Uncertainty Quantification - Sensitivity Analysis / Biomechanics

Paul Hauseux, Jack S. Hale and Stéphane P.A. Bordas

February 2017

Stg. No. 279578 RealTCut

Groupe de travail (Besançon 2017)

Context: Soft-tissue biomechanics simulations with uncertainty

▶ Uncertainty in parameters (material properties, loading, geometry, etc.) in biomechanics problems can influence the outcome of simulation results.

Dbjective: propagate and visualise this uncertainty with non or partially-intrusive methods.

General framework

$$ullet$$
 Stochastic non-linear system: $F(oldsymbol{u},oldsymbol{\omega})=oldsymbol{0}$

$$\blacktriangleright$$
 Probability space: (Ω, \mathcal{F}, P)

$$m{ ilde{\omega}}$$
 Random parameters: $m{\omega}=(\omega_1,\omega_2,\ldots,\omega_M)$

- ▶ Objective: provide statistical data for the solution of the problem.
- ▶ Integration (to determine the expected value of a quantity of interest):

$$E[\Psi(u(\omega))] = \int_{\Omega} \Psi(u(\omega)) dP(\omega)$$

Direct integration

Monte-Carlo method [Caflisch 1998]:

$$E[\Psi(u(\omega))] = \int_{\Omega} \Psi(u(\omega)) dP(\omega) \simeq \sum_{z=1}^{Z} p_z \Psi(u(\omega_z))$$

Algorithm:

while z < Z:

- ightharpoonup choose randomly ω_z .
- evaluate $\Psi(u(\omega_z))$.
- add the contribution to the sum.

Convergence

▶ Converge «in law»: 1% for 10000 realisations, slow but independent of the dimension!

$$||\mathbb{E}^{\mathrm{MC}}[\psi(\omega)] - \mathbb{E}[\psi(\omega)]||_{L^{2}(\Omega_{p})} \sim \mathrm{N}(0,1)\sqrt{\frac{\mathbb{V}[\psi(\omega)]}{Z}}$$

▶ Necessity to improve the convergence.

Work done:

- ▶ Low discrepancy sequences (Sobol, Hamilton, ...): quasi MCM [Caflisch 1998].
- ▶ Multi Level Monte-Carlo techniques [Giles 2015, Matthies 2008].
- ▶ MC methods by using sensitivity information (SD-MC) [Cao et. al 2004, Liu et al. 2013].

MC methods by using sensitivity information

Estimator [Cao et. al 2004, Liu et al. 2013]:

$$\mathbb{E}_1^{\text{SD-MC}} \left[\psi(\omega) \right] := \frac{1}{Z} \sum_{z=1}^{Z} \left[\psi(\omega_z) - D[\psi(\bar{\omega})](\omega_z - \bar{\omega}) \right]$$

This variance reduction method increases the accuracy of sampling methods. Here we only consider the case of the first-order sensitivity derivative enhanced Monte-Carlo method. By using sensitivity information computational workload can be reduced by one order of magnitude over commonly used schemes.

Main difficulty:

$$D[\psi(ar{\omega})]$$
 ??

Numerical implementation

Implementation (DOLFIN/FEniCS) [Logg et al. 2012], advantages:

- ▶ UFL (Unified Form Language).
- Most existing FEM codes are not able to compute the tangent linear model and the sensitivity derivatives. However, it is possible with DOLFIN for a wide range of models with very little effort [Alnæs 2012, Farrell et al. 2013].
- ▶ Complex models with only few lines of Python code.

Parallel computing:

▶ Ipyparallel and mpi4py software tools to massively parallelise individual forward model runs across a cluster and to reduce the workload.

Python package for uncertainty quantification:

▶ Chaospy [Feinberg and Langtangen 2015] to provide different stochastic objects.

