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Foreword

This volume of the Travaux Mathématiques is dedicated to the Centre for
Quantum Geometry of Moduli Spaces (QGM) at Aarhus University, Denmark.

QGM was established in 2009 as a Center of Excellence funded by the Danish
National Research Foundation. The research objective is to address fundamental
mathematical problems at the interface between geometry and theoretical physics,
in particular to further our understanding of quantum geometry of moduli spaces.
One of its goals is to advance our knowledge about special kinds of quantum
field theories such as Topological Quantum Field Theories and topological twisted
theories. Furthermore, the mission of the centre is to explore applications of these
theories and techniques in the understanding of macromolecular biology.

Based at Aarhus University and directed by Professor Jørgen Ellegaard An-
dersen, QGM hosts a strong team of high profile, internationally acclaimed re-
searchers. With the continuous generation of ground-breaking results, the Centre
together with its international collaborators are recognised throughout the math-
ematics community worldwide as one of the leading research institutions within
its field of research.

The biannual International School and Conference on Geometry and Quanti-
zation (GEOQUANT) is now a well-established event in the scientific field. The
main theme of the GEOQUANT conferences has strong ties to the research focus
of QGM. This is further underlined by the fact that the next GEOQUANT confer-
ence will be hosted by QGM in August 2017. Travaux Mathématiques has several
times before published volumes dedicated to the GEOQUANT conferences and
intend to continue this tradition in connection with the upcoming GEOQUANT
conference at QGM.

At the previous GEOQUANT school and conference at ICMAT in Madrid,
Spain, 2015, the editor of this volume took, on the above background, the initiative
to solicit articles for this volume of Travaux Mathématiques dedicated to the work
of centre director Jørgen Ellegaard Andersen and other researchers at QGM. The
intention is to give a snapshot of the very interesting spread of pure mathematics
together with its application, which are being conducted currently by researchers
at QGM.

Martin Schlichenmaier
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Collection of Summaries

Jørgen Ellegaard Andersen and Niccolo Skovg̊ard Poulsen
Coordinates for the Universal Moduli Space of Holomorphic Vector Bundles

(pp. 9–39)

In this paper we provide two ways of constructing complex coordinates on
the moduli space of pairs of a Riemann surface and a stable holomorphic vector
bundle centered around any such pair. We compute the transformation between
the coordinates to second order at the center of the coordinates. We conclude
that they agree to second order, but not to third order at the center.

Jørgen Ellegaard Andersen and Jens-Jakob Kratmann Nissen
Asymptotic aspects of the Teichmüller TQFT (pp. 41–95)

We calculate the knot invariant coming from the Teichmüller TQFT introduced
by Andersen and Kashaev a couple of years ago. Specifically we calculate the
knot invariant for the complement of the knot 61 both in Andersen and Kashaev’s
original version of Teichmüller TQFT but also in their new formulation of the
Teichmüller TQFT for the one-vertex H-triangulation of (S3, 61). We show that
the two formulations give equivalent answers. Furthermore we apply a formal
stationary phase analysis and arrive at the Andersen-Kashaev volume conjecture.

Furthermore we calculate the first examples of knot complements in the new
formulation showing that the new formulation is equivalent to the original one in
all the special cases considered.

Finally, we provide an explicit isomorphism between the Teichmüller TQFT
representation of the mapping class group of a once punctured torus and a repre-
sentation of this mapping class group on the space of Schwartz class functions on
the real line.

Jørgen Ellegaard Andersen and Simone Marzioni
Level N Teichmüller TQFT and Complex Chern–Simons Theory (pp. 97–146)

In this manuscript we review the construction of the Teichmüller TQFT due
to Andersen and Kashaev. We further upgrading it to a theory dependent on
an extra odd integer N using results developed by Andersen and Kashaev in
their work on complex quantum Chern-Simons theory. We also describe how this
theory is related with quantum Chern–Simons Theory at level N with gauge group
PSL(2, C).
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Jørgen Ellegaard Andersen and William Elbæk Petersen
Construction of Modular Functors from Modular Categories (pp. 147–211)

In this paper we follow the constructions of Turaev’s book, ”Quantum invari-
ants of knots and 3-manifolds” closely, but with small modifications, to construct a
modular functor, in the sense of Kevin Walker, from any modular tensor category.
We further show that this modular functor has duality and if the modular tensor
category is unitary, then the resulting modular functor is also unitary. We further
introduce the notion of a fundamental symplectic character for a modular tensor
category. In the cases where such a character exists we show that compatibilities
between the structures in a modular functor can be made strict in a certain sense.
Finally we establish that the modular tensor categories which arise from quantum
groups of simple Lie algebras all have natural fundamental symplectic characters.

Jørgen Ellegaard Andersen, Hiroyuki Fuji, Robert C. Penner, and
Christian M. Reidys
The boundary length and point spectrum enumeration of partial chord diagrams
using cut and join recursion (pp. 213–232)

We introduce the boundary length and point spectrum, as a joint generaliza-
tion of the boundary length spectrum and boundary point spectrum introduced
by Alexeev, Andersen, Penner and Zograf. We establish by cut-and-join methods
that the number of partial chord diagrams filtered by the boundary length and
point spectrum satisfies a recursion relation, which combined with an initial con-
dition determines these numbers uniquely. This recursion relation is equivalent
to a second order, non-linear, algebraic partial differential equation for the gener-
ating function of the numbers of partial chord diagrams filtered by the boundary
length and point spectrum.

Jørgen Ellegaard Andersen, Hiroyuki Fuji, Masahide Manabe, Robert
C. Penner, and Piotr Su lkowski
Partial Chord Diagrams and Matrix Models (pp. 233–283)

In this article, the enumeration of partial chord diagrams is discussed via
matrix model techniques. In addition to the basic data such as the number of
backbones and chords, we also consider the Euler characteristic, the backbone
spectrum, the boundary point spectrum, and the boundary length spectrum. Fur-
thermore, we consider the boundary length and point spectrum that unifies the
last two types of spectra. We introduce matrix models that encode generating
functions of partial chord diagrams filtered by each of these spectra. Using these
matrix models, we derive partial differential equations – obtained independently
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by cut-and-join arguments in an earlier work – for the corresponding generating
functions.

Jørgen Ellegaard Andersen, Hiroyuki Fuji, Masahide Manabe, Robert
C. Penner, and Piotr Su lkowski
Enumeration of Chord Diagrams via Topological Recursion and Quantum Curve
Techniques (pp. 285–323)

In this paper we consider the enumeration of orientable and non-orientable
chord diagrams. We show that this enumeration is encoded in appropriate expec-
tation values of the β-deformed Gaussian and RNA matrix models. We evaluate
these expectation values by means of the β-deformed topological recursion, and
– independently – using properties of quantum curves. We show that both these
methods provide efficient and systematic algorithms for counting of chord dia-
grams with a given genus, number of backbones and number of chords.
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Coordinates for the Universal Moduli Space

of Holomorphic Vector Bundles

by Jørgen Ellegaard Andersen and Niccolo Skovg̊ard Poulsen1

Abstract

In this paper we provide two ways of constructing complex coordinates
on the moduli space of pairs of a Riemann surface and a stable holomorphic
vector bundle centred around any such pair. We compute the transforma-
tion between the coordinates to second order at the center of the coordi-
nates. We conclude that they agree to second order, but not to third order
at the center.

1 Introduction

Fix g, n > 1 to be integers and let d ∈ {0, . . . n − 1}. Let Σ be a closed oriented
surface of genus g. Consider the universal moduli space M consisting of equiva-
lence classes of pairs (φ : Σ → X,E) where X is a Riemann Surface of genus g,
φ : Σ → X is a diffeomorphism and E is a semi-stable bundle over X of rank n
and degree d. Let Ms be the open dense subset of M consisting of equivalence
classes of such pairs (φ : Σ → X,E) with E stable. The main objective of this
paper is to provide coordinates in a neighbourhood of the equivalence class of any
pair (φ : Σ→ X,E) in Ms. There is an obvious forgetful map

πT :M→ T

where T is the Teichmüller space of Σ, whose fiber over [φ : Σ → X] ∈ T is
the moduli space of semi-stable bundles for that Riemann surface structure on Σ.
Let πsT : Ms → T denote the restriction of πT to Ms, and we denote a point
[φ : Σ→ X] in T by σ.

We recall that locally around any σ ∈ T there are the Bers coordinates
[AhB]. Further, for any point [E] in some fiber (πsT )−1(σ) we have the Zograf
and Takhtadzhyan coordinates near [E] along that fiber of πT [TZ1].

In order to describe our coordinates onMs we recall the Narasimhan-Seshadri
theorem. Let π̃1(Σ) be the universal central Z/nZ extension of π1(Σ) and let M

1Work supported in part by the center of excellence grant “Center for Quantum Geometry
of Moduli Spaces” from the Danish National Research Foundation (DNRF95).
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be the moduli space of representations of π̃1(Σ) to U(n) such that the central
generator goes to e2πid/nId. Let M ′ be the subset of M consisting of equivalence
classes of irreducible representations. The Narasimhan-Seshadri theorem gives us
a diffeomorphism

Ψ : T ×M ′ →Ms

which we use to induce a complex structure on T ×M ′ such that Ψ is complex
analytic. We will now represent a point in T by a representation

ρ0 : π̃1(Σ)→ PSL(2)

and denote the corresponding point in Teichmüller space by Xρ0 . Here ρ0 is really
a representation of π1(Σ) pulled back to π̃1(Σ). A point in M ′ will be represented
by a representation

ρE : π̃1(Σ)→ U(n)

which corresponds to the stable holomorphic bundle E on Xρ0 .
We build complex analytic coordinates around any such (ρ0, ρE) ∈ T ×M ′ by

providing a complex analytic isomorphism from a small neighbourhood around
0 in the vector space H0,1(Xρ0 , TXρ0) ⊕H0,1(Xρ0 ,EndE) to a small open subset
containing (ρ0, ρE) in T ×M ′.

The coordinates are given by constructing a certain family

(1.1) Φµ⊕ν : H×GL(n,C)→ H×GL(n,C)

of bundle maps of the trivial GL(n,C)-principal bundles over H indexed by pairs
of sufficiently small elements

µ⊕ ν ∈ H0,1(Xρ0 , TXρ0)⊕H0,1(Xρ0 ,EndE).

These bundle maps will uniquely determine representations (ρµ, ρµ⊕νE ) ∈ T ×M ′

such that

(1.2) ρµ(γ)× ρµ⊕νE (γ) = Φµ⊕ν ◦ (ρ0(γ)× ρE(γ)) ◦ (Φµ⊕ν)−1

for all γ ∈ π̃1(X) by the following theorem. Pick a base point z0 ∈ H and let
pGL(n,C) be the projection onto GL(n,C) of the trivial bundle H×GL(n,C).

Theorem 1.1. For all sufficiently smallµ⊕ν∈H0,1(Xρ0 , TXρ0)⊕H0,1(Xρ0 ,EndE)
there exist a unique bundle map Φµ⊕ν such that

1. Φµ⊕ν solves

(1.3) ∂̄HΦµ⊕ν = ∂Φµ⊕ν(µ⊕ ν),

where ν is considered a left-invariant vector field on GL(n,C) at each point
in H.
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2. The base map extends to the boundary of H and fixes 0, 1 and ∞.

3. The pair of representations (ρµ, ρµ⊕νE ) defined by equation (1.2) represents a
point in T ×M ′.

4. pGL(n,C)(Φ
µ⊕ν(z0, e)) has determinant 1 and is positive definite.

From this theorem we easily derive our main theorem of this paper.

Theorem 1.2. Mapping all sufficiently small pairs

µ⊕ ν ∈ H0,1(Xρ, TXρ)⊕H0,1(Xρ,EndE)

to
(ρµ, ρµ⊕νE ) ∈ T ×M ′

provides local analytic coordinates centered at (ρ0, ρE) ∈ T ×M ′.

Our second coordinate construction provides fibered coordinates, which along
T uses Bers’ coordinates, [AhB], and which uses Zograf and Takhtadzhyan’s co-
ordinates [TZ1] along the fibers. We refer to section 4 for the precise description
of these fibered coordinates.

Finally, we compare the two sets of coordinates by computing the infinitesi-
mal transformation of the coordinates up to second order at the center of both
coordinates.

Theorem 1.3. The fibered coordinates and the universal coordinates agree to
second order, but not the third order at the center of the coordinates.

We refer to Theorem 5.5, for the details of how the two set of coordinates differ
at third-order.

With these new coordinates we get a new tool to analyse the metric and the
curvature of the moduli space. Here we have taken the first step in understanding
the curvature by calculating the second variation of the metric in local coordinates,
at the center point. We intend to return to the full calculation of the curvature
in these coordinates in a future publication.

Remark 1.4. If we perform our construction using elements of H0,1(X, (End0E))
where (End0E) is the subspace of traceless endomorphisms, we get coordinates
on the universal SU(n) moduli space in a completely similar way.

The coordinate construction presented in this paper has been used and modi-
fied by the authors of this paper in [AP1], so as to give Kähler coordinates on the
universal moduli space. In these modified coordinates, it was possible to verify
an explicit expression for the Ricci potential for universal moduli space. Fur-
ther in the paper [AP2], the result of this paper and that of [AP1] was used to
compute explicitly the curvature of the Hitchin connection. This is of current
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great interest, since the Hitchin connection is know to be equivalent to the TUY
connection [TUY] by the work of Laszlo [L] and by the work of Andersen and
Ueno [AU1, AU2, AU3, AU4] the modular functor which underlies the confor-
mal field theories studied by Tsuchiya, Ueno and Yamada [TUY] is equivalent to
the Witten-Reshetikhin-Turaev TQFT [T, RT1, RT2]. This connection has been
exploited significantly by Andersen and collaborators in a series of papers to ob-
tain deep results about the WRT-TQFT [A1, A2, AGr1, AH, AMU, A3, A4, A5,
AGa1, AB1, A6, AGL, AHi, A7].

Acknowledgements

We would like to thank Peter Zograf for many interesting discussions.

2 The Complex Structure on Ms from a Differ-

ential Geometric Perspective

Recall that we endow the space T ×M with the structure of a complex manifold
by using the Narasimhan-Seshadri theorem to provide us with the diffeomorphism

Ψ : T ×M ′ →Ms

and then declaring it to be complex analytic. There is the following alternative
construction of this complex manifold structure.

Recall the general setting of [AGL] in the context of geometric quantization
and the Hitchin connection, namely T̃ is a general complex manifold and (M̃, ω) is
a general symplectic manifold. In that paper a construction of a complex structure
on T̃ ×M̃ is provided via the following proposition. But first we need the following
definition.

Definition 2.1. A family of Kähler structures on (M̃, ω) parametrized by T̃ is
called holomorphic if it satisfies:

V ′[J ] = V [J ]′ V ′′[J ] = V [J ]′′

for all vector fields V on T̃ . Here the single prime on V denotes projection on the
(1, 0)-part and the double prime on V denotes projection on the (0, 1)-part of the
vector field V . Further V [J ] ∈ Tσ ⊗ (T̄σ)∗ ⊕ T̄σ ⊗ T ∗σ and we let V [J ]′ denote the
projection on the first, and V [J ]′′ the projection on the second factor.

Proposition 2.2 ([AGL, Proposition 6.2]). The family Jσ of Kähler structures
on M̃ is holomorphic, if and only if the almost complex structure J given by

J(V ⊕X) = IV ⊕ JσX, ∀(σ, [ρE]) ∈ T̃ × M̃, ∀(V,X) ∈ Tσ,[ρE ](T̃ × M̃),

is integrable.
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The family of complex structures on M ′ considered in [H] see also [AGL], [A6]
and [AGa1], given by the Hodge star, −?σ, σ ∈ T , fulfills the requirements of the
proposition with respect to the Atiyah-Bott symplectic form ω on M ′. We will
denote the complex structure which T ×M ′ has by J .

Proposition 2.3. We have that the map

Ψ : (T ×M ′, J)→Ms

is complex analytic, e.g. J is in fact the complex analytic structure this space gets
from the Narasimhan-Seshadri diffeomorphism Ψ.

Proof. In order to understand the complex structure of T ×M ′ from the algebraic
geometric perspective we want to construct holomorphic horizontal sections of
T ×M ′ → T . We will use the universal property of the space of holomorphic
bundles to show that the sections T → T × {ρE} ⊂ T ×M ′ are holomorphic for
all [ρE] in M ′.

Our first objective is to construct a holomorphic family of vector bundles over
Teichmüller space, where each bundle corresponds to the same unitary represen-
tation of π̃1(Σ). We start from the universal curve T × Σ and its universal cover
T × Σ̃. Both of these spaces are complex analytic, and we get the universal curve
T × Σ as the quotient of T × Σ̃ by the holomorphic π1(Σ) action.

This allows us to construct the vector bundles over T as the sheaf theoretic
quotient of

T × Σ̃× Cn

by the π̃1(Σ) action, given by the π1(Σ)-action on T ×Σ̃, and the unitary action on
Cn given by our fixed representation ρE : π̃1(Σ) → U(n) (see [MS] for details on
this construction, where we simply just compose representations with the natural
quotient map from π1(Σ− {p}) to π̃1(Σ) to match up the setting of this paper to
a special case of the setting in [MS]). The action is of course holomorphic, and so
the quotient (fiberwise invariant sections over T ) is a family of Riemann surfaces
with a holomorphic vector bundle over it of rank n and degree d. The universal
property of Ms implies that this family therefore induced a holomorphic section

ιρE : T →Ms

by the universality of the moduli space Ms. This shows that the horizontal
sections are holomorphic submanifolds, and so the tangent space must split at
every point as I ⊕ Jσ. Here Jσ must be −?σ since it comes from the structure of
the fibers.

The conclusion is, that the algebraic complex structure on the moduli space
of pairs of a Riemann surface and a holomorphic vector bundle over it and the
complex structure from [AGL] on T ×M ′ are the same.
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3 Coordinates for the Universal Moduli Space

of Holomorphic Vector Bundles

In this section we prove Theorem 1.1.
We will need the composition of the map Φµ⊕ν with the projection on each of

the two factors, which we denote as follows:

Φµ⊕ν
1 : H×GL(n,C)→ H,

Φµ⊕ν
2 : H×GL(n,C)→ GL(n,C).

In fact Φµ⊕ν
1 is the projection onto H followed by the induced map on the base

by (3.3) below.
The equation (1.3) is equivalent to the following two equations on Φµ⊕ν

i :

∂̄HΦµ⊕ν
1 (z, g) = µ∂HΦµ⊕ν

1 (z, g)(3.1)

∂̄HΦµ⊕ν
2 (z, g) = µ∂HΦµ⊕ν

2 (z, g) + ∂GL(n,C)Φ
µ⊕ν
2 (z, g)ν.(3.2)

since ∂GL(n,C)Φ
µ⊕ν
1 (z, g) = 0. With this simplification the first equation is exactly

Bers’s equation for

(3.3) Φµ
1(z) = Φµ⊕ν

1 (z, g),

and so we can solve it using the techniques in [AhB], and we obtain a Riemann
surface Xρµ corresponding to a representation ρµ.

The second equation (3.2) we solve in two steps. First, we identify ν with
an endomorphism valued 1-form using the standard identification of left invariant
vector fields and elements of the Lie algebra. To solve the equation we consider
the anti-holomorphic solution of the equation

∂̄HΦν
−(z, e) = ∂GL(n,C)Φ

ν
−(z, g)(ν)|g=e = Φν

−(z, e) · ν

and extend it equivariantly to the rest of H×GL(n,C). We observe that ∂HΦν
− =

0 since it is anti-holomorphic. And so it follows, by adding 0 to the defining
equation of Φν

− that:

∂̄HΦν
−(z, g) = ∂GL(n,C)Φ

ν
−(z, g)(ν) + µ∂HΦν

−(z, g).

The vector bundle on Xρµ corresponding to the representation

χν(γ) = Φν
−(ρ0(γ)z, e)ρ0⊕0

E (γ)(Φν
−(z, e))−1

is stable, if µ⊕ ν is small enough. This means, we can find a holomorphic gauge
transformation on the universal cover of Xρµ , Φµ⊕ν

+ : H→ GL(n,C), such that

(3.4) ρµ⊕νE (γ) = Φµ⊕ν
+ (ρµ(γ)z)χµ⊕ν(γ)(Φµ⊕ν

+ (z))−1
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is an admissible U(n)-representation and independent of z by the Narasimhan-
Seshadri theorem [NSNS]. Now we use the basemap to define Φ̃µ⊕ν

+ = Φµ⊕ν
+ ◦ Φµ

1 .
The following computation shows that the map Φ̃µ⊕ν

+ is in the kernel of ∂̄H −
µ∂H:

(∂̄H − µ∂H)Φ̃µ⊕ν
+ = (∂̄HΦµ⊕ν

+ ) ◦ Φµ
1 ∂̄HΦ̄µ

1 + (∂HΦµ⊕ν
+ ) ◦ Φµ

1 ∂̄HΦµ
1

− µ(∂̄HΦµ⊕ν
+ ) ◦ Φµ

1∂HΦ̄µ
1 − µ(∂HΦµ⊕ν

+ ) ◦ Φµ
1∂HΦµ

1

We then use the differential equation ∂̄Φµ
1 = µ∂Φµ

1 and that ∂̄HΦµ⊕ν
+ = 0 to get

that

(∂̄H − µ∂H)Φ̃µ⊕ν
+ = ∂HΦµ⊕ν

+ ◦ Φµ
1µ∂HΦµ

1 − µ∂HΦµ⊕ν
+ ◦ Φµ

1∂HΦµ
1 = 0.

Define Φµ⊕ν
2 (z, g) = Φ̃µ⊕ν

+ (z, g)Φν
−(z, g). We see that Φµ⊕ν

2 fulfills equation (3.2)
by the following calculation

∂̄HΦµ⊕ν
2 = (∂̄HΦ̃µ⊕ν

+ )(Φν
−) + (Φ̃µ⊕ν

+ )(∂̄HΦν
−)

= (∂̄HΦ̃µ⊕ν
+ )(Φν

−) + (Φ̃µ⊕ν
+ )(∂GL(n,C)Φ

ν
−ν)

since Φ̃µ⊕ν
+ ∈ ker(∂̄H − µ∂H) we get that

∂̄HΦµ⊕ν
2 = (µ∂HΦ̃µ⊕ν

+ )(Φν
−) + (Φ̃µ⊕ν

+ )(∂GL(n,C)Φ
ν
−ν).

To finish the calculation we use that Φ+ and Φ1 are independent of the GL(n,C)
factor, and therefore so is Φ̃µ⊕ν

+ . Also Φµ⊕ν
− is antiholomorphic so we have that

∂̄HΦµ⊕ν
2 = µ∂H(Φ̃µ⊕ν

+ Φν
−) + ∂GL(n,C)(Φ̃

µ⊕ν
+ Φν

−)ν

= µ∂HΦµ⊕ν
2 + (∂GL(n,C)Φ

µ⊕ν
2 )ν

To show that we still get an admissible representation, we use that (3.4) is inde-
pendent of which z we choose. This lets us conclude that

ρµ⊕νE (γ) =Φµ⊕ν
+ (ρµ(γ)Φµ

1(z))χµ⊕ν(γ)(Φµ⊕ν
+ (Φµ

1(z)))−1

=Φµ⊕ν
+ (Φµ

1(ρ0(γ)(Φµ
1)−1(Φµ

1(z))))χµ⊕ν(γ)(Φµ⊕ν
+ (Φµ

1(z)))−1

=Φ̃µ⊕ν
+ (ρ0(γ)z)χµ⊕ν(γ)(Φ̃µ⊕ν

+ (z))−1,

and so
ρµ⊕νE (γ) = Φµ⊕ν

2 (ρ0(γ)z, g)ρ0⊕0
E (γ)(Φµ⊕ν

2 (z, g))−1

is an admissible U(n)-representation. Finally, the requirement that Φµ⊕ν
2 (z0, e) is

a positive definite matrix of determinant 1 fixes all remaining indeterminacy as in
[TZ1].
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3.1 The Tangent Map from Kodaira-Spencer Theory

We will now analyse the tangential map of our coordinates. The only problematic
part is what happens in the tangent directions parallel to the fibers. We can
calculate the Kodaira-Spencer map of the family of representations ρµ⊕ν+tµ̃⊕ν̃

E , t ∈
C. However, to ease the computation we first prove the following lemma.

Lemma 3.1. We let Xρ0 be a Riemann surface and ρ0 the corresponding repre-
sentation of π1(Xρ0). For a family of representations of Rt : π̃1(Xρ0) → U(n),
where

Rt(γ) = Υ(t, ρ0(γ)z)ρE(γ)Υ(t, z)−1

with both ρ0 and ρE independent of t and Υ any smooth map

Υ : C×H→ GL(n,C),

we have that the Kodaira-Spencer class’s harmonic representative of the family Rt

at t = 0 is:

P 0,1
ρ0,E

(
AdΥ(0, z)

(
d

dt

∣∣∣∣
t=0

Υ(t, z)−1∂̄HΥ(t, z)

))
∈ H0,1(X0,EndER0).

Here P 0,1
ρ0,E

denotes the projection on the harmonic forms on Xρ0 with values in
EndER0.

Proof. To compute the Kodaira-Spencer map we first consider d
dt

∣∣
t=0

Rt and note,
this is an element of H1(X,End(E)). However, this cohomology group is isomor-
phic to H0,1(X,EndE). The isomorphism is constructed by finding a Čech chain
with values in the sheaf Ω1(EndE), say ϕi, such that

δ∗(φ)ij = φi − φj =
d

dt

∣∣∣∣
t=0

Rt(γij),

for open sets Ui ∩ Uj 6= ∅ which are related by the transformation γij ∈ π̃1(Σ)
on the universal cover. Once φi has been found, P 0,1

ρ0,E
(∂̄Hφi) will give a harmonic

representative of the Kodaira-Spencer class.
We can now calculate that

d

dt

∣∣∣∣
t=0

Rt(γij) =
d

dt

∣∣∣∣
t=0

Υ(t, ρ0(γ)z)ρE(γ)Υ(t, z)−1

=
d

dt

∣∣∣∣
t=0

Υ(t, ρ0(γ)z)ρE(γ)Υ(0, z)−1

+ Υ(0, ρ0(γ)z)ρE(γ)
d

dt

∣∣∣∣
t=0

Υ(t, z)−1

=
d

dt

∣∣∣∣
t=0

(Υ(t, ρH(γij)z)Υ(0, ρ0(γij)z)−1)R0(γij)
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−R0(γij)
d

dt

∣∣∣∣
t=0

(Υ(t, z)Υ(0, z)−1)

= R0(γij)δ(
d

dt

∣∣∣∣
t=0

(Υ(t, z)Υ(0, z)−1))ij

The Kodaira-Spencer class is then:

∂̄H
d

dt

∣∣∣∣
t=0

(Υ(t, z)Υ(0, z)−1) = AdΥ(0, z)

(
d

dt

∣∣∣∣
t=0

Υ(t, z)−1∂̄HΥ(t, z)

)
.

We compose with the harmonic projection to get the harmonic representative.

We have the following proposition.

Proposition 3.2. The Kodaira-Spencer map of ρµ⊕ν+tµ̃⊕ν̃
E , t ∈ C at µ ⊕ ν ∈

H0,1(X,TX)⊕H0,1(X,EndE),

KSµ⊕ν : H0,1(X,TX)⊕H0,1(X,EndE)→ H0,1(Xρµ , TXρµ)⊕H0,1(Xρµ ,EndEρµ⊕νE
)

is given by

KSµ⊕ν(µ̃ ⊕ ν̃) = Pµµ̃
µ ⊕ P 0,1

µ⊕ν
(
(Φµ

1)−1
∗
(
AdΦµ⊕ν

2

(
µ̃(Φµ⊕ν

2 )−1∂Φµ⊕ν
2 + ν̃

)))
.

Here µ̃µ = ( µ̃
1−|µ|2

∂Φµ1
∂Φµ1

) ◦ (Φµ
1)−1 and Pµ and P 0,1

µ⊕ν are the L2-projections on the

harmonic forms H0,1(Xρµ , TXρµ) respectively H0,1(Xρµ ,EndEρµ⊕νE
).

Proof. By using that the defining equation (1.2) for ρµ⊕ν+tµ̃⊕ν̃
E is independent of

z, we get that

ρµ⊕ν+tµ̃⊕ν̃
E = Φµ⊕ν+tµ̃⊕ν̃

2 (ρ0(γ)z), e)ρ0⊕0
E (γ)Φµ⊕ν

2 (z, e)−1

= Φµ⊕ν+tµ̃⊕ν̃
2 ((Φµ

1)−1(ρµ(γ)z), e)ρ0⊕0
E (γ)

· Φµ⊕ν
2 ((Φµ

1)−1(z), e)−1.

And so to find the Kodaira-Spencer class, by Lemma 3.1 we only need to calculate:

AdΦµ⊕ν
2 ◦ (Φµ

1)−1 d

dt
|t=0(Φµ⊕ν+tµ̃⊕ν̃

2 ◦ (Φµ
1)−1)−1∂̄(Φµ⊕ν+tµ̃⊕ν̃

2 ◦ (Φµ
1)−1)

=AdΦµ⊕ν
2 ◦ (Φµ

1)−1

· d
dt
|t=0((tµ̃(Φµ⊕ν+tµ̃⊕ν̃

2 )−1∂Φµ⊕ν+tµ̃⊕ν̃
2 ) ◦ Φµ

1)−1∂̄(Φ̄µ
1)−1

+ AdΦµ⊕ν
2 ◦ (Φµ

1)−1 d

dt
|t=0(ν + tν̃) ◦ (Φµ

1)−1∂̄(Φ̄µ
1)−1

=(Φµ
1)−1
∗
(
AdΦµ⊕ν

2

(
µ̃(Φµ⊕ν

2 )−1∂Φµ⊕ν
2 + ν̃

))
.(3.5)

Now to get the Kodaira-Spencer map we project on the harmonic (0, 1)-forms and
remark that in the Teichmüller directions we can apply the usual arguments from
the classical case of Bers’s coordinates.
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We see the map is injective and complex linear in both µ̃ and ν̃. Since we
know T × M ′ is a manifold the Implicit Function Theorem now implies that
the coordinates we constructed are in fact holomorphic coordinates in a small
neighbourhood. This completes the proof of Theorem 1.2.

4 The Fibered Coordinates

In this section we will fuse Zograf and Takhtadzhyan’s coordinates with Bers’s
coordinates in a kind of fibered manner in order also to produce coordinates on
T ×M ′, which are complex analytic with respect to J .

Since we trough any stable bundle have a copy of T embedded as a complex
submanifold, we can construct fibered coordinates, once we identify the tangent
spaces in the fiber direction locally along these copies of T . We identify them by
the maps

H0,1(Xρ0 ,EndEρ0E) 3 ν → νµ = P 0,1
µ ((Φµ

1)−1
∗ (ν)) ∈ H0,1(Xρµ ,EndEρ0µE ).

This identification gives us coordinates taking (µ, ν) to

(ρµ, ρ
νµ

E ) =
(

Φµ
1 ◦ ρ0(γ) ◦ (Φµ

1)−1, f ν
µ

(ρµ(γ)z)ρ00

E (γ)(f ν
µ

(z))−1
)
.

These are complex coordinates, since νµ are local holomorphic sections of the
tangent bundle.

Before we calculate the Kodaira-Spencer maps for these coordinate curves, we
will need to understand the derivatives of (Φµ

1)−1.

Lemma 4.1. We have the following two identities for (Φµ
1)−1 : H→ H

∂̄(Φµ
1)−1 = −µ ◦ (Φµ

1)−1∂̄(Φµ
1)−1.(4.1)

∂̄(Φµ
1)−1 =

(
1

1− |µ|2
1

∂Φµ
1

)
◦ (Φµ

1)−1.(4.2)

Proof. We consider the identity Φµ
1 ◦ (Φµ

1)−1(z) = z. And we use the differential
equation for Φµ

1 which is
∂̄Φµ

1 = µ∂Φµ
1

to calculate:

0 = ∂̄(Φµ
1 ◦ (Φµ

1)−1) = (∂̄Φµ
1) ◦ (Φµ

1)−1∂̄(Φµ
1)−1 + (∂Φµ

1) ◦ (Φµ
1)−1∂̄(Φµ

1)−1

= (µ∂Φµ
1) ◦ (Φµ

1)−1∂̄(Φµ
1)−1 + (∂Φµ

1) ◦ (Φµ
1)−1∂̄(Φµ

1)−1.

Now ∂Φµ
1 6= 0 for µ small, since Φ1 is a continuous perturbation of the identity

map Id : H→ H. We then calculate that

−µ ◦ (Φµ
1)−1∂̄(Φµ

1)−1 = ∂̄(Φµ
1)−1,
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which is (4.1). We can use (4.1) to describe ∂̄(Φµ
1)−1 by differentiating Φµ

1 ◦
(Φµ

1)−1(z) = z:

1 = ∂(Φµ
1 ◦ (Φµ

1)−1) = (∂̄Φµ
1) ◦ (Φµ

1)−1∂(Φµ
1)−1 + (∂Φµ

1) ◦ (Φµ
1)−1∂(Φµ

1)−1

= −µ(∂Φµ
1) ◦ (Φµ

1)−1µ̄∂̄(Φµ
1)−1 + (∂Φµ

1) ◦ (Φµ
1)−1∂(Φµ

1)−1

= ((1− |µ|2)(∂Φµ
1)) ◦ (Φµ

1)−1∂(Φµ
1))−1,

and so conjugating and isolating ∂̄(Φµ
1)−1 we find:

∂̄(Φµ
1)−1 =

(
1

1− |µ|2
1

∂Φµ
1

)
◦ (Φµ

1)−1

which proves (4.2).

Let κµ be an (n,m)-tensor with values in the holomorphic bundle Eρ0µE on the
Riemann surface Xρµ i.e.

κµ ∈ C∞(Xρµ , T
−nXρµ ⊗ T

−m
Xρµ ⊗ EndEρ0µE ).

Then we have that (Φµ
1)∗(κµ) = (κµ ◦ Φµ

1)(∂Φµ
1)n(∂Φµ

1)m and so

(Φµ
1)−1
∗ (κ0) = (κ0 ◦ (Φµ

1)−1)(∂Φµ
1)−n(∂Φµ

1)−m.

We have the families of unbounded operators

∂̄µ,E
ρ0
µ
E

: L2(Xρµ ,EndEρ0µE )→ L2(Xρµ , T
0,1 ⊗ EndEρ0µE ),

∂̄∗µ,E
ρ0
µ
E

: L2(Xρµ , T
0,1 ⊗ EndEρ0µE )→ L2(Xρµ ,EndEρ0µE )

∆µ,E
ρ0
µ
E

= ∂̄∗∂̄ : L2(Xρµ ,EndEρ0µE )→ L2(Xρµ ,EndEρ0µE ),

and the finite range operator

P 0,1
µ,E

ρ0
µ
E

: L2(Xρµ , T
0,1 ⊗ EndEρ0µE )→ L2(Xρµ , T

0,1 ⊗ EndEρ0µE )

given by
P 0,1
µ,E

ρ0
µ
E

= I − ∂̄µ,E
ρ0
µ
E

∆−1
0,µ,E

ρ0
µ
E

∂̄∗µ,E
ρ0
µ
E

,

where ∆0,µ,E
ρ0
µ
E

is the restriction of ∆µ,E
ρ0
µ
E

to the orthogonal complement of the

subspace consisting of constant functions tensor the identity, and P 0,1 is the pro-
jection on the harmonic (0, 1)-forms. We will also need the following results of
Takhtajan and Zograf.
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Lemma 4.2 ([TZ3]). We have the following variational formulae for the deriva-
tive at Xρ0

d

dt
|t=0(Φtµ̃

1 )∗∂̄tµ̃,E
ρ0
µ
E

(Φtµ̃
1 )−1
∗ = −µ̃∂0,E

d

dt̄
|t=0(Φtµ̃

1 )∗∂̄tµ̃,E
ρ0
µ
E

(Φtµ̃
1 )−1
∗ = 0

d

dt
|t=0(Φtµ̃

1 )∗∂̄
∗
tµ̃,E

ρ0
µ
E

(Φtµ̃
1 )−1
∗ = 0

d

dt
|t=0(Φtµ̃

1 )∗∂̄
∗
tµ̃,E

ρ0
µ
E

(Φtµ̃
1 )−1
∗ = −∂∗0,Eµ̃.

We further have at (Xρµ , Eρ0µE ), that

d

dt
|t=0(Φµ+tµ̃

1 )∗P
0,1
µ+tµ̃,E

ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗

= (Φµ
1)∗P

0,1
µ,E

ρ0
µ
E

(Φµ
1)−1
∗
d

dt
|t=0(Φµ+tµ̃

1 )∗∂̄µ+tµ̃,E
ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗

(Φµ
1)∗∆

−1
0,µ,E

ρ0
µ
E

∂̄∗µ,E
ρ0
µ
E

(Φµ
1)−1
∗

+ (Φµ
1)∗∂̄µ,E

ρ0
µ
E

∆−1
0,µ,E

ρ0
µ
E

(Φµ
1)−1
∗ |t=0(Φµ+tµ̃

1 )∗∂̄
∗
µ+tµ̃,E

ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗

d

dt
(Φµ

1)∗P
0,1
µ,E

ρ0
µ+tµ̃
E

(Φµ
1)−1
∗ .

Proof. The first identities are proven in [TZ3, Equation (2.6)] (without the EndE
factor, which makes no difference), the last statement is seen straightforwardly as
follows

d

dt
|t=0(Φµ+tµ̃

1 )∗P
0,1
µ+tµ̃,E

ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗ =
d

dt
|t=0(Φµ+tµ̃

1 )∗∂̄µ+tµ̃,E
ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗

(Φµ+tµ̃
1 )∗∆

−1
0,µ+tµ̃,E

ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗ (Φµ+tµ̃
1 )∗∂̄

∗
µ+tµ̃,E

ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗ .

We can then use the following identities

d

dt
|t=0(Φµ+tµ̃

1 )∗∆
−1
0,µ+tµ̃,E

ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗ = −(Φµ
1)∗∆

−1
0,µ,E

ρ0
µ
E

(Φµ
1)−1
∗

d

dt
|t=0(Φµ+tµ̃

1 )∗∆0,µ+tµ̃,E
ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗ (Φµ
1)∗∆

−1
0,µ,E

ρ0
µ
E

(Φµ
1)−1
∗ ,

d

dt
|t=0(Φµ+tµ̃

1 )∗∆0,µ+tµ̃,E
ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗

=
d

dt
|t=0(Φµ+tµ̃

1 )∗∂̄µ+tµ̃,E
ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗ (Φµ
1)∗∂̄

∗
µ,E

ρ0
µ
E

(Φµ
1)−1
∗

+
d

dt
|t=0(Φµ

1)∗∂̄µ,E
ρ0
µ
E

(Φµ
1)−1
∗ (Φµ+tµ̃

1 )∗∂̄
∗
µ+tµ̃,E

ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗ .

Now, putting this together and using that P 0,1
µ,E

ρ0
µ
E

= I− ∂̄µ,E
ρ0
µ
E

∆−1
0,µ,E

ρ0
µ
E

∂̄∗µ,E
ρ0
µ
E

we

have the last identity.
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Proposition 4.3. The Kodaira-Spencer map of the curve ρ
(ν+tν̃)µ+tµ̃

E at t = 0 is

KSνµ(µ̃⊕ ν̃) =Pµµ̃
µ ⊕ P 0,1

νµ

(
Ad(f ν

µ

)((f ν
µ

)−1 · (∂f νµ)µ̃µ + ν̃µ)

+Adf ν
µ

(Φµ
1)−1
∗
d

dt
|t=0(Φµ+tµ̃

1 )∗P
0,1
µ+tµ̃(Φµ+tµ̃

1 )−1
∗ (ν))(1− |µ ◦ (Φµ

1)−1|2)

))

with µ̃µ = ( µ̃
1−|µ|2

∂Φµ1
∂Φµ1

)◦(Φµ
1)−1 and Pµ and P 0,1

νµ the L2-projections on the harmonic

forms H0,1(Xρµ , TXρµ) respectively H0,1(Xρµ ,EndEρνµE )

Proof. First, we observe that the Teichmüller direction is unchanged from the

classical case. Now we want to use Lemma 3.1, and so using that ρ
(ν+tν̃)µ+tµ̃

E is
independent of z we find that

ρ
(ν+tν̃)µ+tµ̃

E (γ) = f (ν+tν̃)µ+tµ̃(ρµ+tµ̃(γ)z)ρE(γ)(f (ν+tν̃)µ+tµ̃(z))−1

= f (ν+tν̃)µ+tµ̃((Φµ+tµ̃
1 ((Φµ

1)−1(ρµ(γ)z)))ρE(γ)

(f (ν+tν̃)µ+tµ̃((Φµ+tµ̃
1 ((Φµ

1)−1(z)))−1.

Next we have to calculate

Ad(f ν
µ

)
d

dt
|t=0

((
(f (ν+tν̃)µ+tµ̃ ◦ Φµ+tµ̃

1 ) ◦ (Φµ
1)−1

)
∂̄
(

(f ν
µ+tµ̃

)−1 ◦ Φµ+tµ̃
1 ◦ (Φµ

1)−1
))

=Ad(f ν
µ

)
d

dt
|t=0

((
(ν + tν̃)µ+tµ̃) ◦ Φµ+tµ̃

1 ◦ (Φµ
1)−1

)
(∂(Φµ+tµ̃

1 ◦ (Φµ
1)−1))

)

+ Ad(f ν
µ

)
d

dt
|t=0

((
f (ν+tν̃)µ+tµ̃ ◦ Φµ+tµ̃

1 ◦ (Φµ
1)−1

)−1

· (∂f νµ) ◦ Φµ+tµ̃
1 ◦ (Φµ

1)−1(∂(Φµ+tµ̃
1 ◦ (Φµ

1)−1))
)
.

For the first term we find that

Ad(f ν
µ

)
d

dt
|t=0

((
(ν + tν̃)µ+tµ̃) ◦ Φµ+tµ̃

1 ◦ (Φµ
1)−1

)
(∂(Φµ+tµ̃

1 ◦ (Φµ
1)−1))

)
=

=
d

dt
|t=0(Ad(f ν

µ

)((ν + tν̃)µ+tµ̃) ◦ Φµ+tµ̃
1 ◦ (Φµ

1)−1

·
(

(∂Φµ+tµ̃
1 ◦ (Φµ

1)−1)∂(Φµ
1)−1 + (∂̄Φµ+tµ̃

1 ◦ (Φµ
1)−1)∂(Φ̄µ

1)−1
)
.

We can now rewrite the last factor using (4.1) and (4.2) and their conjugates to
get that

(∂Φµ+tµ̃
1 ◦(Φµ

1)−1)∂(Φµ
1)−1 + (∂̄Φµ+tµ̃

1 ◦ (Φµ
1)−1)∂(Φ̄µ

1)−1

= (∂Φµ+tµ̃
1 ◦ (Φµ

1)−1)∂(Φµ
1)−1

+ (((µ+ tµ̃)∂Φµ+tµ̃
1 ) ◦ (Φµ

1)−1)(−µ̄ ◦ (Φµ
1)−1∂(Φµ

1)−1).

= (∂Φµ+tµ̃
1 ◦ (Φµ

1)−1)∂(Φµ
1)−1(1− (((µ+ tµ̃)µ̄) ◦ (Φµ

1)−1)).
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Using that (Φµ
1)∗(ν) = ν ◦ Φµ

1∂Φµ
1 in the first term we find that

Ad(f ν
µ

)
d

dt
|t=0

((
(ν + tν̃)µ+tµ̃) ◦ Φµ+tµ̃

1 ◦ (Φµ
1)−1

)
(∂(Φµ+tµ̃

1 ◦ (Φµ
1)−1))

)

= Ad(f ν
µ

)
d

dt
|t=0

(
(Φµ

1)−1
∗

(
(Φµ+tµ̃

1 )∗
(
(ν + tν̃)µ+tµ̃

)
(1− |µ|2 − t̄µµ̃)

))

= Ad(f ν
µ

)(Φµ
1)−1
∗

(
(1− |µ|2)

d

dt
|t=0(Φµ+tµ̃

1 )∗

(
P 0,1
µ+tµ̃,E

ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗ (ν + tν̃)

))

= Ad(f ν
µ

)P 0,1
µ,E

ρ0
µ
E

(
(Φµ

1)−1
∗ (ν̃) + µ̃µ∂µ,E

ρ0
µ
E

∆−1
0,µ,E

ρ0
µ
E

∂̄∗µ,E
ρ0
µ
E

(Φµ
1)−1
∗ (ν)

)
(Φµ

1)−1
∗

(
(1− |µ|2)

)
.

Here we have used the result from Lemma 4.2 to calculate the derivative of the
projection.

For the second term we rewrite

∂(Φµ+tµ̃
1 ◦ (Φµ

1)−1)

= (∂̄Φµ+tµ̃
1 ) ◦ (Φµ

1)−1∂̄(Φµ
1)−1 + (∂Φµ+tµ̃

1 ) ◦ (Φµ
1)−1∂̄(Φµ

1)−1

= ((µ+ tµ̃)∂Φµ+tµ̃
1 ) ◦ (Φµ

1)−1∂̄(Φµ
1)−1 + (∂Φµ+tµ̃

1 ) ◦ (Φµ
1)−1∂̄(Φµ

1)−1(4.3)

using (4.2) and (4.1) in (4.3) and find that

∂(Φµ+tµ̃
1 ◦ (Φµ

1)−1) =

(
tµ̃

1− |µ|2
∂Φµ+tµ̃

1

∂Φµ
1

)
◦ (Φµ

1)−1,

which implies that

Ad(f ν
µ

)
d

dt
|t=0

((
f (ν+tν̃)µ+tµ̃ ◦ Φµ+tµ̃

1 ◦ (Φµ
1)−1

)−1

· (∂f νµ) ◦ Φµ+tµ̃
1 ◦ (Φµ

1)−1(∂(Φµ+tµ̃
1 ◦ (Φµ

1)−1))
)

= Ad(f ν
µ

)((f ν
µ

)−1 · (∂f νµ)(µ̃µ),

where µ̃µ =
(

µ̃
1−|µ|2

∂Φµ1
∂Φµ1

)
◦ (Φµ

1)−1. And so we have that

Ad(f ν
µ

)
d

dt
|t=0

((
(f (ν+tν̃)µ+tµ̃ ◦ Φµ+tµ̃

1 ) ◦ (Φµ
1)−1

)
∂̄
(

(f ν
µ+tµ̃

)−1 ◦ Φµ+tµ̃
1 ◦ (Φµ

1)−1
))

=Ad(f ν
µ

)
(
(Φµ

1)−1
∗
d

dt
|t=0(Φµ+tµ̃

1 )∗P
0,1
µ+tµ̃,E

ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗ (ν))))

(1− |µ|2) ◦ (Φµ
1)−1)

)
+ Ad(f ν

µ

)ν̃µ + Ad(f ν
µ

)((f ν
µ

)−1 · (∂f νµ)(µ̃µ)).

(4.4)

We have thus shown that composing with the projection gives us the harmonic
representative.
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4.1 Comparison of the Two Tangent Maps and a proof of
the first part of Theorem 1.3

We compare

P 0,1
µ⊕ν,

(
(Φµ

1)−1
∗
(
AdΦµ⊕ν

2

(
µ̃(Φµ⊕ν

2 )−1∂Φµ⊕ν
2 + ν̃

)))

and

P 0,1
νµ

(
Ad(f ν

µ

)((f ν
µ

)−1 · (∂f νµ)µ̃µ + ν̃µ)

+ Adf ν
µ

(Φµ
1)−1
∗
d

dt
|t=0(Φµ+tµ̃

1 )∗P
0,1
µ+tµ̃,E

ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗ (ν))(1− |µ ◦ (Φµ
1)−1|2)

)
.

First we observe that

Adf ν
µ

(Φµ
1)−1
∗
d

dt
|t=0(Φµ+tµ̃

1 )∗P
0,1
µ+tµ̃,E

ρ0
µ+tµ̃
E

(Φµ+tµ̃
1 )−1

∗ (ν))(1− |µ ◦ (Φµ
1)−1|2)

vanishes to first order in ν and µ at the center, since we either differentiate with
respect to µ and set ν = 0 or we differentiate with respect to ν and then we find,
when we evaluate at µ = 0, that ∂̄∗0,Eν = 0, from the expression in Lemma 4.2.

Next we compare

(Φµ
1)−1
∗
(
AdΦµ⊕ν

2

(
µ̃(Φµ⊕ν

2 )−1∂Φµ⊕ν
2

))

with
Ad(f ν

µ

)((f ν
µ

)−1 · (∂f νµ)µ̃µ).

We observe, that since ∂I = 0 both (Φµ⊕ν
2 )−1∂Φµ⊕ν

2 and (f ν
µ
)−1 · (∂f νµ) vanish

unless we differentiate it with respect to the moduli space direction or the Te-
ichmüller direction. If we differentiate with respect to µ we get ∂

∂ε
νεµ, but at

ν = 0 this is 0. This means we can compare the two after evaluating µ = 0, and
then we have f ν

0
= Φ0⊕ν , and so they agree to first order.

The last terms to consider are (Φµ
1)−1
∗
(
AdΦµ⊕ν

2 (ν̃)
)

and Ad(f ν
µ
)ν̃µ. Now, if we

put µ = 0 the terms agree. If we differentiate with respect to µ, we can put ν = 0
first. We are differentiating a term of the form ∂̄µ,E

ρ0
µ
E

∆−1
0,µ,E

ρ0
µ
E

∂̄∗µ,E
ρ0
µ
E

(Φµ
1)−1
∗ ν̃

with respect to µ. The result is an exact term which is killed by the harmonic
projection P 0,1, plus a term containing ∂̄∗0,Eν = 0. This proves the first part of
Theorem 1.3. The second part will be proved in the following section.

5 Variation of the Metric

In order to prove that our new coordinates are not the same as the fibered coor-
dinates discussed above, we shall consider the variation of the metric in both set
of coordinates and use the resulting formulae to demonstrate that they are not
identical to third order.
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5.1 Variation in the Universal Coordinates

In this section will calculate the second variation of the metric using the coordi-
nates from Theorem 1.1. In the next section we will do the same for the fibered
coordinates, and use this to show that the two sets of coordinates differ at third
order. So first we consider the function (Φ̄

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 . This transforms as a

function on X with values in EndE, our reference point. Now, to further under-
stand this function, we look at d

dε
|ε=0(Φ̄

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 . Then we find that

∆
d

dε
|ε=0(Φ̄

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 = ∆(

d

dε
|ε=0(Φ̄

ε(µ⊕ν)
+ )T +

d

dε
|ε=0Φ

ε(µ⊕ν)
−

+
d

dε
|ε=0(Φ̄

ε(µ⊕ν)
− )T +

d

dε
|ε=0Φ

ε(µ⊕ν)
+ ),

and since Φ
ε(µ⊕ν)
− is antiholomorphic we get that

∆
d

dε
|ε=0(Φ̄

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 =

d

dε
|ε=0∆(Φ̄

ε(µ⊕ν)
+ )T +

d

dε
|ε=0∆Φ

ε(µ⊕ν)
+ ).

We now use that (∂̄ − εµ∂)Φ
ε(µ⊕ν)
+ = 0 and ∆ = y−2∂∂̄ to see that

∆
d

dε
|ε=0(Φ̄

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 = y−2µ̄∂̄∂̄(Φ̄

0(µ⊕ν)
+ )T + y−2µ∂∂Φ

0(µ⊕ν)
+ ) = 0,

since Φ0
+ = I, and so the derivative is 0. This allows us to conclude, that

d
dε
|ε=0(Φ̄

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 is a constant multiple of the identity element in EndE,

and because of the determinant criteria in Theorem 1.1 we have

0 =
d

dε
|ε=0(det(Φ̄

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 )

= tr|ε=0((Φ̄0
2)TΦ0

2)−1 d

dε
|ε=0(Φ̄

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 = tr

d

dε
|ε=0(Φ̄

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 ,

and so d
dε
|ε=0(Φ̄

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 = 0. We see that this immediately implies that

d
dε
|ε=0∂Φ

ε(µ⊕ν)
+ = − d

dε̄
|ε=0∂̄Φ

ε(µ⊕ν)
−

T

= 0. We can study

d

dε̄
|ε=0(Φ̄

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2

similarly and conclude that

d

dε̄
|ε=0∂Φ

ε(µ⊕ν)
+ = − d

dε
|ε=0∂̄Φ

ε(µ⊕ν)
−

T

= −ν̄T .

Now, we want to understand the variation of the ∂̄µ,E
ρ(µ⊕ν)

-operator on func-

tions and ∂̄∗µ,E
ρ(µ⊕ν)

-operator on (0, 1)-forms, since they play a central role in un-

derstanding the tangent spaces over the universal moduli space. We work on the
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universal cover and pull back our family of differential operators from the univer-
sal cover of (Xρµ , Eρ(µ⊕ν)) to that of (Xρ0 , E), in terms of representations. Then
∂̄µ,E

ρ(µ⊕ν)
is just represented by ∂̄ on H

d

dε
|ε=0AdΦεµ⊕ν

2 (Φεµ
1 )∗∂̄(Φεµ

1 )−1
∗ (AdΦεµ⊕ν

2 )−1

=
d

dε
|ε=0AdΦεµ⊕ν

2

1

1− |εµ|2 (∂̄ − µ∂)(AdΦεµ⊕ν
2 )−1

=
d

dε
|ε=0

1

1− |εµ|2
(
AdΦεµ⊕ν

2 (ad(∂̄ − εµ∂)Φεµ⊕ν
2 )(AdΦεµ⊕ν

2 )−1

+ (∂̄ − εµ∂)
)

=
d

dε
|ε=0

1

1− |εµ|2 (εadAdΦεµ⊕ν
2 ν + (∂̄ − εµ∂))

= adν − µ∂.(5.1)

Likewise we find that the variation of ∂̄∗ = −ρ−1∂, where also the first deriva-
tive of density ρ is zero at the center point of our coordinates([W]). We begin by
observing that on (0, 1)-forms we have that

(Φεµ
1 )∗∂(Φεµ

1 )−1
∗ α = (Φεµ

1 )∗∂(α ◦ (Φεµ
1 )−1 1

∂̄Φεµ
1 ◦ (Φεµ

1 )−1
)

= (Φεµ
1 )∗((∂α) ◦ (Φεµ

1 )−1 ∂(Φεµ
1 )−1

∂̄Φεµ
1 ◦ (Φεµ

1 )−1

+ (∂̄α) ◦ (Φεµ
1 )−1 ∂(Φεµ

1 )−1

∂̄Φεµ
1 ◦ (Φεµ

1 )−1

− α ◦ (Φεµ
1 )−1 (∂(∂̄Φεµ

1 )) ◦ (Φεµ
1 )−1(∂̄Φ̄εµ

1 )−1

(∂̄Φεµ
1 ◦ (Φεµ

1 )−1)2
)

− α ◦ (Φεµ
1 )−1 (∂∂Φεµ

1 ) ◦ (Φεµ
1 )−1(∂̄Φεµ

1 )−1

(∂̄Φεµ
1 ◦ (Φεµ

1 )−1)2
)

=
1

1− |εµ|2 (∂ − ε̄µ̄∂̄ − ε̄(∂̄µ̄)) =
1

1− |εµ|2 (∂ − ε∂µ)).

And so we find that

d

dε̄
|ε=0AdΦεµ⊕ν

2 (Φεµ
1 )∗∂̄

∗(Φεµ
1 )−1
∗ (AdΦεµ⊕ν

2 )−1

=
d

dε̄
|ε=0AdΦεµ⊕ν

2

−ρ−1

1− |εµ|2 (∂ − ε̄∂̄µ̄)(AdΦεµ⊕ν
2 )−1

=
d

dε̄
|ε=0

−ρ−1

1− |εµ|2
(
AdΦεµ⊕ν

2 (Ad(∂ − ε̄∂̄µ̄)Φεµ⊕ν
2 )−1

+ (∂̄ − ε̄∂̄µ̄)
)
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=
d

dε̄
|ε=0

−ρ−1

1− |εµ|2 (ad(Ad(Φ
ε(µ⊕ν)
2 )−1∂Φ

ε(µ⊕ν)
2 )− ε̄µ̄ρ−1ad∂̄Φ

ε(µ⊕ν)
2

+ (∂ − ε̄∂̄µ̄))

= − ∗ adν ∗+µ̄∂̄ρ−1,(5.2)

where the equality follows from the equation ∂µ = 2y−1µ, and ρ−1 = y2.
This is the first step in understanding the metric on the universal moduli space

of pairs of a Riemann surface and a holomorphic bundle over it, given at a point
(X,E) by identifying the tangent space with H0,1(X,TX)⊕H0,1(X,EndE). Two
elements µ1 ⊕ ν1 and µ2 ⊕ ν2 can be paired as follows

g(µ1 ⊕ ν1, µ2 ⊕ ν2) =

∫

Σ

(ρXµ1µ̄2 + itrν1 ∧ ?ν̄T2 ),

where ρX is the density of the hyperbolic metric corresponding to the complex
structure on X. Since the term

∫
Σ
ρXµ1µ̄2, is independent of the bundle, nothing

has changed compared to the situation on Teichmüller space. Let us examine the
term

∫
Σ

trν1 ∧ (̄ − ?)νT2 . Since we are evaluation the metric on tangent vectors,
−? will act by −i and so we replace it in the following to avoid confusion.

