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Introduction

Today’s society demands for high-performance, multi-purpose microelec-

tronic devices which collect, sort and distribute information in the most

efficient way. Accordingly, the industry is constantly looking for new ways

to record, process, and store this information. Also the need for sensing pos-

sibilities, computing power or data storage devices increases tremendously.

“The Independent” reported in January, 2016, that data centers are “con-

suming about 3 per cent of the global electricity supply and accounting for

about 2 per cent of total greenhouse gas emissions.”1 This trend can be ex-

pected to continue (see also Ref. 2). Accordingly, an important goal for our

society is the minimization of this energy consumption. Such challenges are

intimately related to advances in materials research and technology. The

European Commission estimates that “70% of all new product-innovation is

based on materials with new / improved properties.”3

One approach of the material research community is the engineering of new

materials with preferably strongly-coupled multi-functional properties with

low power consumption for reading and writing processes.

In this context, perovskite-type oxides ABO3 are a versatile group of materi-

als. The possibility to incorporate many different elements into the structure

paired with structural distortions gives rise to a large variety of properties

and coupling phenomena.

Particularly interesting for applications are the so-called ferroic properties,

namely ferromagnetism, ferroelectricity and ferroelasticity, which can be

tuned by the chemical composition or external parameters. Accordingly,

materials/perovskites which possess more than one ferroic order - multi-

ferroics - are even more attractive as they can intrinsically combine mag-

netic, ferroelectric, and elastic properties4,5.

In multiferroics the magnetism and the ferroelectricity can occur indepen-

dently6. This is the case for example in the most prominent representative

bismuth ferrite, BiFeO3, which is one of the only room-temperature multi-
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Introduction

ferroic materials with a particularly strong polarization. On the other hand,

the ferroelectricity can also be induced by magnetism6 such as in TbMnO3
7

or GdFeO3
8. The magnetically induced ferroelecticity allows a more direct

coupling. However, the polarization is usually substantially smaller than in

BiFeO3, for example.

Commonly, these properties result from small atomic displacements. There-

fore, a detailed understanding of subtle structural distortions is of general

importance for the understanding of multiferroicity.

More recently, the interest for multiferroics has been extended to their inter-

actions with light9 - namely photovoltaic properties10–12. This adds another

coupling possibility to the rich portfolio of multiferroic materials, making

multiferroics ideal multifuntional materials for future-devices. One of the

major challenges within this topic is the understanding of charge-carrier

creation and separation mechanisms. The knowledge of the electronic band

structure as well as defect state is therefore crucial.

Objectives and outline of this work

With the present work, we wish to contribute to the field of multiferroic

perovskites and their interaction with light. For this purpose we analysis,

two material systems rare-earth orthoferrites, RFeO3, with a special focus

on SmFeO3, and bismuth ferrite, BiFeO3.

In a first part, an introduction is given to perovskite-type materials and

Raman spectroscopy, the main technique of this work. Further measure-

ment techniques will be introduced subsequently.

In the second part of this work, we report a detailed study of the vibrational

properties of a rare-earth orthoferrite series. For a long time the major inter-

est in rare-earth orthoferrites has been arising from sophisticated magnetic

structures and transitions13. More recently, multiferroic properties have

been reported for certain RFeO3, induced by the magnetic ordering8,14,15.

The analysis of the phonon spectra provides a basis for further investigation

of potential multiferroic coupling phenomena in RFeO3.
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Objectives and outline

In the third chapter, we focus on one member of the rare-earth orthoferrite

family, namely samarium ferrite SmFeO3, in greater detail. In terms of

multiferroic properties, SmFeO3 is probably the most controversially dis-

cussed member of the orthoferrite family in recent literature16–19. To create

a better understanding of the interaction between magnetism and lattice,

we investigate the evolution of structural properties as a function of tem-

perature with a particular focus on the magnetic transition temperatures.

In the last part of this work, bismuth ferrite is studied. BiFeO3 is cer-

tainly the most investigate multiferroic material. Accordingly, the structural

and multiferroic properties are well-known.20 More recently, BiFeO3 receives

additional attention for its photovoltaic properties21–23. However, the elec-

tronic band structure and defect states of BiFeO3 are not fully understood

despite their major importance for light induced effects. Therefore, we aim

to shed light on the electronic band structure of BiFeO3 by wavelength-

dependent Raman spectroscopy.

3



4



Chapter 1

Fundamentals

1.1 Functional perovskite-type oxides

Originally, perovskite is the mineral name of calcium titanate CaTiO3. It

was discovered by the Prussian mineralogist Gustav Rose and named in

honor of the Russian Napoleonic-wars veteran and later minister of the In-

terior L. A. Perovski26. More generally, the term perovskite is used for the

crystal structure type of calcium titanate. The chemical formula of materials

crystallizing in the perovskite structure is ABX3. In case of perovskite-type

oxides, the site X is occupied by oxygen O. The ideal perovskite adopts a

cubic structure with the space group Pm3m27, illustrated in Fig. 1.1, clas-

sically exemplified by strontium titanate SrTiO3. The A atom is placed at

the center of the cube. The B atoms are occupying the eight vertices of the

cube. The oxygen atoms are found on the edges, forming octahedra with

a B atom in their center. With respect to the A atom the oxygens form a

cuboctahedron.

The great interest in the perovskite structure lies in the possibility to incor-

porate a large number of different chemical elements. Depending on the size

and the electron structure of the elements, it is possible to tune structural

distortions and thus engineer the physical properties of perovskite-type ox-

ides.

5



Chapter 1. Fundamentals

Figure 1.1: Ideal cubic perovskite stucture of the space group Pm3m illustrated by

SrTiO3
24. The figure was created using VESTA25. (Note, all figures in this work

representing structural data have been created using VESTA.)

1.1.1 Crystallographic properties

The size ratio of the incorporated elements is crucial to allow crystallization

in the perovskite structure. Most perovskites are considered to be ionic

compounds where the ions can be regarded as spheres with ionic radii r.

Typically the A-site cations are of similar size as the oxygen anions but

larger than the B-site cations. In 1926 Goldschmidt found that the ionic sizes

follow a certain ratio to allow crystallization in the perovskite structure28:

t =
(rO + rA)√
2(rO + rB)

, (1.1)

where rA, rB and rO are the ionic radii of A and B cations and oxygen

anion. The tolerance factor t is a measure for the stability of the perovskite

structure for a given choice of A and B cations. The ideal cubic perovskite

structure has a tolerance factor t of unity corresponding to a perfect stack-

ing of rigid spheres. In practice, the tolerance factors of cubic perovskites

range from 0.8 to 1.1. For example, it is 1.002 for cubic SrTiO3 (Fig. 1.1).

Materials with tolerance factors of approximately t = 0.8 to 1.2 can crys-

tallize in perovskite structures. However, the tolerance factor can only be

used to approximate if a crystal may possess a perovskite structure and is

no measure for the space group of a crystal27. The tolerance factor takes

solely the ionic size into account but no interaction mechanisms or covalent

bonds.

6



1.1. Functional perovskite-type oxides

The incorporation and combination of different elements into the structure

leads to distortions away from the ideal cubic perovskite structure. A lot of

work has been devoted to the study of different distortions and their impact

on the crystal symmetry. Works of Megaw, Glazer, Woodward, Howard,

Stokes and Carpenter, among others, have lead to an in-depth description

of practically all types of distortions and the resulting crystalline structures

of perovsikte compounds27,29–40. Three main types of distortions have been

commonly discussed35:

(i) Rotation of the corner linked, rigid BO6 octahedra.

(ii) Displacement of the A or B cation away from their high symmetry

position.

(iii) Distortion of the BO6 octahedra.

In some cases these distortions coexist. These distortions are briefly ad-

dressed in the following.

Octahedra tilting

Figure 1.2: Octahedra tilting exemplified by the orthorhombic SmFeO3 with space

group Pnma41.

Octrahedra tilts around crystallographic axes are the most common type

of distortions in the perovskite structure35. The corner-linked BO6 octahe-

dra are assumed to be rigid, while the AO12 cuboctahedra deforms strongly

7



Chapter 1. Fundamentals

leading to changes of the A−O bond lengths. This octahedra tilting is illus-

trated in Fig. 1.2 by the orthorhombic SmFeO3.

A notation to describe the octahedra tilt system of a perovskite crystal was

introduced by Glazer30. The rotations are described with respect to axes

of the ideal cubic perovskite structure Pm3m. Octahedral rotations around

the cubic axes x, y and z are represented by the symbols a, b and c. Iden-

tical symbols indicate the same rotation angles. Superscripts “+” and “−”

indicate the sense of rotation in successive layers. “+” stands for octahe-

dra rotation in the successive layer in the same direction, i.e. in-phase; “−”

implies an anti-phase octahedra tilt in the successive layer. If there is no

rotation around an axis, a zero is used as superscript.27,30 Hence, the cubic

Pm3m structure without octahedral tilts is denoted as a0a0a0. The symbol

a0b+b−, for example, represents a tilt structure with no rotation around the

pseudocubic x-axis, the octahedra are rotated by the same angle about y

and z, but with in-phase and anti-phase tilting of the successive layer.

Particularly fruitful was the octahedra tilt analysis by Howard and Stokes

following group theoretical rules and Landau theory of phase transitions.

This allowed to identify the space groups corresponding to a tilt system and

the group-subgroup relations of the different tilt systems where the octahe-

dra tilts represent the order parameter35:

The different tilt systems can be described as the superposition of the fol-

lowing tilts: a+b0b0, b0a+b0, b0b0a+, a−b0b0, b0a−b0 and b0b0a− 35. The

combinations give rise to 25 distinct tilt systems (including a0a0a0). How-

ever, these 25 tilt systems can be reduced to 15 simple systems due to

geometrical reasons or because some tilt systems possess a higher symmetry

than required by the space group. For example a0b+b+ has the same sym-

metry as a0b+c+ and does therefore not appear in the list of Howard and

Stokes35. The possible space groups of perovskite-type materials and the

corresponding subgroup relations that arise from octaherdal tilts only are

presented in Fig. 1.3.

It is difficult to predict which tilt system will be established for a particular

chemical composition. Certainly, the size ratio of A and B cation plays an

important role. Furthermore, some tilt systems are more in favor of energy

optimization of A-O bondings with predominately ionic character, while oth-

ers will be adapted by compounds with an important covalent character33.

For example, the a+b−b− tilt system, which leads to the orthorhombic Pnma

structure, has been found by Woodward to minimize the repulsive A-O over-

lap and to maximize the A-O covalent bonding33. Therefore, compounds

8
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a0a0a0

Pm3m

a0a0c−

I 4/mcm

a0b−b−

Imma

a−a−a−

R3c

a0a0c−

P4/mbm

a0b+b+

I 4/mmm

a+a+a+

Im3

a+b−b−

Pnma

a0b−c−

C 2/m

a−b−b−

C 2/c
a0b+c−

Cmcm

a+a+c−

P42/nmc

a+b+c+

Immm

a+b−c−

P21/m

a−b−c−

P1

Figure 1.3: Group-subgroup relations for space groups arising from the 15 different

tilt systems. Solid lines represent second-order transitions whereas dashed lines

indicate transitions required to be of first-order nature. The scheme has been

reproduced from Ref. 35.

with a small tolerance factor t or an A cation of ‘large’ electronegativity are

likely to adapt the a+b−b− tilt system33.

Mitchell reviewed the calculation of the octahedral tilt angles in great de-

tail27. Octahedra tilt angles are most accurately calculated from atomic

positions. Nevertheless, they can be approximated from cell dimensions as

well. However, since in real crystals the octahedra are not rigid and regular,

but slightly distorted, the octahedra tilt angles tend to be underestimated

when determined from unit cell dimensions.27

Octahedra distortions

The BO6 octahedra can be distorted away from their high symmetry shape

by elongation/shortening of certain oxygen bonds and changes of the octahe-

dra angles. The strongest octahedra distortions result from the Jahn-Teller

effect. The Jahn-Teller effect leads to a lowering the energy of the system

by lowering the symmetry of the structure. This effect can occur in ABO3

compounds if the B cation position is occupied by a transition metal with

an odd number of electrons in the degenerated eg (or t2g) orbitals of the

d-shell, for example Mn3+, Cr2+, Fe4+, or Cu2+. To minimize the energy,

the degeneracy of the d-shell electrons of the B cation is lifted in the crystal

9



Chapter 1. Fundamentals

field of the O2− anions. The lifting of the degeneracy is accompanied by a

lowering in symmetry and distortion of the octahedra.27 In this manner the

Jahn-Teller effect links the changes in the electronic system to changes of

the structure40.

The most common distortions are either a contraction (or lengthening) of

two B–O bonds and a lengthening (or contraction) of the other four B–O

bonds, or a lengthening of two and a contraction of the other two bonds42.

The first distortion results in a tetragonal, the latter in an orthorhombic

symmetry of the octahedra40.

In Fig. 1.4 the Jahn-Teller effect is exemplified by KCuF3. This example

has been chosen since the Jahn-Teller effect is the only distortion of this

compound. Note that in most cases octahedra distortions occur together

with octahedra rotations, for example rare-earth managnites or rare-earth

vanadates40,43.

The octahedra tilting does not require a distortion of the octahedra∗ 27. Nev-

ertheless, depending on the space group the octahedra can have a certain

distortion, leading to a shortening or lengthening of the B-O bond and/or

changes of the O-B-O angles27. However these distortions are commonly

much smaller than those resulting from the Jahn-Teller effect.

Figure 1.4: Unit cell of KCuF3 with strongly Jahn-Teller-distorted octahedra44.

∗Solely the tilt system a+a+c−, with the space group P42/nmc, requires an octahedra

distortion to maintain the structural connectivity27.
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1.1. Functional perovskite-type oxides

Cation displacement

A and B cations can be displaced from their high symmetry positions. Most

prominent displacements of A and B cations occur through covalent bond-

ings with the surrounding oxygens. Here, ns2 lone pairs, for example of

Pb2+ or Bi3+, form particularly strong covalent bonds with the oxygen

cations resulting in a strong displacement of the cations from the ideal site.27

Fig. 1.5(a) illustrates the displacement of the B cation inside the octahedra

in an exaggerated way. Here, the cation is displaced towards one of the cor-

ners of the octahedra, i.e. in cubic settings along one of the principal axis.

This displacement leads in general to a tetragonal structure. Equally, the

cation can be shifted along a face or body diagonal causing orthorhombic

or rhombohedral symmetry, respectively, if the cation displacement is the

only distortion of the system. Fig. 1.5(b) shows the tetragonal structure of

PbTiO3 where both, A and B cations are displaced from their high symme-

try positions.

Less prominent displacement occur often in combination with other distor-

tions. For example under octahedra rotation, the AO12 polyhedra deform

resulting in a change of A-O bond lengths and eventually in a decrease of A

cation coordination number27. Some space groups allow a displacement of

Figure 1.5: Cation displacements: (a) B cation displacement along a cubic axis

within the oxygen-octahedra framework. (b) Illustration of tetragonal PbTiO3

with displacements of A and B cations45.
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Chapter 1. Fundamentals

the A cations from the ideal site, such as the Pnma space group, a+b−b−

tilts, where the A cations of most compounds are shifted in an anti-parallel

fashion27.

Since in many perovskite compounds the here discussed distortions ap-

pear simultaneously, coupled distortions were studied using group symme-

try rule and Landau theory by for example Carpenter and Howard40,43 or

Stokes et al.46 leading to an in-depth description of structural distortions in

perovskite-type materials.

1.1.2 General properties and multiferroicity

The variety of the elements that can be incorporated into the perovskite sys-

tem and the structural flexibility with respect to distortions lead to an ex-

traordinarily rich range of properties. Prominent examples are strong ferro-

electricity in BaTiO3 or PbTiO3, piezoelectricity in Pb(Zr,Ti)O3, supercon-

ductivity in Y0.33Ba0.66CuO3−δ or colossal magneto-resistance in LaMnO3−δ.

Table 1.1 gives an overview of some properties. Often, perovskite-type oxides

possess more than one property which is of interest for potential applications.

These materials can potentially have several “functions” in a device and are,

thus, called multi-functional materials. Photoferroelectrics, combining fer-

Table 1.1: Properties and prominent examples of materials crystallizing in a

perovskite-type structure.47–50

Property Example

dielectric CaTiO3, SrTiO3

ferroelectric BaTiO3, PbTiO3

piezoelectric Pb(Zr,Ti)O3

conducting LaNiO3, SrRuO3

superconducting Y0.33Ba0.66CuO3−δ

magnetic RFeO3, RCrO3, RMnO3

multiferroic BiFeO3

proton conducting SrCeO3

catalytic LaCeO3, BaCuO3

ion conducting Li0.5−3xLa0.5+xTiO3

magneto-resistive LaMnO3−δ, La1−xSrxMnO3

12



1.1. Functional perovskite-type oxides

roelectricity and photovoltaic properties, and multiferroics, materials with

several ferroic orders, are multi-functional materials par excellence.

Multiferroics are commonly classified as “type I” and “type II”6. In “type I”

multiferroics magnetism and ferroelectricity arise independently. Classical

examples are BiFeO3 or the lead containing Pb2(Fe,Ta)O6, PbFe0.5Nb0.5O3

or Pb(Zr,Ti)O3-Pb(Fe,Ta)O3
7,51,52. In both cases, covalent bonds due to

ns2 electron lone-pairs give rise to ferroelectric displacements27. The fer-

roelectricity occurs usually at higher temperatures than the ordering of the

Fe3+ magnetic moments. Nevertheless, both properties can couple, such

that the direction of polarization can influence the magnetic ordering and

vice versa, as illustrated in BiFeO3
53.

On the contrary, in “type II” multiferroics ferroelectricity is induced by

magnetism† 6. The most investigated example of “type II” multiferroics is

TbMnO3. In this case, Mn3+ spins order in a cycloidal structure at low

temperatures which leads to a symmetry breaking, allowing for ferroelectric

displacement54,55. A new group of “type II” multiferroic has been proposed

more recently. The group includes several rare-earth manganites RMnO3
56

and ferrites RFeO3
8,14,15. Here, the symmetry breaking occurs from the

combined magnetic order of A and B cations6 which gives rise to a ferro-

electric displacement. This requires a magnetic A cation, but no cycloidal

spin structure is needed. This mechanism is often disregarded because the

magnetic moments of the rare-earth A cations are usually assumed to order

at very low temperatures.

Generally, the magnetoelectric coupling of “type II” multiferroics is more di-

rect than in the “type I” multiferroics. However, the magnetically induced

polarization of “type II” multiferroics is substantially weaker (2 to 3 orders

of magnitude) in comparison to “type I” multiferroics where the polarization

occurs through the covalent bonds6.

†Note, the term ”type II” multiferroic is ambiguously used in the literature. Here,

we use “type II” multiferroic as term for all kinds of materials with magnetically-induced

ferroelectricity.
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Chapter 1. Fundamentals

1.2 Raman scattering

Raman scattering is the inelastic scattering of light by a solid, liquid or gas.

The Raman effect was first theoretically predicted by Adolf Smekal57. Ex-

perimentally the phenomenon was first reported by C.V. Raman and K.S.

Krishnan in 192858 simultaneously with the Russian scientists G. Landsberg

and L. Mandelstam59. Only two years after the discovery, in 1930, C.V. Ra-

man was awarded the Nobel price “for his work on the scattering of light and

for the discovery of the effect named after him”60. Why the Nobel prize was

not shared with the Russian team, remains speculative. Yet, C.V. Raman

published the work first and was cited by Landsberg and Mandelstam61.

Raman spectroscopy is a non-destructive probe for excitations of low en-

ergies in the meV regime. In addition, Raman spectroscopy can reveal

information about symmetry of the excitations which is difficult to gain

otherwise. Excitations can be of magnetic, electronic, vibrational nature

and others. However, the main focus of Raman spectroscopy experiments

lies on vibrational (phonon) spectroscopy which allows a profound insight

into the structural properties of a material. As a consequence, Raman spec-

troscopy has become a major characterization technique of materials with

applications reaching from physical, chemical and bio-chemical to medical

analysis62,63. Raman scattering is sensitive to even very subtle distortions

and, thus, has played a crucial role in understanding structural peculiarities

and phase transitions in perovskites64–68. In the past, Raman spectroscopy

was mainly focused on bulk systems, but is today at least equally applied

to the characterization of thin or ultra-thin oxide films69–71, multilayers72

and nano-structures73.

The use of Raman spectroscopy for the investigation of the electronic struc-

ture of perovskite-type oxides remains rare, whereas this approach is com-

monly use for bio-chemical samples74,75 and in the past for classical semi-

conductors76–81.

In this section, we aim to introduce the concepts of Raman scattering, which

are of particular importance for this work. First, the scattering process is

presented from a macroscopic point of view, followed by a description of

the quantum-mechanic expression. In a second part, lattice vibrations are

discussed and finally concepts of further applications that are of interest for

the present work shall be briefly introduced.
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1.2. Raman scattering

Summary of Raman scattering

This section starts with a brief introduction to the basic mechanism of the

Raman scattering effect. Subsequently, an overview of the properties of

Raman scattering, which are of particular importance for this work, are

given. These properties will be worked out in detail in the following sections.

initial state

excited state

virtual state

electronic state

non-resonant

Raman scattering

resonant

Raman scattering

~ωI
~ωI − ~ω0

~ωS =

~ωI

~ωI − ~ω0

~ωS =

Figure 1.6: Scheme of the Stokes Raman (left) and resonant Raman scattering

process (right).

Fig. 1.6 (left) illustrates the (non-resonant) Raman scattering process. In-

cident light of the energy ~ωI excites the system from the initial state into

virtual state. Under the emission of a photon of the energy ~ωS = ~ωI−~ω0,

the system falls back into an excited state. If the energy of the incident

light is in the vicinity of an electronic transition of the system (see Fig. 1.6

(right)), the intensity of the scattered light is dramatically enhanced. This

effect - called resonant Raman scattering - provides information about the

initial and the higher electronic state of the resonant scattering process.
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Important properties:

1. first-order Raman scattering (one excitation):

• Energy conservation: ω0 = ωI − ωS
• Momentum conservation: q = kI − kS
• |q| = 0, the momentum of light is negligible in comparison to the

size of the Brillouin zone.

⇒ Only Γ-point excitations can be probed.

⇒ Discrete spectrum.

⇒ Resonant Raman scattering only for direct electronic transitions.

2. second- (or higher-) order Raman scattering (multiple exci-

tations):

• Energy conservation:
∑

i ω0,i = ωI − ωS
• Momentum conservation:

∑
i qi = kI − kS

• |
∑

i qi| = 0, the momentum of light is negligible in comparison

to the size of the Brillouin zone.

⇒ Excitations of the entire Brillouin zone can be probed.

⇒ Continuous spectrum.

⇒ Resonant Raman scattering for direct and indirect electronic tran-

sitions.

3. Consequences of resonant Raman scattering:

• Enhancement of the scattered intensity.

• Changes in intensity ratio of different excitation bands.
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1.2. Raman scattering

1.2.1 Inelastic light scattering - Raman scattering -

Macroscopic approach

In this section, the basic features of the inelastic light-scattering process are

discussed. We follow the macroscopic approach, as described for example

by Hayes and Loudon82 or Yu and Cardona79.

For a light scattering experiment, we consider a medium which is irradiated

by light. The incident light shall be a sinusoidal plane electromagnetic wave

E(r, t) with a frequency ωI and momentum vector kI defined by

E(r, t) = E(kI , ωI) cos(kI · r − ωIt). (1.2)

The electromagnetic wave induces a polarization P (r, t) with equivalent

frequency and momentum vector in the medium, as

P (r, t) = P (kI , ωI) cos(kI · r − ωIt). (1.3)

Polarization and electric field are connected by the electric susceptibility χ

of the medium. The electric susceptibility, a second-rank tensor, specifies

how a material responds to an external electric field. The i-th Cartesian

coordinate of the polarization is given as

P i(kI , ωI) =
3∑
j=1

χij(kI , ωI)E
j(kI , ωI). (1.4)

Now, be X(r, t) an excitation of the medium, which perturbs the electric

susceptibility χ with the form:

X(r, t) = X(q, ω0) cos(q · r − ω0t). (1.5)

As mentioned before, the excitation can be of different nature. For example

vibrational displacements, spin deviations in a magnetic system, electronic

excitations, etc. Under adiabatic approximation, i.e. the frequency ωI of the

incident light is much larger than the frequency ω0 of the excitation X(r, t),

and the assumption that the amplitude of the excitation is small compared

to the lattice, the susceptibility tensor χ can be expanded in a Taylor series
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as a function of the excitation X(r, t):

χij(kI , ωI ,X(r, t)) = χij0 +
3∑

k=1

(
∂χij

∂Xk

)
0

Xk(r, t)

+

3∑
k,l=1

(
∂2χij

∂Xk∂X l

)
0

Xk(r, t)X l(r, t)

+ ...

= χij0 + χij1 + χij2 + ...

