̇
[
ln ρ− ln ρ

(ν)
eq

]}
= Tr

{[
L(ν)ρ

] [
ln ρ− ln ρ

(ν)
eq

]}
,

(B4)

which establishes the positivity of the entropy production rate (23).

Appendix C. Details for the Specific Model

In usual derivations of master equations, one assumes a tensor-product decomposition of the
interaction Hamiltonian, implying that system and reservoir operators commute. For fermionic
transport, this is obviously not the case as the fermionic operators on the system and reservoir
anti-commute. However, it can be checked that the fermionic nature of these operators can be
implemented with Pauli matrices dt = σ+ ⊗ 1 ⊗ 1rest, db = σz ⊗ σ+ ⊗ 1rest and ckν = σz ⊗ σz ⊗
c̃kν, where the fermionic operators c̃kν now only act on the reservoir Hilbert space. To restore the
fermionic character in the system, we introduce d̃1 = −σ+ ⊗ σz and d̃2 = −1⊗ σ+, such that the
Hamiltonians become:

HS = ε
(
d̃†

t d̃t + d̃†
b d̃b
)
+ Ud̃†

t d̃td̃†
b d̃b ,

HI = ∑i∈{t,b} ∑ν∈{L,R}
[
d̃i ⊗∑kν tkνi c̃†

kν + d̃†
i ⊗∑kν t∗kνi c̃kν

]
,

HR = ∑kν εkν c̃†
kν c̃kν ,

(C1)

which appears nearly identical, but now with a tensor product decomposition in the interaction
Hamiltonian. In what follows, we will drop the˜superscript and perform the mapping tacitly.

Appendix C.1. Reservoir Correlation Functions

We have of course the freedom to label the coupling operators in any desired order. For our
model, we choose the coupling operators as:

A1 = dt, B1 = ∑k tkL,tc†
kL , A2 = d†

t , B2 = ∑k t∗kL,tckL ,
A3 = db, B3 = ∑k tkL,bc†

kL , A4 = d†
b , B4 = ∑k t∗kL,bckL ,

A5 = dt, B5 = ∑k tkR,tc†
kR , A6 = d†

t , B6 = ∑k t∗kR,tckR ,
A7 = db, B7 = ∑k tkR,bc†

kR , A8 = d†
b , B8 = ∑k t∗kR,bckR .

(C2)

From these definitions, we see that of the 64 possible, only 16 correlation functions are
non-vanishing, which can be written (performing the continuum limit) as:

C12(τ) = 1
2π

∫
ΓLt(ω) fL(ω)e+iωτdω , C21(τ) = 1

2π

∫
ΓLt(ω)[1− fL(ω)]e−iωτdω ,

C34(τ) = 1
2π

∫
ΓLb(ω) fL(ω)e+iωτdω , C43(τ) = 1

2π

∫
ΓLb(ω)[1− fL(ω)]e−iωτdω ,

C14(τ) = 1
2π

∫
γL(ω) fL(ω)e+iωτdω , C41(τ) = 1

2π

∫
γL(ω)[1− fL(ω)]e−iωτdω ,

C32(τ) = 1
2π

∫
γ∗L(ω) fL(ω)e+iωτdω , C23(τ) = 1

2π

∫
γ∗L(ω)[1− fL(ω)]e−iωτdω ,

C56(τ) = 1
2π

∫
ΓRt(ω) fR(ω)e+iωτdω , C65(τ) = 1

2π

∫
ΓRt(ω)[1− fR(ω)]e−iωτdω ,

C78(τ) = 1
2π

∫
ΓRb(ω) fR(ω)e+iωτdω , C87(τ) = 1

2π

∫
ΓRb(ω)[1− fR(ω)]e−iωτdω ,

C58(τ) = 1
2π

∫
γR(ω) fR(ω)e+iωτdω , C85(τ) = 1

2π

∫
γR(ω)[1− fR(ω)]e−iωτdω ,

C76(τ) = 1
2π

∫
γ∗R(ω) fR(ω)e+iωτdω , C67(τ) = 1

2π

∫
γ∗R(ω)[1− fR(ω)]e−iωτdω .