In coordinates around (X,E) we have, using Proposition 3.2, that the metric
is given by

gV Bε(µ⊕ν)(µ1 ⊕ ν1, µ2 ⊕ ν2)

= −i
∫

Σ

trP 0,1
ε(µ⊕ν)(Φ

ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )ν1

∧ P 0,1
ε(µ⊕ν)((Φ

ε(µ⊕ν)
1 )−1

∗ AdΦ
ε(µ⊕ν)
2 )ν2

T

− i
∫

Σ

trP 0,1
ε(µ⊕ν)(Φ

ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )µ1(Φ

ε(µ⊕ν)
2 )−1∂Φ

ε(µ⊕ν)
2

∧ P 0,1
ε(µ⊕ν)((Φ

ε(µ⊕ν)
1 )−1

∗ AdΦ
ε(µ⊕ν)
2 )ν2

T

− i
∫

Σ

trP 0,1
ε(µ⊕ν)(Φ

ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )ν1

∧ P 0,1
ε(µ⊕ν)(Φ

ε(µ⊕ν)
1 )−1

∗ (AdΦ
ε(µ⊕ν)
2 )µ2(Φ

ε(µ⊕ν)
2 )∂Φ

ε(µ⊕ν)
2

T

− i
∫

Σ

trP 0,1
ε(µ⊕ν)(Φ

ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )µ1(Φ

ε(µ⊕ν)
2 )−1∂Φ

ε(µ⊕ν)
2

∧ P 0,1
ε(µ⊕ν)((Φ

ε(µ⊕ν)
1 )−1

∗ AdΦ
ε(µ⊕ν)
2 )µ2(Φ

ε(µ⊕ν)
2 )−1∂Φ

ε(µ⊕ν)
2

T

.(5.3)

Now we can use that P 0,1
ε(µ⊕ν) is self-adjoint with respect to the metric to rewrite

the terms as follows

(5.4)

∫

Σ

trP 0,1
ε(µ⊕ν)(Φ

ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )ν1 ∧ P 0,1

ε(µ⊕ν)((Φ
ε(µ⊕ν)
1 )−1

∗ AdΦ
ε(µ⊕ν)
2 )ν2

T
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=

∫

Σ

trAd(Φ
ε(µ⊕ν)
2

T

Φ
ε(µ⊕ν)
2 )(1− |εµ|2)Ad(Φ

ε(µ⊕ν)
2 )−1

(Φ
ε(µ⊕ν)
1 )∗P

0,1
ε(µ⊕ν)(Φ

ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )ν1 ∧ ν2

T

Since (Φεµ
1 )∗(dz̄ ∧ dz) = (|∂Φεµ

1 |2 − |∂̄Φεµ
1 |2)dz̄ ∧ dz. Also recall that

(Φεµ
1 )−1
∗ ν =

(
ν

∂̄Φ̄εµ
1

)
◦ (Φεµ

1 )−1

and (Φεµ
1 )∗P

0,1
ε(µ⊕ν)h = (∂̄Φ̄εµ

1 )(P 0,1
ε(µ⊕ν)h) ◦ Φεµ

1 .
From this it follows that

Lemma 5.1. In the coordinates around (X,E) given by Theorem 1.1 we have
that

d

dε
|ε=0g

V B
ε(µ⊕ν)(µ1 ⊕ ν1, µ2 ⊕ ν2) = i

∫

X

tr((µ̄2ν1) ∧ ν)

d

dε̄
|ε=0g

V B
ε(µ⊕ν)(µ1 ⊕ ν1, µ2 ⊕ ν2) = i

∫

X

tr((µ1ν̄
T ) ∧ ν̄T2 ).

Proof. We calculate each term gathering the terms like (5.4). We have already

seen that d
dε
|ε=0Φ

ε(µ⊕ν)
2

T

Φ
ε(µ⊕ν)
2 = 0, and so these terms don’t contribute. Now we

consider the operators, where we have left out subscripts from the calculation as
it should be clear where they live. The derivative of the projection is a sum of
terms starting with an operator ending with ∂̄∗ and ones which starts with ∂̄ as
is seen from the following calculation

d

dε
|ε=0Ad(Φ

ε(µ⊕ν)
2 )−1(Φ

ε(µ⊕ν)
1 )∗P

0,1(Φ
ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )

=
d

dε
|ε=0Ad(Φ

ε(µ⊕ν)
2 )−1(Φ

ε(µ⊕ν)
1 )∗(−∂̄∆−1

0 ∂̄∗)(Φε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )

=
d

dε
|ε=0Ad(Φ

ε(µ⊕ν)
2 )−1(Φ

ε(µ⊕ν)
1 )∗(−∂̄)(Φ

ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )

Ad(Φ
ε(µ⊕ν)
2 )−1(Φ

ε(µ⊕ν)
1 )∗(∆

−1
0 )(Φ

ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )

Ad(Φ
ε(µ⊕ν)
2 )−1(Φ

ε(µ⊕ν)
1 )∗(∂̄

∗)(Φε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )

=
d

dε
|ε=0Ad(Φ

ε(µ⊕ν)
2 )−1(Φ

ε(µ⊕ν)
1 )∗(−∂̄)(Φ

ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )∆−1

0 ∂̄∗

+ ∂̄
d

dε
|ε=0Ad(Φ

ε(µ⊕ν)
2 )−1(Φ

ε(µ⊕ν)
1 )∗(∆

−1
0 )(Φ

ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )∂̄∗

+ ∂̄∆−1
0

d

dε
|ε=0Ad(Φ

ε(µ⊕ν)
2 )−1(Φ

ε(µ⊕ν)
1 )∗(∂̄

∗)(Φε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 ).

The first two terms are orthogonal to ν ∈ H0,1(X,EndE), and the second one
applied to a harmonic from is 0. This means the contribution form the first term
in (5.3) is 0.
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Now all the remaining terms contain a ∂Φ
ε(µ⊕ν)
2 which is 0 at ε = 0. Hence

the only contributions to the derivative arise when we derive these, and then we
have that d

dε̄
∂Φ

ε(µ⊕ν)
2 = −ν̄T and d

dε
∂Φ

ε(µ⊕ν)
2 = 0. Inserting this and setting ε = 0

we find the formulas in the lemma.

We proceed to calculate the second order derivatives of the metric. To do so,

we need to calculate d2

dε1dε̄2
|ε=0(Φ

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 , d2

dε1dε̄2
|ε=0(Φ

ε(µ⊕ν)
2 )−1∂Φ

ε(µ⊕ν)
2 and

the contribution from d2

dε1dε̄2
|ε=0Ad(Φ

ε(µ⊕ν)
2 )−1P 0,1AdΦ

ε(µ⊕ν)
2 . For the last term, we

only need it when applied to a harmonic form and also it should not be orthogonal
to a harmonic form.

We now calculate the three terms. For the first term, we begin by applying
the Laplace operator on H to the expression.

∆
d2

dε1dε̄2
|ε=0(Φ

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2

= y2∂̄∂
d2

dε1dε̄2
|ε=0(Φ

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2

=
d2

dε1dε̄2
|ε=0y

2∂̄∂((Φ
ε(µ⊕ν)
+ Φεµ

− )TΦ
ε(µ⊕ν)
+ Φεµ

− )

=
d2

dε1dε̄2
|ε=0y

2
(
∂̄Φεµ
−
T
∂Φ

ε(µ⊕ν)
+

T

Φ
ε(µ⊕ν)
+ Φεµ

− + ∂̄Φεµ
−
T

Φ
ε(µ⊕ν)
+

T

∂̄Φ
ε(µ⊕ν)
+ Φεµ

−

+ ∂̄Φεµ
−
T

Φ
ε(µ⊕ν)
+

T

Φ
ε(µ⊕ν)
+ ∂̄Φεµ

− + Φεµ
−
T
∂Φ

ε(µ⊕ν)
+

T

∂Φ
ε(µ⊕ν)
+ Φεµ

−

+ Φεµ
−
T

Φ
ε(µ⊕ν)
+

T

∂Φ
ε(µ⊕ν)
+ ∂̄Φεµ

− + Φεµ
−
T

Φ
ε(µ⊕ν)
+

T

∂̄∂Φ
ε(µ⊕ν)
+ Φεµ

−

+ Φεµ
−
T
∂̄∂Φ

ε(µ⊕ν)
+

T

Φ
ε(µ⊕ν)
+ Φεµ

− + Φεµ
−
T
∂̄Φ

ε(µ⊕ν)
+

T

Φ
ε(µ⊕ν)
+ ∂̄Φεµ

−
)
.

For all the terms where two different factors are differentiated we are only able to
match the ε-derivatives in one way that is nonzero. We also have that ∂̄∂Φ

ε(µ⊕ν)
+ =

∂εµ∂Φ
ε(µ⊕ν)
+ , and so we need to derive it with respect to ε and ε̄ to get a nonzero

contribution. For the same reason ∂̄Φ
ε(µ⊕ν)
+ needs to be differentiated twice to be

nonzero. Since ∂̄Φ
ε(µ⊕ν)
+ is always paired with another term, we need to differen-

tiate these terms and hence they will not contribute, thus we get that

∆0
d2

dε1dε̄2
|ε=0(Φ

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 = y2((ν2)

T
(−ν̄T1 )

T
+ 0 + (ν2)

T
ν1 + (−ν̄1)T

T

· (−ν̄T2 ) + (−ν̄2)Tν1 − µ1ν̄
T
2 − µ̄2ν1 + 0)

= y2([ν1, ν̄
T
2 ]− ∂µ1ν̄

T
2 − ∂µ̄2ν1).

We conclude that

d2

dε1dε̄2
|ε=0(Φ

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 = ∆−1

0 ((−?)adν2 ? ν1 − ?∂µ1ν̄
T
2 − ?∂̄µ̄2ν1) + cI
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for some constant c. Since the kernel of ∆0 is the constant multiples of I. In what
remains this term will not contribute, as we will be looking at

ad( d2

dε1dε̄2
|ε=0(Φ

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 ).

Next we calculate the second term d2

dε1dε̄2
|ε=0(Φ

ε(µ⊕ν)
2 )−1∂Φ

ε(µ⊕ν)
2 . The calcula-

tion follows directly from the previous computation.

∂̄∆−1
0 ((−?)adν2 ? ν1 − ?µ1ν̄

T
2 − ?µ̄2ν1) = ∂̄

d2

dε1dε̄2
|ε=0(Φ

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2

=
d2

dε1dε̄2
|ε=0(Φ

ε(µ⊕ν)
2 )T ∂̄Φ

ε(µ⊕ν)
2 +

d2

dε1dε̄2
|ε=0(∂Φ

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2

=
d2

dε1dε̄2
|ε=0(Φ

ε(µ⊕ν)
2 )T (Φ

ε(µ⊕ν)
2 εν + εµ∂Φ

ε(µ⊕ν)
2 )

+
d2

dε1dε̄2
|ε=0((Φ

ε(µ⊕ν)
2 )−1∂Φ

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2

T

Φ
ε(µ⊕ν)
2

= −µ1ν̄
T
2 +

d2

dε1dε̄2
|ε=0((Φ

ε(µ⊕ν)
2 )−1∂Φ

ε(µ⊕ν)
2 )T ,

since d
dε
|ε=0(Φ

ε(µ⊕ν)
2 )TΦ

ε(µ⊕ν)
2 = 0.

Finally we need to calculate the third term

d2

dε1dε̄2
|ε=0Ad(Φ

ε(µ⊕ν)
2 )−1(Φεµ

1 )∗P
0,1(Φεµ

1 )−1
∗ AdΦ

ε(µ⊕ν)
2 ,

but only where both ∂̄ and ∂̄∗ in ∂̄∆−1
0 ∂̄∗ has been differentiated. This is simplified

by the fact that ∂̄ only depending on ε and not ε̄ (see (5.1)). Using this and (5.2)
we have that

d

dε1
|ε=0Ad(Φ

ε(µ⊕ν)
2 )−1(Φεµ

1 )∗∂̄(Φεµ
1 )−1
∗ AdΦ

ε(µ⊕ν)
2 ∆−1

0

d

dε̄2
|ε=0Ad(Φ

ε(µ⊕ν)
2 )−1(Φεµ

1 )∗∂̄
∗(Φεµ

1 )−1
∗ AdΦ

ε(µ⊕ν)
2

= (−µ1∂ + adν1)∆−1
0 (∂∗µ̄2 − ?adν2?).

Now we are ready to prove that

Theorem 5.2. Consider the second variation of the metric in the coordinates
on the universal moduli space of pairs of a Riemann surface and a holomorphic
bundle on it. Then we have this second variation at the center is

d2

dε1dε̄2

∣∣∣∣
ε=0

gε(µ⊕ν)µ3 ⊕ ν3, µ4 ⊕ ν4) =

− i
∫

Σ

tr((−µ1∂ + adν1)∆−1
0 (∂∗µ̄2 − ?adν2?)ν3 ∧ ν̄T4
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− i
∫

Σ

tr(ad∆−1
0 ((−?)adν2 ? ν1 − ?(∂µ1ν̄

T
2 )− ?(∂̄µ̄2ν1))ν3 ∧ ν̄T4 )

+ i

∫

Σ

µ1µ̄2trν3 ∧ ν̄T4

− i
∫

Σ

tr(adν1 + µ1∂)∆−1
o ∂̄∗µ3ν̄

T
2 ∧ ν̄T4

− i
∫

Σ

trµ3(∂∆−1
0 (?[?v1ν2]− ?(∂µ1ν̄

T
2 )− ?(∂̄µ̄2ν1)) ∧ ν̄T4

− i
∫

Σ

trµ̄2µ3ν1 ∧ ν4
T

− i
∫

Σ

tr∂̄∆−1
o (− ? adν2 ?+∂∗µ2)ν3 ∧ µ̄4ν1

− i
∫

Σ

trν3 ∧ µ4(∂∆−1
0 (?[?v2ν1]− ?(∂µ2ν̄T1 )− ?(∂̄µ̄1ν2))

T

− i
∫

Σ

trν3 ∧ µ̄1µ4ν2
T − i

∫

Σ

trµ3ν1 ∧ µ4ν2
T .

Proof. Since we already have computed all the ingredients, we gather the results
here.

−i d2

dε1dε̄2
vertε=0

∫

Σ

trP 0,1(Φ
ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )ν3

∧ P 0,1((Φ
ε(µ⊕ν)
1 )−1

∗ AdΦ
ε(µ⊕ν)
2 )ν4

T

= −i d2

dε1dε̄2
|ε=0

∫

Σ

trAd(Φ
ε(µ⊕ν)
2

T

Φ
ε(µ⊕ν)
2 )(1− |εµ|2))Ad(Φ

ε(µ⊕ν)
2 )−1

(Φ
ε(µ⊕ν)
1 )∗P

0,1(Φ
ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )ν3 ∧ ν4

T

= −i
∫

Σ

tr
d2

dε1dε̄2
|ε=0Ad(Φ

ε(µ⊕ν)
2

T

Φ
ε(µ⊕ν)
2 )ν3 ∧ ν4

T

− i
∫

Σ

tr
d2

dε1dε̄2
|ε=0Ad(Φ

ε(µ⊕ν)
2 )−1(Φ

ε(µ⊕ν)
1 )∗

P 0,1(Φ
ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )ν3 ∧ ν4

T

− i
∫

Σ

d2

dε1dε̄2
|ε=0(1− |εµ|2)trν3 ∧ ν̄T4

= −i
∫

Σ

tr(ad(∆−1
0 ((−?)adν2 ? ν1 − ?(∂µ1ν̄

T
2 )− ?(∂̄µ̄2ν1)))ν3 ∧ ν̄T4 )

− i
∫

Σ

tr((−µ1∂ + adν1)∆−1
0 (∂∗µ̄2 − ?adν2?)ν3 ∧ ν̄T4

+ i

∫

Σ

µ1µ̄2trν3 ∧ ν̄T4 .
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Now for the second term we have that

d2

dε1dε̄2
|ε=0 − i

∫

Σ

trP 0,1(Φ
ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )µ3(Φ

ε(µ⊕ν)
2 )−1∂Φ

ε(µ⊕ν)
2

∧ P 0,1((Φ
ε(µ⊕ν)
1 )−1

∗ AdΦ
ε(µ⊕ν)
2 )ν4

T

= −i
∫

Σ

trP 0,1µ3
d2

dε1dε̄2
|ε=0(Φ

ε(µ⊕ν)
2 )−1∂Φ

ε(µ⊕ν)
2 ∧ ν4

T

− i
∫

Σ

tr
d

dε1
|ε=0Ad(Φ

ε(µ⊕ν)
2 )−1(Φ

ε(µ⊕ν)
1 )∗P

0,1(Φ
ε(µ⊕ν)
1 )−1

∗

Ad(Φ
ε(µ⊕ν)
2 )µ3

d

dε̄2
|ε=0(Φ

ε(µ⊕ν)
2 )−1∂Φ

ε(µ⊕ν)
2 ∧ ν4

T

= −i
∫

Σ

trP 0,1µ3(∂∆−1
0 ((−?)adν2 ? ν1 − ?(∂̄µ̄2ν1)− ?(∂µ1ν̄

T
2 ))

+ µ̄2ν1) ∧ ν4
T

− i
∫

Σ

tr(−µ1∂ + adν1)∆−1
0 ∂̄∗µ3ν̄

T
2 ∧ ν4

T .

And similarly

−i
∫

Σ

trP 0,1(Φ
ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )ν3

∧ P 0,1(Φ
ε(µ⊕ν)
1 )−1

∗ (AdΦ
ε(µ⊕ν)
2 )µ4(Φ

ε(µ⊕ν)
2 )∂Φ

ε(µ⊕ν)
2

T

= −i
∫

Σ

trν3 ∧ P 0,1µ4(∂∆−1
0 ((−?)adν1 ? ν2 − ?(∂̄µ̄1ν2)− ?(∂µ2ν̄T1 )) + µ̄1ν2)

T

− i
∫

Σ

tr∂̄∆−1
0 (−∂∗µ2 − ?adν2?)ν3 ∧ µ4ν1.

Finally there is not much choice in how to differentiate the following term

−i d2

dε1dε̄2
|ε=0

∫

Σ

trP 0,1(Φ
ε(µ⊕ν)
1 )−1

∗ Ad(Φ
ε(µ⊕ν)
2 )µ3(Φ

ε(µ⊕ν)
2 )−1∂Φ

ε(µ⊕ν)
2

∧ P 0,1((Φ
ε(µ⊕ν)
1 )−1

∗ AdΦ
ε(µ⊕ν)
2 )µ4(Φ

ε(µ⊕ν)
2 )−1∂Φ

ε(µ⊕ν)
2

T

= −i
∫

Σ

trP 0,1(µ3
d

dε̄2
|ε=0∂Φ

ε(µ⊕ν)
2 ∧ P 0,1µ4

d

dε̄1
|ε=0∂Φ

ε(µ⊕ν)
2

T

= −i
∫

Σ

trµ3ν̄
T
2 ∧ µ̄4ν1.

Collect all these results and we have the conclusion.

5.2 The Variation of the Metric in Fibered Coordinates

Now for the fibered coordinates we can do the same computations. From the
calculation of the Kodaira-Spencer map (Proposition 4.3) we know, that the metric
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in the moduli space of bundles direction is given by

gεν
εµ

V B (µ1 ⊕ ν1, µ2 ⊕ ν2) = −i
∫

Σ

P 0,1
ενεµAdf εν

εµ

νεµ1 ∧ P 0,1
ενεµAdf ενεµνεµ2

T

− i
∫

Σ

P 0,1
ενεµAdf εν

εµ

νεµ1 ∧ P 0,1
ενεµAd(f ενεµ)(µεµ2 (f ενεµ)−1∂f ενεµ)

T

− i
∫

Σ

P 0,1
ενεµAdf εν

εµ

νεµ1

∧ P 0,1
ενεµAd(f ενεµ)((Φεµ

1 )−1
∗ (1− |εµ|2)

d

dt
|t=0(Φεµ+tµ2

1 )P 0,1(Φεµ+tµ2
1 )−1ν)

T

− i
∫

Σ

P 0,1
ενεµAd(f εν

εµ

)(µεµ1 (f εν
εµ

)−1∂f εν
εµ

) ∧ P 0,1
ενεµAdf ενεµνεµ2

T

− i
∫

Σ

P 0,1
ενεµAd(f εν

εµ

)(µεµ1 (f εν
εµ

)−1∂f εν
εµ

) ∧ P 0,1
ενεµAd(f ενεµ)(µεµ2 (f ενεµ)−1∂f ενεµ)

T

− i
∫

Σ

P 0,1
ενεµAd(f εν

εµ

)(µεµ1 (f εν
εµ

)−1∂f εν
εµ

)

∧ P 0,1
ενεµAd(f ενεµ)((Φεµ

1 )−1
∗ (1− |εµ|2)

d

dt
|t=0(Φεµ+tµ2

1 )P 0,1(Φεµ+tµ2
1 )−1ν)

T

− i
∫

Σ

P 0,1
ενεµAd(f εν

εµ

)((Φεµ
1 )−1
∗ (1− |εµ|2)

d

dt
|t=0(Φεµ+tµ1

1 )P 0,1(Φεµ+tµ1
1 )−1ν)

∧ P 0,1
ενεµAdf ενεµνεµ2

T

− i
∫

Σ

P 0,1
ενεµAd(f εν

εµ

)((Φεµ
1 )−1
∗ (1− |εµ|2)

d

dt
|t=0(Φεµ+tµ1

1 )P 0,1(Φεµ+tµ1
1 )−1ν)

∧ P 0,1
ενεµAd(f ενεµ)(µεµ2 (f ενεµ)−1∂f ενεµ)

T

− i
∫

Σ

P 0,1
ενεµAd(f εν

εµ

)((Φεµ
1 )−1
∗ (1− |εµ|2)

d

dt
|t=0(Φεµ+tµ1

1 )P 0,1(Φεµ+tµ1
1 )−1ν)

∧ P 0,1
ενεµAd(f ενεµ)((Φεµ

1 )−1
∗ (1− |εµ|2)

d

dt
|t=0(Φεµ+tµ2

1 )P 0,1(Φεµ+tµ2
1 )−1ν)

T

.

While these nine terms look intimidating, we can discard three of the terms,
because P 0,1

ενεµAd(f εν
εµ

)((Φεµ
1 )−1
∗ (1−|εµ|2) d

dt
|t=0(Φεµ+tµ2

1 )P 0,1(Φεµ+tµ2
1 )−1ν) vanishes

to second-order and P 0,1
ενεµAd(f εν

εµ
)(µεµ2 (f εν

εµ
)−1∂f εν

εµ
) vanishes to first-order, so

terms containing both kind of factors or only the first kind of factors will vanish to
higher order, than we are interested in. Now the first variation will be the same
as in Section 5, but to calculate it we will have to work with slightly different
expressions.

First we consider

d

dε
|ε=0((f ενεµ)Tf εν

εµ) ◦ Φεµ
1 = 0
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and

d

dε̄
|ε=0((f ενεµ)Tf εν

εµ) ◦ Φεµ
1 = 0.

Both of these follow from the computations in [TZ1], where it was shown that
d
dε̄
|ε=0((f εν)Tf εν) = 0. Now composing with ν → νεµ won’t change it, and if we

differentiate Φεµ
1 then we can set ε = 0 in the rest of the terms and calculate

d
dε
I ◦Φεµ

1 = 0. Now for a projection, the first derivative will either have harmonic
forms in it’s kernel or the image is in the orthogonal complement, hence the only
contributions are from the terms

∫

Σ

P 0,1
ενεµAdf εν

εµ

νεµ1 P
0,1
ενεµAd(f ενεµ)(µεµ2 (f ενεµ)−1∂f ενεµ)

T

and
∫

Σ

P 0,1
ενεµAd(f εν

εµ

)(µεµ1 (f εν
εµ

)−1∂f εν
εµ

)P 0,1
ενεµAdf ενεµνεµ2

T

.

And so we have, completely analogues to the previous section the following lemma.

Lemma 5.3. In the fibered coordinates around (X,E) we have that:

d

dε
|ε=0g

V B
ενεµ(µ1 ⊕ ν1, µ2 ⊕ ν2) = i

∫

X

µ̄2tr(ν1ν)

d

dε̄
|ε=0g

V B
ενεµ(µ1 ⊕ ν1, µ2 ⊕ ν2) = i

∫

X

µ1tr(ν̄T ν̄T2 )

Now for the second variation of the metric we need to calculate the two terms

d2

dε1dε̄2
|ε=0((f ενεµ)Tf εν

εµ

) ◦ Φεµ
1

and
d2

dε1dε̄2
|ε=0((f εν

εµ

)−1∂f εν
εµ

) ◦ Φεµ
1 .

We calculate these the same way as we did with the previous set of coordinates.

∆0
d2

dε1dε̄2
|ε=0((f ενεµ)Tf εν

εµ

) ◦ Φεµ
1 = y2∂∂̄

d2

dε1dε̄2
|ε=0((f ενεµ)Tf εν

εµ

) ◦ Φεµ
1

=
d2

dε1dε̄2
|ε=0y

2∂∂̄((f εν
εµ

− )T (f εν
εµ

+ )Tf εν
εµ

+ f εν
εµ

− ) ◦ Φεµ
1 .

Now we use

∂̄∂(h ◦ Φεµ
1 ) = ∂Φεµ

1 ∂Φ̄εµ
1 (∂∂h) ◦ Φεµ

1 + ∂̄Φ̄εµ
1 ∂Φεµ

1 (∂∂̄h) ◦ Φεµ
1

+ ∂̄Φεµ
1 ∂Φ̄εµ

1 (∂̄∂h) ◦ Φεµ
1 + ∂Φ̄εµ

1 ∂̄Φ̄εµ
1 (∂̄∂̄h) ◦ Φεµ

1
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= (∂Φεµ
1 εµ∂̄Φ̄εµ

1 (∂∂h) ◦ Φεµ
1 + ∂̄Φ̄εµ

1 ∂Φεµ
1 (∂∂̄h) ◦ Φεµ

1

+ |εµ|2∂Φεµ
1 ∂Φ̄εµ

1 (∂̄∂h) ◦ Φεµ
1 + εµ∂̄Φ̄εµ

1 ∂̄Φ̄εµ
1 (∂̄∂̄h) ◦ Φεµ

1 ,

for h = (f ενεµ)Tf εν
εµ

), and since we know that ∂f εν
εµ

and ∂̄f εν
εµ

vanish to first-
order in ε, we only have the surviving terms

∆0
d2

dε1dε̄2
|ε=0((f ενεµ)Tf εν

εµ

) ◦ Φεµ
1 = y2(−∂µ1ν̄

T
2 − ∂̄µ̄2ν1 + [ν1, ν̄

T
2 ]),

which is exactly like in the previous case. We proceed on to calculate
d2

dε1dε̄2
|ε=0((f εν

εµ
)−1∂f εν

εµ
) ◦ Φεµ

1 , and so we study

∂̄∆−1
0 y2(−µ1∂ν̄

T
2 − µ̄2∂̄ν1 + [ν1, ν̄

T
2 ]) = ∂̄

d2

dε1dε̄2
|ε=0((f ενεµ)Tf εν

εµ

) ◦ Φεµ
1

=
d2

dε1dε̄2
|ε=0(∂̄((f ενεµ)Tf εν

εµ

)) ◦ Φεµ
1 ∂̄Φ̄εµ

1

+
d2

dε1dε̄2
|ε=0(∂((f ενεµ)Tf εν

εµ

)) ◦ Φεµ
1 ∂̄Φεµ

1

=
d2

dε1dε̄2
|ε=0(((∂f ενεµ)Tf εν

εµ

)) ◦ Φεµ
1 ∂̄Φ̄εµ

1

+
d2

dε1dε̄2
|ε=0(((∂̄f ενεµ)Tf εν

εµ

)) ◦ Φεµ
1 ∂̄Φεµ

1

+
d2

dε1dε̄2
|ε=0(((f ενεµ)T ∂̄f εν

εµ

)) ◦ Φεµ
1 ∂̄Φ̄εµ

1

+
d2

dε1dε̄2
|ε=0(((f ενεµ)T∂f εν

εµ

)) ◦ Φεµ
1 ∂̄Φεµ

1 .

Here the second and fourth term cancel, as is seen by using that two of the factors
vanish to first-order in ε, which then give µ1ν̄

T
2 and −µ1ν̄

T
2 respectively.

d2

dε1dε̄2
|ε=0(((∂f ενεµ)Tf εν

εµ

)) ◦ Φεµ
1 ∂̄Φ̄εµ

1

+
d2

dε1dε̄2
|ε=0(((f ενεµ)T ∂̄f εν

εµ

)) ◦ Φεµ
1 ∂̄Φ̄εµ

1

=
d2

dε1dε̄2
|ε=0(((f ενεµ)−1∂f ενεµ

T
f ενεµ

T
f εν

εµ

)) ◦ Φεµ
1 ∂̄Φ̄εµ

1

+
d2

dε1dε̄2
|ε=0(((f ενεµ)Tf εν

εµ

ενεµ)) ◦ Φεµ
1 ∂̄Φ̄εµ

1

=
d2

dε1dε̄2
|ε=0(((f ενεµ)−1∂f ενεµ

T
) ◦ Φεµ

1 ∂̄Φ̄εµ
1

+
d2

dε1dε̄2
|ε=0(ενεµ)) ◦ Φεµ

1 ∂̄Φ̄εµ
1
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=
d2

dε1dε̄2
|ε=0(((f ενεµ)−1∂f ενεµ

T
) ◦ Φεµ

1 ∂̄Φ̄εµ
1 + ∂̄∆−1

0 ∂∗µ̄2ν1.

Now this is different from the previous coordinates. We need however to consider
two things more. The first is the second variation of the harmonic projection.
Since the only relevant part is the contribution where both ∂̄ and ∂̄∗ have been
differentiated in ∂̄∆−1

0 ∂̄∗ and the coordinates agree to second-order nothing will
have changed and we have it gives the following term

(−µ1∂ + adν1)∆−1
0 (∂∗µ̄2 − ?adν2?).

The final term to consider is the new term in the formula for the metric, which
is

d2

dε1dε̄2
|ε=0P

0,1
ενεµAd(f εν

εµ

)((Φεµ
1 )−1
∗ (1− |εµ|2)

d

dt
|t=0(Φεµ+tµ̃

1 )P 0,1(Φεµ+tµ̃
1 )−1εν),

as d
dt
|t=0(Φεµ+tµ̃

1 )P 0,1(Φεµ+tµ̃
1 )−1εν) vanishes to second-order this has to be differ-

entiated twice

d

dε̄2
|ε=0

d

dt
|t=0(Φεµ+tµ̃

1 )P 0,1(Φεµ+tµ̃
1 )−1ν1)

= −(
d

dε̄2
|ε=0

d

dt
|t=0(Φεµ+tµ̃

1 )∂̄(Φεµ+tµ̃
1 )−1

∆−1
0

d

dε̄2
|ε=0Φεµ+tµ̃

1 )∂̄∗(Φεµ+tµ̃
1 )−1ν1)

− ∂̄ d

dε̄2
|ε=0

d

dt
|t=0(Φεµ+tµ̃

1 )∆−1
0 ∂̄∗(Φεµ+tµ̃

1 )−1)ν1

= −µ̃∂∆−1
0 ∂∗µ̄2ν1 − ∂̄

d

dε̄2
|ε=0

d

dt
|t=0(Φεµ+tµ̃

1 )∆−1
0 ∂̄∗(Φεµ+tµ̃

1 )−1ν1.

We are now ready to gather all the contributions in the following theorem.

Theorem 5.4. We have the following for the second variation of the metric at
(X,E) in the fibered coordinates:

d2

dε1dε̄2
|ε=0g

V B
ενεµ(µ3 ⊕ ν3, µ4 ⊕ ν4) =

∫

Σ

tr((−µ1∂ + adν1)∆−1
0 ((−?)adν2 ?+∂∗µ̄2)ν3) ∧ ν̄T4

− i
∫

Σ

tr(ad∆−1
0 ((−?)adν2 ? ν1 − ?(∂µ1ν̄

T
2 )− ?(∂̄µ̄2ν1))ν3 ∧ ν̄T4 )

− i
∫

Σ

tr(adν1 − µ1∂)∆−1
o ∂̄∗µ3ν̄

T
2 ∧ ν̄T4

+ i

∫

Σ

µ1µ̄2trν3 ∧ ν̄T4
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− i
∫

Σ

trµ3(∂∆−1
0 (?[?ν1ν2]− ?(∂µ1ν̄

T
2 )− ?(∂̄µ̄2ν1)) ∧ ν̄T4

+ i

∫

Σ

trµ3∂∆−1
0 ∂̄∗µ1ν̄

T
2 ∧ ν4

T

− i
∫

Σ

tr∂̄∆−1
o (− ? adν2 ?+∂∗µ̄2)ν3 ∧ (−µ̄4ν1)

− i
∫

Σ

trν3 ∧ µ4(∂∆−1
0 (?[?ν2ν1]− ?(∂µ2ν̄T1 )− ?(∂̄µ̄1ν2))

T

+ i

∫

Σ

trν3 ∧ µ4∂∆−1
0 ∂̄∗µ2ν̄T1

T
− i
∫

Σ

trµ3ν1 ∧ µ4ν2
T

+ i

∫

Σ

µ3∂∆−1
0 ∂∗µ̄2ν1 ∧ ν̄T4 + i

∫

Σ

ν3 ∧ µ4∂∆−1
0 ∂∗µ̄1ν2

T

Comparing this to the previous coordinates (Theorem 5.2) we see that there
are four terms here which we didn’t have before and two we no longer have. The
new terms are

i

∫

Σ

µ3∂∆−1
0 ∂∗µ̄2ν1 ∧ ν̄T4 ,

i

∫

Σ

ν3 ∧ µ4∂∆−1
0 ∂∗µ̄1ν2

T
,

i

∫

Σ

trµ3∂∆−1
0 ∂̄∗µ1ν̄

T
2 ∧ ν4

T

and

i

∫

Σ

trν3 ∧ µ4∂∆−1
0 ∂̄∗µ2ν̄T1

T
,

While the ones we no longer have are

−i
∫

Σ

trν3 ∧ µ1µ̄4ν2
T

and

−i
∫

Σ

trµ̄2µ3ν1 ∧ ν4
T .

Now we have that for ν1 = ν4 and µ2 = µ3 and the rest 0 the difference between
the two expressions are

− i
∫

Σ

µ3∂∆−1
0 ∂∗µ̄2ν1 ∧ ν̄T4 − i

∫

Σ

trµ̄2µ3ν1 ∧ ν4
T

= −i
∫

Σ

∆−1
0 ∂∗µ̄2ν1 ∧ ∂∗µ̄2ν1

T
ρ− i

∫

Σ

trµ̄2µ2ν1 ∧ ν1
T

Since ∆ is a positive operator we have that −i
∫

Σ
∆−1

0 ∂∗µ̄2ν1 ∧ ∂∗µ̄2ν1
T
ρ ≥ 0 and

for obvious reasons −i
∫

Σ
trµ̄2µ2ν1 ∧ ν1

T > 0, if ν1 6= 0 and µ2 6= 0.
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Theorem 5.5. The coordinates of 1.1 and the Fibered coordinates agree to second
order, but differ at third order in the derivatives at the center point.
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Asymptotic aspects of the Teichmüller TQFT

by Jørgen Ellegaard Andersen and Jens-Jakob Kratmann Nissen1

Abstract

We calculate the knot invariant coming from the Teichmüller TQFT
introduced by Andersen and Kashaev a couple of years ago. Specifically
we calculate the knot invariant for the complement of the knot 61 both
in Andersen and Kashaev’s original version of Teichmüller TQFT but also
in their new formulation of the Teichmüller TQFT for the one-vertex H-
triangulation of (S3, 61). We show that the two formulations give equivalent
answers. Furthermore we apply a formal stationary phase analysis and
arrive at the Andersen-Kashaev volume conjecture.

Furthermore we calculate the first examples of knot complements in
the new formulation showing that the new formulation is equivalent to the
original one in all the special cases considered.

Finally, we provide an explicit isomorphism between the Teichmüller
TQFT representation of the mapping class group of a once punctured torus
and a representation of this mapping class group on the space of Schwartz
class functions on the real line.

1 Introduction

Since discovered and axiomatised by Atiyah [At], Segal [S] and Witten [W], Topo-
logical Quantum Field Theories (TQFT’s) have been studied extensively. The first
constructions of such theories in dimension 2+1 was given by Reshetikhin and Tu-
raev [T, RT1, RT2] who obtained TQFT’s through surgery and the combinatorial
framework of Kirby calculus, and by Turaev and Viro [TV] using the framework
of triangulations and Pachner moves. In both constructions the central algebraic
ingredients comes from the category of finite dimensional representation of the
quantum group Uq(sl(2,C)) at roots of unity. Subsequently Blanchet, Habeg-
ger, Masbaum and Vogel gave a pure topological construction using Skein theory
[BHMV1, BHMV2]. Recently it has been established by the first author and
Ueno that this TQFT is equivalent to the one coming from conformal field theory
[AU1, AU2, AU3, AU4] and further by the work of Laszlo [L] in the higher genus

1Work supported in part by the center of excellence grant “Center for Quantum Geometry
of Moduli Spaces” from the Danish National Research Foundation (DNRF95).



42 J. E. Andersen J. J. K. Nissen

case with no marked point and the first author and Egsgaard [AE] in genus zero
with marked points (for certain labels), that these TQFT’s can be studied from
the point of view of geometric quantization of the compact moduli space of flat
SU(2) connections. The first author has extensively studied the asymptotics of
this TQFT using this quantization of moduli spaces approach to this theory [A1,
A2, AGr1, AH, AMU, A3, A4, A5, AGa1, AB1, A6, AGL, AHi, A7, AHJMMc].

A new line of development was initiated by Kashaev in [K1] where a state sum
invariant of links in 3-manifolds was defined by using the combinatorics of charged
triangulations. Here the charges are algebraic versions of dihedral angles of ideal
hyperbolic tetrahedra in finite cyclic groups. The approach was subsequently
developed further by Baseilhac, Benedetti and by Geer, Kashaev and Turaev
[BB, GKT].

New challenges appear when one tries to construct combinatorial versions of
Chern–Simons theory with non-compact gauge group such as PSL(2,R), which
is the isometry group of 2-dimensional hyperbolic space. When one considers
the corresponding classical moduli space of flat PSL(2,R)-connections on a two
dimensional surface, a connected component is identified with Teichmüller space,
hence this Chern–Simons theory deserves the name Teichmüller TQFT.

Quantum Teichmüller theory corresponds to a specific classes of unitary map-
ping class representations on infinite dimensional Hilbert spaces [K2, FC]. Based
on quantum Teichmüller theory several formal state-integral partition functions
have been studied by Hikami, Dimofte, Gukov, Lenells, Zagier, Dijkgraaf, Fuji,
Manabe [H1, H2, DGLZ, DFM] with the view to approach the Teichmüller TQFT.
The question about convergence of the studied integrals however remained open
until a mathematical rigorous version of Teichmüller TQFT was suggested by the
first author and Kashaev in [AK1]. See also [AK1a, AK1b]. The convergence
property of the Teichmüller TQFT is a property of the underlying combinato-
rial setting. An extra structure on the triangulations called a shape structure
is imposed where each tetrahedron carries dihedral angles of an ideal hyperbolic
tetrahedron. The dihedral angles provide absolute convergence and moreover
they implement the complete symmetry with respect to change of edge orienta-
tion. The positivity condition of dihedral angles seems to impose restrictions on
the construction of topologically invariant partition functions. In [KLV] Kashaev,
Luo and Vartanov suggests a TQFT of Turaev–Viro type based on the combi-
natorics of shaped triangulations. As the absolute convergence of the partition
function in this model is also based on positivity of dihedral angles, it is similar
to the Teichmüller TQFT. A consequence is that as in the case of the Teichmüller
TQFT the 2 − 3 Pachner move is not immediately always applicable. However,
in this model no other topological restrictions are needed. A new formulation of
the Teichmüller TQFT was suggested in [AK2]. In the new formulation of Te-
ichmüller TQFT both the 2− 3 and 3− 2 Pachner moves are applicable and as in
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the case of the TQFT of Turaev–Viro type [KLV] no other topological restrictions
are needed.

Recently in [AK3] the first author of this paper and Kashaev have constructed
quantum Chern–Simons theory for PSL(2,C) for all non-negative integer levels k
and furthermore understood how it relates to geometric quantization of PSL(2,C)-
moduli spaces. They have proposed a general scheme which just requires a Pon-
tryagin self-dual locally compact group, which is expected to lead to the construc-
tion of the SL(n,C) quantum Chern-Simons theory for all non-negative integer
levels k. From the geometric quantization of moduli spaces viewpoint, the cor-
responding representations of the mapping class groups have been constructed in
[AG]. This work is closely related to the work of Dimofte [Di] on the physics
side. The Teichmüller TQFT is the complex quantum Chern–Simons TQFT for
PSL(2,C) at level k = 1. See also [AM] in this volume.

Outline

We will review the construction of the charged tetrahedral operators which origi-
nates from Kashaev’s quantization of Teichmüller space. The main ingredients in
this theory are Penner’s cell decomposition of decorated Teichmüller space and the
associated Ptolemy groupoid [P] and Faddeev’s quantum dilogarithm [F] which
allows us to change polarization on Teichmüller space.

We recall how the partition function from the Teichmüller TQFT is defined
using tetrahedral operators in both the original version [AK1] and in the new
formulation [AK2].

We will then prove the equivalence of the two versions by direct calculations
in several cases and elaborate on the Andersen-Kashaev volume conjecture arising
in [AK1, Conj. 1.].

Following this, we will investigate the Teichmüller TQFT representation of the
genus one, one parked point, mapping class group and prove that it is equivalent
to an action of this same mapping class group acting on the space of Schwartz
class functions on the real line.

Acknowledgements

We would like to thank Rinat Kashaev for many interesting discussions.

2 Teichmüller Space

As mentioned in the introduction quantum Chern–Simons theory with non-compact
gauge group is of great interest. The gauge group in Teichmüller theory is
PSL(2,R) which is the isometry group of 2 dimensional hyperbolic space.
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Let M be a 3-manifold. Recall that the classical phase space of Chern–Simons
theory with gauge group PSL(2,R) is given by the moduli space of flat connections

M = Hom(π1(M),PSL(2,R))/PSL(2,R).

It is natural to start from M = Σ × R, where π1(M) = π1(Σ), so we can talk
about the moduli space of flat connections on the surface

MΣ = Hom(π1(Σ),PSL(2,R))/PSL(2,R).

We can write the moduli space as the disjoint union of connected components

MΣ =
⊔

−χ(Σ)≤k≤χ(Σ)

(MΣ)k.

Teichmüller space is given by the connected component with the maximal index

TΣ = (MΣ)−χ(Σ).

Let Σ = Σg,s be a surface of finite type, i.e. Σ is an oriented genus g surface with
s boundary components or punctures. Then, topologically, Teichmüller space is
an open ball of dimension 6g − 6 + 2s, i.e.

TΣ
∼= R6g−6+2s.

Recall that TΣ is a symplectic space, where the symplectic structure is given by
the Weil–Petersson symplectic form.

2.1 Penner coordinate system on T̃Σ

Let Σ be an oriented genus g surface with s > 0 punctures and Euler characteristic
2− 2g − s < 0. We denote the set of punctures

V := {P1, . . . , Ps} .

Definition 2.1. A homotopy class of a path running between Pi and Pj is called
an ideal arc. A set of ideal arcs obtained by taking a family X of disjointly
embedded ideal arcs in Σ running between punctures and subject to the condition
that each component of Σ\X is a triangle is called an ideal triangulation. Let ∆Σ

denote the set of all ideal triangulations.

Now take an ideal triangulation τ ∈ ∆Σ and calculate all λ-lengths with respect
to a fixed configuration of horocycles. Let E(τ) denote the set of edges in τ . We
impose the equivalence relation

λ ∼ λ′ : E(τ)→ R>0,
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if there exists f : V → R>0 such that

λ′(e) = f(v1)f(v2)λ(e) e ∈ E(τ),

where v1 and v2 are endpoints of e. Counting the number of edges and vertices in
an ideal triangulation establishes the following

RE(τ)
>0 /RV

>0
∼= R6g−6+2s.

The λ-lengths parametrizes the decorated Teichmüller space T̃Σ, which is a prin-
cipal Rs

>0 foliated fibration φ : T̃Σ → TΣ, where the fiber over a point of TΣ is the
space of all horocycles about the punctures of Σ.

Theorem 2.2 (Penner). (a) As a topological space the decorated Teichmüller space
is homeomorphic to the set of positive numbers on edges given by λ-lengths

T̃Σ
∼= RE(τ)

>0 .

(b) Using the map φ which forgets the horocycles we can pull back the Weil–
Petersson symplectic form to the decorated Teichmüller space. The pull-back
satisfies the formula

φ∗ωWP =
∑

c

a b

da ∧ db
ab

+
db ∧ dc
bc

+
dc ∧ da
ca

.

(c) The mapping class group is contained in the groupoid generated by Ptolemy
transformations. Suppose a, b, c, d, e ∈ τ ∈ ∆Σ are such that {a, b, e} and
{c, d, e} bound distinct triangles. The operation that changes the ideal trian-
gulation τ into τ e, which consists of the ideal arcs of τ except e, which is
replaced by e′ such that triangles {a, b, e} and {c, d, e} are replaced by {b, c, e′}
and {a, d, e′}, is called an elementary move (see Figure 1). The six λ-lengths
are related by one single equation

(2.1) ee′ = ac+ bd.

Due to positivity this is a global coordinate change between parametriza-
tions associated to two ideal triangulations. Two ideal triangulations are related
through a sequence of flips. Composing the relations on Ptolemy transformations
one obtains the relations between two coordinate systems.
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e

a b

d c

−→ e′

a b

d c

Figure 1: Elementary move

c

a b∗ −→
t
∗

Figure 2: Ratio coordinates

2.2 Ratio Coordinates

Definition 2.3. An ideal triangulation with a choice of distinguished corner for
each triangle is called a decorated ideal triangulation (d.i.t).

For an ideal triangle with sides having λ-lengths a, b, c we assign ratio coor-
dinates according to Figure 2, where t =

(
a
c
, b
c

)
= (t1, t2). The pull back of the

Weil–Petersson symplectic 2-form is then written in the very simple way

φ∗ωWP =
∑

·
t

dt1 ∧ dt2
t1t2

=:
∑

·
t

ωt,

where the sum is over all triangles.
The d.i.t. τt obtained from τ by a change of distinguished corner of triangle t

as indicated in Figure 3 is said to be obtained from τ by the elementary change of
decoration in triangle t. The d.i.t. τ e obtained from the d.i.t. τ by the elementary
move along the i.a. e, where distinguished corners are as indicated in Figure 4, is
said to be obtained from τ by the decorated elementary move along the i.a. e.

∗
t

−→
t′
∗

Figure 3: Elementary change of decoration.

It is easily seen that the coordinates u, v are related to the coordinates x, y.
The relation is given by the two functions in x and y.

u = x · y = (x1y1, x1y2 + x2),
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x y

∗∗
−→

u

v
∗

∗

Figure 4: Decorated elementary move

v = x ∗ y =

(
x2y1

x1y2 + x2

,
y2

x1y2 + x2

)
.

We now observe that
ωx + ωy = ωu + ωv,

so that the change of coordinate with respect to this transformation

T : (x, y) 7→ (u, v)

is a symplectomorphism of R4
>0.

3 Tetrahedral operator from quantum Teichmüller

theory

We recall the main algebraic ingredients of quantum Teichmüller theory, following
the approach of [K2, K3, K4]. Consider the canonical quantization of T ∗Rn with
the standard symplectic structure in the position representation. The Hilbert
space we get is L2(Rn). Position coordinates qi and momentum coordinates pi
on T ∗Rn upon quantization becomes selfadjoint unbounded operators qi and pi
acting on L2(Rn) via the formulae

qj(f)(t) = tjf(t), pj(f)(t) =
1

2πi

∂

∂tj
f(t), ∀t ∈ Rn,

satisfying the Heisenberg commutation relations

(3.1) [qj,qk] = [pj,pk] = 0, [pj,qk] =
1

2πi
δj,k.

By the spectral theorem, one defines the operators

ui = e2π bqi , vi = e2π bpi .

The commutation relations for ui and vj takes the form

[uj,uk] = [vj,vk] = 0, ujvk = e2π b2 δj,kvkuj.
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Consider the operations for wj = (uj,vj), j ∈ {1, 2} ,

w1 ·w2 := (u1u2,u1v2 + v1),(3.2)

w1 ∗w2 := (v1u2(u1v2 + v1)−1,v2(u1v2 + v1)−1).(3.3)

Proposition 3.1 (Kashaev). Let ψ(z) be some solution to the functional equation

(3.4) ψ

(
z +

i b

2

)
= ψ

(
z − i b

2

)
(1 + e2π b z), z ∈ C.

Then, the operator

(3.5) T = T12 := e2πip1q2ψ (q1 − q2 + p2) ,

defines a continuous linear map from S(R4) to S(R4), which satisfies the equations

w1 ·w2T = Tw1, w1 ∗w2T = Tw2.(3.6)

For a proof of this proposition see [AK1] and Appendix B. One particular
solution of (3.4) is given by Faddeev’s quantum dilogarithm [F]

(3.7) ψ(z) =
1

Φb(z)
.

The most important property of the operator (3.5) is the pentagon identity in
L2(R3)

(3.8) T12T13T23 = T23T12,

which follows from the five term identity (A.17) satisfied by Faddeev’s quantum
dilogarithm. The indices in (3.8) has the standard meaning. For example T13

is obtained from T12 by replacing q2 and p2 with q3 and p3 respectively and so
forth.

3.1 Oriented triangulated pseudo 3-manifolds

Consider the disjoint union of finitely many copies of the standard 3-simplices
in R3, each having totally ordered vertices. The order of the vertices induces an
orientation on edges. Identify some codimension-1 faces of this union in pairs by
vertex order preserving and orientation reversing affine homeomorphisms called
gluing homeomorphisms. The quotient space X is a specific CW -complex with
oriented edges which will be called an oriented triangulated pseudo 3-manifold.
For i ∈ {0, 1, 2, 3}, we denote by ∆i(X) the set of i-dimensional cells in X. For
any i > j, we denote

∆j
i (X) = {(a, b) | a ∈ ∆i(X), b ∈ ∆j(a)}
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with natural projection maps

φi,j : ∆j
i (X)→ ∆i(X), φi,j : ∆j

i (X)→ ∆j(X).

We also have canonical boundary maps

∂i : ∆j(X)→ ∆j−1(X), 0 ≤ i ≤ j,

which in the case of a j-dimensional simplex S = [v0, v1, . . . , vj] with ordered
vertices v0, v1, . . . , vj in R3 takes the form

∂iS = [v0, . . . , vi−1, vi+1, . . . , vj], i ∈ {0, . . . , j} .

3.2 Shaped 3-manifolds

Let X be an oriented triangulated pseudo 3-manifold.

Definition 3.2. A shape structure on X is an assignment to each edge of each
tetrahedron of X a positive number called the dihedral angle,

αX : ∆1
3(X)→ R+

so that the sum of the three angles at the edges from each vertex of each tetra-
hedron is π. An oriented triangulated pseudo 3-manifold with a shape structure
will be called a shaped pseudo 3-manifold.

It is straightforward to see that the dihedral angles at opposite edges are equal.

0

1

2

3

γ

β β

α

α

γ

Figure 5: Labeling of edges by dihedral angles.

Definition 3.3. To each shape structure on X, we associate a Weight function

ωX : ∆1(X)→ R+,

which to each edge of X associates the total sum of dihedral angles around it

ωX(e) =
∑

(T,e)∈∆1
3(X)

αX(T, e).

An edge of a shaped pseudo 3-manifold X will be called balanced if it is internal
and ωX(e) = 2π. We call a shaped pseudo 3-manifold fully balanced if all edges
of X are balanced.
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3.3 Shape gauge transformation

In the space of shape structures on a pseudo 3-manifold there is a gauge group
action. The gauge group is generated by the total dihedral angles around internal
edges acting through the Neumann–Zagier Poisson bracket. See [AK1] for further
details.

3.4 Geometric interpretation of the five term identity

For an operator T we denote the integral kernel of the operator as 〈x0, x2 | T |
x1, x3〉. Then the pentagon identity can be written in the following way

(3.9) 〈x, y, z | T12T13T23 | u, v, w〉 = 〈x, y, z | T23T12 | u, v, w〉

Decomposition of unity gives for the left hand side of (3.9)

〈x, y, z | T12T13T23 | u, v, w〉 =

∫
〈x, y | T | α1, α2〉〈α1, z | T | u, β3〉

〈α2, β3 | T | v, w〉dα1dα2dβ3.

Decomposing of unity for the right hand side gives

〈x, y, z | T23T12 | u, v, w〉 =

∫
〈y, z | T | γ2, w〉〈x, γ2 | T | u, v〉dγ2.

To make the correspondence between the pentagon identity and the 3-2 Pach-
ner move precise, we label each vertex of a tetrahedron T with a number i ∈
{0, 1, 2, 3} . The numbers on vertices induce an orientation on edges, i.e. we put
arrows on the edges pointing in the direction from the smaller to the bigger label
on vertices. The number at a vertex corresponds to the number of incoming edges,
see Figure 6.

0 1

2

3

Figure 6: Interpretation of a positively oriented tetrahedron.
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x0x1

x2

x3

Figure 7: A tetrahedron in state x.

3.5 States

A state of a tetrahedron T with totally ordered vertices {0, 1, 2, 3} is a map

x : ∆2(X)→ R.

A tetrahedron in state x is illustrated in Figure 7, where xi := x(∂iT ).
We identify a tetrahedron T in state x as in Figure 7 with the integral kernel

〈x0, x2 | T | x1, x3〉. This gives a geometric interpretation of the pentagon iden-
tity (3.9) as the 2-3 Pachner move as illustrated in Figure 8 and Figure 9. The

=

Figure 8: Decomposition of tetrahedra in the 2-3 Pachner move.

integrations corresponds to gluing of faces as illustrated in Figure 9.

=

Figure 9: 3-2 Pachner move.
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3.6 Integral kernel

Let us calculate the integral kernel of the operator T

〈x0, x2 | T | x1, x3〉 ≡ Tf(x, y) =

∫
〈x, y | T | u, v〉f(u, v)dudv,

where T is the operator given by (3.5).

〈x0, x2 | T | x1, x3〉 = 〈x0, x2 | e2πip1q2ψ (q1 − q2 + p2) | x1, x3〉
= e

x2
∂
∂x0 〈x0, x2 | ψ (q1 − q2 + p2) | x1, x3〉

= 〈x0 + x2, x2 | ψ (q1 − q2 + p2) | x1, x3〉

=

∫
〈x0 + x2, x2 | e2πi(q1−q2+p2)y | x1, x3〉ψ̃(y) dy

=

∫
e2πiyx1δ(x1 − x0 − x2)〈x2 | e2πi(p2−q2)y | x3〉ψ̃(y) dy

=

∫
e2πix1yδ(x1 − x0 − x2)ψ̃(y)e−2πix3y〈x2 + y | x3〉 dy

=

∫
e2πix1yδ(x1 − x0 − x2)ψ̃(y)e−2πix3yδ(x2 + y − x3)eπiy

2

dy

= e2πix1(x3−x2)δ(x1 − x0 − x2)ψ̃(x3 − x2)e−2πix3(x3−x2)+πi(x3−x2)2

= δ(x1 − x0 − x2)ψ̃′(x3 − x2)e2πix0(x3−x2),

where

ψ̃′(x) := ψ̃(x)e−πix
2

, and ψ̃(x) :=

∫

R
ψ(y)e2πixy dy.

3.7 Positively and negatively oriented tetrahedra

In an oriented triangulated 3-manifold there are two possibilities for the orien-
tation of tetrahedra. The orientation follows from Figure 10. To a negatively
oriented tetrahedron the integral kernel associated to it in the geometric interpre-
tation is the complex conjugate of that of a positively oriented tetrahedron.

3.8 Charged Tetrahedral Operators and Pentagon Iden-
tity

To ensure that the Fourier integral is absolutely convergent charges on the operator
T are introduced. For any positive real a and c such that b := 1

2
− a − c is also

positive, define the charged T-operators

(3.10) T(a, c) := e−πic
2
b(4(a−c)+1)/6e4πicb(cq2−aq1)Te−4πicb(ap2+cq2)
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0 1

2

3

Positively oriented tetrahedron.

0 1

3

2

Negatively oriented tetrahedron.

Figure 10: Orientations on tetrahedra.

and
T̄(a, c) := eπic

2
b(4(a−c)+1)/6e−4πicb(ap2+cq2)T̄e4πicb(cq2−aq1)

where T̄ := T−1 and cb := i
2
(b + b−1). We have the equality

T(a, c) = e2πip1q2ψa,c(q1 − q2 + p2)

where

ψa,c(x) := ψ(x− 2cb(a+ c))e−4πicba(x−cb(a+c))e−πic
2
b(4(a−c)+1)/6.

The Fourier transformation formula for Faddeev’s quantum dilogarithm (A.19)
leads to the identities

ψ̃′a,c(x) = e−
πi
12ψc,b(x),

ψa,c(x) = e−
πi
6 eπix

2

ψc,a(−x) = e−
πi
12 ψ̃b,c(−x),

ψ̃′a,c(x) = e
πi
12ψc,b(x) = e−

πi
12 eπix

2

ψb,c(−x).

From the formulas above we obtain that

〈x0, x2 | T(a, c) | x1, x3〉 = δ(x1 − x0 − x2)ψ̃′a,c(x3 − x2)e2πix0(x3−x2),(3.11)

〈x, y | T̄(a, c) | u, v〉 = 〈u, v | T(a, c) | x, y〉.(3.12)

Proposition 3.4 (Andersen–Kashaev [AK1]). The charged pentagon identity is
satisfied

(3.13) T12(a4, c4)T13(a2, c2)T23(a0, c0) = eπic
2
bPe/3T23(a1, c1)T12(a3, c3),

where

Pe = 2(c0 + a2 + c4)− 1

2
and a0, a1, a2, a3, a4, c0, c1, c2, c3, c4 ∈ R are such that

a1 = a0 + a2, a3 = a2 + a4, c1 = c0 + a4, c3 = a0 + c4, c2 = c1 + c3.
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3.9 Partition function

For a tetrahedron T = [v0, v1, v2, v3] with ordered vertices v0, v1, v2, v3, we define
its sign

sign(T ) = sign(det(v1 − v0, v2 − v0, v3 − v0)).

For (T, α, x) an oriented tetrahedron with shape structure α in state x, define
the partition function taking values in the space of tempered distributions by the
formula

(3.14) Z~(T, α, x) :=

{
〈x0, x2 | T(a, c) | x1, x3〉, if sign(T ) = 1

〈x1, x3 | T̄(a, c) | x0, x2〉, if sign(T ) = −1.

where
xi := x(∂iT )

and

a =
1

2π
αT (T, e01), c =

1

2π
αT (T, e03).