(1.6)

k and l represent Cartesian coordinates of the excitation X. The first term

expresses the unperturbed susceptibility. χij1 , linear in X, describes the

change of the susceptibility due to the perturbation of one excitation, the

term quadratic in X represents the perturbation as a result of two excita-

tions, and so on. For the moment, we are interested in a single excitation

only. Therefore, we take only the first two terms of the Taylor series into

account. The polarization expresses as:

P i(r, t,X) =

3∑
j=1

χij0 E
j(r, t) +

3∑
j,k=1

(
∂χij

∂Xk

)
0

Xk(r, t)Ej(r, t)

= P i0(r, t,X) + P iind(r, t,X)

(1.7)

With Eq. (1.2) we find that the polarization stemming from the first term

is given by

P i0(r, t,X) =

3∑
j=1

χij0 E
j(kI , ωI) cos(kI · r − ωIt). (1.8)

It oscillates with the same frequency as the incident light. Thus, the light

is elastically scattered referred to as Rayleigh scattering.

The second term P iind(r, t,X) is composed of the derivative of the suscep-

tibility with respect to the excitation X, the excitation X itself and the

electro-magnetic wave E and is thus induced by the excitation.

With Eq. (1.2) and (1.5) and the trigonometric relation cos(a) cos(b) =
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1.2. Raman scattering

1
2 [cos(a+ b) + cos(a+ b)] we can write P iind(r, t,X) as

P iind(r, t,X) =

3∑
j,k=1

(
∂χij

∂Xk

)
0

Xk(q, ω0) cos(q · r − ω0t)

× Ej(kI , ωI) cos(kI · r − ωIt)

=
1

2

3∑
j,k=1

(
∂χij

∂Xk

)
0

Xk(q, ω0)E
j(kI , ωI)

× [cos((kI − q) · r − (ωI − ω0) · t)
+ cos((kI + q) · r − (ωI + ω0) · t)]

(1.9)

The induced polarization decomposes into the sum of two cos-functions.

Compared to the undisturbed polarization, the frequencies and momentum

vectors are altered by the frequency ω0 and the momentum q of the excita-

tion X. Thus, the polarization emerging from the susceptibility derivatives

contributes to the inelastic scattering of the light. This inelastically scat-

tered light gives rise to sidebands in the spectrum of scattered light. The

part of the inelastically scattered light resulting in a red shift of the scattered

light with ωS = ωI − ω0 and kS = kI − q is called Stokes Raman scattering

and the blue shifted contributions with ωAS = ωI +ω0 and kAS = kI +q are

called anti-Stokes Raman scattering. The difference in frequency of incident

and scattered light is referred to as Raman shift or Raman frequency. As

energy and momentum have to be conserved in the inelastic light scatter-

ing process the Raman shift corresponds to the energy of the excitation X.

Fig. 1.7 illustrates the scheme of typical spectrum of Stokes, anti-Stokes and

Rayleigh scattering for three different excitation X(1), X(2), X(3). Stokes

and anti-Stokes intensities are related by82:

n(ω)IStokes = [n(ω) + 1]Ianti−Stokes (1.10)

where n(ω) is the Bose-Einstein thermal occupation factor. Thus the in-

tensity of anti-Stokes Raman scattering processes is always weaker than for

Stokes Raman scattering.

Thereafter, we only consider Stokes Raman scattering in the present work.

For reason of convenience, Stokes scattering is commonly displayed at posi-

tive wavenumbers despite the actual red-shift.

In short, an excitation of the medium can modulate the electric suscep-

tibility χ. The modulated electric susceptibility causes inelastic scattering
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Figure 1.7: Schematic Raman spectrum of three excitations X(1), X(2) and X(3)

with the band positions of Stokes and anti-Stokes scattering symmetric with respect

to the Rayleigh scattering at 0 cm−1.

of light. The second-rank tensor χ1, responsible for the inelastic scattering

process, is called Raman tensor. An excitation is named Raman-active if

the susceptibility derivative of the excitation does not vanish:

(
∂χij

∂Xk

)
0

6= (0) , ∀i, j, k = 1, 2, 3 (1.11)

Symmetry properties of the Raman tensor

The symmetry of the Raman tensor is directly linked to the point group of

the crystal. Following Neumann’s principle, the symmetry elements of the

point group are included in the symmetry elements of any physical property

of the crystal83. This holds equally for the induced polarization in Eq. 1.9,

which is defined by the susceptibility derivative. Therefore, the excitation

can only be Raman-allowed if the Raman tensor remains unchanged under

the symmetry operations of the point group. Group theory allows to calcu-

late the symmetries of the Raman-allowed excitations and Raman tensors

from its point group84,85. Thus different materials with the same point group

possess Raman tensors of same symmetries, however, the number of bands

may vary. Furthermore, the values of components of the Raman tensors are

unique to a certain excitation of a particular material82.
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1.2. Raman scattering

Consequence of scattering of visible light

By scattering of visible light, the possible processes are restricted by energy

range and momentum of visible light. The momentum of visible light is

small compared to the size of the Brillouin zone. The possible momentum

transfered in the scattering process is approximately three orders of mag-

nitude smaller than the Brillouin zone. Therefore, the momentum transfer

can be approximated to be zero for light scattering processes on a single ex-

citation. Hence, only excitations close to the Brillouin zone center (Γ-point)

are accessible by Raman scattering.82

|q| ≈ 0 (1.12)

Second-order light scattering

So far, we restricted the discussion to light scattering involving one excita-

tion only. However, scattering processes involving multiple excitations are

also possible and are called second-order scattering process for two excita-

tions, third-order for three excitations and so forth. For a scattering process

on two excitations, the energy and momentum conservation is given by

ω0,σ,q + ω0,σ′,q′ = ωI − ωS (1.13)

q + q′ = kI − kS (1.14)

where σ and σ’ are two excitation, but not necessarily the same. With

Eq. 1.12 we can write

q + q′ ≈ 0. (1.15)

In comparison with first-order scattering, higher-order processes are not

limited to the Γ-point, but the excitations can originate from different

points of Brillouin zone with the restrictions of energy and momentum con-

servation, and selection rules. While the first-order spectrum is discrete,

higher- order scattering gives rise to a continuous spectrum, representing to

some extend the density of states of the excitation82. Maxima in the higher-

order spectrum are due to van Hove singularities in the density of states.

The symmetry of a higher-order process is given by the direct product of

the involved excitations. However, pattern and symmetry of the excitation

are q-dependent which makes the identification of second-order features dif-

ficult.
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1.2.2 Scattering cross section

The connecting point between theory and experiment is the scattering cross

section σ. The cross section is defined as the rate of energy removal from the

incident light as a result of the scattering process, and thus is proportional

to the intensity of the scattered light. As discussed in section 1.2.1 inelas-

tically scattered light appears as side bands (Raman bands) of elastically

scattered light (Rayleigh). The energy difference represents the energy of

the scattering excitation. The intensity of the Raman bands, on the other

hand, contains information about the symmetry of the excitation, orienta-

tion of the crystal, occupation state of the excitation and in some cases even

on the electronic states as shall be discussed in the following. The total

cross section determines the light inelastically scattered in all direction for

all possible scattering frequencies. In a scattering experiment the main in-

terest lies on the spectral differential cross section (SDCS). It describes the

intensity of light as the result of a scattering process in a volume ν into a

solid angle dΩ with a frequency ωS with respect to the light intensity of the

incident beam. Eq. 1.16 gives the SDCS of a Stokes scattering process82.

d2σ

dΩdωs
=

ωIω
3
SνηS

(4πε0)
2 c4ηI

∣∣∣∣∣∣ε0
∑
i,j

eiSχ
ij
1 e

j
I

∣∣∣∣∣∣
2

~
2ω0,σ

(n(ω0,σ) + 1) gσ(ω) (1.16)

The SDCS depends linearly on the frequencies of incident beam ωI and to

the power three on the scattered light ωS . In most cases the SDCS is said

to be proportional to ω4
I under the approximation ωI ≈ ωS . ηS and ηI are

the refractive indices for the incident and scattered light. eS and eI give

the direction of the electric field vectors for the scattering and incident light,

respectively; χ1 is the earlier discussed Raman tensor. n(ω0,σ) represents

the Bose-Einstein thermal occupation factor of the excitation:

n(ωσ) =
1

exp(~ω0,σ/kBT )− 1
(1.17)

This shows that the cross section depends on the temperature T . The sub-

script σ indicates the excitation mode.

The equation of ‘motion’ of an excitation X can be approximated by an

harmonic oscillator. Accordingly, the frequency dependence of the SDCS,

i.e. the line shape of a Raman band, has the shape of a Lorentzian82:

gσ(ω) =
Γσ/2π

(ω0,σ − ω)2 + (Γσ/2)2
(1.18)
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1.2. Raman scattering

where Γσ is the damping (or inverse lifetime) of the excitation.

The heart of the scattered intensity is the quadratic term∣∣∣∣∣∣
∑
i,j

eiSχ
ij
1 e

j
I

∣∣∣∣∣∣
2

. (1.19)

It describes the probability of the scattering process. As we have seen in

1.2.1 the Raman tensor χ1 is given by a matrix. Its form is defined by the

symmetry properties of the crystal and therefore, related to the orientation

of the crystalline axes. For certain geometries and directions of the electric

field vectors eI and eS the scattered light vanishes entirely depending to

the symmetry79. This ability to suppress bands of a certain symmetry in

specific scattering configurations is called Raman selection rules and allows

to determine the symmetry of Raman-active excitations. In scattering ge-

ometries that do not allow full vanishing of bands it is possible to deduce

the symmetry of a Raman band from its intensity evolution when rotating

crystal around an arbitrary but well-known crystalline direction86,87.

1.2.3 Quantum mechanical description

For a deeper understanding of the Raman process, the macroscopic approach

is not longer sufficient and it becomes necessary to study its quantum me-

chanical description. In particular, wavelength-dependent phenomena of the

Raman scattering process and the interaction of the incident and scattered

light with the electronic states of the system require a quantum mechanical

description.

From a quantum mechanical point of view, the first-order Raman scattering

process consists of the annihilation of a photon, the creation of a bosonic

particle corresponding to the excitation and the creation of a photon:

(1) The incident photon is absorbed under creation of an electron-hole pair

by promoting an electron from a valence band state vkh to a conduction

band state cke. In this way the system is excited from its initial state |0〉
with the energy E0 into an intermediated state |n〉 with the energy En. n is

a shortcut for the conduction band c, the valence band v and the momenta

ke and kh of the electron-hole pair. (2) This electron-hole pair is scattered

into a further intermediate state |n′〉 under the creation of a bosonic particle

corresponding to the excitation. (3) The electron-hole pair is radiatively an-

nihilated under the emission of a photon. The final state |f〉 of the system

corresponds to the initial state |0〉.79,82 The electronic system is unchanged
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with respect to the initial state. However, the number of particles of the

particular excitation has increased by one.

PRaman = δ(~ωI − ~ωS − ~ωex)×

∣∣∣∣∣∣∣∣
∑
n,n′

〈
0

∣∣∣∣HeR(ωI)

∣∣∣∣n〉〈n∣∣∣∣HeEx

∣∣∣∣n′〉〈n′∣∣∣∣HeR(ωS)

∣∣∣∣0〉
[~ωI − (En − E0)][~ωI − ~ωex − (En′ − E0)]

(a)

+

〈
0

∣∣∣∣HeR(ωI)

∣∣∣∣n〉〈n∣∣∣∣HeR(ωS)

∣∣∣∣n′〉〈n′∣∣∣∣HeEx

∣∣∣∣0〉
[~ωI − (En − E0)][~ωI − ~ωS − (En′ − E0)]

(b)

+

〈
0

∣∣∣∣HeR(ωS)

∣∣∣∣n〉〈n∣∣∣∣HeEx

∣∣∣∣n′〉〈n′∣∣∣∣HeR(ωI)

∣∣∣∣0〉
[−~ωS − (En − E0)][−~ωS − ~ωex − (En′ − E0)]

(c) (1.20)

+

〈
0

∣∣∣∣HeR(ωS)

∣∣∣∣n〉〈n∣∣∣∣HeR(ωI)

∣∣∣∣n′〉〈n′∣∣∣∣HeEx

∣∣∣∣0〉
[−~ωS − (En − E0)][−~ωS + ~ωI − (En′ − E0)]

(d)

+

〈
0

∣∣∣∣HeEx

∣∣∣∣n〉〈n∣∣∣∣HeR(ωI)

∣∣∣∣n′〉〈n′∣∣∣∣HeR(ωS)

∣∣∣∣0〉
[−~ωex − (En − E0)][−~ωex + ~ωI − (En′ − E0)]

(e)

+

〈
0

∣∣∣∣HeEx

∣∣∣∣n〉〈n∣∣∣∣HeR(ωS)

∣∣∣∣n′〉〈n′∣∣∣∣HeR(ωI)

∣∣∣∣0〉
[−~ωex − (En − E0)][−~ωex − ~ωS − (En′ − E0)]

∣∣∣∣∣∣∣∣
2

(f)

It is important to note that these three processes are not independent,

but need to be seen as an ensemble. Energy and momentum conservation

hold for the entire process but not necessarily for every intermediate step.

No real self-containing absorption or luminescence process as such are tak-

ing place to excite or recombine the intermediate states |n〉 and |n′〉. That

means the intermediated states cannot be measured nor do they possess a

lifetime (aside from the lifetime derived from uncertainty relations). These

states are therefore named virtual states. However, their contribution is cru-
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Figure 1.8: Graphical representation of the six scattering processes contribunting

to the first order Raman (Stokes) scattering79.
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cial for the mathematical expression of the scattering processes. As a result,

Raman scattering has no time delay, i.e. ∆t = 0 (neglecting the uncertainty

relations).

These three processes can take place in any time order giving rise to in total

six transition processes which together form the Raman scattering process.88

This, at first, little intuitive result derives from the perturbation theory, as

demonstrated for example by Ganguly and Birman89. The Raman scatter-

ing probability PRaman is thus the sum of all possible processes, as expressed

in Eq. 1.2079,89–91. Fig. 1.8 illustrates the terms of Eq. 1.20.

The frequencies ωI , ωS and ω0 of the incident light, scattered light and

created excitation, respectively, are given such that a positive frequency

denotes the creation and a negative frequency the destruction of the corre-

sponding particle. Hamiltonians HeR(ωi) and HeR(ωs) describe the electron-

radiation interaction and HeEx electron-excitation interaction. PRaman is the

quantum-mechanical expression of the macroscopic term in Eq. 1.19. The

polarization of incident and scattered light, eI and eS ( Eq. 1.16 and 1.19),

are included in the electron-radiation interaction terms, 〈0|HeR(ωI)|n〉 and

〈n′|HeR(ωS)|0〉, respectively. It is summed over all the intermediate states

|n〉 and |n′〉 of the system.

Second-order Raman scattering

The second-order Raman scattering is given by the emission of two exci-

tations during the scattering process. Perturbation theory reveals that the

second-order process consists of three main types of processes illustrated in

Fig. 1.9. (a) The first process consists of the absorption of the incident pho-

ton under the creation of an exciton. The exciton is scattered into a different

excitonic state under the simultaneous creation of two excitations. Finally,

the exciton is annihilated emitting a the scattered photon. In comparison,

process (b) consists of the creation of two excitations separately. An exci-

tation is created by scattering the exciton n1 into the state n2, followed by

the creation of a second excitation. Process (c) occurs by iteration of the

first-order process. Two first-order-like processes are mediated by a virtual

photon or phonon that occurs with the absorption of the incident photon,

the separate emission of the two excitations and the emission of the scattered

photon. In correspondence to the first-order process, the transition proba-

bility is given by the sum over the permutations of processes (a), (b) and

(c). Therefore, the process (a) gives rise to six terms, (b) to 24 terms and

process (c) contributes 36 terms to the Raman tensor.80,89,92 As mentioned
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Figure 1.9: Graphical representation for second order processes. (a) Simultaneous

emission of two excitations. (b) Separate emission of two excitations. (c) Separate

emission of two excitations mediated by a virtual photon.

earlier (see section 1.2.1), for the second-order Raman effect, excitations of

all wavevectors are allowed as long as the two excitations satisfy Eq. 1.15.89

This includes also combinations of Stokes and anti-Stokes scattering.80

Resonant Raman scattering

So far we have only considered energies of incident and scattered light sub-

stantially smaller than any electronic transitions of the system. If the laser

energy is tuned to the proximity of an electronic transition, it has a sig-

nificant impact on the scattering probability. For ~ωI/S → En − E0 the

denominators of certain scattering processes approach zero. Thus the scat-

tering probability increases dramatically. This effect is called resonant Ra-

man scattering. The resonant Raman effect in crystals has been extensively

discussed by Scott, Cardona, Martin and others primarily in classical semi-

conductors, see for example Ref. 76,77,81,92–94.

At first, the resonant Raman effect of the first-order scattering shall be dis-

cussed by evaluating Eq. 1.20. For ~ωI = En − E0, term (a) in Eq. 1.20
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becomes dominant, since it is the only term, where both parts of the de-

nominator approach zero for sufficiently small ω0 and equivalence of the

intermediate states n and n′. In principle the terms (b) and (e) lead to a

resonant effect as well, but show only single resonance. The summation over

all electronic levels n and n′ can be neglected because the electronic state,

that causes the resonance, is largely dominating the transition probability.

The transition probability can then be expressed by

Presonant−Raman ≈δ(~ωI − ~ωS − ~ωex)×∣∣∣∣∣∣∣∣
〈

0

∣∣∣∣HeR(ωI)

∣∣∣∣n〉〈n∣∣∣∣HeEx

∣∣∣∣n〉〈n∣∣∣∣HeR(ωS)

∣∣∣∣0〉
[~ωI − (En − E0)][~ωI − ~ωex − (En − E0)]

+ C

∣∣∣∣∣∣∣∣
2

(1.21)

where C summarizes the remaining terms.

The most obvious consequence of resonant Raman scattering is the strong

enhancement of the scattered light intensity. In addition, the in-

tensity ratios change for Raman bands stemming from different

excitations in comparison to the non-resonant state. This occurs because

intensities and thus intensity ratios at non-resonant conditions are given by

all six terms of Eq. 1.20 and by all possible electronic states of the system.

In the resonant case the number of contributing terms is strongly reduced.

Only the electronic state n defined by the resonant condition ~ωI = En−E0

is of relevance.

In practice, strong changes in the intensity ratio are often the more obvious

indication for resonant Raman scattering. Particularly, in the vicinity of an

electronic band-to-band transition, Raman scattering is in competition with

absorption. Strong absorption can cover the resonance effect.

The enhancement of the intensity is a continuous process and pre-resonance

phenomena occur below the actual resonance energy. This is illustrated

in Fig. 1.10 on the example of intensity evolutions of two vibrational ex-

citations of CdS with increasing laser energy reported by Ralston and co-

workers95. The intensity of the E 1(LO) band grows strongly with increasing

laser energy (~ωI) towards the electronic transition of the direct band gap

Egap = 2.58 eV. Under certain conditions, the scattering probability has

been reported to vanish in pre-resonant conditions due to compensation

of the different scattering processes (see Eq. 1.20). This leads to an anti-

resonant behavior before the actual resonant enhancement.95,96 This behav-
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Figure 1.10: Scattered intensity of a transverse optical and a longitudinal optical

E 1 mode of CdS aganist the energy of the incident laser. Egap and E∗ represent

the energy of the band gap of CdS and the anti-resonance energy of the E 1(TO)

mode. Reproduced from Ref. 95.

ior is found for the E1(TO) mode in Fig. 1.10. The intensity of the E 1(TO)

mode shows an anti-resonant behavior with a minimum E∗ = 2.11 eV well

below the electronic band gap energy, before increasing towards Egap.

A Raman-active excitation is not necessarily resonant-Raman-active. With

respect to the quantum mechanical terms an excitation is Raman-active if

there are n, n′ out of all n, n′ over which is summed in Eq. 1.20 such that

PRaman 6= 0 for arbitrary ωI . In case of resonance the summation over all

n, n′ is dropped. An excitation can therefore only be resonant-Raman-active

if Presonant−Raman 6= 0 for the electronic state n defined by the resonant con-

dition ~ωI = En−E0. As a result not all excitations may couple to specific

electronic transitions and, therefore, show no resonance effect in the Raman

scattering process.

In general, resonant Raman scattering enables to probe electronic transi-

tions. For first-order Raman scattering processes, only direct tran-

sitions can be observed, due to the small momentum transfer (see sec-

tion 1.2.1). This is illustrated in Fig. 1.11, process I (red).

On the contrary, second-order Raman scattering allows excitations of all mo-

mentum vectors q. Hence, the second-order scattering can be in res-
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onance with direct and indirect transitions, as illustrated in Fig. 1.11,

process II (blue).80,97–99

However, the Raman shift of second-order scattering processes is difficult

to assign to particular excitations, since multiple combinations of excita-

tions can provide the necessary momentum transfer to interact with indirect

transitions. An exception here are overtones of the first-order spectrum, i.e.

doubly scattered first-order excitations. In direct-gap semiconductors, over-

tones show strong resonance behavior. Here, first- and second- (or higher-)

order scattering are simultaneously resonant if the laser energy ~ωI is in

vicinity of the energy of direct electronic transition (see Fig. 1.11, process

I (red)). Under resonant conditions overtone intensities are often higher

than first-order intensities since for second- (and higher-) order scattering

processes more transition terms occur and triple (or higher) resonances are

possible.80,81,93

Wave Vector

E
n

er
gy

II

q

−qI

VB

CB

|q| = 0

Figure 1.11: Schematic electronic band structure of an indirect semiconductor.

(I) (in red) illustrates the interaction of |q| = 0 resonant processes. (II) (in blue)

illustrates the interaction for resonant processes with indirect electronic transitions.
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1.2. Raman scattering

1.2.4 Crystal vibrations - phonons

In the present work, Raman scattering is mainly used for the analysis of

vibrational states. Therefore, in the following section an overview of crystal

vibrations shall be given (following classical textbooks such as Ref. 82,100).

The major concepts will be introduced without the full derivation of all

formulas.

In a first step, we will focus on deriving the equations of crystal vibrations for

non-polar vibrations, i.e. displacements which do not carry a dipole moment.

In a second step, the particularities of polar vibrations shall be discussed.

Here, it is sufficient to treat the problem classically.

Non-polar phonons

Let us consider a crystal with n atoms per unit cell. The potential V repre-

sents the energy of all atoms. This potential can be expressed as a Taylor

expansion of atomic displacements around the equilibrium positions. Under

the assumption of the harmonic approximation, the expansion is stopped

after the second-order

V = V0 +
∑

Rα,α,i

∂V

∂U iRαα

∣∣∣∣∣∣
0

U iRαα +
1

2

∑
Rα,Rβ ,α,β,i,j

∂2V

∂U iRαα
∂U jRββ

∣∣∣∣∣∣
0

U iRααU
j
Rββ

(1.22)

with displacements URαα and URββ for the atoms α and β with their lattice

vectors Rα and Rβ, respectively, where i, j run over the Cartesian compo-

nents. The linear term vanishes expanding around the equilibrium position

and using an appropriate normalization the constant V0 can be set to zero,

so that Eq. 1.22 becomes

V =
1

2

∑
Rα,Rβ ,α,β,i,j

∂2V

∂U iRαα
∂U jRββ

∣∣∣∣∣∣
0

U iRααU
j
Rββ

. (1.23)

The potential is formally similar the harmonic oscillator. Thus, we define

the force constants as

AijRαRβαβ
=

∂2V

∂U iRαα
∂U jRββ

∣∣∣∣∣∣
0

. (1.24)

The equation of motion for the atom α of the mass Mα under the influence

of the displacement of the other atoms in the unit cell (including itself) is
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therefore given by

MαÜ
i
Rαα = −

∑
Rββ

AijRαRβαβ
U jβ. (1.25)

The vibrations of the entire lattice are described by 3n coupled differential

equations. To simplify Eq. 1.25 we introduce mass-weighted coordinates for

the displacement and the force constants

wRαα =MαUα

A
ij
RαRβαβ

=AijRαRβαβ
(MαMβ)−1/2.

(1.26)

Thus, Eq. 1.25 becomes

ẅiRαα = −
∑
Rββ

A
ij
RαRβαβ

wjRββ
. (1.27)

A
ij
RαRβαβ

possesses translational symmetry. Therefore, the absolute position

of the atom in the crystal is not of importance, but only the relative position

between the atoms. This allows to introduce a relative vectorR′ = Rα−Rβ.

Furthermore, the displacements can be expressed as Bloch functions as

wiRαα = viαe
−i[ωt−qR] (1.28)

with the oscillation frequency ω, the wavevector q and the amplitude v, so

that Eq. 1.27 becomes

ω2viα =
∑
β

[∑
R′

A
ij
R′αβe

iqR′

]
vjβ =

∑
β

Dij
αβ(q)vjβ. (1.29)

Dij
αβ(q) is referred to as the dynamical matrix containing all information to

describe the vibrations of the crystal. Eq. 1.29 can be written as∑
β

[
Dij
αβ(q)− ω2δαβ

]
vjβ = 0 (1.30)

This equation system has only non-trivial solutions if the determinant van-

ishes:

det
∣∣∣Dij

αβ(q)− ω2δαβ

∣∣∣ = 0 (1.31)

The eigenfrequncies ω are the vibration frequencies of the system. The re-

lation between ω and the momentum q is called dispersion relation. Once

the eigenfrequencies ω are known the amplitudes vα can be calculated. The
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actual vibrational patterns corresponding to the eigenfrequencies are the

normal modes W σ which are given as a linear combination of the displace-

ments of single atoms wα:

W i
σ(q) =

∑
α

ciασ(q)wiα (1.32)

where ciασ are transformation coefficients and σ(= 1, 2, ..., 3n) is the branch

index that distinguishes different solutions of the equations. These normal

modes diagonalize the equations of motion and thus, decouple the equations

of motion into 3n non-interacting collective motions:

Ẅ σ + ω2
σW σ = 0 (1.33)

In every system the branches of the normal modes are divided into three

acoustic branches with ω(q = 0) = 0 and 3n − 3 optical branches with

ω(q = 0) 6= 0. The acoustic modes represent at q = 0 the displacement

of the entire unit cell and thus, a hypothetical displacement of the entire

crystal along the three axes. Fig. 1.12 illustrates the dispersion relation for

an acoustic and an optical branch. The collective vibrations can be classi-

fied as longitudinal or transverse according to whether the displacement is

parallel or perpendicular, respectively, to the propagation direction q of the

vibration mode.