(C3)
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Above, we have introduced the tunnel rates (42), and in particular, the γν(ω) lead to the peculiar
physics of the model. We can directly read off the even Fourier transforms of the correlation functions
defined by (5):

γ12(ω) = ΓLt(−ω) fL(−ω) , γ21(ω) = ΓLt(+ω)[1− fL(+ω)] ,
γ34(ω) = ΓLb(−ω) fL(−ω) , γ43(ω) = ΓLb(+ω)[1− fL(+ω)] ,
γ14(ω) = γL(−ω) fL(−ω) , γ41(ω) = γL(+ω)[1− fL(+ω)] ,
γ32(ω) = γ∗L(−ω) fL(−ω) , γ23(ω) = γ∗L(+ω)[1− fL(+ω)] ,
γ56(ω) = ΓRt(−ω) fR(−ω) , γ65(ω) = ΓRt(+ω)[1− fR(+ω)] ,
γ78(ω) = ΓRb(−ω) fR(−ω) , γ87(ω) = ΓRb(+ω)[1− fR(+ω)] ,
γ58(ω) = γR(−ω) fR(−ω) , γ85(ω) = γR(+ω)[1− fR(+ω)] ,
γ76(ω) = γ∗R(−ω) fR(−ω) , γ67(ω) = γ∗R(+ω)[1− fR(+ω)] .

(C4)

The calculation of the odd Fourier transforms is more involved. Fortunately, they can be obtained
from the even ones by a Cauchy principal value integral:

σαβ(ω) =
i
π
P
∫ γαβ(ω̄)

ω− ω̄
dω̄ . (C5)

To perform it, we assume that the tunneling rates Γνi(ω) and γν(ω) can be parametrized by
Lorentzian functions:

Γνi(ω) = Γνi
δ2

ω2 + δ2 , γν(ω) = γν
δ2

ω2 + δ2 . (C6)

Since we will let their width δ later on go to infinity, they essentially serve as regulators.
All integrals can then be related to the fundamental integral:

I(ω) ≡ i
π
P
∫ f (ω′)

ω + ω′
δ2

ω′2 + δ2 dω′

= δ
[ eβµ(

eβµ + eiβδ
)
(δ− iω)

− δ(
1 + e−β(µ+ω)

)
(δ2 + ω2)

+

iδΨ
(

1
2
− i

β(ω + µ)

2π

)
+

1
2
(ω− iδ)Ψ

(
1
2
− βδ

2π
− i

βµ

2π

)
− 1

2
(ω + iδ)Ψ

(
1
2
+

βδ

2π
− i

βµ

2π

)
π (ω2 + δ2)

]
,

(C7)

where Ψ(x) denotes the digamma function. It is straightforward to show that the two types of integrals
are directly related to the fundamental integral above:

Ia(ω) =
i
π
P
∫ f (−ω′)Γ(−ω′)

ω−ω′
= ΓI(+ω) ,

Ib(ω) =
i
π
P
∫ [1− f (+ω′)]Γ(+ω′)

ω−ω′
= Γ

[
i

ωδ

ω2 + δ2 + I(−ω)

]
.

(C8)

Appendix C.2. Liouvillian

We now write for our model the dressed Lindblad master Equation (27) describing the dressed
system density matrix ρ(ξ, λ, t), where the counting fields ξ and λ account for, respectively, the currents
of energy and particles out of the left reservoir [9,38]. We use the local energy eigenbasis |0〉 (empty),
|t〉 (top occupied), |b〉 (bottom occupied) and |2〉 (doubly occupied) with system energy eigenvalues
E00 = 0, Et = ε, Eb = ε, and E2 = 2ε + U, respectively. We label the dressed density matrix
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populations as ρ0 = 〈0| ρ |0〉, ρt = 〈t| ρ |t〉, ρb = 〈b| ρ |b〉, ρ2 = 〈2| ρ |2〉 and the two relevant coherences
as ρtb = 〈t| ρ |b〉 and ρbt = 〈b| ρ |t〉. We get:

ρ̇0 = − [γ12(−ε) + γ34(−ε) + γ56(−ε) + γ78(−ε)] ρ0

+
[
γ21(+ε)e−iλ−iεξ + γ65(+ε)

]
ρt +

[
γ43(+ε)e−iλ−iεξ + γ87(+ε)

]
ρb

+
[
γ41(+ε)e−iλ−iεξ + γ85(+ε)

]
ρtb +

[
γ23(+ε)e−iλ−iεξ + γ67(+ε)

]
ρbt ,

ρ̇t = − [γ21(+ε) + γ34(−U − ε) + γ65(+ε) + γ78(−U − ε)] ρt

+
[
γ12(−ε)e+iλ+iεξ + γ56(−ε)

]
ρ0 +

[
γ43(+U + ε)e−iλ−i(ε+U)ξ + γ87(+U + ε)

]
ρ2

+
1
2

[
+ γ14(−U − ε)− γ41(+ε) + γ58(−U − ε)− γ85(+ε)