For a closed oriented triangulated pseudo 3-manifold X with shape structure
α, we associate the partition function

Z~(X,α) :=

∫

x∈R∆2(X)

∏

T∈∆3(X)

Z~(T, α, x) dx.(3.15)

Theorem 3.5 (Andersen–Kashaev [AK1]). If H2(X\∆0(X),Z) = 0, then the
quantity |Z~(X,α)| is well defined in the sense that the integral is absolutely con-
vergent, and

1. it depends on only the gauge reduced class of α;

2. it is invariant under 2− 3 Pachner moves.

The definition of the partition function (3.15) can be extended to manifolds
having boundary eventually giving rise to a TQFT, see [AK1].

3.10 Invariants of knots in 3-manifolds

By considering one-vertex ideal triangulations of complements of hyperbolic knots
in compact oriented closed 3-manifolds, we obtain knot invariants.

Another possibility is to consider a one-vertex Hamiltonian triangulation (H-
triangulation) of pairs (a closed 3-manifold M , a knot K in M), i.e., a one-vertex
triangulation of M , where the knot is represented by one edge, with degenerate
shape structures, where the weight on the knot approaches zero and where simul-
taneously the weights on all other edges approach the balanced value 2π. This
limit by itself is divergent as a simple pole (after analytic continuation to complex
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angles) in the weight of the knot, but the residue at this pole is a knot invariant
which is a direct analogue of Kashaev’s invariants [K1], which were at the origin
of the hyperbolic volume conjecture.

In [AK1] the first author and Rinat Kashaev have set forth the following
conjecture:

Conjecture 3.6 (Andersen and Kashaev [AK1]). Let M be a closed oriented
3-manifold. For any hyperbolic knot K ⊂ M , there exists a smooth function
JM,K(~, x) on R>0 × R which has the following properties.

(1) For any fully balanced shaped ideal triangulation X of the complement of K
in M , there exists a gauge invariant real linear combination of dihedral angles
λ, a (gauge non-invariant) real quadratic polynomial of dihedral angles φ such
that

Z~(X) = ei
φ
~

∫

R
JM,K(~, x)e

− xλ√
~dx.

(2) For any one vertex shaped H-triangulation Y of the pair (M,K) there exists
a real quadratic polynomial of dihedral angles φ such that

lim
ωY→τ

Φb

(
π − ωY (K)

2πi
√
~

)
Z~(Y ) = ei

φ
~−iπ/12JM,K(~, 0),

where τ : ∆1(Y ) → R takes the value 0 on the knot K and the value 2π on
all other edges.

(3) The hyperbolic volume of the complement of K in M is recovered as the limit

lim
~→0

2π~ log |JM,K(~, 0)| = − vol(M\K).

Theorem 3.7. Conjecture 3.6 is true for the pair (S3, 61) with

(3.16) JS3,61
(~, x) = χ61(x).

The function χ61(x) is defined to be:

χ61(x) =

∫

R2

e2πi(x2+ 1
2
y2+2xy)e4πicbz

Φb(x+ y)Φb(x+ z + cb)Φb(y)Φb(z − x− y)
dydz.

See [N] for a calculation of the invariant of an ideal triangulation of the com-
plement of the knot 61.

4 New formulation

In this section we recall the new formulation of the Teichmüller TQFT introduced
by Andersen and Kashaev in [AK2].
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4.1 States and Boltzmann weights

Let T ⊂ R3 be a tetrahedron with shape structure αT and vertex ordering mapping

v : {0, 1, 2, 3} → ∆0(T ).

A state of a tetrahedron T is a map x : ∆1(T ) → R. Pictorially, a positive
tetrahedron T in state x looks as follows

0 1

2

3

x23 x01

x02

x13

x12

x03

More generally, a state of a triangulated pseudo 3-manifold X is a map

y : ∆1(X)→ R.

For any state y define the Boltzmann weight

B(T, x) = gα1,α3(y02 + y13 − y03 − y12, y02 + y13 − y01 − y23)

if T is positive and complex conjugate otherwise. Here yij ≡ y(vivj), αi ≡
αT (v0vi)/2π,

(4.1) ga,c(s, t) =
∑

m∈Z
ψ̃′a,c(s+m)eπit(s+2m).

Theorem 4.1 (Andersen–Kashaev [AK1]). Let X be a levelled shaped triangulated
oriented pseudo 3-manifold. Then, the quantity

(4.2) Znew
~ (X) := eπilX/4~

∫

[0,1]∆1(X)


 ∏

T∈∆3(X)

B
(
T, y

∣∣
∆1(T )

)

 dx

admits an analytic continuation to a meromorphic function of the complex shapes,
which is invariant under all shaped 2−3 and 3−2 Pachner moves (along balanced
edges).

Conjecture 4.2. The proposed model in Theorem 4.1 is equivalent to the Te-
ichmüller TQFT from [AK1].

Theorem 4.3. The new formulation of the Teichmüller TQFT is equivalent to
the original formulation for the pairs (S3, 31), (S3, 41), (S3, 52) and (S3, 61).
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5 Calculations of specific knot complements

In the following calculations we encode an oriented triangulated pseudo 3-manifold
X into a diagram where a tetrahedron T is represented by an element

(5.1) T =

where the vertical segments, ordered from left to right, correspond to the faces
∂0T ,∂1T , ∂2T ,∂3T respectively. When we glue tetrahedron along faces, we illus-
trate this by joining the corresponding vertical segments.

We will further use the notation

νa,c := e−πicb2 (4(a−c)+1)/6.

5.1 The complement of the figure-8-knot

Let X be the following oriented triangulated pseudo 3-manifold,

(5.2)

which represented the usual diagram for the complement of the figure eight knot.
Choosing an orientation, the diagram consists of one positive tetrahedron T+ and
one negative T−. ∂X = ∅ and combinatorially we have ∆0(X) = {∗}, ∆1(X) =
{e0, e1}. The gluing of the tetrahedra is vertex order preserving which means that
edges are glued together in the following manner.

e0 = x+
01 = x+

03 = x+
23 = x−02 = x−12 = x−13 =: x,

e1 = x+
02 = x+

13 = x+
12 = x−01 = x−03 = x−23 =: y.

That this diagram represents the complement of the figure eight know means that
the topological space X\{∗} is homeomorphic to the complement of the figure-
eight knot. The set ∆1

3(X) consists of the elements (T±, ej,k) for 0 ≤ j < k ≤ 3.
We fix a shape structure

αX : ∆1
3(X)→ R+

by the formulae

αX(T±, e0,1) = 2πa±, αX(T±, e0,2) = 2πb±, αX(T±, e0,3) = 2πc±,

where a± + b± + c± = 1
2
. This result in the following weight functions

ωX(e0) = 2a+ + c+ + 2b− + c−, ωX(e1) = 2b+ + c+ + 2a− + c−.

In the completely balanced case these equations correspond to

a+ − b+ = a− − b−.
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The Boltzmann weights are given by the functions

B
(
T+, x|∆1(T+)

)
= ga+,c+(y − x, 2(y − x)),

B
(
T−, x|∆1(T−)

)
= ga−,c−(x− y, 2(x− y)).

We calculate the partition function for the Teichmüller TQFT using the new
formulation

Znew
~ (X) =

∫

[0,1]2

∑

m,n∈Z
ψ̃′a+,c+

(y − x+m)ψ̃′a−,c−(x− y + n)e4πi(y−x)(m+n) dxdy

=

∫

[0,1]

∑

m,n∈Z
ψ̃′a+,c+

(y +m)ψ̃′a−,c−(−y + n)e4πiy(m+n)dy

=
∑

m,n∈Z

∫

[m,m+1]

ψ̃′a+,c+
(y)ψ̃′a−,c−(−y +m+ n)e4πi(y−m)(m+n)dy

=
∑

p∈Z

∫

R
ψ̃′a+,c+

(y)ψ̃′a−,c−(−y + p)e4πiypdy

= e−
πi
6

∑

p∈Z

∫

R
ψc+,b+(y)ψb−,c−(y − p)eπi(y−p)2

e4πiypdy

= e−
πi
6

∑

p∈Z

∫

R
ψ(y − 2cb(c+ + b+))ψ(y − p− 2cb(b− + c−))eπiy

2

eπip
2

e2πiyp

× e−4πicbc+(y−cb(c++b+))e−4πicbb−(y−p−cb(b−+c−))

× e−πi(4(c+−b+)+1)/6e−πi(4(b−−c−)+1)/6dy.

We set Y = y − 2cb(c+ + b+). Assuming that we are in the completely balanced
case we have that

−b− − c− + c+ + b+ = −b+ + b−.

Furthermore we have y2 = Y 2 + 4c2
b(c+ + b+)2 + 4cbY (c+ + b+). Implementing this

we get the following expression

Znew
~ (X) = νc+,b+νb−,c−e

−πi
6

∑

p∈Z

∫

R
ψ(Y − p− 2cb(b+ − b−))ψ(Y )

× eπi(Y 2+4c2b(c++b+)2+4cbY (c++b+))eπip
2

× e2πi(Y+2cb(c++b+))p

× e−4πicbc+(Y+cb(c++bx))e−4πicbb−(Y−p−cb(b−+c−)+2cb(c++b+))dY

= νc+,b+νb−,c−e
−πi

6

∑

p∈Z

∫

R

1

Φb(Y − p− 2cb(b+ − b−))

1

Φb(Y )

× eπiY 2

eπip
2

e−4πicbY (−c+−b++c++b−)e2πiY p
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× e−4πicbp(−(c++b+)−b−)

× e4πic2b((c++b+)2−c+(c++b+)−b−(b−+c−−2(c++b+))dY.

Now set

(5.3) u = 2cb(b+ − b−)

and

(5.4) v = 2b− + c− = 2b+ + c+,

and use the formula
Φb(z)Φb(−z) = ζ−1

inve
πiz2

,

together with the calculation

b− + b+ + c+ = b− + b+ − 2b+ + 2b− + c− = −(b+ − b−) + (2b− + c−).

to get that

Znew
~ (X) = νc+,b+νb−,c−ζinve

−πi
6

∑

p∈Z

∫

R

Φb(p+ u− Y )

Φb(Y )
e−πi(Y

2+u2+p2−2Y u−2Y p+2up)

× eπiY 2

eπip
2

e2πiY ue2πiY pdY

× e−2πipue2πipv

× e4πic2b((c++b+)2−c+(c++b+)−b−(b−+c−−2(c++b+)).

Using the balance condition and formulas (5.3) and (5.4) we get the equality

− 4πic2
b{(c+ + b+)2 + b−(−b− − c− + 2c+ + 2b+) + c+(c+ + b+)} =

− 4πic2
b{(−(b+ − b1)2)− c+b+ + c+b− + b−c+ − b−c−} =

− 2πicb{−(c+ + 2b−)u}+ πiu2 =

− 2πicb{−(2b− + c−)u+ 2(b+ − b−))u}+ πiu2 = πi(uv − u2).

We get the following expression for the partition function

Znew
~ (X) = νc+,b+νb−,c−ζinve

−πi
6

∑

p∈Z

∫

R

Φb(p+ u− Y )

Φb(Y )
e−πiu

2

× e4πiY ue4πiY pe−4πipue2πipveπi(uv−u
2)dY

= νc+,b+νb−,c−ζinve
−πi

6

∑

p∈Z

∫

R

Φb(p+ u− Y )

Φb(Y )

× e4πiY ue4πiY pe−4πipue2πipveπiuve−2πiu2

dY
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= νc+,b+νb−,c−ζinve
−πi

6

∑

p∈Z

∫

R

Φb(p+ u− Y )

Φb(Y )
e2πi(u+p)(2Y−u−p)dY eπiv(2p+u).

Using the Weil-Gel’fand-Zak transform we see that the partition function has the
form

Znew
~ (X) = νc+,b+νb−,c−ζinve

−πi
6 W (χ41)(u, v).

Where the function χ41(x) =
∫
R−i0

Φb(x−y)
Φb(y)

e2πix(2y−x)dy. The function χ41(x) is

exactly the function JS3,41
(~, x) from [AK1, Thm. 5]. It should be noted that

this result is connected to Hikami’s invariant. Andersen and Kashaev observes in
[AK1] that the expression

1

2π b
χ41

(
− u

π b
,
1

2

)
,

where χ41(x, λ) = χ41(x)e4πicbλ is equal to the formal derived expression in [H2].

5.2 One vertex H-triangulation of the figure-8-knot

Let X be represented by the diagram

(5.5)

where the figure-eight knot is represented by the edge of the central tetrahedron
connecting the maximal and next to maximal vertices. Choosing an orientation,
the diagram consists of two positive tetrahedra T1, T3 and one negative T2. ∂X = ∅
and combinatorially we have ∆0(X) = {∗}, ∆1(X) = {x, y, z, x′}. The gluing
of the tetrahedra is vertex order preserving which means that edges are glued
together in the following manner.

x = x1
01 = x1

03 = x2
02 = x3

02 = x3
03,

y = x1
02 = x1

12 = x1
13 = x2

01 = x2
03 = x2

23 = x2
23,

z = x1
23 = x2

12 = x2
13 = x3

12 = x3
13,

x′ = x3
01.

This results in the following equations for the dihedral angles when we balance
all but one edge

b1 + a3 = b2, a1 = a2 + a3.

In the limit where we let a3 → 0 we get the equations

b1 = b2, a1 = a2.
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The Boltzmann weights are given by the functions

B
(
T1, x|∆1(T1)

)
= ga1,c1(y − x, 2y − x− z),

B
(
T2, x|∆1(T2)

)
= ga2,c2(x− y, x+ z − 2y),

B
(
T3, x|∆1(T3)

)
= ga3,c3(0, x+ z − x′ − y).

So we get that

Znew
~ (X) =

∫

[0,1]4

∑

m,n,l∈Z
ψ̃′a1,c1

(y − x+m)eπi(2y−x−z)(y−x+2m)

ψ̃′a2,c2
(x− y + n)e−πi(x+z−2y)(x−y+2n)

ψ̃′a3,c3
(l)e2πi(x+z−x′−y)l dxdydzdx′.

Integration over x′ removes one of the sums since
∫ 1

0
e−2πix′ldx′ = δ(l). Hence

Znew
~ (X) = ψ̃′a3,c3

(0)

∫

[0,1]3

∑

m,n∈Z
ψ̃′a1,c1

(y − x+m)eπi(2y−x−z)(y−x+2m)

ψ̃′a2,c2
(x− y + n)e−πi(x+z−2y)(x−y+2n) dxdydz

= ψ̃′a3,c3
(0)

∫

[0,1]3

∑

m,n∈Z
ψ̃′a1,c1

(y − x+m)ψ̃′a2,c2
(x− y + n)

e2πi(2y−x)(m+n)e−2πiz(m+n) dxdydz.

Now integration over z gives
∫ 1

0
e−2πiz(m+n)dz = δ(n+m). So the partition function

takes the form

Znew
~ (X) = ψ̃′a3,c3

(0)

∫

[0,1]2

∑

m∈Z
ψ̃′a1,c1

(y − x+m)ψ̃′a2,c2
(x− y −m) dxdy,

We make the shift y 7→ y + x to get the expression

Znew
~ (X) = ψ̃′a3,c3

(0)

∫

[0,1]2

∑

m∈Z
ψ̃′a1,c1

(y +m)ψ̃′a2,c2
(−y −m) dxdy

= ψ̃′a3,c3
(0)

∫

[0,1]

∑

m∈Z
ψ̃′a1,c1

(y +m)ψ̃′a2,c2
(−y −m) dy

= ψ̃′a3,c3
(0)

∫

Z
ψ̃′a1,c1

(y)ψ̃′a2,c2
(−y) dy

= e−
πi
6 ψ̃′a3,c3

(0)

∫

Z
ψc1,b1(y)ψb2,c2(y)eπiy

2

.
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We set Y = y − 2cb(c1 + b1) = y − cb(1− 2a1). Assuming that we are in the case
where all but one edge is balanced we have a1 = a2

y2 = Y 2 + c2
b(1− 2a1)2 + 2cbY (1− 2a1).

Implementing this we get the following expression

Znew
~ (X) = e−

πi
6 ψ̃′a3,c3

(0)

∫

Z
ψ(Y )ψ(Y )eπi(Y

2+c2b(1−2a1)2+2cbY (1−2a1))

e−4πicbc1(Y+cb(1/2−a1))νc1,b1

e−4πicbb2(Y+cb(1/2−a1))νb2,c2dy

= e−
πi
6 νc1,b1νb2,c2ψ̃

′
a3,c3

(0)

∫

Z−0i

1

Φ(Y )2
eπiY

2

dy e
iφ
~ .

This result corresponds exactly to the partition function in the original formula-
tion, see [AK1, Chap. 11]. I.e. in the limit where a3 → 0 we get the renormalised
partition function

Z̃new
~ (X) := lim

a3→0
Φb(2cba3 − cb)Znew

~ (X) =
e−πi/12

ν(c3)
χ41(0).

5.3 The complement of the knot 52

Let X be represented by the diagram

(5.6)

Choosing an orientation the diagram consists of three positive tetrahedra. We
denote T1, T2, T3 the left, the right an top tetrahedra respectively. The combi-
natorial data in this case are ∆0(X) = {∗}, ∆1(X) = {e0, e1, e2}, ∆2(X) =
{f0, f1, f2, f3, f4, f5} and ∆3(X) = {T1, T2, T3} .

The edges are glued in the following manner

e0 = x1
02 = x1

12 = x2
13 = x2

23 = x3
01 = x3

23 =: x,

e1 = x1
03 = x1

23 = x2
02 = x2

03 = x3
03 = x3

13 = x3
12 =: y

e2 = x1
01 = x1

13 = x2
01 = x2

12 = x3
02 =: z.

We impose the condition that all edges are balanced which exactly corresponds
to the two equations

2a3 = a1 + c2, b3 = c1 + b2.
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The Boltzmann weights are given by the equations

B
(
T1, x|∆1(T1)

)
= ga1,c1(z − y, x− y),

B
(
T2, x|∆1(T2)

)
= ga2,c2(x− z, y − z),

B
(
T2, x|∆1(T2)

)
= ga3,c3(z − y, z + y − 2x).

We calculate the following function

Znew
~ (X) =

∫

[0,1]3

∑

j,k,l∈Z
ga1,c1(z − y, x− y)ga2,c2(x− z, y − z)

× ga3,c3(z − y, z + y − 2x) dxdydz

=

∫

[0,1]3

∑

j,k,l∈Z
ψ̃′a1,c1

(z − y + j)eπi(x−y)(z−y+2j)ψ̃′a2,c2
(x− z + k)

eπi(y−z)(x−z+2k) × ψ̃′a3,c3
(z − y + l)eπi(z+y−2x)(z−y+2l) dxdydz.

Shift x 7→ x+ z,

Znew
~ (X) =

∫

[0,1]3

∑

j,k,l∈Z
ψ̃′a1,c1

(z − y + j)eπi(x+z−y)(z−y+2j)ψ̃′a2,c2
(x+ k)eπi(y−z)(x+2k)

× ψ̃′a3,c3
(z − y + l)eπi(y−2x−z)(z−y+2l) dxdydz.

Shift z 7→ z + y

Znew
~ (X) =

∫

[0,1]3

∑

j,k,l∈Z
ψ̃′a1,c1

(z + j)eπi(x+z)(z+2j)ψ̃′a2,c2
(x+ k)eπi(−z)(x+2k)

× ψ̃′a3,c3
(z + l)eπi(−2x−z)(z+2l) dxdydz

=

∫

[0,1]3

∑

j,k,l∈Z
ψ̃′a1,c1

(z + j)ψ̃′a2,c2
(x+ k)ψ̃′a3,c3

(z + l)

× eπi(x+z)(z+2j)eπi(−z)(x+2k)eπi(−2x−z)(z+2l) dxdydz

=

∫

[0,1]3

∑

j,k,l∈Z
ψ̃′a1,c1

(z + j)ψ̃′a2,c2
(x+ k)ψ̃′a3,c3

(z + l)

× e2πi(x(j−2l−z)+z(j−k−l) dxdydz.

Integration over y contributes nothing. We now shift x 7→ x − k and integrate
over the interval [−k,−k + 1].

Znew
~ (X) =

∑

j,k,l∈Z

∫

[0,1]

∫

[−k,−k+1]

ψ̃′a1,c1
(z + j)ψ̃′a2,c2

(x)ψ̃′a3,c3
(z + l)
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× e2πi((x−k)(j−2l−z)+z(j−k−l) dxdz

=
∑

j,k,l∈Z
e2πik(2l−j)

∫

[0,1]

∫

[−k,−k+1]

ψ̃′a1,c1
(z + j)ψ̃′a2,c2

(x)ψ̃′a3,c3
(z + l)

× e2πi(x(j−2l−z)+z(j−l)) dxdz

=
∑

j,l∈Z

∫

[0,1]

ψ̃′a1,c1
(z + j)ψ̃′a3,c3

(z + l)e2πiz(j−l)
∫

R
ψ̃′a2,c2

(x)e−2πix(z+2l−j)dx dz

=e−
πi
12

∑

j,l∈Z

∫

[0,1]

ψ̃′a1,c1
(z + j)ψ̃′a3,c3

(z + l)e2πiz(j−l)
∫

R
ψc2,b2(x)e−2πix(z+2l−j)dx dz

=e−
πi
4

∑

j,l∈Z

∫

[0,1]

ψc1,b1(z + j)ψc3,b3(z + l)ψ̃c2,b2(z + 2l − j)e2πiz(j−l)dz.

We set m = j − l.

Znew
~ (X) =e−

πi
4

∑

l,m∈Z

∫

[0,1]

ψc1,b1(z + l +m)ψc3,b3(z + l)ψ̃c2,b2(z + l −m)e2πizm dz

=e−
πi
4

∑

l,m∈Z

∫

[l,l+1]

ψc1,b1(z +m)ψc3,b3(z)ψ̃c2,b2(z −m)e2πizm dz

=e−
πi
3

∑

m∈Z

∫

R
ψc1,b1(z +m)ψc3,b3(z)ψb2,a2(z −m)eπi(z−m)2

e2πizm dz

=e−
πi
3

∑

m∈Z

∫

R
ψc1,b1(z +m)ψc3,b3(z)ψb2,a2(z −m)eπi(z

2+m2) dz.

Znew
~ (X) = e−

πi
3

∑

m∈Z

∫

R
ψ(z +m− cb(1− 2a1))e−4πicbc1{(z+m)−cb(1/2−a1)}

e−πic
2
b(4(c1−b1)+1)/6

ψ(z −m− cb(1− 2c2))e−4πicbc1{(z+m)−cb(1/2−c2)}

e−πic
2
b(4(c1−b1)+1)/6

ψ(z − cb(1− 2a3))e−4πicbc3{(z+m)−cb(1/2−a3)}

e−πic
2
b(4(c3−b3)+1)/6eπiz

2

eπip
2

dz.

Set w = z − cb(1− 2a3)

Znew
~ (X) = e−

πi
3

∑

m∈Z

∫

R−i0
ψ(w +m+ 2cb(a1 − a3))ψ(w −m+ 2cb(c2 − a3))ψ(w)

×eπip2

eπiw
2

e4πic2b(1/2−a3)2

e4πicbw(1/2−a3)

e−4πicbc1{w+p+cb(1−2a3)−cb(1/2−a1)}
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e−4πicbc1{w−p+cb(1−2a3)−cb(1/2−c2)}

e−4πicbc1{w+cb(1/2−a3)}νc1,b1νb2,a2νc3,b3 dw.

Simplify by setting u = 2cb(a1− a3). Using c1 + b2 + c3 + a3− 1/2 = 0 we are left
with

Znew
~ (X) =e−

πi
3

∑

m∈Z

∫

R−i0
ψ(w +m+ u)ψ(w −m− u)ψ(w)

eπiw
2

eπim
2

e4πicb(b2−c1)m

e−4πic2b{−b23−b3c3+c1(b3+c3)+b2(b3+c3)+(c1−b2)(a1−a3)} dw

νc1,b1νb2,a2νc3,b3 .

Let v = 2cb(a1 − c1 + b2 − a3), then Note that

4πicb(b2 − c1)p = 4πicb(a1 − c1 + b2 − a3)p− 4πicb(a3 − a1) = 2πi(vp− up),

−b2
3 − b3c3 + c1(b3 + c3) + b2(b3 + c3) = 0,

and

−4πic2
b((c1 − b2)(a1 − a3)) = 4πic2

b((a1 − c1 + b2 − a3)(a1 − a3)− (a1 − a3)(a1 − a3))

= πi(vu− u2).

Znew
~ (X) =e−

πi
3 eπiuv

∑

m∈Z

∫

R−i0

eπiw
2
e−πim

2
e−πiu

2

Φb(w +m+ u)Φb(w −m− u)Φb(w)
dwe2πivm

νc1,b1νb2,a2νc3,b3

=e−
πi
3 eπiuv

∑

m∈Z

∫

R−i0

eπi(w+(u+m))(w−(u+m))

Φb(w +m+ u)Φb(w −m− u)Φb(w)
dwe2πivm

νc1,b1νb2,a2νc3,b3
=Wχ52(u, v)νc1,b1νb2,a2νc3,b3 .

Where χ52(u) is given by the formula

χ52(u) = e−
πi
3

∫

R−i0

eπi(w−u)(w+u)

Φb(w +m+ u)Φb(w −m− u)Φb(w)
dw.

Again the function χ52 is that of [AK1], which again is related to Hikami’s invari-
ant, in particular Hikami’s formally derived expression in [H2, (4.10)] is equal to

eπi
c
b2
3

1
2π b

χ52(−u
π b
, 1

2
), where χ52 := χ52(x)e4πicbxλ.
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5.4 One vertex H-triangulation of (S3, 52)

Let X be represented by the diagram

(5.7)

Choosing an orientation, the diagram consists of four positive tetrahedra T0, T1, T2, T3.
∂X = ∅ and combinatorially we have ∆0(X) = {∗}, ∆1(X) = {x, y, z, w, x′}. The
gluing of the tetrahedra is vertex order preserving which means that edges are
glued together in the following manner.

x = x0
03 = x0

13 = x1
01 = x3

12 = x3
02,

y = x1
03 = x1

12 = x1
13 = x2

02 = x2
03 = x3

03 = x3
23,

z = x0
01 = x1

02 = x2
01 = x2

12 = x3
01 = x3

13

v = x0
02 = x0

12 = x1
23 = x2

13 = x2
23,

x′ = x0
23.

This results in the following equations for the dihedral angles, when we balance
all edges but one edge.

a3 = a1 − a0 = c2, a0 + b1 = b2 + c3, a1 + a2 + b3 =
1

2
+ c1.

The Boltzmann weights are given by the functions

B
(
T0, x|∆1(T0)

)
= ga0,c0(0, v + x− z − x′),

B
(
T1, x|∆1(T1)

)
= ga1,c1(z − y, z + y − x− v),

B
(
T2, x|∆1(T2)

)
= ga2,c2(v − z, y − z),

B
(
T3, x|∆1(T3)

)
= ga3,c3(z − y, x− y).

The partition function is represented by the integral

Znew
~ (X) =

∫

[0,1]5

∑

m,n,k,p∈Z
ψ̃′a0,c0

(m)eπi(v+x−z−x′)(2m)

ψ̃′a1,c1
(z − y + n)eπi(z+y−x−v)(z−y+2n)

ψ̃′a2,c2
(v − z + k)eπi(y−z)(v−z+2k)

ψ̃′a3,c3
(z − y + p)eπi(x−y)(z−y+2p) dx′dxdydzdv.
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Integration over x′ removes one of the sums since
∫ 1

0
e−2πix′mdx′ = δ(m). Hence

Znew
~ (X) = ψ̃′a0,c0

(0)

∫

[0,1]4

∑

n,k,p∈Z
ψ̃′a1,c1

(z − y + n)eπi(z+y−x−v)(z−y+2n)

ψ̃′a2,c2
(v − z + k)eπi(y−z)(v−z+2k)

ψ̃′a3,c3
(z − y + p)eπi(x−y)(z−y+2p) dx′dxdydzdv.

Now integration over x gives
∫ 1

0
e−2πix(n−p)dx = δ(n − p). Implementing this and

shifting the variable v 7→ v + z, the partition function takes the form

Znew
~ (X) = ψ̃′a0,c0

(0)

∫

[0,1]3

∑

n,k∈Z
ψ̃′a1,c1

(z − y + n)eπi(y−v)(z−y+2n)

ψ̃′a2,c2
(v + k)eπi(y−z)(v+2k)

ψ̃′a3,c3
(z − y + n)e−πiy(z−y+2n) dydzdv.

We make the shift z 7→ z + y to get the expression

Znew
~ (X) = ψ̃′a0,c0

(0)

∫

[0,1]3

∑

n,k∈Z
ψ̃′a1,c1

(z + n)eπi(y−v)(z+2n)

ψ̃′a2,c2
(v + k)e−πiz(v+2k)

ψ̃′a3,c3
(z + n)e−πiy(z+2n) dydzdv,

which is independent of y so we can remove the integration over this variable. We
integrate over the variable v.

∑

k∈Z

∫

[0,1]

ψ̃′a2,c2
(v + k)e−2πiv(z+n)dve−2πizk =

∑

k∈Z

∫ k+1

k

ψ̃′a2,c2
(v)e−2πiv(z+n)dv

e−2πizke2πik(z+n)

=e−
πi
12

∫

R
ψc2,b2(v)e−2πiz(z+n)dv

=e−
πi
12 ψ̃c2,b2(z + n)

=e−
πi
6 eπi(z+n)2

ψb2,a2(z + n).

We therefore get the expression

Znew
~ (X) = e−

πi
3 ψ̃′a0,c0

(0)

∫

[0,1]

∑

n∈Z
ψc1,b1(z + n)ψb2,a2(z + n)ψc3,b3(z + n)eπi(z+n)2

dz

= e−
πi
3 ψ̃′a0,c0

(0)

∫

R
ψc1,b1(z)ψb2,a2(z)ψc3,b3(z)eπi(z)

2



68 J. E. Andersen J. J. K. Nissen

We set Z = z − 2cb(c1 + b1) = y − cb(1− 2a1). Assuming that we are in the case
where all but the edge representing the knot is balanced, i.e. a0 → 0, we have
a1 = c2 = a3.

z2 = Z2 + c2
b(1− 2a1)2 + 2cbZ(1− 2a1).

Implementing this we get the expression.

Znew
~ (X) = e−

πi
3 ψ̃′a0,c0

(0)

∫

R
ψ(Z)ψ(Z)ψ(Z)eπi(Z

2+c2b(1−2a1)2+2cbZ(1−2a1))

e−4πicbc1(Z+cb(1/2−a1))νc1,b1

e−4πicbb2(Z+cb(1/2−c2))νb2,a2

e−4πicbc2(Z+cb(1/2−a3))νc3,bZ3dz.

Znew
~ (X) = νc1,b1νb2,a2νc3,b3e

−πi
3 e

φi
~ ψ̃′a0,c0

(0)

∫

R
ψ(Z)3eπiZ

2

dz

= νc1,b1νb2,a2νc3,b3e
−πi

3 e
φi
~ ψ̃′a0,c0

(0)

∫

R

eπiZ
2

Φb(Z)3
dz

Because the combination of dihedral angles in front of Z sums to 0.

−4πicbZ(c1 + b2 + c3 −
1

2
+ a1) = −4πicbZ(a1 + b1 + c1 −

1

2
) = 0

This corresponds to the partition function in the original formulation, see [AK1].
In this case the renormalised partition function takes the form

Z̃new
~ (X) = lim

a0→0
ΦbZ

new
~ (X) =

eiπ/4

νc0,0
χ52(0).

5.5 One-vertex H-triangulation of (S3, 61)

Let X be represented by the diagram

(5.8)

This one vertex H-triangulation of (S3, 61) consists of 5 tetrahedra T1 and
T3 which are negatively oriented tetrahedra and T2, T4, T5 which are positively
oriented tetrahedra. We denoted the tetrahedra as follows. In the bottom we
have T1, T2, T3 from left to right and on top we have T4, T5 from right to left.
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In the diagram the knot 61 is represented by the edge connecting the maximal
and next to maximal vertex of T1. We impose a shape structure on the triangula-
tion and balance all but the one edge representing the knot. We get the following
equations on the shape parameters

a3 = a1 + c2, a3 + a4 = a1 + a5, a1 + c2 = c4 + c5,

1

2
+ b3 + c5 = a2 + a3 + a4, 1 = a2 + c3 + c4 + a5.

We calculate the partition function for the Teichmüller TQFT using the original
formulation of the theory. In this formulation the states are assigned to each face
of each tetrahedron according to the diagram (5.8).

Z~(X) =

∫

R10

〈w, t | Ta1,c1 | u, t〉 〈z, q | Ta2,c2 | v, u〉 〈x, q | Ta3,c3 | r, v〉

〈s, y | Ta4,c4 | r, z〉 〈w, x | Ta5,c5 | y, s〉 dx̄

Z~(X) =

∫

R10

δ(w + t− u)δ(z + q − v)δ(x+ q − r)δ(s+ y − r)δ(w + x− y)

ψ̃′a1,c1
(0)e−2πiw(0)

ψ̃′a2,c2
(u− q)e2πiz(u−q)

ψ̃′a3,c3
(v − q)e−2πix(v−q)

ψ̃′a4,c4
(x− y)e2πis(z−y)

ψ̃′a5,c5
(s− x)e2πiw(s−x) dqdrdsdtdudvdxdwdzdy

Integrating over five variables t, v, r, y, w yields the expression

Z~(X) = ψ̃′a1,c1
(0)

∫

R5

ψ̃′a2,c2
(u− q)e2πiz(u−q)

×ψ̃′a3,c3
(z)e−2πixz

×ψ̃′a4,c4
(z + s− x− q)e2πis(z+s−x−q)

×ψ̃′a5,c5
(s− x)e2πi(q−s)(s−x) dqdsdudxdz.

We integrate over the variable u using the Fourier transform.

e−
πi
12

∫

R
ψc2,b2(u− q)e2πiz(u−q)du = e−

πi
12 ψ̃c2,b2(−z) = e−

πi
6 eπiz

2

ψb2,a2(−z).

Using formulas from Section 3.8 we can write

Z~(X) = e−
3πi
12 ψ̃′a1,c1

(0)

∫

R4

ψb2,a2(−z)eπiz
2

ψb3,c3(−z)eπiz
2
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ψ̃′a4,c4
(z + s− x− q)ψ̃′a5,c5

(s− x)

e2πi(sz−xz−qx) dqdsdxdz.

Integration over the variable q gives

∫

R
ψ̃′a4,c4

(z + s− x− q)e−2πiqxdq = e−
πi
12 ψ̃c4,b4(−x)e2πi(x2−xz−sx)

= e−
πi
6 ψb4,a4(−x)e2πi( 3

2
x2−xz−sx)

Z~(X) = e−
5πi
12 ψ̃′a1,c1

(0)

∫

R2

ψb2,a2(−z)ψb3,c3(−z)ψb4,a4(−x)ψ̃′a5,c5
(s− x)

e2πi(sz−2xz+z2+ 3
2
x2−sx) dxdsdz

Integration over s now gives

e−
πi
12

∫

R
ψc5,b5(s− x)e−2πis(x−z)ds = e−

πi
12 ψ̃c5,b5(x− z)e−2πi(x2−xz)

=e−
πi
6 ψb5,a5(x− z)eπi(x−z)

2

e−2πi(x2−xz).

So the partition function takes the form

Z~(X) = e−
7πi
12 ψ̃′a1,c1

(0)

∫

R2

ψb2,a2(−z)ψb3,c3(−z)ψb4,a4(−x)ψb5,a5(x− z)

e2πi(−2xz+ 3
2
z2+x2) dxdz.

which is equivalent to

(5.9) Z~(X) = e−
7πi
12 ψ̃′a1,c1

(0)

∫

R2

ψb2,a2(z)ψb3,c3(z)ψb4,a4(−x)ψb5,a5(x+ z)

e2πi(2xz+ 3
2
z2+x2) dxdz.

Set z̃ = z − cb(1− 2c2) and −x̃ = −x− cb(1− 2c4). Then

z − cb(1− 2a3) = z̃ + cb(1− 2c2)− cb(1− 2a3) = z̃,

because a3 → c2 in the limit where a1 → 0. Furthermore we have

x+ z − cb(1− 2c5) = x̃− cb(1− 2c4) + z̃ + cb(1− 2c2)− cb(1− 2c5) = x̃+ z̃ − cb

because
c4 + c5 − c2 → 0
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when a1 → 0. We can now write the partition function in the following way

Z~(X) = e−
7πi
12

∫

R2

ψ(z̃)ψ(z̃)ψ(−x̃)ψ(x̃+ z̃ − cb)ψ̃′a1,c1
(0)

e−4πi(−z̃−cb(1−2c2))(x̃−cb(1−2c4))+3πi(−z̃−cb(1−2c2))2+2πi(x̃−cb(1−2c4))2

e−4πicbb2(z̃+cb(1/2−c2))νa2,b2

e−4πicbb3(z̃+cb(1−2c2)−cb(1/2−a3))νb3,c3

e−4πicbb4(−x̃−cb(1/2−c4))νb4,a4

e−4πicbb5(x̃+z̃−cb(1−2c4)+cb(1−2c2)−cb(1/2−c5))νb5,a5dx̃dz̃

In front of z̃ in the exponent we have the factor

4πicb(−1 + 2c4 + 3/2− 3c2 − b2 − b3 − b5)

= 4πicb(1/2 + 2c4 − 2c2 − b2 − a3 − b3 − b5)

= 4πicb(1/2 + 2c4 − c2 − 1/2 + a2 − 1/2 + c3 − 1/2 + a5 + c5)

= 4πicb(−1 + 1 + c4 − c2 + c5) = 0.

In front of x̃ in the exponent we also have the factor 0 since

−b5 + b4 + 1− 2c2 − 1 + 2c4 = −1

2
+ a5 + c5 + c4 + b4 + c4 − 2c2

= −1

2
+ a5 +

1

2
− a4 − c2

= a5 − a4 − a3 = 0.

This gives us the partition function

Z~(X) = ei
φ
~ e−

7πi
12 ψ̃′a1,c1

(0)

∫

R2

ψ(z̃)ψ(z̃)ψ(−x̃)ψ(x̃+ z̃ − cb)

e2πi( 3
2
z̃2+x̃2+2x̃z̃)dx̃dz̃,

where φ is a real quadratic polynomial of dihedral angles. Finally, we do the shift
x̃ 7→ x̃− z̃ + cb and get the expression

Z~(X) = ζ2
inve

2πic2bei
φ
~ e−

7πi
12 ψ̃′a1,c1

(0)

∫

R2

Φb(z̃)Φb(x̃)

Φb(−z̃)Φb(x̃− z̃ − cb)
eπix̃

2+4πcbxdx̃dz̃.

which exactly corresponds to the result for an H-triangulation of the 61 knot in
[KLV].

5.6 One vertex H-triangulation of (S3, 61) – New formula-
tion

We here calculate the partition function for the H-triangulation of the knot 61

using the new formulation of the TQFT from quantum Teichmüller theory.
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The gluing pattern of faces and edges in diagram (5.8) results in the following
states

x := x1
02 = x1

03 = x2
01 = x2

02 = x3
01,

y := x2
03 = x2

13 = x3
02 = x3

03 = x3
13 = x4

02 = x4
03 = x5

03,

z := x2
23 = x3

12 = x4
12 = x5

01,

v := x1
12 = x1

13 = x3
23 = x4

23 = x5
12 = x5

13,

w := x1
23 = x2

12 = x4
01 = x4

13 = x5
02 = x5

23,

x′ := x1
01.

The Boltzmann weights for the five tetrahedron are given by

ga1,c1(0, x+ v − x′ − w), ga2,c2(x− w, y − z), ga3,c3(y − z, 2y − x− v),

ga4,c4(w − z, y − v), ga5,c5(w − y, v − z + p).

ZNew
~ (X) =

∫

[0,1]6

∑

k,l,m,n,p∈Z
3ψ̃′a1,c1

(k)

ψ̃′a2,c2
(x− w + l)eπi(y−z)(x−w+2l)

ψ̃′a3,c3
(y − z +m)e−πi(2y−x−v)(y−z+2m)

ψ̃′a4,c4
(w − z + n)eπi(y−v)(w−z+2n)

ψ̃′a5,c5
(w − y + p)eπi(v−z)(w−y+p)dxdydzdvdwdx′

Integration over x′ gives δ(k), which removes one of the sums

ZNew
~ (X) = ψ̃′a1,c1

(0)

∫

[0,1]5

∑

l,m,n,p∈Z
ψ̃′a2,c2

(x− w + l)eπi(y−z)(x−w+2l)

ψ̃′a3,c3
(y − z +m)e−πi(2y−x−v)(y−z+2m)

ψ̃′a4,c4
(w − z + n)eπi(y−v)(w−z+2n)

ψ̃′a5,c5
(w − y + p)eπi(v−z)(w−y+p)dxdydzdvdw.

We do a shift x→ x+ w

ZNew
~ (X) = ψ̃′a1,c1

(0)

∫

[0,1]5

∑

l,m,n,p∈Z
ψ̃′a2,c2

(x+ l)eπi(y−z)(x+2l)

ψ̃′a3,c3
(y − z +m)e−πi(2y−x−w−v)(y−z+2m)

ψ̃′a4,c4
(w − z + n)eπi(y−v)(w−z+2n)

ψ̃′a5,c5
(w − y + p)eπi(v−z)(w−y+p)dxdydzdvdw.
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Note that

∑

l∈Z
e2πil(y−z)

∫

[0,1]

ψ̃′a2,c2
(x+ l)e−2πix(z−y−m)dx

= e−
πi
12

∑

l∈Z

∫ l+1

l

ψc2,b2(x)e−2πix(z−y−m)dx

= e−
πi
12

∫

R
ψc2,b2(x)e−2πix(z−y−m)dx

= e−
πi
12 ψ̃c2,b2(z − y −m) = e−

πi
6 ψb2,a2(z − y −m)eπi(z−y−m)2

.

ZNew
~ (X) = e−

πi5
12 ψ̃′a1,c1

(0)

∫

[0,1]3

∑

m,n,p∈Z
ψb2,a2(z − y −m)ψb3,c3(z − y −m)

ψc4,b4(w − z + n)ψc5,b5(w − y + p)

e2πi(z−y−m)2

e−πi(2y−w−v)(y−z+2m)

e(y−v)(w−z+2n)eπi(v−z)(w−y+2p) dzdw.

Integration over v removes yet another sum. I.e. n = p+m. We shift z 7→ z + y
and w 7→ w + y and see that the function is independent of y which yields the
expression

ZNew
~ (X) = e−

πi5
12 ψ̃′a1,c1

(0)

∫

[0,1]3

∑

m,p∈Z
ψb2,a2(z −m)ψb3,c3(z −m)

ψc4,b4(w − z + p+m)ψc5,b5(w + p)

e2πi(z−m)2

eπiw(−z+2m)e−πiz(w+2p) dzdw.

ZNew
~ (X) = e−

πi5
12 ψ̃′a1,c1

(0)

∫

R2

ψb2,a2(z)ψb3,c3(z)

ψc4,b4(w − z)ψc5,b5(w)

e2πiz2

eπi(w−m)(−z+m)e−πi(z+m)(w+p) dzdw.

Now let f(z) := ψb2,a2(z)ψb3,c3(z). We then calculate

ZNew
~ (X) = e−

πi5
12 ψ̃′a1,c1

(0)

∫

R2

f(z)ψc4,b4(w − z)ψc5,b5(w)e2πiz2

e−2πiwz dzdw

= e−
πi5
12 ψ̃′a1,c1

(0)

∫

R2

f(z)ψb3,c3(z)ψc4,b4(w)ψc5,b5(w + z)e−2πiwz dzdw

= e−
πi5
12 ψ̃′a1,c1

(0)

∫

R2

f(z)ψc4,b4(w)ψ̃c5,b5(x)e2πi((x−z)(w+z)+z2) dxdzdw
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= e−
πi5
12 ψ̃′a1,c1

(0)

∫

R2

f(z)ψc4,b4(w)ψ̃c5,b5(x+ z)e2πi(x(w+z)+z2) dxdzdw

= e−
πi6
12 ψ̃′a1,c1

(0)

∫

R2

f(z)ψc4,b4(w)ψb5,a5(x+ z)e2πi(wx+2xz+ 3
2
z2+x2

2
) dxdzdw

= e−
πi6
12 ψ̃′a1,c1

(0)

∫

R2

f(z)ψ̃c4,b4(−x)ψb5,a5(x+ z)e2πi(2xz+ 3
2
z2+x2

2
) dzdw

= e−
πi7
12 ψ̃′a1,c1

(0)

∫

R2

f(z)ψb4,a4(−x)ψb5,a5(x+ z)e2πi(2xz+ 3
2
z2+x2) dzdw

This is the exact same expression as in (5.9) and the two formulations coincide.

5.7 Volume of (S3, 61)

Theorem 5.1. The hyperbolic volume of the complement of 61 in S3 is recovered
as the following limit

(5.10) lim
~→0

2π~ log |Js3,61
(~, 0)| = −Vol(S3\61).

Proof. We consider the expression

JS3,61
(~, 0) =

∫

R2

Φb(x)Φb(z)

Φb(−x)Φb(z − x− cb)
eπiz

2−4πicbzdxdz.(5.11)

Using the quasi-classical asymptotic behaviour of Faddeev’s quantum dilogarithm
shown in Corollary A.6 we can approximate in the following manner. For b close
to zero the integral in (A.12) is approximated by the double contour integral

JS3,61
(~, 0) =

1

(2π b)2

∫

R2

Φb

(
x

2π b

)
Φb

(
z

2π b

)

Φb

( −x
2π b

)
Φb

(
z−x−cb

2π b

)e− z2

4πi b2 + y

b2 dxdz

∼ 1

(2π b)2

∫

R2

e
1

2πi b2 (2 Li2(−ex)+Li2(−ez)−Li2(ez−x)− 1
2
z2+2πiz+ 1

2
x2)dxdz

=
1

(2π b)2

∫

R2

e
1

2πi b2 V (x,z)dxdz,

where the potential V is given by

(5.12) V (x, z) = 2 Li2(−ex) + Li2(−ez)− Li2(ez−x)− 1

2
z2 + 2πiz +

1

2
x2.

It is easily seen that we can treat b2 as ~. Therefore, we look for stationary points
of the potential V

(5.13)
∂V (x, z)

∂x
= −2 log(1 + ex)− log(1− ez−x) + x = log

ex

(1 + ex)2(1− ez−x) .
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(5.14)
∂V (x, z)

∂z
= − log(1 + ez) + log(1− ez−x)− z + 2πi = log

1− ez−x
(1 + ez)ez

.

Stationary points are given by solutions to the equations

ex = (1 + ex)2(1− ez−x),(5.15)

(1 + ez)ez = 1− ez−x.(5.16)

From (5.16) we see that

ex =
1

e−z − 1− ez .

Inserting in (5.15) we get the equation

1

e−z − 1− ez =

(
e−z − ez

e−z − 1− ez
)2

(1 + ez)ez ⇐⇒ 1− t− t2 = (1− t2)2(1 + t),

where we set ez = t.
Numerical solutions for the last equation are given by

t1 = −1, 39923− 0, 32564i, t3 = 0, 899232− 0, 400532i,

t2 = −1, 39923 + 0, 32564i, t4 = 0, 899232 + 0, 400532i.

The maximal contribution to the integral comes from the point t2. The saddle
point method lets us obtain the following limit

lim
~2→0

2π~|JS3,61
(~, 0)| = −3.1632... · I = −Vol(S3\61)

6 The Teichmüller TQFT representation of the

mapping class group Γ1,1

We will here give a representation for the mapping class group of the once punc-
tured torus by the use of the new formulation of the Teichmüller TQFT.

The framed mapping class group Γ1,1 is generated by the standard elements
S and T . See e.g. Section 6 in [AU3] for a description of these elements (they of
course maps to the standard S and T matrix once mapped to the mapping class
group of the torus). Hence we just need to understand how these to elements
are represented by the Teichmüller TQFT. To this end, we build a cobordism
(M,T2,T2′) from one triangulation of T2 to the image of this triangulation under
the action of S and likewise for the action of T . We triangulate the torus T2 =
S1×S1 according to Figure 11. In this triangulation opposite arrows are identified
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Figure 11: Triangulated torus.

and this gives us a triangulation with two triangles and three edges. We build
the cobordism for the action of S according to Figure 12 and the cobordism for T
according to Figure 13. We see that on each boundary component we have three
edges. The cobordisms that we build are given shaped triangulations. We can
choose the dihedral angles such that they are all positive. And we are able to
compose these cobordisms.

Figure 12: The cobordism for the operator S.

Figure 13: The cobordism for the operator T .

For each edge in these triangulations we assign a state variable. We abuse
notation and label an edge and a state variable by the same letter. We assign a



Asymptotic aspects of the Teichmüller TQFT 77

multiplier to each edge. As we will see below in Lemma 8.1 and Lemma 9.1 it
turns out, that all internal edges have trivial multiplier. Further we emphasise
that there is a direction on each of the two boundary tori where the multiplier is
trivial.

The Teichmüller TQFT gives an operator between the vector spaces associated
to each of the boundary components. We will see that we get representations

ρ : Γ1,1 → B(C∞(T3,L′)),
of the mapping class group Γ1,1 into bounded operators on the smooth sections
C∞(T3,L′). However, we will show below that we actually get representations
into B(S(R)), bounded operators on the Schwartz space S(R).

Theorem 6.1. The Teichmüller TQFT provides us with representations (depen-
dent on h)

ρ̃ : Γ1,1 → B(S(R))

of the mapping class group Γ1,1 into bounded operators on the Schwarz space S(R).
In particular we get operators ρ̃(S), ρ̃(T ) : S(R)→ S(R) according to the diagram
(6.1).

S(R)
ρ̃(S),ρ̃(T )

//

W
��

S(R)

W
��

C∞(T2,L)

π∗
��

// C∞(T2,L)

π∗
��

π∗ (C∞(T2,L)) // π∗ (C∞(T2,L))

C∞(T3,L′)
∩

ρ(S)

ρ(T )
// C∞(T3,L′)

∩

(6.1)

where L′ = π∗L.
Proof. We know that the Weil–Gel’fand–Zak transformation gives an isomorphism
from the Schwarz space to smooth sections of the complex line bundle L over the
2-torus. If a section of C∞(T2,L) is pulled back to π∗ (C∞(T2,L)) we show in
Lemma 8.2 and Lemma 9.2 that the operators ρ(S), ρ(T ) acting on C∞(T3,L′)
take this pull back of a section in π∗ (C∞(T2,L)). In Lemma 8.1 and 9.1 we
prove that the multipliers on internal edges are trivial. Further we show that
the multipliers on the two boundary tori are trivial in the direction (1, 1, 1). We
can therefore integrate over the fibre in this direction. We then use the inverse
WGZ transformation. In other words we have shown that the operators ρ(S), ρ(T )
induce operators ρ̃(S), ρ̃(T ) : S(R)→ S(R) given by

ρ̃(S) = W−1 ◦
∫

Fz′
◦ ρ(S) ◦ π∗ ◦W,
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ρ̃(T ) = W−1 ◦
∫

Fz′
◦ ρ(S) ◦ π∗ ◦W.

Remark 6.2. Above we obtained a representation for the mapping class group
Γ1,1. We do not in a similar manner get a representation for the mapping class
group Γ1,0. The reason is that not all edges in the cobordisms can be balanced
without turning to negative angles.

7 Line bundles over the two boundary tori

Let us here describe how the line bundles we pull back looks like.
Let π : R3 → R2 be defined by π(x1, x2, x3) = (ax1+bx2+cx3, αx1+βx2+γx3).

Recall that we have the relation on multipliers

eπ
∗
λ (x, y, z) = eπ(λ)(π(x, y, z)).(7.1)

Note that the map π sends λx1 = (1, 0, 0), λx2 = (0, 1, 0), λx3 = (0, 0, 1) to
the following elements of R2

π(λx1) = (a, α), π(λx2) = (b, β), π(λx3) = (c, γ).

The equation (7.1) gives the following relations:

In the λx1-direction

e2πi(x3−x2) =e(1,0,0)(x1,x2,x3) = e(a,α)(ax1 + bx2 + cx3, αx1 + βx2 + γx3)

=e(a,0)(ax1 + bx2 + cx3, αx1 + βx2 + γx3)

e(0,α)(ax1 + bx2 + cx3, α(x1 + 1) + βx2 + γx3)

=e−πia(αx1+βx2+γx3)eπi(ax1+bx2+cx3)

=eπi((αb−aβ)x2+(αc−aγ)x3),

In the λx2-direction

e2πi(x1−x3) =e(0,1,0)(x1,x2,x3) = eπi((βa−αb)x1+(βc−bγ)x3),

In the λx3-direction

e2πi(x2−x1) =e(0,0,1)(x1,x2,x3) = eπi((γa−αc)x1+(γb−cβ)x2).

In other words we only need to solve the three equations

αb− aβ = −2, αc− aγ = 2, βc− bγ = −2.(7.2)

One particular solution is a = −2, b = 0, c = 2, α = 0, β = −1, γ = 1 which gives
the map

π(x1, x2, x3) = (−2x1 + 2x3,−x2 + x3).
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8 The operator ρ(S)

The operator ρ(S) can be viewed as the cobordism XS which is triangulated
into 6 tetrahedra T1, . . . , T6 where T1, T3, T4, T6 have positive orientation and the
tetrahedra T2, T5 have negative orientation. See the gluing pattern in figure 14.

Figure 14: Gluing pattern for the operator XS

In the triangulation we have ten edges x1, x2 . . . , x7, x
′
1, x
′
2, x
′
3. To each of the

edges on the boundary we associate the a weight function:

ωXS(x1) = 2π(a1 + a5 + c3), ωXS(x2) = 2π(a4 + c5 + a6), ωXS(x3) = 2π(b5 + b6),

ωXS(x′1) = 2π(a1 + c2 + a3), ωXS(x′2) = 2π(a2 + c3 + a4), ωXS(x′3) = 2π(b2 + b3).

and to the edges x4, x5, x6, x7 we associate the weight functions:

ωXS(x4) = 2π(a1 + c2 + b4 + c5 + c6), ωXS(x5) = 2π(c1 + b3 + b4 + a5 + a6),

ωXS(x6) = 2π(b1 + a2 + a3 + c4 + b6), ωXS(x7) = 2π(b1 + c2 + c3 + c4 + b5).

8.1 Boltzmann weights

The Boltzmann weights assigned to the tetrahedra are

B
(
T1, x|∆1(T1)

)
= ga1,c1(x7 + x6 − x4 − x5, x7 + x6 − x′1 − x1),

B
(
T2, x|∆1(T2)

)
= ga2,c2(x′3 + x4 − x′1 − x7, x′3 + x4 − x′2 − x6),

B
(
T3, x|∆1(T3)

)
= ga3,c3(x′3 + x5 − x′2 − x7, x

′
3 + x5 − x′1 − x6)

B
(
T4, x|∆1(T4)

)
= ga4,c4(x5 + x4 − x7 − x6, x5 + x4 − x′2 − x2)

B
(
T5, x|∆1(T5)

)
= ga5,c5(x7 + x3 − x4 − x2, x5 + x4 − x5 − x1)

B
(
T6, x|∆1(T6)

)
= ga6,c6(x6 + x3 − x4 − x1, x6 + x3 − x5 − x2).

Lemma 8.1. The multipliers corresponding to the edges are calculated to be 1 for
the internal edges x4, x5, x6, x7. And the multipliers for the remaining 6 edges are
calculated to be

eλx1
(x) = e2πi(x3−x2), eλx2

(x) = e2πi(x1−x3), eλx3
(x) = e2πi(x2−x1),
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eλx′1
(x) = e2πi(x′2−x′3), eλx′2

(x) = e2πi(x′3−x′1), eλx′3
(x) = e2πi(x′1−x′2),

where x denotes the tuple x = (x1, x2, x3, x
′
1, x
′
2, x
′
3).

Proof. Let us here just calculate the multiplier for the direction x4. The rest
follows by analogous calculations. The edge x4 is an edge in the tetrahedra
T1, T2, T4, T5, T6 each contributing to the multiplier. The contribution from T1

corresponds to the multiplier

eλx4
(x1, x2, . . . , x7, x

′
1, x
′
2, x
′
3) = e−(1,0)(x5 + x4 − x7 − x6, x5 + x4 − x′2 − x2)

= eπi(x7+x6−x′1−x1).

The contribution from T2 is

eλx4
(x1, x2, . . . , x7, x

′
1, x
′
2, x
′
3) = e(1,1)(x′3 + x4 − x′1 − x7, x′3 + x4 − x′2 − x6)

= −e−πi(x′2+x6−x′1−x7).

The contribution from T4 is

eλx4
(x1, x2, . . . , x7, x

′
1, x
′
2, x
′
3) = e(1,1)(x5 + x4 − x7 − x6, x5 + x4 − x′2 − x2)

= −eπi(x′2+x2−x6−x7).

The contribution from T5 is

eλx4
(x1, x2, . . . , x7, x

′
1, x
′
2, x
′
3) = −e−πi(x7+x3−x5−x1).

The contribution from T6 is

eλx4
(x1, x2, . . . , x7, x

′
1, x
′
2, x
′
3) = −eπi(x6+x3−x5−x2).

Multiplying these contributions gives e0 = 1.

We remark that the multiplier on each boundary component in direction
(1, 1, 1) is trivial.

We are interested in how the operator ρ(S) acts. We express the operator
ρ(S) in terms of the integral kernel KS. The operator ρ(S) acts on sections in the
following manner

(8.1) ρ(S)(s)(x′1, x
′
2, x
′
3) =

∫

[0,1]3
KS(x′1, x

′
2, x
′
3, x1, x2, x3)s(x1, x2, x3) dx1dx2dx3.

We want to show that the operator S takes the pull back of a section to the
pull back of a section. Using integration by parts it is enough to check that the
sum of partial derivatives disappear.
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Lemma 8.2. The sum of the partial derivatives of KS disappears. I.e.

∂KS

∂x′1
+
∂KS

∂x′2
+
∂KS

∂x′3
+
∂KS

∂x1

+
∂KS

∂x2

+
∂KS

∂x3

= 0.