Figure 1.12: Schematic dispersion relation for an acoustic and an optical branch

within the first Brillouin zone. The straight lines indicate the boundaries of first

the Brillouin zone.
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To clarify the terminology used hereafter, a crystal vibration is a collective,

displacive excitation of the atoms of the crystal. In quantum mechanical

description this excitation state is termed phonon, a quantum mechanical

quasi-particle. In the following, both terms are used synonymically.

In order to probe a crystal vibration by Raman spectroscopy, Eq. 1.11 has to

be fulfilled. I.e. the vibrational displacement alters the dielectric susceptibil-

ity. Group theoretical rules allow to determine the Raman-active vibrations

modes82,85.

A centro-symmetric crystal and its tensor properties remain unchanged un-

der inversion. This is only the case for an vibration mode with even parity

which does not change sign under inversion. A mode of odd parity changes

sign under inversion, thus, χ1 changes sign. Therefore, the Raman tensor

for an odd-parity mode vanishes. On the contrary, only odd-parity modes

change their dipole moment and, hence, are infrared-active. This correlation

is known as rule of mutual exclusion of infrared and Raman-active vibrations

in centro-symmetric materials79. If an atom occupies an inversion center in

the crystal structure, any vibration including this atom is of odd parity. In

turn, all vibration modes involving the displacement of an atom occupying

an inversion center are Raman-inactive. An extreme case is cubic Perovskite

structure Pm3m. Here, all atoms occupy inversion centers. Therefore, none

of the vibration modes are Raman-active. Modes which are neither Raman

nor infrared active are said to be silent.

In the present work, excitation symmetries of vibrational excitations are

given in Mulliken’s notation101,102. The symbol A denotes a fully symmet-

ric vibration, B an anti-symmetric vibration and E and T indicate doubly

and triply degenerated vibrations, respectively. g, u, 1, 2, 3 are subscripts to

A, B, E and T. 1, 2, 3 define the axis and mirror planes to which the excita-

tions are symmetric. Subscripts g and u denote displacements of even parity

and odd parity with respect to a inversion center. Hence, these notations

only exist for centro-symmetric crystals.
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1.2. Raman scattering

Polar vibrations and oblique modes

So far we only considered non-polar modes. Polar vibrational modes, i.e.

vibrations that carry an electric-dipole moment, show different properties.

Here, the vibration is accompanied by an electric field induced by the dipole

moment. Therefore, the equation of motion needs to be solved for the vibra-

tion and the electric field. As consequence the equation of motion Eq. 1.33

becomes (the derivation can be found in Hayes and Loudon82)

Ẅ σ + ω2
σW σ =

Zσ(q · ξσ)
∑

τ Zτ (q · ξτ )W τ

V ε0
∑

ij q
iεij∞qj

. (1.34)

Zσ is the effective charge and ξσ the unity vector parallel to the electrical

field of the vibration σ. V stands for the volume of the primitive cell and

ε∞ for the dielectric tensor. τ runs over all polar modes.

We find that the vibrational frequency changes due to the influence of the

electric field. For non-polar modes the effective charge vanishes (Zσ = 0),

the right-hand side of 1.34 becomes zero and Eq. 1.34 turns into 1.33. If

the mode is polar (Zσ 6= 0), the vibration frequency ωσ of the polar mode

depends on the angle between propagation direction of the mode q and the

vector ξσ along the electric field of the vibration. The scalar product (q ·ξσ)

becomes maximal for a longitudinal wave when q ‖ ξσ and zero for transver-

sal modes (q ⊥ ξσ) with q · ξσ = 0. Transversal modes have no associated

electric field. The appearance of all polar modes in Eq. 1.34, since we sum

over all polar displacements τ , shows that the frequency of the polar mode

σ is not only affected by its own electric field but also by the electric fields

of other polar modes of the system.

In the following, we discuss the limiting cases of the transformation from

longitudinal to transversal modes under changing propagation direction q.

Here, we shall concentrate on uniaxial systems as it will be of need in chap-

ter 5.

For uniaxial crystals, where x and y are the ordinary and z is the extraor-

dinary axes, we consider a group of three polar vibrations, each along one

direction. The subscripts ‖ and ⊥ indicate parallel or perpendicular dis-

placements with respect to the extraordinary axis. The superscripts l and

t stand for longitudinal and transversal wave propagation with respect to

the electric field direction. The anisotropy of the crystal structure leads to

an anisotropy of the force constants along the ordinary and extraordinary

axes. Therefore, the vibration frequencies without associated electric-field

35



Chapter 1. Fundamentals

for the displacement along z-axis ωt‖, and in the x-y plane ωt⊥ are different.

The vibrations along x- and y-direction are degenerated. For the evolution

of the mode frequency with changing angle between the electric field E and

the propagation direction q, it is important whether the anisotropy of the

force constants is strong compared to the addition of the electric field or not.

In the following, we discuss these two limiting cases. For that we assign the

vibrational symmetry A to the vibrations ωl‖ and ωt‖ and E to ωt⊥ and ωl⊥.

i) At first we assume the anisotropy of the force constants to be large com-

pared to the effect of the electric field of the polar mode:∣∣ω‖ − ω⊥∣∣� ∣∣∣ωl‖ − ωt‖∣∣∣ and
∣∣∣ωl⊥ − ωt⊥∣∣∣

The frequencies ω as a function of the angle θ between the propagation

direction and the electric field can be approximated as90:

Upper extraordinary branch : ω2(θ) = ωt‖
2

sin2 θ + ωl‖
2

cos2 θ (1.35)

Lower extraordinary branch : ω2(θ) = ωt⊥
2

cos2 θ + ωl⊥
2

sin2 θ (1.36)

The term extraordinary branch determines a frequency branch changing

with the orientation in contrast to an ordinary frequency branch showing no

effect for varying orientation. The frequency evolutions for changing θ are

illustrated in Fig. 1.13. For θ = 0◦ the frequency of the upper branch is ωl‖
with the symmetry A. For increasing θ, the vibration changes from longitu-

dinal to transversal, thus, from a higher frequency ωl‖ to a lower frequency

ωt‖ with no associated electric field. The frequency of the lower branch is

degenerated at θ = 0◦. As the angle θ increases the degeneracy is lifted

and the vibration branch splits in an ordinary and an extraordinary one.

The frequency ωt⊥ and the symmetry E of the ordinary branch remain in-

dependent of the orientation. Whereas the extraordinary branch changes

from transversal to longitudinal for θ = 90◦ with the symmetry being E

for θ = 0◦ and 90◦. The extraordinary branches have strictly no simple

polarization and symmetry for intermediate angles θ. However, since the

anisotropy of the force constants is stronger than the effect of the electric

field, displacement corresponding to the upper extraordinary branch can be

regarded as parallel to the z-axis and the displacement of the lower extraor-

dinary branch as perpendicular to the z-axis.90
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Figure 1.13: Evolution of band position of polar modes of an uniaxial crystal against

the angle between polarization and phonon propagation direction for the limiting

case where the anisotropy of the force constants are large compared to the effect of

the electric field of the polar mode.82

ii) In the second case the anisotropy of the force constants is small in com-

parison to the frequency difference of transversal and longitudinal vibrations

caused by the electric field:∣∣ω‖ − ω⊥∣∣� ∣∣∣ωl‖ − ωt‖∣∣∣ and
∣∣∣ωl⊥ − ωt⊥∣∣∣

The frequency dependence on the angle θ is given by:

Upper extraordinary branch : ω2(θ) = ωl‖
2

cos2 θ + ωl⊥
2

sin2 θ (1.37)

Lower extraordinary branch : ω2(θ) = ωt‖
2

sin2 θ + ωt⊥
2

cos2 θ (1.38)

Fig. 1.14 illustrates the frequency behavior of Eqs. 1.37 and 1.38. The up-

per extraordinary branch represents a longitudinal vibration mode for the

angles θ = 0◦ and 90◦, while the vibrational pattern changes from paral-

lel to perpendicular to the z-axis. For the lower extraordinary branch we

face the reverse situation. θ = 0◦ and 90◦ leads to a transversal mode, but

symmetry and vibrational pattern change from E and perpendicular to the

x-axis to A and parallel to the x-axis. Apart from the extreme cases of
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Figure 1.14: Evolution of band position of polar modes of an uniaxial crystal against

the angle between polarization and phonon propagation direction for the limiting

case where the anisotropy of the force constants are small compared to the effect

of the electric field of the polar mode.82

θ = 0◦ and 90◦, there is no simple polarization, but since the impact of

the electric field of the mode is more important than the anisotropy of the

force constants, the vibration modes can be regarded as longitudinal and

transversal, respectively. The vibrational pattern and the symmetry, on the

other hand, change crucially for intermediate angle θ.

The vibrational modes of intermediate angle θ between electric field and

propagation direction of the polar mode are called mixed or oblique modes.

Due to the mixed states of symmetry, vibrational pattern and polarization,

the analysis of oblique modes is difficult from an experimental and theo-

retical point of view. In particular, in powder samples of polar materials

where all possible crystalline orientations are present, Raman bands tend to

become very broad and single band analyses are impossible.

A particularly interesting example of mode mixing is α-quartz, reported

by Shapiro and Axe103. Both above-discussed critical cases are present in

α-quartz. The point group 32 gives rise to vibrational modes of A1, A2 and

E symmetry. Here, the A1 modes are non-polar, thus, do not interact with

other polar modes. The A2 modes are polar but Raman-inactive, whereas

the modes of E symmetry are polar and Raman-active. Fig. 1.15 shows the
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Figure 1.15: Oblique mode evolution of quartz. Reproduced from Ref. 103.

Raman mode evolution for changing propagation directions. A set of vibra-

tional modes of A2 and E symmetry where the electric field contribution is

more important than the anisotropy of the force constants behaves accord-

ing to case ii) discussed above. For an angle θ = 0◦ the two extraordinary

branches are of E(T) and A2(L) symmetry, where T stands for transversal

and L of longitudinal. For θ = 90◦ the E(T) mode changed into an A2(T)

mode and the A2(L) into an E(L) mode. In these extreme cases only the

E mode is observable by Raman spectroscopy. For intermediate values of θ

the symmetries mix and the bands become Raman-active and the intensities

increase with the increasing contribution of the E mode. In case of predom-

inant anisotropy of force constants over the electric-field contribution, the

symmetries of the extrema of the extraordinary branches are A2(L) and

A2(T) for one and E(T) and E(L) for the other branch. While the branch
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of mainly E symmetry is observable for any value θ, the vibrations of the

A2-symmetry branch are Raman-inactive for θ = 0◦ and 90◦. However, for

intermediate angle θ the symmetries mix also with other E modes and the

vibrations become Raman-active103. This case demonstrates that oblique

modes possess strongly mixed character changing significantly the inter-

action and observation properties compared to their un-mixed, “parental”

vibrational modes, and thus, illustrates the complexity of analyzing oblique

modes.

In addition, the intensity is strongly affected by the contribution of elec-

tric field that accompanies a polar vibration mode. The linear susceptibility

of the crystal is perturbed by the electric field and the total Stokes polar-

ization becomes82

P iS =
∑
σ,j,h,k

(
aijσW

k
σE

j
I + bijhEhEjI

)
(1.39)

where

bijh = ε0
∂χij(ωI)

∂Eh
and aijσ =

∂χij(ωI)

∂W k
σ

(1.40)

describe the modulation of the susceptibility by the electric field accompa-

nying the polar mode and by the vibrational displacement, respectively (see

section 1.2.1). The contribution to the intensity arising from the electric

field of a polar mode can be significant. In analogy to the vibration fre-

quency of a the polar mode (see Eq. 1.34) the intensity depends not only

on the perturbation of the electric susceptibility by the electric field of one

polar mode but is effected by the perturbation of the electric susceptibility

of all polar modes82. This crosstalk makes the intensity analysis of polar

modes particularly difficult.
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1.2.5 Soft modes in Landau theory of phase transitions

In this section, we briefly explain the basics of soft mode spectroscopy for

structural changes.

As we have seen in section 1.1.1, distortions may lead to new structures

of lower symmetry in comparison to the ideal cubic perovskite structure

Pm3m. By changing external parameters, like temperature, pressure or

strain, as well as substituting elements, it is possible to change the structure

of a material. Here, we are interested in phase transitions that are accompa-

nied with a change in symmetry where the structure changes from a state of

higher symmetry to a state of lower symmetry. This can either happen in an

abrupt way, first-order phase transition, or in a continuous manner, second-

order phase transition. For first-order phase transitions the two structures

on either side of the transition do not have a predictable symmetry relation.

By contrast, in second-order phase transitions the lower symmetry group is

a subgroup of the higher symmetry group.

Landau theory of phase transitions allows to describe these kind of phase

transitions. A basic idea of Landau theory is to consider a quantity, the so-

called order parameter, directly linked to the change of the system related to

the phase transition. The equilibrium state of this quantity minimizes the

free energy F (T, p, η) of the system where T and p represent temperature

and pressure, and η the order parameter.

As an example serves the phase transition of strontium titanate. SrTiO3

is cubic at room temperature crystallizing in the space group Pm3m. At

106 K a phase transition occurs. The tilt system changes from the cubic

perovskite type a0a0a0 to a0a0c− given rise to the space group I 4/mcm as

we can find in Fig. 1.3. In the low temperature phase, the octahedra are

rotated around the z-axis such that two subsequent octahedra are rotated

in anti-phase. The octahedra tilt angle can be considered as order param-

eter of the phase transition being zero in the high temperature phase and

increasing below the phase transition temperature.

We can assume η to be small in the vicinity of the phase transition and

develop F (T, p, η) in a Taylor expansion of η:

F = F0 +A1η +
1

2
A2η

2 +
1

3
A3η

3 +
1

4
A4η

4 + ... (1.41)

For symmetry reasons, terms to an odd power of η vanish and A4 is required

to be positive:

F = F0 +
1

2
A2η

2 +
1

4
A4η

4 (1.42)
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F (T, p, η) is required to be in an equilibrium state with respect to η. The

equilibrium values are defined by:

∂F

∂η
= 0 (1.43)

with the stability condition:

∂2F

∂η2
> 0. (1.44)

The stable states are

η = 0 for A2 ≥ 0 (1.45)

η = ±
√
−A2

A4
for A2 < 0 (1.46)

For temperature driven phase transitions, where the high temperature phase

is of higher symmetry than the low temperature phase, it is customary to

assume A2 to be of the form64

A2 = A2,0(T − Tc) (1.47)

where Tc is the transition temperature, such that

η = 0 for T ≥ Tc (1.48)

η = ±
√
−A2,0(T − Tc)

C
for T < Tc (1.49)

This dependence of the free energy on the order parameter is illustrated in

Fig. 1.16.

Phase transitions can be characterized by vibrational modes that change

substantially in frequency when approaching the transition temperature.

These vibrations are termed unstable or soft modes 64. The expression “soft”

refers to the strong changes of the vibration frequency in the vicinity of the

phase transition, in contrast to hard modes with less prominent frequency

changes. The vibrational patterns of soft modes are commonly closely re-

lated to the structural changes at the phase transition. In the example of

the tetragonal-to-cubic phase transition of SrTiO3, the vibrational displace-

ment of the soft modes represents an octahedra rotation movement.

To investigate the frequency evolution of the soft mode when approach-

ing the phase transition, we regard F in Eq. 1.41 as the potential of a

42



1.2. Raman scattering

η

F

T ≥ Tc

T < Tc

Figure 1.16: Free energy F against the order parameter η for temperatures T ≥
Tc (red) and T < Tc (blue) where Tc determines the temperature of the phase

transition.

one-dimensional oscillator expanded in η in harmonic approximation, thus

that64,82:
∂2F

∂η2
= mω2 = A2 (1.50)

where ω is the soft mode frequency and m the mass of the contributing

atoms. With Eq 1.47, the soft mode frequency is given as64,82:

ω = const. |T − Tc|1/2 . (1.51)

Comparing Eq. 1.51 with 1.48 we find that the order parameter is propor-

tional to the frequency of the corresponding soft mode for temperature-

driven phase-transitions: ηi ∝ ωi.
The soft mode frequency evolution towards the phase transition in Eq. 1.51

indicates that the soft mode frequency goes to zero at the transition tem-

perature Tc. This behaviour is illustrated in Fig. 1.17. The low lying A1g

and Eg modes represent the soft modes of SrTiO3. Approaching the phase

transition from the low symmetry phase both modes soften to zero at Tc.

An order parameter may give rise to several soft modes which do not neces-

sarily need to be Raman-active. In Fig. 1.17, the Raman-active soft modes

are shown. However, in the higher symmetry phase the soft-mode is not

Raman-active (and in fact is not at the Γ-point but at the R-point), but

is re-increasing in the cubic phase, as can be followed by inelastic neutron

scattering. On the other hand, in the low symmetry phase at least one
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Figure 1.17: Evolution of the A1g and Eg soft modes of SrTiO3 towards the phase

transition. Reproduced from Ref. 104.

Raman-active soft mode of A symmetry exists as by Birman105 and Shige-

nari106.
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1.2.6 Probing magnetism by Raman scattering

In this section, we shall briefly introduce two possibilities to probe mag-

netism and magnetic effects by Raman scattering.

A direct way to probe magnetism of a material by Raman spectroscopy is

the scattering on magnetic excitations. Magnetic excitations, also called

magnons, can be understood as fluctuations of the magnetic spin system.

The inelastic scattering on magnetic excitations follows essentially the gen-

eral rules as described in chapter 1.2.1-1.2.3. However, the spin-orbit cou-

pling of the magnetic material is important, since the cross section scales

directly with the strength of the spin-orbit splitting. I.e. small spin-orbit

splitting leads to weak scattering intensities.

Magnon frequencies of ferromagnetic materials are commonly too low for Ra-

man scattering experiments. In contrast anti-ferromagnetic materials pos-

sess magnetic excitation frequencies in the accessible range82.

In equivalence to phonon scattering, multiple magnetic excitations scattering

is also possible. However, the scattering intensity can be higher in compar-

ison to higher-order phonon scattering.

Magnetism can be indirectly probed by analyzing the effect of the ordering

of the magnetic moments on the structure. The alignment of spins at a

magnetic phase transition induces a strain in the material, magnetostric-

tion. By this means the magnetic system influences the crystalline lattice

and thus couples to the phonon system. This allows an indirect probing of

the magnetic ordering. The interaction between vibrational frequency and

the magnetic moments is commonly assumed as

ωsp = ω0 + γ 〈SiSj〉 (1.52)

where ωsp, ω0, γ, Si/j are the frequency due to interaction with the spin

moments, the undisturbed frequency, the coupling constant and the spin

moment for different spins i and j107.
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Experimental methods

2.1 Raman spectroscopy

The Raman scattering effect has been discussed in the previous chapter.

Here, the Raman spectroscopy setup, the measurement environment and

corrections of the measured spectra is addressed.

2.1.1 Experimental setup

The Raman measurements at the Luxembourg Institute of Science and Tech-

nology were performed on a Renishaw inVia Reflex Raman Microscope. A

sketch of the setup is shown in Fig. 2.1. The monochromatic light beam is

provided by four different sources depending on the designated wavelength:

a solid state diode (785 nm), a helium-neon (633 nm), a frequency doubled

Nd:YAG (532 nm) and a helium-cadmium laser (325 / 442 nm). Raman

spectra are recorded in backscattering geometry. The Rayleigh peak is fil-

tered with spectral cut-offs at 60 cm−1 (infrared), 350 cm−1 (UV), 70 cm−1

(red), 80 cm−1 (green) or 95 cm−1 (blue). In addition, low frequency fil-

ters are available for the 532 and 633 nm laser lines allowing to record

Raman features down to 10 cm−1. The laser beam is focused via an optical

Leica microscope on the sample. The microscope is equipped with inter-

changeable optical lenses providing magnifications/numerical apertures of

×5/0.12, ×20/0.4, ×50/0.75 and ×100/0.85 for visible light and ×15/0.32

and ×40/0.5 for UV light. Long distance objectives (×20/0.4 and ×50/0.5)

allow temperature dependent measurements. The lateral resolution is given

by the spot size, determined from the wavelength and the properties of the

objective, typically of the order of 1 µm. An optical camera included in the
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Figure 2.1: Sketch of the Renishaw inVia confocal Raman microscope.

optical microscope enables to visualize the surface and optimize the focus

point. Light scattered by the sample takes the same light path as the inci-

dent light. After filtering of the Rayleigh peak, an optical grating disperses

the scattered light for spectral analysis. The signal is detected by a CCD

(charged-coupled device) with a spectral resolution of 2 cm−1 to 0.4 cm−1

depending on the grating and wavelength of the laser line (gratings: 1200,

1800 and 2400 grooves per mm). The detector is directly connected to a

computer for data processing and analysis.

The polarization of the laser can be rotated by 90◦. The polarization of the

analyzed light can be chosen parallel or perpendicular to the polarization

direction of the laser beam. For visible light, the Raman microscope has a

built-in silicon sample for calibration of the frequency. For measurements

under UV-light, a diamond is used for calibration.

2.1.2 Porto’s notation

We have seen in chapter 1.2 that the orientation of the crystal with respect

the polarization and propagation direction of the incident and scattered laser

light is crucial for the correct interpretation of the acquired spectra. S.P.S.

Porto introduced in 1966 a notation that allows to describe the scattering

geometry:108

A(BC)D (2.1)

where A and D are the directions of propagation, and B and C are the di-

rections of polarization of the incident and scattered laser light, respectively.

In a backscattering geometry, an overline indicates that the incident and an-

alyzed light propagate in opposite directions, e.g. A(BC)A. The directions
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A–D are usually given with respect to axes linked to the spectrometer. If

the crystal orientation is known, they can be expressed in a suitable crystal-

lographic system, and directly used for application of the Raman selection

rules and determination of the mode symmetries.

2.1.3 Corrections of the Raman spectrum

The scattered light intensity depends on external factors such as tempera-

tures, response of the spectrometer or scattering volume of the sample. If

the investigations involve the scattered intensities, the Raman spectra need

to be corrected against these factors.

Thermal occupation factor

The intensity in Eq. 1.16 depends on the Bose-Einstein thermal occupation

factor n(ω):

n(ω) =
1

exp(~ω/kBT )− 1
(2.2)

where ω describes the frequency of the scattered light, T the temperature

and kB the Boltzmann factor. When comparing intensities at different tem-

peratures a correction of the Bose-Einstein factor as (n(ω)+1), as it appears

in Eq. 1.16, is necessary. The “+1” expresses the creation of one phonon.

Therefore, second-order spectra need to be corrected by (n(ω)+1)(n(ω)+2)

for overtones or (n(ω1) + 1)(n(ω2) + 1) for two phonons of different fre-

quency.77 In practice, it is however difficult to differentiate between the two

cases unless a clear assignment of the second-order features is given.

Effect of the exciting wavelength

When measuring Raman spectra with different excitation wavelength, the

wavelength dependence on the experimental setup needs to be taken into

account. On the one hand, the intensities of different exciting lasers are not

the same. On the other hand, the spectrometer response is strongly wave-

length dependent. I.e. mirrors, lenses, filters, gratings as well as the CDD

absorb, reflect and transmit light differently depending on the wavelength.

There are two possibilities to overcome these problems.

First, the exciting light intensity can be measured and the spectra nor-

malized accordingly. The instrument response can be calibrated using a

tungsten white lamp (or similar) with a well-known optical spectrum. The

calibration needs to be performed with care, since calibrations lamps tend to
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be sensitive to external parameters and lifetime. In addition, the measured

intensity needs to be corrected against the ω4 dependence on the incident

laser light (see Eq. 1.16).

A second possibility is the use of a reference sample. This reference material

should have a high band gap and show no strong absorption or resonance

phenomena in the energy range of interest, i.e. usually from 1.4 to 3.8 eV.

If resonance and absorption phenomena are negligible, the variations of the

scattered intensity for different laser wavelength are due to the different in-

tensity of the incident light, the spectrometer response and the general ω4

frequency dependence of the scattered intensity. By normalizing the spectra

to the intensity of the reference sample, we correct against all these three

effects at the same time109. For measurements in micro-Raman mode, it is

important the keep the optical focus point on the sample constant, since the

focus point is crucial for the scattered intensity.

A commonly used reference material is CaF2 with a band gap of 11.2 showing

only small resonance phenomena in the optical light spectrum109,110. CaF2

possesses only one Raman-active vibrational mode of T2g symmetry82.

In CaF2 strong fluorescence bands stemming from rare-earth impurities may

complicate the fitting process of the only Raman band for some exciting

wavelengths, giving rise to large error bars. Fig. 2.2 illustrates the spectra

under excitation of 532 nm and 442 nm laser light. In the case of the 532 nm

the Raman band is surrounded by fluorescence lines, whereas in the spec-

trum under the excitation of 442 nm, the Raman band is not disturbed by

fluorescence.