−σ14(−U − ε) + σ41(+ε)− σ58(−U − ε) + σ85(+ε)
]
ρtb

+
1
2

[
− γ23(+ε) + γ32(−U − ε)− γ67(+ε) + γ76(−U − ε)

−σ23(+ε) + σ32(−U − ε)− σ67(+ε) + σ76(−U − ε)
]
ρbt ,

ρ̇b = − [γ43(+ε) + γ87(+ε) + γ12(−U − ε) + γ56(−U − ε)] ρb

+
[
γ34(−ε)e+iλ+iεξ + γ78(−ε)

]
ρ0 +

[
γ21(U + ε)e−iλ−i(ε+U)ξ + γ65(U + ε)

]
ρ2

+
1
2

[
+ γ14(−U − ε)− γ41(+ε) + γ58(−U − ε)− γ85(+ε)

+σ14(−U − ε)− σ41(+ε) + σ58(−U − ε)− σ85(+ε)
]
ρtb

+
1
2

[
− γ23(+ε) + γ32(−U − ε)− γ67(+ε) + γ76(−U − ε)

+σ23(+ε)− σ32(−U − ε) + σ67(+ε)− σ76(−U − ε)
]
ρbt ,

ρ̇2 = − [γ21(U + ε) + γ43(U + ε) + γ65(U + ε) + γ87(U + ε)] ρ2

+
[
γ34(−U − ε)e+iλ+i(ε+U)ξ + γ78(−U − ε)

]
ρt +

[
γ12(−U − ε)e+iλ+i(ε+U)ξ + γ56(−U − ε)

]
ρb

−
[
γ14(−U − ε)e+iλ+i(ε+U)ξ + γ58(−U − ε)

]
ρtb −

[
γ32(−U − ε)e+iλ+i(ε+U)ξ + γ76(−U − ε)

]
ρbt ,

ρ̇tb = −
[
+ γ12(−U − ε) + γ21(+ε) + γ34(−U − ε) + γ43(+ε)

+γ56(−U − ε) + γ65(+ε) + γ78(−U − ε) + γ87(+ε)

−σ12(−U − ε) + σ21(+ε) + σ34(−U − ε)− σ43(+ε)

−σ56(−U − ε) + σ65(+ε) + σ78(−U − ε)− σ87(+ε)
]
ρtb

+
[
γ32(−ε)e+iλ+iεξ + γ76(−ε)

]
ρ0 −

[
γ23(U + ε)e−iλ−i(ε+U)ξ + γ67(U + ε)

]
ρ2

+
1
2

[
− γ23(+ε) + γ32(−U − ε)− γ67(+ε) + γ76(−U − ε)

+σ23(+ε)− σ32(−U − ε) + σ67(+ε)− σ76(−U − ε)
]
ρt

+
1
2

[
− γ23(+ε) + γ32(−U − ε)− γ67(+ε) + γ76(−U − ε)

−σ23(+ε) + σ32(−U − ε)− σ67(+ε) + σ76(−U − ε)
]
ρb ,
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ρ̇bt = −
[
+ γ12(−U − ε) + γ21(+ε) + γ34(−U − ε) + γ43(+ε)

+γ56(−U − ε) + γ65(+ε) + γ78(−U − ε) + γ87(+ε)

+σ12(−U − ε)− σ21(+ε)− σ34(−U − ε) + σ43(+ε)

+σ56(−U − ε)− σ65(+ε)− σ78(−U − ε) + σ87(+ε)
]
ρbt

+
[
γ14(−ε)e+iλ+iεξ + γ58(−ε)

]
ρ0 −

[
γ41(U + ε)e−iλ−i(ε+U)ξ + γ85(U + ε)

]
ρ2

+
1
2

[
γ14(−U − ε)− γ41(+ε) + γ58(−U − ε)− γ85(+ε)

+σ14(−U − ε)− σ41(+ε) + σ58(−U − ε)− σ85(+ε)
]
ρt

+
1
2

[
γ14(−U − ε)− γ41(+ε) + γ58(−U − ε)− γ85(+ε)

−σ14(−U − ε) + σ41(+ε)− σ58(−U − ε) + σ85(+ε)
]
ρb . (C9)