Proof. Let

In,m,k,j3 (x1, x2, x3, x
′
2, x
′
3) :=

∫

[0,1]2
ψ̃′a1,c1

(x7 + k)ψ̃′a4,c4
(−x7 + n)

e2πix7(x2−x3+x7+x5+2n−m+k−j)

e2πi(x′3−x′2−x3+x1+k−j)dx5dx7

The partial derivatives of I3 with respect to x1, x2, x3, x
′
2, x
′
3 are easily calculated

to be

∂

∂x1

In,m,k,j3 (x1, x2, x3, x
′
2, x
′
3) = 2πix5I3(x1, x2, x3, x

′
2, x
′
3) =: I ′3(x1, x2, x3, x

′
2, x
′
3),

∂

∂x2

In,m,k,j3 (x1, x2, x3, x
′
2, x
′
3) = 2πix7I3(x1, x2, x3, x

′
2, x
′
3) =: I ′′3 (x1, x2, x3, x

′
2, x
′
3),

∂

∂x3

In,m,k,j3 (x1, x2, x3, x
′
2, x
′
3) = −I ′3(x1, x2, x3, x

′
2, x
′
3)− I ′′3 (x1, x2, x3, x

′
2, x
′
3),

∂

∂x′2
In,m,k,j3 (x1, x2, x3, x

′
2, x
′
3) = −I ′3(x1, x2, x3, x

′
2, x
′
3),

∂

∂x′3
In,m,k,j3 (x1, x2, x3, x

′
2, x
′
3) = I ′3(x1, x2, x3, x

′
2, x
′
3).

The partial derivatives of I2 with respect to the variables x2, x3, x
′
1, x
′
3 are

∂

∂x2

Ik,l,n,p2 (x2, x3, x
′
1, x
′
3) =

e2πi(x′1−x′3−x3+x2+2(k,l,n,p))(x′1 − x′3 − x3 + x2 + 2(k, l, n, p))

(x′1 − x′3 − x3 + x2 + 2(k, l, n, p))2

− (e2πi(x′1−x′3−x3+x2+2(k,l,n,p)) − 1)

2πi(x′1 − x′3 − x3 + x2 + 2(k, l, n, p))2

= : I ′2(x2, x3, x
′
1, x
′
3),

∂

∂x3

Ik,l,n,p2 (x2, x3, x
′
1, x
′
3) =− I ′2(x2, x3, x

′
1, x
′
3),

∂

∂x′1
Ik,l,n,p2 (x2, x3, x

′
1, x
′
3) =I ′2(x2, x3, x

′
1, x
′
3),

∂

∂x′3
Ik,l,n,p2 (x2, x3, x

′
1, x
′
3) =− I ′2(x2, x3, x

′
1, x
′
3).

The partial derivatives of I1 with respect to the variables x2, x3, x
′
1, x
′
3 are

∂

∂x2

I l,p1 (x2, x3, x
′
1, x
′
3) =− e2πi(x′3−x′1−x2+x3+2(m+q))(x′3 − x′1 − x2 + x3 + 2(m+ q))

(x′3 − x′1 − x2 + x3 + 2(m+ q))2
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+
(e2πi(x′3−x′1−x2+x3+2(m+q)) − 1)

2πi(x′3 − x′1 − x2 + x3 + 2(m+ q))2

=I ′1(x2, x3, x
′
1, x
′
3),

∂

∂x3

I l,p1 (x2, x3, x
′
1, x
′
3) =− I ′1(x2, x3, x

′
1, x
′
3),

∂

∂x′1
I l,p1 (x2, x3, x

′
1, x
′
3) =I ′1(x2, x3, x

′
1, x
′
3),

∂

∂x′3
I l,p1 (x2, x3, x

′
1, x
′
3) =− I ′1(x2, x3, x

′
1, x
′
3).

The rest of the terms in KS all depends on pairs of the variables x1, x2, x3, x
′
1, x
′
2, x
′
3

with opposite sign, summing all contributions together therefore shows that the
sum of the partial derivatives disappears.

9 The operator ρ(T )

The operator ρ(T ) is the TQFT operator associated to the cobordism XT which is
triangulated into 6 tetrahedra T1, . . . , T6 where T1, T4, T5 have negative orientation
and the tetrahedra T2, T3, T6 have positive orientation. See Figure 15.

Figure 15: Gluing pattern for the operator XT .

In the triangulation we have ten edges x1, x2 . . . , x7, x
′
1, x
′
2, x
′
3. The weight

functions corresponding to this triangulation for the edges x1, x2, x3, x
′
1, x
′
2, x
′
3 are

ωYT (x1) = 2π(c3 + a6), ωYT (x2) = 2π(b2 + a3 + b6), ωYT (x3) = 2π(b3 + b5 + c6),

ωYT (x′1) = 2π(a1 + c4), ωYT (x′2) = 2π(b1 + a4 + b5), ωYT (x′3) = 2π(c1 + b2 + b4).

and to the edges x4, x5, x6, x7 we associate the weight functions

ωYT (x4) = 2π(a1 + c2 + c5 + a6), ωYT (x5) = 2π(b1 + a2 + b3 + b4 + a5 + b6),

ωYT (x6) = 2π(c1 + a2 + a3 + a4 + a5 + c6), ωYT (x7) = 2π(b2 + c3 + c4 + c5).

The Boltzmann weights assigned to the tetrahedra are

B
(
T1, x|∆1(T1)

)
= ga1,c1(x5 + x′2 − x′3 − x6, x5 + x′2 − x′1 − x4),
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B
(
T2, x|∆1(T2)

)
= ga2,c2(x′3 + x2 − x7 − x4, x

′
3 + x2 − x5 − x6),

B
(
T3, x|∆1(T3)

)
= ga3,c3(x5 + x3 − x7 − x1, x5 + x3 − x6 − x2)

B
(
T4, x|∆1(T4)

)
= ga4,c4(x′3 + x5 − x7 − x′1, x3 + x5 − x′2 − x6)

B
(
T5, x|∆1(T5)

)
= ga5,c5(x′2 + x3 − x7 − x4, x′2 + x3 − x6 − x5)

B
(
T6, x|∆1(T6)

)
= ga6,c6(x2 + x5 − x3 − x6, x2 + x5 − x4 − x1).

Lemma 9.1. The multipliers corresponding to the edges are calculated to be 1 for
the internal edges x4, x5, x6, x7. And the multipliers for the remaining 6 edges are
calculated to be

eλx1
(x) = e2πi(x3−x2), eλx2

(x) = e2πi(x1−x3), eλx3
(x) = e2πi(x2−x1),

eλx′1
(x) = e2πi(x′2−x′3), eλx′2

(x) = e2πi(x′3−x′1), eλx′3
(x) = e2πi(x′1−x′2),

where x denotes the tuple x = (x1, x2, x3, x
′
1, x
′
2, x
′
3).

Proof. The proof is straight forward verification. The computations are analogue
to the calculations in the proof of Lemma 8.1.

Again, in order to check that the operator ρ(T ) takes the pull back of a section
to a pull back of a section we show the following Lemma.

Lemma 9.2. The sum of the partial derivatives of KT disappears. I.e.

∂KT

∂x′1
+
∂KT

∂x′2
+
∂KT

∂x′3
+
∂KT

∂x1

+
∂KT

∂x2

+
∂KT

∂x3

= 0

Proof. In each term of the expression for KT there is an equal number of variables
one half having positive coefficient and the other half having negative coefficient.
Therefore the sum of the partial differentials must equal zero.

Appendices

A Faddeev’s quantum dilogarithm

The quantum dilogarithm function Li2(x; q), studied by Faddeev and Kashaev
[FK] and other authors, is the function of two variables defined by the series

(A.1) Li2(x; q) =
∞∑

n=1

xn

n(1− qn)
,
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where x, q ∈ C, with |x|, |q| < 1. It is connected to the classical Euler dilogarithm
Li2 given by Li2(x) =

∑∞
n=1

xn

n2 in the sense that it is a q-deformation of the
classical one in the following manner

(A.2) lim
ε→0

(
εLi2(x, e−ε)

)
= Li2(x), |x| < 1.

Indeed using the expansion 1
1−e−t = 1

t
+ 1

2
+ t

12
− t3

720
+ . . . we obtain a complete

asymptotic expansion

(A.3) Li2(x, e−ε) = Li2(x)ε−1 +
1

2
log

(
1

1− x

)
+

x

1− x
ε

12
− x+ x2

(1− x)3

ε3

720
+ . . .

as ε→ 0 with fixed x ∈ C, |x| < 1.
The second quantum dilogarithm (x; q)∞ defined for |q| < 1 and all x ∈ C is

given as the function

(A.4) (x; q)∞ =
∞∏

i=0

(1− xqi).

This second quantum dilogarithm is related to the first by the formula

(A.5) (x; q)∞ = exp(−Li2(x; q)).

This is easily proven by a direct calculation
(A.6)

− log (x; q)∞ =
∞∑

i=0

log(1− xqi) =
∞∑

i=0

∞∑

n=1

1

n
xnqin =

∞∑

n=1

xn

n(1− qn)
= Li2(x; q).

Proposition A.1. The function (x; q)∞ and its reciprocal have the Taylor expan-
sions

(A.7) (x; q)∞ =
∞∑

n=0

(−1)n

(q)n
q
n(n−1)

2 xn,
1

(x; q)∞

∞∑

n=0

1

(q)n
xn,

around x = 0, where

(q)n =
(q; q)∞

(qn+1; q)∞
= (1− q)(1− q2) · (1− qn).

The proofs of these formulas follows easily from the recursion formula (x; q)∞ =
(1− x)(qx;x)∞, which together with the initial value (0; q)∞ = 1 determines the
power series for (x; q)∞ uniquely.

Yet another famous result for the function (x; q)∞, which can be proven by
use of the Taylor expansion and the identity

∑
m−n=k

qmn

(q)m(q)n
= 1

(q)∞
, is the Jacobi

triple product formula
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(A.8) (q; q)∞(x; q)∞(qx−1; q)∞ =
∑

k∈Z
(−1)kq

k(k−1)
2 xk,

which relates the quantum dilogarithm function to the classical Jacobi theta-
function.

The quantum dilogarithm functions introduced are related to yet another
quantum dilogarithm function named after Faddeev.

Faddeev’s quantum dilogarithm

Definition A.2. Faddeev’s quantum dilogarithm function is the function in two
complex arguments z and b defined by the formula

(A.9) Φb(z) = exp

(∫

C

e−2izwdw

4 sinh(w b) sinh(w/ b)w

)
,

where the contour C runs along the real axis, deviating into the upper half plane
in the vicinity of the origin.

Proposition A.3. Faddeev’s quantum dilogarithm function Φb(z) is related to
the function (x; q)∞, where |q| < 1, in the following sense. When =(b2) > 0, the
integral can be calculated explicitly

(A.10) Φb(z) =

(
e2π(z+cb)b; q2

)
∞

(e2π(z−cb)b; q̃2)∞

where q ≡ eiπb2
and q̃ ≡ e−πib

−2
.

Proof. We consider the integrand of the integral I(z, b) = 1
4

∫
C

e−2izw

sinh(w b) sinh(w/b)w
dw.

The integrand has poles at w = πin b and w = πin b−1 . The residue at c of a
fraction i.e. f(x) = g(x)

h(x)
can be calculated as Res f(c) = g(c)

h′(c) when c is a simple
pole. Therefore we get by the residue theorem

I(z, b) =
πi

2

∞∑

n=1

e2πz bn

πin b(−1)n sinh(πin b2)
+

e2πz b−1 n

πin b(−1)n sinh(πin b−2)

=
∞∑

n=1

eπine2πz bn

n(eπinb2 − e−πinb2
)

+
eπine2πz b−1 n

n(eπinb−2 − e−πinb−2
)

=
∞∑

n=1

−

(
e2πz b +πi+πi b2

)n

n(1− e2πib2 n)
+

(
e2πz b−1−πi−πi b−2

)n

n(1− e−2πi b−2 n)

=
∞∑

n=1

− e2π(z+cb) bn

n(1− e2πi b2 n)
+

e2π(z−cb) b−1 n

n(1− e−2πi b−2 n)

= log
(
e2π(z+cb) b; q2

)
∞ − log

(
e2π(z−cb) b; q̃2

)
∞ .
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Functional equations

Proposition A.4. Faddeev’s quantum dilogarithm function satisfies the two func-
tional equations

(A.11)
1

Φb(z + ib/2)
=

1

Φb(z − ib/2)

(
1 + e2πbz

)
,

(A.12) Φb(z)Φb(−z) = ζ−1
inve

iπz2

,

where ζinv = eiπ(1+2c2b)/6.

Proof. Let us first prove (A.11). We have

Φb(z − ib/2)

Φb(z + ib/2)
= exp

∫

C

e−2i(z−ib/2)w − e−2i(z+ib/2)w

4 sinh(wb) sinh(w/b)w
dw

= exp

∫

C

e−2izw
(
e−bw − ebw

)

4 sinh(wb) sinh(w/b)w
dw

= exp

(
−1

2

∫

C

e−2izw

sinh(w/b)w

)
dw.

Let a > 0. Let ε = 1 if =(−2iz) ≥ 0 and ε = −1 otherwise. Put δ−a = [−a, iεa]

and δ−a = [iεa, a]. The integrals
∫
δa±

e−2izw

2 sinh(w/b)w
dw converge to zero as a → ∞.

Therefore

∫

C

e−2izw

sinh(w/b)w
dw = ε2πi

(
cε +

∞∑

n=1

Resw=εiπbn

{
e−2izw

sinh(w/b)w

})
,

where c1 = 0 and c−1 = Resw=0

{
e2izw

sinh(w/b)w

}
= −2izb. For n ∈ Z\ {0} we have

Resw=πinbε

{
e−2izw

sinh(w/b)w

}
=

(−1)ne2zπbεn

πin

so ∫

C

e−2izw

sinh(w/b)w
dw = (ε− 1)2πzb− 2 log(1 + e2zπbε),

giving the first result.
To prove equation (A.12) let us choose the path C = (−∞,−ε]∪ε exp([πi, 0])∪

[ε,∞) and let ε→ 0. The rest is just calculations

log Φb(z)Φb(−z) =
1

2

∫

C

cos(2wz)

sinh(w b) sinh(w/ b)w
dw
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Note that

1

2

∫

(−∞,−ε]

cos(2wz)

sinh(w b) sinh(w/ b)w
dw = −1

2

∫

[ε,∞)

cos(2wz)

sinh(w b) sinh(w/ b)w
dw.

i.e. it is enough to collect the half residue around w = 0 of the remaining integral

1

2

∫

ε([πi,0])

cos(2wz)

sinh(w b) sinh(w/ b)w
dw =

πi

2
Resw=0

cos(2wz)

sinh(w b) sinh(w/ b)w

=
πi

2

(
b2 + b−2

6
+ 2z2

)

= e−πi(1+2c2b)/6eπiz
2

.

Zeros and poles

The functional equation (A.11) shows that Φb(z), which in its initial domain
of definition has no zeroes and poles, extends (for fixed b with = b2 > 0) to a
meromorphic function in the variable z to the entire complex plane with essential
singularity at infinity and with characteristic properties:

(A.13) (Φb(z))±1 = 0 ⇐⇒ z = ∓(cb +mi b +ni b).

The behaviour at infinity depends on the direction along which the limit is taken

Φb(z)
∣∣
|z|→∞ ≈





1 |arg z| > π
2

+ arg b,

ζ−1
inve

πiz2 |arg z| < π
2
− arg b

(q̃2,q̃2)∞
Θ(i b−1 z;− b−2)

|arg z − π
2
| < arg b

Θ(i b z;b2)
(q2;q2)∞

|arg z + π
2
| < arg b

(A.14)

where

Θ(z; τ) ≡
∑

n∈Z
eπiτn

2+2πizn, = τ > 0.(A.15)

Unitarity

When b is real or on the unit circle

(1− |b|)= b = 0 ⇒ Φb(z) =
1

Φb(z)
.(A.16)
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Quantum Pentagon Identity

In terms of specifically normalised selfadjoint Heisenberg momentum and position
operators acting as unbounded operators on L2(R) by the formulae

qf(x) = xf(x), pf(x) =
1

2πi
f(x),

the following pentagon identity for unitary operators is satisfied [FK]

(A.17) Φb(p)Φb(q) = Φb(q)Φb(p + q)Φb(p).

Fourier transformation formulae for Faddeev’s quantum dilogarithm

The quantum pentagon identity (A.17) is equivalent to the integral identity
∫

R+iε

Φb(x+ u)

Φb(x− cb)
e−2πiwx dx =

Φb(u)Φb(cb − w)

Φb(u− w)
e
πi
12

(1−4c2b),(A.18)

where = b2 > 0. From here we get the Fourier transformation formula for the
quantum dilogarithm formally sending u→ −∞ by the use of (A.10) and (A.16)

(A.19)

∫

R+iε

Φb(x+ cb)e2πiwx =
1

Φb(−w − cb)
e−

πi
12

(1−4c2b).

Quasi-classical limit of Faddeev’s quantum dilogarithm

Proposition A.5. For fixed x and b → 0 we have the following asymptotic ex-
pansion

(A.20) log Φb

( x

2π b

)
=
∞∑

n=0

(2πi b)2n−1B2n(1/2)

(2n)!

∂2n Li2(−ex)
∂x2n

,

where B2n(1/2) are the Bernoulli polynomials B2n evaluated at 1/2.

Proof. From (A.11) we have that

log




Φb

(
x−iπ b2

2π b

)

Φb

(
x+iπ b2

2π b

)


 = log(1 + ex).

The left hand side yields

log Φb

(
x− iπ b2

2π b

)
− log Φb

(
x+ iπ b2

2π b

)
= −2 sinh(iπb2∂/∂x) log Φb

( x

2π b

)
,

where we have used the fact that

f(x+ y) = ey
∂
∂x (f) (x),



89

which is just the Taylor expansion of f around x. While the right hand side can
be written in the following manner

log(1 + ex) =
∂

∂x

∫ x

−∞
log(1 + ez) dz = − ∂

∂x
Li2(−ex).

Using the expansion
z

sinh(z)
=
∞∑

n=0

B2n(1/2)
(2z)2n

(2n)!

gives exactly (A.20).

Corollary A.6. For fixed x and b→ 0 one has

(A.21) Φb

( x

2π b

)
= exp

(
1

2πib2
Li2(−ex)

)(
1 +O(b2)

)
.

B The Tetrahedral Operator

In order to prove Proposition 3.1 we make use of the following formulae

Lemma B.1. Suppose x and y are operators in an algebra such that

z = [x, y], [x, z] = 0.

Then

f(x)y = yf(x) + zf ′(x)

exf(x) = f(y + z)ex,

for every power series such that f(x), f ′(x) and f(y + z) can be defined in the
same operator algebra.

Proof. Let f(x) =
∑∞

j=0 ajx
j. Then,

[f(x), y] =
∞∑

j=0

aj[x
j, y] =

∞∑

j=0

aj

j−1∑

k=0

xk[x, y]xj−k−1 =
∞∑

j=0

ajjzx
j−1 = zf ′(x).

which shows the first equation. The second equation follows from this when we
set f(x) = exyl−1

exyl = yexyl−1 = (y − z)exyl−l = · · · = (y + z)lex,

and from here we get that

exf(y) = ex
∞∑

j=0

ajy
j =

∞∑

j=0

aj(y + z)jex = f(y + z)ex.
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Proof of Proposition 3.1. The equations in (3.6) follows from the system of equa-
tions

Tq1 = (q1 + q2)T,

T(p1 + p2) = (p1 + q2)T,

T(p1 + q2) = (p1 + q2)T,

Te2π bp1 = (e2π bp1 + e2π b(q1+p2))T,

where T = e2πip1q2ψ(q1−q2 +p2). We prove them one by one below using Lemma
B.1.

Tq1 = e2πip1q2ψ(q1 + p2 − q2)q1

= e2πip1q2q1ψ(q1 + p2 − q2)

= (q1e
2πip1q2 + q2e

2πip1q2)ψ(q1 + p2 − q2)

= (q1 + q2)T.

T(p1 + p2) = e2πip1q2ψ(q1 + p2 − q2)(p1 + p2)

= e2πip1+q2(p1 + p2)ψ(q1 + p2 − q2)

=
{
p1e

2πip1q2 + p2e
2πip1q2 − p1e

2πip1q2
}
ψ(q1 + p2 − q2)

= p2T,

where the second equality is true since [q1 + p2 − q2,p1 + p2] = 0.

T(p1 + q2) = e2πip1q2ψ(q1 + p2 − q2)(p1 + q2)

= e2πip1q2(p1 + q2)ψ(q1 + p2 − q2)

= (p1 + q2)T,

where second equality is true since [q1 + p2 − q2, p1 + q2] = 0.

Te2π bp1 = e2πip1q2ψ(q1 − q2 + p2)e2π bp1

= ψ(q1 − p1 + p2)e2πip1q2e2π bp1

= ψ(q1 − p1 + p2)e2π bp1e2πip1q2

= e2π bp1ψ(q1 − p1 + p2 + i b)e2πip1q2

= e2π bp1

(
1 + e2π b(q1−p1+p2+ i b

2
)
)
ψ(q1 − p1 + p2)e2πip1q2

=
(
e2π bp1 + e2πib(q1+p2)

)
T,

where in the last equality we use the Baker–Campbell–Hausdorff formula.
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Level N Teichmüller TQFT and

Complex Chern–Simons Theory

by Jørgen Ellegaard Andersen and Simone Marzioni1

Abstract

In this manuscript we review the construction of the Teichmüller TQFT
due to Andersen and Kashaev. We further upgrading it to a theory depen-
dent on an extra odd integer N using results developed by Andersen and
Kashaev in their work on complex quantum Chern-Simons theory. We also
describe how this theory is related with quantum Chern–Simons Theory at
level N with gauge group PSL(2, C).

1 Introduction

In this paper we review Andersen and Kashaev’s construction of the Teichmüller
TQFT from [AK1] making it dependent on an extra odd integer N , called the
level. The original work of [AK1] corresponds to the choice N = 1, and emerged
as an extension to a 3–dimensional theory of the representations one obtains from
Quantum Teichmüller Theory [K3]. In particular, it defines a class of quantum
invariants for hyperbolic knots, dependent on a continuous parameter b. The level
N Teichmüller TQFT is an analogously upgrade of representations in Quantum
Teichmüller theory and it depends on a pair of parameters (b, N), one contin-
uous and one discrete. Such quantum theory is related to the level N Chern–
Simons theory with gauge group PSL(2, C) via the level N Weil-Gel’fand-Zak
transform. Such a relation was proposed in [AK3], and here we show it in a more
tight way for the four punctured sphere. One of the main ingredient in the con-
struct of the Teichmüller TQFT is the quantum dilogarithm, that is a function
Db : R × Z/NZ → C, satisfying some particular properties. Such functions were
introduced in [AK3], which for N = 1 is Faddeev’s original quantum dilogarithm.
The theory we get has different and interesting unitarity behaviour depending on
the pair of parameters (b, N): for level N = 1 the theory is unitary whenever
b > 0 or |b| = 1 while for higher level N > 1 the unitarity is only manifest when
|b| = 1 while in the case b > 1 the behaviour is more exotic. We will consider

1Work supported in part by the center of excellence grant “Center for Quantum Geometry
of Moduli Spaces” from the Danish National Research Foundation (DNRF95).
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both situations here and we will use the setting b > 0 to present some asymptotic
properties in the limit b→ 0. The Teichmüller TQFT can be used to define knot
invariants starting from triangulations of their complements. In this presenta-
tion we update the examples presented in [AK1] to the level N setting together
with their asymptotic analysis. For the simplest hyperbolic knot we show the
appearance of the Baseilhac–Benedetti invariant from [BB] in such a limit.

It is an interesting challenge how the TQFT’s which are reviewed in this paper
are related to the Witten-Reshetikhin-Turaev TQFT’s [W1, RT1, RT2, BHMV1,
BHMV2, B] and in particular how they are related to the geometric construction
of these TQFT’s [ADW, Hit2, Las, TUY, AU1, AU2, AU3, AU4] and to Witten’s
proposal for the construction of the complex quantum Chern-Simons theory [W2],
which can actually be constructed from a purely mathematical point of view [AG],
resulting also in the mathematically well-defined Hitchin-Witten connection in
the bundle of quantizations of the moduli space of flat SL(n,C)-connections over
Teichmüller space. In the classical case of compact groups, the description of the
representations of the mapping class groups via the monodromy of the Hitchin
connections turned out to be very useful to prove deep properties about these
representations [A1, A2, A3, A4, AH, AHJMMc], some of which also uses the
theory of Toeplitz operators [BMS, KS]. Understanding how these kinds of results
can be extended to the complex quantum theory discussed in this paper will be
very interesting and most likely involve using Higgs bundles techniques [Hit1].
Certainly we have already seen the start of this with the Verlinde formula for
Higgs bundle moduli space [AGP].

The paper is organised as follows. In section 2 we recall the definition of the
(decorated) Ptolemy groupoid of punctured surfaces, which is the combinatorial
foundation over which Quantum Teichmüller Theory is defined. In section 3 we
recall the quantum dilogarithm Db, and we list some of its properties. The function
Db was introduced in [AK3] for the first time, but some of its properties that we list
here are not present in the literature. In section 5 we carry out the quantization
of the moduli space of PSL(2, C) flat connections over a four punctured sphere
with unipotent holonomies around the punctures. We follow the prescriptions
of geometric quantisation, together with a choice of real polarisation, and we
connect the resulting algebra of observables to the L2(R×Z/NZ) representations
of quantum Teichmüller theory of the previous section. Finally in section 6 we
construct the the Teichmüller TQFT functor F

(N)
b mirroring the construction in

[AK1] and we study some examples and their asymptotic behaviour. It would of
course be interesting to go through all the examples treated in [AN] in this volume
for the level N theory as well.

Acknowledgements

We would like to thank Rinat Kashaev for many interesting discussions.



Teichmüller TQFT at level N 99

2 Ptolemy Groupoid

Let Σg,s be a surface of genus g with s punctures, such that s > 0 and 2−2g+s < 0.

Definition 2.1. An ideal arc α is the homotopy class relative endpoints of the
embedding of a path in Σg,s, such that the endpoints are punctures of the surface.
An ideal triangle is a triangle with the vertices removed, such that the edges are
ideal arcs.
An ideal triangulation τ of Σg,s is a collection of disjoint ideal arcs such that
Σg,s \ τ is a collection of interiors of ideal triangles.

Given an ideal triangulation τ , ∆j(τ) will denote the set of its j-dimensional
cells.

Definition 2.2. A decorated ideal triangulation of Σg,s is an ideal triangulation τ
up to isotopy relative to the punctures, together with the choice of a distinguished
corner in each ideal triangle and a bijective ordering map

τ : {1, . . . , s} 3 j 7→ τ j ∈ ∆2(τ).

We denote the set of all decorated ideal triangulation as ∆̇ = ∆̇(Σg,s).

When we say that τ is a decorated ideal triangulation we mean that τ is the
set of decorated ideal triangles in the triangulation.

One of the main interests in quantizing moduli spaces is the consequent con-
struction of representations of (central extensions of) the mapping class group of
the surfaces [W2, Hit1, Las, A1, AU4, AG]. Quantum Teichmüller theory produce
instead representations of a bigger object called the (decorated) Ptolemy Groupoid
that we are going to introduce now.

Recall that, given a group G acting freely on a set X, we can define an associ-
ated groupoid G as follows. The objects of G are G-orbits in X while morphisms
are G-orbits in X ×X with respect to the diagonal action. Then for any x ∈ X
we can consider the object [x] and for any pair (x, y) ∈ X × X we can consider
the morphism [x, y]. When [y] = [u] there will be a g ∈ G so that gu = y and we
can define the composition [x, y][u, v] = [x, gv]. The unit for [x] is given by [x, x].
If the action of G is transitive, we would get an actual group. We will abbreviate
[x1, x2][x2, x3] · · · [xn−1, xn] with [x1, x2, . . . , xn].
We define the decorated Ptolemy groupoid G(Σg,s) of a punctured surface Σg,s

following the above recipe. The set we consider is the set ∆̇ of decorated trian-
gulations τ of Σg,s. The free group action is the one of the mapping class group
MCGg,s acting on ∆̇. This action is not transitive, meaning that not all pairs of
decorated ideal triangulations can be related by a mapping class group element.
However in the language of groupoids, we can still describe generators and rela-
tions for the morphism groups. For τ ∈ ∆̇ there are three kind of generators [τ, τσ],
[τ, ρiτ ] and [τ, ωi,jτ ], where τσ is obtained by applying the permutation σ ∈ S|τ |
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to the ordering of triangles in τ , ρiτ is obtained by changing the distinguished
corner in the triangle τ̄i ∈ τ as in Figure 1, and ωi,j is obtained by applying a
decorated diagonal exchange to the quadrilateral made of the two decorated ideal
triangles τ̄i and τ̄j as in Figure 2.

�
�@

@r r r∗i �
�@

@r r r∗
i

ρi−→

Figure 1: Transformation ρi.
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�

@
@
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�
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rr r ri

j
∗
∗

ωij−→

Figure 2: Transformation ωij.

The relations are usually grouped in two sets, the first being

(2.1) [τ, τα, (τα)β] = [τ, ταβ], α, β ∈ Sτ ,

(2.2) [τ, ρiτ, ρiρiτ, ρiρiρiτ ] = id[τ ],

(2.3) [τ, ωi,jτ, ωi,kωi,jτ, ωj,kωi,kωi,jτ ] = [τ, ωj,kτ, ωi,jωj,kτ ]

(2.4) [τ, ωi,jτ, ρiωi,jτ, ωj,iρiωi,jτ ] = [τ, τ (i,j), ρjτ
(i,j), ρiρjτ

(i,j)]

The first two relations are obvious, the third is called the Pentagon Relation and
the fourth is called the Inversion Relation.

The second set of relations, are commutation relations

(2.5) [τ, ρiτ, ρiτ
σ] = [τ, τσ, ρσ−1(i)τ

σ],

(2.6) [τ, ωi,jτ, (ωi,jτ)σ] = [τ, τσ, ωσ−1(i)σ−1(j)τ
σ],

(2.7) [τ, ρjτ, ρjρiτ ] = [τ, ρiτ, ρiρjτ ],

(2.8) [τ, ρiτ, ωj,kρiτ ] = [τ, ωj,kτ, ρiωj,kτ ], i /∈ {j, k},

(2.9) [τ, ωi,jτ, ωk,lωi,jτ ] = [τ, ωk,lτ, ωi,jωk,lτ ], {i, j} ∩ {k, l} = ∅,
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To every decorated ideal triangulation τ ∈ ∆̇ it is possible to associate a simple
symplectic space R(τ), called the space of Ratio Coordinates. We summarize here
its relation with the Ptolemy groupoid and refer to [K3] for a detailed introduction
to ratio coordinates and their relation to the Teichmüller space. Let M ≡ 2g −
2 + s = |τ | be the number of ideal triangles, then R(τ) ≡ (R>0 × R>0)M . Let
xj ≡ (xj1, x

j
2) ∈ R>0 ×R>0, for j = 1, . . . ,M be the coordinates associated to the

ideal triangle τ̄j ∈ ∆2(τ). The symplectic form that we consider on R(τ) is

ωτ ≡
M∑

j=1

dxj1
xj1
∧ dxj2
xj2

(2.10)

Now we want to describe the action of G(Σg,s) as symplectomorphisms between
these spaces. The morphisms [τ, τσ] act by permuting the coordinates in R(τ).
The morphism [τ, ρiτ ] acts as the identity on any pair x = (x1, x2) corresponding
to ideal triangles different from τ̄i and as (x1, x2) = x 7→ y = (x2

x1
, 1
x1

) for the pair
of coordinates corresponding to τ̄i. Finally the action of [τ, ωi,jτ ] is the identity
on τ̄k for k 6= i, j while letting x = (x1, x2) and y = (y1, y2) be the coordinates
corresponding to the triangles τ̄i and τ̄j respectively, and letting u = (u1, u2) and
v = (v1, v2) be the coordinates of the triangles ωi,jτ i and ωi,jτ j, then we have
u = x • y and v = x ∗ y where

x • y := (x1y1, x1y2 + x2)(2.11)

x ∗ y :=

(
y1x2

x1y2 + x2

,
y2

x1y2 + x2

)
.

Let ∆̃ be the set of pairs (τ,R(τ)), τ ∈ ∆̇. Then the space R(Σg,s) is defined

as the quotient of ∆̃ by the action of G(Σg,s) as described above. This space
of coordinates is now independent of the triangulation. For more details on the
(decorated or not) Ptolemy groupoid see [P],[FK],[K6][K4].

3 Quantum Dilogarithm

In this section we recall the quantum dilogarithm Db over AN and we state some
of their properties.

Definition 3.1 (q-Pochammer Symbol). Let x, q ∈ C, such that |q| < 1. Define
the q-Pochammer Symbol of x as

(x;q)∞ :=
∞∏

i=0

(1− xqi)

Theorem 3.2. Let X, Y satisfying XY = qY X. Then the following five-term
relation holds true

(3.1) (Y ;q)∞ (X;q)∞ = (X;q)∞ (−Y X;q)∞ (Y ;q)∞ .
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Definition 3.3 (Faddeev’s Quantum Dilogarithm [F]). Let z, b ∈ C be such that
Re b 6= 0, | Im(z)| < | Im(cb)|, where cb := i(b+b−1)/2. Let C ⊂ C, C = R+i0 be
a contour equal to the the real line outside a neighborhood of the origin that avoid
the singularity in 0 going in the upper half plane. Faddeev’s quantum dilogarithm
is defined to be

(3.2) Φb(z) = exp

(∫

C

e−2izwdw

4 sinh(wb) sinh(wb−1)w

)
.

It is evident that Φb is invariant under the following changes of parameter

(3.3) b ↔ b−1 ↔ −b,

so that our choice of b can be restricted to the first quadrant

(3.4) Re b > 0, Im b ≥ 0

which implies

(3.5) Im(b2) ≥ 0.

Faddeev’s quantum dilogarithm has a lot of other interesting properties and
applications, see for example [F],[FK],[FKV] and [V].

Let N ≥ 1 be a positive odd integer. Then, following [AK3], we can define a
quantum dilogarithm over AN as follows

(3.6) Db(x, n) :=
N−1∏

j=0

Φb

(
x√
N

+ (1−N−1)cb − ib−1 j

N
− ib

{
j + n

N

})

where {p} is the fractional part of p, and Φb is the Faddeev’s quantum dilogarithm.
Of course for N = 1 we have just Φb(x). The function Db was introduced in [AK3]
only for |b| = 1. It satisfies a series properties that we are going to list.

Lemma 3.4 (Inversion Relation [AK3]).

Db(x, n)Db(−x,−n) = eπix
2

e−πin(n+N)/Nζ−1
N, inv,

where

ζN, inv = eπi(N+2c2bN
−1)/6.(3.7)

Unitarity properties are different in the two situations |b| = 1 or b ∈ R.

Lemma 3.5 (Unitarity).

Db(x, n) = Db(x̄, n)−1 if |b| = 1,(3.8)

Db(x, n) = Db(x̄,−n)−1 if b ∈ R>0.(3.9)
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Remark 3.6. One can see that

Db(x,−n) = Db−1(x, n)(3.10)

just by the Definition 3.6 for Db−1 and carefully substituting j + n 7→ j′. In
particular the unitarity for b > 0 can be re-expressed as

Db(x, n) = (Db−1(x, n))−1(3.11)

Lemma 3.7 (Faddeev’s difference equations). Let

(3.12) χ±(x, n) ≡ e
2π b±1
√
N
x
e±

2πin
N ,

for every x, b ∈ C, Im(b) 6= 0 n, N ∈ Z we have

Db

(
x+ i

b±1

√
N
, n± 1

)
= Db (x, n)

(
1 + χ±(x, n)e−πi

N−1
N eπi

b±2

N

)−1

(3.13)

Db

(
x− i b±1

√
N
, n∓ 1

)
= Db(x, n)

(
1 + χ±(x, n)eπi

N−1
N e−πi

b±2

N

)
(3.14)

Proposition 3.8. If Im(b) > 0 and Re(b) > 0 we have

(3.15) Db(x, n) =

(
χ+(x+ cb√

N
, n);q2ω

)
∞(

χ−(x− cb√
N
, n);q̃2ω

)
∞

where q = eiπ
b2

N , q̃ = e−πi
b−2

N , ω = e
2πi
N and χ±(x, n) = e

2π b±1
√
N
x
e±

2πin
N .

Proposition 3.9. The quantum dilogarithm Db(x, n), for Im(b) > 0 has poles

{
x = cb√

N
+ ib−1√

N
l + i b√

N
m

n = m− l mod N

and zeros {
x = − cb√

N
− ib−1√

N
l − i b√

N
m

n = l −m mod N

for l,m ∈ Z>0. Moreover its residue at (xl,m, nl,m) =
(

cb√
N

+ ib−1√
N
l + i b√

N
m,m− l

)

is

(3.16)

√
N

2πb−1

(q2ω;q2ω)∞
(q̃2ω;q̃2ω)∞

(−q̃2ω)l(q̃2ω)l(l−1)/2

(q2ω;q2ω)m (q̃2ω;q̃2ω)l

The following Summation Formula can be shown by a residue computation.
It is well known for N = 1, i.e. for Φb, see [FKV] for example.
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Theorem 3.10 (Summation Formula). Suppose Im(b) > 0 and N odd, and let
u, v, w ∈ C and a, b, c ∈ Z/NZ satisfy

(3.17) Im

(
v +

cb√
N

)
> 0, Im

(
−u+

cb√
N

)
> 0, Im(v−u) < Im(w) < 0.

Define

(3.18) Ψ(u, v, w, a, b, c) ≡
∫

AN

Db(x+ u, a+ d)

Db(x+ v, b+ d)
e2πiwxe−2πi cd

N d(x, d)

Then we have that

Ψ(u, v, w, a, b, c)

=ζ0

Db

(
v − u− w + cb√

N
, b− a− c

)

Db

(
−w − cb√

N
,−c

)
Db

(
v − u+ cb√

N
, b− a

)e2πiw
(
cb√
N
−u

)
ωac

=ζ−1
0

Db

(
w + cb√

N
, c
)

Db

(
−v + u− cb√

N
,−b+ a

)

Db

(
−v + u+ w − cb√

N
,−b+ a+ c

) e
2πiw

(
− cb√

N
−v

)
ωbc

where ζ0 = e−πi(N−4c2bN
−1)/12.

Remark 3.11. Assumptions (3.17) even though sufficient are not optimal. Indeed
they guarantee the theorem to hold true when the integration is performed along
the real line, however we can deform the integration contour as long as

(3.19) |arg(iz)| < π − arg b z being one of

{
w, v − u− w, u− v − 2

cb√
N

}

Using the notation for the Fourier Kernels from (A.13) in Appendix A.2 we
have that

Proposition 3.12 (Fourier Transformation Formula, [AK3]). For N odd we have
that

∫

AN
Db(x, n)〈(x, n); (w, c)〉d(x, n) =

e
2πiw

cb√
N

Db

(
−w − cb√

N
,−k

)e−πi(N−4c2bN
−1)/12

= Db

(
w +

cb√
N
, c

)
〈(w, c)〉eπi(N−4c2bN

−1)/12

∫

AN
(Db(x, n))−1〈(x, n); (w, c)〉d(x, n) =

〈(w, c)〉
Db

(
−w − cb√

N
,−k

)e−πi(N−4c2bN
−1)/12

= Db

(
w +

cb√
N
, c

)
e
−2πiw

cb√
N eπi(N−4c2bN

−1)/12
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Proposition 3.13 (Integral Pentagon Relation). Let D̃b(x, n) ≡ FN◦F−1(Db)(x, n).
We have the following integral relation

〈(x, n); (y,m)〉D̃b(x, n)D̃b(y,m)

=

∫

AN
D̃b(x− z, n− k)D̃b(z, k)D̃b(y − z,m− k)〈(z, k)〉d(z, k).

Before we look at the asymptotic behavior of Φb let us recall the classical
dilogarithm function, defined on |z| < 1 by

Li2(z) =
∑

n≥1

zn

n2
(3.20)

and recall that it admits analytic continuation to C \ [1,∞] through the following
integral formula

Li2(z) = −
∫ z

0

log(1− u)

u
du.(3.21)

Proposition 3.14. We have the following behaviour when b > 0, b → 0 and x,
n, N are fixed

(3.22) Db(
x

2πb
, n) = Exp

(
Li2(−ex

√
N)

2πib2N

)
φx(n)(1 +O(b2))

where φx(n) is defined by




φx(n+ 1) = φx(n) (1−ex/

√
Nωn+

1
2 )

(1+ex
√
N )1/N

φx(0) = (1 + ex
√
N)−

N−1
2N

∏N−1
j=0 (1− exN−

1
2 ωj+

1
2 )

j
N

whenever N is odd.

Remark 3.15. The function φx on the finite set Z/NZ is a cyclic quantum
dilogarithm [FK],[K3], [K1]. Precisely 1

φx
corresponds to the function Ψλ from

Proposition 10 in [K3] with λ = ex/
√
N .

The Hilbert space L2(AN) is naturally isomorphic to the tensor product L2(R)⊗
L2(Z/NZ) ∼= L2(R)⊗ CN , see Appendix A.2. Let p and q two self-adjoint opera-
tors on L2(R) satisfying

(3.23) [p, q] =
1

2πi

and let X and Y unitary operators satisfying

(3.24) Y X = e2πi/NXY , XN = Y N = 1,
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together with the cross relations

(3.25) [p, X] = [p, Y ] = [q, X] = [q, Y ] = 0.

The equations in (3.24) imply that X and Y will have finite and the same spec-
trum, and this will be a subset of the set TN of all N -th complex roots of unity.
Let

LN : TN −→ Z/NZ

be the natural group isomorphism. We can define LN(A), by the spectral theorem,
for any operator A of order N , such that it formally satisfies

A = e2πiLN (A)/N .

One has that

(3.26) LN(−e−πi/NXY ) = LN(X) + LN(Y ).

For any function f : AN −→ C recall the definition of f̃ and the operator function
6f(x, A) ≡ f(x,LN(A)) from Appendix A.2. The following Pentagon Identity for
Db was first proved in [AK3], where a projective ambiguity was undetermined and
|b| = 1.

Lemma 3.16 (Pentagon Equation). Let p,q, X and Y be as above, then the
following five-term relation holds

(3.27) /Db(p, X)/Db(q, Y ) = /Db(q, Y )/Db(p + q,−eπi/NXY )/Db(p, X).

Proof. This is equivalent to the Integral Pentagon equation of Proposition 3.13.
To see this we need to use equation (A.14) an all the five terms. Then we com-
pare the coefficients of e2πiyqY me2πixpX−n and get exactly the integral pentagon
equation.
An alternative proof follows from the q-Pochammer presentation of Db from
Proposition 3.8.

3.1 Charges

We are going to define a charged version of the dilogarithm. The charges will
assume geometrical meaning in the construction of the partition function, however
they already satisfy the purpose of turning all the conditional convergent integral
relations of the dilogarithm Db (e.g. Proposition 3.13 and 3.12) into absolutely
convergent integrals.
Let a, b and c be three real positive numbers such that a+ b+ c = 1√

N
. We define

the charged quantum dilogarithm

(3.28) ψa,c(x, n) :=
e−2πicbax

Db(x− cb(a+ c), n)
.



Teichmüller TQFT at level N 107

From the Fourier transformation formula, Proposition 3.12, and the inversion
formula in Lemma 3.4, we can deduce the following transformation formulas for
ψa,c (recall notation (A.15) for the inverse Fourier transform)

Lemma 3.17. Suppose Im(b)(1− |b|) = 0, then

ψ̃a,c(x, k) = ψc,b(x, k)〈x, k〉e−πic2ba(a+2c)ζ0(3.29)

ψa,c(x, k) = ψc,a(−x, εk)〈x, k〉eπc2b(a+c)2ζN,inv(3.30)

ψ̃a,c(x, k) = ψb,c(−x, εk)e−2πic2babζ0(3.31)

where ζ0 = e−πi(N−4c2bN
−1)/12 and ζN,inv = ζ2

0e
−πic2b/N and ε = +1 if b > 0 or

ε = −1 if |b| = 1.

Remark 3.18. The hypothesis on positivity of a, b and c assure that the Fourier
integral of ψ̃a,c is absolutely convergent.

Theorem 3.19 (Charged Pentagon Equation). Let aj, cj > 0 such that 1√
N
−

aj − cj > 0 for j = 0, 1, 2, 3 or 4. Define ψj ≡ ψaj ,bj . Suppose the following
relations hold true

a1 = a0 + a2 a3 = a2 + a4 c1 = c0 + a4 c3 = a0 + c4 c2 = c1 + c3

(3.32)

and consider the operators on L2(AN) defined to satisfy (3.23 -3.24). We have
the following charged pentagon relation

ψ1(q,LN(X))ψ3(p,LN(Y ))ξ(a, c) =(3.33)

= ψ4(p,LN(X))ψ2(p + q,LN(X) + LN(Y ))ψ0(q,LN(Y ))

where ξ(a, c) = e2πic2b(a0a2+a0a4+a2a4)eπic
2
ba

2
2.

4 Quantum Teichmüller Theory

In this section we are going to quantize the space R(Σg,s) following [K3]. For any
fixed τ the quantization of R(τ) is just the canonical quantization in exponential
coordinates of the space RM

>0×RM
>0, where M = 2g− 2 + s, with symplectic form

ωτ =
∑M

j=1 d log uj ∧ d log vj. Formally, following the expectations from canonical

quantization of R2M , we can quantize R(τ) and associate to it an algebra of
operator

X (τ) generated by {ûj, v̂j} , where 0 ≤ j < M , subject to the relations

ûj v̂l = qδ(j−l)v̂lûj ûjûl = ûlûj v̂j v̂l = v̂lv̂j

where q ∈ C∗. The algebra we mean here is the associative algebra of non commu-
tative fractions of non commutative polynomials generated by these generators.
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In order to obtain a quantization of R(Σg,s) (i.e. triangulation independent) we
have to look at the action of the G(Σg,s) generators on coordinates and translate
it into an action on the algebras X (τ). Precisely consider the set of the couples
(τ,X (τ)) and let the generators [τ, τσ], [τ, ρiτ ] and [τ, ωi,jτ ] act on them. The ac-
tion on the algebras is as follows. The elements [τ, τσ] just permutes the indexes of
the generators according to the permutation σ. The change of decoration [τ, ρiτ ]
acts trivially on the operators (ûj, v̂j) such that j 6= i and as follows on (ûi, v̂i)

(ûi, v̂i) 7→ (q−1/2v̂iû
−1
i , û−1

i ).(4.1)

The most interesting generator [τ, ωi,jτ ], is again trivial in the triangles not in-
volved in the diagonal exchange, but it maps the two couples of operators (ûi, v̂i)
and (ûj, v̂j) to the two new couples (following formulas (2.11))

(ûi, v̂i) • (ûj, v̂j) ≡ (ûiûj, ûiv̂j + v̂i)(4.2)

(ûi, v̂i) ∗ (ûj, v̂j) ≡ (ûj v̂i(ûiv̂j + v̂i)
−1, v̂j(ûiv̂j + v̂i)

−1).(4.3)

In order to get an actual quantization we need to provide a representation of X (τ)
by operators acting on some vector space H. In the original paper [K3], Kashaev
proposed representations on the vector spaces L2(R) and L2(Z/NZ) ' CN for N
odd. The former was used to construct the Andersen-Kashaev invariants in [AK1],
while the latter are related to the colored Jones polynomials ([K1], [MM]) and the
Volume Conjecture [K2]. In the more recent work [AK3] a representation on the
vector space L2(AN) ≡ L2(R× Z/NZ) ' L2(R)⊗CN was implicitly proposed, or
at least all the basics elements to construct it were presented. Here we describe
the representations in L2(AN).

4.1 L2(AN) Representations

Fix N positive odd integer, ω ≡ e
2πi
N and b ∈ C∗, Re(b) > 0. To each decorated

ideal triangle τ j ∈ τ we associate the Hilbert space L2(AN). Then the Hilbert
space associated to R(τ) will be H = L2(AN)⊗M ∼= L2(AM

N ) where M = 2g−2+s
is the number of triangles in τ . For conventions and notation on the space L2(AN)
see Appendix A.2. For every i = 0, . . . ,M let pi, qi be self adjoint operator in
L2(R) and Xi, Yi unitary operators in L2(Z/NZ) ' CN such that

(4.4) [pi, qj] =
δij
2πi

, YiXj = ωδijXjYi, XN
i = Y N

i = 1.

We can define the operators

ui = e
2π b√

N
qiYi u∗i = e

2π b−1
√
N

qiY −1
i(4.5)

vi = e
2π b√

N
piXi v∗i = e

2π b−1
√
N

piX−1
i(4.6)
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satisfying

uivj = qδijvjui u∗i v
∗
j = q̃δijv∗ju∗i(4.7)

uiv
∗
j = v∗jui u∗i vj = vju

∗
i(4.8)

q = e2πib
2

N ω q̃ = e2πib
−2

N ω.(4.9)

The Quantum algebra X (τ) is generated by the uj, vj for j = 0, . . .M , and has a
∗–algebra structure when extended to include u∗j and v∗j . We remark that the ∗
operator we are using here is the standard hermitian conjugation only if |b| = 1.
Explicitly let Xj, Yj, pj, qj , j = 1, 2 be operators acting on H := L2(A2

N) as
follow

pjf(x,m) =
1

2πi

∂

∂xj
f(x,m), qjf(x,m) = xjf(x,m)(4.10)

X1f(x,m) = f(x, (m1 + 1,m2)), X2f(x,m) = f(x, (m1,m2 + 1))(4.11)

Yjf(x,m) = ωmjf(x,m),(4.12)

where m = (m1,m2) ∈ Z2
N and x = (x1, x2) ∈ R2.

These operators satisfy conditions (4.4). Let ψb(x, n) ≡ 1
Db(x,n)

and consider the
operators

D12 ≡ e2πiq2p1

N−1∑

j,k=0

ωjkY j
2 X

k
1(4.13)

Ψ12 ≡ /Ψb(q1 + p2 − q2,−e−
πi
N Y1X2Y2)(4.14)

T12 ≡ D12Ψ12(4.15)

One has

Lemma 4.1 (Tetrahedral Equations).

T12u1 = u1u2T12(4.16)

T12v1v2 = v2T12(4.17)

T12v1u2 = v1u2T12(4.18)

T12v1 = (u1v2 + v1)T12(4.19)

T12T13T23 = T23T12(4.20)

Remark 4.2. If we define T̃12 = D12Ψ̃12 where

(4.21) Ψ̃ ≡ /Ψb−1(q1 + p2 − q2,−e−
πi
N Y 1X2Y2)

then T̃ satisfies equations (4.16 – 4.20) with ui and vi substituted by u∗i and v∗i .
However from Remark 3.6 we know that Ψb−1(x, n) = Ψb(x,−n), and

(
−e−πiN Y1X2Y2

)−1

= −eπiN Y 1Y2X2 = −e−πiN Y 1X2Y2
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so that
T̃ = T.

From Lemma 4.1 we have the following implementations of equations (4.1 –
4.3).

Proposition 4.3. Let wi ≡ (ui, vi) and w∗i = (u∗i , v
∗
i ). Then we have

w1 • w2T12 = T12w1, w1 ∗ w2T12 = T12w2,(4.22)

w∗1 • w∗2T12 = T12w∗1, w∗1 ∗ w∗2T12 = T12w∗2.(4.23)

Proposition 4.4. Let

A ≡ e3πiq2eπi(p+q)2
N−1∑

j=0

〈j〉3Y 3j

N−1∑

l=0

〈l〉(−e−πi/NY X)l,(4.24)

where 〈n〉 = e−πin(n+N)/N and Y and X are as above. Then

A(u, v) = (q−1/2vu−1, u−1) A(u∗, v∗) = (q̃−1/2v∗(u∗)−1, (u∗)−1)(4.25)

where q and q̃ are defined by equation (4.9).

5 Quantization of the Model Space for Complex

Chern-Simons Theory

In this Section we want to quantize the space C∗×C∗ with the complex symplectic
form

ωC =
dx ∧ dy

xy
.

We think of it as a model space for Complex Chern-Simons Theory because it is an
open dense of the PSL(2,C) moduli space of flat connections on a four punctured
sphere, with unipotent holonomy around the punctures, [AK3, K5, D, FG]. Tetra-
hedral operators are supposedly related to states in the quantization of the four
punctured sphere. Since we want to construct knot invariants starting from tetra-
hedral ideal triangulations this is the space we need to quantize. We follow the
ideas in Andersen and Kashaev [AK3] using a real polarization with contractible
leaves. We will further show that the level N Weil-Gel’fand-Zak Transform re-
lates this quantization with the L2(AN) representations in Quantum Teichmüller
theory. To use this transform to relates the Andersen–Kashaev invariants to com-
plex Chern–Simons Theory was already proposed in [AK3]. However the relation
between the two approaches was not as tight as the one present here.
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Let t = N + is ∈ C∗ be the quantization constant, for N ∈ R and s ∈ Rt iR.
Denote also t̃ = N − is. Fix b ∈ C such that s = −iN 1−b2

1+b2 and Re b > 0. This
substitution, for s ∈ iR, is only possible when −N < is < N . Notice that

s ∈ R ⇐⇒ |b| = 1 and b 6= ±i, s ∈ iR ⇐⇒ Im b = 0(5.1)

and notice the following useful expressions

t =
2N

1 + b2
, t̃ =

2N

1 + b−2
.(5.2)

Consider the covering maps

ζ± : R2 −→ C∗(5.3)

(z, n) 7→ exp
(
2πb±1z ± 2πin

)

and consequently

(5.4) π± : R2 × R2 −→ C∗ × C∗, π± = (ζ±, ζ±)

such that

C∗ × C∗ 3 (x, y) = π+((z, n), (w,m)),(5.5)

C∗ × C∗ 3 (x̃, ỹ) = π−((z, n), (w,m)) for ((z, n), (w,m)) ∈ R2 × R2.

We remark that

(5.6) ζ+(z, n) = ζ−(z, n) ⇐⇒ |b| = 1

in this case π− = π+ and x̃ = x, ỹ = y. In this sense x, y x̃ and ỹ are natural
coordinate functions to quantize in C∗ × C∗. If b ∈ R they are still coordinates
functions for the underlying real manifold, but we lose the complex conjugate
interpretation. We will first consider the quantization of the covering R2 × R2.
Define the form

ωt ≡
t

4π
(π+)∗(ωC) +

t̃

4π
(π−)∗(ωC).(5.7)

Lemma 5.1.

(5.8) ωt = 2πN(dz ∧ dw − dn ∧ dm).

In particular it is a real symplectic 2 form on R2 × R2, independent of b.

Over R2 × R2 we take the trivial line bundle L̃ = R2 × R2 × C. On the N -th
tensor power of this line bundle L̃N we consider the connection

(5.9) ∇(t) ≡ d− iαt
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where

αt ≡
t

4π
α+
C +

t̃

4π
α−C ,(5.10)

α±C ≡ 2π2(b±1z ± in)d(b±1w ± im)− 2π2(b±1w ± im)d(b±1z ± in)(5.11)

In analogy to Lemma 5.1 we have

αt = πN(zdw − wdz − ndm+mdn).(5.12)

It is simple to see that

dα±C = (π±)∗(ωC), which implies(5.13)

F∇(t) = −iωt.(5.14)

Further, on R2 × R2 we have an action of Z × Z compatible with the projection
π+, i.e.

(Z× Z)×
(
R2 × R2

)
−→ R2 × R2(5.15)

(λ1, λ2) · ((z, n), (w,m)) 7→ ((z, n+ λ1), (w,m+ λ2))

(5.16)

that satisfies

π±((z, n+ λ1), (w,m+ λ2)) = π±((z, n), (w,m))(5.17)

This action can be lifted to an action L̃N in such a way that the quotient bundle
LN ≡ L̃N /(Z)2 → R4/Z2 has first Chern class c1(LN) = 1

2π
[ωt] (ωt is evidently

Z2–invariant). Such a condition gives the requirement (which is in fact the pre-
quantum condition) 1

2π
[ωt] ∈ H2((R2 × R2)/(Z2), Z), which boils down to the

requirement N ∈ Z. Explicitly the action of Z×Z on L̃N is given by the following
two multipliers

e(1,0) = e−πNim, e(0,1) = eπNin.(5.18)

That means that we consider the space of sections

(5.19) (C∞(R4, L̃N))Z
2

of Z2–invariant, smooth sections of L̃N . Explicitly

s ∈ (C∞(R4, L̃N))Z
2

if and only if s ∈ C∞(R4, L̃N) and satisfies

s((z, n+ 1), (w,m)) = e−πiNms((z, n), (w,m)),(5.20)

s((z, n), (w,m+ 1)) = eπiNns((z, n), (w,m))(5.21)
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Lemma 5.2.

∇(t)s ∈ (C∞(R4, L̃N))Z
2

, for any s ∈ (C∞(R4, L̃N))Z
2

The following Hermitian structure on L̃N is Z2–invariant and parallel with
respect to ∇(t).

(5.22) s · s′(p) ≡ s(p)s′(p), for any p ∈ R2 × R2

Being parallel here means that

(5.23) d(s · s′) = (∇(t)s) · s′ + s · (∇(t)s′),

and this is a simple consequence of αt being a real 1-form. It follows that the fol-

lowing is a well defined inner product in the completion of
((

L2 ∩C∞
)

(R4, L̃N)
)Z2

(s,s′) ≡
∫

R
dz

∫

R
dw

(∫ 1

0

dn

∫ 1

0

dm s · s′
)

(5.24)

Lemma 5.3. We have the following Hamiltonian vector field for the coordinates
functions on R2 × R2

Xz =
1

2πN

∂

∂w
Xw = − 1

2πN

∂

∂z

Xn = − 1

2πN

∂

∂m
Xm =

1

2πN

∂

∂n

From the definition of the pre-quantum operator f̂ associated to the observable
f , we have

(5.25) f̂ = −i∇Xf + f

Lemma 5.4 (Pre–Quantum operators). The following are the pre–quantum op-
erators for the coordinate functions on R2 × R2

ẑ =
−i

2πN
∇(t)
w + z ŵ =

i

2πN
∇(t)
z + w

n̂ =
i

2πN
∇(t)
m + n m̂ =

−i
2πN

∇(t)
n +m

and they satisfy the following canonical commutation relations

[ẑ, ŵ] =
1

2πiN
[n̂, m̂] = − 1

2πiN
(5.26)

[ẑ, n̂] = [ẑ, m̂] = [ŵ, n̂] = [ŵ, m̂] = 0(5.27)
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The Hermitian line bundle LN → (R2 × R2/Z2) together with the connection
∇(t) define a pre–Quantization of the theory. In order to finish the quantization
program we need to choose a Lagrangian polarization.