Eq. 1.16 shows that the scattered intensity depends on the scattering vol-

ume. The scattering volume is wavelength dependent since, for exam-

ple, the penetration depth of the light into the material is linked to the

wavelength-dependent absorption coefficient. We define an as-measured ef-

ficiency S∗ = Is/Ii, where Ii and Is are the measured incident and scat-

tered intensities, respectively, and an efficiency S, which is corrected against

wavelength-dependent scattering losses due to absorption and reflection at

the surface. S and S∗ are related as follows110,111:

S∗ = S
1− exp [− (S + αi + αs)L)]

S + αi + αs
(1−Ri) (1−Rs) (2.3)

where L is the thickness of the crystal, αi and αs are the absorption co-

efficients and Ri and Rs the reflectivities for the incident and scattered

radiation, respectively. If we neglect the reflectivity and assume that L is
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Figure 2.2: Raman spectra of CaF2 measured under the excitation of 442 nm and

532 nm laser lines. The Raman-active T2g vibration mode of CaF2 is indicated

by the orange rectangle. The remaining bands in the spectrum measured with the

532 nm laser are fluorescence lines.

sufficiently large and αi and αs larger than S, Eq. 2.3 becomes

Is
Ii

= S∗ =
S

αi + αs
. (2.4)

Therefore, it is common to correct the wavelength-dependent volume effects

by multiplication of the scattering intensity with 2α, in backscattering con-

figuration.110,111

These corrections do not allow to calculate the total scattered intensity, but

only the ratio between different spectra.
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2.2 Optical birefringence - Metripol setup

Birefringence is an optical property of materials with an anisotropic refrac-

tion index, i.e. the refraction index depends on the polarization and prop-

agation direction of the light. Birefringence is highly sensitive to changes

of the crystalline system and, therefore, an ideal mean to probe structural

phase changes.

The velocity of an optical wave passing through a medium is given by:

v = c/n, where c is the vacuum light-velocity and n is the refractive index.

In an optically anisotropic medium, another wave with a polarization direc-

tion perpendicular to the first one will be slowed down differently due to a

different refractive index n2. Than the (linear) birefringence is given by112:

∆n = n1 − n2 (2.5)

Therefore, changes of the birefringence under variation of external parame-

ters reflect changes of the crystallographic plane perpendicular to the propa-

gation direction to the optical wave. The refractive index for all propagation

and polarization directions is represented by an ellipsoid, the optical indica-

trix. For an isotropic material all axes of the ellipsoid have the same length

and the ellipsoid becomes a sphere. In case of uni- or biaxial systems the

axes lengths are given a = b 6= c or a 6= b 6= c, respectively.

The phase shift δ of the optical wave depends, furthermore, on the thickness

L of the sample and the wavelength λ of the light112:

δ =
2π

λ
∆nL (2.6)

Birefringence measurements presented in this work were performed in Prof.

Dr. P.A. Thomas’ group, Warwick University, UK, togehter with Dr. Steven

Huband using a Metripol system (see Fig. 2.3). The system consists of a

white light source followed by a filter to extract a certain wavelength and

a rotating polarizer to assure linearly polarized light. The polarized light

passes the sample and second polarizer, which acts as analyzer, before the

intensity of the light is recorded by a CCD. The measured light intensity

depends on the transmitted intensity I0, the orientation of the indicatrix

axis φ and the phase shift δ with respect to the polarizer and analyzer.

These three parameters can be disentangled numerically by measuring the

intensity for multiple configurations of polarizer and analyzer. So that the

recorded intensity can be expressed as113:

I =
1

2
I0 (1 + sin(2(θ − φ)) sin δ) , (2.7)
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Figure 2.3: Sketch of the Metripol setup.

where θ is the angle of rotation of the polarizer. Rotation of the polarizer

allows to calculate the transmittance I0, the orientation angle φ of one of

the axes of the indicatrix and the quantity |sin δ|, which is a function of the

phase shift and thus a measure for the optical anisotropy.

Since the parameters are measured at the same time, they depend on each

other, such that, if the orientation φ is not known in advance, only |sin δ|
can be determined and the absolute value of the sin-function will be re-

flected when calculating ∆n. In turn, if |sin δ| is not known, the value of φ

can be off by 90◦. Due to this fact, it occurs with changing sin δ during a

measurement series that the orientation φ experiences a shift by 90◦ which

is without any physical meaning.

Finally, the result is decomposed into three images per measurement point

for the three parameters. Regions of interest can be analyzed for changes

under variation of external parameters.

Fig. 2.4 illustrates the images of |sin δ| and φ of a zeolites dodecasil-3C

crystal for temperatures below (Fig. 2.4(a) and (b)) and above (Fig. 2.4(c)

and (d)) a tetragonal-to-cubic phase transition114. At room-temperature the

crystal is optically anisotropic and shows a strong birefringence (Fig. 2.4(a)).

The orientation is relatively uniform (Fig. 2.4(b)). Above the phase transi-

tion, the birefringence becomes zero (or close to zero) (Fig. 2.4(c)) indicating

the optical isotropy of the cubic structure of the sample at high tempera-

tures. A small remaining birefringence due to internal strain, gives rise to

the radial coloring in Fig. 2.4(d)114.
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Figure 2.4: Images of |sin δ| and φ of a zeolites dodecasil-3C crystal for different

temperatures around a structural anomaly. Reproduced from Ref. 114.

A technical issue is the displacement of the sample during a measurement

in particular if cooling pumps are connected to the sample holder. This

problem was solved by comparing two subsequent intensity images, such

that second image was artificially shifted step-wise on a rectangular grid of

ca. 30 × 30 pixel. For every shift, the correlation value between first im-

age and the shifted second image was calculated using Pearson’s correlation

function. The position of the second image was corrected according to the

point of highest correlation. This procedure was repeated for every fifth

image to take subtle displacements of less than one pixel per measurement

point into account. A sample rotation during the measurement series can

not be corrected and the series becomes unusable.
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2.3 Temperature dependent measurements

Temperature dependent Raman spectroscopy and birefringence measure-

ments were performed with a commercial Linkam stage THMS600 which

allows a temperature range from 87 to 900 K (Fig. 2.5). Inside the cell

the sample is placed on a ceramic block. The temperature is controlled via

resistive heating of this ceramic block. Water cooling prevents the cell from

overheating during high temperature measurements. For low-temperature

measurements, the cell is cooled with liquid nitrogen.

The temperature cell can be positioned on the microscope stage. Incident

and scattered light can pass through a glass window. In addition transmis-

sion measurement are enabled by a hole of about 2 mm in the middle of the

ceramic.

Figure 2.5: Linkam Stage THMS600. Reproduced from Ref. 115.
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2.4 Resonant ultrasound spectroscopy (RUS)

Resonant ultrasound spectroscopy (RUS) enables to probe elastic properties

of a material. Elastic properties are highly sensitive to structural changes

at an atomic level due to external parameters like temperature, pressure,

electric or magnetic fields. Obvious candidates are solid-to-solid phase tran-

sition, but more subtle changes such as modifications of the magnetic struc-

ture can also affect the elastic constants.

The RUS measurements were performed in collaboration with Prof. Dr.

M. Carpenter and Dr. D. McEvans, Earth Science Department, University

of Cambridge, UK.

During a RUS measurement the sample is positioned between two piezoelec-

tric transducers. One piezo-element vibrates at a frequency that is sweeped

from 100 kHz to 2 MHz. The second piezo-element acts as detector. If

the frequency of the signal coincides with the frequency of a natural vibra-

tion mode of the sample, there is a resonant enhancement of the sample

vibration amplitude, which is then detected and recorded by the second

piezo-element. The resonance frequency depends on the shape, density and

elastic constants of the sample. The shape is not supposed to change during

the measurement and the changes of the density can be considered small

and continuously following the thermal expansion. Therefore, following the

evolution of the resonance frequency with respect to a varying external pa-

rameter allows the direct tracing of an “effective” elastic constant. This

effective elastic constant usually involves a linear combination of all the

elastic constants of the material, unless very specific and controlled shapes

are chosen. Besides, experience shows that RUS is mostly sensitive to shear

moduli.116

When treating the data, measured peaks are fitted with a Lorentzian as-

suming a driven harmonic oscillator as

y(f) = y0 +
A

(f − f0)2 +B
, (2.8)

where y0 defines a linear baseline, f0 the resonance frequency and A and

B are constants defining the shape of the Lorentzian. In practice, from an

experimental point of view it is preferable to use an asymmetric Lorentz

function, such that only the ratio of A/B differs for f < f0 and f > f0.
116

There are two quantities extracted and analyzed. First, the square of the

resonance frequency f20 is proportional to the elastic constant to the corre-

sponding acoustic mode. Second, we define a mechanical quality factor Q

56



2.4. Resonant ultrasound spectroscopy (RUS)

by

Q =
f0
∆f

(2.9)

where ∆f is full-width-at-half-maximum (FWHM) given as
√
B 116. The

inverse quality factor Q−1 is a measure of the mechanical dissipation of

the acoustic wave in the sample. Anomalies in both factors, f20 and Q−1,

are indications of a coupling between mechanical strain and a physical phe-

nomenon in the material making RUS a powerful tool to investigate impacts

on the crystal structure.116

Resonant ultrasound spectroscopy measurements are exemplified in Fig. 2.6

showing segments of RUS spectra of KMnF3 for a temperature range from

11 to 290 K. Clear changes of the band evolutions appear at structural phase

transitions at 83 (Cmcm→Pnma; phase transition from high to low temper-

atures) and 185 K (Pm3m → I 4/mcm)117. The phase transition I 4/mcm

to Cmcm at 87 K is less clear. The structural change at 185 K, (Pm3m →
I 4/mcm), is structurally the same phase transition as the earlier discussed

transition in SrTiO3 induced by octahedra rotation.

Figure 2.6: Segments of RUS spectra of KMnF3 for a temperature range from 11

to 290 K. Changes of the band evolutions appear at structural phase transitions

at 83 (Cmcm→Pnma; phase transition from high to low temperatures) and 185 K

(Pm3m → I 4/mcm). Reproduced from Ref. 117.
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Chapter 3

Raman scattering on

rare-earth orthoferrites

RFeO3 (R = La, Sm, Eu,

Gd, Tb, Dy)

The work presented in the following has been submitted for publication to

Physical Review B, an APS journal. Major parts of the chapter are identical

in word and content with the submitted draft. The density functional theory

(DFT) calculations in this chapter were performed by Jorge Íñiguez and

Hong Jian Zhao, Luxembourg Institute of Science and Technology, and are

not part of the present work.

Introduction

In the past, rare-earth orthoferrites (RFeO3) perovskites have attracted

considerable interest due to their remarkable magnetic properties13,118,119.

At ambient conditions, all RFeO3 adopt an orthorhombic Pnma structure,

hence their common name orthoferrites. Most members of the family pos-

sess a canted antiferromagnetic structure arising from spin moments of the

Fe3+ cations. The antiferromagnetic ordering of the iron ions occur at a Néel

temperature TN around 650 to 700 K. Several orthoferrites show a spin re-

orientation towards lower temperatures. In contrast to the Fe3+ cations, the

magnetic moments of the R3+ rare-earth ions order below 10 K13. Interest-

ingly, a so-called compensation point where moments of the two sublattices
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cancel has been reported for several RFeO3
13. More recently, orthoferrites

have regained a considerable attention with a focus on spin-ordering pro-

cesses of the rare-earth ions120–122 and the interaction between magnetism

and crystal lattice8,14,16,19,123. Within this context, the role of spin-lattice

coupling in multiferroic properties has attracted a particular attention. Oc-

tahedra tilts are the main structural parameters to tune the band overlap

and thus the physical properties related to the FeO6 octahedra. Unfortu-

nately, octahedra tilt angles are chronically difficult to probe, specifically in

thin films, because they require in-depth diffraction experiments needing at

best large-scale instruments using neutron or synchrotron radiation. Alter-

natively, Raman spectroscopy is a well-known technique to follow tilt-driven

soft-mode phase transitions64,92,104. More recently, it has been shown that

Raman spectroscopy is also an appropriate probe for the investigation of

lattice distortions and slight changes in octahedra rotations when exchang-

ing the A cation124. As discussed in section 1.1.1, the size and physical

properties of the A cation are crucial for the octahedral rotation systems

and angles. Raman spectroscopy was used to trace the impact of different

A cation sizes on the tilt angle for example for series of rare-earth mangan-

ites125, chromites126, or scandates127.

All such investigations rely on thorough reference spectra, the knowledge of

how the structural distortions can be derived from the phonon modes and

more specifically on the proper band vibrational assignment. The present

chapter aims at providing this fundamental knowledge by investigating a

series orthoferrites and by proposing a consolidated view of this new data

together with available literature data on other members of the family.

3.1 Rare-earth orthoferrites - structure

Rare-earth orthoferrites crystallize in an orthorhombic Pnma structure at

ambient conditions. With respect to the parent cubic perovskite phase

Pm3m, the Pnma phase in orthoferrites can be derived by octahedral ro-

tations. These octahedral rotations lead to an multiplication of the unit

cell with respect to the cubic Pm3m space group and contains four formula

units. In Fig. 3.1 the orthorhombic cell is given by the solid lines whereas

the dashed lines illustrate the pseudo-cubic setting.

Octahedral tilts are the predominant type of distortion in rare-earth ferrites.

In Glazer’s notation the octahedra tilt system is expressed as a−b+a− 30 or

in pseudo-cubic settings as rotations θ, φ and Φ around the [101]pc-, [010]pc-
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Figure 3.1: Rare-earth orthoferrite Pnma structure128. Oxygen atoms are given

in red, iron in green and the rare earth elements in blue. Solid lines describe the

orthorhombic unit cell. The dashed lines depict the pseudo-cubic setting. Three

FeO6 octahedra are depicted in pale gray.

and [111]pc-axis, respectively27. Megaw has shown that θ and φ are sufficient

to describe the octahedral rotations of the Pnma phase assuming that the

octahedral tilts a−x and a−z are approximately equal29. Then, the rotation

Φ can be expressed via cos Φ = cos θ cosφ27. Thus, the octahedral rotations

represent the order parameters for a hypothetical second-order phase tran-

sition to the cubic Pm3m phase.

Like in other perovskites with a similar Pnma structure, such as orthoman-

ganites RMnO3, orthochromites RCrO3, orthonickelates RNiO3, or ortho-

scandates RScO3, we can assume in good approximation that changing the

rare earth affects negligibly the chemical bonding of the material. However,

the size of the rare earth impacts on the distortions of the structure, as

measured for example by the tilt angles or the spontaneous strains, and can

be continuously tuned by the size of the R3+ rare earth. The octahedral

rotations are most reliably calculated from atomic positions (under the as-

sumption that the octahedral tilts a−x and a−z are approximately equal, the
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angle θ can be derived in two different ways)129:

θ = tan−1

4 ·

√
w2
O(1) + u2O(1)

b


= tan−1

4
√

2 ·
vO(2)
√
c2 + a2


φ = tan−1

4 ·

√
w2
O(2) + u2O(2)
√
c2 + a2


(3.1)

where a, b and c are the orthorhombic lattice parameters and u, v and w are

the fractional ionic displacements from the special positions in the Pnma

unit cell. The fractional coordinates are given in Table 3.1.

Table 3.1: Fractional coordinates for the Pnma space group.

x y z

R uR 0.25 1− wA
Fe 0.5 0 0

O(1) 0.5− uO(1) 0.25 wO(1)

O(2) 0.25−uO(2) vO(2) 0.75−wO(2)

Table 3.2 summarizes the structural specifications of all the members of the

RFeO3 family (lattice parameters and atomic positions are taken from Ref.

128,130). In order to illustrate the structural distortion throughout the series

Fig. 3.2 presents the evolution of the tolerance factor t, the pseudo-cubic

lattice parameters and the unit cell volume. From both, pseudo-cubic lattice

parameters and tolerance factor, we find that with increasing ionic radius

of the rare earth, from lutetium to lanthanum, the structure approaches a

cubic metric, accompanied with a continuous increase in unit cell volume.

Notably, LaFeO3 appears to be closest to a cubic structure. Accordingly,

the tolerance factor approaches unity for increasing rare-earth ionic-radius.

Nevertheless, the Pnma structure is very stable and orthoferrites do not

show a orthorhombic-to-cubic second-order phase transition for increasing

temperatures.

In the literature orthoferrites are often discussed in Pbnm settings instead

of Pnma. However, both notations describe the same crystal structure. In

the space Pbnm setting the long orthonormal axis is defined as the c-axis
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3.2. Sample description

Table 3.2: Structural characteristics of RFeO3: Lattice parameters in the or-

thorhombic Pnma setting (Ref. 128,130), R3+ ionic radii (rR3+ values given in

an eightfold environment from Ref. 131), the tolerance factor t calculated from the

ionic radii following Eq. 1.1 and octahedral tilt angles (φ[010], θ[101]) calculated

from atomic coordinates (Ref. 128,130).

Lattice parameters FeO6 octhahedra

tilt angle

rR3+ a (Å) b (Å) c (Å) V (Å3) t φ[010] (◦) θ[101] (◦)

LaFeO3 1.160 5.563 7.867 5.553 243.022 0.934 7.127 12.216

PrFeO3 1.126 5.578 7.786 5.482 238.085 0.921 9.575 13.617

NdFeO3 1.109 5.584 7.768 5.453 236.532 0.915 10.024 14.467

SmFeO3 1.079 5.584 7.768 5.400 234.233 0.904 11.172 15.575

EuFeO3 1.066 5.606 7.685 5.372 231.437 0.899 11.623 15.977

GdFeO3 1.053 5.611 7.669 5.349 230.172 0.894 11.948 16.165

TbFeO3 1.040 5.602 7.623 5.326 227.442 0.889 12.135 16.920

DyFeO3 1.027 5.598 7.623 5.302 226.255 0.884 12.605 17.284

HoFeO3 1.015 5.598 7.602 5.278 224.611 0.880 12.702 17.694

ErFeO3 1.004 5.582 7.584 5.263 222.803 0.876 12.927 18.217

TmFeO3 0.994 5.576 7.584 5.251 222.056 0.872 12.936 18.587

YbFeO3 0.985 5.557 7.570 5.233 220.134 0.869 13.382 18.958

LuFeO3 0.977 5.547 7.565 5.213 218.753 0.866 13.240 19.455

whereas in Pnma settings the b-axis is long axis. The notations can be

transformed into one or the other by permutation:

aPnma ↔ bPbnm

bPnma ↔ cPbnm

cPnma ↔ aPbnm

3.2 Sample description

The samples used in this study where synthesized in several external groups.

SmFeO3 single crystals were grown in an optical-floating-zone furnace by

Cao and co-workers (for a detailed description see Ref. 121). Three sin-

gle domain platelets were oriented along the three orthorhombic directions,

with the edges parallel to crystallographic axes, and polished down to a

thickness of ∼100 µm. The single domain state was verified by XRD and
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Chapter 3. Raman scattering on RFeO3

Figure 3.2: Variation of the pseudocubic cell parameters and orthoromic unit-cell

volume as a function of the R3+
V III ionic radius131. The lattice parameters are taken

from Ref. 128,130.

polarized light microscopy. A SmFeO3 crystal was manually grinded to ac-

quire a homogeneous powder. LaFeO3 and EuFeO3 powders were obtained

by conventional solid-state reactions by R. Haumont (Universit Paris Sud).

GdFeO3 and DyFeO3 powder samples were prepared by E. Queiros and P.B.

Tavares (University of Trás-os-Montes e Alto Douro) using the urea sol-gel

combustion method, reported elsewhere132. Their quality was checked by

XRD and SEM. TbFeO3 samples were prepared by M. Mihalik jr., M. Miha-

lik, and M. Zentkova (Slovak Academy of Sciences) via floating-zone method

in a FZ-T-4000 (Crystal Systems Corporation) mirror furnace. As starting

materials, Fe2O3 (purity 2N, supplier: Sigma Aldrich), and Tb4O7 (purity

3N; supplier: Alpha Aesar) were used. They were mixed in a Tb:Fe stoi-

chiometric ratio, cold pressed into rods and sintered at 1100◦C for 12 to 14

hours in air. Their quality was checked by X-ray powder diffraction and by

energy dispersion X-ray analysis, confirming the single perovskite phase.
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3.3. Raman scattering on rare-earth orthoferrites

3.3 Raman scattering on rare-earth orthoferrites

3.3.1 Raman spectra and mode assignment

The orthorhombic Pnma structure gives rise to 24 Raman-active vibrational

modes85, which decompose into ΓRaman = 7Ag + 5B1g + 7B2g + 5B3g:a b

c


 d

d


 e

e


 f

f


Ag B1g B2g B3g

Schematically, the vibration modes below 200 cm−1 are mainly characterized

by displacements of the heavy rare-earth ions. Above 300 cm−1, motions of

the light oxygen ions dominate; in the intermediate frequency range, vibra-

tion patterns involve both ions. Note that iron ions are occupying centers

of inversion in the Pnma structure and, therefore, vibrations with Fe3+ mo-

tions are not Raman active, as discussed in section 1.2.1. Fig. 3.3 shows the

Raman spectra of six rare-earth orthoferrites RFeO3 (R = La, Sm, Eu, Gd,

Tb, Dy) recorded under excitation of the 633 nm laser line. All spectra were

measured at 80 K in order to reduce thermal broadening and ease the mode

identification. Thanks to well-defined spectra, we identify between 18 and

21 vibration bands, depending on the compound. The remaining predicted

modes are either masked by band overlap or their intensity is below the

detection limit. The Raman spectra of SmFeO3, EuFeO3, GdFeO3, TbFeO3

and DyFeO3 present a similar overall spectral signature which allows to fol-

low the evolution of particular bands throughout the series. The spectral

signature of LaFeO3 is distinctly different as explained by the size differ-

ence between La3+ and the closest Sm3+ and also its proximity to the cubic

structure (see Fig. 3.2). This is similar to observations for other rare-earth

perovskites, where the Raman spectrum of the lanthanum member is sys-

tematically different when compared to the remaining series125,126,133. This

will be elaborated in the later discussion.

In order to go further in the mode assignment, we performed a polarized

Raman study of the SmFeO3 single crystals. In the following, we use X, Y,

Z to indicate the crystallographic axes in Pnma settings. From the Raman

tensors (see above), we find that for the orthorhombic Pnma structure Ag

can exclusively be observed, if the polarization of the analyzed light is in
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Figure 3.3: Raman spectra at 80 K of six rare-earth orthoferrites RFeO3 (R = La,

Sm, Eu, Gd, Tb, Dy) collected with a 633 nm He-Ne laser line.

parallel with the exciting laser polarization and a crystalline axis, i.e. (XX),

(YY) and (ZZ), in Porto’s notation134 (see section 2.1.2). The vibration

modes of B-type symmetries are solely visible for configurations where the

polarizations of exciting and analyzed light are perpendicular to each other

and parallel to specific crystal axes (for B1g: Z(XY)Z, B2g: Y(XZ)Y, B3g:

X(YZ)X)85.

Figure 3.4 presents the obtained results for SmFeO3 single crystals for twelve

scattering configuration. Fig. 3.4(a) shows the Raman spectra for Ag config-

urations modes, while spectra exhibiting B1g, B2g or B3g modes are given

in Fig. 3.4(b). In total, we identify all expected Ag, six B2g modes and four

out of five B1g and B3g modes (see Table 3.3). The band between 600 and

650 cm−1 in Fig. 3.4(a) is not attributed to a first-order Raman mode, as

will be discussed separately.

In the next step, DFT calculations of phonon modes for all compounds

performed by Jorge Íñiguez and Hong Jian Zhao, Luxembourg Institute of

Science and Technology, are used to confirm the mode symmetries and as-

sociate vibrational patterns for each mode. A summary of all theoretical

and experimental band frequencies with their symmetry and main atomic
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Figure 3.4: Polarized Raman spectra of SmFeO3 at ambient conditions. The mea-

surement configurations are given in Porto’s notation, in a) for the vibration modes

of Ag symmetry and in b) for the vibration modes of B1g, B2g and B3g symmetries.

X, Y and Z correspond to the orthorhombic axes in the Pnma space group.

motions are given in Table 3.3. The calculated frequencies are in very good

agreement with our experimental values and confirm the continuous evo-

lution of the spectral signature. For LaFeO3 the changes to the spectral

signature are too drastic with respect to the other members of the series.

Therefore, DFT calculations are essential to correctly assign the Raman

phonon modes of LaFeO3 to the corresponding symmetries and vibrational

patterns.
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3.3. Raman scattering on rare-earth orthoferrites

Last, the band between 600 and 650 cm−1 shows a peculiar behavior and

needs a specific discussion. First, as can be seen in Fig. 3.3, its frequency

seems to be independent of the rare earth. Besides, it shows intensity vari-

ations from sample to sample that contrast with the other bands, and also

exhibits a strong asymmetry. For SmFeO3, Fig. 3.4 shows that bands appear

in the region with very low intensity in crossed polarization, but the inten-

sity is much stronger for the feature in parallel configuration, which would

rather point to a Ag symmetry. However, as can be seen in Table 3.3, the

calculations predict two bands of B2g and B3g symmetry in this region, but

no Ag Raman mode, and all Ag modes are already conclusively attributed.

Therefore, we conclude that this band is not a first-order Raman mode of

intrinsic origin.

