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Context: Soft-tissue biomechanics simulations 
with uncertainty

‣  Uncertainty in parameters (material properties, loading, geometry, etc.) in 
biomechanics problems can influence the outcome of simulation results.

‣  Objective: propagate and visualise this uncertainty with non or 
partially-intrusive methods.
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General framework

F (u,!) = 0‣ Stochastic non-linear system:

‣ Probability space:

‣Random parameters:

(⌦,F , P )

! = (!1,!2, . . . ,!M )

‣Objective: provide statistical data for the solution of the problem.

‣ Integration (to determine the expected value of a quantity of interest):

E[�(u(�))] =
�

�
�(u(�))dP (�)
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E[�(u(�))] =
⇥

�
�(u(�))dP (�) �

Z�

z=1

pz�(u(�z))

Direct integration

Monte-Carlo method [Caflisch 1998]:

Algorithm:

  while            :

‣ choose randomly      .

‣ evaluate                 .

‣ add the contribution to the sum.

z < Z

�z

�(u(�z))
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‣Converge «in law»: 1% for 10000 realisations, slow but independent of the 
dimension !

‣Necessity to improve the convergence.

Convergence

Work done:

‣ Low discrepancy sequences (Sobol, Hamilton, …): quasi MCM [Caflisch 1998].

‣Multi Level Monte-Carlo techniques [Giles 2015, Matthies 2008].

‣MC methods by using sensitivity information (SD-MC) [Cao et. al 2004, Liu et al. 2013].
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Estimator [Cao et. al 2004, Liu et al. 2013]:

MC methods by using sensitivity information
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This variance reduction method increases the accuracy of sampling 
methods. Here we only consider the case of the first-order sensitivity 
derivative enhanced Monte-Carlo method. By using sensitivity information 
computational workload can be reduced by one order of magnitude over 
commonly used schemes.

Main difficulty: 

??



Implementation (DOLFIN/FEniCS) [Logg et al. 2012], advantages:

‣UFL (Unified Form Language).

‣Most existing FEM codes are not able to compute the tangent linear model and 
the sensitivity derivatives. However, it is possible with DOLFIN for a wide range of 
models with very little effort [Alnæs 2012, Farrell et al. 2013].

‣Complex models with only few lines of Python code.

Parallel computing:

‣ Ipyparallel and mpi4py software tools to massively parallelise individual forward 
model runs across a cluster and to reduce the workload.

Python package for uncertainty quantification:

‣Chaospy [Feinberg and Langtangen 2015] to provide different stochastic objects.

Numerical implementation
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DOLFIN/FEniCS implementation: an example
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 nu_var = variable(Constant(omega))
 F = nu_var*u_.dx(0)*u_t.dx(0)*dx + 0.5*u_.dx(0)*u_t*dx\
       - 0.5*(u_**2).dx(0)*u_t*dx

 J = derivative(F, u_, u) 
 solve(F == 0, u_, bcs, J=J)

‣Forward problem, generalized Burgers equation with stochastic viscosity:

‣The standard Newton method:



‣The tangent linear system:

@F (u,!)

@u| {z }
U⇥U

du

d!|{z}
U⇥M

= � @F (u,!)

@!| {z }
U⇥M

U: size of the deterministic problem 
M: number of random parameters

linear system to solve to evaluate du/dm !

Fu = derivative(F, u, du) 
Fd = - diff(F, omega) 
dudomega = Function(V) 
A, b = assemble_system(Fu, Fd, bcs=bcs)  
solve(A, dudomega.vector(), b, “lu")

DOLFIN/FEniCs implementation: an example

9

The complete implementation is only around 130 lines and the Docker image 
with the full software environment is included in: https://dx.doi.org/10.6084/
m9.figshare.3561306 [Hauseux, P. and Hale, J.S. and Bordas, S. 2016]

https://dx.doi.org/10.6084/m9.figshare.3561306
https://dx.doi.org/10.6084/m9.figshare.3561306


‣Different hyper-elastic models implemented (Mooney-Rivlin, Neo-Hookean, 
Holzapfel and Ogden [Holzapfel and Ogden 2009]).
‣Random variables/fields to model parameters [Adler 2007].
‣ Strain energy function for the Holzapfel and Ogden model:

‣ for example 3RV:

Stochastic FE analysis of brain deformation
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Brain deformation with random parameters 
1 MC realisation.

Confidence interval 95% 
MC simulations.

Stochastic FE analysis of brain deformation 
Numerical results (8 RV, Holzapfel model)
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Numerical results: convergence

Fig. Center of the sphere:  expected 
value of the displacement in the x direction as 
a function of Z.
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Global sensitivity analysis

Quantity of interest: displacement magnitude of the target.
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‣Sobol sensitivity indices [Sobol 2015, Saltelli 2002] 



Random Fields

Two realisations of RF, with a log-normal distribution, 
for the parameter C1 (in MPa).
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‣Different methods: Karhunen–Loève expansion [Adler 2007], Fast Fourier transform 
[Nowak 2004].



Numerical results (Mooney-Rivlin solid) 
ML Monte-Carlo technique: ML-PCE

Histogram (MC and ML-PCE methods).
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‣Monte Carlo method with use of Polynomial Chaos Expansion to improve the 
convergence [Matthies 2008, Hauseux 2016].



Future work for UQ

Stochastic modelling:

‣Random fields generation with PDEs [Lindgren 2011]. Seeding white noise onto a 
mesh. Riesz representation theorem.

Multi Level Monte Carlo (MLMC) methods :

‣ By using Multi Level techniques [Giles 2015] the computational workload can be 
reduced by performing most simulations with low accuracy at a correspondingly 
low cost and few simulations at high accuracy and high cost.

‣Combine MLMC with sensitivity derivatives (derives the discrete adjoint and 
tangent linear models).

‣ Implement various applications to illustrate the advantages of the method. 

‣Adjoint extension function space setting.

Malliavin calculus [Warren 2012].
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Conclusion
Stochastic modelling:

‣Random variables/fields to model parameters with a degree of uncertainty: 
application to brain deformation.

Partially-intrusive Monte-Carlo methods to propagate uncertainty:

‣ By using sensitivity information and multi-level methods with polynomial chaos 
expansion we demonstrate that computational workload can be reduced by one 
order of magnitude over commonly used schemes.

‣Global and local sensitivity analysis.

Numerical implementation:

‣ Implementation: DOLFIN [Logg et al. 2012] and chaospy [Feinberg and Langtangen 2015].

‣Non-linear hyper-elastic models (Mooney-Rivlin, Neo-Hookean, Holzapfel and 
Ogden [Holzapfel and Ogden 2009]).

‣ Ipyparallel and mpi4py to massively parallelise individual forward model runs accros 
a cluster.
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