Choose the following real Lagrangian polarization

(5.28) P̃ ≡ SpanR

{
∂

∂w
+

∂

∂n
,
∂

∂z
− ∂

∂m

}
.

The leaves of this polarization are all contractible after quotient by the action of
Z2 on R2 × R2, so we do have polarized global sections. In particular the space
T ⊂ R2 × R2

(5.29) T ≡ {z = w = 0}

is a transversal for the polarization. For any ψ ∈ (C∞(R4, L̃N))Z
2

polarized by P̃ ,
the following two differential equations will determine ψ ≡ ψ((z, n), (w,m)) by its
value in (n,m)

∇(t)
w ψ = −∇(t)

n ψ ∇(t)
z ψ = ∇(t)

m ψ.(5.30)

The space T/Z2 is of course T× T, and the line bundle LN will restrict to a non
trivial line bundle over T × T that we shall call LN again. The quantum space
that we obtain is then

H(N) ≡ C∞
(
T× T,LN

)
.(5.31)

We consider the obvious inner product on H(N)

(ψ, φ) =

∫ 1

0

∫ 1

0

ψφ dndm(5.32)

that is the standard inner product on the completion L2
(
T× T,LN

)
. Finally the

quantum operators acts on polarized sections as

x̂ ≡ exp (2πbẑ + 2πin̂) = exp

(
i

b

N
∇(t)
n −

1

N
∇(t)
m + 2πin

)
(5.33)

ŷ ≡ exp (2πbŵ + 2πim̂) = exp

(
i

b

N
∇(t)
m +

1

N
∇(t)
n + 2πim

)
(5.34)

ˆ̃x ≡ exp
(
2πb−1ẑ − 2πin̂

)
= exp

(
i
b−1

N
∇(t)
n +

1

N
∇(t)
m − 2πin

)
(5.35)

ˆ̃y ≡ exp
(
2πb−1ŵ − 2πim̂

)
= exp

(
i
b−1

N
∇(t)
z −

1

N
∇(t)
n − 2πim

)
(5.36)

Now we are going to connect the quantization with the Quantum Teichmüller
theory. Recall the operators u = u(b) and v = v(b) from equations (4.4 – 4.12),
and recall that they depend on a parameter b. Define the rescaling operator

O√N : L2(AN) −→ L2(AN)
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O√N(f)(z, n) = f
(√

Nz, n
)

(5.37)

and the following rescaled analogues of the Quantum Teichmüller Theory opera-
tors

û = O√N ◦ u(b−1) ◦ O−1√
N

v̂ = O√N ◦ v(b−1) ◦ O−1√
N

(5.38)

û∗ = O√N ◦ u∗(b−1) ◦ O−1√
N

v̂∗ = O√N ◦ v∗(b−1) ◦ O−1√
N

(5.39)

which acts on f ∈ L2(AN) as

û∗f(z, l) = e2πbze2πil/N f(z, l) ûf(z, l) = e2πb−1ze−2πil/N f(z, l)(5.40)

v̂∗f(z, l) = f(z − i b

N
, l − 1) v̂f(z, l) = f(z − ib

−1

N
, l + 1)(5.41)

We make use of the level-N Weil-Gel’fand-Zak Transform, [AK3].

Theorem 5.5. Recall the line bundle LN . The following map Z(N) : S(AN) −→
C∞(T× T,LN) is a an isomorphism

Z(N)(f)(n,m) =
1√
N
eπiNmn

∑

p∈Z

N−1∑

l=0

f
(
n+

p

N
, l
)
e2πimpe2πilp/N(5.42)

with inverse

Z
(N)

(s)(x, j) =
1√
N

N−1∑

l=0

e−2πi lj
N

∫ 1

0

s

(
x− l

N
, v

)
e−πiN(x+ l

N
)vdv.

which preserves the inner products L2(AN) and (·, ·), i.e.

(
Z(N)(f), Z(N)(g)

)
= 〈f, g〉

and so extends to an isometry between L2(AN) and L2(T× T,LN).

Proposition 5.6. We have

Z(N) ◦ û∗ ◦ (Z(N))−1 = ŷ−1 Z(N) ◦ v̂∗◦̂(Z(N))−1 = x̂−1

Z(N) ◦ û ◦ (Z(N))−1 = ˆ̃y−1 Z(N) ◦ v̂ ◦ (Z(N))−1 = ˆ̃x
−1

All together we have showed that the quantization for the model space of
complex Chern-Simons theory is equivalent to the L2(AN) representations of the
quantum algebra defined from Quantum Teichmüller Theory. In the following
section we will extend the L2(AN) representations to knots invariants following
the recipe given by Andersen and Kashaev in [AK1]. The previous discussion on
the different quantizations serves to link such invariants to Complex Quantum
Chern–Simons Theory.
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6 The Andersen–Kashaev Teichmüller TQFT at

Level N

6.1 Angle Structures on 3-Manifolds

We present here shaped triangulated pseudo 3-manifolds, which are the combi-
natorial data underlying the Andersen-Kashaev construction of their invariant.
Following strictly [AK1] we will describe the categroid of admissible oriented tri-
angulated pseudo 3-manifolds, where the words admissible and categroid go to-
gether because admissibility is what will obstruct us to have a full category. See
Appendix B for a definition of categroids.

Definition 6.1 (Oriented Triangulated Pseudo 3-manifold). An Oriented Trian-
gulated Pseudo 3-manifold X is a finite collection of 3-simplices (tetrahedra) with
totally ordered vertices together with a collection of gluing homeomorphisms be-
tween some pairs of codimension 1 faces, so that every face is in, at most, one such
pairs. By gluing homeomorphism we mean a vertex order preserving, orientation
reversing, affine homeomorphism between the two faces.
The quotient space under the glueing homeomorphisms has the structure of CW-
complex with oriented edges.

For i ∈ {0, 1, 2, 3} we denote by ∆i(X) the collection of i-dimensional simplices
in X and, for i > j, we denote

∆j
i (X) = {(a, b)|a ∈ ∆i(X), b ∈ ∆j(a)}.

We have projection maps

φi,j : ∆j
i (X) −→ ∆i(X), φi,j : ∆j

i (X) −→ ∆j(X),

and boundary maps

∂i : ∆j(X) −→ ∆j−1(X), ∂i[v0, . . . , vj] 7→ [v0, . . . , vi−1, vi+1, . . . , vj]

where [v0, . . . , vj] is the j-simplex with vertices v0, . . . , vj and i ≤ j.

Definition 6.2 (Shape Structure). Let X be an oriented triangulated pseudo
3-manifold. A Shape Structure is a map

αX : ∆1
3(X) −→ R>0,

so that, in every tetrahedron, the sum of the values of αX along three incident
edges is π.
The value of the map αX in an edge e inside a tetrahedron T is called the dihedral
angle of T at e. If we allow αX to take values in R we talk about a Generalized
Shape Structure.
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The set of shape structures supported by X is denoted S(X). The space of

generalized shape structures is denoted by S̃(X). X together with αX is called
Shaped Pseudo 3-manifold.

Remark 6.3 (Ideal Tetrahedron). A shape structure on a simplicial tetrahedron
T as above defines an embedding of T \∆0(T ) in the hyperbolic 3–space H3 which
extends to a map of T to H3. In fact we can change a given embedding, so that it
send the four vertices (v0, v1, v2, v3) to the four points (∞, 0, 1, z) ∈ CP1 ' ∂H3,
where

z =
sinαT ([v0, v2])

sinαT ([v0, v3])
exp (iαT ([v0, v1])) .

This four points in ∂H3 extend to a unique ideal tetrahedron in H3, by taking the
geodesic convex hull, that has dihedral angles defined by αT .

Remark 6.4. In every tetrahedron, its orientation induces a cyclic ordering of
all triples of edges meeting in a vertex. Such a cyclic ordering descends to a
cyclic ordering of the pairs of opposite edges of the whole tetrahedron. Moreover,
it follows from the definition that opposite edges share the same dihedral angle.
Hence, we get a well defined cyclic order preserving projection p : ∆1

3(X) −→
∆

1/p
3 (X) which identifies opposite edges. αX descends to a map from ∆

1/p
3 (X)

and we can consider the following skew-symmetric functions

εa,b ∈ {0,±1}, εa,b = −εb,a, a, b ∈ ∆
1/p
3 (X),

defined to be εa,b = 0 if the underlying tetrahedra are distinct, and εa,b = +1 if
the underlying tetrahedra coincides and b cyclically follows a in the order induced
on ∆

1/p
3 (X).

Definition 6.5. To any shaped pseudo 3-manifold X, we associate a Weight
function

ωX : ∆1(X) −→ R>0, ωX(e) =
∑

a∈(φ3,1)−1(e)

αX(a).

An edge e in X is called balanced if e is internal and ωX(e) = 2π. A shape
structure is fully balanced if all its edges are balanced.

The shape structures of closed fully balanced 3-manifolds are called Angle
Structures in the literature. For more details on them and their geometric admis-
sibility see [Lac] and [LT].

Definition 6.6. A leveled (generalised) shaped pseudo 3-manifold is a pair (X, lX)
consisting of a (generalized) shaped pseudo 3-manifold X and a real number lX ∈
R, called the level. The set of all leveled (generalised) shaped pseudo 3-manifolds

is denoted by LS(X) (respectively L̃S(X)).

There is a gauge action of R∆1(X) on L̃S(X).
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Definition 6.7. Let (X, lX) and (Y, lY ) be two (generalized) leveled shaped
pseudo 3-manifolds. They are said to be gauge equivalent if there exists an iso-
morphism h : X −→ Y of the underlying cellular structures, and a function
g : ∆1(X) −→ R such that

∆1(∂X) ⊂ g−1(0),

αY (h(a)) = αX(a) + π
∑

b∈∆1
3(X)

εp(a),p(b)g(φ3,1(b)), ∀a ∈ ∆1
3(X), and

lY = lX +
∑

e∈∆1(X)

g(e)
∑

a∈(φ3,1)−1(e)

(
1

3
− αX(a)

π
).

We remark that ωX = ωY ◦ h.

Definition 6.8. Let (αX , lX) and (αX′ , lX′) be two (generalized) leveled shape
structures of the oriented pseudo 3-manifold X. They are said based gauge
equivalent if they are gauge equivalent as in Definition 6.7 if the isomorphism
h : X −→ X is the identity.

Based gauge equivalence is an equivalence relation in the sets S(X), LS(X),

S̃(X), L̃S(X) and the quotient sets are denoted (resp.) Sr(X), LSr(X), S̃r(X),

L̃Sr(X). We remark that Sr(X) is an open convex (possibly empty) subset of the

space S̃r(X). We will return to existence of shape structures later. Let us focus

on S̃(X) for now. Let

Ω̃X : S̃(X) −→ R∆1(X)

be the map which sends the shape structure αX to the corresponding weight
function ωX . This map is gauge invariant, so it descends to a map

Ω̃X,r : S̃r(X) −→ R∆1(X)

For fixed a ∈ ∆
1/p
3 (X) we can think of αa := αX(a) as an element of C∞

(
S̃(X)

)
.

Definition 6.9 ([NZ]). The Neumann-Zagier symplectic structure on S̃(X) is the
unique symplectic structure which induces the Poisson bracket {·, ·} satisfying

{αa, αb} = εa,b

for all a, b ∈ ∆
1/p
3 (X).

For a triangulated pseudo 3-manifold we have a symplectic decomposition

S̃(X) =
∏

T∈∆3(X)

S̃(T ).
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Theorem 6.10 ([AK1]). The gauge action of R∆1(X) on S̃(X) is symplectic and

Ω̃X is a moment map for this action. It follows that S̃r(X) = S̃(X)/R∆1(X) is a
Poisson manifold with symplectic leaves corresponding to the fibers of Ω̃X,r.

Let N0(X) be a sufficiently small neighbourhood of ∆0(X), then ∂N0(X) is a
surface which inherits a triangulation from X, with a shape structure, if X has a
shape structure. Notice that this surface can have boundary if ∂X 6= ∅.
Theorem 6.11 ([AK1]). The map

Ω̃X,r : S̃r(X) −→ R∆1(X)

is an affine H1(∂N0(X),R)-bundle. The Poisson structure of S̃r(X) coincide with
the one induced by the H1(∂N0(X),R)-bundle structure.
If h : X −→ Y is an isomorphisms of cellular structure, the induced morphism
h∗ : S̃r(Y ) −→ S̃r(X) is compatible with all this structures, i.e. it is a Poisson
affine bundle morphism which fiberwise coincide with the naturally induced group
morphism h∗ : H1(∂N0(Y ),R) −→ H1(∂N0(X),R). Moreover h∗ maps Sr(Y ) to
Sr(X).

Definition 6.12 (Shaped 3 − 2 Pachner moves). Let X be a shaped pseudo 3
manifold and let e be a balanced internal edge in it, shared exactly by three
distinct tetrahedra t1, t2 and t3 with dihedral angles at e exactly α1, α2 and α3.
Then the triangulated pseudo 3-manifold Xe obtained by removing the edge e,
and substituting the three tetrahedra t1, t2 and t3 with other two new tetrahedra
t4 and t5 glued along one face, is topologically the same space as X. In order to
have the same weights of X on Xe, the dihedral angles of t4 and t5 are uniquely
determined by the ones of t1, t2 and t3 as follows

�5 �5

�5

�4 �5
�4

�1

�3�1

�2
�3

�3�2
�1

�2

Figure 3: A 3–2 Pachner move.
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(6.1)
α4 = β2 + γ1 α5 = β1 + γ2

β4 = β1 + γ3 β5 = β3 + γ1

γ4 = β3 + γ2 γ5 = β2 + γ3.

where (αi, βi, γi) are the dihedral angles of ti. In this situation we say that Xe is
obtained from X by a shaped 3− 2 Pachner move.

We remark that the linear system, together with e being balanced, guarantees
the positivity of the dihedral angles of t4 and t5 provided the positivity for t1, t2
and t3 but it does not provide any guarantees on the converse, i.e. the positivity
of a shaped 2− 3 Pachner moves. However, two different solutions for the angles
for t1, t2 and t3 from the same starting angles for t4 and t5 are always gauge
equivalent.
The system (6.1) define a map P e : S(X) −→ S(Xe), that extends to a map

P̃ e : S̃(X) −→ S̃(Xe).

For a balanced edge e, the latter restricts to the map

P̃r : Ω̃X,r(e)
−1(2π) −→ S̃r(Xe),

and it can be noticed that P̃r(Ω̃X,r(e)
−1(2π) ∩ Sr(x)) ⊂ Sr(Y ).

We also say that a leveled shaped pseudo 3-manifold (X, lX) is obtained from
(Y, lY ) by a leveled shaped 3-2 Pachner move if, for some balanced e ∈ ∆1(X),
Y = Xe as above and

lY = lX +
1

12π

∑

a∈(φ3,1)−1(e)

∑

b∈∆1
3(X)

εp(a),p(b)αX(b).

Definition 6.13. A (leveled) shaped pseudo 3-manifold X is called a Pachner re-
finement of a (leveled) shaped pseudo 3-manifold Y if there exists a finite sequence
of (leveled) shaped pseudo 3-manifolds

X = X1, X2, . . . , Xn = Y

such that for any i ∈ {1, . . . , n−1}, Xi+1 is obtained from Xi by a (leveled) shaped
3−2 Pachner move. Two (leveled) shaped pseudo 3-manifolds X and Y are called
equivalent if there exist gauge equivalent (leveled) shaped pseudo 3-manifolds X ′

and Y ′ which are respective Pachner refinements of X and Y .

For technical reasons, which we will discuss later, we will restrict the category
of triangulated 2 + 1 cobordisms, discussed so far, to a certain sub-categroid, as
discussed below. This means that we will remove some morphisms as the following
definition imposes.
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Definition 6.14 (Admissibility). An oriented triangulated pseudo 3-manifold is
called admissible if

Sr(X) 6= ∅,
and

H2(X −∆0(X),Z) = 0.

Definition 6.15. Two (leveled) admissible shaped pseudo 3-manifolds X and Y
are said to be admissibly equivalent if there exists a gauge equivalence

h′ : X ′ −→ Y ′

of (leveled) shaped 3-manifolds X ′ and Y ′ which are respective Pachner refine-
ments of X and Y such that ∆1(X ′) = ∆1(X) ∪DX and ∆1(Y ′) = ∆1(Y ) ∪DY

and the following holds

[
h(Sr(X) ∩ Ω̃X′,r(DX)−1(2π))

]
∩
[
Ω̃Y ′,r(DY )−1(2π)

]
6= ∅.

Theorem 6.16 ([AK1]). Suppose two (leveled) shaped pseudo 3-manifolds X and
Y are equivalent. Then there exist D ⊂ ∆1(X) and D′ ⊂ ∆1(Y ) and a bijection

i : ∆1(X)−D → ∆1(Y )−D′

and a Poisson isomorphism

R : Ω̃X,r(D)−1(2π)→ Ω̃Y,r(D
′)−1(2π),

which is covered by an affine R-bundle isomorphism from L̃Sr(X)|Ω̃X,r(D)−1(2π) to

L̃Sr(Y )Ω̃X,r(D′)−1(2π) and such that we get the following commutative diagram

Ω̃X,r(D)−1(2π)
R−−−→ Ω̃Y,r(D

′)−1(2π)yproj ◦ Ω̃X,r

yproj ◦ Ω̃Y,r

R∆1(X)−D i∗−−−→ R∆1(Y )−D′ .

Moreover, if X and Y are admissible and admissibly equivalent, the isomorphism
R takes an open convex subset U of Sr(X) ∩ Ω̃X,r(D)−1(2π) onto an open convex
subset U ′ of Sr(Y ) ∩ Ω̃Y,r(D)−1(2π).

We remark that in the previous notation D = ∆1(X) ∩ h−1(DY ) and D′ =
∆1(Y ) ∩ h(DX).

For a tetrahedron T = [v0, v1, v2, v3] in R3 with ordered vertices v0, v1, v2, v3,
we define its sign

sign(T ) = sign(det(v1 − v0, v2 − v0, v3 − v0)),
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as well as the signs of its faces

sign(∂iT ) = (−1)i sign(T ), for i ∈ {0, . . . , 3}.

For a pseudo 3-manifold X, the signs of faces of the tetrahedra of X induce a
sign function on the faces of the boundary of X, signX : ∆2(∂X)→ {±1}, which
permits us to split the components of the boundary of X into two sets, ∂X =
∂+X∪∂−X, where ∆2(∂±X) = sign−1

X (±1). Notice that |∆2(∂+X)| = |∆2(∂−X)|.

Definition 6.17 (Cobordism Categroid). The category B is the category that has
triangulated surfaces as objects,equivalence classes of (leveled) shaped pseudo 3-
manifolds X as morphisms (so that X ∈ HomB(∂−X, ∂+X)) and the composition
given by glueing along boundary components, through edge orientation preserving
and face orientation reversing CW-homeomorphisms.
The Categroid Ba is the subcategroid of B whose morphisms are restricted to be
admissible equivalence classes of admissible (leveled) shaped pseudo 3-manifolds.
In particular composition is possible only if the gluing gives an (leveled) admissible
pseudo 3-manifold.

Remark 6.18. Admissible Shaped Pseudo 3-Manifolds in the real world.
Even though we will discuss the whole Andersen Kashaev construction of the
Teichmüller TQFT functor in the general setting of the above defined cobordism
categroid, the the main parts of this construction, we want to put our hands
on in this paper, are invariants of links. We interpret Triangulated Pseudo 3-
manifolds X as ideal triangulations of the (non closed) manifold X \∆0(X). This
interpretation is enlighten in Remark 6.3. We shall ask ourself when a cusped 3-
manifold (cusped means non compact with finite volume here) admits a positive
fully balanced shape structure. This requirement is weaker than asking for a full
geometric structure on the manifold and in our language, this can be expressed
by the fact that we did not required a precise gauge to be fixed. The problem of
finding positive or generalized angle structures has been studied in [LT], where
necessary and sufficient conditions for their existence are given. In the work
[HRS] it is proved, among other things, that a particular class of manifolds M
supporting positive shape structures are complements in S3 of hyperbolic links.
However the admissibility conditions kicks in here and further restrict us to just
complements of hyperbolic knots. So, at the least, we know that the Andersen
Kashaev construction will work on complements of hyperbolic knots, and that
are the examples we will look a bit closer at below. Now we should clarify the
equivalence relation in Ba, in the context of knot complements. Combinatorially
speaking, any two ideal triangulations of a knot complement are related by finite
sequences of 3–2 or 2–3 Pachner moves. On the other hand it is not known
(at least to the authors) if any such sequence can be realised as a sequence of
shaped Pachner moves. For sure we know that 3–2 shaped Pachner moves are
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well defined in the category Ba as we remarked when we defined them, and if
a shaped Pachner 2–3 move is possible in some particular case, then it is an
equivalence in the category Ba. So the knot invariants that we will define starting
from Ba are not guaranteed to be topological invariants. There is however another
construction of the Andersen–Kashaev invariant [AK2], that avoid this problem
with analytic continuation properties of the partition function. The equivalence
of the two constructions is still conjectural though.
In [AK1] another way to define knot invariants is suggested, by taking one vertex
Hamiltonian triangulations of knots, that is, one vertex triangulations of S3 (or
a general manifold M) where the knot is represented by a unique edge with a
degenerating shape structure, meaning that we take a limit on the shapes, sending
all the weights to be balanced except the weight of the knot that is sent to 0. The
partition function is actually divergent but a residue can be computed as an
invariant. We will show this in a couple of examples in subsection 6.4.

6.2 The target Categroid DN

W recall all the relevant things regarding tempered distributions and the space
S(AN) in Appendix A. As always, here N is an odd positive integer and b ∈ C is
fixed to satisfy Re(b) > 0 and Im b(1− |b|) = 0.

Definition 6.19. The categroid DN has as objects finite sets and for two finite
sets n,m the set of morphisms from n to m is

HomDN (n,m) = S ′(Antm
N ) ' S ′(Rntm)⊗ S((Z/NZ)ntm).

Definition 6.20. For A⊗AN ∈ HomDN (n,m) and B⊗BN ∈ HomDN (m, l), such
that A and B satisfy condition (A.3) and π∗n,m(A)π∗m,l(B) continuously extends to

S(Rntmtl)m, we define

(A⊗ AN) ◦ (B ⊗BN) = (πn,l)∗(π
∗
n,m(A)π∗m,l(B))⊗ ANBN ∈ HomDN (n, l).

Where the product ANBN is just the matrix product.
We will frequently use the following notation in what follows. For any a ∈ AN ,
a = (x, n) ∈ R× Z/NZ we will consider the b–dependent operator

ε ≡ ε(b) : AN → AN

defined by

(6.2) ε(x, n) ≡
{

(x, n) if |b| = 1,
(x,−n) if b ∈ R

For any A ∈ L(S(Rn),S ′(Rm)), we have a unique adjoint A∗ ∈ L(S(Rm),S ′(Rn))
defined by the formula

A∗(f)(g) = f̄(A(ḡ))

for all f ∈ S(Rm) and all g ∈ S(Rn).
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Definition 6.21 (?b structure). Consider b ∈ C fixed as above and N ∈ Z>0 odd.
Let AN ∈ Hom(S((Z/NZ)m),S((Z/NZ)n). Recall the involution ε on Z/NZ form
equation (6.2). Define A?bN as

〈j1, . . . jm|A?bN |p1, . . . , pn〉 = 〈εp1, . . . , εpn|AN |εj1, . . . εjm〉(6.3)

We can finally define the ∗b operator as

(A⊗ AN)∗b = A∗ ⊗ A?bN(6.4)

6.3 Tetrahedral Partition Function

Recall the operators from Section 4.1, uj, vj, Xj, Yj, pj, qj , j = 1, 2 acting on
H := S(A2

N). Define the Charged Tetrahedral Operator as follows

Definition 6.22. Let a, b, c > 0 such that a+b+c = 1√
N

. Recall the Tetrahedral

operator T defined in (4.15). Define the charged tetrahedral operator T(a, c) as
follows

T(a, c) ≡ e
−πi c

2
b√
N

(
2(a−c)+ 1√

N

)
/6
e2πicb(cq2−aq1)T12e

−2πicb(ap2+cq2)(6.5)

Lemma 6.23. We have that

(6.6) T(a, c) = e
−πi c

2
b√
N

(
2(a−c)+ 1√

N

)
/6
eπic

2
ba(a+c)D12/ψa,c(q1 + p2 − q2,−e−

πi
N Y1X2Y2)

were ψa,c(x, n) is the charged quantum dilogarithm from (3.28)

Extra Notation. Recall the notation for Fourier coefficients and Gaussian ex-
ponentials in AN . For a = (x, n) and a′ = (y,m) in AN we write

〈a, a′〉 ≡ e2πixye−2πinm/N 〈a〉 ≡ eπix
2

e−πin(n+N)/N

For a = (x, n) ∈ AN , define δ(a) ≡ δ(x)δ(n) where δ(x) is Dirac’s delta distribu-
tion while δ(n) is the Kronecker delta δ0,n between 0 and n mod N . Define

(6.7) ϕa,c(x, n) ≡ ψa,c(x,−n).

Denote, for x, y ∈ R and z ∈ AN

ν(x) ≡ e
−πi c

2
b√
N

(
2x+ 1√

N

)
/6

νx,y = ν(x− y)eπic
2
bx(x+y)(6.8)

The equations from Lemma 3.17 can be upgraded to

νa,cϕ̃a,c(z) = νc,bϕc,b(z)〈z〉e−πiN/12(6.9)

νa,cϕa,c(z) = νc,aϕc,a(−εz)〈z〉e−πiN/6(6.10)

νa,cϕ̃a,c(z) = νb,cϕb,c(−εz)e−πiN/12(6.11)

Where ε was defined in (6.2). From the Charged Pentagon Equation (3.33) we
get the following
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Proposition 6.24 (Charged Tetrahedral Pentagon equation). Let aj, cj > 0 such
that 1√

N
−aj− cj > 0 for j = 0, 1, 2, 3 and 4, which further satisfies the following

relations

a1 = a0 + a2 a3 = a2 + a4 c1 = c0 + a4 c3 = a0 + c4 c2 = c1 + c3.
(6.12)

Then we have that

T12(a4, c4)T1,3(a2, c2)T23(a0, c0) = µT23(a1, c1)T12(a3, c3)(6.13)

where

µ = expπi
c2

b

6
√
N

(
2(c0 + a2 + c4)− 1√

N

)

We have an integral kernel description for the charged tetrahedral operator.
We use the Bra-Ket notation to denote integral kernels, see Appendix A.1.

Proposition 6.25. Let T(a, c) ≡ (T(a, c))−1.

〈a0, a2|T12(a, c) |a1, a3〉
= ν(a− c)eπic2ba(a+c)〈a3 − a2, a0〉〈a3 − a2〉δ(a0 + a2 − a1)ϕ̃a,c(a3 − a2)

〈a0, a2|T(a, c)|a1, a3〉
= ν(b−c)eπic2bb(b+c)e−πiN/12〈a3−a2, a1〉〈a3−a2〉δ(a1+a3−a0)ϕb,c(a3−a2).

The appearance of ε is due to the non-unitarity of the theory for b > 0 and
N > 1.

Let A and B two operators on L2(AN) defined as bra-ket distributions by

〈a1, a2|A〉 = δ(a1 + a2)〈a1〉eπiN/12 〈a1, a2|B〉 = 〈a1 − a2〉(6.14)

〈A|a1, a2〉 = 〈εa1, εa2|A〉 〈B|a1, a2〉 = 〈εa1, εa2|B〉.(6.15)

Lemma 6.26 (Fundamental Lemma). We have the following three relations

∫

A2
N

〈A|v, s〉〈x, s|T(a, c)|u, t〉〈t, y|A〉dsdt = 〈x, y|T(a, b)〈u, v〉(6.16)

∫

A2
N

〈A|u, s〉〈s, x|T(a, c)|v, t〉〈t, y|B〉dsdt = 〈x, y|T(b, c)〈u, v〉(6.17)

∫

A2
N

〈B|u, s〉〈s, y|T(a, c)|t, v〉〈t, x|B〉dsdt = 〈x, y|T(a, b)〈u, v〉.(6.18)
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6.3.1 TQFT Rules, Tetrahedral Symmetries and Gauge Invariance

We consider oriented surfaces with cellular structure such that all 2-cells are either
bigons or triangles. Not all the edge orientations will be admitted. We forbid
cyclically oriented triangles. For the bigons, we consider only the essential ones,
the others being contractible to an edge. These essential bigons are precisely the
ones with cellular structure isomorphic to the unit disk with vertices ±1 ∈ C and
edges {e1 = eπit; e2 = −eπit, for t ∈ [0, 1]} or {e1 = −e−πit; e2 = e−πit, for t ∈
[0, 1]}. Given such an ideally triangulated surface Σ we will associate a copy of C
to any bigon and a copy of S ′(AN) to any triangle. Globally we associate to the

surface the space S ′(A∆2(Σ)
N ). To a shaped tetrahedron T with ordered vertices

{v0, v1, v2, v3} we associate the partition function Z
(N)
b (T ) through the Nuclear

Theorem (A.6) as a ket distribution

(6.19) 〈x|Z̃(N)
b (T )〉 =

{ 〈a0, a2|T(c(v0v1), c(v0v3))|a1, a3〉 if sign(T ) = 1;

〈a1, a3|T(c(v0v1), c(v0v3))|a0, a2〉 if sign(T ) = −1.

where
AN 3 ai := a(∂iT ), i ∈ {0, 1, 2, 3}

and

c :=
1

π
√
N
αT : ∆1(T )→ R>0.

Having allowed bigons in triangulations of surfaces, we must also allow cones
over such as cobordisms. From the 2 classes of bigons described above we have 4
isotopy classes of cellular structures of cones over them, described in the following
as embedded in R3 ' C×R. The bigon is identified with the unit disc embedded
in C. The apex of the cone will be the point (0, 1) ∈ C × R. The 1-cells will be
either

{e1
0±(t) = (±eiπt, 0), e1

1±(t) = (±(1− t), t)}
or

{e1
0±(t) = (∓e−iπt, 0), e1

1±(t) = (±(1− t), t)}
or

{e1
0±(t) = (±eiπt, 0), e1

1±(t) = (±t, 1− t)}
or

{e1
0±(t) = (∓e−iπt, 0), e1

1±(t) = (±t, 1− t)}.
We name these types of cones A+, A−, B+ and B− respectively. We need TQFT
rules for the gluing of these cones. We just need to consider their gluing to a
tetrahedra. We assign a partition function to the cones as follows
(6.20)

〈a1, a2| ˜
Z

(N)
b (A±)〉 = δ(a1 + a2)〈a1〉±1e±πiN/12, 〈a1, a2| ˜

Z
(N)
b (B±)〉 = 〈a1 − a2〉±1.
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Tetrahedral symmetries are generated by permutation of the ordered vertices. In-
deed the group of tetrahedral symmetries is identified with the symmetric group
S4 and is generated by three transpositions. The three equations of the Funda-
mental Lemma 6.26 gain an interpretation as glueing of cones on the faces of
a tetrahedron through definitions (6.20). These three glueing generates all the
symmetries of a tetrahedron, and through this interpretation, the Fundamental
Lemma assure that the partition function Z

(N)
b satisfies all the tetrahedral sym-

metries. For more details on tetrahedral symmetries and the cone’s partition
function see [AK1, GKT].

We can now formulate the main Theorem for the Teichmüller TQFT. This
theorem was proved by Andersen and Kashaev for the case N = 1 in [AK1]. The
statement that we have here is for every N odd, and it is strictly speaking not
present as such in the literature.

Theorem 6.27 (Level N Teichmüller TQFT, Andersen and Kashaev). For any
b ∈ C∗ such that Im b(|b| − 1) = 0 and Re b > 0, and for any N ∈ Z>0 odd there

exists a unique ∗b-functor F
(N)
b : Ba → DN such that F

(N)
b (A) = ∆2(A), ∀A ∈

ObBa, and for any admissible leveled shaped pseudo 3-manifold (X, lX), the asso-
ciated morphism in DN takes the form

(6.21) F
(N)
b (X, lX) = Z

(N)
b (X)e−πi

lXc
2
b

N ∈ S ′
(
A∆2(∂X)
N

)
,

where Z
(N)
b is defined in (6.19) for a tetrahedron.

Here ∗b-functor means that F
(N)
b (X∗) = F

(N)
b (X)∗b , where X∗ is the oppositely

oriented pseudo 3-manifold to X.
The discussion so far proves the theorem except for the gauge invariance and

the convergence of the partition functions under glueings. We will not discuss the
convergence here because it follows directly from the convergence in the case level
N = 1, which was addressed in [AK1]. We just remark that the hypothesis of
admissibility is used to prove the convergence of the partition function.
For the gauge invariance consider the suspension of an n-gone SPn naturally tri-
angulated into n tetrahedra sharing the only internal edge e. Every gauge trans-
formation can be decomposed in a sequence of gauge transformations involving
only one edge e, and every such gauge transformation can be understood in the
example of the suspension. Suppose all the tetrahedra to be positive, and hav-
ing vertex order such that the last two vertices are the endpoints of the internal
common edge. After enumerating the tetrahedra in cyclic order, let ai, ci be the
two shape parameter of Ti, i = 0, . . . , n, and a = (a0, . . . , an), c = (c0, . . . , cn).
Notice that

√
Nπai is the dihedral angle corresponding to the edge e. So a gauge

transformation corresponding to e will affect the partition function of SPN

Z
(N)
b (SPN)(a, c) := Tr0(T01(a1, c1)T02(a2, c2) · · ·T0n(an, cn))
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by shifting c by an amount λ = (λ, . . . , λ) say. One can show from the definitions
and the discussion above, that

T(a, c+ λ) = e−2πicbλp1T(a, c)e2πicbλp1e
πic2b

(
1√
N
−6a

)
λ/3

which, after tracing, leads to the following

Proposition 6.28. [AK1]

Z
(N)
b (SPN)(a, c + λ) = Z

(N)
b (SPN)(a, c)e

πic2b

(
n√
N
−6Qe

)
λ/3

where
Qe = a1 + a2 + . . . an

6.4 Knot Invariants: Computations and Conjectures

In this section we update the examples computed in [AK1] to the level N ≥ 1
setting. Similar results were obtained in [D].
Notation. In the examples we are going to use the following notation for quantum
dilogarithms

ϕb(x, n) ≡ Db(x,−n).(6.22)

Moreover we will often abuse notation in favor of readability in the following ways.
For z = (x, n) ∈ AN we will sometimes write e2πicbzα in place of e2πicbxα. Moreover
sums of the form z + cba will always mean (x+ cba, n).

In the following examples we encode an oriented triangulated pseudo 3-manifold
X into a diagram where a tetrahedron T is represented by an element

where the vertical segments, ordered from left to right, correspond to the faces
∂0T, ∂1T, ∂2T, ∂3T respectively. When we glue tetrahedron along faces, we illus-
trate this by joining the corresponding vertical segments.

6.4.1 Figure–Eight Knot 41

Let X be represented by the diagram

(6.23)

Choosing an orientation, it consists of one positive tetrahedron T+ and one nega-
tive tetrahedron T− with four identifications

∂2i+jT+ ' ∂2−2i+jT−, i, j ∈ {0, 1}.
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Combinatorially, we have ∆0(X) = {∗}, ∆1(X) = {e0, e1}, ∆2(X) = {f0, f1, f2, f3},
and ∆3(X) = {T+, T−} with the boundary maps

f2i+j = ∂2i+jT+ = ∂2−2i+jT−, i, j ∈ {0, 1},

∂ifj =

{
e0, if j − i ∈ {0, 1};
e1, otherwise,

∂iej = ∗, i, j ∈ {0, 1}.
The topological space X \ {∗} is homeomorphic to the complement of the figure–
eight knot, and indeed X\{∗} is an ideal triangulation of such a cuspidal manifold.
The set ∆3,1(X) consists of the elements (T±, ej,k) for 0 ≤ j < k ≤ 3. We fix a
shape structure

αX : ∆3,1(X)→ R>0

by the formulae

αX(T±, e0,1) = π
√
Na±, αX(T±, e0,2) = π

√
Nb±, αX(T±, e0,3) = π

√
Nc±,

where a± + b± + c± = 1√
N

. The weight function

ωX : ∆1(X)→ R>0

takes the values

ωX(e0) =
√
Nπ(2a+ + c+ + 2b− + c−) =: 2πw, ωX(e1) = 2π(2− w).

As the figure–eight knot is hyperbolic, the completely balanced case w = 1 is
accessible directly. We can state the balancing condition w = 1 as

(6.24) 2b+ + c+ = 2b− + c−.

The kernel representations for the operators T(a+, c+) and T(a−, c−) are as
follows. Let zj ∈ AN , j = 0, 1, 2, 3,

〈z0, z2|T(a+, c+)|z1, z3〉(6.25)

= νa+,c+〈z3 − z2, z0〉〈z3 − z2〉δ(z0 + z2 − z1)ϕ̃a+,c+(z3 − z2)

〈z3, z1|T(a+, c−)|z2, z0〉 = 〈εz2, εz0|T(a+, c−)|εz3, εz1〉(6.26)

= νa−,c−〈z0 − z1, z2〉〈z1 − z0〉δ(z0 + z2 − z3)ϕ̃a−,c−(εz1 − εz0)

The Andersen–Kashaev invariant at level N for the complement of the figure–
eight knot is then

Z
(N)
b (X) =

∫

A4
N

〈z0, z2|T(a+, c+)|z1, z3〉〈z3, z1|T(a+, c−)|z2, z0〉dz0dz1dz2dz3
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=

∫

A4
N

νc+,b+νc−,b−ϕc+,b+(z3 − z2)ϕc−,b−(εz1 − εz0)δ(z0 + z2 − z1)×

× δ(z0 + z2 − z3)〈z3 − z2, z0〉〈z0 − z1, z2〉dz0dz1dz2dz3

=

∫

A3
N

νc+,b+νc−,b−ϕc+,b+(z1 − z2)ϕc−,b−(εz1 − εz0)δ(z0 + z2 − z1)×

× 〈z1 − z2, z0〉〈z0 − z1, z2〉dz0dz1dz2

=

∫

A2
N

νc+,b+νc−,b−ϕc+,b+(z0)ϕc−,b−(εz2)〈z0, z0〉〈−z2, z2〉dz0dz2

=

∫

AN
νc+,b+ϕc+,b+(z0)〈z0, z0〉dz0

∫

AN
νc−,b−ϕc−,b−(εz2)〈z2, z2〉dz2

= σc+,b+σc−,b−

We can compute

σc±,b± = νc±,b±

∫

AN

e−2πicbzc±

ϕb(z − cb(b± + c±))
〈z〉2dz

= ν ′c±,b±

∫

AN+di

e4πicbz(2b±+c±)

ϕb(z)
〈z〉2dz

where

ν ′c±,b± = νc±,b±e
4πic2b(c±b±−b2±)(6.27)

and the domain of integration AN +di = (R + di)× Z/NZ). Note we have shifted
the real integral to a contour integral in the complex plane, and d ∈ R is such
that the integral converges absolutely. We sometimes omit the contour shift in
the computations but we state it in the results. Defining

λ ≡ 2b+ + c+ = 2b− + c−

we have

Z
(N)
b (X) = ν ′c+,b+ν

′
c−,b−

∫

A2
N

e4πicbλ(z0+z2)

ϕb(z0)ϕb(εz2)
〈z0〉2〈z2〉2dz0dz2

= ν ′c+,b+ν
′
c−,b−

∫

A2
N

ϕb(z2)

ϕb(z0)
e4πicbλ(z0+z2)〈z0〉2〈z2〉2dz0dz2

= ν ′c+,b+ν
′
c−,b−

∫

A2
N

ϕb(z2 − z0)

ϕb(z0)
e4πicbλz2〈z0, z2〉2〈z2〉2dz0dz2
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that has the structure

Z
(N)
b (X) = eiφ

∫

AN+i0

χ
(N)
41

(x, λ)dx,

(6.28)

χ
(N)
41

(x, λ) = χ
(N)
41

(x)e4πicbλx, χ
(N)
41

(x) =

∫

AN−i0

ϕb(x− y)

ϕb(y)
〈x, y〉2〈x〉2dy

(6.29)

where φ is some constant quadratic combination of dihedral angles.

6.4.2 The Complement of the Knot 52

Let X be the closed S.O.T.P. 3-manifold represented by the diagram

This triangulation has only one vertex ∗ and X \ {∗} is topologically the com-
plement of the knot 52. We denote T1, T2, T3 the left, right, and top tetrahedra
respectively. We choose the orientation so that all of them are positive. Balancing
all the edges correspond to require the following equations to be true

2a3 = a1 + c2, b3 = c1 + b2.(6.30)

The three integral kernels reads

〈z, w|T(a1, c1)|u, x〉 =

= νa1,c1〈x− w, z〉〈x− w〉δ(z + w − u)ϕ̃a1,c1(x− w)

〈x, v|T(a2, c2)|y, w〉 =

= νa2,c2〈w − v, x〉〈w − v〉δ(x+ v − y)ϕ̃a2,c2(w − v)

〈y, u|T(a3, c3)|v, z〉 =

= νa3,c3〈z − u, y〉〈z − u〉δ(y + u− v)ϕ̃a3,c3(z − u)

Carrying out the computations, defining λ = −c1 + b2 − c2 + a3, one gets that

Z
(N)
b (X) =

∫

AN+i0

χ
(N)
52

(x, λ)dx, χ
(N)
52

(x, λ) = χ
(N)
52

(x)e2πicbλx(6.31)

χ
(N)
52

(x) =

∫

AN−i0

〈x〉〈z〉
ϕb(z + x)ϕb(z)ϕb(z − x)

dz(6.32)
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6.4.3 H-Triangulations

In this section we will look at one vertex H-triangulations of knots.
Let X be an H–Triangulation for the figure–eight knot, i.e. let X be given by

the diagram

where the figure-eight knot is represented by the edge of the central tetrahedron
connecting the maximal and the next to maximal vertices. If we choosing central
tetrahedron (T0) to be positive, the left tetrahedron (T+) will be positive and
the right one (T−) negative.The shape structure, in the limit a0 → 0 satisfies
2b+ + c+ = 2b− + c− =: λ The partition function satisfies the following limit
formula

lim
a0→0

ϕb(cba0 − cb/
√
N)Z

(N)
b (X) =

e−πiN/12

ν(c0)
χ

(N)
41

(0)(6.33)

Similarly let X be represented by the diagram

that is, the H–triangulation for the 52 knot. We denote T0, T1, T2, T3 the central,
left, right, and top tetrahedra respectively and we choose the orientation so that
the central tetrahedron T0 is negative then all other tetrahedra are positive. The
edge representing the knot 52 connects the last two edges of T0, so that the weight
on the knot is given by 2πa0. In the limit a0 → 0, all edges, except for the knot,
become balanced under the conditions

a1 = c2 = a3, b3 = c1 + b2,

which in particular imply (6.30). The partition function has the following expres-
sion

Z
(N)
b (X) = Θ

e−πiN/12

ϕb(cba− cb

√
N)

χ
(N)
52

(cb(a1 − a3))(6.34)

For some constant phase factor Θ.

6.4.4 Asymptotics of χ
(N)
41

(0)

In this section we want to study the asymptotic behavior of the invariant of the
figure–8 knot

χ
(N)
41

(0) =

∫

AN
Db(−x,−k)Db(x,−k)d(x, k)

=
1

2πb
√
N

∑

k∈Z/NZ

∫

R−id
Db

( −x
2πb

,−k
)

Db

( x

2πb
,−k

)
dx
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when b → 0. The analysis uses techniques similar to the one presented in [AK1]
for N = 1, however higher level gives new informations that we will show here.
The integration in the complex plane is a contour integral where d > 0 so that
the integral is absolutely convergent. By means of the asymptotic formula for the
quantum dilogarithm (3.22) we have that

χ
(N)
41

(0) =
1

2πb
√
N

∑

k∈Z/NZ

∫

R−id
Exp

[
Li2(−e−

√
Nx)− Li2(−e

√
Nx)

2πib2N

]

× φ−x(k)φx(k)(1 +O(b2))dx

We want to apply the steepest descent method to this integral to get an asymptotic
formula for b→ 0. First we show the computation for the exact integral,

(6.35)
1

2πb
√
N

∑

k∈Z/NZ

∫

R−id
Exp

[
Li2(−e−

√
Nx)− Li2(−e

√
Nx)

2πib2N

]
φ−x(k)φx(k)dx

and then we will argue that the former one can be approximated by the latter
when b→ 0.
Let h(x) := Li2(−e−

√
Nx)− Li2(−e

√
Nx). Its critical points are solutions to

{
h′(x) = 0

h′′(x) 6= 0

which are S =
{
±2

3
πi√
N

+ 2πik√
N

: k ∈ Z
}

. We compute the value of Imh at its

critical points to be

(6.36) Imh

(
±2

3

πi√
N

+
2πik√
N

)
= ±4Λ(

π

6
)

where Λ is the Lobachevsky function

(6.37) Λ(α) = −
∫ α

0

log |2 sinϕ| dϕ

and we refer the reader to [Kir] for the expressions that relate Lobachevsky func-
tion to the classical dilogarithm.

We only remark that 4Λ(π
6
) = Vol(41), where by Vol(41) we mean the hyper-

bolic volume of knot complement S3 \ (41).
Fix C 3 x0 = −2

3
πi√
N

, which is accessible from the original contour without passing
through other critical points, and consider the contour

C = {z ∈ C : Re(h(z)) = Re(h(x0)), Im(h(z)) ≤ Im(h(x0))}
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which is asymptotic to Re(z)+Im(z) = 0 for Re(z)→∞ and to Re(z)−Im(z) = 0
for Re(z)→ −∞. Moreover

(6.38) lim
Re(z)→±∞

Im(h(z)) = lim
Re(z)→±∞

±Re(z) Im(z) = −∞

All together we have found a contour C along which the integral (6.35) can be
computed with the steepest descent method (see [Won]), giving as the following
approximation for b→ 0

(6.39) e
h(x0)

2πib2N

g41

(
−2

3
πi√
N

)

√
iN−1h′′(x0)

(1 +O(b2)

where

g41(x) :=
1√
N

N−1∑

k=0

φ−x(k)φx(k).

We now go back to χ
(N)
41

(0), and we write it as the following integral

(6.40) χ
(N)
41

(0) =
1

2πb
√
N

∑

k∈Z/NZ

∫

R−id
fb(x, k)d(x, k)

where

(6.41) fb(x, k) = Db

( −x
2πb

,−k
)

Db

( x

2πb
,−k

)
.

Then consider the contour

(6.42) Cb = {z ∈ C : arg fb(z) = arg fb(zb), |fb(z)| = |fb(zb)|}

where zb is defined as the solution to

(6.43)
∂

∂x
log fb(x) = 0

which minimize the absolute value of fb. Using the asymptotic formula for fb it is
simple to show that the contours Cb approximates C as b→ 0 and that the points
zb’s will converge to x0. So, in the limit b→ 0, the integral (6.40) is approximated
by the integral (6.35), for which we already have an asymptotic formula. We have
proved the following

(6.44) χ
(N)
41

(0) = e
h(x0)

2πib2N

g41

(
−2

3
πi√
N

)

√
iN−1h′′(x0)

(1 +O(b2)),
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As we remarked above Imh(x0) = −Vol(41).

Next we look at the number g41

(
−2

3
πi√
N

)
which is a topological invariant of the

knot in the formula above. We have that

√
Ng41

(
−2

3

πi√
N

)
=

N∑

k=1

φ 2
3
πi√
N

(k)φ− 2
3
πi√
N

(k)

=

∣∣∣∣∣
N−1∏

j=1

(
1− e− πi

3N e−
2πij
N

) j
N

∣∣∣∣∣
N−1∑

k=0

k∏

j=1

1∣∣∣1− e 1
3
−πi
N e

2πij
N

∣∣∣
2

The last expression allows us to make the following remark

g41

(
−2

3

πi√
N

)
= γNH0

N(ρcomp)(6.45)

where H0
N(ρcomp) is the Baseilhac–Benedetti invariant for the figure–eight knot

found in [BB], computed at the conjugate of the complete hyperbolic structure
(meaning that the holonomies of the structure are all complex conjugated) and
γN is a global rescaling given by

γN =

∣∣∣∣∣
N−1∏

j=1

(
1− e− 2πij

N

) j
N

∣∣∣∣∣(6.46)

Remark 6.29. The very same steps of the previous asymptotic computation for
χ

(N)
41

(0) can be applied to χ
(N)
52

(0) up to the point of having an expression

χ
(N)
52

(0) = e
φ(x52

)

2πib2N
) g51 (x52)√

iN−1h′′52(x52)
(1 +O(b2)),(6.47)

where x52 is the only critical point in the complex plane that contributes to the
steepest descent and

g51 (x) =
1√
N

N−1∑

j=0

φ−x(j)φx(j)φ−x(j).(6.48)

The fact that Imφ(x52) = −Vol(52), can be seen directly, see for example [AK1].
However this situation is already too complicated to allow us to check relations
with other theories. The obvious guess is to look for the Baseilhac–Benedetti
invariant, but no explicitly computed examples, other then 41, are known to the
authors.

The following conjecture was originally stated in [AK1] for N = 1. Here we
restate it in the updated setting.
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Conjecture 6.30 ([AK1]). Let M be a closed oriented compact 3-manifold. For
any hyperbolic knot K ⊂M , there exist a two parameters (b, N) family of smooth

functions J
(b,N)
M,K (x, j) on R× Z/NZ which has the following properties.

1. For any fully balanced shaped ideal triangulation X of the complement of K
in M , there exist a gauge invariant real linear combination of dihedral angles
λ, a (gauge non-invariant) real quadratic polynomial of dihedral angles φ
such that

Z
(N)
b (X) = eic

2
bφ

1√
N

N−1∑

j=0

∫

R
J

(b,N)
M,K (x, j)eicbxλdx

2. For any one vertex shaped H-triangulation Y of the pair (M,K) there exists
a real quadratic polynomial of dihedral angles ϕ such that

lim
ωY→τ

Db

(
cb
ωY (K)− π
π
√
N

, 0

)
Z

(N)
b (Y ) = eic

2
bϕ−iπN12 J (b,N)

M,K (0, 0),

where τ : ∆1(Y ) → R takes the value 0 on the knot K and the value 2π on
all other edges.

3. The hyperbolic volume of the complement of K in M is recovered as the
following limit

lim
b→0

2πb2N log |J (b,N)
M,K (0, 0)| = −Vol(M \K)

Remark 6.31. We have proved this extended conjecture for the knots (S3, 41)
and (S3, 52), see formulas (6.45), (6.47) and (6.48). Moreover we gave a more
explicit expansion, showing the appearance of an extra interesting therm gK , and
a precise relation between g41 and a known invariant of hyperbolic knots, defined
by Baseilhac–Benedetti in [BB], see equation (6.45). We could have been more
bold and extend the conjecture declaring the appearance of g(M,K) to be general,
and it to be proportional to the Baseilhac–Benedetti invariant. However we feel
that there are not enough evidences to state it as general conjecture.

Appendices

A Tempered Distributions

For standard references for the topics of this appendix see e.g. [Hör2, Hör1] and
[RS1, RS2].
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Definition A.1. The Schwartz space S(Rn) is the space of all the functions
φ ∈ C∞(Rn,C) such that

||φ||α,β := sup
x∈Rn
|xβ∂αφ(x)| <∞

for all multi-indeces α, β.
The space of Tempered Distributions S ′(Rn) is the space of linear functionals on
S(Rn) which are continuous with respect to all these semi-norms.

Both these spaces are stable under the action of the Fourier transform F and
we use the notation û = F(u). Let Zn be the zero section of T ∗(Rn).

Definition A.2. For a temperate distribution u ∈ S ′(Rn), we define its Wave
Front Set to be the following subset of the cotangent bundle of Rn

WF(u) = {(x, ξ) ∈ T ∗(Rn)− ZRn| ξ ∈ Σx(u)}
where

Σx(u) = ∩φ∈C∞x (Rn)Σ(φu).

Here
C∞x (Rn) = {φ ∈ C∞0 (Rn)|φ(x) 6= 0}

and Σ(v) are all η ∈ Rn − {0} having no conic neighborhood V such that

|v̂(ξ)| ≤ CN(1 + |ξ|)−N , N ∈ Z>0, ξ ∈ V.
Lemma A.3. Suppose u is a bounded density on a C∞ sub-manifold Y of Rn,
then u ∈ S ′(Rn) and

WF(u) = {(x, ξ) ∈ T ∗(Rn)|x ∈ Suppu, ξ 6= 0 and ξ(TxY ) = 0}.
In particular if Suppu = Y , then we see that WF(u) is the co-normal bundle

of Y .

Definition A.4. Let u and v be temperate distributions on Rn. Then we define

WF(u)⊕WF(v) = {(x, ξ1 + ξ2) ∈ T ∗(Rn)|(x, ξ1) ∈WF(u), (x, ξ2) ∈WF(v)}.
Theorem A.5. Let u and v be temperate distributions on Rn. If

WF(u)⊕WF(v) ∩ Zn = ∅,
then the product of u and v exists and uv ∈ S ′(Rn).

Definition A.6. We denote by S(Rn)m the set of all φ ∈ C∞(Rn) such that

sup
x∈Rn
|xβ∂α(φ)(x)| <∞

for all multi-indices α and β such that if αi = 0 then βi = 0 for n −m < i ≤ n.
We define S ′(Rn)m to be the continuous dual of S(Rn)m with respect to these
semi-norms.
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We observe that if π : Rn −→ Rn−m is the projection onto the first n − m
coordinates, then π∗(S(Rn−m)) ⊂ S(Rn)m. This means we have a well defined
push forward map

π∗ : S ′(Rn)m −→ S ′(Rn−m).

Proposition A.7. Suppose Y is a linear subspace in Rn, u a density on Y with
exponential decay in all directions in Y . Suppose π : Rn −→ Rm is a projection for
some m < n. Then u ∈ S ′(Rn)m and π∗(u) is a density on π(Y ) with exponential
decay in all directions of the subspace π(Y ) ⊂ Rm.

Tempered distributions can be thought of as functions of growth at most poly-
nomial, thanks to the following

Theorem A.8. Let T ∈ S ′(Rn), then T = ∂βg for some polynomially bounded
continuous function g and some multi-index β. That is, for f ∈ S(Rn),

T (f) =

∫

Rn
(−1)|β|g(x)(∂βf)(x)dx

In particular it is possible to show that S(Rn) ⊂ S ′(Rn), where S(Rn) 3 f 7→
Tf ∈ S ′(Rn) with Tf (g) =

∫
Rn f(x)g(x)dx.

Denoting by L(S(Rn),S ′(Rm)) the space of continuous linear maps from S(Rn)
to S ′(Rm), we remark that we have an isomorphism

(A.1) ·̃ : L(S(Rn),S ′(Rm))→ S ′(Rntm)

determined by the formula

(A.2) ϕ(f)(g) = ϕ̃(f ⊗ g)

for all ϕ ∈ L(S(Rn),S ′(Rm)), f ∈ S(Rn), and g ∈ S(Rm). This is the content
of the Nuclear theorem, see e.g. [RS2]. Since we can not freely multiply distri-
butions we end up with a categroid instead of a category. The partially defined
composition in this categroid is defined as follows. Let n,m, l be three finite sets
and A ∈ S ′(Rntm) and B ∈ S ′(Rmtl). We have pull back maps

π∗n,m : S ′(Rntm)→ S ′(Rntmtl) and π∗m,l : S ′(Rmtl)→ S ′(Rntmtl).

By what we summarised above, the product

π∗n,m(A)π∗m,l(B) ∈ S ′(Rntmtl)

is well defined provided the wave front sets of π∗n,m(A) and π∗m,l(B) satisfy the
condition

(A.3) (WF(π∗n,m(A))⊕WF(π∗m,l(B))) ∩ Zntmtl = ∅

If we now further assume that π∗n,m(A)π∗m,l(B) continuously extends to S(Rntmtl)m,
then we obtain a well defined element

(πn,l)∗(π
∗
n,m(A)π∗m,l(B)) ∈ S ′(Rntl).
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A.1 Bra-Ket Notation

We often use the Bra-Ket notation to make computations with distributions. For
ϕ ∈ S ′(Rn) a density and x ∈ Rn we will write

〈x|ϕ〉 := ϕ(x),

with distributional meaning

ϕ(f) =

∫

Rn
〈x|ϕ〉f(x)dx =

∫

Rn
ϕ(x)f(x)dx.

In particular if ϕ ∈ S(Rn) ⊂ S ′(Rn), then

〈x|ϕ〉 = ϕ(x) = δx(ϕ)

The integral kernel of the operator T, if it exists, is a distribution kT such that

(A.4) T(ψ)(x) =

∫

Rn
kT(x, y)ψ(y)dy

Working with Schwartz functions, the nuclear theorem expressed by formula (A.2)
guarantees that the kernel kT exists and that it is a tempered distribution. We
will usually write the kernel from equation (A.4), in Bra-Ket notation as follows

(A.5) T(ψ)(x) =

∫

Rn
〈x|T|y〉ψ(y)dy

and the nuclear theorem morphism (A.2) can be read as

(A.6) 〈x|T|y〉 = 〈x, y|T̃ 〉.