Similar features have been reported in other perovskite oxides, very often

with unclear assignments and conflicting reports. As an example, Iliev et al.

discussed it for LaCrO3
135 and demonstrated that its intensity can be re-

duced by annealing the sample in vacuum. Therefore, it seems likely that it is

related to chemical defects of the lattice135. Here, we note that DyFeO3 and

GdFeO3, where this band is stronger, were produced by a chemical metal-

organic process, whereas the other samples (LaFeO3, SmFeO3, EuFeO3 and

TbFeO3) were synthesized by solid-state reaction. A difference in defect

chemistry originating from different growth processes is therefore plausi-

ble. A defect-activated, Raman-forbidden, infrared (IR)-active mode can

be excluded, since DFT calculations do not reveal any IR-active bands in

this spectral range. A possible hypotheses is the activation of the band by

Jahn-Teller distortion induced through defects. Perovskites of Pnma space

group showing Jahn-Teller distortion have been found to display bands of

strong intensity in the spectral region of 600 and 700 cm−1. It was found

that all rare-earth orthomanganites show an extremely strong band in this

wavenumber area when comparing to the rest of the spectrum136 (Mn3+

is a Jahn-Teller-active cation). An extensive study on the solid solution

LaFe1−xCrxO3 reveals a very interesting behavior of the band between 600

and 700 cm−1 137–139. The band is of low intensity for the end members

of the solid solution, LaCrO3 and LaFeO3. However, smallest amounts of

iron or chromium lead already to a dramatic intensity increase of the band.

A Fe3+Cr3+ to Fe4+Cr2+ charge transfer proposed by Andreasson and co-

workers would allow a Jahn-Teller distortion137. This fits with the scenario

that the band between 600 and 700 cm−1 is Jahn-Teller activated.
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3.3.2 Phonon modes vs. ionic radii and octahedra tilt angle

In this section we analyze the evolution of the band positions with changing

rare-earth ions. A special focus is put on relation between the octahedra

tilting vibrations and order parameter. Here, we wish to go beyond the

common picture of the linear relation between octahedra tilt angle and vi-

bration frequency by considering the changes of octahedra rotations in the

context of Landau theory. Fig. 3.5 presents the evolution of the band po-
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Figure 3.5: Raman phonon wavenumbers of RFeO3 as a function of the rare earth

R3+ ionic radius. All lines are guides to the eye only. The encircled areas indicate

mode mixing regions.

sitions for the different orthoferrites as a function of the ionic radii of the

rare-earths. Symmetries and band evolution are based on the symmetry and

mode assignment discussed above (Table 3.3). Overall, Raman bands shift

to lower frequencies with increasing rR3+ , which naturally correlates with

the increase of the volume, and therefore of most bond lengths. It can be

seen that the rR3+-dependent shift in wavenumber varies significantly among

the different Raman modes. This is understood in the context of structural
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3.3. Raman scattering on rare-earth orthoferrites

instabilities in the Pnma structure.

In the framework of Landau theory for second-order phase transitions, the

two octahedra rotations represent the two order parameters for a second-

order phase transition to the high-symmetry parent cubic perovskite phase.

This is equivalent with the change of the octahedra tilt system a−b+a−

(Pnma) to the cubic a0a0a0 (see Fig. 1.3). Accordingly, the soft-modes of

the system adapt vibrational patterns of octahedral rotations, as discussed

in section 1.2.5 which can experience very large shifts.

Thus our Raman data across the RFeO3 family exhibits patterns that pro-

vide useful insights into the relations among structural order parameters and

associated phonon frequencies driven by the R3+ cation. Before analyzing

the experimental data, we intend to find a connection between the size of

the rare-earth cation and the soft-mode frequency. This we base on Landau

theory which is in accordance with the soft-mode-to-order-parameter rela-

tion for temperature driven phase transitions introduced in section 1.2.5.

The structural order parameter η may correspond to FeO6 rotations either

around the [010]pc or the [101]pc axis. Let ε be the isotropic strain of the

material. We assume that η = ε = 0 corresponds to the ideal cubic per-

ovskite. Asuming the simplest Landau potential, the general Landau free

energy in Eq. 1.41 becomes

F (η, ε) =
1

2
A′(T − Tc)η2 +

1

4
Bη4 +

1

2
γεη2 , (3.2)

where the A′(T−Tc) and B parameters are defined according to section 1.2.5.

Furthermore, the Landau potential also includes the lowest-order coupling

between ε and η that is allowed by symmetry. We focus on the behavior of

the material at temperatures well below the structural transition between

the cubic and orthorhombic phases.

We assume that all the RFeO3 orthoferrites present the same parameters

quantifying the energetics of η and ε, and that the only feature changing

from compound to compound is the value of the strain ε, as given by the

size of the rare-earth cation. More specifically, we define the strain as

ε = κ(r − r), (3.3)

where r is the radius of the rare-earth cation for a particular RFeO3 com-

pound; r be a reference value for the ionic radii of the R3+ cations such

that ε = 0 in a hypothetical cubic phase, and κ be a proportionality con-

stant. Substituting Eq. 3.3 in Eq. 3.2, we obtain an r-dependent free energy
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applicable to the whole family of orthoferrites:

F (η, r) =
1

2
[A′(T − Tc) + κγ(r̄ − r)]η2 +

1

4
Bη4 . (3.4)

The compound dependence is restricted to the harmonic part of the poten-

tial. Further, formally, the ionic radius r plays the exact same role as the

temperature.

Let us introduce Ā = A′(T − Tc) + κγ(r̄ − r). Then, we derive following

section 1.2.5

ηeq = ±(−Ā/B)1/2 (3.5)

for the equilibrium order parameter at T � Tc. (At such a temperature, we

assume Ā < 0 for all relevant r values, see section 1.2.5.) With Eq. 1.50 the

associated soft-mode frequency becomes

ω =

√
2B

m
ηeq , (3.6)

where m is a mass characteristic of the order parameter η. Now, combining

these equations we can write

ω =

√
2B

m
ηeq =

[
−A

′(T − Tc) + κγ(r − r̄)
m/2

]1/2
, (3.7)

which gives us the relation between the compound-dependent parameter

(the ionic radius r), temperature T , the relevant structural distortion η,

and its corresponding phonon frequency ω. In other words, we expect a

linear relation between order parameter η, i.e. octahedra tilt angle, and the

corresponding soft-mode frequency ω, which is solely dependent on the ionic

radius r of the rare earth and the temperature T . In particular, if we fix the

temperature, this expression allows us to compare (and predict the behavior

of) the structural and Raman data across the orthoferrite series.

In order to apply this relation to the orthoferrite family, the identification

of the soft modes is crucial. As discussed earlier (see section 1.2.5), an or-

der parameter may give rise to several soft modes which do not necessarily

need to be Raman active. However, Birman105 and Shigenari106 showed

that one of the soft modes related to one order parameter has a Raman-

active A symmetry in the low symmetry phase. In the Pnma structure it is

therefore common to focus on the Ag soft-modes. From DFT calculations

(see Table 3.3), we find that the Ag(3) and Ag(5) modes are the soft-modes

to corresponding η[010]pc and η[101]pc , respectively, where η[010]pc and η[101]pc
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3.3. Raman scattering on rare-earth orthoferrites

are the order parameters of the Pnma structure representing the octahedra

rotations around the [010]pc and the [101]pc axes. The assignment of the

Ag(3) as a soft-mode is at variance with earlier work by Todorov and co-

workers124 and underlines the importance of precise calculations to gain full

understanding of the experimental findings.

Fig. 3.6 presents the evolution of the soft-modes Ag(3) and Ag(5) against

the corresponding octahedra-rotation angle. For completeness and in order

to test the general validity of this model, we extend our graph by literature

data on orthoferrites with Lu, Tm, Er, Ho and Nd140–143. The evolution

shows the expected linear relation between the vibrational frequencies and

the tilt angles of the RFeO3. This adds further support to the proposed

soft-mode-like relation of tilt frequency and size of the rare earth, not only

in the orthoferrites, but also for other families where this behavior has been

experimentally verified: orthomanganites125, orthochromates126, orthoscan-

dates127 among others124. However, at variance with these previous exper-

imental data, our work on orthoferrites show two additional features that

have to be commented on, namely that i) the two tilt modes follow two

different lines and ii) LaFeO3 deviates significantly from the general linear

behavior.

The octahedral-rotation angles and soft-mode frequencies do not present

the same scaling for the different order parameters. The rotation η[010]pc
around [010]pc reveals a scaling factor of 21.1 cm−1/deg whereas the slope

of the rotation η[101]pc around [101]pc gives 23.9 cm−1/deg. This is natural

and expected when bearing in mind that the two soft-modes are associated

with two independent order parameters. The relation in Eq. 3.7 needs to be

separately considered for each of the relevant order parameters (in-phase and

anti-phase FeO6 rotations in our case), and there is no reason to expect that

the values of the coefficients in our Landau potential will be the same for

different order parameters. However, this difference was never pointed out in

previous investigations124–127. This probably comes from a combination of

factors including experimental difficulties in mode assignment and frequency

determination, scattered data from a more limited number of compounds;

and possibly the differences in scaling factors are too small to be resolved

experimentally. Even though the two scaling factors might be coincidentally

equal within experimental uncertainties for a given family of compounds, it

is very likely that a careful (re)investigation of the other series would reveal

this difference.
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modes. Raman band positions for NdFeO3
143, HoFeO3, TmFeO3

141, ErFeO3
142

and LuFeO3
140 are taken from the literature. The blue oval points out the mode-

mixing zone of the Ag(2) and Ag(3) modes of LaFeO3. The open triangles indicate

this exceptional mode-mixing case.

Mode mixing in LaFeO3

Last, we investigate the case of LaFeO3 in more details. For LaFeO3, no Ag

Raman mode actually follows the scaling of the η[010]pc-rotation given by the

other members of the series. Instead, the Ag(2) and Ag(3) modes, plotted as

open triangles in Fig. 3.6, fall below and above the scaling line respectively.

On the other hand, we have already pointed out that the band positions in

LaFeO3 differ significantly from the other orthoferrites and do not seem to

follow the continuous evolution of the other spectra. In order to rationalize

this comparatively exotic behavior, we analyzed in detail the vibrational

patterns given from first-principle calculations for LaFeO3 and SmFeO3.

This analysis reveals several mode crossing and mode mixing situations.
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3.3. Raman scattering on rare-earth orthoferrites

Mode crossing is only allowed for vibrational modes of different symmetries.

Mode mixing can occur when modes of the same symmetry approach, while

vibrations of the same symmetry are not allowed to cross but will mix and

exchange their vibrational character. In LaFeO3, the mode mixing occurs

in the regions between 100 and 200 cm−1 and 400 and 450 cm−1 where

several vibrational modes are found. These mode mixings are indicated in

Fig. 3.5 by dashed circles. In particular, it strongly affects the lower soft-

mode Ag(3) as it approaches the lower lying Ag(2). For Sm3+ and smaller

cations, these two modes have very distinguishable atomic displacement pat-

terns: the Ag(2) mode is dominated by R3+ displacements, while Ag(3) is

dominated, as already pointed out, by octahedral rotations. In contrast,

in LaFeO3, the two modes have significant contributions from both La3+

displacement and octahedral rotations. It is therefore no longer possible to

identify any of them as the soft-mode of interest associated with octahedral

tilts only. The soft-mode frequency for a hypothetical unmixed-state would

lie between the two positions. This in turn enables us to understand why

the Raman spectrum of LaFeO3 is significantly different as a whole from the

others members of the series, since the mode coupling will affect band posi-

tions and intensities. This behavior par excellence has been reported by Iliev

et al. in orthomanganites144, but was also found in (LaxSm1−x)CrO3 solid

solutions133 and is probably a general phenomenon occurring in orthorhom-

bic Pnma perovskites in the limit of small tilt angles, where distortions of

the octahedra have to be taken into account145.
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3.4 Conclusion

We have presented a Raman scattering study of a series of six members of

the rare-earth-ferrite family RFeO3 (R = La, Sm, Eu, Gd, Tb, Dy). A sym-

metry assignment of the observed modes has been presented on the basis of a

single-crystal study of SmFeO3, DFT calculations and by taking advantage

of the continuous changes in the Raman spectra across the whole RFeO3

series. This careful assignment has allowed to relate most of the vibration

modes to their vibrational pattern and symmetries. Based on this, we can

follow the structural evolution across the series and we have namely shown

that the Ag(3) and Ag(5) modes are the soft-modes of Ag symmetry which

correspond to the octahedral-rotation order-parameters η[010]pc and η[101]pc .

In this framework we demonstrated the proportionality of soft-mode fre-

quency and order parameter. Furthermore, we showed that for rare-earth

orthoferrites (and similar series) the change of the soft-mode frequency de-

pends only on the size of the rare earth (for a fixed temperature). This work

provides reference data for structural investigation of the orthoferrite family

RFeO3, and will be helpful for further studies of phenomena in orthoferrites

including structural instabilities, possible ferroelectricity and multiferroicity,

and rare-earth magnetism at low temperature via spin-phonon coupling.
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Chapter 4

Temperature dependent

structural investigations of

samarium ferrite SmFeO3

Introduction

Much research is devoted to identify multiferroic materials that possess

strongly coupled ferroic properties - preferably close to ambient conditions,

a “room temperature multiferroic”. On the one hand, a major focus is set on

the “type I” multiferroic BiFeO3 which possesses magneto-electric coupling

at room-temperature and strong polarization (100 µCcm−2)20. On the other

hand, “type II” multiferroics attract interest for the magnetically-induced

ferroelectricity providing direct coupling of both properties. The most in-

vestigated “type II” multiferroic is TbMnO3
54,146,147 where the cycloidal

ordering of the Mn3+ spins below 27 K breaks the symmetry and induces a

ferroelectric displacement148. However, the induced ferroelectricity is small

(0.08 µCcm−2)146 in comparison with BiFeO3.

In the context of “type II” multiferroics, another group of materials has

recently attracted attention: rare-earth orthoferrites, RFeO3. For several

rare-earth orthoferrites “type II” multiferroelectricity was reported8,14,15.

At variance with TbMnO3, the “type II” multiferroelectricity in RFeO3

does not require a cycloidal spin structure, but arises from the magnetic

ordering of both, iron and rare-earth cations.

In general, the rich magnetic landscape of rare-earth orthoferrites, including

high Néel temperatures (600 K and 700 K), spin reorientations, ordering
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of the rare-earth sub-lattice and compensation of the two spin lattices13,

makes these materials potential candidates for magneto-electric coupling.

Building up on the general understanding of vibrational and structural prop-

erties of rare-earth orthoferrites in the previous chapter, we investigate in

more detail one member of the family, SmFeO3, which has especially high

magnetic transitions temperatures in comparison with other RFeO3. We are

particularly interested in the coupling of different magnetic orders with the

crystal lattice. Multiferroic properties in bulk SmFeO3 have been controver-

sially discussed16–19. Most studies focus only on the high temperature region

above room temperature. However, recent studies suggest an ordering of the

Sm3+ spin sublattice at surprisingly high ∼ 140 K122,149 which was initially

expected below 10 K13. In this study, we investigate a large temperature

range from 80 to 830 K with a focus on spin-lattice interactions.

In order to detect and follow coupling phenomena, we use three complemen-

tary techniques as a function of temperature: Raman spectroscopy, resonant

ultrasound spectroscopy and optical birefringence.

4.1 Review of magnetic properties of SmFeO3

At first we review the magnetic transitions of SmFeO3 which are summarized

Fig. 4.1(a). The iron Fe3+ spins order at the Néel temperature TN = 680 K

in a G-type antiferromagnetic structure with the spins along the c-axis121.

A slight spin canting leads to a net magnetic moment in b-direction as il-

lustrated in Fig. 4.1(b).

The high-temperature magnetic structure is stable down to 480 K (TSR−1),

where a spin reorientation occurs. The antiferromagnetic moments rotate

continuously in the b-c plane by 90◦ from the c to the b direction, such

that the net magnetic moment is aligned along the c-axis13. The reorienta-

tion process is completed at TSR−2 = 450 K∗ (Fig. 4.1(c)). The reorienta-

tion of the iron-spin lattice has been explained by a temperature dependent

anisotropy of the samarium moments which triggers the reorientation pro-

cess through a Fe3+-Sm3+ spin interaction13. The samarium-iron interaction

is much weaker than the iron-iron interaction but polarizes the Sm3+ spins

“quasi-paramagnetically” in the exchange field of the net magnetic moment

of the iron magnetism13. In general, in RFeO3 the alignment of the rare-

∗The values of the spin-reorientation temperatures vary slightly in the literature. We

refer to the temperatures measured by Cao et al.121 since our SmFeO3 samples originate

from the same source.
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Figure 4.1: (a) Temperature dependent magnetization of SmFeO3. Dashed and

dotted lines show the magnetization along b- and c-axis, respectively. Black and

yellow arrows represent the net magnetic moment of the Fe3+ and Sm3+ sublattices,

respectively; the length of the arrow indicates the strength of the magnetization.

TN, TSR−1, TSR−2 and Tcomp indicate the Néel temperature, start and end tem-

perature of the spin reorientation and the compensation temperature. Reproduced

from Ref. 121. Spin structure of the Fe3+ sublattice above (b) and below (c) the

spin reorientation118.

earth spins can be either parallel or antiparallel to the net magnetic moment

of the iron sublattice120. Antiparallel spin ordering can lead to a compen-

sation temperature Tcomp where the magnetic moments cancel and the net

magnetic moment becomes zero13,120.

Samarium ferrite is the only rare-earth orthoferrite with a spin reorientation

at such high temperatures. For other members of the orthoferrite family the
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iron spins reorientate below room temperature (such as NdFeO3: TSR−2 =

170 K to TSR−2 = 107 K150; ErFeO3: TSR−1 = 96 K to TSR−2 = 87 K13,

TmFeO3: TSR−1 = 93 K to TSR−2 = 85 K151) or do not show a spin reori-

entation such as the magnetically inert cations La3+, Y3+ or Lu3+ but also

GdFeO3 or EuFeO3
13,120.

The onset of the long range ordering of the Sm3+-Sm3+ spin-sublattice at

lower temperature is found at TSm3+ = 140 K by Marshall et al.122 and at

TSm3+ = 135 K by Jeong et al.149 (indicated by the smallest yellow arrow

in Fig. 4.1). The onset of this ordering was determined as the temperature

at which the net magnetization decreases.

The reported ordering temperatures of the samarium sublattice is high in

comparison to other RFeO3 which order commonly below 10 K13. To the

best of our knowledge, to date neutron measurements have only been re-

ported above room temperature19. Low temperature neutron scattering

data could reveal more information about the ordering temperature and the

exact structure of the samarium sublattice.

With decreasing temperatures the Sm3+ magnetic moment increases leading

to a compensation temperature at Tcomp = 3.9 K where the net magnetic

moments of the iron and the samarium sublattices compensate121. For tem-

peratures lower than Tcomp the magnetic moment reemerges with opposite

sign121,149. This behavior shows that samarium and iron net magnetic mo-

ments order antiparallelly.

Zhao and co-workers proposed a model that explains the antiparallel or-

dering of Sm3+ and Fe3+ by a trilinear coupling process of the magnetic

moments of samarium and iron and the octahedra tilt system. Following

this coupling mechanism, they suggest a CyFz
† magnetic ordering of the

Sm3+ spin sublattice for a given (CxGyFz)-Fe3+ spin structure as in the

present case120. This spin system has been confirmed by DFT calculation

for NdFeO3 showing identical magnetic properties as SmFeO3
150, which

makes it likely that both materials shared the same magnetic structure.

However, to prove this argument, DFT calculation and low-temperature

neutron-scattering experiments for SmFeO3 are necessary.

†The notation of the magnetism is such that the magnetic structure is given with

respect to the projections of the spin moments along the three spacial directions indicated

by the subscript.
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4.2 SmFeO3 samples

The SmFeO3 samples used in this study are identical with those discussed

in section 3.2 crystallizing in the orthorhombic Pnma structure (see sec-

tion 3.1). Fig. 4.2 shows images of the three samples oriented along the three

crystallographic axes recorded by an optical polarized-light microscope. In-

dependent of the orientation of the light polarization to the crystalline axes,

the image of the crystals remain unicolor indicating the mono-domain state

of the crystals. The orientations were confirmed by X-ray diffraction.

Figure 4.2: Image of SmFeO3 samples oriented along the three orthorhomic axes as

indicated in the image recorded by on optical polarized-light microscope. The rings

of the (100) oriented sample are interference fringes due to different thicknesses of

the sample.

81



Chapter 4. Structural investigations of SmFeO3

4.3 Results

In this section, the experimental observations are described for each mea-

surement technique over the full investigated temperature range. The dis-

cussion of these results will follow in section 4.4.

4.3.1 Raman scattering

The room temperature Raman spectra of SmFeO3 were presented in the

previous chapter in Fig. 3.4. To study the impact of temperature changes,

notably when passing through magnetic-ordering temperatures, the SmFeO3

crystals were measured in X(ZZ)X, Z(YX)Z, Y(XZ)Y and X(YZ)X config-

urations to probe the Ag, B1g, Bg and B3g modes, respectively, in a tem-

perature range from 78 to 853 K.

The evolution of the samarium ferrite vibration bands with the temperature

is presented for six Ag, four B1g, five B2g and B3g modes in Fig. 4.3(a) - (d).

Fig. 4.3(e) and (f) depict the evolution of the band position and FWHM of

silicon as a reference to visualize the ‘ideal’ evolution under the absence of

structural anomalies.‡

High-temperature range

First, we inspect the range of Néel temperature TN and spin reorientation

temperatures TSR−1 and TSR−2. Fig. 4.4 shows the evolution of the band

positions and FWHM of the Ag(3) and Ag(4) modes from 300 to 860 K.

In this temperature range the band positions evolve without any anomaly

or deviation from a standard behavior. In particular, no anomalous behav-

ior can be found at TN and TSR−1/TSR−2. This situation is found for all

Raman-active vibration modes. However, the FWHM, which represents the

damping of the phonon mode, experiences a decrease after TN. More re-

markable is the step-like change in the spin reorientation regime to higher

FWHM. This behavior is not reflected in all Raman modes and is most pro-

nounced in the here presented Ag(3) and Ag(4) modes. Overall, the ordering

processes of the iron spin moments do not appear to have a strong effect on

the Raman spectrum.

‡With increasing temperature the band position and FWHM decreases and increase,

respectively. The shape of these evolutions is explained by temperature dependent an-

harmonic terms of the potential in Eq. 1.22152. Cubic and quadric terms give rise to a

damping constant Γ (see Eq. 1.18). The damping constant depends on the temperature

and leads the changes in frequency and FWHM.
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Figure 4.3: Evolution of vibrational modes of (a) Ag, (b) B1g, (c) B2g and (d) B3g

symmetry with the temperature. As reference of an evolution without anomaly, the

temperature evolution of band position and FWHM of silicon is given in (e) and

(f), respectively.
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modes in the temperature range from 300 to 900 K.

Last, around 740 K, the FWHM for both peaks shows a small but well-

defined dip, that does not correspond to any reported anomaly. This signa-

ture may appear tiny, however, anticipatorily it should be mentioned that an

anomaly is found in the same temperature region by RUS discussed below.

Phonon anomalies at low temperatures

Now, we have a closer look at the low temperature region of the Raman

spectra. Fig. 4.3 already indicates changes of the spectral positions of cer-

tain bands towards lower temperatures. Fig. 4.5 presents the Raman modes

showing the most significant changes at low temperature (other bands show

no or a change at the limit of the spectral resolution). There are two types

of anomalies in comparison with the above described model-silicon:

(1) The evolution of band positions of the B3g(1) (a), Ag(2) (b) and B1g(2) (c)

show a sudden increase in slope.

(2) The band position of the Ag(3) (d) and B2g(3) (e) modes decrease to-

wards lower wavenumbers.

(3) The FWHM of B3g(1) mode shows a clear maximum at the turning point

of the band position. The anomalies of other bands are not pronounced in

the FWHM.

The dashed vertical line labeled TL = 223 K (where ‘L’ stands simply for
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Figure 4.5: Temperature dependence of band positions (a)-(e) and FWHM (f)-(j)

for five different vibration bands showing an anomalous evolution at low tempera-

tures. In addition, the corresponding vibrational displacements are shown on the

right. [The asterisk in (j) indicates a jump which is due to the fitting of a neigh-

boring additional band.]
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‘low’) in Figs. 4.5(a)-(e) indicates the possible temperature that corresponds

to the appearance of the anomaly. TL was determined as the intersection

point of the linear interpolations of the regime before and after the change

in slope in Figs. 4.5(a)-(c) (indicated by dotted lines) and at the same time

represents the point of inflection of mode B2g(3) (Fig. 4.5(e)). This is at

variance with the changes of the Ag(3) mode which shows a point of inflec-

tion at 350 K.

All five bands shown here include Sm3+ displacement as discussed in chap-

ter 3 (see in particular Table 3.3). The lower lying B3g(1) and Ag(2) modes

are pure samarium vibration modes along the y- and z-axis, respectively

(see Table 3.3). B1g(2), Ag(3) and B2g(3) are all octahedral rotation modes

with a significant contribution of samarium displacement. Vibration modes

higher than 300 cm−1, which are dominated by oxygen displacements do not

show any sign of anomalous behavior towards low temperatures.