DOLFIN/FEniCS implementation: an example

Forward problem, generalized Burgers equation with stochastic viscosity:

$$F(\nu,u;\tilde{u}) := \int_{\Omega_s} \nu \nabla u \cdot \nabla \tilde{u} - \frac{1}{2} \nabla u^2 \cdot \tilde{u} + \frac{1}{2} \nabla u \cdot \tilde{u} \ dx = 0 \quad \forall \tilde{u} \in H^1_0(\Omega_s)$$

▶ The standard Newton method:

$$J(\nu, u^k; \delta u; \tilde{u}) = -F(\nu, u^k; \tilde{u}) \quad \forall \tilde{u} \in H_0^1(\Omega_s)$$
$$u^{k+1} = u^k + \delta u$$

DOLFIN/FEniCs implementation: an example

▶ The tangent linear system:

linear system to solve to evaluate du/dm!

The complete implementation is only around 130 lines and the Docker image with the full software environment is included in: https://dx.doi.org/10.6084/m9.figshare.3561306 [Hauseux, P. and Hale, J.S. and Bordas, S. 2016]

Stochastic FE analysis of brain deformation

- Different hyper-elastic models implemented (Mooney-Rivlin, Neo-Hookean, Holzapfel and Ogden [Holzapfel and Ogden 2009]).
- ▶ Random variables/fields to model parameters [Adler 2007].
- ▶ Strain energy function for the Holzapfel and Ogden model:

$$W_{iso} = \frac{a}{2b} \exp\left[b(I_1 - 3)\right] + \sum_{i=f,s} \frac{a_i}{2b_i} \exp\left[b_i(I_{4i} - 1)^2\right] + \frac{a_{fs}}{2b_{fs}} \left(\exp\left[b_{fs}I_{8fs}^2\right] - 1\right)$$

▶ for example 3RV:

Stochastic FE analysis of brain deformation Numerical results (8 RV, Holzapfel model)

Brain deformation with random parameters 1 MC realisation.

Confidence interval 95% MC simulations.

Numerical results: convergence

Fig. Center of the sphere: expected value of the displacement in the x direction as a function of Z.

Global sensitivity analysis

▶ Sobol sensitivity indices [Sobol 2015, Saltelli 2002]

Quantity of interest: displacement magnitude of the target.

Random Fields

▶ Different methods: Karhunen—Loève expansion [Adler 2007], Fast Fourier transform [Nowak 2004].

Randoms fields

Two realisations of RF, with a log-normal distribution, for the parameter C1 (in MPa).

Numerical results (Mooney-Rivlin solid) ML Monte-Carlo technique: ML-PCE

Monte Carlo method with use of Polynomial Chaos Expansion to improve the convergence [Matthies 2008, Hauseux 2016].

Histogram (MC and ML-PCE methods).

Future work for UQ

Stochastic modelling:

▶ Random fields generation with PDEs [Lindgren 2011]. Seeding white noise onto a mesh. Riesz representation theorem.

Multi Level Monte Carlo (MLMC) methods:

- ▶ By using Multi Level techniques [Giles 2015] the computational workload can be reduced by performing most simulations with low accuracy at a correspondingly low cost and few simulations at high accuracy and high cost.
- ▶ Combine MLMC with sensitivity derivatives (derives the discrete adjoint and tangent linear models).
- ▶ Implement various applications to illustrate the advantages of the method.
- ▶ Adjoint extension function space setting.

Malliavin calculus [Warren 2012].

Conclusion

Stochastic modelling:

▶ Random variables/fields to model parameters with a degree of uncertainty: application to brain deformation.

Partially-intrusive Monte-Carlo methods to propagate uncertainty:

- ▶ By using sensitivity information and multi-level methods with polynomial chaos expansion we demonstrate that computational workload can be reduced by one order of magnitude over commonly used schemes.
- ▶ Global and local sensitivity analysis.

Numerical implementation:

- ▶ Implementation: DOLFIN [Logg et al. 2012] and chaospy [Feinberg and Langtangen 2015].
- Non-linear hyper-elastic models (Mooney-Rivlin, Neo-Hookean, Holzapfel and Ogden [Holzapfel and Ogden 2009]).
- ▶ Ipyparallel and mpi4py to massively parallelise individual forward model runs accros a cluster.