A.2 L2(AN) and S(AN)

AN ≡ R× (Z/NZ) has the structure of a locally compact abelian group, with the
normalized Haar measure d(x, n) defined by

∫

AN
f(x, n)d(x, n) :=

1√
N

∑

n∈Z/NZ

∫

R
f(x, n)dx

where f : AN −→ C is an integrable function. By definition L2(AN) is the space
of functions f : AN −→ C such that

(A.7)

∫

AN
|f(a)|2 da ≡ 1√

N

N−1∑

n=0

∫

R
|f(x, n)|2 dx <∞
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with standard inner product

〈f, g〉 ≡ 1√
N

N−1∑

n=0

∫

R
f(x, n)g(x, n)d(x, n)(A.8)

Finite square integrable sequences are just a finite dimensional vector space

L2(Z/NZ) ' CN ,

with a preferred basis given by mod N Kronecker delta functions

δj(n) ≡
{

1 if j = n mod N
0 otherwise

(A.9)

There is a natural isomorphism

L2(R)⊗ L2(Z/NZ) ' L2(AN)(A.10)

defined by

f ⊗ δj (a) = f(x)δj(n), for a = (x, n) ∈ AN(A.11)

with inverse

AN 3 f 7→
N−1∑

j=0

f(·, j)⊗ δj ∈ L2(R)⊗ L2(Z/NZ)(A.12)

Everything just said holds true substituting L2 with S, with the isomorphism
S(AN) ' S(R)⊗CN and further also, the space of tempered distributions on AN ,
defined as linear continuous functionals over S(AN), are simply S ′(R)⊗ CN . All
the Bra-Ket notation extends trivially to S(AN), including the nuclear theorem
(A.6), substituting all the integrals over R with integrals over AN .
We use a bracket notation for Fourier coefficients and Gaussian exponentials in
AN , following the notation introduced in [AK3]

〈(x, n), (y,m)〉 ≡ e2πixye−2πinm/N 〈(x, n)〉 ≡ eπix
2

e−πin(n+N)/N(A.13)

For (x, n) and (y,m) in AN . The Fourier transform then takes the form

F(f)(x, n) =

∫

AN
f(y,m)〈(x, n), (y,m)〉d(y,m).

For any operator A of order N , we can define the operator LN(A) via the spectral
theorem, such that it formally satisfies

A = e2πiLN (A)/N .
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We can define, for any function f : AN −→ C the operator function 6f(x, A) ≡
f(x,LN(A)) for any commuting pair of operators x and A, where the former is self
adjoint and the latter is of order N . We have, for x and A as above, that

(A.14) 6f(x, A) =

∫

AN
f̃(y,m)e2πiyxA−md(y,m)

where we use the following notation for the inverse Fourier transforms

(A.15) f̃(x, n) =

∫

AN
f(y,m)〈(y,m); (x, n)〉d(y,m).

B Categroids

We need a notion which is slightly more general than categories to define the
Teichmüller TQFT functor.

Definition B.1. [AK1]
A Categroid C consist of a family of objects Obj(C) and for any pair of objects
A,B from Obj(C) a set MorC(A,B) such that the following holds

A For any three objectsA,B,C there is a subsetKCA,B,C ⊂ MorC(A,B)×MorC(B,C),
called the composable morphisms and a composition map

◦ : KCA,B,C → MorC(A,C).

such that composition of composable morphisms is associative.

B For any object A we have an identity morphism 1A ∈ MorC(A,A) which is
composable with any morphism f ∈ MorC(A,B) or g ∈ MorC(B,A) and we
have the equations

1A ◦ f = f , and g ◦ 1A = g.
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TQFT, Travaux Mathématiques 25 (2017), 41–95, Preprint 2016.

[AU1] J. E. Andersen & K. Ueno. Abelian Conformal Field theories and Deter-
minant Bundles. International Journal of Mathematics. 18:919–993, 2007.

[AU2] J. E. Andersen & K. Ueno, Constructing modular functors from conformal
field theories. Journal of Knot theory and its Ramifications. 16(2):127–202,
2007.

[AU3] J. E. Andersen & K. Ueno. Modular functors are determined by their genus
zero data. Quantum Topology. 3:255–291, 2012.

[AU4] J. E. Andersen & K. Ueno. Construction of the Witten-Reshetikhin-Turaev
TQFT from conformal field theory. Invent. Math. 201(2):519–559, 2015.

[ADW] S. Axelrod, S. Della Pietra, E. Witten. Geometric quantization of Chern
Simons gauge theory. J.Diff.Geom. 33:787–902, 1991.

[BB] S. Baseilhac and R. Benedetti. Quantum hyperbolic geometry. Algebr.
Geom. Topol. 7:845–917, 2007.



143

[B] C. Blanchet. Hecke algebras, modular categories and 3-manifolds quantum
invariants. Topology. 39(1):193–223, 2000.

[BHMV1] C. Blanchet, N. Habegger, G. Masbaum & P. Vogel. Three-manifold
invariants derived from the Kauffman Bracket. Topology. 31:685–699, 1992.

[BHMV2] C. Blanchet, N. Habegger, G. Masbaum & P. Vogel. Topological Quan-
tum Field Theories derived from the Kauffman bracket. Topology. 34:883–
927, 1995.

[BMS] M. Bordeman, E. Meinrenken & M. Schlichenmaier. Toeplitz quantization
of Kähler manifolds and gl(N), N →∞ limit Comm. Math. Phys. 165:281–
296, 1994.

[D] T. Dimofte, Complex Chern-Simons theory at level k via the 3d-3d corre-
spondence. Comm. Math. Phys. 339(2):619–662, 2015.

[F] L. D. Faddeev. Discrete Heisenberg-Weyl group and modular group. Lett.
Math. Phys. 34(3):249–254, 1995.

[FK] L. D. Faddeev and R. M. Kashaev. Quantum dilogarithm. Modern Phys.
Lett. A. 9(5):427–434, 1994.

[FKV] L. D. Faddeev, R. M. Kashaev, and A. Yu. Volkov. Strongly coupled
quantum discrete Liouville theory. I. Algebraic approach and duality. Comm.
Math. Phys. 219(1):199–219, 2001.

[FG] V. Fock and A. Goncharov. Moduli spaces of local systems and higher
Teichmüller theory. Publ. Math. Inst. Hautes Études Sci. 103:1–211, 2006.

[FK] L. Funar and R. M. Kashaev. Centrally extended mapping class groups from
quantum Teichmüller theory. Adv. Math. 252:260–291, 2014.

[GKT] N. Geer, R. Kashaev, and V. Turaev. Tetrahedral forms in monoidal
categories and 3-manifold invariants. J. Reine Angew. Math. 673:69–123,
2012.

[Hik1] K. Hikami. Hyperbolicity of partition function and quantum gravity. Nu-
clear Phys. B. 616(3):537–548, 2001.

[Hik2] K. Hikami. Generalized volume conjecture and the A-polynomials: the
Neumann-Zagier potential function as a classical limit of the partition func-
tion. J. Geom. Phys. 57(9):1895–1940, 2007.

[Hit1] N. J. Hitchin. The self-duality equations on a Riemann surface. Proc.
London Math. Soc. 55(1):59–126, 1987.



144

[Hit2] N. J. Hitchin. Flat connections and geometric quantization. Comm. Math.
Phys. 131:347–380, 1990.

[HRS] C. D. Hodgson, J. H. Rubinstein, and H. Segerman. Triangulations of
hyperbolic 3-manifolds admitting strict angle structures. J. Topol. 5(4):887–
908, 2012.
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Abstract

In this paper we follow the constructions of Turaev’s book, "Quantum
invariants of knots and 3-manifolds" closely, but with small modifications, to
construct a modular functor, in the sense of KevinWalker, from any modular
tensor category. We further show that this modular functor has duality and
if the modular tensor category is unitary, then the resulting modular functor
is also unitary. We further introduce the notion of a fundamental symplectic
character for a modular tensor category. In the cases where such a character
exists we show that compatibilities between the structures in a modular
functor can be made strict in a certain sense. Finally we establish that the
modular tensor categories which arise from quantum groups of simple Lie
algebras all have natural fundamental symplectic characters.

1 Introduction
The axioms for a Topological Quantum Field Theory (TQFT) was proposed by
Atiyah, Segal and Witten in the late 80’ties and further Witten proposed in his
seminal paper [32], that quantum Chern-Simons gauge theory should provide ex-
amples of TQFT’s. This was shortly thereafter demonstrated by Reshetikhin and
Turaev in the fundamental papers [24, 25], where they used the representation
theory of quantum groups to give a construction of these TQFT’s for Uq(sl(2,C))
at a root of unity q, which is now known as the Witten-Reshetikhin-Turaev TQFT.
This work further identified the needed categorical setup to construct a TQFT,
which Turaev presented in his beautiful book [29], namely the notion of a Modular
Tensor Category. Following these main events it was then shown that all quantum
groups of simple Lie algebras at roots of unity gives examples of modular tensor
categories (see e.g. the extensive reference list in the second edition of [29]). More
topological constructions of these TQFT’s, first for the Uq(sl(2,C))-case were
given in [17, 18] and then for the Uq(sl(n,C))-case, the corresponding modular

1Work supported in part by the center of excellence grant Center for Quantum Geometry of
Moduli Spaces from the Danish National Research Foundation (DNRF95)
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tensor category and its associated TQFT was given a topological construction in
[16].

It was further conjectured by Witten in [32] that these TQFT’s could also
be constructed by Conformal Field Theory techniques. At the time there was a
large body of work done on conformal field theory on the physics side and on the
mathematical side as well, where we would like to highlight the works of Segal [26]
and of Tsuchiya, Ueno and Yamada [27]. As it was later shown in [11, 12], the
TUY construction of conformal field theory naturally leads to the construction of a
Modular Functor in the sense of Kevin Walker [31]. It is well known that a modular
functor in the sense of Walker also gives rise to a TQFT and that the TQFT is
uniquely determined by the underlying modular functor (see e.g. [20]). The
construction of a modular functor from a modular tensor category was provided
by Turaev in his book [29]. He works however with similar, but not the same
axioms for a modular functor, as Walker does. It is well-known to a broad range
of researchers in the TQFT community that one can easily adapt the constructions
in Turaev’s book so as to provide the construction of a modular functor in the
sense of Walker. Indeed, in this paper, we follow the construction from Turaev’s
book [29] very closely, and provide all details for how any modular tensor category
V gives rise to a modular functor ZV subject to the axioms formulated by Kevin
Walker in [31] and used in [12, 13, 14]. The importance of the isomorphism
provided in [11, 12, 13, 14] between the Witten-Reshetikhin-Turaev TQFT and
the one coming from conformal field theory [27, 12] is that it provides a geometric
construction of the WRT-TQFT’s. When one further combines this isomorphism
with Laszlo’s isomorphism [23] between the covariant constant sections of the TUY
connections with that of the Hitchin connection in the context of the geometric
quantization of the moduli spaces of flat connections [21, 15, 19, 6, 7], one gets
the full picture conjectured by Witten in [32]. This chain of isomorphisms has
already been exploited by the first author of this paper, in part with collaborators,
to obtain deep results about the asymptotics in terms of the above mentioned root
of unity [1, 2, 3, 4, 5, 6, 8, 9, 10].

Let us now briefly review how one adjusts Turaev’s construction of a modular
functor so as to obtain one in the sense of Walker. A labeled marked surface
is a closed oriented surface Σ endowed with a finite set of distinguished points
equipped with a direction as well as a label from a finite set Λ. Moreover Σ is
equipped with a Lagrangian subspace of its first homology group. A modular
functor associates to any labeled marked surface Σ a module called its module
of states. See section 4 below where we spell out Walker’s axioms for a modular
functor in all details.

Given a modular tensor category (V , (Vi)i∈I), Turaev constructs a 2-DMF in
[29]. Taking the label set to be Λ = I, we simply use the modular functor provided
by Turaev, and provide natural identifications between certain modules of states
to make up for the differences between Turaev’s axioms for a 2-DMF and Walker’s
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axioms for a 2-DMF. To do this one needs to fix isomorphisms

(1.1) qi : Vi∗ → (Vi)
∗ .

Existence of such a family of isomorphisms is guaranteed by the axioms of a
modular tensor category as given in [29], but a specified choice is not part of these
axioms. Indeed, some of the interesting results in this paper concerning duality
are obtained by exploiting that these can be scaled. We first obtain the following
result (Theorem 5.8 and 9.2).

Theorem 1.1. For any choice of the isomorphisms (1.1) we get a modular functor
ZV satisfying Walker’s axioms. For any two choices of the isomorphisms (1.1) we
get quasi-isomorphic modular functors.

Here quasi-isomorphism refers to a notation which is exactly like isomorphism
of modular functors, except that it allows for scalings of the glueing isomorphisms
in a label dependent way, see Definition 9.1. Hence we see that there is a unique
quasi-isomorphism class of modular functors associated to every modular tensor
category. Two sets of isomorphisms q(j)

i : Vi∗ → (Vi)
∗, j = 1, 2 give rise to

two strictly isomorphic modular functors if the unique ui ∈ K∗ determined by
q

(2)
i = uiq

(1)
i satisfies that ui∗ = ui.

Remark 1.2. We stress that for the rest of this paper, the term modular functor
generally refers to Walker’s axioms.

Theorem 1.3. For any choice of the isomorphisms (1.1) we get a duality structure
on the modular functor ZV . If the modular tensor category is unitary, then we
also get a unitary structure compatible with the rest of the structure of the modular
functor.

This is the content of Theorem 11.4 and Theorem 13.1 below. We emphasize
that we do not need to choose the same qi for the glueing maps and for the
duality, as discussed in section 14. Further, in the compatibility between glueing
and duality, duality with itself and duality with the unitary structure, there are
projective factors allowed, as detailed in the Definition 11.1 and Definition 12.1.

The existence of these projective factors in the compatibility between these
structures naturally raises the question if one can actually normalise all quantities
such that these projective factors disappear. Let us now address this question.

First we establish, that we can normalise the duality pairing and the unitary
pairing, such that both are strictly compatible with glueing. This is done in sec-
tion 14. From this scaling analysis, one sees that the scaling can be separated
into a product of two factors, one which only depends on the genus of the surface
(see Definition 14.1) and one, which is simply a product of contributions from
each of the labels (see equation (14.12)). This provides us with what we call the
canonical symplectic scaling, where (15.1) in Theorem 15.3 relate the two scalings
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of the isomorphisms (1.1), which has the effect that the quantum invariant of
the flat unknot labeled by i becomes dim(Vi) (see equation (15.3), which is the
corresponding normalisation for the unknot with one negative twist). The mul-
tiplicative factor in the compatibility of duality with duality and unitary pairing
with duality becomes in this case negative one raised to the number of symplectic
self-dual labels of a given labeled marked surface (see Definition 15.1 and 15.2 and
Theorem 15.3 and 15.5).

In order to analyse if we can find a normalisation such that all projective
factors in the compatibility between glueing and duality, duality with itself and
duality with unitarity can be made unity, which we call strict compatibility, we
introduce the dual fundamental group Π(V , I)∗ of a modular tensor category.

Definition 1.4 (Π(V , I)∗). Let Π(V , I)∗ consist of the set of functions

µ̃ : I → K∗

that satisfies
µ̃(i)µ̃(i∗) = 1,

and such that
µ̃(i)µ̃(j)µ̃(k) 6= 1,

implies
Hom(1, Vi ⊗ Vj ⊗ Vk) = 0.

We call it the dual of the fundamental group due to its similarity with the dual
of the fundamental group of a simple Lie algebra as spelled out in section 18.

We make the following definition.

Definition 1.5. An element µ̃ ∈ Π(V , I)∗ with the property that µ̃ takes on
the values ±1 on the self-dual simple objects, in such way that µ̃ is −1 on the
symplectic simple objects and 1 on the rest of the self-dual simple objects, is called
a fundamental symplectic character.

We observe that if V has no symplectic simple objects, then the identity in
Π(V , I)∗ is a fundamental symplectic character. We ask the question if any mod-
ular tensor category has such a fundamental symplectic character.

Theorem 1.6. If V has a fundamental symplectic character, then we can arrange
that glueing and duality, duality with itself and duality with the unitary paring are
strictly compatible.

This is proven in section 16. In section 17 we provide a fundamental symplectic
character for the quantum SU(N) modular tensor category HSU(N)

k at the root of
unity q = e2πi/(k+N) first constructed by Reshetikhin and Turaev for N = 2 [24, 25]
and by Turaev and Wenzl for general N [28, 30]. See also [17, 18] for a skein theory
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model of the N = 2 case and [16] for the general N . In section 18, we provide a
fundamental symplectic character for any modular tensor category associated to
the quantum group at a root of unity for any simple Lie algebra. Hence we have
established

Theorem 1.7. Any quantum group at a root of unity gives a modular functor such
that glueing and duality, duality with itself and duality with the unitary pairing
are strictly compatible.

We thank Henning Haahr Andersen, Christian Blanchet, Jens Carsten Jantzen,
Nicolai Reshetikhin and Vladimir Turaev for valuable discussion regarding this
paper.

2 Axioms for a modular tensor category
For the axioms of a modular tensor category (V , (Vi)i∈I) we refer to chapter II in
[29]. For any modular tensor category, we have an induced involution ∗ : I → I,
determined by

(Vi)
∗ ∼= Vi∗ .

Recall that the ground ring is K = End(1) in the notation of [29]. For an object
V we have the important K-linear trace operation tr : End(V )→ K. We have the
following definition dim(V ) := tr(idV ) and one gets the following identities for all
objects V

dim(V ) = dim(V ∗),

We simply write dim(Vi) = dim(i) and so for all indices i ∈ I
dim(i) = dim(i∗).

3 Labeled marked surfaces, extended surfaces and
marked surfaces

3.1 Λ-Labeled marked surfaces

Let Λ be a finite set equipped with an involution † : Λ → Λ and a preferred
element 0 ∈ Λ with 0† = 0. We start by recalling that for a closed connected
surface Σ, Poincare duality induces a non-degenerate skewsymmetric pairing

( · , · ) : H1(Σ,Z)×H1(Σ,Z) −→ Z,

called the intersection pairing. For the rest of this paper, H1(Σ) will mean the first
integral homology group. We remark that we could just as well have considered
H1(Σ,R). For any real vector spaceW, let P (W ) := (W \{0})/R+.We now define
the objects of the category of Λ-labeled marked surfaces.
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Definition 3.1 (Λ-marked surfaces). A Λ-marked surface is given by the following
data: (Σ, P, V, λ, L). Here Σ is a smooth oriented closed surface. P is a finite
subset of Σ. We call the elements of P distinguished points of Σ. V assigns to any
p in P an element v(p) ∈ P (TpΣ). We say that v(p) is the direction at p. λ is an
assignment of labels from Λ to the points in P , e.g. it is a map P → Λ. We say
that λ(p) is the label of p. Assume Σ splits into connected components {Σα}. L is a
Lagrangian subspace of H1(Σ) such that the natural splitting H1(Σ) ' ⊕αH1(Σα)
induces a splitting L ' ⊕αLα where Lα ⊂ H1(Σα) is a Lagrangian subspace for
each α. By convention the empty set ∅ is regarded as a Λ-labeled marked surface.

For the sake of brevity, we will refer to a Λ-labeled marked surface as a labeled
marked surface, whenever there is no risk of ambiguities. Now we describe the
morphisms of this category.

Definition 3.2 (Morphisms). Let Σi, i = 1, 2 be two (non-empty) Λ-labeled
marked surfaces. For i = 1, 2, write Σi = (Σi, Pi, Vi, λi, Li). A morphism is a
pair f = (f, s), where s is an integer, and f is an equivalence class of orienta-
tion preserving diffeomorphisms φ : Σ1

∼−→ Σ2 that restricts to a bijection of
distinguished points P1

∼−→ P2 that preserves directions and labels. Two such
diffeomorphisms φ, ψ are said to be equivalent if they are related by an isotopy of
such diffeomorphisms.

For a diffeomorphism such as φ, we will write [φ] for the equivalence class
described above. Thus we will sometimes denote a morphism by ([f ], s) if we
want to stress that we are dealing with a pair where the isotopy class is the
equivalence class of the diffeomorphism f. Let σ be Wall’s signature cocycle for
triples of Lagrangian subspaces. We now define composition.

Definition 3.3 (Composition). Assume that we are given two composable mor-
phisms f1 = (f1, s1) : Σ1 → Σ2 and f2 = (f2, s2) : Σ2 → Σ3. We then define

f2 ◦ f1 := (f2 ◦ f1, s2 + s1 − σ((f2 ◦ f1)#(L1), (f2)#(L2), L3)) .

Using properties of Wall’s signature cocycle we obtain that the composition
operation is associative and therefore we obtain the category of Λ-labelled marked
surfaces.

Definition 3.4 (The category of Λ-labeled marked surfaces). The category C(Λ)
of Λ-labeled marked surfaces has Λ-labeled marked surfaces as objects and mor-
phisms as described in definition 3.2 and composition as described in definition
3.3.

There is an easy way to make this category into a symmetric monoidal category.
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Definition 3.5 (The operation of disjoint union). Let Σ1,Σ2 be two Λ-labeled
marked surfaces. For i = 1, 2, write Σi = (Σi, Pi, Vi, λi, Li). We define their
disjoint union Σ1 tΣ2 to be

(Σ1 t Σ2, P1 t P2, V1 t V2, λ1 t λ2, L1 ⊕ L2).

For morphisms fi : Σi → Σ3 we define f1 t f2 to be

(f1 t f2, s1 + s2).

We have an obvious natural transformation

Perm : Σ1 tΣ2 → Σ2 tΣ1.

Proposition 3.6 (C(Λ) is a symmetric monoidal category). The category of Λ-
labeled marked surfaces is a symmetric monoidal category with disjoint union as
product, the empty surface as unit, and Perm as the braiding.

We now describe the operation of orientation reversal. For an oriented surface
Σ we let −Σ be the oriented surface where we reverse the orientation on each
component. For a map g with values in Λ we let g† be the map, with the same
domain and codomain, given by g†(x) = g(x)†.

Definition 3.7 (Orientation reversal). Let Σ = (Σ, P, V, λ, L) be a Λ-labeled
marked surface. Then we define

−Σ := (−Σ, P, V, λ†, L).

We say that −Σ is obtained form Σ by reversal of orientation. For a morphism
f = (f, s) we let

−f := (f,−s).

Remark 3.8. We note that we could also have defined the reversal of orientation
to also involve changing the sign on the tangent vectors at the marked points.
This gives complete equivalent theories, since there is a canonical morphism of
labeled marked surfaces, which induces minus the identity at the marked points,
and which is the identity on the complement of small disjoint neighbourhoods
of the marked points and which locally around each marked point twist half a
turn positively according to the surface orientation around the marked point, yet
remains the identity near the boundary of the neighbourhood of the marked point.

Finally we describe the factorization procedure, where we obtain a Λ-labeled
marked surface by cutting along an oriented simple closed curve γ whose homology
class is in the distinguished Lagrangian subspace, and then collapse the resulting
two boundary components to points, which get labeled by (i, i†) as described
below.
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Definition 3.9 (Factorization data). Factorization data is a triple (Σ, γ, i), where
Σ is a Λ-labeled marked surface and γ is a smooth, oriented, simple closed curve
with a basepoint x0, such that the homology class of γ lies in L. Further, i is an
element of the label set Λ.We also say that the pair (γ, i) is a choice of factorization
data for Σ.

Definition 3.10 (Factorization). Let Σ = (Σ, P, V, λ, L) be a Λ-labeled marked
surface with factorization data (γ, i). We will define a Λ-labeled marked surface
Σi
γ. We denote the underlying smooth surface by Σγ. Cutting along γ we get

a smooth oriented surface Σ̃γ with two boundary components γ− and γ+. The
orientation of γ together with the orientation of Σ allows us to define γ+ to be the
component whose induced Stokes orientation agrees with that of γ. The underlying
smooth surface is given by Σγ := Σ̃γ/ ∼ where we collapse γ− to a point p− and
we collapse γ+ to a point p+. We orient this surface such that Σ \ γ ↪→ Σ̃γ/ ∼
is orientation preserving. The set of distinguished points for Σγ is P t {p−, p+}.
Identifying P (Tp±(Σ̃γ)) with γ, we choose v(p±) to be x0. We extend the labelling
λ by labelling p+ by i and p− by i†. There is a topological space X given by
identifying p− and p+. Clearly this space is naturally homeomorphic to Σ/ ∼,
where we collapse γ to a point. Thus we have quotient maps q : Σ → X and
n : Σγ → X. Define Lγ := (n#)−1(q#)(L). This yields a Lagrangian subspace
of H1(Σγ) that respects the splitting induced by decomposing Σγ into connected
components. We say that Σi

γ is obtained by factorizing Σ along (γ, i).

There is an inverse procedure that we call glueing.

Definition 3.11 (Glueing data). Glueing data consist of a triple (Σ, (p0, p1), c).
Here Σ = (Σ, P, V, λ, L) is a Λ-labeled marked surface with p0, p1 ∈ P , such that
λ(p0) = λ(p1)† and c : P (Tp0Σ)

∼−→ P (Tp+Σ) is an orientation reversing projective
linear isomorphism mapping v(p0) to v(p1). We also say that (p0, p1, c) determine
glueing data for Σ and that (p0, p1) is subject to glueing.

As we are dealing with ordered pairs (p0, p1) we will sometimes speak of p0 as
the preferred point.

Definition 3.12 (Glueing). Assume we are given a glueing data (Σ, (p0, p1), c).
We will define a Λ-labeled marked surface Σp0,p1

c .We denote the underlying smooth
surface by Σp0,p1

c . Blow up Σ at p0, p1 and glue in P (Tp0Σ) and P (Tp1Σ) to obtain a
smooth oriented surface with boundary, that, as a set, can be naturally identified
with

(Σ \ {p0, p1}) t P (Tp0Σ) t P (Tp1Σ).

Now identify the two boundary components through x ∼ c(x). This yields a
smooth oriented surface, that will be the underlying surface of Σp0,p1

c . As distin-
guished points, directions and labels, we simply take those from Σ. Let X be the
topological space obtained from Σ by identifying p0 with p1. We have continuous
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maps q : Σ→ X and n : Σp1,p2
c → X. Set Lc,p0,p1 := (n#)−1(q#)(L). This is a La-

grangian subspace of H1(Σγ) that respects the splitting induced by decomposing
Σγ into connected components.

Observe that the homology class of P (Tp0Σ) lies in Lc,p0,p1 .

Proposition 3.13 (Consecutive glueing). Assume that two distinct pairs of points
(p1, p2, c) and (q1, q2, d) are subject to glueing. Then there is a canonical diffeo-
morphism

sp1,p2,q1,q2 : (Σp1,p2
c )q1,q2d → (Σq1,q2

d )p1,p2c .

In abuse of notation we will also write sp1,p2,q1,q2 for the induced morphism of
labeled marked surfaces given by ([sp1,p2,q1,q2 ], 0).

We recall that any two orientation reversing self-diffeomorphisms of S1 fixing
a basepoint are isotopic among diffeomorphisms fixing this basepoint. Therefore
we wish to detail the independence of the choice of c in the glueing construction.

Proposition 3.14 (Glueing independent of c). Assume we are given a Λ-labeled
marked surface Σ and two pairs of glueing data (p0, p1, c1) and (p0, p1, c2). Then
there is an orientation preserving diffeomorphism f : Σ → Σ that induces the
identity on (P, V, λ, L) and such that c1 ◦ df = df ◦ c2. Moreover f can be cho-
sen to induce the identity morphism (id, 0) on Σ. Any two such f induces the
same morphism of Λ-labeled marked surfaces, and therefore we have a canonical
identification morphism f̃(c1, c2) : Σp0,p1

c1
→ Σp0,p1

c2
given by the pair ([f ], 0).

It follows from this that in order to specify glueing, it will suffice to specify an
ordered pair (p0, p1) with λ(p0) = λ(p1)†.

Proposition 3.15 (Functoriality of glueing). Let Σi for i = 1, 2 be Λ-labeled
marked surfaces. Assume (pi0, p

i
1) are subject to glueing for i = 1, 2. Consider

any morphism f = ([f ], s) : Σ1 → Σ2 with f(p1
0) = p2

0 and f(p1
1) = p2

1. Let
c : P (Tp10Σ1) → P (Tp11Σ1) be orientation reversing. Let c′ := df ◦ c ◦ df−1 :
P (Tp20Σ2)→ P (Tp21Σ2). This data induces a morphism

f ′ = ([f ′], s) : (Σ1)p
1
0,p

2
1

c −→ (Σ2 )
p20,p

2
1

c′

compatible with f .

3.2 Extended surfaces

We now describe the category of extended surfaces following Turaev [29]. Ob-
serve that this is only defined relative to a modular tensor category (V , (Vi)i∈I).
We recall that an orientation of a closed topological surface Σ is a choice of fun-
damental class in H2(Σα,Z) for each component Σα. A degree 1-homeomorphism
between oriented closed surfaces is a homeomorphism that respects this choice.
We recall that an arc γ ⊂ Σ is a topological embedding of [0, 1].
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Definition 3.16 (Extended surfaces). An e-surface Σ is given by the following
data (Σ, (αi), (Wi, µi), L). Here Σ is an oriented closed surface, (αi) is a finite
collection of disjoint oriented arcs. To each arc αi we have an object Wi of V and
a sign µi ∈ {±1}. The pair (Wi, µi) is called the marking of αi. Finally, L is a
Lagrangian subspace of H1(Σ,R). By convention ∅ is an e-surface.

We now describe the arrows.

Definition 3.17 (Weak extended homeomorphisms and their composition). Let
Σ1,Σ2 be two e-surfaces. A weak e-homeomorphism f : Σ1 → Σ is a degree
1-homeomorphism between the underlying topological surfaces Σ1 → Σ2 that in-
duces an orientation and marking preserving bijection between their distinguished
arcs. An e-homeomorphism f : Σ1 → Σ is a weak e-homeomorphism that induces
an isomorphism of distinguished Lagrangian subspaces f# : L1 → L2. We observe
that the class of weak e-homeomorphisms is closed under compostion, and that
this is also the case for e-homeomorphisms.

Thus we have the category of extended surfaces based on (V , (Vi)i∈I).
Definition 3.18 (The category of extended surfaces based on V). The cate-
gory of extended surfaces based on V has e-surfaces as objects and weak e-
homeomorphisms as morphisms. We denote it by E(V).

As above we wish to make this into a symmetric monoidal category with an
orientation reversal.

Definition 3.19 (Disjoint union of e-surfaces). Let Σ1 = (Σ1, (αi), (Wi, µi), L)
and Σ2 = (Σ2, (βj), (Zj, ηj), L

′) be two e-surfaces. We define Σ1 t Σ2 to be

(Σ1 t Σ2, (αi t βj), (Wi, µi) t (Zj, ηj), L⊕ L′).
For a pair of (weak) morphisms fi : Σi → Σ3 we observe that f1 t f2 is a (weak)
morphism. We have an obvious natural transformation

Perm : Σ1 t Σ2 → Σ2 t Σ1.

Proposition 3.20 (E(V) is a symmetric monoidal category). The category of
extended surfaces is a symmetric monoidal category with disjoint union as product,
the empty surface as unit, and Perm as the braiding.

Definition 3.21 (Orientation reversal for e-surfaces). Consider an extended sur-
face Σ = (Σ, (αi), (Wi, µi), L). We define −Σ to be

(−Σ, (−αi), (Wi,−µi), L).

That is, we reverse the orientation on each component, reverse the orientation of
arcs, keep the labels, multiply all signs by −1, and keep the Lagrangian subspace.
We observe that any (weak) e-homeomorphism f : Σ1 → Σ2 yields a (weak)
morphism f : −Σ1 → −Σ2.
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3.3 Marked surfaces

Finally we describe the category of marked surfaces2. This is defined relative to
a monoidal class. That is, a class C together with a strictly associative operation
C × C → C and a unit 1 for this operation. Again we here follow Turaev [29].

Definition 3.22 (Marked surface over C). Amarked surface (over C) is a compact
oriented surface Σ endowed with a Lagrangian subspace of H1(Σ,R) and such that
each connected component X of ∂Σ is equipped with a basepoint, a sign δ, and
an element V of C called the label. The pair (V, δ) is called the marking of X. By
convention ∅ is an m-surface.

Next we describe the morphisms.

Definition 3.23 (Weak m-homeomorphisms). Let Σ1,Σ2 be two marked surfaces.
A weak m-homeomorphism f : Σ1 → Σ2 is an orientation preserving homeomor-
phism f that respects the marks of boundary components. Anm-homeomorphism
is a weak m-homeomorphism that also preserves the Lagrangian subspaces.

Definition 3.24 (The category of marked surfaces over C). The category of
marked surfaces over C has m-surfaces as objects and weak m-homeomorphisms
as morphisms. We denote it M(C).

As above this naturally constitute a symmetric monoidal category with disjoint
union as the product.

Definition 3.25 (Disjoint union of marked surfaces). Let Σ1,Σ2 be two m-
surfaces. Then we define the marked surface Σ1tΣ2 by declaring that the bound-
ary components naturally inherit basepoints and markings, and equipping it with
a Lagrangian subspace of H1(Σ1 tΣ2,R), by taking the direct sum of Lagrangian
subspaces of Σ1,Σ2. If f1, f2 are (weak) m-homeomorphisms, then f1 t f2 is a
(weak) m-homeomorphism. We have a natural transformation

Perm : Σ1 t Σ2 → Σ2 t Σ1.

Proposition 3.26 (M(C) is a symmetric monoidal category). The category M(C)
of marked surfaces (over C) is a symmetric monoidal category with disjoint union
as product, the empty surface as unit, and Perm as the braiding.

Definition 3.27 (Glueing). Let Σ be an m-surface. Assume that there are two
components X, Y with the same label, but with opposite sign. We say that X, Y
are subject to glueing. There is a (unique up to isotopy) basepoint preserving
orientation-reversing homeomorphism c : X → Y. The quotient Σ′ = Σ/ ∼ where
x ∼ c(x) is naturally an oriented compact surface. The quotient map q : Σ→ Σ′

yields a bijection ∂Σ′ ∼ ∂Σ \X ∪ Y. Using this, we equip each component of ∂Σ′

2Not to be confused with Λ-labeled marked surfaces.
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with a basepoint and a marking. Finally, equip Σ′ with the Lagrangian subspace
that is the image of the Lagrangian subspace of Σ under q#. Denote the resulting
m-surface by

Σ/[X = Y ]c.

Proposition 3.28 (Functorial property of glueing of m-surfaces). Let Σ be an
m-surface. Assume X, Y ⊂ ∂Σ are two boundary components subject to glueing.
Let x : X → Y be basepoint preserving and orientation reversing. Let f : Σ→ Σ′

be a (weak) m-homeomorphism. Then X ′ = f(X), Y ′ = f(Y ) ⊂ ∂Σ′ are subject
to glueing and the map c′ given by f ◦ c ◦ f−1 : X ′ → Y ′ is orientation reversing
and basepoint preserving. There is a unique (weak) homeomorphism fc : Σ/[X =
Y ]c → Σ′/[X ′ = Y ′]c′ inducing a commutative diagram:

Σ Σ′

Σ/[X = Y ]c Σ′/[X ′ = Y ′]c′

f

q q

fc

Here the vertical maps are the quotient maps.

When dealing with Turaev’s 2-DMF, it is convenient to introduce a symmetric
monoidal categoryM′(C) very similar toM(C) but with fever morphisms. See
remark 3.30 below.

Definition 3.29. LetM′(C) be the category with the same objects as M(C), but
where morphisms are equivalence classes of weak m-homeomorphisms, where two
parallel weak m-homeomorphisms are equivalent if and only if they are isotopic
through weak m-homeomorphisms. The braiding and the permutation is defined
similarly to those ofM(C).

Remark 3.30. We recall that the 2-DMFHV defined in chapter V of [29] descends
to M′(C) in the sense that if f, g are two equivalent weak m-homeomorphisms,
then we have the identity H(f) = H(g).

4 Axioms for a modular functor
We now recall Kevin Walker’s axioms for a modular functor as they are given
and used in [12, 13, 14]. For Turaev’s axioms of a modular functor, we refer to
chapter V in [29]. We assume familiarity with the notion of symmetric monoidal
functors. Roughly speaking, a symmetric monoidal functor between symmetric
monoidal categories (C,⊗, e)→ (D,⊗′, e′) is a triple (F, F2, f) where F : C → D
is a functor, F2 is a family of morphisms F2 : F (a) ⊗′ F (b) → F (a ⊗ b) and f is
a morphism f : e′ → F (e). For the precise formulation of the axioms we refer to
[22]. For brevity we will write F = (F, F2, f). If F2, f are always isomorphisms,
we say that F is a strong monoidal functor.
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4.1 The Walker axioms for a modular functor

Let Λ = (Λ,† , 0) be a label set. Let K be a commutative ring (with unit). Let
P(K) = Proj(K) be the category of finitely generated projective K-modules. We
recall that this is a symmetric monoidal category with the tensor product over K
as product, and K as unit.

Definition 4.1 (Modular functor V based on Λ andK). A modular functor based
on a label set Λ and a commutative ring K is a strong monoidal functor V

V : C(Λ)→ P(K),

satisfying the glueing axiom, the one punctured sphere axiom and the twice punc-
tured sphere axiom as these are described below.

The glueing axiom. Assume that (p1, p2, c) is a glueing data for a labeled
marked surface Σ. For any λ ∈ Λ, let Σ(λ) be the labeled marked surface identical
to Σ except for the fact that p1 is labeled with λ and p2 is labeled with λ†.
Then (p1, p2, c) is a glueing data for Σ(λ). We demand that there is a specified
isomorphism

(4.1) g :
⊕

λ∈Λ

V (Σ(λ))
∼−→ V (Σp1,p2

c ).

Let gλ be the restriction of g to V (Σ(λ)). If the context is clear, we will simply
write g for this restriction, and suppress λ from the notation. If we wish to stress
the glueing map c, we will write gc. The glueing isomorphism is subject to the
four axioms below.

(i). The isomorphism should be associative in the following sense. Assume that
(q1, q2, d) is another pair subject to glueing. For any pair (λ, µ) ∈ Λ2 let Σ(λ, µ)
be the labeled marked surface identical to Σ except that p1 is labeled with λ, p2 is
labeled with λ†, q1 is labeled with µ and q2 is labeled with µ†. Then the following
diagram is commutative

(4.2)

V (Σ(λ, µ)) V ((Σq1,q2
d )(λ))

V ((Σp1,p2
c )(µ)) V ((Σq1,q2

d )p1,p2c ).

gµ

gλ gλ

s′◦gµ

Here s′ = V (sp1,p2,q1,q2), where sp1,p2,q1,q2 is as defined in Prop. 3.13.
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(ii). The isomorphism should be compatible with glueing of morphisms in the
following sense. Assume that f : Σ1 → Σ2 is a morphism such that a pair (p0, p1)
subject to glueing is taken to the pair (q0, q1). Choosing c will induce a morphism
f ′ : (Σ1)p0,p1c −→ (Σ2)q0,q1c′ as in Prop 3.15. This should induce a commutative
diagram:

(4.3)

V (Σ1) V ((Σ1)p0,p1c )

V (Σ2) V ((Σ2)q0,q1c′ )

g

V (f) V (f ′)

g

(iii). The isomorphism should be compatible with disjoint union in the following
way. Assume that (p0, p1, c) is a glueing data for Σ1. For any Σ2, we see that
(p0, p1, c) is also a choice of glueing data for Σ1tΣ2, and that there is a canonical
morphism ι = (ι, 0) : (Σ1)p1,p2c t Σ2 −→ (Σ1 tΣ2)p0,p1c . This should induce a
commutative diagram

(4.4)

V (Σ1 tΣ2) V ((Σ1 tΣ2)p0,p1c )

V (Σ1)⊗ V (Σ2) V ((Σ1)p0,p1c )⊗ V (Σ2).

g

g⊗1

V2 V (ι)◦V2

(iv). The isomorphism should be independent of the glueing map c in the fol-
lowing way. Assume a pair of points (p0, p1) in Σ is subject to glueing. Assume
that c1, c2 : P (Tp0Σ) → P (Tp1Σ) are two glueing maps. Consider the identifica-
tion morphism f̃(c1, c2) : Σp0,p1

c1
→ Σp0,p2

c2
as in Prop 3.14. This should induce a

commutative diagram

(4.5)

V (Σ) V (Σp0,p1
c1

)

V (Σp0,p1
c2

).

gc1

gc2
V (f̃(c1,c2))

The once punctured sphere axiom. For any λ ∈ Λ consider a sphere with one
distinguished point Σλ = (S2, {p}, {v}, {λ}, 0). We demand that

(4.6) V (Σ0) '
{

K if λ = 0

0 if λ 6= 0.
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The twice punctured sphere axiom. For any ordered pair (λ, µ) in Λ, consider a
sphere with two distinguished points Σλ,µ = (S2, {p1, p2}, {v1, v2}, {λ, µ}, 0). We
demand that

(4.7) V (Σλ,µ) '
{

K if µ = λ†

0 if µ 6= λ†.

Remark 4.2. We stress that the isomorphisms given in (4.6) and (4.7) are not
part of the data of a modular functor. Only the existence of such isomorphisms
are required. Below we will occasionally denote a modular functor by a pair (V, g)
where V is the strong monoidal functor, and g is the glueing isomorphism 4.1.

5 Construction of a modular functor ZV .

5.1 The symmetric monoidal functor

From now on, we consider a modular tensor category (V , (Vi)i∈I) and take Λ = I
and † =∗. We let K be the commutative ring End(1), where 1 is the unit for the
tensor product in V .
Proposition 5.1 (Existence of a strong monoidal functor C(I)→M′(V)). Con-
sider a modular tensor category (V , (Vi)i∈I). Let Λ = I, † =∗ and let C = V
considered as a monoidal class. There is a strong monoidal functor from the
category of I-labeled marked surface into the category M′(C)

G : C(I)→M′(C).

For an I-labeled marked surface Σ = (Σ, P, V, λ, L) the marked surface G(Σ) is
given as follows. For any distinguished point p, blow up Σ at p. That is, the
underlying topological surface of G(Σ) is denoted by G(Σ) and is given as follows

(
Σ \ P

⊔

p∈P
S1
p

)
/ ∼ .

Here we glue in the circle S1
p using smooth coordinates in a neigbourhood of p.

The orientation agrees with that on Σ. The direction vp yields a basepoint on S1,
the label i ∈ I yields a marking (Vi, 1). Collapsing S1

p to a point at all p yields a
surface Σ′, that is canonically homeomorphic to Σ. Let η denote the natural home-
omorphism Σ′ → Σ. Let q denote the quotient map that collapses any component
to a point. The composition g := η ◦ q : G(Σ) → Σ will be an isomorphism on
homology, and this provides us with a Lagrangian subspace L′ := g#

−1(L). Given
a morphism of labeled marked surfaces (f, s) : Σ1 → Σ2 any representative of f
naturally induces a weak m-homeomorphism G(Σ1) → G(Σ2) and we let G(f, s)
be the corresponding equivalence class.
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We are now finally ready to define our modular functor. We recall that even
though Turaev’s axioms for a 2 − DMF as given in chapter V only requires
functoriality with respect to m-homeomorphisms, it is also defined on weak m-
homeomorphisms. See section 4.3 in chapter V.

Definition 5.2 (The definition of ZV). LetHV be the 2-DMF as defined in chapter
V of [29] relative to (V , (Vi)i∈I). On the level of objects we define ZV to be

ZV := HV ◦ G : C(I) −→ P(K).

For a morphism of labeled marked surfaces (f, s) : Σ→ Σ′ we define

ZV(f, s) := (∆−1D)sHV(G(f, s)).

Here D,∆ are invertible scalars in K to be introduced in section 7.1 below.
We write Z = ZV and H = HV . We need to address the issue of functoriality.
That is we must verify that Z(f) ◦ Z(g) = Z(f ◦ g) for composable morphisms
of labeled marked surfaces. Let V, V ′ be symplectic vector spaces. Recall that
Walker’s signature cocycle for an ordered triple (L1, L2, L3) of Lagrangian sub-
spaces Li ⊂ V coincide with the Maslov index µ(L1, L2, L3). Recall also that
µ(L1, L2, L3) = µ(f(L1), f(L2), f(L3)) for any symplectomorphism f : V → V ′.
These facts together with remark 5.4 and lemma 6.3.2 in chapter IV of [29] easily
imply functoriality.

We need to define a glueing isomorphism. We start by observing the following
proposition.

Proposition 5.3 (G is compatible with glueing). Assume Σ is a labeled marked
surface. Assume we are given glueing data (p, q, c). Assume p is labeled with i.
Consider Σ′ = G(Σ). If we replace the marking of Xq with (Vi,−1) to obtain a
new marked surface Σ′′, then Xp ⊂ ∂Σ′′ and Xq ⊂ ∂Σ′′ are subject to glueing. We
observe

G(Σp,q
c ) = Σ′′/[Xp ≈ Xq].

We now compare the glueing isomorphism axiom of Walker and the splitting
axiom of Turaev more closely. Turaev’s modular functor is subject to the splitting
axiom, which means that the glueing homomorphisms provide an isomorphism

g :
⊕

i∈I
H (G(Σ), (Vi, 1), (Vi,−1)))

∼−→ Z(Σc).

See chapter V , the splitting axiom on page 246 in [29]. Comparing with Walker’s
glueing axiom, we see that the summands are not the same, since there we need
an isomorphism

g :
⊕

i∈I
H (G(Σ), (Vi, 1), (Vi∗ , 1))

∼−→ Z(Σc).
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Hence we need to provide isomorphisms between modules of states, where we
exchange a marking (Vi∗ , 1) with (Vi,−1). To provide these identifications, we first
recall that H is compatible with the operator invariant τ e. For an explanation of
this see the following remark.

Remark 5.4. Let Σ be a marked surface over V . We recall that H(Σ) is natu-
rally isomorphic to T e(Σ), where Σ is an extended surface obtained from Σ by
glueing in discs with preferred diameter, that are taken to be marked arcs. We
can therefore use the operator invariant τ e to obtain morphisms between mod-
ules of states. The natural isomorphism H(Σ) ' T e(Σ) also implies, that for a
labeled marked surface Σ we could just as well define Z(Σ) as T e(Σ̃), where Σ̃
is an extended surface naturally obtained from Σ. Similarly, we observe that a
morphism (f, s) of I-labeled marked surfaces induces an equivalence class f ′ of
weak e-homeomorphisms, and that H(G(f, s)) ∼ T e(f ′).

Now we provide the needed identifications.

Lemma 5.5 (The natural transformation ḟ). Let Σ be an m-surface with a bound-
ary component Xα marked with (V, 1). Assume that Σ′ is obtained from Σ by re-
placing the marking (V, 1) with (W, 1). Assume that f : V → W is a morphism.
There is a K-linear morphism

ḟ : H(Σ)→ H(Σ′),

where ḟ is induced from the extended three manifold M = Σ × I. Here we think
of the bottom as Σ, the top as Σ′, and we provide M with following ribbon graph.
For each arc β different from the arc α corresponding to Xα ⊂ ∂Σ, we put in the
identity strand β × I. For α, we put in a coupon colored with f.

Lemma 5.6 (The natural transformation hα). Let Σ be an m-surface with a
boundary component Xα marked with (V ∗, 1). Assume that Σ′ is obtained from Σ
by replacing the marking (V ∗, 1) with the marking (V,−1). There is a K-linear
morphism

hα : H(Σ)→ H(Σ′).

The morphism hα is induced from the extended three manifold M = Σ× I where
we think of the bottom as Σ, the top as Σ′, and we provide M with following ribbon
graph. For each arc β different from the arc α corresponding to Xα ⊂ ∂Σ, we put
in the identity strand β × I. For α, we put in a coupon colored with idV ∗ .

If the relevant boundary component is understood, we will simply write hα = h.
In section 8 below we will give all details of how these two lemmas follow directly
from similar statements in [29].
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5.2 The glueing isomorphism

Let Σc be an I-labeled marked surface obtained from Σ by glueing. We must
provide an isomorphism

⊕

i∈I
Z(Σ, i, i†)

∼−→ Z(Σc).

For each i ∈ I fix an isomorphism qi : Vi∗ → V ∗i . We define the glueing isomor-
phism as follows. For each i, consider the composition

(5.1) Z(Σ, i, i∗)
q̇i−→ H (G(Σ), (Vi, 1), (V ∗i , 1))

h−→ H (G(Σ), (Vi, 1), (Vi,−1)) .

Using that H satisfies the splitting axiom as defined in chapter V , we see that we
have an isomorphism

g :
⊕

i∈I
H (G(Σ), (Vi, 1), (Vi,−1)))

∼−→ Z(Σc).

Thus we can define our glueing isomorphism as follows.

Definition 5.7 (The glueing isomorphism). We define

g̃(q) := g ◦ (⊕i∈Ih ◦ q̇i) :
⊕

i∈I
Z(Σ, λ, i, i∗)

∼−→ Z(Σc).

We write g̃(q) to stress that this depends on the choices of isomorphisms qi.

5.3 Main theorem

We are now ready to state our main theorem.

Theorem 5.8 (Main Theorem). For any modular tensor category (V , (Vi)i∈I) the
symmetric modular functor ZV as given in definition 5.2 together with the glueing
isomorphism g̃(q) as given in definition 5.7 satisfies Walker’s axioms of a modular
functor based on I and K as given in section 4.

We will sometimes write Z(q) for the modular functor ZV equipped with the
glueing g̃(q).

6 Proof of the main theorem
We first state more or less trivial statements about the K-linear morphisms coming
from Lemma 5.5 and 5.6. Recalling the setting and notation of Lemma 5.5, it is
clear that if g : Σ → Σ̃ is a weak m-homeomorphism, then so is g : Σ′ → Σ̃′,
where Σ̃′ is obtained from Σ̃ by replacing the marking of g(Xα) with (W, 1).
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Lemma 6.1 (The natural transformation ḟ). For each such g, ḟ induces a com-
mutative diagram

H(Σ) H(Σ̃)

H(Σ′) H(Σ̃′).

H(g)

ḟ ḟ

H(g)

Moreover, ḟ is compatible with disjoint union in the following sense. Assume
Σ = Σ1 t Σ2, and Xα ⊂ Σ2. Then the following diagram commutes

H(Σ) H(Σ1)⊗H(Σ2)

H(Σ′) H(Σ1)⊗H(Σ′2).

ḟ id⊗ḟ

Recalling the setting and notation of Lemma 5.6, we observe that if g : Σ→ Σ̃
is a weak m-morphism, then so is g : Σ′ → Σ̃′, where Σ̃′ is obtained from Σ̃ by
replacing the marking of g(Xα) with (V,−1).

Lemma 6.2 (The natural transformation hα). For each such g, hα induces a
commutative diagram

H(Σ) H(Σ̃)

H(Σ′) H(Σ̃′).

H(g)

hα hα

H(g)

Moreover, hα is compatible with disjoint union in the following sense. Assume
Σ = Σ1 t Σ2, and Xα ⊂ Σ2. Then the following diagram commutes

H(Σ) H(Σ1)⊗H(Σ2)

H(Σ′) H(Σ1)⊗H(Σ′2).

hα id⊗hα

We need to know how the morphisms ḟ , h relate to the glueing homomorphism
provided by Turaev, and we need to know what happens if we apply the ḟ , h
operations consecutively to distinct boundary components. We call a morphism
of type ḟ or h a coupon morphism.
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Lemma 6.3 (Far commutativity). Assume that an m-surface Σ2 is obtained
from an m-surface Σ1 by altering the markings of two distinct boundaries Xα, Xβ

components in one of the two ways described above. Let q be the K-morphism
H(Σ1) → H(Σ2) that is obtained from composing the coupon morphism that
alters Xα with the coupon morphism that alters Xβ. Let p be the K-morphism
H(Σ1)→ H(Σ2) that is obtained from composing the coupon morphism that alters
the labelling of Xβ with the coupon morphism that alters the labelling of Xα. Then
we have

p = q.

Lemma 6.4 (Compatibility of ḟ , h with glueing.). Assume that Σc is obtained
from Σ by glueing. Consider a component Xβ of Σ, that is not part of the glueing
data. Assume the marking of β is altered either by using a morphism f of objects
of V , or by replacing (V ∗, 1) with (V,−1). Then this operation applies to Σc as
well. Let r denote the resulting isomorphisms of modules. Let g denote the glueing
homomorphism. Then

r ◦ g = g ◦ r.

These lemmas will be proven in section 8 below.

Proof of the Main Theorem. SinceH is a strong monoidal functor, it is immediate
that ZV is a symmetric monoidal functor, since it is a composition of strong
monoidal functors. Thus it remains to verify the once punctured sphere axiom,
the twice punctured sphere axiom, and the glueing axiom. The once punctured
sphere axiom follows directly from Turaev’s disc axiom, which is axiom 1.5.5 in
chapter V. The twice punctured sphere axioms follows directly from the third
normalization axiom 1.6.2 in chapter V of [29].

It remains to verify the glueing axiom. If f = (f, n) is a morphism of labeled
marked surfaces, we will abuse notation and write f for G(f).
(i) In the notation of definition 4.1 we must prove that the following diagram
commutes

Z(Σ(i, j)) Z((Σq1,q2
d )(i))

Z((Σp1,p2
c )(j)) Z((Σq1,q2

d )p1,p2c ).

g̃j

g̃i g̃i

s′◦g̃j

Here s′ = Z(sp1,p2,q1,q2), where sp1,p2,q1,q2 is as defined in proposition 3.13, and
i = λ and j = µ. Let α be the relevant distinguished point labeled with j∗.
Let β be the relevant distinguished point labeled with i∗. As above, let g be the
glueing homomorphism provided by Turaev in chapter V of [29]. In the following
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calculation we use that the integer associated to the morphism sp1,p2,q1,q2 is 0.
Commutativity of the diagram above can be rewritten as the following equation

(6.1) gi ◦ hβ ◦ q̇i ◦ gj ◦ hα ◦ q̇j = s′ ◦ gj ◦ hα ◦ q̇j ◦ gi ◦ hβ ◦ q̇i.

Using lemma 6.4 and lemma 6.3 we see that

gi ◦ hβ ◦ q̇i ◦ gj ◦ hα ◦ q̇j = gi ◦ gj ◦ hα ◦ q̇j ◦ hβ ◦ q̇i.

Using lemma 6.4 we then get that

s′ ◦ gj ◦ hα ◦ q̇j ◦ gi ◦ hβ ◦ q̇i = s′ ◦ gj ◦ gi ◦ hα ◦ q̇j ◦ hβ ◦ q̇i.

Using axiom 1.5.4(ii) in chapter V of [29] we see that

s′ ◦ gj ◦ gi = gi ◦ gj.

Therefore we see that equation (6.1) holds.
(ii) In the notation of definition 4.1 we must prove that the following diagram
commutes

Z(Σ1) Z((Σ1)p0,p1c )

Z(Σ2) Z((Σ2)q0,q1c′ ).

g̃

Z(f) Z(f ′)

g̃

This amounts to proving

(6.2) H(f ′) ◦ g ◦ h ◦ q̇ = g ◦ h ◦ q̇ ◦ H(f).

Here we use that f ′ is equipped with the same integer as f . Equation (6.2) follows
directly from lemma 5.6, lemma 5.5, and axiom 1.5.4(i) in chapter V of [29].
Here we use that even though the naturality condition is only formulated for m-
homeomorphisms in this axiom, Turaev argues in section 4.6 of chapter V that it
is also valid for weak m-homeomorphisms.
(iii) In the notation of definition 4.1 we must prove that the following diagram
commutes

Z(Σ1 tΣ2) Z((Σ1 tΣ2)p0,p1c )

Z(Σ1)⊗ Z(Σ2) Z((Σ1)p0,p1c )⊗ Z(Σ2).

g̃

g̃⊗1

Z2 Z(ι)◦Z2
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As the integer associated with the morphism ι is zero, this takes the following
equational form

(6.3) g ◦ h ◦ q̇ ◦ H2 = H(ι) ◦ H2 ◦ (g ◦ h ◦ q̇ ⊗ 1).

Rewrite the RHS as H(ι) ◦ H2 ◦ (g ⊗ 1) ◦ (h ◦ q̇ ⊗ 1). Now use lemma 5.5 and
lemma 5.6 to rewrite the LHS as g ◦H2 ◦ (h ◦ q̇⊗ 1). Now axiom 1.5.4(iii) entails
g ◦H2 = H(ι) ◦ H2 ◦ (g ⊗ 1). This implies equation (6.3).
(iv) In the notation of definition 4.1 we must prove that the following diagram
commutes

Z(Σ) Z(Σp0,p1
c1

)

Z(Σp0,p1
c2

).

g̃c1

g̃c2
Z(f̃(c1,c2))

As the integer associated with the morphism f̃(c1, c2) is zero, this takes the form

(6.4) H(f̃(c1, c2))) ◦ gc1 ◦ h ◦ q̇ = gc2 ◦ h ◦ q̇.
Lemma 6.5. The morphisms H(f̃(c1, c2))) ◦ gc1 and gc2 are operator invari-
ants of extended three manifolds that are naturally e-homeomorphic through an
e-homeomorphism commuting with boundary parametrizations. In particular they
coincide.

We see that lemma 6.5 implies equation (6.4). The lemma will be proven in
section 8.

7 Review of the TQFT based on extended cobor-
disms

As observed above, H is defined as

H(Σ) = T eV (Σ),

where Σ is the associated extended surface, and T eV is the modular functor based
on the category of extended surfaces and the modular tensor category V . In this
section we will give a quick review of the TQFT (T eV , τ eV) based on the cobordism
theory of extended cobordisms, as defined in chapter IV of [29]. We will assume
familiarity with the axioms for a TQFT based on a cobordism theory as defined
in chapter III of [29]. We will assume familiarity with the quantum invariant
τ(M,Ω) of a closed oriented three manifold M containing a ribbon graph Ω with
colors in V . This invariant is defined in chapter II of [29]. We will however provide
the formula associated to a surgery presentation below, but we will not explain
the Reshetikhin-Turaev functor FV as defined in chapter I of [29].
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7.1 Quantum invariants of 3-manifolds

We now recall the construction of τ(M̃,Ω) ∈ K where M̃ is a closed oriented three
manifold with a colored ribbon graph Ω inside. Here τ(M̃,Ω) is called the quantum
invariant of (M̃,Ω).We may assume M̃ = ∂W, whereW is a compact oriented four
manifold obtained by performing surgery along a framed link L = {L1, ..., Lm} in
S3 = ∂B4. Let σ(L) be the signature of the intersection form on H2(W,R). Let
Col(L) be the set of all colorings of L by colors in (Vi)i∈I . For any coloring λ we
let Γ(L, λ) be the associated colored ribbon graph in S3. Then τ(M̃,Ω) is given
by

(7.1) τ(M̃,Ω) = ∆σ(L)D−σ(L)−m−1
∑

λ∈Col(L)

dim(λ)F (Γ(L, λ) ∪ Ω).