Emergence of new peaks at low temperatures

In addition to the anomalous behavior of certain vibrational bands, we find

three new, polarization-dependent peaks appearing in the Raman spectra at

low temperatures. Fig. 4.6 presents Raman spectra for Y(XZ)Y and Z(XY)Z

configuration at 78 K and at room temperatures. The features at 115, 135

and 287 cm−1 (values for 78 K) are characterized by a broad and asymmetric

shape in particular when comparing with the neighboring, sharp vibrational

bands. Fig. 4.6(e) and (f) illustrate the evolution of the features at 135 and

287 cm−1 with temperature. In both cases the intensity decreases drastically

with increasing temperature (Fig. 4.6(e)) such that the features are not

longer observable above 153 K and 213 K for the 135 and 287 cm−1 bands,

respectively. In order to quantify this evolution, the integrated intensity of

the feature at 287 cm−1 normalized to the vibrational mode at 255 cm−1 was

plotted against temperature (Fig. 4.6(f) black squares). The ratio decreases

strongly from roughly 1.4 (78 K) to 0.4 at 213 K where the presence of this

peak can only be guessed from the asymmetric baseline of the neighboring

vibrational band at 255 cm−1. It is, thus, difficult to determine a clear

temperature for the appearance of these additional features. From the visual

inspection of the spectra we approximate a rising of the new bands below

213 K. In Fig. 4.6(f) (blue circles) we also find a strong shift of this band of

more than 10 cm−1 over 200 K.
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Figure 4.6: Raman spectra for Y(XZ)Y ((a) and (b)) and Z(XY)Z ((c) and (d))

configuration at 78 and 293 K, respectively. The insets give close-ups of the spectral

region of interest. (e) Temperature dependent Raman spectra in Y(XZ)Y configu-

ration. (f) Intensity ratio of the new peak at 287 cm−1 against the Raman mode at

255 cm−1 (black squares) and the evolution of the band position of the additional

feature at 287 cm−1 (blue dots). The blue bands indicate the additional features.
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Magnetic excitations

In a next step, we investigate the temperature dependence of a magnetic

excitation (magnon) of the iron sublattice. The first-order magnon spectrum

has been investigated in detail above room temperature by White and co-

workers and the evolution around the spin reorientation and the TN is well-

known118. In principle, SmFeO3 possesses, like all orthoferrites, two magnon

branches originating from the ordered iron spin lattice118. However, the

single-magnon band at lower frequency is difficult to detect due to its low

intensity and frequency118. Fig. 4.7 shows the temperature evolution of

high frequency magnon band extending the work of White et al. towards

lower temperatures. We find a linear increase of the magnon frequency with

decreasing temperatures. No anomalies are found in the magnon spectra of

the iron-spin lattice.
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Figure 4.7: (a) Temperature dependent evolution of the first-order magnetic exci-

tation at 16 cm−1 (at T = 93 K). The data represented by black squares and red

circles are from this work and data taken from literature153, respectively. (b) Low

frequency Raman spectrum at 93 K. The arrow indicates the magnetic excitation

band.
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4.3.2 Resonant ultrasound spectroscopy (RUS)

Fig. 4.8 shows an excerpt of the RUS spectra of SmFeO3 from 290 to 703 K.

There are several mechanical resonance peaks visible in this range, such as

the bands at 968, 1045 and 1130 kHz (values for 290 K), but also features

that originate from the internal resonance of the experimental setup, for

example in region between 950 and 980 kHz or 1110 and 1135 kHz. All

mechanical resonance peaks are shifting to lower frequencies for increasing

temperatures. Interestingly, in the temperature regime of the spin reorien-

tation TSR the mechanical resonance peaks experience a very strong shift.

At TN there is no such deviation observable at first sight.

We start inspecting the high temperature region in detail including TN and

TSR before focusing on the low temperature region. Anticipatively, it should

be mentioned that the particularities of the resonance bands presented in

the following figures are common to all resonance bands in the spectra. The

950 1000 1050 1100

TN

703 K

TSR

Frequency (kHz)

290 K

Figure 4.8: Temperature dependent RUS spectra of the high temperature region

from 290 to 703 K. TN and TSR indicate the Néel and spin reorientation tempera-

tures. The spectra are spaced in proportion to the measurement temperature.
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bands were chosen for absence of interfering peaks of the measurement setup.

The measurement setup for high and low temperature measurement is not

the same and crystals of different shapes were used. Therefore, the resonant

frequencies for high and low temperature measurements are not the same.
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Figure 4.9: Temperature evolution of f 2 ((a) and (c)) and Q−1 ((b) and (d)) of the

resonance bands at 628 and 1022 kHz (at 581 K), respectively, from 580 to 800 K.

Black squares represent to data of the heating process, blue circles the data for

cooling. TN refers to the Néel temperature; T∗
1 and T∗

2 are discussed in the text.

Beginning with the highest temperature region, f2 and Q−1 for two different

mechanical resonance peaks (where f is the mechanical resonance frequency

and Q the quality factor of the peak defined in Eq. 2.9) at 1022 and 628 kHz

are presented in Fig. 4.9(a and c) and (b and d), respectively, in a tempera-

ture range from 594 to 820 K. Both bands change linearly in f2 up to about

740 K. No changes are observed at TN neither in f2 nor in Q−1. However,

we find an anomaly at higher temperatures: f2 shows a jump to higher val-

ues at T∗1 = 740 K when heating. This step-like change is accompanied by
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an increase of the Q−1 parameter. Towards higher temperatures the elas-

tic resonances continue to decrease with the same slope as before the step.

When cooling the jump, in this case to lower f2 values, appears at a higher

temperature T∗2 = 775 K. This anomaly has, to the best of our knowledge,

not been reported before.
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Figure 4.10: (a) RUS spectra, (b) f2 and (c) Q−1 of the temperature range of the

spin reorientation for the band at 1034 kHz (value for 449.7 K).

Next, we have a closer look at the spin reorientation region. Fig. 4.10

presents the spectra (a), f2 (b) and Q−1 (c) of the resonance band at

1034 kHz (value for 449.7 K) for the temperature range of 450 to 495 K.

Starting from about 461.3 K the band shifts continuously to lower frequen-

cies. The shift is maximal at 470 K. With further increase of the temperature

the band position changes back to higher frequencies, until at 478.3 K re-

suming the linear trend towards lower frequencies. The decrease before and

after the transition temperatures, 461.3 K and 478.3 K, follows the same lin-

ear slope. The behavior is equally represented by the losses. The damping

given by Q−1 possesses a maximum between 469 K and 478 K (Fig. 4.10(c)).
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Low temperature region
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Figure 4.11: Evolution of f2 (black squares) and Q−1 (blue squares) of the reso-

nance band at 1600 kHz for a temperature range between 112 and 292 K.

Fig. 4.11 shows the evolution of f2 and Q−1 of the resonance band at

1600 kHz for a temperature range between 112 and 292 K. The elastic

constants associated with this band increase linearly with decreasing tem-

peratures down to 213 K. Here, the evolution reveals a kink between two

linear evolutions. The different slopes on either side of the kink are indi-

cated by dashed lines in Fig. 4.11. The change in slope is accompanied by a

maximum of the Q−1 parameter. The kink is observable in most resonance

bands, however the maximum in Q−1 is not seen for all bands. In general

the observed change at low temperatures is very small and at the limit of

detection.

92



4.3. Results

4.3.3 Birefringence measurements

Figure 4.12: Metripol measurement of a [010]o oriented SmFeO3 crystal at 83 K,

where (a), (b) and (c) are the images for intensity I0, |sin δ| and orientation φ,

respectively.

We performed birefringence measurements on all three crystalline orienta-

tions for a temperature range from 83 to 303 K. Following the introduction

to birefringence in section 2.2, birefringence measurements give access to

three parameters: the transmitted intensity, the orientation φ and the bire-

fringence ∆n, in form of |sin δ| with δ = 2π
λ ∆nL. Fig. 4.12 depicts the

measured quantities for the [010]o-oriented sample at 83 K. In the intensity

image (a) the shape of the sample is illustrated best. The interference fringes
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Figure 4.13: Intensity I0 as a function of temperature for the three crystalline

orientations for cooling (left) and heating processes (right). The arrows indicate

the formation or disappearance of ice crystals on the sample surface leading to

artifacts in the measurement. The asterisk is discussed in the text.

are due to the fact, that the sample is not perfectly flat on the sample holder

and the reflections between both are causing the fringes. The smaller and

bigger spots on the sample surface are ice-crystals and dust particles.

In Fig. 4.12(b) |sin δ| is given in a colour scale from 0 to 1. In a mono-

domain crystal only one birefringence value is expected. However, since δ

depends on the thickness, the change in value of |sin δ| is due to a continuous

thickness change from the (approximate) center of the sample to the edges.

Same accounts for the orientation φ in Fig. 4.12(c); because both values are

calculated in dependence on each other (see Eq. 2.7), the orientation shows

a jump of 90◦ when |sin δ| goes to zero. During temperature dependent mea-

surements the birefringence changes, such that the ring-like shapes in (b)

and (c) move accordingly. Depending on the region of interest and temper-
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ature range, these changes are reflected by 90◦ jumps in φ and a zig-zag-like

shape in ∆n with minima for |sin δ| = 0 and maxima for |sin δ| = 1. As dis-

cussed in section 2.2, these changes do not have any physical meaning and

reflect only the uneven thickness of the sample. It is only possible discuss

the trend of the birefringence but not the exact values.

For the temperature span of the experiments, it was not possible to choose

an area that does not exhibit a jump in φ and zero/one transition in |sin δ|.
Therefore, the region of interest in the images of the sample was chosen such

that the 90◦ jump and zero/one-crossings in |sin δ| appears at a temperature

which does not coincide with anomalies found by Raman spectroscopy and

RUS. (This will be more illustrative when discussing the evolution with the

temperature below.)

The intensity evolution with the temperature is given in Fig. 4.13: (a),

(c) and (e) present the cooling (b), (d) and (f) the heating processes for

crystals of the three different orthorhombic directions. The intensity shows

a general trend towards lower transmission for higher temperatures reflect-

ing a stronger absorption of the light for higher temperatures. Intensity

curves differ significantly for cooling and heating. This is due to the forma-

tion of ice on the sample surfaces. Since the liquid-to-solid (or gas-to-solid)

phase transition is of first-order, we find the formation at different tempera-

tures when heating or cooling. The shape of the heating curve of the [010]o

shows more irregularities (see asterisk in Fig. 4.13(d)) which are attributed

to changes of the air layer under the sample due to small strain releases

between sample and sample holder.

Since effects extrinsic to SmFeO3 dominate the intensity change with the

temperature, no conclusions can be drawn from the intensity.

Fig. 4.14 presents the orientation of the axes of the indicatrix in depen-

dence on the temperature. The orientation can be seen as constant for all

crystallographic orientations for both heating and cooling processes. Only

towards room temperature the orientations change over a short temperature

range by 90◦. This is an effect arising from the numerical determination of

the quantities, intensity I0, orientation φ and |sin δ|, and has no physical

meaning, as mentioned above and in section 2.2. No indications for a phase

transition that involves an orientation change of the crystalline axes are

found.
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Figure 4.14: Evolution of the orientation φ of the indicatrix with temperature of

the three crystalline orientations for cooling (left) and heating processes (right).

In Fig. 4.15 the changes of the birefringence ∆n are presented for the

three crystal orientations for heating and cooling procedures.

∆n changes linearly with temperature for the absence of anomalies. That

means both sides of the minimum-point should be symmetric according to

|sin δ|. To visualize small deviations from an unperturbed trend, the sym-

metric evolution is indicated by blue lines in Fig. 4.15. By this means, a

slight deviation of the symmetric birefringence evolution can be observed for

the crystal oriented in [100]o-direction (Fig. 4.15(a) and (b)). This indicates

a change in the y-z plane of the orthorhombic unit cell. For the [010]o-

oriented crystal (Fig. 4.15(c) and (d)) we find a distinct deviation from the

linear curve characterized by a clear change in slope. This deviation points

to a change in the x-z plane. The birefringence of the [001]o-oriented crystal

(Fig. 4.15(e) and (f)) shows a change with a constant slope on either side of

the discontinuity. Since changes in the birefringence represent the variations
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Figure 4.15: Evolution of the birefringence ∆n with temperature of the three crys-

talline orientations for cooling (left) and heating processes (right). The fine blue

lines indicate an undisturbed linear change of ∆n by mirroring the evolution from

300 K to the minimum to the low temperature part.

in the plane perpendicular the sample orientation, this indicates that the x-

and y-axis changing evenly with the temperature.

We can conclude, that there is a small but distinct change in slope of the

birefringence for crystal orientations that enable to probe a plane that in-

cludes the z-axis. x- and y-axis do not appear to be affected. The homoge-

neous change of the birefringence is substantially stronger for the orienta-

tions [100]o and [001]o when compared to the [010]o direction.

For all orientation SmFeO3 behaves in the same way for heating and cooling

processes.

Since the deviation is not abrupt it is difficult to determine a clear onset

temperature. We approximate the onset temperature around 150 K.
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4.4 Discussion

Fig. 4.16 summarizes the anomalies probed by Raman spectroscopy, RUS

and birefringence measurement in the present study and the magnetic tran-

sitions reported in literature. Now, we discuss the different findings reported

above grouped by (i) known phenomena such as Néel temperature and spin

reorientation and (ii) unknown phenomena, i.e. the anomalies at high and

low temperatures.
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Figure 4.16: Summary of the anomalies found by Raman spectroscopy, RUS and

birefringence measurements compared to known phenomena reported in literature.

The blue zones indicate the temperature range that has been investigated for each

technique.

4.4.1 Impact of the spin ordering at TN (680 K) on the lattice

At the magnetic ordering temperature TN = 680 K of the Fe3+ spins, there

are no changes found in f2 and Q−1 of the RUS data. For few selected

Raman bands a change in the line width can be appreciated. However, none

of the reported Raman active modes shows discontinuity of the vibration

frequency at the transition point. We can therefore assume the spin-lattice

interaction to be very weak in SmFeO3 for the ordering of the iron spin

moments.
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SmFeO3 possesses the Pnma structure for high temperatures, down to room

temperature. Thus, when the Fe3+ spins order, the crystalline symmetry re-

mains unchanged and the iron ions remain in the same position. Whilst the

oxygen and samarium ions have a certain freedom in position in the Pnma

lattice the iron ion possess a distinct position (see Table 3.1). A displace-

ment from its position would immediately lead to a breaking of symmetry.

Therefore, the spin ordering at TN is not related to a displacement of the

iron ions.

However, it is expected that the spin interactions, as a result of the spin

ordering, impact the elastic constants and the vibration frequencies. Spin-

phonon coupling processes have been widely reported in materials struc-

turally close to SmFeO3 such as orthomanganites (RMnO3)
136,154,155 or or-

thochromites (RCrO3)
156–158. It was found that the rare-earth cation is

of importance for the spin-phonon coupling strength136,156. As mentioned

earlier (see chapter 3) the B cations occupy a center of inversion symmetry

in the Pnma structure. Therefore, only vibrational displacements without

iron contribution are detectable by Raman spectroscopy. This means in turn

that only the influence of the iron-spin ordering on the rest of the lattice can

be probed by Raman spectroscopy. Fe3+ is a Jahn-Teller inactive ion due to

its half filled 3d orbitals (Fe3+: [Ar]3d54s0)159 leaving the FeO6 octahedron

undistorted at difference to the Jahn-Teller active cations Mn3+ ([Ar]3d44s0)

[and Cr3+ ([Ar]3d34s0)]. Loosely speaking, we may assume that the B-cation

spins communicate through the Jahn-Teller effect with the oxygen anions.

This coupling process is comparably weak in SmFeO3 without Jahn-Teller

effect. Thus, the mediation of the iron spin ordering to the rest of the lattice

can be considered little and the spin-phonon coupling is thus consistently

below the detection limit of Raman spectroscopy.

The same reason can be assumed for the absence of an anomaly at TN

in the RUS data. Since the reported anomaly of Sm0.6Y0.4MnO3 at TN

is weak160, it does not come surprising that the magnetic ordering of Fe3+

spins is not reflected in the elastic constants based on the proposed scenario.

In summary, the magnetic ordering of the Fe3+ spins at the TN has no

measurable impact on the crystal lattice. This could be explained by a

negligible electro-elastic coupling of the Jahn-Teller inactive iron ions.
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4.4.2 Anomalies during the spin-reorientation (450 - 480 K)

During the spin reorientation between TSR−1 = 480 K and TSR−2 = 450 K

the antiferromagnetic spin moments rotate continuously from the c-axis to

the b-axis13.

The Raman spectra reflect this behavior only by an increase in linewidth.

This can be understood by the lack of sensitivity to iron displacement in the

Pnma structure following the scenario at TN described above.

On the other hand, the RUS data show a strong deviation during the spin

reorientation. This experimental finding points towards a general softening

of the elastic constants of SmFeO3 during the spin reorientation through a

change in magnetoelasticity.

Reports on magnetostrictive effects under an external magnetic field seem

indeed to support a general softening of the lattice161. Size changes of the

crystal under a magnetic field appear only between TSR−1 and TSR−2. The

magnetostrictive effect depends strongly on the degree of rotation of the spin

system. Approaching the spin reorientation regime from high temperatures,

an elongation of the x- and z-axis and a shortening of the y-axis are found

for a magnetic field along the z-axis. Half way through the reorientation pro-

cess, this magnetostriction drops to zero, whereas for a magnetic field along

the y-axis a magentostriction arises with opposite elongation and shorten-

ing properties161. While the spin reorientation process is triggered by the

Fe3+-Sm3+ interaction, the origin for magnetostriction appears to be related

to an anisotropy of the Fe3+ spins161. The strength of the size changes are

similarly strong for different rare-earth cations and appear even without a

magnetic rare earth such as in YFe1−xCox/2Tix/2O3 (x ≤ 0.012)161. The

magnetic states for T > TSR−1 and T < TSR−2 are compatible with the

Pnma structure13. However, it is possible that the symmetry is lowered

during the spin reorientation process due to the magnetostriction under an

external field13. Overall, this shows a sensitivity for structural changes in

the spin reorientation regime.

Our Raman spectroscopy results contradict with a report by Chaturvedi et

al. claiming a change in vibration frequency due to spin-phonon coupling in

SmFeO3 at TN and TSR
162. However, the published data stems from mea-

surements on powder samples which makes it difficult to distinguish single

bands at high temperature. Furthermore, the temperature resolution was

too low for an adequate interpretations (i.e. insufficient data points).
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In conclusion, the spin reorientation regime is accompanied by a soften-

ing of the lattice, well identified in the RUS data but less pronounced in the

Raman spectra. This lattice softening opens perspectives for exploring of

coupling phenomena.

4.4.3 High temperature anomaly (∼ 740 K)

The high temperature anomaly is tiny, but consistently observed both in

Raman spectroscopy and RUS. In RUS measurements the anomaly appears

at T∗1 = 740 K and T∗2 = 775 K for heating and cooling, respectively. It

shows a hysteresis-like behavior. However, it is surprising to find that the

temperature of the anomaly is lower for the heating process than for the

cooling process. Classical first-order transitions show an inverse behavior

where the structure remains in its state to higher or lower temperatures

for heating or cooling, respectively (see e.g. BaTiO3
163). Furthermore, a

drastic phase change is unlikely since f2 evolves with the same slope before

and after the jump. Q−1 increases strongly above T∗1 and T∗1, indicating a

freezing of loss mechanisms below the transition temperatures. Interestingly,

the FWHM of the Raman data shows a small but distinct minimum in the

same temperature range.

This behavior was, to the best of our knowledge, never reported before and

is not observable as changes in the lattice constants at high temperatures

reported by Kuo et al.19. Measurements reported in literature where rarely

performed at such high temperatures, so that it is possible that this anomaly

has just been overlooked. However, further measurements sensitive to subtle

structural changes need to be performed to confirm the existence of this

anomaly, as well as its origin.

4.4.4 Low temperature anomalies (∼ 220 K)

The low temperature region is rich in anomalies which have to the best of our

knowledge not been reported so far. The deviations in f2 and Q−1 from the

RUS measurement and ∆n in the birefringence data are small but distinct.

In contrast, the changes in the Raman spectra are pronounced. From the

literature, we know that the ordering of the Sm3+ spins give a measurable

contribution to the net magnetization from about 135 to 140 K122,149.

The onset of the anomalies found in the Raman spectroscopy and RUS data

lies by 213 to 223 K, significantly higher than the literature data from the

magnetic measurement, whereas the deviation of birefringence appears in the
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vicinity of the reported ordering temperatures. The onset of spin-phonon

coupling in Raman spectra has often been reported to occur at temperatures

significantly higher than TN
136,154. However, it is unclear at this stage why

the anomaly in the RUS data coincides with the Raman data whereas the

deviation of the birefringence appears at lower temperatures. Since the ap-

pearance of the anomalies in all measurement techniques including magnetic

measurements in literature is rather gradual than abrupt, the determination

of a clear onset is difficult.

In section 4.3.3 we found that the birefringence changes at low temperatures

only if the refractive index alone the z-axis is probed. The z-axis, in turn,

coincides with the direction of net magnetization of the Sm3+ spin sublat-

tice.

From the Raman data, we can divide vibrational bands that present a de-

viation from the expected evolution into two groups according to their vi-

brational displacement (see Table 3.3): the B3g(1) and Ag(2) modes are

pure samarium displacements. Modes B1g(2), Ag(3) and B2g(3) represent

mainly octahedral rotation displacements with a small samarium contribu-

tion (Fig. 4.5). In particular the modes B3g(1) and Ag(2) point to a change

in the Sm3+-Sm3+ interaction.

Both, Raman and birefringence data indicate that the low temperature

anomalies are directly related to samarium. Therefore, we propose to assign

the low-temperature anomalies to a spin-lattice coupling due to the ordering

of the samarium spin sublattice reported at 135 - 140 K122,149.

Only two out of the six pure Sm3+-Sm3+ vibrations show an anomalous

evolution. Depending on the symmetry of the samarium spin sublattice not

all of the Sm3+-Sm3+ displacements are affected by the spin interactions.

It is to be expected that the anomalies of the samarium vibrations are rep-

resentative for the ordering type of the underlying spin sublattice. That

means only vibrational displacements that are affected by the spin-spin in-

teractions show an anomalous behavior.

At first sight, it is less intuitive to relate the change of the octahedra-tilt

vibrations B1g(2), Ag(3) and B2g(3) to the spin ordering of the samar-

ium sublattice. However, these changes can be understood by the trilinear

coupling model of Fe3+ magnetic moments, Sm3+ magnetic moments and

octahedra-tilt system that leads to the ordering of Sm3+ spin system as pro-

posed by Zhao and co-workers120. This coupling allows a direct interaction

between the Sm3+ spins and the octahedra rotations which is reflected in
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the octahedra-tilt vibrations in the Raman spectra. Furthermore, according

to Zhao et al. only specific octahedral rotations are able to couple with the

magnetic moments depending on the magnetic system120. This may explain

that not all octahedra-tilt modes show an anomalous behavior.

To confirm this picture for the anomalies of particular Raman-active modes,

the knowledge of the spin structure is crucial which could be acquired ex-

perimentally by neutron scattering or theoretically by DFT calculations.

Interestingly, Rovillain et al.164 report a similar anomaly for a low lying

phonon mode (around 113 cm−1) in TbMnO3 well-above TN(TbMnO3)=

42 K. This is surprising inasmuch as TN is attributed to the ordering of

the Mn3+ spins. However, since TbMnO3 crystallizes like SmFeO3 in the

Pnma structure, this phonon mode is a pure Tb3+ vibration. The evolution

of this Tb3+ vibration reported by Rovillain and co-workers is illustrated in

Fig. 4.17.

Figure 4.17: Temperature dependent evolution of the band position of a low fre-

quency Ag mode of TbMnO3. Below TN = 42 K the Mn3+ spins order in an

incommensurate antiferromagnetic structure depicted by the blue area. The yellow

area indicates the temperature range of the cycloidal spin structure. Reproduced

from Ref. 164.

Infrared measurements on TbMnO3
165 and GdMnO3

154 revealed an anomaly

of a low frequency infrared active mode (114 and 116 cm−1, respectively)

arising approximately 20-30 K above TN. For these infrared absorption
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measurement the situation is more complex as, in contrary to Raman-active

modes of the Pnma structure, infrared-active low-frequency modes show

certain contribution of B-cation displacements. Nevertheless, these two ex-

amples raise the question if the phonon anomalies of the present study are

characteristic for SmFeO3 only or if this is a more common phenomenon.

It is interesting to note that, although the anomaly is small, the effect of

the ordering of the Sm3+ spin sublattice on the elastic constants is more

pronounced than the ordering of the Fe3+ spins at TN.

Furthermore, the ordering of the samarium moments does not appear to

influence the iron spin lattice. The frequency of the single magnon resulting

from the iron-spin sublattice (see Fig. 4.7) evolves linearly at low temper-

ature. Therefore, we conclude that there is no measurable impact of the

samarium spin ordering on the iron spins.

In conclusion, the anomalies in the Raman spectra, RUS and birefringence

data are assigned to spin-lattice interactions as a result of the magnetic

ordering of samarium.

Origin of the new Raman bands

The most striking feature of the low temperature Raman spectra are the

additional bands (Fig. 4.6) which appear below 213 K simultaneously with

the Raman vibration band anomalies and the kink in the RUS spectrum.