When setting the counting fields to zero (ξ = 0 and λ = 0) and using the wide-band limit in
the correlation functions (C4), these equations reduce to the quantum master equation for the system
density matrix (41); see also the next section. We stress that by construction, though not immediately
apparent, the Lindblad form ensures the preservation of density matrix properties. For example,
the derivative of diagonal density matrix entries must be real-valued, which is ensured by relations
among the σij. The Liouvillian clearly decomposes into left (γij, σij : i, j ≤ 4) and right (γij, σij : i, j ≥ 5)
reservoir contributions L = LL + LR. One observes that the diagonal thermal state:

(ρν
0, ρν

t , ρν
b , ρν

2) ∝ (1, e−βν(ε−µν), e−βν(ε−µν), e−βν(2ε+U−2µν)) ,

ρtb = ρbt = 0 , for ν = L, R (C10)

is an individual stationary state of the corresponding dissipator, that is Lνρν = 0 [45] at vanishing
counting fields (λ = 0 and ξ = 0). This directly results from the KMS relation of the Fermi functions
1− fν(ω) = fν(ω)e+βν(ω−µν). The steady state of the complete Liouvillian however will in general
not be diagonal.

Appendix C.3. Wide-Band Limit

We now consider the wide-band limit δ→ ∞ in the Lorentzian tunnel-rates (C6), where Γνi(ω)→ Γνi
and γν →

√
ΓνtΓνb (admitting a phase for the γν did not lead to observable changes in our model).

The even Fourier transforms of the correlation functions then directly simplify to Fermi functions.
The odd Fourier transforms would individually diverge logarithmically. However, we see that they
always enter in a particular combination:

∆σ = σodd,even(−U− ε)− σeven,odd(+ε)

= Γ
[

I(−U− ε)− I(−ε)− i
εδ

ε2 + δ2

]
, (C11)

compare Equation (C7). In the wide-band limit, the divergencies of the individual terms cancel, and we
can replace:

∆σ → Γ
[

f (ε)− i
π

Ψ
(

1
2
+ i

β(ε− µ)

2π

)]
−Γ
[

f (ε +U)− i
π

Ψ
(

1
2
+ i

β(ε +U− µ)

2π

)]
= i

Γ
π
<
[

Ψ
(

1
2
+ i

β(ε +U− µ)

2π

)
−Ψ

(
1
2
+ i

β(ε− µ)

2π

)]
,

(C12)
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where the real parts always cancel. This is quite resistant to further simplification. The current
suppression occurs when µ→ ε +U/2, where ∆σ vanishes. Comparing with Equation (43), we see
that ∆σ = iΓΣν.

Appendix C.4. Current Suppression Point

Now, we will explore the limit of equal temperature β = βL = βR, but different chemical
potentials µL = +∆µ/2 and µR = −∆µ/2. In addition, we assume that the bias voltage is tuned to
∆µ→ ∆µ∗ = 2ε +U and that the temperature is very low βU � 1. If the Coulomb interaction is larger
than the on-site energy U � ε, the Fermi functions either approach zero or one fL → 1, f U

L → 0, fR → 0
and f U

R → 0. Furthermore, we have in this limit that ΣL → 0 and ΣR → ln(3)/π. Mainly to simplify
all expressions, we also consider the limit ΓLt = ΓRb = ΓA and ΓLb = ΓRt = ΓB. The Liouvillian then
becomes (with γ =

√
ΓAΓB and Γ = ΓA + ΓB):

L =



−Γ ΓB ΓA 0 γ γ

ΓA −ΓB 0 Γ −γ
2 − i γ ln 3

2π −γ
2 + i γ ln 3

2π

ΓB 0 −ΓA Γ −γ
2 + i γ ln 3

2π −γ
2 − i γ ln 3

2π

0 0 0 −2Γ 0 0
γ −γ

2 − i γ ln 3
2π −γ

2 + i γ ln 3
2π −2γ − Γ

2 − i (ΓA−ΓB) ln 3
2π 0

γ −γ
2 + i γ ln 3

2π −γ
2 − i γ ln 3

2π −2γ 0 − Γ
2 + i (ΓA−ΓB) ln 3

2π


. (C13)

When ΓA 6= ΓB, the nonequilibrium stationary state of this Liouvillian is unique (near-bistability
for ΓA ≈ ΓB leads to telegraph-like noise [38]). It is given by the pure state:

ρ̄→
[√

ΓA
ΓA + ΓB

|t〉 −

√
ΓB

ΓA + ΓB
|b〉
] [√

ΓA
ΓA + ΓB

〈t| −

√
ΓB

ΓA + ΓB
〈b|
]

, (C14)

and thus depends on the coupling strengths to both reservoirs.
We note that in this limit, energy and matter currents vanish, since transport requires a mixed

steady state.
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