Here dim(λ) = dim(λ1) · · · dim(λm) and D is given by

D2 =
∑

i∈I
dim(i)2,

and ∆ is given by
∆ :=

∑

i∈I
k−1
i (dim(i))2 ∈ K,

where the ki are the standard twists coefficients - Turaev denotes them vi in [29].

7.2 The TQFT based on decorated cobordisms

7.2.1 Modules of states

Recall the notion of a d-surface and decorated type as defined in section 1.1 of
chapter IV in [29]. Recall the notion of a standard d-surface and of a parametrized
d-surface as in section 1.2 and section 1.3 of chapter IV in [29]. Assume Σ is a con-
nected parametrized d-surface of topological type t given by (g; (Wi, µi), ..., (Wm, µm)).
Recall the standard d-surface of type t. This is denoted by Σt. These notions can
be found in sections 1.1− 1.3 of chapter IV. For a decorated type t as above, and
for i ∈ Ig, let

Φ(t, i) := W µ1
1 ⊗ · · · ⊗W µm

m

g⊗

s=1

(Vis ⊗ V ∗is).

Here W 1 = W, and W−1 = W ∗. Recall that elements of Φ(t, i) can be thought of
as colorings of the ribbon graph Rt sitting inside Σt, as defined in section 1.2 of
[29]. Moreover we define T (Σ) := Ψ(t) where

Ψ(t) :=
⊕

i∈Ig
Hom(1,Φ(t, i)).

Finally, if Σ is not connected, then we define T (Σ) to be the unordered tensor
product of the modules of states of the components of Σ.
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7.2.2 Operator invariants

We now describe the construction of τ(M), where M is a decorated cobordism.
That is, M is a triple (M,∂−M,∂+M) where ∂±M are parametrized d-surfaces.
For a general decorated type t let Ut be the standard decorated handlebody
bounded by Σt as in section 1.7 of chapter IV in [29]. Equip it with the RH
orientation. For an element x ∈ Φ(t, i) consider the three manifold with boundary
H(Ut, Rt, i, x). Let U−t be the image of Ut under the reflection of R3 in the plane
R2×{1/2}.We denote this orientation reversing diffeomorphism by mir : R3 → R3.
Equip U−t with the RH orientation. We recall that they contain certain ribbon
graphs denoted Rt, R−t respectively. Let f : Σt0 → ∂−M be a parametrization of
a component of ∂−M. We glue in Ut0 by glueing ∂Ut0 to Σt1 × {0} through f. We
do this for all components of ∂−M. Similarly, for any parametrized component
g : Σt1 → ∂+M we glue in U−t1 by glueing according to -g ◦ mir : ∂(U−t1 ) → Σt1 .

This produces a closed oriented three manifold M̃ with a ribbon graph inside,
such that choosing an element x ∈ T (∂−M) and an element y ∈ T (∂+M)∗ will
produce a colored ribbon graph Ω(x, y) ⊂ M̃. This descends to a K-linear map
T (∂−M)⊗K T (∂+M)∗ −→ K given by

x⊗ y −→ τ(M̃,Ω(x, y)),

where τ is the quantum invariant defined in chapter II of [29]. This pairing
induces a morphism j : T (∂−M) → T (∂+M). Finally, composing this with
the map η : T (∂+M) → T (∂+M) induced by multiplication by D1−gdim(i) on
Hom(1,Φ(t1; i)), we get the desired K-linear map

τ(M) := η ◦ j : T (∂−M)→ T (∂+M).

7.3 The TQFT based on extended cobordisms

7.3.1 Module of states

We start by describing the module of states for an e-surface. Start by assuming
that Σ is a connected e-surface. Recall the notion of a parametrization of Σ.
This is simply a weak e-homeomorphism Σt → Σ. Given two parametrizations
f : Σt0 → Σ and g : Σt1 → Σ, we wish to define an isomorphism ϕ(f, g) between
Ψ(t0) and Ψ(t1). We define

ϕ(f, g) := (D∆−1)−µ((f0)∗(λ(t0)),λ(Σ),(g0)∗(λ(t1)))E(g−1f) : Ψ(t0)→ Ψ(t1).

Here µ is the Maslov index for triples of Lagrangian subspaces. E is the morphism
induced by the decorated three manifold Σt1×I where the bottom is parametrized
by g−1 ◦ f : Σt0 → Σt1 and the top is parametrized by the identity. Turaev proves
in [29] that

ϕ(f1, f2) ◦ ϕ(f0, f1) = ϕ(f0, f2).
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Now T e(Σ) is defined as the K-module of coherent sequences (x(t, f))(t,f) where
we index over all parametrizations. Finally, if Σ is not connected, then we de-
fine T e(Σ) to be the unordered tensor product of the modules of states of the
components of Σ.

7.3.2 Operator invariants

Consider an extended 3-manifold (M,∂−M,∂+M). Then any two parametrizations
f : Σ− → ∂−M and g : Σ+ → ∂+M makes M into a decorated cobordism M̃. We
now define τ e(M) to be composition

T e(∂−M)→ T (Σ−)
λ(M)τ(M̃)−→ T (Σ+)→ T e(∂+M).

Here λ(M) is an invertible element of K defined in section 6.5 of chapter IV of
[29].

8 Proofs of lemmas
Proposition 8.1 (The cobordism associated to a weak e-homomorphism). Let
f : Σ1 → Σ2 be a weak e-homomorphism. There is an invertible scalar c ∈ K such
that the operator invariant of the extended cobordism Σ1 × I ∪f Σ2 × I coincide
with cT e(f) : T e(Σ1) → T e(Σ2). The scalar c depends only on the underlying
continuous map of f and the Lagrangian subspaces Li ⊂ H1(Σi).

Proof. This follows from theorem 7.1 of chapter V II in [29].

Here it is understood that the extended three manifold Σ1 × I ∪f Σ2 × I is
obtained by glueing the top of Σ1 × I to the bottom of Σ2 × I through f.

Proof of Lemmas 5.5 and 6.1. Using 8.1 and theorem 7.1 of chapter V II in [29],
we see that both H(g) ◦ ḟ and ḟ ◦ H(g) are - up to the same scalar - induced by
glueing certain extended three manifolds. Let M1 be the extended three manifold
with τ(M1) = cH(g)◦ḟ , and letM2 be the extended three manifold with τ e(M2) =
cḟ ◦ H(g) Clearly there is a homeomorphism of extended three manifolds taking
M1 to M2, commuting with boundary parametrizations. Therefore they induce
the same morphism.

Proof of Lemmas 5.6 and 6.2. The proof is virtually identical to the proof of Lemma
5.5.

Proof of Lemma 6.3. The proof is virtually identical to the proof of Lemma 5.5.
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Proof of Lemma 6.4. We start by recalling the definition of the glueing homo-
morphism provided by Turaev in sections 4.4 − 4.6 of chapter V in [29]. Let
M2 be the extended three manifold obtained by attaching handles to Σ × I as
in section 4.4. of chapter V of [29]. The attachment uses the glueing data c.
The operator invariant τ e(M2) now yields a map g′ : T e(Σ) → T e(Σ′c). Here
Σ′c is an e-surface canonically e-homeomorphic to Σc. Composing with the asso-
ciated isomorphism of K-modules, we get the required glueing homomorphism
g : T e(Σ) → T e(Σc). Similarly, if we let Σ̃ and Σ̃′c be the two same e-surfaces
with the relevant change of markings, then the glueing g is obtained as the op-
erator invariant of M̃2 with the obvious notation. Assume now that r = ḟ for
some morphism f : (V,+1)→ (W,+1). Recalling the naturality property of ḟ we
see that it is enough to argue that ḟ commute with g′. Let M1 = Σ × I be the
extended cobordism inducing ḟ . Then g′ ◦ ḟ is a multiple of τ e(M̃2 ◦M1), where
we glue the top of M1 to the bottom of M̃2 through the identity. To compute
the relevant scalar we use theorem 7.1 in Chapter IV of [29]. Since the identity
is an e-homeomorphism here, there is only one Maslow index to compute. In the
notation of theorem 7.1 we have id#(N1)∗(λ−(M1)) = id#λ+(M1). Thus we see
that

0 = µ
(
id#(N1)∗(λ−(M1)), id#λ+(M1), N∗2 (λ+(M̃2)

)
.

See the proof of lemma 6.7.2 in chapter IV of [29]. Thus we get that

τ e(M̃2 ◦M1) = g′ ◦ ḟ .

Clearly M̃2 ◦M1 is e-homeomorphic to a cylinder with handles attached on the
top, such that the β-band has a coupon colored with the f -coupon, and all other
’vertical’ bands are colored with id. The exact same argument will yield a similar
description of ḟ ◦ g. Consider Q := Σc × I as the extended cobordism inducing
ḟ : T e(Σc)

∼→ T e(Σ̃c). Arguing as above, wee see that ḟ ◦ g′ is given by the
operator invariant τ e(Q◦M2). But this is e-homeomorphic to M̃2 ◦M1. Therefore
g◦ ḟ = ḟ ◦g′. Observe that a homomorphism of type h can be dealt with in exactly
the same way.

Proof of Lemma 6.5. This is a consequence of the description of the glueing homo-
morphism given above, together with the existence of the proclaimed e-morphisms.

9 Uniqueness up to quasi-isomorphism
We observe that the construction of the glueing g̃ map depended on a choice of
isomorphisms qi : Vi∗

∼−→ V ∗i . This dependence is not essential.

Definition 9.1 (Quasi-isomorphism). Let (Z, g) and (Z ′, g′) be two modular func-
tors with the same label set Λ. These are said to be quasi-isomorphic if there is a
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pair (Φ, γ) satisfying the following conditions. Φ is an assignment, which for each
labeled marked surface Σ gives an isomorphism

Φ(Σ) : Z(Σ)
∼−→ Z ′(Σ).

This assignment is required to be natural with respect to morphisms of modules
induced by morphisms of labeled marked surfaces. Similarly it is required to
preserve the splitting into tensor products induced by disjoint union, as well as
the permutation map. γ is an assignment γ : I → K∗ such that if Σc is obtained
from Σ from glueing along an ordered pair (p, q) where p is labeled with λ, then
the following diagram is commutative

(9.1)

Z(Σ) Z(Σc)

Z ′(Σ) Z ′(Σc).

g

γ(λ)Φ(Σ) Φ(Σc)

g′

Moreover we demand that γ(λ)γ(λ∗) = 1 for all λ ∈ I.

This is easily seen to define an equivalence relation on modular functors with
the same label set.

Theorem 9.2 (Independence of (qi) up to quasi-isomorphism). Let q, q′ be two
choices of isomorphisms Vi∗

∼−→ V ∗i . Then the two resulting modular functors Z(q)
and Z(q′) are quasi-isomorphic.

Proof. Write q′i = fiqi. Then we have g̃j(q′) = fj g̃j(q). We want to construct a
pair (Φ, γ). Consider a labeled marked surface Σ with labels i1, ..., ik. We want to
construct Φ(Σ) to be of the form (

∏k
l αil)IdZ(Σ) for some function α : I → K∗.

Assume Σc is obtained from Σ by glueing along an ordered pair (p, q) where
p is labeled with i. Assume the labels of Σ are i1, ..., ik, i, i∗. Then equation (9.1)
becomes

k∏

l=1

α(il) = γ(i)fiα(i)α(i∗)
k∏

l=1

α(il).

Thus we are forced to define

γ(i) :=
1

α(i)α(i∗)fi
.

We still have to ensure γ(i)γ(i∗) = 1. We see that this will follow for any choice
of α with

(α(i)α(i∗))2 fifi∗ = 1,

which is easy to solve (by adjoining the needed square roots to K if needed).
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10 Universal property
In this section we will describe how to apply Z, and how to use it in calcula-
tions. Let Σ be a connected labeled marked surface. Recall that a parametriza-
tion f : Σt → G(Σ) is an orientation preserving homeomorphism that preserves
all structure of extended surfaces, except possibly the Lagrangian subspaces in
homology. These are also called weak e-homeomorphisms. Clearly the set of
parametrizations is non-empty. Let f be a parametrization. This will induce an
isomorphism

Ψ(t) ' Z(Σ).

For the definition of Ψ(t) see section 7. We now recall the definition of Z(Σ) and
describe the isomorphism above. For any pair of parametrizations

fi : Σti → G(Σ), i = 1, 2,

there is an isomorphism
ϕ(f1, f2) : Ψt1

∼−→ Ψt2 .

See section 7. With the obvious notation these isomorphisms satisfy

ϕ(f1, f3) = ϕ(f2, f3) ◦ ϕ(f1, f2).

The module Z(Σ) is the module of coherent sequences. Hence an element of this
module is an equivalence class of pairs (x, f) where f is a parametrization with
domain Σt and x is an element of Ψ(t). We have (x, f) ∼ (y, g) if and only if
ϕ(f, g)(x) = y. The isomorphism Ψ(t) ' ZV(Σ) induced from a parametrization
is simply x 7→ (x, f).

Now we describe ZV(f) when f = (f, s) : Σ1 → Σ2 is a morphism of connected
labeled marked surfaces. Any representative f ′ of the equivalence class f will
induce ZV(f) which is given by

(x, g) 7→ ((∆−1D)sx, f ′ ◦ g).

Here we also write f ′ for the induced e-homeomorphism G(Σ1)→ G(Σ2).

11 The duality pairing
Consider a modular functor V based on a label set Λ. For a modular functor
with duality we would like the operation of orientation reversal to correspond
to the operation of taking the dual K-module. That is, we would like a perfect
pairing V (Σ)⊗V (−Σ)→ K that is compatible with the structure of V. Before we
formulate the axioms, consider an arbitrary Λ-labeled marked surface Σ′. Observe
that if p, q ∈ Σ′ are subject to glueing then so are p, q ∈ −Σ′. Observe that if Σ
is the result of glueing Σ along p, q then −Σ is the result of glueing −Σ′ along
the same ordered pair of points.
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Definition 11.1 (Duality). Let (V, g) be a modular functor based on Λ and K.
A duality for V is a perfect pairing

( · , · )Σ : V (Σ)⊗ V (−Σ)→ K,

subject to the following axioms.
Naturality. Let f = (f, s) : Σ1 → Σ2 be a morphism between Λ-labeled

marked surfaces. Then

(11.1) (V (f), V (−f))Σ2 = ( · , · )Σ1 .

Compatibility with disjoint union. Consider a disjoint union of Λ-labeled marked
surfaces Σ = Σ1 tΣ2. The modular functor V provides an isomorphism

η : V (Σ)⊗ V (−Σ)
∼−→ V (Σ1)⊗ V (−Σ1)⊗ V (Σ2)⊗ V (−Σ2).

We demand that with respect to the natural isomorphism K ⊗K ' K we have
that

(11.2) ( · , · )Σ = (( · , · )Σ1 ⊗ ( · , · )Σ2) ◦ η.

Compatibility with glueing. Let Σ be a Λ labeled marked surface obtained
from glueing. Consider the glueing isomorphism

g :
⊕

λ∈Λ

V (Σ(λ))
∼−→ V (Σ),

as described in definition 4.1. We have that

(11.3) (g, g)Σ =
∑

λ∈Λ

µλ( · , · )Σ(λ).

Here µλ ∈ K is invertible and depends only on the isomorphism class of Σ(λ) for
all λ.

Compatibility with orientation reversal. For a Λ-labeled marked surface Σ we
demand that there is an invertible element µ ∈ K∗ that only depends on Σ such
that for all (v, w) ∈ V (Σ)× V (−Σ) the following equation holds

(11.4) µ(w, v)−Σ = (v, w)Σ.

It is worth spelling out how we demand that the duality is compatible with
glueing in a little more detail. Observe −(Σ(λ)) = (−Σ)(λ†). Thus the glueing
isomorphism is a splitting

g′ :
⊕

λ∈Λ

V (−Σ(λ†))
∼−→ V (−Σ).
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This gives a decomposition
⊕

λ,λ′∈Λ

V (Σ(λ))⊗ V (−Σ(λ′))
g⊗g−→ V (Σ)⊗ V (−Σ).

Then the statement is that g(V (Σ(λ)) and g(V (−Σ(λ′)) are orthogonal w.r.t. the
duality ( · , · )Σ unless λ = λ′. In this case we have

(gλ, gλ†)Σ = µλ( · , · )Σ(λ).

11.1 Review of the duality for Turaev’s modular functor
based on extended surfaces

Let Σ be an e-surface. Recall the operation of oriental reversal as described in
definition 3.21. We can think of Σ× I as a morphism Σt (−Σ)→ ∅. This induces
a perfect pairing

〈 · , · 〉Σ : T e(Σ)⊗ T e(−Σ)→ K.

See chapter III section 2 in [29]. The pairing is compatible with the action of
e-homeomorphisms in the sense that for any e-homeomorphism f : Σ1 → Σ2 we
have

〈T e(f)( · ), T e(−f)( · )〉Σ2 = 〈 · , · 〉Σ1 .

It is proven in exercise 7.3 in chapter IV in [29] that the pairing is also natural with
respect to weak e-homeomorphisms. The pairing is multiplicative with respect to
disjoint union. Moreover the pairing is self-dual in the following sense

〈 · , · 〉Σ ◦ Perm = 〈 · , · 〉−Σ.

All these properties are stated in axiom 1.2.4 in section 1.2 of chapter III in [29].

11.2 Construction of a duality pairing for Z

In order to induce Turaev’s duality pairing, we will need an isomorphism

Z(−Σ)
∼−→ T e(−G(Σ)).

It is very important to note that our choice made below can be scaled. See remark
11.3, and section 14.

Consider an I-labeled marked surface Σ = (Σ, P, V, (ip)p∈P , L). Write

G(Σ) = (Σ̃, (αp)p∈P , (Vip , 1)p∈P , L)

for the e-surface associated to the m-surface G(Σ). We have that

G(−Σ) = (Σ̃, (αp)p∈P , (Vi∗p , 1)p∈P , L).
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This is not quite −G(Σ). However, let q̇ be the isomorphism of states that take
all markings (Vi∗ , 1) to (V ∗i , 1) and let h̃ be the isomorphism of modules of states
that exchange all markings (V ∗i , 1) with (Vi,−1). Define

∗Σ := (Σ̃, (αp)p∈P , (Vip ,−1)p∈P , L).

Now let r be the orientation-preserving diffeomorphism

r : ∗Σ ∼−→ −G(Σ),

that is given by twisting all arcs with a half-twist. This can of course be done in
two different ways, the important thing for now is that it is done the same way
for all arcs. We return to this choice in the proof of proposition 11.7. Then we
have an isomorphism

T e(r) ◦ h̃ ◦ q̇ : T e(G(−Σ))
∼−→ T e(−G(Σ)).

This will allows us to define a perfect pairing. For notational convenience we will
simply write r′ = T e(r). We will write

(11.5) ζ = T e(r) ◦ h̃ ◦ q̇ : Z(−Σ)
∼−→ T e(−G(Σ)).

One last notational definition will be convenient. For a decorated type t of the
form (g; (Vil , νl)) with il ∈ I for all l, let t∗ be the decorated type (g; (Vi∗l , νl)).

Definition 11.2. Consider an I-labeled marked surface Σ. We have a perfect
pairing given by the composition

( · , · )Σ = 〈 · , ζ( · )〉G(Σ).

Remark 11.3. We note that there are choices involved in defining ζ and therefore
choices involved in the pairing. In particular we here note that we can choose
to scale the qi used in the definition of ζ, such that we use a different set of
isomorphisms in the glueing and in the duality. We will examine this phenomenon
in section 14. Moreover we have here resorted to a slight abuse of notation, since
technically, Z(Σ) is not equal to T e(G(Σ)), but canonically isomorphic to it.

Theorem 11.4 (Duality). The pairing ( · , ·)Σ is a duality pairing for the modular
functor ZV .

11.3 Description of the glueing homomorphism

For the proof of theorem (11.4) we will use an explicit description of the glueing
homomorphism in two cases.
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11.3.1 The two points lie on the same component

We will start by assuming that the points subject to glueing lie on the same
component. Write Σ for the labeled marked surface resulting from glueing and
write Σ(i) for the labeled marked surface with the two points subject to glueing
where the preferred point is labeled with i. Due to the multiplicativity of the
glueing we will assume that Σ(i) is connected. See equation (4.4). We will start
by assuming G(Σ(i)) = Σt, where

t = (g; (Vi1 , 1), ..., (Vik , 1), (Vi, 1), (Vi∗ ,+1)).

Hence G(Σ) = Σt′ where t′ is equal to the topological type (g+1, (Vi1 , 1), ..., (Vik , 1)).
Moreover let

t̃ = (g; (Vi1 , 1), ..., (Vik , 1), (Vi, 1), (Vi,−1)).

In Turaev’s setup we see that Σt̃ can be glued along the points labeled with (Vi, 1)
and (Vi,−1) to obtain Σt′ . Now the identity parametrizations induces isomor-
phisms

T e(Σt̃) '
⊕

l∈Ig
Hom(1,Φ(t̃, l)),

Z(Σ) '
⊕

l∈Ig+1

Hom(1,Φ(t′, l)),

Z(Σ(i)) '
⊕

l∈Ig
Hom(1,Φ(t, l)).

With respect to these isomorphisms, we see that our glueing homomorphism is
the composition

(11.6) Z(Σ(i))
h◦q̇→ T e(Σt̃) ↪→ Z(Σ).

Here the last map is the natural summandwise inclusion. This is proven in section
5.9 of chapter V of [29]. Thus we only need to describe the first map. Consider a
summand in Z(Σ) and an element f

f ∈ Hom
(
1, (⊗kj=1Vij)⊗ Vi ⊗ Vi∗ ⊗gr=1 (Vlr ⊗ V ∗lr)

)
.

Let W = (⊗kj=1Vij) ⊗ Vi, R = ⊗gr=1(Vlr ⊗ V ∗lr) and qi : Vi∗
∼−→ V ∗i be the isomor-

phism used to define the glueing. Post composing f with (1W ⊗ qi ⊗ 1R) we get
an element

(1W ⊗ qi ⊗ 1R) ◦ f ∈ Hom
(
1, (⊗kj=1Vij)⊗ Vi ⊗ V ∗i ⊗gr=1 (Vlr ⊗ V ∗lr)

)
.

To see that h◦ q̇(f) = (1W⊗qi⊗1R)◦f, one can either go through the construction
given in the review in section 7 above and use that the identity cylinder induces
the identity, or one can use the techniques of section 2.3 in chapter IV of [29].
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Now we describe the glueing in a slightly more general situation. We observe
that Σr is naturally a labelled marked surface, for any type r where all marks are
of type (Vi, 1). Assume that we have a parametrization f : Σt → G(Σ(i)). There is
a natural homeomorphism G(Σ(i)) ' Σ(i). With respect to this identification we
can think of f as a diffeomorphism between labeled marked surface that preserves
all the data except possibly the Lagrangian subspaces in homology. There is also
a natural homeomorphism of Σt′ with the surface obtained from Σt by glueing
the ordered pair corresponding under f to the relevant ordered pair of Σ(i). We
have a natural homeomorphism G(Σ) = Σ. As in proposition 3.15 we can choose
a parametrization diffeomorphism F = z(f) : Σt′ → G(Σ) that is compatible with
f. Now f, F induces a pair of isomorphisms

Z(Σ) '
⊕

l∈Ig+1

Hom(1,Φ(t′, l)),(11.7)

Z(Σ(i)) '
⊕

l∈Ig
Hom(1,Φ(t, l)).(11.8)

With respect to these isomorphisms the description given by (11.6) is valid.

11.3.2 The two points lie on distinct components

We assume that Σ(i) = Σ+tΣ− where Σ+ and Σ− are two spheres. Assume that
(p, i) ∈ Σ+ and that (q, i∗) ∈ Σ−.We will assume Σ− = Σt− and Σ+ = Σt+ where
t+ = (0; (Vi1 , 1), ..., (Vin , 1), (Vi, 1)) and t− = (0; (Vi∗ , 1), (Vin+1 , 1), ..., (Vim , 1)).
Thus we get Σ = Σt where

t = (0, (Vi1 , 1), ..., (Vim , 1)).

We get isomorphisms

Z(Σ(i)) ' Hom(1,Φ(t+))⊗ Hom(1,Φ(t−)),

Z(Σ) ' Hom(1,Φ(t)).

Let V1 = Vi1 ⊗ · · · ⊗ Vin and V2 = Vin+1 ⊗ · · · ⊗ Vim . With respect to these
isomorphisms the glueing homomorphism is given by

(11.9) Z(Σ(i)) 3 x⊗ y 7→ (1V1 ⊗ dVi ⊗ 1V2) ◦ (x⊗ qi ◦ y) ∈ Z(Σ).

Here dV is given by F (∩−V ) where F is the Reshetikhin-Turaev functor and ∩−V is
defined in Figure 2.6 in section 2.3 of chapter I in [29]. This formula is verified
by using the description of h ◦ q̇ given above and by arguing very similar to the
reasoning in section 5.10 of chapter V in [29]. In the general case, where Σ+,Σ−

are homeomorphic to spheres, we start with a parametrization of each component
G(Σ±) and then we glue these two together to obtain a parametrization of G(Σ).
These will induce isomorphisms with respect to which the glueing is given by
(11.9). If we start with parametrizations f, g we will write z′(f ⊗ g) for the
resulting parametrization.
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11.4 Proof of theorem 11.4

Proposition 11.5. The pairing (·, ·)Σ is functorial and is compatible with disjoint
union.

Proof. This easily follows from the properties of 〈·, ·〉 and the functorial properties
of q̇, h and r. Observe that even though the axioms in section 1 of chapter II of
[29] only ensure that 〈 · , · 〉 is natural with respect to e-homeomorphisms, it is
proven in exercise 7.3 in chapter IV that the pairing is also natural with respect
to weak e-homeomorphisms.

Thus it remains to prove that it is compatible with glueing, and that it is
self-dual. The proof of the main propositions needed for these results is based on
an explicit ribbon graph presentation of 〈 · , · 〉Σ : T e(Σ)⊗ T e(−Σ)→ K.

All of the proofs in this section are modifications of material appearing in
section 10.4. in chapter IV of [29].

Proposition 11.6 (Surgery presentation of 〈 · , · 〉Σ). Assume Σ is a connected e-
surface. For any parametrization f : Σt → Σ there is an induced parametrization
y(f) : Σ−t → −Σ such that with respect to the two induced isomorphisms

Ψ(t) ' T e(Σ),

Ψ(−t) ' T e(−Σ),

we have the following surgery presentation of 〈 · , · 〉Σ.

X

i j k

Y

l
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Observe that in this proposition, orientation reversal is with respect to ex-
tended e-surfaces. Here the blue unknot’s are the surgery link components. We
depict here the genus 1 case. It is obvious how to generalize to higher genus.

We stress that the tangle is a presentation of a perfect pairing

(11.10) Ψ(t)×Ψ(−t)→ K,

and that we can only use it as a presentation of the duality pairing with respect
to certain pairs of parametrizations f : Σt → Σ and y(f) : Σ−t → −Σ. This will
be explained in the proof. We will denote the pairing from (11.10) by 〈 · , · 〉t.
Proof. This proof is a slight modification of the proof of theorem 10.4.1 in chapter
IV of [29]. Observe that in this proof −Σ is the result of using the operation of
orientation reversal of extended surfaces on Σ.

Choose a parametrization f : Σt → Σ. This will induce a weak e-homeomorphism
−f : −Σt → −Σ. Consider the weak e-homeomorphism s : Σ−t → −Σt given by a
reflection in y = 0 followed by counter clockwise half twists in the plane at the dis-
tinguished arcs - with respect to the usual identification R2×R = R3. This yields
a parametrization y(f) := (−f) ◦ s : Σ−t → −Σ. These two parametrizations
provides isomorphisms

Ψ(t) ' T e(Σ),

Ψ(−t) ' T e(−Σ).

Now let

x ∈ Hom(1,Φ(t, i)) ⊂ T e(Σ), y ∈ Hom(1,Φ(−t, j)) ⊂ T e(−Σ).

Consider the standard handlebodies denoted by P (x) = H(Ut, Rt, i, x) andQ′(y) =
H(U−t, Rt, j, y). We recall that 〈x, y〉 is given by τ(W (x, y)), where W (x, y) is the
closed three manifold with a colored ribbon graph inside it, that is obtained by
glueing P tQ′ to Σ× I through the orientation reversing homeomorphism

∂(P (x) tQ′(y)) = Σt t Σ−t
fty(f)−→ Σ× {0} t Σ× {1} = ∂(Σ× I).

We now observe that the parametrization s : Σ−t → −Σ extends to an e-
homeomorphism of three manifolds

Q′(y)→ Q(y),

where Q(y) is the same handlebody with the LH-orientation and the induced
colored ribbon graph. We have a homeomorphism of extended three manifolds
with colored ribbon graphs

P (x) ∪id Q(y)
∼−→ W (x, y).

Comparing P (x)∪id Q(y) with the three manifold M tid−N as considered in the
proof of theorem 10.4.1 in [29], we obtain the desired presentation.
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Now we want to use this to provide a presentation of the induced duality
pairing on ZV . Again, it should be stressed that this presentation is only valid
with respect to certain parametrizations.

Proposition 11.7 (Surgery presentation of (·, ·)Σ). Let Σ be a connected I-labeled
marked surface. For any parametrization f : Σt → G(Σ) there is a parametrization
u(f) : Σt∗ → G(−Σ) such that with respect to the induced isomorphisms

Ψ(t) ' Z(Σ),

Ψ(t∗) ' Z(−Σ),

we have the following presentation of ( · , · )Σ.

X

i j k

Y

l

qi qj

iú jú

Proof. Choose a parametrization f : Σt → G(Σ). Consider the induced parametriza-
tion y(f) = (−f) ◦ s : Σ−t → −G(Σ) as in the previous proof. This provides
isomorphisms

⊕i∈IgHom(1,Φ(t, i)) ' T e(G(Σ)),(11.11)

⊕i∈IgHom(1,Φ(−t, i)) ' T e(−G(Σ)).(11.12)

Recall the isomorphism

(11.13) T e(r) ◦ h̃ ◦ q̇ : T e(G(−Σ))
∼−→ T e(−G(Σ)).

We can define r such that the half-twists cancel with those of s. More precisely
there is a choice of convention such that the following holds. Let s̃ be the same as
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s but without the twists at the arcs. That is, s̃ is only the reflection in the y = 0
plane. Observe that f induces a parametrization

(−f) ◦ s̃ : Σt∗ → G(−Σ).

Take u(f) = (−f) ◦ s̃. We see that with respect to the parametrizations u(f) and
y(f), the isomorphism

ζ : Ψ(t∗) ∼−→ Ψ(−t)
is given by post composing with q. Now combine the description of the pairing
Ψ(t)⊗Ψ(−t)→ K given in the previous proposition with the description of h̃ ◦ q̇
as post composition with q in each factor to obtain the desired presentation.

We show next that the pairing is compatible with glueing. That is, we prove
that the formula holds and we explicitly calculate the µ′λs. This calculation will
depend on whether or not the two points subject to glueing are on the same
connected component or not.

Proposition 11.8. Let Σ be a connected I-labeled marked surface obtained from
glueing two points subject to glueing that lie on the same component. Consider
the glueing isomorphism

g̃ :
⊕

i∈I
Z(Σ(i))

∼−→ Z(Σ),

as described in definition 4.1. We have

(g̃, g̃)Σ =
∑

i∈I
D4dim(i)−1( · , · )Σ(i).

Proof. We will use the description of the glueing homomorphism given in section
11.3 above. To do this we need to compare two parametrizations of −G(Σ). Recall
that to use (11.6) in general, we start with a paramtrization f : Σt → G(Σ(i))
and provide a parametrization F : Σt′ → G(Σ) that agrees with f away from the
points subject to glueing. Then (11.6) holds with respect to the isomorphisms
(11.7),(11.8). We will write F = z(f). Recall that (11.6) is only valid with re-
spect to a pair of parametrizations (r, y(r)). In order to use (11.6) for the pairing
on G(Σ), we use the pair of parametrizations (z(f), y(z(f)). For the pairing on
G(Σ(i)) we use the pair (f, y(f)). Since (11.6) only holds with respect to isomor-
phisms induced by compatible parametrizations, we need to compare z(y(f)) with
y(z(f)). We see that z(y(f)) is y(z(f)) followed by a Dehn twists at the attached
handle. This implies that

(11.14) (klY
′, z(y(f))) = (Y ′, y(z(f))),

for all Y ′ ∈ Hom(1,Φ(−t′, l)) ⊂ Ψ(−t′), where l is such that the cap correspond-
ing to the points subject to glueing is colored with Vl or Vl∗ . To verify (11.14)



184 Jørgen Ellegaard Andersen and William Elbæk Petersen

recall the description of how to pass from one parametrization to another given
in section 7, and use that a Dehn twists followed by a reflection in y = 0 is the
same as the same reflection followed by the reverse Dehn twist. Using proposi-
tion 11.7, equation (11.14) and equation (11.6), we see that with respect to the
isomorphisms Ψ(t) ' Z(Σ(i)) and Ψ(−t) ' T e(−G(Σ(i)) induced by the pair of
parametrizations (f, y(f)), we have the following presentation of (g̃i, klg̃l∗)

X

r s i iú

qi

Y

lú

qr qs

rú sú l

qlú

Here the blue unknot’s are the surgery link components. For the sake of notational
simplicity we have assumed that

t = (0; (Vr, 1), (Vs, 1), (Vi, 1), (Vi∗ , 1).

The proof in the general case is easily obtained from this, as it relies on a local
argument involving the surgery links. As in the proof of theorem 10.4.1, we get
the following local equality
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i iú
qi

ql

ql
≠1

= ”i,lD
4(dim(i)≠1)

i iú
qi

qi

qi
≠1

= ”i,lD
4(dim(i)≠1)

Thus this pairing is zero unless l∗ = i∗. If so, we conclude that the claimed equation
holds.

Proposition 11.9. Let Σ be a connected I-labeled marked surface obtained from
glueing two points subject to glueing that lie on two distinct components. Consider
the glueing isomorphism

g̃ :
⊕

i∈I
Z(Σ(i))

∼−→ Z(Σ),

as described in definition 4.1. We have that

(g̃, g̃)Σ =
∑

i∈I
dim(i)−1( · , · )Σ(i).

Proof. Let Σ1, be the component containing the first point and let Σ2 be the com-
ponent containing the second point. We may assume that both of these compo-
nents are homeomorphic to spheres. To see this, let x ∈ Z(Σ1) and let y ∈ Z(Σ2).
We want to compare 〈x, y〉 with 〈g̃(x), g̃(y)〉.We can reduce the genus by 1 on one
of the components by factorization. That is, assume Σ1 tΣ2 is obtained from Σ̃
by glueing, where the glueing increase the genus. That is, the points subject to
glueing lie on the same component. Then we may assume x = h(x̃) and y = h(ỹ),
where h is the glueing homomorphism. Now the task is to identify a scalar λ such
that

(h(x̃), h(ỹ)) = λ(g̃ ◦ h(x̃), g̃ ◦ h(ỹ)).

But we already know from the previous proposition, that there is a C ∈ K∗ such
that

(h(x̃), h(ỹ)) = C(x̃, ỹ)

and
(g̃ ◦ h(x̃), g̃ ◦ h(ỹ)) = (h ◦ g̃(x̃), h ◦ g̃(ỹ)) = C(g̃(x̃), g̃(ỹ)).
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In the last equation we use that the pairing is compatible with morphisms and
that glueing is associative. We now see that it will suffice to find λ such that

λ(g̃(x̃), g̃(ỹ)) = (x̃, ỹ).

We have reduced the genus by 1 and can proceed inductively. Thus we can assume
that we deal with spheres. Thus we can use the description of the glueing given
above in section 11.3. For the sake of notational simplicity, we illustrate the
case, where we have two spheres with three marked points. As in the previous
proposition one starts by observing y(z′(f ⊗ g)) followed by a Dehn twists is
z′(y(f)⊗y(g)). This will allow us to adopt the same strategy. We consider 〈g̃i(X⊗
Y ), klg̃l∗(X

′⊗Y ′)〉Σ. The following presentations shows that the given presentation
above naturally factors as a composition P (X,X ′) ◦ Q(Y, Y ′) where P (X,X ′) is
an element of Hom(Vi ⊗ V ∗l ,1) and Q(Y, Y ′) ∈ Hom(1, Vi ⊗ V ∗l ).

X X’

qr qs

Y

qi

Y’

qlú

qt qu

Now the orthogonality follows from the fact that Hom(Vi⊗V ∗l ,1) is 0 if l 6= i and
isomorphic to K otherwise. For l = i we note the following equation that holds
for all f ∈ Hom(Vi ⊗ V ∗l ,1)
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f f

= dim(i)≠1

Applying this to P (X,X ′) and taking into account the twist that occurs when
applying the isotopy to pull qi to the right of qs,, we see that the claim holds.

Corollary 11.10 (Compatibility of the pairing with glueing). The pairing ( · , ·)Σ

is compatible with glueing. It can be rescaled to a pairing 〈 · | · 〉Σ according to
topological types, such that

〈g̃ | g̃〉Σ =
∑

i∈I
〈 · | · 〉Σ(i).

It is easily verified that the following normalization has the given property.
Since the pairing is multiplicative with respect to disjoint union, it is enough to
specify the normalization on connected Σ. Assume therefore that Σ is of genus g
with labels i1, ..., ik. Then the normalization is given by

(11.15) 〈 · | · 〉Σ =

(
D−4g

k∏

l=1

√
dim(il)

)
( · , · )Σ.

It only remains to prove that the pairing is compatible with orientation reversal.

Proposition 11.11 (Compatibility with orientation reversal). The two pairings
〈 · | · 〉 and ( · , · ) are both compatible with orientation reversal.

Proof. Since the normalization factor is the same for Σ and −Σ, we see, that it
is enough to consider ( · , · ). For v ∈ Z(Σ) and w ∈ Z(−Σ) we want to find a
scalar µ such that µ(v, w)Σ = (w, v)−Σ. For the moment let Σ′ be an extended
surface. Recall that in order to use the presentation of the pairing as given in
proposition (11.6), we choose a parametrization f of Σ′ and then we constructed
a parametrization y(f) := (−f) ◦ s. These give isomorphisms T e(Σ′) ' Ψ(t0)
and T e(−Σ′) ' Ψ(−t0). With respect to these parametrizations we can use the
presentation of (11.6). For x ∈ Ψ(t0) and y ∈ Ψ(−t0) it is an easy exercise to
verify

〈x, y〉t0 = 〈y, x〉−t0 .
This identity is also necessary for self-duality, because if we take y(f) as the
parametrization Σ−t0 → Σ′ then we see that y(y(f)) = f. This follows from
the fact that s2 = id, which can be seen from the fact that counter clockwise
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half twists at the arcs, followed by a reflection in the y = 0 plane is the same
as a reflection in the y = 0 plane followed by clockwise half twists at the arcs.
Now choose a parametrization f : Σt → G(Σ). This induces a parametrization
u(f) = (−f) ◦ s̃ : Σt∗ → G(−Σ). Here s̃ is simply the reflection in the y-plane.
With respect to these isomorphisms we see, that 〈 · , · 〉Σ is given as 〈 · , q̇〉t, where
q̇ is given by post composing suitably in each factor of the tensor product. Now
choose g = u(f) : Σt∗ → G(−Σ). Observe u(g) = f . Thus for (v, w) ∈ Ψ(t)×Ψ(t∗)
we simply need to compare 〈v, q̇(w)〉t with 〈w, q̇(v)〉t∗.

Assume the labeled marked points of Σ are i1, ..., ik. Let µ(i) ∈ K∗ be defined
by the following equation

qi = µ(i) qiú

Let µ = µi1 · · ·µik . Recall the fact that 〈v, q̇(w)〉t = 〈q̇(w), v〉−t. Now use the
surgery presentation given in proposition (11.6). In the presentation of 〈q̇(w), v〉−t
pull over the coupons colored with qil from left to right to obtain

(v, w)Σ = µ(w, v)−Σ,

which finishes the proof.

Remark 11.12. We observe that if i 6= i∗, it is possible to consistently choose
qi and qi∗ , such that µ(i) and µ(i∗) takes any values, as long as µ(i)µ(i∗) = 1.
This follows from the fact that turning a coupon upside down, and then turning
the resulting morphism upside down will yield the original morphism. Call this
operation F. Then the equation above reads F (qi) = µ(i)qi∗ . Similarly, it can be
seen that if i∗ = i, then we must have µ(i)2 = 1. Using the axioms for the unit
object of a modular tensor category, it is also easily seen that µ(0) = 1.
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We note the following result, that allow us to define µ on the self-dual objects
independently of q.

Proposition 11.13 (µ is well defined on self-dual objects). Assume that i ∈ I
satisfies i = i∗. Then µ(i) is independent of qi.

The fact that µ(i) might be −1 for i = i∗ leads us to consider the strict
self-duality question in section 16, where we introduce a new algebraic concept
associated to a modular tensor category. As will be clear below, this will in many
cases produce a very interesting normalization of the duality pairing, that will be
strictly self-dual.

12 Unitarity
Consider a complex vector space W with scalar multiplication (λ,w) 7→ λ.w Let
W be the complex vector space with the same underlying Abelian group and
scalar multiplication given by (λ,w) 7→ λ.w. Here λ is the complex conjugate of
λ.

Definition 12.1 (Unitarity). Let (V, g) be a modular functor based on Λ and C.
A unitary structure on V is a positive definite hermitian form

( · , · )Σ : V (Σ)⊗ V (Σ)→ C,

subject to the following axioms.
Naturality. Let f = (f, s) : Σ1 → Σ2 be a morphism between Λ-labeled

marked surfaces. Then

(12.1) (V (f), V (f))Σ2 = ( · , · )Σ1 .

Compatibility with disjoint union. Consider a disjoint union of Λ-labeled marked
surface Σ = Σ1tΣ2. Composing with the permutation of the factors, the modular
functor V provides an isomorphism

η : V (Σ)⊗ V (Σ)
∼−→ V (Σ1)⊗ V (Σ1)⊗ V (Σ2)⊗ V (Σ2).

We demand that with respect to the natural isomorphism C ⊗ C ' C we have
that

(12.2) ( · , · )Σ = (( · , · )Σ1 ⊗ ( · , · )Σ2) ◦ η.

Compatibility with glueing. Let Σ be a Λ labeled marked surface obtained from
glueing. Consider the glueing isomorphism

g :
⊕

λ∈Λ

V (Σ(λ))
∼−→ V (Σ),
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as described in the definition of a modular functor. Clearly g also induces an
isomorphism

g :
⊕

λ∈Λ

V (Σ(λ))
∼−→ V (Σ).

We have

(12.3) (g, g)Σ =
∑

λ∈Λ

µλ( · , · )Σ(λ),

where µλ ∈ R>0 for all λ. We allow the µλ to depend on the isomorphism class of
(Σ, (p, q)).

If the modular functor (V, g) also has a duality pairing we demand the unitary
structure and the duality is compatible in the following sense.

Compatibility with duality. For all labeled marked surfaces Σ, we demand that
the following diagram is commutative up to a scalar ρ(Σ) depending only on the
isomorphism class of Σ

(12.4)

V (Σ) V (−Σ)∗

V (Σ)∗ V (−Σ).

'

' '

'

Here, the horizontal isomorphisms are induced by the duality pairing, whereas the
vertical isomorphisms are induced by the unitary structure.

We now make explicit what the isomorphisms of the diagram (12.4) are. We
start with the composition

ω : V (Σ)
'−→ V (−Σ)∗

'−→ V (−Σ).

Let 〈 · , · 〉 be the duality pairing and ( · , · ) be the Hermitian form. The first map
is given by

V (Σ) 3 f 7→ 〈 · , f〉−Σ : V (−Σ)→ C.

The second map is the inverse of the linear isomorphism V (−Σ)
'−→ V (−Σ)∗

given by
V (−Σ) 3 u 7→ ( · , u)−Σ : V (−Σ)→ C.

Thus ω(f) is defined by

(12.5) 〈x, f〉−Σ = (x, ω(f))−Σ,

for all x in V (−Σ). We now consider the composition

φ : V (Σ)
'−→ V (Σ)∗

'−→ V (−Σ).



Construction of Modular Functors from Modular Categories 191

The first is the linear map

V (Σ) 3 f 7→ ( · , f)−Σ : V (Σ)→ C.

The second map is the inverse of the linear isomorphism V (−Σ)
'−→ V (Σ)∗ given

by
V (−Σ) 3 u 7→ 〈 · , u〉−Σ : V (Σ)→ C.

Thus φ(f) is defined by

(12.6) 〈y, φ(f)〉Σ = (y, f)Σ,

for all y in V (Σ).
Projective commutativity of (12.4) can be reformulated as the existence of

ρ(Σ) in C with

(12.7) φ = ρ(Σ)ω.

13 Unitary structure from a unitary MTC
Recall the definition of a unitary modular tensor category (V , (Vi)i∈I) with conju-
gation f 7→ f as defined in section 5.5. of chapter V in [29]. Recall that K = C
in this case. Assume we are given a unitary modular tensor category. For an
e-surface Σ let ( · , · )Σ be the Hermitian form on T e(Σ) as defined in section 10
of chapter IV in [29].

Theorem 13.1 (Unitarity). Let (V , (Vi)i∈I) be a unitary modular tensor category.
Let Σ be an I-labeled marked surface. Consider the positive definite Hermitian
form

( · , · )Σ = ( · , · )G(Σ).

This defines a unitary structure on ZV compatible with duality.

Proof. It is proven by Turaev, that the induced Hermitian form is natural with
respect to weak e-morphisms, and that it is multiplicative with respect to disjoint
union. As Turaev also proves that ∆−1D = (∆−1D)−1 these two properties carry
over. All of this is proven in section 10 of chapter IV in [29].

Let us now prove that it is compatible with glueing. We first consider the
case where the two points lies on the same component. Since the glueing as well
as the Hermitian form is multiplicative with respect to disjoint union, as well as
natural with respect to morphisms, we may assume that we are in the situation
described in section 11.3. We adopt the the notation form the first subsection
of this section. It follows directly from theorem 10.4.1 in section 10.4 of chapter
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IV in [29] that if i 6= j then (g̃i, g̃j)Σ = 0. Let x, y ∈ Hom(1,Φ(t, j)) ⊂ Z(Σ(i)).
Using theorem 10.4.1, linearity of tr and C ' End(Vi∗), we get that

(g̃i(x), g̃i(y))Σ = Dg

(
dim(i)

g∏

c=1

dim(jc)

)−1

tr(g̃i(x) ◦ g̃i(y)).

Here g is the genus of Σ. Unwinding the glueing formula and using properties of
the conjugation as well as of the trace we get that

Dg((dim(i)dim(j))−1 tr((1W ⊗ qi ⊗ 1R) ◦ x ◦ y ◦ (1W ⊗ qi ⊗ 1R))

= Dg((dim(i)dim(j))−1 tr((1W ⊗ qi ◦ qi ⊗ 1R) ◦ x ◦ y)

= Ddim(i)−1λi(x, y)Σ(i).

Here λi ∈ C is defined by

(13.1) λi1Vi∗ = qi ◦ qi.

Thus we get that

(13.2) (g̃, g̃)Σ =
∑

i∈I
Ddim(i)−1λi( · , · )Σ(i).

We now consider the case where the two points subject to glueing lie on distinct
components. Using the result above, we may assume that these are homeomorphic
to spheres. This can be argued as in the proof of Proposition (11.9). Using
naturality and multiplicativity of both the glueing and the Hermitian form, we
may assume that we are in the situation of the second subsection in section 11.3.
An argument based on the surgery presentation of the form given in the proof of
theorem 10.4.1 and based on the ideas of section 10.6 will show that in this case,
we have that

(13.3) (g̃, g̃)Σ =
∑

i∈I
dim(i)−1λi( · , · )Σ(i).

Finally we prove that the unitary structure is compatible with duality. This
is done by considering a surgery presentations of the equations (12.5) and (12.6).
Let f ∈ Z(Σ). We may assume Σ is connected. Equation (12.5) is presented
as an equation involving ω(f) and equation (12.6) is presented as an equation
involving φ(f). Conjugating the surgery presentation of (12.5) we see that φ(f) =

1
σ(i1)···σ(im)

ω(f) where σ(i) is defined as λi∗µ(i). Thus, if Σ is an I-labeled marked
surface (not necessarily connected) with labels i1, ..., im we see that

(13.4) ρ(Σ) =
m∏

l=1

σ(il)
−1,

which concludes the proof.



Construction of Modular Functors from Modular Categories 193

14 Scaling of the duality, unitarity and glueing

14.1 A choice of isomorphisms qi
For the remainder of section 14,15, and 16 we fix a choice q := (qi)i∈I where
qi : Vi∗ → Vi

∗ is an isomorphism. Recall the definition of µ c.f. proposition 11.13.
We can and will assume that µ(i) = 1 for all i with i 6= i∗. In addition, if V is
unitary, we can and will assume that qi ◦ qi = idV ∗i . Note however that all results
from section 14.2 are true independently of these two extra assumptions. Let ki
be the twist coefficients of the modular tensor category. For the remainder of
this article we fix for all i a choice of

√
dim(i) and a choice of

√
ki. We make

these choices invariant under i 7→ i∗. If K = C and dim(i) is positive, we of course
choose the positive square root. This will be the case if V is assumed to be unitary.
We recall that if this is the case then ki ∈ S1.

The choice q gives us a modular functor with duality (Z, g̃, 〈 · , · 〉). This is
the content of theorem 5.8 and theorem 11.4. It serves as a set of reference
isomorphisms, when dealing with scalings.

14.2 The scaling analysis

As mentioned above, both the glueing g̃ and the pairing 〈 · , · 〉 depends on our
choice of isomorphisms Vi∗

∼−→ V ∗i , i ∈ I. As we are considering isomorphisms
between simple objects, any other choice q̂i will be of the form q̂i = uiqi for some
ui ∈ K∗, where K∗ denotes the group of units in K. We now investigate how
the different compatibilities of the modular functor with duality are affected by
scaling. For u ∈ K∗I let q(u) := (uiqi)i∈I . Let g̃u be the glueing defined using
q(u). To be precise, this means that in equation (5.1) we use uiqi instead of qi. Let
〈 · , · 〉u be the pairing defined using q(u). To be precise, this means that in the
equation (11.5) we use uiqi instead of qi. We observe that if Σ has labels i1, ..., im
then we have that

(14.1) 〈 · , · 〉uΣ =

(
m∏

l=1

uil

)
〈 · , · 〉Σ.

We will write
〈 · , · 〉uΣ = u(Σ)〈 · , · 〉Σ.

Let u,w ∈ K∗I . Below we will consider what happens, if we use q(u) to define the
glueing, and q(w) to define the pairing.

Definition 14.1 (Genus normalized pairing). Let w ∈ K∗I . For a surface of genus
g we consider the following normalization

〈 · , · 〉w∗,Σ := D−4g〈 · , · 〉w.
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Consider a general modular functor V with label set I. Assume V has a duality
pairing 〈·, ·〉. Consider S2 equipped with the Stokes orientation, where B3 is given
the RHS orientation. Let (S2, i, j) have the northpole colored with i and the south-
pole colored with j. There is a natural isotopy to the standard decorated surface of
type (0; (Vi, 1), (Vj, 1)). This induces an isomorphism Z(S2, i, j) ' Hom(1, Vi⊗Vj).
Let ω(i) be the unique vector in Z(S2, i, i∗) that solves g̃(ω(i)⊗ ω(i)) = ω(i). Let
ζ(i) ∈ Z(−(S2, i, i∗)) be the unique vector that solves the analogous glueing prob-
lem. We define

(14.2) Z(i) := 〈ω(i), ζ(i)〉(S2,i,i∗).

We now return to ZV .

Proposition 14.2. Under the isomorphism Hom(1, Vi⊗Vi∗) ' Z(S2, i, i∗) induced
by the identity parametrization we see that ω(i) is given as

q≠1
i

µ(i)

.

Proposition 14.3. We have that

(14.3) 〈ω(i), ζ(i)〉 = k−1
i dim(i).

We start by observing that if Σ has labels i1, ..., im then we have

(14.4) 〈 · , · 〉wΣ =

(
m∏

l=1

wil

)
〈 · , · 〉Σ.

We will write
〈 · , · 〉wΣ = w(Σ)〈 · , · 〉Σ.

Proposition 14.4. Assume i, i∗ label points on the same component. Then we
have that

(14.5) 〈g̃iu, g̃i
∗
u 〉wΣ =

uiui∗

wiwi∗
D4dim(i)−1〈 · , · 〉wΣ(i).

Assume i, i∗ label points on distinct components. Then we have that

(14.6) 〈g̃iu, g̃i
∗
u 〉wΣ =

uiui∗

wiwi∗
dim(i)−1〈 · , · 〉wΣ(i).

We want to know how scaling affects the self-duality scalar µ.
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Proposition 14.5. We have that

(14.7) µ(i, w) =
wi
wi∗

µ(i).

Let ω(i, u) ∈ Z(S2, i, i∗) be the unique vector that solves the analogous equa-
tion g̃u(ω(i, u)⊗ ω(i, u)) = ω(i, u). Then

(14.8) ω(i, u) = u−1
i ω(i).

Let ζ(i) ∈ Z(−(S2, i, i∗)) = Z(−S2, i∗, i) be the image of ω(i, u) under Z(r). Again
we have that

(14.9) ζ(i, u) = u−1
i ζ(i).

We now investigate how this affect the compatibility of the unitary structure with
glueing.

Proposition 14.6. Let Σ be a connected I-labeled marked surface obtained from
glueing two points subject to glueing that lie on one and the same component.
Consider the glueing isomorphism

g̃u :
⊕

i∈I
Z(Σ(i))

∼−→ Z(Σ).

We have that

(14.10) (g̃u, g̃u)Σ =
∑

i∈I
D4dim(i)−1λiuiui( · , · )Σ(i).

Proposition 14.7. Let Σ be a connected I-labeled marked surface obtained from
glueing two points subject to glueing that lie on two distinct components. Consider
the glueing isomorphism

g̃u :
⊕

i∈I
Z(Σ(i))

∼−→ Z(Σ),

We have that

(14.11) (g̃u, g̃u)Σ =
∑

i∈I
dim(i)−1λiuiui( · , · )Σ(i).

14.3 Normalizations

For u,w ∈ K∗I we now consider the compatibility of the glueing g̃u with the
pairing 〈 · , · 〉w.
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Let 〈 · | · 〉u,w be the normalized pairing given by

(14.12) 〈 · | · 〉u,wΣg ,i1,...,ik
=

(
D−4g

k∏

l=1

su,wil

)
〈 · , · 〉wΣg ,i1,...,ik ,

where

(14.13) su,wi :=

√
wiwi∗

√
dim(i)√

uiui∗
.

From 14.4 we immediately get the following

Corollary 14.8. The pairing 〈 · | · 〉u,w is strictly compatible with the glueing g̃u.
That is

(14.14) 〈g̃iu | g̃i
∗
u 〉u,wΣ = 〈 · | · 〉u,wΣ(i).

We will write

〈 · | · 〉u,wΣg ,i1,...,ik
:= s(Σ, u, w)〈 · , · 〉.

If we want to stress the choice of square roots chosen for wiw∗i and uiu∗i we will
write

〈 · | · 〉u,w,S.
Observe that

s(Σ, u, w) =

(
D−4g

k∏

l=1

su,wil wil

)
,

when Σ = (Σg, i1, ..., ik). We now consider a normalization of the Hermitian form.
This normalized Hermitian form will be strictly compatible with the glueing g̃u.
First we note that

(14.15) ( · | · )uΣ =

(
D−4g

k∏

l=1

ruil

)
( · , · )Σ,

where

(14.16) rui =

√
dim(i)√
λiuiui

.

Corollary 14.9. The Hermitian form ( · | · )u is strictly compatible with the
glueing g̃u. That is

(14.17) (g̃iu | g̃iu)uΣ = ( · | · )uΣ(i).
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Recall the convention that the square root of any positive number is assumed
to be chosen positive. Thus there is no ambiguity in choosing the ri. Of course we
have to choose them positively, if we want the pairing to remain positive definite.
We will write

( · | · )uΣ = r(Σ, u)( · , · )Σ

Proposition 14.10. Assume Σ is an I-labeled marked surface (not necessarily
connected) with labels i1, ..., im. With respect to the normalized duality 〈 · | · 〉u,w
and the normalized Hermitian form ( · | · )u we have the following equation

(14.18) ρu,wN (Σ) =
(
r(Σ, u)r(−Σ, u)

)(
s(Σ, u, w)s(−Σ, u, w)

)−1
m∏

l=1

σ(il)
−1.

With respect to the genus normalized pairing 〈·, ·〉w∗ we have the following equation

(14.19) ρu,wg,N(Σ) =
m∏

l=1

(
ruilr

u
il
∗
)

(σ(il)wilwil∗)
−1 .

Observe that since r is always real (and positive) we have r(−Σ, u) = r(−Σ).

15 The canonical symplectic rescaling
Assume in the following that K is an integral domain. Recall that in accordance
with the assumptions made in section 14.1 we have µ(i) = 1 for all i with i 6= i∗.
In this section, we only consider scalings u : I → K∗ that satisfies ui = ui∗ . Recall
the definition of the normalization coefficients

su,wi :=

√
wiwi∗

√
dim(i)√

uiui∗
.

If u,w are invariant under i 7→ i∗ we see that we have canonical square roots given
by
√
X2 = X. In the following, the normalization coefficients shall be interpreted

according to this.

Definition 15.1 (Symplectic labels). Let i ∈ I satisfy i = i∗. We say that i is
symplectic if µ(i) = −1.

Definition 15.2 (Symplectic multiplicity). Let Σ be a labeled marked surface.
Let ν(Σ) denote the number of marked points on Σ labeled with symplectic labels.
We call this number the symplectic multiplicity.

Theorem 15.3 (Canonical symplectic scaling). Choose u,w ∈ (K∗)I that solves

(15.1) ui = su,wi wi
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for all i. Then the modular functor ZV with glueing g̃(u) and genus normalized
duality 〈 · , · 〉u∗ satisfies that glueing and duality are strictly compatible and the
duality is self-dual up to a sign which is given by the symplectic multiplicity

(15.2) µ = (−1)ν .

We have that

(15.3) Z(i) =
dim(i)

ki
.

Moreover, any two solutions (u,w) and (u′, w′) results in modular functors with
duality that are isomorphic through an isomorphism that preserves the duality
pairing.