Thus, we assume that the new features in the Raman spectrum result from

the same origin as the above discussed anomalies.

We discuss three possible sources of the addition features:

(i) new vibration bands,

(ii) samarium crystal-field excitations,

(iii) two zone-edge-magnons.

(i) New bands in Raman spectra are often an indication for a structural

phase transition accompanied by a symmetry lowering. If the potential

low symmetry structure is a non-polar, new vibrational Raman bands are

expected to be similarly sharp and symmetric like the already existing vi-

brational bands. However, the additional features are highly asymmetric

and broad.

On the contrary, oblique modes resulting from Raman-active polar vibra-
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tions can show broader shapes. The appearance of oblique modes is corre-

lated with a phase transition away from Pnma to a polar space group that

allows polar vibration modes to be detectable by Raman scattering. Birefrin-

gence measurement show that the orientation of the crystal axis is constant

below room temperature down to 83 K. Therefore, only a orthorhombic-

orthorhombic phase transition is plausible. The appearance of oblique modes

would be a strong indication for the rising ferroelectricity in SmFeO3 induced

by the magnetic ordering of the samarium spins. At this point, it is unclear

if such a structural changes did not show stronger signatures in further Ra-

man bands, as well as in the birefringence and RUS data.

(ii) Electronic crystal-field transitions have been reported for Sm3+ ions

earlier in samarium garnets (Sm3+:Y3Al5O12)
166–168. The lowest lying ab-

sorption bands were found at 146 and 249 cm−1. These values do not per-

fectly coincide with the frequencies of features in the Raman spectrum,

but Raman scattering process may give access to different electronic excita-

tions than absorption spectroscopy82 and samarium in SmFeO3 is unlikely

to behave like Sm3+ as an impurity on the garnet matrix. Königstein and

co-workers demonstrated Raman scattering on crystal-field excitations and

phonon bands simultaneously in terbium aluminum garnet169. It was found

that terbium crystal-field excitations and vibrational bands of Tb3Al5O12

overlap in the Raman spectrum which makes a separation difficult. How-

ever, the low frequency crystal-field excitations show barely any frequency

shift with temperature (approximately 1 cm−1 between RT and liquid nitro-

gen temperature)166. In contrast, the new feature in the SmFeO3 spectrum

found at 280 cm−1, for instance, shifts significantly with the temperature

(see Fig. 4.6(f)). Furthermore, in samarium garnets the crystal-field exci-

tation are measurable at room temperature. The additional features in the

SmFeO3 spectra, however, are suddenly appearing towards low tempera-

tures.

Following the spin ordering of the rare earths, R3+-R3+ spin interactions

have been reported to split crystal-field absorption bands for ErFeO3 or

DyFeO3
13,170,171. This split, however, is weak and with 10 cm−1 of much

lower energy than the new peaks in the Raman spectrum of SmFeO3.

(iii) Two-magnon bands result from scattering of two magnetic excitations at

the zone boundary. Therefore, second-order magnons might be detectable

even if the frequency of first-order magnons is below the spectral cut-off.

105



Chapter 4. Structural investigations of SmFeO3

Two-magnon scattering bands are often found below 300 cm−1. As typ-

ical for second-order processes, two-magnon bands show often a broader

and asymmetric shape than first-order processes. Strong softening behavior

has been reported close to the magnetic transitions. Classical examples for

two-magnon processes are NiF2, RbMnF3
172,173. These specifications are in

agreement with the properties found for the additional features of SmFeO3

Raman spectra. In addition, the scenario of two-magnon scattering due the

Sm3+-Sm3+ spin ordering does not necessarily demand a symmetry break-

ing as it is likely to happen for the above discussed cases.

Overall, it appears to be the most likely scenario that the additional fea-

tures result from two-magnon scattering. However, polar/oblique modes

which may result from a phase transition to a polar structure, can not be

fully excluded. On the other hand, crystal-field excitations can be ruled out

as source of the new peaks.

Nevertheless, further measurements are necessary to confirm this picture,

such as Raman scattering under magnetic/electric field, polarization mea-

surements or zone-edge-magnon neutron scattering.

Interestingly, similar additional bands have been reported in Raman and

THz spectra of TbMnO3
164,165,174. There are two types of additional bands

in TbMn03, those below 100 cm−1 and one feature at about 130 cm−1.

Takahashi et al. assign these feature as single magnons and two-magnons,

for the latter165. The ones below 100 cm−1 appear at around TN(TbMnO3)

and indicate a direct relation with the magnetic ordering of the manganese

spins. The feature at 130 cm−1 starts evolving at much higher temperatures

(roughly 100 K higher). The appearance is correlated with the anomaly

reported for the phonon mode at 113 cm−1. This behavior is very similar

to anomalies found in the Raman spectra of SmFeO3. However, Rovillain et

al. assign this band (reported here at 125 cm−1) to a crystal-field excitation

of terbium164. This conclusion is drawn from the fact that no other RMnO3

has been reported to show a comparable feature and thus the band needs

to be related to terbium164. Fig. 4.18 shows the temperature dependent

Raman spectra measured by Rovillain and co-workers164.

The measurements of the single Fe3+ magnon evolution show linear evo-

lution of the magnetic excitation with the temperature. This indicates

that the iron-spin system is not affected by the low temperature anoma-
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Figure 4.18: Temperature-dependent Raman spectra of TbMnO3 from 10 to 45 K.

The arrows indicate two additional features at low temperature. The evolution of

the phonon band at 113 cm−1 is depicted in Fig. 4.17. Reproduced from Ref. 164.

lies. Transition temperatures of the iron and samarium spin sublattices are

well separated, unlike in orthochromites or orthomangaites where the B-site

magnetic moments order at low temperatures or other orthoferrites where a

spin reorientation appears below room temperature. In the light of the close

similarities of the low temperature anomalies of SmFeO3 to TbMnO3 or also

GdMnO3, samarium ferrite becomes particularly interesting and may act as

a role-model material to understand and disentangle the magnetism arising

from A-site and B-site magnetism in similar compounds.

107



Chapter 4. Structural investigations of SmFeO3

4.5 Conclusion

We have investigated the structural evolution of SmFeO3 by three different

analysis techniques over a wide range of temperature. Besides the well-

known magnetic ordering at the Néel temperature TN and the spin reori-

entation, we found two anomalies, at high and low temperatures, that have

not been reported before.

The ordering of iron spins at TN was found to show barely any signature in

the structural probe techniques used in this study. During the spin reori-

entation, however, the elastic constants soften clearly. In combination with

the reported magnetostrictive effect, it is certainly of interest to investigate

SmFeO3 for a potential magnetic field induced phase transition in the spin

reorientation regime.

The origin of the high temperature anomaly found in the RUS spectra is

unclear and demands for further experimental investigations.

We assigned the structural anomalies at low temperature to a spin-lattice

coupling of crystalline and magnetic structure due to the Sm3+-Sm3+ spin

ordering. The additional features were assigned to two-magnon excitations

of the samarium spin system. However, polar/oblique modes can not be

fully excluded. Further measurements and calculations are desirable to con-

firm this picture.

In the future, it will be interesting to investigate if the spin-lattice inter-

action triggered by the samarium spin ordering may lead to a ferroelectric

phase at low temperatures.

The similarities between certain features in the Raman spectra of SmFeO3

and TbMnO3 may ask for a detailed re-investigation of the magnetic sys-

tem of TbMnO3. Since the magnetic transitions of Sm3+ and Fe3+ are far

separated in temperature, SmFeO3 may act as a model system for a better

understanding of the spin-lattice interaction which finally gives rise to the

multiferroic properties in TbMnO3.

Overall, SmFeO3 shows a rich landscape of lattice anomalies of different

origin and coupling strength. These structural instabilities are triggered by

different magnetic ordering processes and give rise to a multiplicity of pos-

sible coupling phenomena, for example under external fields or under strain

in thin films.
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Chapter 5

Temperature evolution of the

band gap in BiFeO3

The work in this chapter has been published in Physical Review B (93,

125204, 2016)175. Major parts of the following chapter are identical in con-

tent and word with this publication.

Introduction

The research topics of multiferroics and photoferroelectrics are currently re-

ceiving significant attention. In both research fields bismuth ferrite BiFeO3

is occupying a predominant position, being, on the one hand, the most

promising multiferroic material53,176–179 and, on the other hand, for its

above-band gap photovoltages, anomalous photovoltaic effects, photocon-

ductive domain walls etc.22,23,48,180,181. Yet, the electronic structure in

BiFeO3 in general and its band gap in particular, in spite of their impor-

tance for photoferroelectric effects, remain rather poorly understood ex-

perimentally and theoretically. According to absorption studies on single

crystals182 and thin films183–186, the optical band gap at ambient condi-

tions lies at approximately 2.7 eV. It is also experimentally established that

the optical band gap of BiFeO3 shrinks with increasing temperature down

to 1.3 eV at 1200 K where it then closes abruptly showing an insulator-

to-metal phase transition concomitant with a structural transition to the

so-called γ-phase187. Both, the rapid shrinking of the optical band gap, e.g.

three times steeper than in BaTiO3
188, and the insulator-to-metal transition

set BiFeO3 apart from conventional non-magnetic ferroelectrics. It is not

yet understood how this gradual shrinking of the optical band gap relates
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to the electronic structure. One of the reasons for the lack of knowledge is

that the experimental investigation of band-to-band transitions is difficult to

address experimentally in ferroelectric and multiferroic oxides because the

absorption onset is broad, especially when compared to the generally sharp

transitions in classical semiconductors. The appearance of Urbach tails, no-

tably at higher temperatures, complicates the quantitative analysis and the

discrimination of direct and indirect transitions. Other classical techniques

are rapidly limited by thermal effects, charging of the insulating samples

(ARPES) or require synchrotron sources (resonant inelastic X-ray scatter-

ing). In this section, we make use of resonant Raman scattering as intro-

duced in section 1.2.3. These resonant effects have been investigated in many

details in semiconductors82,93,189,190, but much less in perovskite-type ox-

ides. Electronic transitions have been probed by Andreasson and co-workers

involving mainly charge transfer phenomena in LaFexCr1−xO3
137–139. Or-

bital ordering was investigated in LaMnO3 by Kovaleva et al.191 and Kruger

et al.192. Furthermore, resonant Raman scattering was used as a probe for

structural properties in particular in systems of high disorder. Disordered

systems display broad Raman bands such that subtle changes can often be

masked. In such circumstances resonant Raman spectroscopy was shown

useful to selectively enhance certain features of the spectrum and to probe

e.g. phase transitions in PZT193,194 or polar nano-region in relaxor ferro-

electrics such as PbSc0.5Ta0.5O3 or PbSc0.5Nb0.5O3
195.

In this section, we aim to shed light on the electronic band structure of

BiFeO3 and demonstrate the potential of using multiple wavelength Raman

spectroscopy as a means to probe electronic levels in multiferroic materials.

After an introduction to the crystal structure, the electronic properties and

the experimental setup, an overview to the general particularities of Raman

scattering on BiFeO3 is given. Afterwards, we investigate the electronic band

structure of BiFeO3 by using twelve different excitation wavelengths ranging

from deep blue (442 nm or 2.8 eV) to near-infrared (785 nm or 1.6 eV). To

investigate the reported strong, and not entirely understood dependence of

the band gap on temperature, wavelength-dependent measurements are also

conducted as a function of temperature.
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5.1 Structure of BiFeO3

Bismuth ferrite crystallizes in the rhombohedral R3c structure with a unit

cell axis arh = 3.965 Å and an angle of 89.3◦ at room temperature20. It

is often convenient to express the structure in a hexagonal settings since

the axis of highest symmetry is parallel to the long hexagonal axis which is

also the direction of polarization of BiFeO3 and likewise the z-axis of the

Raman tensors. In Fig. 5.1 the hexagonal structure is illustrated with the

lattice parameters ahex = 5.58 Å and chex = 13.90 Å20. The square in

Fig. 5.1 indicates the pseudo-cubic cell, which is exposed in Fig. 5.2. As we

can appreciate from Fig. 5.1 the polar axis is along the [111]pc direction in

pseudo-cubic settings as indicated by the arrow in Fig. 5.2.

BiFeO3 crystals can show rich domain patterns. All domain walls depend

Figure 5.1: Hexagonal representation of BiFeO3. The thin black lines indicate the

hexagonal unit cell. The thick purple lines represent the pseudo-cubic settings.196

on the orientation change of the polarization direction in two subsequent

face-connected unit cells in the pseudo-cubic setting. There are three types

of domain walls. Tail-to-tail or head-to-head connections give rise to 71◦

domain walls, head-to-tail to 109◦ domain walls and opposite polarizations

to 180◦ domain walls20.
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Figure 5.2: Pseudo-cubic representation of BiFeO3. The arrow along [111]pc indi-

cates the polar axis.196

5.2 Optical properties and band structure

As indicated in the introduction there are several open questions about the

electronic transitions in BiFeO3. From absorption studies on single crys-

tals182 and thin films183–186 it is established that the band gap of BiFeO3

has a value of approximately 2.7 eV. Reflectance spectroscopy, however, re-

vealed lower band gap values: Ramachandran et al. reported a band gap of

2.5 eV for polycrystalline BiFeO3
197 and the band gap of nano-crystalline

samples was found in the range of only 2.2 eV by Bai and co-workers198.

In contrary, photoluminescence measurements suggest a direct band gap for

single crystal BiFeO3 at about 3 eV199.

The strong shrinking of the band gap with temperature reported by Palai et

al.187 (see also Fig. 5.8) has not been confirmed for thin films. Zelezny et al.

report a change in band gap energy from 2.76 to 2.70 eV between 300 and

550 K200 and Basu and co-workers found a narrowing of the band gap from

2.70 to 2.55 eV over a range from 4 to 750 K183. Both reports show a signif-

icantly slower shrinking of the band gap with temperature when compared

to the measurements on bulk BiFeO3 of Palai and co-workers.

The situation remains unclear when reviewing the calculated electronic band

structures of BiFeO3. Clark and Robertson calculated the band structure

by using the so-called screened exchange method (and LSDA)201,202. This

band structure shows a very flat valence band. However, calculation of
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Goffinet et al.203 (LDA, WC (GGA), LDA+U, B1-WC (hybrid) functionals

(using CRYSTAL06 except LDA+U (VASP))) or Neaton et al.204 (LSDA)

do not find a flat valence band. Goffinet’s and Neaton’s band structure re-

sults are very similar, independent of the technique, but substantially differ-

ent to the band structures of Clark and Robertson. Temperature dependent

electronic band structures are generally difficult to calculate. Some infor-

mation may be drawn from the band structures of the orthorhombic and

cubic high-temperature phases of BiFeO3. Indeed, these calculations indi-

cate a closure of the indirect band gap187. However, the calculated band

structures (apart from the smaller band gap) remain essentially the same

when going from the orthorhombic to the cubic phase, which is not intuitive

with respect to the structural reorientation of this phase transition.

5.3 Additional experimental setup and samples

This study has been performed in collaboration with Prof. Dr. M. Cazayous

and Dr. C. Toulouse, Université 7, Paris, France. Using the setups of both

groups, we have access to twelve different excitation wavelengths: 442, 532,

633 and 785 nm laser lines of the Renishaw Raman microscope described in

section 2.1 and 458, 466, 476, 482, 496, 514, 520, 532, 568 and 647 nm laser

lines in the laboratory in Paris. The latter lasers are connected to a Jobin

Yvon T64000 Raman spectrometer and measurements were performed in

macro-Raman mode. The fact that for both setups a 532 nm exciting laser

line was available enabled the linking of both measurement series. The

wavelength-dependence of the measured intensity was corrected following

the description in section 2.1. The Jobin Yvon T64000 is equipped with a

white lamp for the calibration of the spectral response and the spectra were

corrected for the ω4 dependence on the exciting laser frequency. The spec-

tra recorded with the Renishaw inVia spectrometer were normalized with

respect to a CaF2 reference crystal following the description in section 2.1.

The wavelength-dependent absorption in BiFeO3 was corrected using the

data from Ref. 182. For temperature-dependent series the Raman spectra

were corrected for thermal occupation (see section 2.1). Since the Raman

intensity is strongly dependent on the crystal orientation with respect to

the polarization direction of incident and scattered light (see Eq. 1.16 and

1.19), it is absolutely crucial to maintain the same orientations of sample

and light polarization for all measurements and preferably the same mea-

surement spot.
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Figure 5.3: Bismuth ferrite sample primarily used in this work with dimensions

of 600 × 300 × 10 µm3. The thick lines are stripe domains imbedded in larger

domains. The very fine lines result from the polishing process. Large dark area is

due to pieces that broke off while moving the crystal.

The crystals used in this study were grown by R. Haumont and D. Col-

son via the flux method205,206. Both crystals are [001]pc-oriented. Fig. 5.3

shows a polarized microscope image of the BiFeO3 single crystal primarily

used in this study. It is roughly 600 µm in length, 300 µm in width with

a thickness of 10 µm. The domains are sufficiently large to ensure that

all measurements are performed for the same crystal orientation. Impurity

particles at the surface were used to orientate on the sample and to repeat

measurements within a lateral error of 5 µm.
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5.4 The Raman spectrum of BiFeO3

Before starting the investigation of the wavelength dependence of Raman-

scattering on BiFeO3, we provide a closer insight into the Raman scattering

on bismuth ferrite. A conclusive mode assignment is an essential part of

Raman spectroscopy, since it links the measured bands to symmetry and

vibrational displacement. Thus, it provides an important basis for further

studies.

The rhombohedral R3c structure of BiFeO3 gives rise to 30 Γ-point vibra-

tion modes: Γ = 5A1 + 5A2 + 10(1E + 2E)†. The 5A2 modes are silent, and

one A1,
1E and 2E modes, respectively, are acoustic modes. The remain-

ing 22 vibration modes are Raman and infrared active: ΓRaman/infrared =

4A1 + 9(1E + 2E).85,207 All Raman active modes are polar, i.e. the dipole

moment changes as a consequence of the vibrational displacement. This

leads to a LO-TO splitting of all modes at the Γ-point with respect to the

phonon propagation direction.

The Cartesian coordinate system which determines the orthonormal axes of

the Raman tensor is defined such that the z-axis is along the direction of

the 3-fold axis, which coincides with chex and the pseudo-cubic [111]pc. x-

and y-axis lie in and normal to the mirror plane. Then, the corresponding

Raman tensors of BiFeO3 are as follows85:a a

b


 c d

c

d


c −c d

d


A1(z) 1E (x) 2E (y)

As an addition to the mode symmetry, x, y and z indicate the direction of

the electric field that accompanies the polar modes. Modes of E symme-

try represent degenerated modes with the same frequencies and vibrational

pattern but along different crystalline directions. Hence, both tensors and

their polarization directions need to be specified.

Following the discussion about polar modes in section 1.2.4, we summarized

the properties and selection rules of the Raman modes of BiFeO3:

(i) Phonons propagating parallelly to the electric field are of longitudinal

nature. Transversal optical modes propagate perpendicularly to the electric

†The superscripts to the E modes denote the different directions of displacement of

the two degenerated modes.
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field. Thus, from the Raman tensors, we find that mode assignments of pure

symmetries, i.e. non-oblique modes, are possible for the following configu-

ration in Porto’s notation (for a backscattering setup): A1(LO): z(xx/yy)z;

A1(TO): x(zz/yy)x, y(xx/zz)y; E (TO): z(xy/yx)z, x(yz/yz)x, y(xz/zx)y;

E (LO): y(xx)y. Note, the orientations given such that only one specific

symmetry is probed. Solely E (LO) modes cannot be detected individually

in backscattering configuration.

(ii) E (TO) can be detected independently of the phonon propagation direc-

tion.

(iii) All modes (except of E (TO) modes) are in a mixed state for all config-

urations which do not allow the phonon propagation-direction to be parallel

to either of the three axes, x, y, z.

(iv) Only if the phonons propagate along the z-axis the E modes are degen-

erated, in all other orientations the degeneracy is lifted as a result of the

LO-TO splitting.

There is a tremendous amount of publications on Raman spectroscopy of

BiFeO3, reaching from mode assignment207–209 to the analysis of coupled

properties, like spin-phonon coupling210 or coupling to external parame-

ters211–214. Theoretical calculations of the Raman and infrared spectra by

Hermet et al.209 and infrared studies by Lobo et al.215 are of great value

for the understanding of the phonon spectrum of BiFeO3. Nevertheless,

there are still ambiguities concerning the Raman mode assignment in the

literature. Those are mainly due to the difficulty of orientating the chron-

ically small crystals with respect to the above noted orientations.† Palai

et al. published a thorough summary about difficulties and mistakes that

appear in literature217. However, their own mode assignment is question-

able, since it is at odds with the calculations by Hermet and co-workers and

infrared-absorption measurements. Spectra reported by Fukumura et al. of

a [111]pc-oriented crystal are unfortunately of too low quality for an com-

plete mode assignment. The same holds for Singh et al.218,219, Yuan et al.220,

Yang et al.221 and others. Cazayous and co-workers present a solid mode-

assignment, nevertheless it remains unclear why the degeneracy of the lowest

lying E mode is lifted for their [111]pc-oriented crystal. Porporati et al.87

and Beekman et al.222 made use of the different angular dependence of the

scattered light intensity in order to distinguish A1 and E modes. However,

†More recently, it became possible to grow larger, well-oriented BiFeO3 single crystals

via laser-diode heating floating-zone method216.
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5.4. The Raman spectrum of BiFeO3

Figure 5.4: Angular phonon dispersion curves of BiFeO3. Full lines represent dis-

persive mixed modes, dashed lines the purely transverse E (TO) branches. The

symmetries are given for 0◦ and 90◦ (notations of E (TO) modes are not repeated

for 90◦). The numbers group the branches by vibrational displacement. Repro-

duced from Ref. 223.

in both studies the mixed mode situation of the [001]pc-oriented crystals

was disregarded and the oblique character of the modes was not taken into

account.

In a different approach, the evolution of the mixed mode frequencies

with respect to the angle between phonon propagation-direction and polar

axis was explicitly used by Hlinka et al. to perform the mode assignment

of BiFeO3
223. This was achieved by tracing the evolution of the vibrational

bands through many different crystalline orientations from a coarse grained

piece of ceramic. This method did not only allow to fully assign the vibra-

tion modes for the cases of E (TO), E (LO), A1(TO) and A1(LO) modes but

simultaneously to follow the different mixed mode states depending on the

angle between phonon propagation-direction and polar axis. The result of

this work is reproduced in Fig. 5.4, giving the wavenumber as function of

the angle of rotation between propagation direction and polar axis. The

labeling on either side of the graph defines the symmetry for 0◦ and 90◦.
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Chapter 5. Temperature evolution of the band gap in BiFeO3

Table 5.1: Symmetry mode assignment of our [001]pc-oriented crystal at 93 K.

The first column gives the vibrational frequency in cm−1. In the second column

the symmetry is given; modes of mixed symmetry are denoted “oblique”. The

symmetry mixing of the oblique modes is given in column three. Column four gives

the vibrational displacement; the numbers group of displacement as described in

the text. The asterisk indicates bands with small LO-TO splitting or very close

bands (**), so that the bands cannot be resolved separately.

Frequency Symmetry Symmetry mixing Displacement

74.5 E(TO) 1 Bi(x) anti-phase

80.1 oblique E(TO) - E(LO) 1 Bi(x-y) anti-phase

136.0 E(TO) 2 FeO6 displ.(x,y) in-phase

145.0 oblique E(TO) - A1(TO) 2 FeO6 displ. in-phase

175.0 oblique A1(LO) - E(LO) 2 FeO6 displ. in-phase

224.6 oblique A1(LO) - A1(TO) 4 FeO6 rotation

241.2 E(TO) 3 Fe(x-y), O6 squeezing *

oblique E(TO) - E(LO) 3 Fe(x-y), O6 squeezing

264.8 E(TO) 4 FeO6 rotation

278.0 oblique E(TO) - E(LO) 4 FeO6 rotation **

E(TO) 5 Fe(x-y) anti-phase to O6(x-y)

295.1 oblique E(TO) - A1(TO) 5 Fe anti-phase to O6

349.7 E(TO) 6 O6 bending *

oblique E(TO) - E(LO) 6 O6 bending

373.2 E(TO) 7 O-Fe-O scissors-like *

oblique E(TO) - E(LO) 7 O-Fe-O scissors-like

435.0 E(TO) 8 Fe(x,y), O6 Jahn-Teller-like *

oblique E(TO) - E(LO) 8 Fe(x,y), O6 Jahn-Teller-like

472.9 oblique A1(LO) - E(LO) 5 Fe anti-phase to O6

523.0 E(TO) 9 O6 bending

542.4 oblique E(TO) - A1(TO) 9 O6 bending

608.8 oblique A1(LO) - E(LO) 9 O6 bending

In addition to Hlinka’s work, we grouped the modes by vibrational displace-

ment indicated by the number behind the symmetry. Since in the cubic

phase a displacement triplet corresponds to a single but triply degenerated

mode, we can approximate that a set of two E modes and an A1 or A2 belong

to one type of vibrational displacement but along different crystallographic
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5.4. The Raman spectrum of BiFeO3

axes. The arrangement has been done by visual inspection of the vibrational

displacements of the transversal modes; the vibrational vectors were calcu-

lated by Yannick Gillet, Université catholique Louvain-la-Neuve, following

the procedure of Hermet and co-workers209. This information allows to esti-

mate the strength of the LO-TO splitting. Vibration modes which are little

affected by the electric field show generally smaller LO-TO splitting. Here,

group “3” in shows the smallest LO-TO splitting with only 2 cm−1, whereas

the LO-TO splitting is much larger, up to 190 cm−1 for group “5”. In this

case the impact of the electric field is larger than the anisotropy of the force

constants. In general, both cases of “oblique” modes exist in BiFeO3, with

larger and smaller anisotropy of the force constants compared to the effect

of the electric field as discussed in section 1.2.4.

For the present work, the mode assignment is based on the publication of

Hlinka et al 223. A Raman spectrum recorded under the excitation of a green

- 532 nm - laser at 93 K is given in Fig. 5.5.
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Figure 5.5: Raman spectrum of a [001]pc-oriented BiFeO3 crystal recorded under

the excitation of a 532 nm laser line at 93 K to enhance the spectral resolution.

Single phonon scattering can be observed up to 650 cm−1 (first-order) followed by

second-order scattering processes up to 1400 cm−1.
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As mentioned earlier the crystals used in this work are oriented along the

pseudo-cubic [001]pc direction. Thus, 22 Raman modes are expected. The

band positions are in excellent agreement with the data of Hlinka and co-

workers at an angle of ∼ 55◦ (angle between [001]pc and [111]pc direction).

This mode assignment is presented in Table 5.1. All modes apart from

E (TO) modes are in an mixed state denoted as “oblique”. In column three

the discrete symmetries at ends of the oblique mode branches are given.

A similar assignment is not possible for the second-order spectrum due to

its continuous nature. There have been attempts for mode assignment of

second-order features to overtones of first-order bands224, however, our low

temperature spectrum (Fig. 5.5) allows a higher spectral resolution, and re-

veals that none of the second-order features represent a clear overtone of a

Γ-point first-order Raman mode. Thus the second-order spectrum appears

to be more complex and the combination of several vibration modes whose

origin is elsewhere in the Brillouin zone, as earlier indicated by Cazayous

et al.210. For the study, a mode assignment of the second-order is not es-

sential.
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5.5. Multiwavelength Raman spectroscopy on BiFeO3

5.5 Multiwavelength Raman spectroscopy

on BiFeO3

After the general understanding of Raman scattering on BiFeO3, we turn

now to the wavelength dependent Raman scattering to investigate the elec-

tronic transitions in bismuth ferrite.

Figure 5.6(a) shows the well-defined Raman spectra under different exci-

tation wavelengths. For better visibility the spectra are normalized to the

integrated intensity of the first-order Raman scattering signal. The most

prominent feature of the spectra is that the relative intensity of the differ-

ent Raman bands greatly depends on the wavelength used. Figures 5.6(b)

and 5.6(c) make this more apparent by magnification of two narrow spec-

tral regions: For example, the band at 230 cm−1 is very strong at 442 nm

but hardly observable at 785 nm; similar changes are observed for almost all

modes when carefully considering the full series. The intensity of the second-

order Raman spectrum, visible as broad bands in the 1000-1400 cm−1 range

[see Fig. 5.6(d)], also depends on the exciting wavelength in agreement with

previous reports210.

As discussed in detail in section 1.2.3, variations of the total intensity and in-

tensity ratios between different bands are characteristic features when pass-

ing from non-resonant to resonant Raman scattering. It is important to

repeat at this point that great care was taken to measure in the same po-

larization and orientation conditions and the same spot on the sample, so

that all ‘trivial’ effects are excluded.

5.5.1 Wavelength dependence of first-order Raman spectra

In spite of the variations in intensity ratios, all the bands in the spectra of

Fig. 5.6 remain visible. Therefore, all bands in BiFeO3 can be considered

resonance-Raman-active. Taking advantage of the detailed mode assign-

ment in section 5.4 and the availability of vibrational displacements of the

Raman bands, we investigated the intensity ratio changes with respect to

particular patterns of the ratio changes. That means, the vibrational bands

were analyzed to find out if Raman bands of certain symmetry, vibrational

pattern or strength of polar moment are particularly strongly enhanced. At

first, we find from the first order spectra in Fig. 5.6(a) that neither the low-

wavenumber region, dominated by Bi3+ and Fe3+ displacements, nor the

high-wavenumber region, dominated by O2− displacements, are particularly
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5.5. Multiwavelength Raman spectroscopy on BiFeO3

strongly enhanced. The participation of certain atoms in the vibration does

not seem to be necessary or favor the resonance effect. Let us have a look

at the importance of symmetry, transversal and longitudinal proportion of

the vibrations (see Fig. 5.6 and Table 5.1). The band at 542.4 cm−1 of

mixed E (TO)-A1(TO) symmetry becomes comparably strongly enhanced

towards higher laser energies. However, the band at 295.1 cm−1 with the

same symmetry properties decreases in intensity. Modes of primarily lon-

gitudinal character do not show any particular behavior such as the modes

at 175.0 and 608.8 cm−1 (A1(LO)-E (LO)). Further inspection reveals no

pattern which could be responsible for significant intensity enhancements

in the wavelength-dependent spectra of BiFeO3. Thus, we conclude that

the ratio changes are due to many factors including the actual vibrational

displacements. Precises DFT calculations of the band intensities depending

on the exciting wavelength will be necessary to disentangle the contributions.

The resonance enhancement can be quantified by integrating the intensity

over the full first-order spectral range (i.e. up to 650 cm−1). This inte-

grated intensity is plotted in Fig. 5.7 for all wavelengths, revealing intensity

changes by up to two orders of magnitude across the series. It remains con-

stant between 785 and 568 nm, but then increases sharply when approaching

the green laser lines leading to a first maximum at around 520 nm. To-

wards higher energies (smaller laser wavelengths), the integrated intensity

decreases slightly before a very strong, second enhancement occurs under

excitation with blue laser light (465 nm or 2.67 eV). This strong increase

correlates with the reported value of 2.7 eV for the band gap. The intensity

maximum at approximately 520 nm (2.38 eV) shall then correspond to a

resonance process involving in-gap electronic states. Defect states related

to oxygen vacancies are obvious candidates and, indeed, have been reported

experimentally at 2.45 eV186, which is also consistent with the 2.2 eV value

predicted by first-principles calculations202. We therefore assign this second

resonance enhancement at 520 nm with a valence-band-to-defect transition

involving oxygen vacancies.

When comparing the Raman spectra at different excitation wavelengths,

one should bear in mind that the absorption by the sample is also wave-

length dependent, so that a change in the exciting laser wavelength leads

to a change in penetration depth. In materials having a skin layer with

different structural properties from the bulk, such as ferroelectrics in gen-

eral and BiFeO3 in particular225, this effect can in principle affect the very
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Figure 5.7: Evolution of the integrated intensity of the first-order spectra from

100 cm−1 to 650 cm−1 at room temperature. Triangles and squares are spectral

data measured with the Renishaw and Jobin Yvon spectrometer, respectively. Ap-

propriate spectrometer and absorption corrections have been applied as explained

in section 2.1.3. The integrated intensity of the 647 nm spectrum (which represents

the lowest intensity) has been set to one; other spectra where normalized accord-

ingly, to provide a measure for the enhancement. Solid lines are guides for the

eye.

shape of the Raman signature. However, this effect can be safely ruled out

in our study considering that: (i) a structural distortion would be expected

to cause shifts of the Raman frequencies, which are not observed and (ii)

the skin layer in BiFeO3 is not thicker than 10 nm225,226, whereas changes

of the Raman spectrum are visible for lasers penetrating much deeper in the

bulk: Applying Beer-Lamberts law with the absorption data of Xu et al.182

gives several micrometers for near-infrared to red light, several hundreds of

nanometers for green light (532 nm), and 60-80 nm for blue light (442 nm).
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5.5. Multiwavelength Raman spectroscopy on BiFeO3

5.5.2 Tracing the temperature dependence of the band gap

Because changes of the band transitions imply changes in the Raman reso-

nance conditions, resonant Raman spectroscopy can now be used to track its

temperature evolution, with the objective to elucidate the intriguing shrink-

ing of the optical gap at high temperatures. This principle is illustrated

in Fig. 5.8, where the band gap values determined by Palai et al.187 are

displayed together with the energies of three selected laser lines used in this

study. Strong changes in the resonance conditions are expected when the
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Figure 5.8: Band gap values versus temperature taken from Ref. 187, together with

the energies of the 532 nm, 633 nm, and 785 nm laser lines.

laser energy is close to the reported band gap, which should be reflected in

the intensity and the shape of the Raman signature.

First-order Raman scattering - direct transitions

Figures 5.9(b)-(d) show the first-order Raman spectra for temperatures

ranging from 93 K to 723 K and for laser excitation wavelengths 532 nm,

633 nm, and 785 nm, i.e. for energies that coincide with the reported band

gap at different temperatures. In all cases, the temperature evolution of the

Raman spectra follows a typical behavior characterized by thermal broaden-

ing and a generalized low-frequency shift of all bands with increasing tem-

perature. The intensity ratios between modes do not change significantly

compared to the intensity ratio changes observed for different excitation

wavelengths (see Fig. 5.6). This is underlined in Fig. 5.10 which shows a

zoom into the low wavenumber region of Fig. 5.9. The bands highlighted in
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Figure 5.9: Temperature-dependent Raman spectra in the first-order frequency

region for the 532 nm, 633 nm, and 785 nm laser lines.

blue (at frequencies of 172 and 222 cm−1) represent two bands of significant

change in intensity ratio for changing wavelengths as an example. This is

quantified in Fig. 5.11 that shows the evolution of the intensity ratio for the

two highlighted vibrational bands. In blue, red and black the evolution of

the intensity ratios is given for the excitation laser lines of 532 nm, 633 nm

and 785 nm, respectively. For comparison, this ratio evolution with respect

to the wavelength change is indicated by the open squares. For changing

temperature this ratio does not show any sign of the dramatic increase that

characterizes the resonant regime that would be expected at high temper-

atures when the laser energy coincides with the reported optical band gap.
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Figure 5.10: Temperature-dependent Raman spectra in the low-frequency region for

the 532 nm, 633 nm, and 785 nm laser lines. The bands around 172 and 223 cm−1

are highlighted since the intensity ratio has been found to change dramatically in

Fig. 5.6.

This leads to the at first sight surprising conclusion that the resonance con-

ditions at a given wavelength do not change with temperature. Considering

that only direct electronic transitions can be involved in first-order Raman

resonances, we come to the following conclusions: (i) the temperature evo-

lution of the optical band gap cannot be related to a shrinking of a direct

electronic band gap and (ii) the electronic levels underlying the resonant

Raman effect under illumination with 442 nm (assigned to direct electronic

transitions) and 532 nm (oxygen vacancies) are nearly temperature indepen-

dent.

Second-order Raman scattering - indirect transitions

In a second step, we have scrutinized the second-order Raman spectra. Fig-

ures 5.12(a) and (b) present the temperature evolution of the second-order

Raman spectra for excitation under 532 nm and 633 nm light. The figures

show a strong qualitative change in the intensity signature, which is particu-

larly apparent when comparing the relative intensities of the broad peaks at

1010 and 1260 cm−1 under excitation by the 633 nm laser line. The band at

1010 cm−1 is strongly reduced at higher temperatures and the shape of the

spectrum gradually becomes similar to the spectrum obtained for 532 nm

laser at ambient temperature, albeit with differences due to different thermal

127



Chapter 5. Temperature evolution of the band gap in BiFeO3

150 300 450 600 750

0

1

2

3

4

5

6

7

 

Ra
tio

 I 22
2/I

17
2

Temperature (K)

 785 nm
 633 nm
 532 nm

750 700 650 600 550 500 450

 Wavelength dep. I 222/I172

Wavelength (nm)

Figure 5.11: Evolution of the intensity ratio of the bands located around 172 and

223 cm−1 (highlighted in Fig. 5.10(a)-(c)) with temperature (bottom axis), and

with excitation energy at ambient temperature (top axis).

broadenings. Conversely, the 532 nm laser line spectra at low temperatures

revealed a small but distinct band at 1010 cm−1 [indicated by the arrow

in Figs. 5.12(a) and (b)]. These qualitative changes were accompanied by

a change in the overall intensity, which we quantify by the ratio between

the integrated intensity (I2) of the second-order spectrum divided by the

intensity of the first-order spectrum (I1). For both excitation wavelengths,

I2/I1 exhibited a maximum in their temperature dependence. The observed

maxima at 573 K for 633 nm and at 223 K for 532 nm retrace the tem-

perature dependence of the reported optical band gap187. These changes

in shape and intensity of the second-order Raman signature contrasts with

the temperature-independent shape of the first-order spectrum. Because

any strong change in the energies of direct electronic transitions was ruled

out, the observed maxima of the ratio I2/I1 can be related to a temperature

evolution of an indirect gap.

Other possible phenomena are more difficult to reconcile with the experi-

mental observations. Notably, the Franck-Condon mechanism explaining the

resonance behavior reported in past studies138,227 does not have the same
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Figure 5.12: Temperature-dependent Raman spectra in the low-frequency region

for the 532 nm, 633 nm, and 785 nm laser lines.

signature, both at ambient condition (e.g. no third-order scattering is ob-

served in our studies) and as a function of temperature. Also, a magnetism-

related change in the electron-phonon coupling could be admittedly hypoth-

esized from the observation that the maximum for I2/I1 at 633 nm lies in the

vicinity of TN . However, it is not clear then how to explain the wavelength

dependence of this maximum, and the fact that no such anomaly is observed

in the vicinity of TN in the related compound LaFe0.96Cr0.04O3
138.
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Summary and discussion of experimental findings

Our experimental observations lead to the conclusion that the shrinking of

the optical band gap is related to a temperature evolution of an electronic

band gap with indirect character. This supports the view that BiFeO3 is

an indirect semiconductor, at least above room temperature. On the other

hand, the energies of direct electronic transitions show no temperature de-

pendence, which implies in turn non-trivial temperature modifications of

the electronic band structure. Even though only hypotheses can be formu-

lated at this stage for the details of this temperature dependence, we note

that the hypothesis of a strong electron-phonon coupling inducing an impor-

tant renormalization of the electronic levels is consistent with the fact that

the highest valence band originates predominantly from the oxygen p states

whereas the lowest conduction band is mainly formed by iron d states. The

low relative mass of the oxygen atom then leads naturally to comparatively

large nuclear displacements in the corresponding phonon modes, and hence

the largest temperature dependence of oxygen-based bands, i.e. the bands

of the FeO6 octahedra204. In Fig. 5.13 a schematic sketch of the change

of the electronic band structure evolution from low to high temperatures

is depicted. In this scenario the conduction band minimum M2 is lowered

for higher temperatures with respect to the conduction band minimum M1

leading to a shrinking of the indirect band gap, whereas the direct transition

remains stable. It needs to be emphasized at this point that this scenario

only represents one possibility for the closure of the band gap and no specific

shapes of the electronic bands were taken into account. In fact, the diffi-

culty of describing the closure of the band gap in more detail is partly due

to the lack of consistent first-principle calculations of the band structure in

literature as mentioned before.
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Figure 5.13: Sketch of the electronic band structures in BiFeO3 for low (left) and

high (right) temperatures. VB describes the valence band, M1 and M2 the band

minima of the conduction band (CB). Direct and indirect transitions are indicated

by red and blue arrows, respectively.

5.6 Conclusion

Using multi-wavelength dependent Raman scattering we were able to iden-

tify direct electronic transitions of BiFeO3 at ambient conditions. It was

possible to identify the band gap closure of BiFeO3 as a shrinking process

of an indirect band gap. Therefore, we took advantage of the restriction

of first-order Raman scattering to direct electronic transitions and the pos-

sibility to probe indirect transitions by the second-order Raman scattering

process. Further work will be needed to confirm the picture of the band gap

closure, including both calculations at finite temperatures and experiments

to follow carefully the optical absorption with temperature and to probe

electronic levels directly.

More generally, resonant Raman scattering appears as a powerful tool to

follow electronic excitations up to relatively high temperatures, in a way

that should be applicable beyond BiFeO3 to a broad range of materials

showing absorption in the visible range, and thereby to contribute to the

understanding of electronic structures in photoferroelectrics.
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Conclusion and Perspectives

In the present work, we studied iron-based perovskite-type oxide systems:

a series of rare-earth orthoferrites RFeO3 representing the most common

perovskite space group, Pnma, with a particular focus on SmFeO3 and the

most investigated multiferroic compound, BiFeO3.

In the first part of this work, we presented a thorough Raman scattering

study of rare-earth orthoferrites RFeO3. The Raman modes of six rare-earth

orthoferrites (La, Sm, Eu, Gd, Tb, Dy) were assigned to the corresponding

symmetries and vibrational displacements. We identified the Ag soft modes

which are related to the octrahedra tilt system for all compounds. In the

framework of Landau theory, we proposed a relation of order parameter,

soft mode and size of rare earth. This relation is applicable for all series

of perovskite compounds in which only the different sizes of the A cation

trigger the degree of octahedra tilting.

This study on rare-earth orthoferrites sets the basis and reference for future

work on coupling phenomena or structural changes in orthoferrites, be it in

temperature- or pressure- dependent measurements, or for the interpretation

of Raman spectra for the series of solid solutions. The precise assignment

of the vibrational pattern of the Raman bands will ease investigation and

interpretation of Raman data of RFeO3 thin films, namely to monitor and

better understand how the two-dimensional strain/stress is mediated in the

film for different substrates or film thicknesses.

In the second part, we applied this knowledge and extended it inspecting

the structural properties of SmFeO3 as a function of temperature by Ra-

man spectroscopy, RUS and birefringence measurements. Besides anomalies

at the known magnetic transitions at the Néel temperature and during the

spin reorientation process, we found new anomalies above the spin ordering

temperature of the iron spins and below room temperature.

133



Conclusion and Perspectives

The spin ordering of the iron spins at the Néel temperature has no measur-

able impact on the lattice. During the spin reorientation process, however,

the elastic constants show an interesting softening. The anomaly at high

temperature is rather subtle and asks for further inspection to confirm its

existence and clarify its origin.

The low-temperature anomalies were attributed to a spin-lattice interaction

due to ordering of the samarium-samarium spin sublattice. The similarities

of these features in the Raman spectra to data of structurally similar mate-

rials such as TbMnO3 and GdMnO3 indicate, that this phenomenon is not

only restricted to SmFeO3. However, an advantage of SmFeO3 (and poten-

tially of other RFeO3) is the clear separation of the ordering temperatures

of the iron and samarium sublattices, in contrast to orthomanganites or or-

thochromites. This separation in temperature allows to study the ordering

processes independently. Furthermore, the high ordering temperature of the

samarium spin sublattice is particularly interesting since the magnetism of

rare-earths is commonly assumed to order below 10 K. This finding raises

the question if high-ordering temperature is a property unique to samar-

ium or SmFeO3, or if other rare-earth components show a similar behavior.

Based on the here observed signature, and the Sm3+-spin ordering scenario,

we suggest in-depth investigations of the magnetic structure at low temper-

atures, e.g. by neutron scattering, and first-principle calculations, to confirm

or evoke new scenarios.

As a perspective, both structural instabilities, during spin reorientation and

at low temperatures, offer various possibilities for spin-lattice coupling inter-

actions. Naturally, the question raises if the ordering of the samarium spins

can induce a ferroelectric displacement as it has been found in GdFeO3,

or if an additional magnetic field will give rise to ferroelectricity such as

in DyFeO3
15. Equally it is of interest to investigate the process of spin

reorientation under an external magnetic or electric field in order to trig-

ger a potential structural phase transition. Additionally, in SmFeO3 thin

films, different strain states depending on the substrate may act in favour

of certain magnetically induced phase changes. Similarly, heterostructures

of SmFeO3 and an either strongly magnetic or polar material are of interest

to be investigated if they can trigger multiferroic properties.

Overall, SmFeO3 offers a large “playground” with a wide range of spin-

lattice coupling possibilities worth investigating.
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Finally, we have traced the closure of the electronic band gap with the

temperature in BiFeO3 using multi-wavelength Raman spectroscopy. This

investigation reveals an interesting and complex signature, well beyond what

is generally discussed in literature. The complexity is due to both in-band

gap states and likely a complex electronic structure. Importantly, the com-

parison of first- and second-order scattering allowed us to demonstrate that

the intriguing closure of the band gap of BiFeO3 results from a shrinking of

an indirect transition. While we have proposed a first schematic scenario,

a detailed understanding asks for future additional investigations, by both

theoretical and experimental means. In particular, our studies motivates the

reinvestigation of the calculated band structure, also temperature-dependent

first-principle calculations could help to understand the closure of the indi-

rect band gap. The experimental investigation of the shape of the valence

band and change of the band structure with the temperature by resonant

inelastic X-ray scattering shall be helpful to understand the electronic prop-

erties of BiFeO3. Furthermore, the role of defect states requires attention,

such as the proposed oxygen-defects states. Defects in BiFeO3 have been

shown to be of importance for the bulk-photovoltaic effect228, so that more

detailed knowledge on the nature and energy states of the defects will be of

value.

Our approach to BiFeO3 is so far unique in the field of multiferroic oxides.

More generally, we expect that investigations by wavelength-dependent Ra-

man scattering are of interest for other functional oxides materials. The ap-

proach will be namely of value for the investigation of electronic transitions,

in particular to distinguish between direct and indirect transitions. Be-

sides functional oxides, the approach may be interesting for the structurally

complex organic-inorganic perovskite-solar-cells recently receiving much at-

tention.

135



136



Bibliography

[1] Http://www.independent.co.uk/environment/global-warming-data-

centres-to-consume-three-times-as-much-energy-in-next-decade-

experts-warn-a6830086.html (2016).

[2] Awada, U., Li, K., and Shen, Y. International Journal of Cloud Com-

puting and services science 3(3), 31–48 (2014).

[3] Http://ec.europa.eu/research/industrial technologies/promotional-

material en.html. (2016).

[4] Bibes, M. Nature materials 11(5), 354–7 may (2012).

[5] Ramesh, R. and Spaldin, N. A. Nature materials 6(1), 21–9 jan (2007).

[6] Khomskii, D. Physics 2, 20 mar (2009).

[7] Hill, N. A. The Journal of Physical Chemistry B 104(29), 6694–6709

jul (2000).

[8] Tokunaga, Y., Furukawa, N., Sakai, H., Taguchi, Y., Arima, T.-h.,

and Tokura, Y. Nature materials 8(7), 558–562 (2009).

[9] Kreisel, J., Alexe, M., and Thomas, P. A. Nature materials 11(4), 260

apr (2012).

[10] Fridkin, V. M. and Popov, B. N. Physica Status Solidi (a) 46(2),

729–733 apr (1978).

[11] Fridkin, V. M. Photoferroelectrics. Springer-Verlag, Berlin Heidelberg

New York, (1979).

[12] Fridkin, V. M. Crystallography Reports 46(4), 654–658 jul (2001).

[13] White, R. L. Journal of Applied Physics 40(1969), 1061–1069 (1969).

137



Bibliography

[14] Cheng, Z., Hong, F., Wang, Y., Ozawa, K., Fujii, H., Kimura, H.,

Du, Y., Wang, X., and Dou, S. ACS Applied Materials and Interfaces

(2014).

[15] Tokunaga, Y., Iguchi, S., Arima, T., and Tokura, Y. Physical Review

Letters 101(9), 097205 aug (2008).

[16] Lee, J.-H., Jeong, Y. K., Park, J. H., Oak, M.-A., Jang, H. M., Son,

J. Y., and Scott, J. F. Physical Review Letters 107(11), 117201 sep

(2011).

[17] Johnson, R. D., Terada, N., and Radaelli, P. G. Physical Review

Letters 108(21), 219701 may (2012).

[18] Lee, J.-H., Jeong, Y. K., Park, J. H., Oak, M.-A., Jang, H. M., Son,

J. Y., and Scott, J. F. Physical Review Letters 108(21), 219702 may

(2012).

[19] Kuo, C.-Y., Drees, Y., Fernández-Dı́az, M. T., Zhao, L., Vasylechko,

L., Sheptyakov, D., Bell, A. M. T., Pi, T. W., Lin, H.-J., Wu, M.-K.,

Pellegrin, E., Valvidares, S. M., Li, Z. W., Adler, P., Todorova, A.,
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J. B., da Silva, J. M. M., Sá, M. A., Vilela, S. M. F., and Tavares,

P. B. Journal of Electroceramics 25(2-4), 203–211 oct (2010).

[133] Daniels, L. M., Weber, M. C., Lees, M. R., Guennou, M., Kashtiban,

R. J., Sloan, J., Kreisel, J., and Walton, R. I. Inorganic chemistry

52(20), 12161–9 oct (2013).

[134] Damen, T., Porto, S., and Tell, B. Physical Review 142(2), 570–574

feb (1966).

[135] Iliev, M., Litvinchuk, A., Hadjiev, V., Wang, Y.-Q., Cmaidalka, J.,

Meng, R.-L., Sun, Y.-Y., Kolev, N., and Abrashev, M. Physical Review

B 74(21), 214301 dec (2006).

[136] Laverdière, J., Jandl, S., Mukhin, A., Ivanov, V., and Iliev, M. Phys-

ical Review B 73, 214301 jun (2006).

[137] Andreasson, J., Holmlund, J., Knee, C., Käll, M., Börjesson, L., Naler,
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[169] Köningstein, J. A. and Schaack, G. Physical Review B 2(5), 1242–1250

sep (1970).
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