Remark 15.4. We emphasize that equation (15.1) means that one uses the same
scaling for the glueing isomorphism as one uses in the duality paring.

Before commencing the proof, we observe that up to a sign there is a preferred
solution given by choosing wi = 1 for all i and solving

√
dim(i)

ui
= ui.

If there is no such ui we may formally add it. If (u,w) is a solution, we will write
Zu for the resulting modular functor with duality (Z, g̃(u), 〈 · , · 〉u∗) .

Proof. Let (u,w) be a solution. The fact that this is a solution to (15.1) implies
that

〈 · , · 〉u∗ = 〈 · | · 〉u,w.
Since the bracket on the left is strictly compatible with g̃(u) by corollary 14.8
the first claim follows. Equation (15.2) is an easy consequence of wi = wi∗ ,
proposition 14.5 and the proof of proposition 11.11. Equation (15.3) follows from
the fact that a proof of proposition 14.3 only depends on the fact that the same
set of isomorphisms Vi∗

∼−→ V ∗i is used for the duality as well as for the glueing,
and that we always have µ(i, w)µ(i∗, w) = 1 for all w : I → K∗. The proof of
proposition 14.3 is a straightforward calculation of the surgery presentation given
above.

Finally we prove that if we have two solutions, then they are isomorphic as
modular functors through an isomorphism that preserves the duality. Consider
a function α : I → K∗. Let Σ be a labeled marked surface with labels i1, ..., ik.
Then α induces an automorphism Φα = Φ,

Φ(Σ) : Z(Σ)
∼−→ Z(Σ),
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given by Φ(Σ) =
(∏k

l=1 α(il)
)
idZ(Σ). Since this is multiplicative with respect to

labels, it is easily seen that Φ is compatible with the action induced by morphisms
of labeled marked surfaces, disjoint union and the permutation.

We will think of Φ as a morphism of modular functors Zu → Zu′ . We now
identify sufficient conditions for Φ to be compatible with glueing and with the du-
ality pairings. We start with glueing. Let Σ(λ) be obtained by glueing Σ(λ, i, i∗).
Compatibility with glueing is equivalent to the following equation

g̃iu′ ◦ Φ(λ, i, i∗) = Φ(λ) ◦ g̃iu.

This is equivalent to

(15.4) α(i)α(i∗) =
ui
u′i
.

For Φ to be compatible with duality, we must have that

〈 · , · 〉∗,u = 〈Φ(Σ)( · ),Φ(−Σ)( · )〉∗,u′ .

For this equation to be satisfied, we see that equation (15.4) is sufficient. If this
is so, then β = α−1 : I → K∗ will satisfy

β(i)β(i∗) =
u′i
ui
.

Therefore Φβ will be an inverse morphism that preserves the duality. Thus we can
choose any function α : I → K∗ that satisfies (15.4), and then Φ = Φα will be an
isomorphism Zu ∼−→ Zu′ that preserves the duality pairing. That such a function
exists follows from the fact that u, u′ are both invariant under i 7→ i∗.

15.1 Unitarity

Assume now that K = C and that V comes equipped with a unitary structure
Hom(V,W ) 3 f 7→ f ∈ Hom(W,V ). Recall that by section 14.1 we have qi ◦ qi =
idV ∗i . Thus λi = 1 for all i.

Theorem 15.5. Assume (u,w) is a solution to (15.1) with |wi| = 1 for all i. Then
the following holds. Up to a sign the genus normalized duality pairing 〈 · , · 〉∗,u is
compatible with the normalized Hermitian form ( · | · )u. This sign is given by the
parity of the symplectic multiplicity

ρ = (−1)ν .

Moreover any two solutions (u,w) and (u′, w′) to (15.1) yields modular functors
Zu, Zu′ that are isomorphic through an isomorphism that respects the duality pair-
ing as well as the Hermitian form.
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Proof. Consider a labeled marked surface Σ with labels i1, ..., ik. Recall the fol-
lowing formula from proposition 14.10

ρu,ug,N(Σ) =
m∏

l=1

(
ruilr

u
il
∗
)

(σ(il)uiluil∗)
−1 .

Recall that σ(i) = λi∗µ(i) = µ(i). So in our situation we see that the product
of the σ′is is equal to µ(Σ), which we already know is given by (−1)ν(Σ). Since
ui = u∗i and λi = 1 for all i we get

ruilr
u
il
∗ =

dim(i)

|ui|2
.

Thus ρ/µ is seen to be a product of factors of the form

dim(i)

|ui|4
.

The equation
u2
i = w2

i

√
dim(i),

implies that all of these factors are 1. Here we use that |wi| = 1 for all i.
Assume now that (u′, w′) is another solution. We recall that the isomorphism

Zu ∼−→ Zu′ from theorem 15.3 can be constructed by choosing a suitable function
α : I → C with α(i)α(i∗) = ui/u

′
i for all i. For any labeled marked surface Σ the

isomorphism
Φα : Zu(Σ)

∼−→ Zu′(Σ),

will be multiplication by α(i1) · · ·α(ik) where i1, ..., ik are the labels of Σ. However,
since |wi| = |w′i| = 1 for all i we see that |ui| = |u′i| for all i. This implies the
following two things. First rui = ru

′
i for all i. Second it implies that we can choose

α(i) = α(i∗) to be a square root of ui/u′i, which lies on the unit circle. Therefore
Φα will be a Hermitian isomorphism.

16 The dual of the fundamental group of a mod-
ular tensor category

Recall the definition of the dual of the fundamental group and a fundamental
symplectic character of a modular tensor category given in the introduction.

Theorem 16.1. Assume that a modular tensor category (V , I) has a fundamental
symplectic character. Then there exists u : I → K∗ such that the genus normalized
duality pairing 〈 · , · 〉u∗ is strictly self-dual, strictly compatible with glueing and we
have that

Z(u, i) =
dim(i)

ki
.
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Moreover if V is unitary and the image of µ̃ above is a subset of

S(K) = {z ∈ K|zz̄ = 1},

then we can choose u, such that 〈 · , · 〉u∗ is strictly compatible with the Hermitian
form ( · | · )u.

Before commencing the proof, we remark that if µ(i) = 1 for all self-dual
objects i, then the neutral element e ∈ Π(V , I)∗ is such an extension.

Proof. Partition I = ISDtINSD such that i ∈ ISD if and only if i∗ = i. We further
have the natural splitting

ISD = I+
SD t I−SD,

where i ∈ I+
SD if and only if µ(i) = 1. Hence we have of course that i ∈−SD if and

only if µ(i) = −1.
Let us now pick a splitting

INSD = I1
NSD t I2

NSD,

such that i ∈ I1
NSD if and only if i∗ ∈ I2

NSD.
We start by describing the normalization. Recall that the choice made in

section 14.1 implies that µ(i) = µ(i∗) = 1 whenever i 6= i∗. Let w : I → K∗. We
consider the genus normalized pairing 〈 · , · 〉w∗ . We have that

µ(i, w) =
wi
w∗i
µ(i).

Since µ̃(i) = µ̃(i∗)−1 this implies that we can consistently choose wi, w∗i such that
µ(i, w) = µ̃(i) whenever i is not self-dual. Since µ̃ is assumed to extend the µ on
the self-dual objects we conclude that we can normalize such that µ(i, w) = µ̃(i).
Assume that we can choose w such that 〈 · | · 〉w∗ is also strictly compatible with
glueing. We want to argue that in this case, we have µ(Σ) = 1 unless Z(Σ) = 0.

Let Σ be a labeled marked surface. We recall that proving strict self-duality
is the same as proving that for all (x, y) ∈ Z(Σ)× Z(−Σ) we have

〈x, y〉Σ = 〈y, x〉−Σ.

Let C be a collection of simple closed curves on Σ, whose homology classes are
contained in the Lagrangian subspace of Σ and such that factorization along all
of these will produce a disjoint union of spheres with one, two or three marked
points. For the existence of such a collection see [31]. Let λ ∈ IC and let ΣC(λ)
be the labeled marked surface obtained from factorization in C. Thus ΣC(λ) is
a disjoint union of labeled marked surfaces of genus zero with one, two or three
labels. Write ΣC(λ) = tkl=1Sl(λ). Let Pλ : Z(Σ) → Z(ΣC(λ)) be the projection
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resulting from the factorization isomorphism. Let x ∈ Z(Σ) and let y ∈ Z(−Σ).
We can write Pλ(x) as a finite sum

∑

α∈(x,λ)

x(α, λ)(1) ⊗ · · · ⊗ x(α, λ)(l),

with x(α, λ)(i) ∈ Z(Si(λ)). Here (x, λ) is a finite index set depending only on x
and λ. In a similar way we write Pλ∗(y) as a finite sum of the form

∑

β∈(y,λ∗)

y(β, λ∗)(1) ⊗ · · · ⊗ y(β, λ∗)(l).

Recalling the following identity −(Σ(λ)) = (−Σ)(λ∗), we have that

〈x, y〉Σ =
∑

λ∈IC
〈Pλ(x), Pλ∗(y)〉ΣC(λ)

=
∑

λ∈IC

∑

α∈(x,λ),β∈(y,λ∗)

k∏

l=1

〈x(α, λ)(l), y(β, λ∗)(l)〉Sl(λ).

Similarly we see that

〈y, x〉−Σ =
∑

λ∗∈IC

∑

α∈(x,λ),β∈(y,λ∗)

k∏

l=1

〈y(β, λ∗)(l), x(α, λ)(l)〉(−Sl)(λ∗).

Therefore we see that it reduces to the case of spheres marked with one, two or
three points. If a sphere is marked with one point its module of states is zero
unless the point is labeled with 0, but we already saw that µ(0, w) = 1. If it is
marked with two points then we use that its associated module of states is zero
unless its labels are i, i∗. If this is the case then the desired equality follows from
µ̃(i)µ̃(i∗) = 1. Finally, for a sphere with three points labeled by i, j, k, we recall
that the associated module of states is isomorphic to Hom(1, Vi ⊗ Vj ⊗ Vk) which
is zero unless µ̃(i)µ̃(j)µ̃(k) = 1.

Therefore it amounts to choosing (u,w) such that

(16.1) ui =

√
wiw∗i

√
dim(i)

√
uiui∗

wi,

and

(16.2) µ(i)
ui
ui∗

= µ̃(i).

Choose a square root of µ̃(i) and a square root of µ(i) for each i. This can be done
consistently such that

√
µ̃(i∗) = 1/

√
µ̃(i), for i 6= i∗. Now define η : I → K∗ by

ηi :=
√
µ̃(i)

√
µ(i).



Construction of Modular Functors from Modular Categories 203

With such a choice we have for all i ∈ I that

ηiηi∗ = 1.

This implies the important equation

(16.3)
ηi
ηi∗

= µ̃(i)µ(i).

Take wi = ηi for all i. Consider i ∈ I1
NSD. Fix a choice

√
µ̃(i∗) and then solve

u2
i =

√
dim(i)√
µ̃(i∗)

ηi.

Therefore, if we define ui∗ = uiµ̃(i∗) then equation (16.1) is true for i, since we may
choose

√
uiui∗ = ui

√
µ̃(i∗) in this case. We now need to check that equation (16.1)

is also true for i∗. We can choose
√
uiui∗ = ui∗

√
µ̃(i), with

√
µ̃(i) = 1/

√
µ̃(i∗).

Then we must check that

u2
i∗ =

√
dim(i)√
µ̃(i)

ηi∗

We compute that

u2
i∗ = u2

i µ̃(i∗)2

= µ̃(i∗)u2
i µ̃(i)−1

=
µ̃(i∗)√
µ̃(i∗)

√
dim(i)ηiµ̃(i)−1

=
√
µ̃(i∗)

√
dim(i)ηi∗

=
1√
µ̃(i)

√
dim(i)ηi∗ .

Thus (16.1) holds for all j ∈ INSD. For i ∈ ISD we have ηi = 1 and it is easy to
choose ui satisfying (16.1). That (16.2) holds is an easy consequence of equation
(16.3). That

Z(i) =
dim(i)

ki
,

follow as in the proof of theorem 15.3.
Finally, assume that (V , I) is unitary. The choice made in section 14.1 ensures

λi = 1 for all i. Observe that ηi ∈ S1 for all i. Therefore |ui| = |ui∗| = 1
dim(i)4

.
According to proposition 14.10 we know ρ is given by

ρu,ug,N(Σ) =
m∏

l=1

(
ruilr

u
il
∗
)

(σ(il)uiluil∗)
−1 .



204 Jørgen Ellegaard Andersen and William Elbæk Petersen

We have
rui r

u
i∗ =

dim(i)

|ui||ui∗|
.

Using σ(i) = µ(i) we see that

σ(i)uiui∗ = µ(i)
ui
ui∗

ui∗ui∗ = µ̃(i)|ui∗|2.

Thus we get that

ρu,ug,N(Σ) =
m∏

l=1

µ̃(i∗l ).

The argument given above proves that this is 1 unless Z(Σ) = 0.

Corollary 16.2. Assume µ̃ is as above. Assume a labeled marked Σ surface has
labels i1, ..., ik. We see that

∏l
l=1 µ̃(il) 6= 1 implies Z(Σ) = 0.

17 The quantum SU(N) modular tensor categories
We refer to the papers [28], [30] and [16] (which uses the skein theory model for
the SU(2) case build in [17], [18]) for the complete construction of the quantum
SU(N) modular tensor category HSU(N)

k at the root of unity q = e2πi/(k+N). For a
short review see also [14]. The simple objects of this category are indexed by the
following set of young diagrams

ΓN,k = {(λ1, . . . , λp) | λ1 ≤ k, p < N}.

The involution † : ΓN,k → ΓN,K is defined as follows. For a Young diagram λ in
ΓN,k we define λ† ∈ ΓN,k to be the Young diagram obtained from the skew-diagram
(λN1 )/λ by rotation as indicated in the following figure.

λ

λ† rotated

N rows
of length
λ1 in total

Let µ = e2πi/N and ζN be the set of N ’th roots of 1 in C. We then consider the
following map

µ̃ : ΓN,k → ζN

given by
µ̃(λ) = µ|λ|,

where |λ| = λ1 + . . .+ λp.
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Proposition 17.1. We have that

µ̃ ∈ Π(H
SU(N)
k ,ΓN,k)

∗.

Proof. We have
µ̃(λ)µ̃(λ†) = 1,

since |λ|+ |λ†| = Nλ1 by construction. Now consider λ, µ, ν ∈ ΓN,k. By the very
definition HSU(N)

k (0, λ⊗ µ⊗ ν) = 0 if

|λ|+ |µ|+ |ν| 6∈ NZ,

since the |λ|+ |µ|+ |ν| ingoing strands at the top of the cylinder over the disc can
only disappear into coupons N at the time inside the cylinder, since we have the
empty diagram at be bottom determined by the label 0.

Using the notation in [14], we will now fix isomorphisms

qλ ∈ HSU(N)(λ†, λ∗),

as indicated in the figure below (illustrated for some particular element λ ∈ Γ6,k

for k ≥ 5)
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16 16 16 16 16

This gives us µ : ΓN,k → C∗ such that

F (qλ) = µ(q)qλ† .

Proposition 17.2. For N odd and any λ ∈ ΓN,k, we have that

µ(λ) = 1.

For N even and any λ ∈ ΓN,k we have that

µ(λ) = (−1)|λ|.

Proof. We observe that if we apply F to qλ, top and bottom can by a half rota-
tion be brought into the right position for comparison with qλ† and the relevant
computation for each coupons in between is the following
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m

n

1N

=

n

m
1N

=

m
n

1N =

m
n

1N

= (�1)Nm�m

mn

1N

Here the last sign is a result of the following calculation in the notation of [16],
using that

a = q−
1

2N , v = q−
N
2 , s = q

1
2 ,

namely, the braiding and the twist on top of the coupon contributes

(−a−1s)nm+m(m−1)(a−1v)m = (−1)Nm−m

times the coupon with the strands in the original position again.

From this proposition, we observe that if N is odd or N is divisible by 4, then
there are no self-dual symplectic objects in H

SU(N)
k . If however, N is even, but

N/2 is odd, then the self-dual objects are symplectic if and only if they have an
odd number of boxes. Moreover, we observe that on these self-dual objects

µ̃(λ) = −1.

In all cases, we see that µ̃ is a fundamental symplectic character.

18 The general quantum group modular tensor
categories

We will now fix a simple Lie algebra g and we will consider the corresponding
quantum group at the root of unity q = e2πi/(k+h). The associated modular tensor
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category will be denoted (H
g
k ,Λ

g
k ). Let W be the weight lattice and R the root

lattice for g. We recall that the fundamental group of g is Π(g) =W/R. We have
three general facts about Π(g). The first one is that

λ+ λ† = 0 mod R,

for all dominant weights λ ∈ W+ and λ† = −w0(λ), where w0 is the longest
element of the Weyl group, e.g. λ† is the highest weight vector of the dual of the
irreducible representation Vλ, corresponding to λ. We further observe that if Vλ
is self-dual, then 2λ will be in R.

The second fact is that if we know that for λ, µ, ν ∈ W+

HomG(0,Vλ ⊗ Vµ ⊗ Vν) 6= 0,

then
λ+ µ+ ν 6= 0 mod R.

We recall that
HomG(0,Vλ ⊗ Vµ ⊗ Vν) = 0,

implies that
H

g
k (0, Vλ ⊗ Vµ ⊗ Vν) = 0.

The corresponding property for the modular functor coming from Conformal Field
Theory (see [12]) is clear by construction.

We now recall that Π(g) is cyclic unless g = Dn, where Π(g) = Z2 × Z2. In
the last case, one knows that (1, 0) and (0, 1) are symplectic, but (1, 1) is not.
From this we conclude that in all cases, we see that there exist some even N and
a homomorphism

µ̃′ : Π(g)→ ζN ,

such that µ̃′(λ) = −1 if and only if λ is symplectic. But then we define

µ̃ : Λ
g
k → ζN

to be the composite of the projection from Λ
g
k to Π(g) followed by µ̃′.

We then see that µ̃ ∈ Π(H
g
k )∗ and indeed it is a fundamental symplectic

character.
We remark that the result of this section applied to g = sl(N) gives a second

proof for the existence of a fundamental symplectic character in that case.
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The boundary length and point spectrum enumeration
of partial chord diagrams using cut and join recursion

by Jørgen Ellegaard Andersen, Hiroyuki Fuji,

Robert C. Penner, and Christian M. Reidys1

Abstract

We introduce the boundary length and point spectrum, as a joint gen-
eralization of the boundary length spectrum and boundary point spectrum
introduced by Alexeev, Andersen, Penner and Zograf. We establish by
cut-and-join methods that the number of partial chord diagrams filtered by
the boundary length and point spectrum satisfies a recursion relation, which
combined with an initial condition determines these numbers uniquely. This
recursion relation is equivalent to a second order, non-linear, algebraic par-
tial differential equation for the generating function of the numbers of par-
tial chord diagrams filtered by the boundary length and point spectrum.

1 Introduction

A partial chord diagram, is a special kind of graph, which can be specified as
follows. The graph consists of a number of line segments (which we will also
call backbones) arranged along the real line (hence they come with an ordering)
with a number of vertices on each. A number of semi-circles (called chords)
arranged in the upper half plan are attached at a subset of the vertices of the line
segments, in such a way that no two chords have endpoints on the line segments
in common. The vertices which are not attached to chord ends are called the
marked points. A chord diagram is by definition a partial chord diagram with no
marked points. Partial chord diagrams occur in many branches of mathematics,
including topology [12, 15], geometry [8, 9, 2] and representation theory [13].

1Keywords: chord diagram, fatgraph, cut and join equation
AMS Classification: 05A15, 92-08
Acknowledgments: The authors thank Masahide Manabe and Piotr Su lkowski for useful
comments. JEA and RCP are supported by the Centre for Quantum Geometry of Moduli
Spaces which is funded by the Danish National Research Foundation. The research of HF is
supported by the Grant-in-Aid for Research Activity Start-up [# 15H06453], Grant-in-Aid for
Scientific Research(C) [# 26400079], and Grant-in-Aid for Scientific Research(B) [# 16H03927]
from the Japan Ministry of Education, Culture, Sports, Science and Technology.
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Furthermore, they play a very prominent role in macro molecular biology. Please
see the introduction of [6] for a short review of these applications.

As documented in [17, 25, 24, 11, 10, 7, 3, 4, 1, 23, 22, 5, 6], the notion of a
fatgraph [18, 19, 20, 21] is a useful concept when studying partial chord diagrams2.
A fatgraph is a graph together with a cyclic ordering on each collection of half-
edges incident on a common vertex. A partial linear chord diagram c has a natural
fatgraph structure induced from its presentation in the plane. The fatgraph c has
canonically a two dimensional surface with boundary Σc associated to it (e.g. see
Figure 1).

Figure 1: The partial chord diagram c and the surface Σc associated to
the fatgraph with marked points. This partial chord diagram has the type
{g, k, l; {bi}; {ni}; {ℓi}} = {1, 6, 2; {b6 = 1, b8 = 1}; {n0 = 2, n1 = 2}; {ℓ1 =
1, ℓ2 = 2, ℓ9 = 1}}. The boundary length-point spectra are {m(1) = 1, m(0,0) =
2,m(0,0,0,0,0,1,0,0,0) = 1}.

We now recall the basic definitions from [1] for a partial chord diagram c.

• The number of chords, the number of marked points, and the number of
backbones of c are denoted k, l, and b respectively.

• The Euler characteristic and the genus of Σc, are denoted χ and g respec-
tively. If n is the number of boundary components of Σc, we have that

χ = 2 − 2g,(1.1)

and g obeys Euler’s relation

2 − 2g = b − k + n.(1.2)

• The backbone spectrum bbb = (b0, b1, b2, . . .) are assigned to c, if it has bi back-
bones with precisely i ≥ 0 vertices (of degree either two or three);

• The boundary point spectrum nnn = (n0, n1, . . .) is assigned to c, if its bound-
ary contains ni connected components with i marked points;

2In [16, 14], the Schwinger-Dyson approach to the enumeration of chord diagrams is also
discussed.
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• The boundary length spectrum ℓ = (ℓ1, ℓ2, . . .) is assigned to c, if the bound-
ary cycles of the diagram consist of ℓK edge-paths of length K ≥ 1, where the
length of a boundary cycle is the number of chords it traverses counted with
multiplicity (as usual on the graph obtained from the diagram by collapsing
each backbone to a distinct point) plus the number of backbone undersides
it traverses (or in other words, the number of traversed connected compo-
nents obtained by removing all the chord endpoints from all the backbones).

We now introduce the combination of the boundary length spectrum and the
boundary point spectrum, namely our new boundary length and point spectrum.

• The boundary length and point spectrum mmm = (m(d1,...,dK)) is assigned to c,
if its boundary contains m(d1,...,dK) connected components of length K with
marked point spectrum (d1, . . . , dK), meaning that there cyclically around
the boundary components are d1 marked points, then a chord or a backbone
underside, then d2 marked points, then a chord or a backbone underside,
and so on all the way around the boundary component. In fact we will
not need to distinguish which way around the boundary we go. Hence it
is only the cyclic ordered tuple of the numbers d1, . . . , dK , which we need
and which we denote as dddK = (d1, . . . , dK). We remark that some of the dI

(1 ≤ I ≤ K) might be zero.

We have the following relations

b =
∑

i≥0

bi, n =
∑

i≥0

ni =
∑

K≥1

ℓK =
∑

K≥1

∑

dddK

mdddK
,

2k + l =
∑

i>0

ibi, l =
∑

i>0

ini =
∑

K≥1

∑

dddK

|dddK |mdddK

2k + b =
∑

K≥1

KℓK =
∑

K≥1

∑

dddK

KmdddK
,

where |dddK | =
∑K

I=1 dI . For all K and i, we also have that

ℓK =
∑

dddK

mdddK
, ni =

∑

K≥1

∑

i=|dddK |
mdddK

.

We define Mg,k,l(bbb,mmm) to be the number of connected partial chord diagrams
of type {g, k, l;bbb;mmm} taken to be zero if there is none of the specified type. In
[1], Ng,k,l(bbb,nnn,ppp) is defined as the number of distinct connected partial chord
diagrams of type {g, k, l;bbb;nnn;ppp}. We find the relation between these numbers by
the following formula

Ng,k,l(bbb, ℓ,nnn) =
∑

mmm∈M(ℓ,nnn)

Mg,k,l(bbb,mmm),
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where

M(ℓ,nnn) =
{
mmm
∣∣ ℓK =

∑

dddK

mdddK
, ni =

∑

K≥1

∑

i=|dddK |
mdddK

}
.

In particular, the numbers Ng,k,l(bbb,nnn) and Ng,k,b(ℓ) are given by

Ng,k,l(bbb,nnn) =
∑

ℓ

Ng,k,l(bbb, ℓ,nnn), Ng,k,b(ℓ) =
∑

nnn

∑
∑

bi=b

Ng,k,l=0(bbb, ℓ,nnn),

For the index bbb = (bi), we consider the variable ttt = (ti) and denote

tttbbb =
∏

i≥0

tbi
i .

And for the index ddd = (dddK), we consider the variable uuu = (udddK
) and denote

uuummm =
∏

K≥1

∏

dddK

u
mdddK

dddK

for any mmm = (mmmdddK
). We define the orientable, multi-backbone, boundary length

and point spectrum generating function H(x, y; ttt;uuu) =
∑

b≥0 Fb(x, y; ttt;uuu), where

Hb(x, y; ttt;uuu) =
1

b!

∞∑

g=0

∞∑

k=2g+b−1

∑
∑

K

∑
dddK

mdddK

=k−2g−b+2

∑
∑

bi=b

Mg,k,l(bbb,mmm)x2gyktttbbbuuummm,(1.3)

For an element ppp = (p(d1,...dK)), where each p(d1,...dK) ∈ Z, we write

ppp = ppp+ − ppp−,

where ppp+ contains all the positive entries and ppp− the absolute value of all the
negative ones, which we assume to both be finite. We define the differential
operator

Dppp =
∏

ddd

u
ppp−

ddd

ddd

∏

ddd

(
∂

∂uddd

)ppp+
ddd

.

We now define sI,J,ℓ,m(dddK), sI,ℓ,m(dddK) and qI,J,ℓ,m(dddK , fffL) to be strings like ppp
given by the following formulae

sI,J,ℓ,m(dddK) = eeedddK
− eee(d1,...,dI−1,dI−ℓ−1,m,dJ+1,...,dK) − eee(ℓ,dI+1,...,dJ−1,dJ−m−1),

sI,ℓ,m(dddK) = eeedddK
− eee(d1,...,dI−1,ℓ,m,dI+1,...,dK) − eee(dI−ℓ−m−2),

qI,J,ℓ,m(dddK , fffL)

= eeedddK
+ eeefffL

− eee(d1,...,dI−1,dI−ℓ−1,m,fJ+1,...,fL,f1,...,fJ−1,fJ−m−1,ℓ,dI+1,...,dK).
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where eeedddK
denotes the sequence (0, . . . , 0, 1, 0, . . .) where the component 1 appears

only at the entry indexed by dddK . We further define the index cI,J,ℓ,h(dddK , fffM) by
the formula

cI,J,ℓ,m(dddK , fffL)

= (d1, . . . , dI−1, dI − ℓ − 1,m, fJ+1, . . . , fL, f1, . . . , fJ−1, fJ − m − 1, ℓ, dI+1, . . . , dK),

which is identical to the index on the last term of the above assignments.

Theorem 1.1 (Enumeration of partial chord diagrams filtered by their boundary
length and point spectrum).

Define the first and second order linear differential operators

M0 =
∑

K≥1

∑

dddK

( ∑

1≤J<I≤K

dI−1∑

ℓ=0

dJ−1∑

m=0

DsI,J,ℓ,m(dddK) +
K∑

I=1

dI−1∑

ℓ,m=0

DsI,ℓ,m(dddK)

)
,(1.4)

M2 =
1

2

∑

K,L≥1

∑

dddK ,fffL

K∑

I=1

L∑

J=1

dI−1∑

ℓ=0

dJ−1∑

m=0

DqI,J,ℓ,h(dddK),(1.5)

and the quadratic differential operator

S(H) =
1

2

∑

K,L≥1

∑

dddK ,fffL

K∑

I=1

L∑

J=1

dI−1∑

ℓ=0

fL−1∑

m=0

ucI,J,ℓ,m(dddK ,fffL)DdddK
(H)DfffL

(H) .(1.6)

Then the following partial differential equations hold

∂H1

∂y
= (M0 + x2M2)H1,

∂H

∂y
= (M0 + x2M2 + S)H.(1.7)

Together with the initial conditions

H1(x, y = 0; ttt = (t1);uuu) = u(0)t1, H(x, y = 0; ttt;uuu) =
∑

i≥1

u(i)ti,(1.8)

they determine the functions H1 and H uniquely.

In this article, we also consider the non-oriented analogue of partial chord
diagrams. The generalization of the above analysis is straightforward, as we will
now explain. A non-oriented partial chord diagrams, is a partial chord diagram
together with a decoration of a binary variable at each chord, which indicates if the
chord is twisted or not. When associating the surface Σc, to a non-oriented partial
chord diagram, a twisted band is associated along twisted chords as indicated
in Figure 2. By this construction, 2k orientable and non-orientable surfaces are
obtained from one partial chord diagram with k chords, when we vary over all
assignments of twisting or not to the k chords. In the non-oriented case, we have
the following definition of the Euler characteristic.
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• Euler characteristic χ.
The Euler characteristic of the two dimensional surface Σc is defined by the
formula

χ = 2 − h,(1.9)

where h is the number of cross-caps and we have Euler’s relation

2 − h = b − k + n.(1.10)

With this set-up, the enumeration of the non-oriented partial chord diagrams is
considered in parallel to the oriented case discussed above with a small change
for the boundary length and point spectrum mmm. In this non-oriented case, there
are now induced orientation on the boundaries of Σc and hence for an index
dddK = (d1, . . . , dK) corresponding some boundary component of Σc, we not only
need to consider this tuple up to cyclic permutation of the tuple, but also reversal
of the order

dddK = (d1, d2, . . . , dK) = (dK , . . . d2, d1).

Figure 2: The non-oriented surface constructed out of untwisted and twisted
chords.

Let M̃h,k,l(bbb,mmm) be the number of non-oriented partial chord diagrams of type

{h, k, l;bbb;mmm}. In [1], Ñh,k,l(bbb, ℓ,nnn) is defined as the number of non-oriented con-
nected partial chord diagrams of type {h, k, l;bbb; ℓ;nnn}. These numbers are related
by the following formula

Ñh,k,l(bbb, ℓ,nnn) =
∑

mmm∈M(ℓ,nnn)

M̃h,k,l(bbb,mmm),

and the numbers Ñh,k,l(bbb,nnn) and Ñh,k,b(ℓ) are given by

Ñh,k,l(bbb,nnn) =
∑

ℓ

Ñh,k,l(bbb, ℓ,nnn), Ñh,k,b(ℓ) =
∑

nnn

∑
∑

bi=b

Ñh,k,l=0(bbb, ℓ,nnn).
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We define the non-oriented generating function H̃(x, y; ttt;uuu) =
∑

b≥1 H̃b(x, y; ttt;uuu)
to be given by

H̃b(x, y; ttt;uuu) =
1

b!

∞∑

h=0

∞∑

k=h+b−1

∑
∑

K

∑
dddK

mdddK

=k−h−b+2

∑
∑

bi=b

M̃h,k,l(bbb,mmm)xhyktttbbbuuummm.(1.11)

We define s×
I,J,ℓ,h(dddK), s×

I,ℓ,h(dddK) and q×
I,J,ℓ,h(dddK , fffL) to be by

s×
I,J,ℓ,m(dddK) = eeedddK

− eee(d1,...,dI−1,ℓ,m,dJ−1,...,dI+1,dJ−ℓ−1,dJ−m−1,dJ+1,...,dK),

s×
I,ℓ,m(dddK) = eeedddK

− eee(d1,...,dI−1,ℓ,dI−ℓ−m−2,m,dI+1,...,dK),

q×
I,J,ℓ,m(dddK , fffL)

= eeedddK
+ eeefffM

− eee(f1,...,fJ−1,fJ−m−1,ℓ,dI−1,...,d1,dK ,...,dI+1,dI−ℓ−1,m,fJ+1,...,fL).

And we also define indices c×
I,J,ℓ,h(dddK , fffM) by the formula

c×
I,J,ℓ,h(dddK , fffL)

= (f1, . . . , fJ−1, fJ − m − 1, ℓ, dI−1, . . . , d1, dK , . . . , dI+1, dI − ℓ − 1,m, fJ+1, . . . , fL),

which again, we note is identical to the index on the last term of the above
assignments.

Theorem 1.2 (Enumeration of non-oriented partial chord diagrams filtered by
their boundary length and point spectrum).

Define the first and second order linear differential operators

M×
1 =

∑

K≥1

∑

dddK

( ∑

1≤J<I≤K

dI−1∑

ℓ=0

dJ−1∑

m=0

Ds×
I,J,ℓ,m(dddK) +

K∑

I=1

dI−1∑

ℓ,m=0

Ds×
I,ℓ,m(dddK)

)
,(1.12)

M×
2 =

1

2

∑

K,L≥1

∑

dddK ,fffL

K∑

I=1

L∑

J=1

dI−1∑

ℓ=0

dJ−1∑

m=0

Dq×
I,J,ℓ,m(dddK),(1.13)

and the quadratic differential operator

S×(H) =
1

2

∑

K,L≥1

∑

dddK ,fffL

K∑

I=1

L∑

J=1

dI−1∑

ℓ=0

fL−1∑

m=0

uc×
I,J,ℓ,m(dddK ,fffL)DdddK

(H)DfffL
(H) .(1.14)

Then the following partial differential equations hold

∂H̃1

∂y
= (M0 + xM×

1 + x2(M2 + M×
2 ))H̃1,

∂H̃

∂y
= (M0 + xM×

1 + x2(M2 + M×
2 ) + S + S×)H̃.(1.15)
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Together with the following initial conditions

H̃1(x, y = 0; ttt = (t1);uuu) = u(0)t1, H̃(x, y = 0; ttt;uuu) =
∑

i≥1

u(i)ti,(1.16)

determines H̃1 and H̃ uniquely.

This paper is organized as follows. Section 2 contains basic combinatorial
results on the boundary length and point spectra of partial chord diagrams and
derives the recursion relation of the number of diagrams (Proposition 2.1), by
the cut-and-join method. This cut-and-join equation is rewritten as a second
order, non-linear, algebraic partial differential equation for generating function
of the number of partial chord diagrams filtered by the boundary length and
point spectrum (Proposition 2.2). Section 3 extends these results to include the
non-oriented analogues of the partial chord diagrams. The cut-and-join equation
is extended to provide a recursion on the number of non-oriented partial chord
diagrams (Proposition 3.1), and is also rewritten as partial differential equation
(Proposition 3.2).

2 Combinatorial proof of the cut-and-join equa-

tion

In this section, we devote to prove Theorem 1.1. The partial differential equation
(1.7) is equivalent to the following recursion relation for the numbers of connected
partial chord diagrams.

Proposition 2.1. The numbers Mg,k,l(bbb,mmm) enumerating connected partial chord
diagrams of type {g, k, l;bbb,mmm} obey the following recursion relation

kMg,k,l(bbb,mmm)

=
∑

K≥1

∑

dddK

(mdddK
+ 1)

[ ∑

1≤I<J≤K

dI−1∑

ℓ=0

dJ−1∑

m=0

Mg,k−1,l+2 (bbb,mmm + sI,J,ℓ,m(dddK))

+
K∑

I=1

dI−1∑

ℓ,m=0
ℓ+m≤dI−2

Mg,k−1,l+2 (bbb,mmm + sI,ℓ,m(dddK))

]

+
1

2

∑

K≥1

∑

L≥1

∑

dddK

∑

fffL

(mdddK
+ 1)(mfffL

+ 1 − δdddK ,fffL
)

×
K∑

I=1

L∑

J=1

dI−1∑

ℓ=0

fJ−1∑

m=0

Mg−1,k−1,l+2 (bbb,mmm + qI,J,ℓ,m(dddK , fffL))
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+
1

2

∑

K≥1

∑

L≥1

∑

dddK

∑

fffL

∑

g1+g2=g

∑

k1+k2=k−1

∑

b(1)+b(2)=b

×
K∑

I=1

L∑

J=1

dI−1∑

ℓ=0

fJ−1∑

m=0

∑

mmm(1)+mmm(2)

=mmm+qI,J,ℓ,m(dddK ,fffL)

× m
(1)
dddK

m
(2)
fffL

b!

b(1)!b(2)!
Mg1,k1,l1

(
bbb(1),mmm(1)

)
Mg2,k2,l2

(
bbb(2),mmm(2)

)
.(2.1)

This recursion relation is referred to as the cut-and-join equation, since it
follows from a cut-and-join argument, which we shall now provide.

Proof. When one removes one chord from a partial chord diagram, there are
essentially three distinct possible outcomes. First of all the diagram can stay
connected and then there are two cases to consider. In the first one, the chord
that is removed is adjacent to two different boundary components and in the
second one it is adjacent to just one. The third case is when the chord diagram
becomes disconnected.

In the first case, the genus of the partial chord diagram is not changed, but
two boundary components join into one component. On the other hand, in the
second case, the genus decreases by one, and one boundary component splits into
two components.

Figure 3: Removal of a chord in case one. The chord is depicted as a band. After
the removal of this chord, two boundary components join into one component.
Left: The clusters of marked points (dI − ℓ − 1, m) and (dJ − m − 1, ℓ) join into
two clusters dI and dJ Right: The clusters of marked points (ℓ,m) and (dJ −m−1)
join into one cluster dI .

In the first case, and let us say that after removing this chord, the two adjacent
boundary components join into one component with the marked point spectrum
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dddK = (d1, . . . , dK). (See Figure 3.) Under this elimination, the numbers k and
n change to k − 1 and n − 1, the genus g is not changed (c.f. Euler’s relation
2 − 2g = b − k + n). The number of marked points l changes to l + 2, because
the chord ends of the chord which is removed become new marked points. There
are two distinct possible sub cases, namely either the chord ends belong to two
distinct clusters of marked points dI and dJ in the resulting chord diagram, or
chord ends belong to the same cluster of marked points dI .

We will consider the former kind of chord, and assume I < J without loss of
generality. Before we remove the chord, the two boundaries adjacent to the chord
needs to have the following two marked point spectra

(d1, . . . , dI−1, dI − ℓ − 1,m, dJ+1, . . . , dK), and (ℓ, dI+1, . . . , dJ−1, dJ − m − 1),

0 ≤ ℓ ≤ dI − 1, 0 ≤ m ≤ dJ − 1,

When removing the chord, we connect the clusters of marked points (dI −ℓ−1,m)
and (dJ −m−1, ℓ). If the original partial chord diagram has the boundary length-
point spectrum mmm, the resulting diagram has

mmm − eee(d1,...,dI−1,dI−ℓ−1,m,dJ+1,...,dK) − eee(ℓ,dI+1,...,dJ−1,dJ−m−1) + eeedddK

= mmm + sI,J,ℓ,m(dddK).

For the latter kind, we must have two boundary components with the marked
point spectra

(d1, . . . , dI−1, ℓ, m, dI+1, . . . , dK), and (dI − ℓ − m − 2).

0 ≤ ℓ,m ≤ dI − 1, 0 ≤ ℓ + m ≤ dI − 2,

and removing the chord connects the clusters of marked points (ℓ,m) and (dJ −
m − 1). This manipulation changes the boundary length and point spectrum mmm
into

mmm − eee(d1,...,dI−1,ℓ,m,dI+1,...,dK) − eee(dI−ℓ−m−2) + eeedddK
= mmm + sI,ℓ,m(dddK).

For both of these two kinds of removal, there are mdddK
+1 possibilities to choose

the boundary components in the partial chord diagram. Therefore, the number
of possibilities for the first way of removal is

∑

K≥1

∑

dddK

(mdddK
+ 1)

[ ∑

1≤I<J≤K

dI−1∑

ℓ=0

dJ−1∑

m=0

Mg,k−1,l+2 (bbb,mmm + sI,J,ℓ,m(dddK))

+
K∑

I=1

dI−1∑

ℓ,m=0
ℓ+m≤dI−2

Mg,k−1,l+2 (bbb,mmm + sI,ℓ,m(dddK))

]
.(2.2)
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In the second case (see Figure 4), the removal changes the numbers k and n
to k − 1 and n + 1 and the genus of the partial chord diagram decreases by one.
For partial chord diagram with a boundary with marked point spectrum

(d1, . . . , dI−1, dI − ℓ − 1,m, fJ+1, . . . , fL, f1, . . . , fJ−1, fJ − m − 1, ℓ, dI+1, . . . , dK),

0 ≤ ℓ ≤ dI − 1, 0 ≤ m ≤ fJ − 1,

we remove the chord which connects the two clusters (fJ −m−1, ℓ) and (dI − ℓ−
1,m) of marked points. The boundary component then splits into two boundary
components with marked point spectra dddK = (d1, . . . , dK) and fffL = (f1, . . . , fL).
If the original partial chord diagram has the boundary length and point spectrum
mmm, after removal of this chord, we find that

mmm − eee(d1,...,dI−1,dI−ℓ−1,m,fJ+1,...,fL,f1,...,fJ−1,fJ−m−1,ℓ,dI+1,...,dK) + eeedddK
+ eeefffL

= mmm + qI,J,ℓ,m(dddK , fffL).

The number of possibilities of this removal is (mdddK
+1)(mfffL

+1) for dddK ̸= fffL.
If dddK = fffL, the number of possibilities becomes mdddK

(mdddK
+ 1)/2. In total, the

number of possibilities for the second way of elimination is

1

2

∞∑

K=1

∞∑

L=1

∑

dddK

∑

fffL

(mdddK
+ 1)(mfffL

+ 1 − δdddK ,fffL
)

×
K∑

I=1

L∑

J=1

dI−1∑

ℓ=0

fJ−1∑

h=0

Mg−1,k−1,l+2 (bbb,mmm + qI,J,ℓ,h(dddK , fffL)) .(2.3)

The factor 1/2 in front of the sum takes care of the over counting in the cases
dddK ̸= fffL.

In the third case, the partial chord diagram split into two connected compo-
nents. We consider the case that the original diagram has the type {g, k, l;bbb,mmm}
and the resulting two connected components have types {g1, k1, l1;bbb

(1),mmm(1)} and
{g2, k2, l2;bbb

(2),mmm(2)}. These types are related such that

g = g1 + g2, k − 1 = k1 + k2, bbb = bbb(1) + bbb(2).

Since a boundary component also split into two components, the boundary length
and point spectrum changes in the same manner as in the second case.

mmm + qI,J,ℓ,m(dddK , fffL) = mmm(1) + mmm(2).

There are m
(1)
dddK

m
(2)
fffL

ways to choose the boundary components which are to be
fused under the inverse operation of chord removal. And the number of different
ordered splittings of a b-backbone diagram is b!

b(1)!b(2)!
where b(a) =

∑
i b

(a)
i (a =

1, 2). Therefore, the total number of possibilities of this case is

1

2

∞∑

I=1

∞∑

J=1

∑

dddK

∑

fffL

∑

g1+g2=g

∑

k1+k2=k−1

∑

b(1)+b(2)=b
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Figure 4: The second and third way of elimination of a chord. After the elim-
ination of this chord, a boundary component split into two different boundary
components.

×
K∑

I=1

L∑

J=1

dI−1∑

ℓ=0

fJ−1∑

m=0

∑

mmm(1)+mmm(2)

=mmm+qI,J,ℓ,m(dddK ,fffL)

× m
(1)
dddK

m
(2)
fffL

b!

b(1)!b(2)!
Mg1,k1,l1

(
bbb(1),mmm(1)

)
Mg2,k2,l2

(
bbb(2),mmm(2)

)
.(2.4)

The factor 1/2 corrects for the over counting due to the ordering of the two
connected components.

The sum of the contributions (2.2), (2.3), and (2.4) from the three different
cases of chord removals equals kMg,k,l(bbb,mmm), because there are k possibilities
for the choice of the chord to be removed. This gives the cut-and-join equation
(2.1).

Proposition 2.2. The generating function H(x, y; ttt, ;uuu) is uniquely determined
by the differential equation

∂H

∂y
= (M + S)H,

where M = M0 + x2M2. The generating function Z(x, y; ttt, ;uuu) = exp[H] of the
number of connected and disconnected partial chord diagrams satisfies

∂Z

∂y
= MZ,(2.5)

and is as such determined by the initial conditions

H(x, y = 0; ttt;uuu) =
∑

i≥1

tiu(i), Z(x, y = 0; ttt, ;uuu) = e
∑

i≥1 tiu(i) .
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Proof. It is straightforward to check that the differential equation ∂H
∂y

= (M+S)H

is equivalent to the cut-and-join equation (2.1). The actions in the quadratic
differential S on H can be rewritten by following relation

DdddK
(H)DfffL

(H) + DdddK
DfffL

H =
1

Z
DdddK

DfffL
Z.

The derivatives on the right hand side are contained in M2, and the differential
equation ∂Z

∂y
= MZ follows from that of H.

On the initial condition, every partial chord diagram of type {g, k, l;bbb;mmm} can
be obtained from the disjoint collection of type {0, 0, i;eeei, eee(i)} with multiplicity
bi by connecting them with k chords. This implies H(x, y = 0; ttt;uuu) =

∑
i≥1 tiu(i).

Since this is the first order differential equation of y, the coefficient of yk is deter-
mined uniquely using this initial condition.

3 Non-oriented analogue of the cut-and-join equa-

tion

In this section, we will prove Theorem 1.2. We first establish the following propo-
sition.

Proposition 3.1. The number M̃g,k,l(bbb,mmm) of connected non-oriented partial
chord diagrams of type {g, k, l;bbb,mmm} obeys the following recursion relation

kM̃g,k,l(bbb,mmm)

=
∑

K≥1

∑

dddK

(mdddK
+ 1)

×
[∑

I<J

dI−1∑

ℓ=0

dJ−1∑

m=0

{
M̃h,k−1,l+2 (bbb,mmm + sI,J,ℓ,m(mmm)) + M̃h−1,k−1,l+2

(
bbb,mmm + s×

I,J,ℓ,m(mmm)
)}

+
K∑

I=1

∑

ℓ+m≤dI−2

{
M̃h,k−1,l+2 (bbb,mmm + sI,ℓ,m(mmm)) + M̃h−1,k−1,l+2

(
bbb,mmm + s×

I,ℓ,m(mmm)
)}]

+
1

2

∑

K≥1

∑

L≥1

∑

dddK

∑

fffL

(mdddK
+ 1)(mfffL

+ 1 − δdddK ,fffL
)

×
K∑

I=1

L∑

J=1

dI−1∑

ℓ=0

fJ−1∑

m=0

{
M̃h−2,k−1,l+2 (bbb,mmm + qI,J,ℓ,m(dddK , fffL))

+ M̃h−2,k−1,l+2

(
bbb,mmm + q×

I,J,ℓ,m(dddK , fffL)
)}

+
1

2

∑

K≥1

∑

L≥1

∑

dddK

∑

fffL

∑

h1+h2=h

∑

k1+k2=k−1

∑

b(1)+b(2)=b
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×
K∑

I=1

L∑

J=1

dI−1∑

ℓ=0

fJ−1∑

m=0




∑

mmm(1)+mmm(2)

=mmm+qI,J,ℓ,m(dddK ,fffL)

+
∑

mmm(1)+mmm(2)

=mmm+q×
I,J,ℓ,m(dddK ,fffL)


m

(1)
dddK

m
(2)
fffL

× b!

b(1)!b(2)!
M̃h1,k1,l1

(
bbb(1),mmm(1)

)
M̃h2,k2,l2

(
bbb(2),mmm(2)

)
.

(3.1)

Proof. If we remove a non-twisted chord, then we find the same recursive structure
as for the numbers (2.2), (2.3), and (2.4) for M̃h,k,l

(
bbb,mmm

)
in the oriented case. As

we did in the proof of proposition 2.1, we also consider three cases, organised the
same way, when removing a twisted chord.

In the first case (see Figure 5), there are again two possibilities, namely the
twisted chord ends belong to two different or the same clusters of marked points
on the boundary component in the resulting diagram after removal. Contrary to
the case of non-twisted chords, the boundary cycle does not split, but the marked
point spectrum changes due to the recombination of the boundary component.
For both of these two cases, the numbers k and n change to k − 1 and n, and the
cross-cap number h decreases by one under this elimination (c.f. Euler’s relation
2 − h = b − k + n). The chord ends become marked points and l changes to l + 2.

Figure 5: Removal of a twisted chord from a non-oriented partial chord diagram.
The chord is depicted as a twisted band. After the elimination of this chord, the
boundary component is reconnected into one component with different marked
point spectrum. Left: The clusters of marked points (dI − ℓ − 1,m) and (dJ −
m − 1, ℓ) join into two clusters dI and dJ . Right: The clusters of marked points
(ℓ,m) and (dJ − m − 1) join into one cluster dI .

In the former situation, we must have a boundary component with the marked
point spectrum

(d1, . . . , dI−1, ℓ, m, dJ−1, dJ−2 . . . , dI+1, dI − ℓ − 1, dJ − m − 1, dJ+1, . . . , dK)
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I < J, 0 ≤ ℓ ≤ dI − 1, 0 ≤ m ≤ dJ − 1,

from which we remove one twisted chord with one end between the two clusters
(ℓ,m) and the other between (dI − ℓ−1, dJ −m−1). Then the removal will result
in a boundary component with the marked point spectrum dddK and the boundary
length and point spectrum mmm is changed as follows

mmm − eee(d1,...,dI−1,ℓ,m,dJ−1,...,dJ+1,dJ−ℓ−1,dJ−m−1,dJ+1,...,dK) + eeedddK

= mmm + s×
I,J,ℓ,m(dddK).

The possible number of choices for this kind of removal is mdddK
+ 1, and the total

number of diagrams which can be obtained in this way is

∑

K≥1

∑

dddK

(mdddK
+ 1)

∑

I<J

dI−1∑

ℓ=0

dJ−1∑

m=0

M̃h−1,k−1,l+2

(
bbb,mmm + s×

I,J,ℓ,m(mmm)
)
.(3.2)

For the removal of the latter kind of twisted chords, we must start with a
diagram with a boundary component with the marked point spectrum

(d1, . . . , dI−1, ℓ, dI − ℓ − m − 2,m, dI+1, . . . , dK),

0 ≤ ℓ,m ≤ dI , ℓ + m ≤ dI − 2.

from which we remove one twisted chords with one end between the two clusters
(ℓ, dI − ℓ−m− 2) and the other one between the two clusters (dI − ℓ−m− 2,m).
After removal, we obtain a boundary component with the marked point spectrum
dddK . Thus, the boundary length and point spectrum mmm is changed to

mmm − eee(d1,...,dI−1,ℓ,dI−ℓ−m−2,m,dI+1,...,dK) + eeedddK
= mmm + s×

I,ℓ,m(dddK).

The number of such chords to be removed is mdddK
+ 1, and the total number of

partial chord diagrams obtained in this way is

∑

K≥1

∑

dddK

(mdddK
+ 1)

K∑

I=1

∑

ℓ+m≤dI−2

M̃h−1,k−1,l+2

(
bbb,mmm + s×

I,ℓ,m(mmm)
)
.(3.3)

Next, we consider the second case (see Figure 6), where we must start with a
non-oriented partial chord diagram with a boundary component with the marked
point spectrum

(f1, . . . , fJ−1, fJ − m − 1, ℓ, dI−1, . . . , d1, dK , . . . , dI+1, dI − ℓ − 1,m, fJ+1, . . . , fL),

0 ≤ ℓ ≤ dI − 1, 0 ≤ m ≤ fJ − 1,

from which we remove a twisted chord with one end between the two clusters
(fJ − m − 1, ℓ) and the other end between the two clusters (dI − ℓ − 1,m). After
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removal of this chord, the boundary component has been split into two components
with spectra dddK and fffL, and the cross-cap number h decreases by two. Then, the
boundary length and point spectrum mmm changes to

mmm − eee(f1,...,fJ−1,fJ−m−1,ℓ,dI−1,...,d1,dK ,...,dI+1,dI−ℓ−1,m,fJ+1,...,fL) + eeedddK
+ eeefffL

= mmm + q×
I,J,ℓ,m(dddK , fffL).

The number of choices for the chord to be removed is (mdddK
+ 1)(mfffL

+ 1) for
dddK ̸= fffL and mdddK

(mdddK
+1)/2 for dddK = fffL, and the total number of partial chord

diagrams obtained this way is

1

2

∑

K≥1

∑

L≥1

∑

dddK

∑

fffL

(mdddK
+ 1)(mfffL

+ 1 − δdddK ,fffL
)

×
K∑

I=1

L∑

J=1

dI−1∑

ℓ=0

fJ−1∑

m=0

M̃h−2,k−1,l+2

(
bbb,mmm + q×

I,J,ℓ,m(dddK , fffL)
)
.(3.4)

Figure 6: The second case of a twisted chord removal. After the removal of this
chord, the boundary component split into two distinct boundary components.

In case three partial chord diagram split into two connected components when
we remove the chord. Assume that the original diagram has the type {h, k, l;bbb,mmm}
and the resulting two connected components have types {h1, k1, l1;bbb

(1),mmm(1)} and
{h2, k2, l2;bbb

(2),mmm(2)}. Then these types are related by

h = h1 + h2, k − 1 = k1 + k2, bbb = bbb(1) + bbb(2).

The marked point spectrum changes in the same way as the second case

mmm + q×
I,J,ℓ,m(dddK , fffL) = mmm(1) + mmm(2).
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The total number of resulting diagrams is

1

2

∑

K≥1

∑

L≥1

∑

dddK

∑

fffL

∑

h1+h2=h

∑

k1+k2=k−1

∑

b(1)+b(2)=b

×
K∑

I=1

L∑

J=1

dI−1∑

ℓ=0

fJ−1∑

m=0

∑

mmm(1)+mmm(2)

=mmm+q×
I,J,ℓ,m(dddK ,fffL)

× m
(1)
dddK

m
(2)
fffL

b!

b(1)!b(2)!
M̃h1,k1,l1

(
bbb(1),mmm(1)

)
M̃h2,k2,l2

(
bbb(2),mmm(2)

)
.(3.5)

Therefore, in total, the number of possible partial chord diagrams obtained by
removing a twisted or a non-twisted chord is the sum of (3.2) – (3.5) and of (2.2)

– (2.4) for M̃h,k,l

(
bbb,mmm

)
. This number gives the right hand side of equation (3.1),

which we have just argued also gives the left side of equation (3.1).

Along the same line of arguments as the ones which proved Proposition 2.2,
we obtain the proposition below.

Proposition 3.2. The generating function H̃(x, y; ttt, ;uuu) is uniquely determined
by the differential equation

∂H̃

∂y
= (M̃ + S̃)H̃,

where M̃ = M0 +xM×
1 +x2(M2 +M×

2 ) and S̃ = S +S×. The generating function

Z̃(x, y; ttt, ;uuu) = exp[H̃] of the number of connected and disconnected partial chord
diagrams filtered by the boundary length and point spectrum satisfies

∂Z̃

∂y
= M̃Z̃.(3.6)

As such they are uniquely determined by the initial conditions

H̃(x, y = 0; ttt;uuu) =
∑

i≥1

tiu(i), Z̃(x, y = 0; ttt, ;uuu) = e
∑

i≥1 tiu(i) .
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283, arXiv:1612.05840 [math-ph].

[7] J. E. Andersen, F. W. D. Huang, R. C. Penner, and C. M. Reidys, Topol-
ogy of RNA-RNA interaction structures, J. Comp. Biol. 19 (2012) 928-943,
arXiv:1112.6194 [math.CO].

[8] J. E. Andersen, J. Mattes, and N. Reshetikhin, The Poisson structure on
the moduli space of flat connections and chord diagrams, Topology 35 (1996)
1069–1083.

[9] J. E. Andersen, J. Mattes, and N. Reshetikhin, Quantization of the algebra of
chord diagrams, Math. Proc. Camb. Phil. Soc. 124 (1998) 451–467, arXiv:q-
alg/9701018.

[10] J. E. Andersen, R. C. Penner, C. M. Reidys, R. R. Wang, Linear chord
diagrams on two intervals, arXiv:1010.5857 [math.CO].

[11] J. E. Andersen, R. C. Penner, C. M. Reidys, M. S. Waterman, Enumeration
of linear chord diagrams, J. Math. Biol. 67 (2013) 1261–78, arXiv:1010.5614
[math.CO].

[12] D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995) 423–475.

[13] R. Campoamor-Stursberg, and V. O. Manturov, Invariant tensor formulas
via chord diagrams, Jour. Math. Sci. 108 (2004) 3018–3029.

[14] J. Courtiel, and K. Yeats, Terminal chords in connected chord diagrams,
arXiv:1603.08596 [math.CO].



Partial chord diagrams and boundary length and point spectrum 231

[15] M. Kontsevich, Vassilievs knot invariants, Adv. Sov. Math. 16 (1993) 137–
150.

[16] N. Marie, and K. Yeats, A chord diagram expansion coming from some
Dyson-Schwinger equations, Comm. Numb. Theo. Phys. 7 (2013) 251–291,
arXiv:1210.5457 [math.CO].

[17] H. Orland, and A. Zee, RNA folding and large N matrix theory, Nucl. Phys.
B620 (2002) 456-476, arXiv:cond-mat/0106359 [cond-mat.stat-mech].

[18] R. C. Penner, The decorated Teichmüller space of punctured surfaces, Comm.
Math. Phys. 113 (1987) 299–339.

[19] R. C. Penner, Perturbative series and the moduli space of Riemann surfaces,
J. Diff. Geom. 27 (1988) 35–53.

[20] R. C. Penner, The simplicial compactification of Riemann’s moduli space,
Proceedings of the 37th Taniguchi Symposium, World Scientific (1996), 237–
252.

[21] R. C. Penner, Cell decomposition and compactification of Riemann’s moduli
space in decorated Teichmüller theory, In Tongring, N. and Penner, R.C.
(eds) Woods Hole Mathematics-Perspectives in Math and Physics, World
Scientific, Singapore, arXiv:math/0306190 [math.GT].

[22] R. C. Penner, Moduli spaces and macromolecules, Bull. Amer. Math. Soc. 53
(2016) 217–268.

[23] C. M. Reidys, Combinatorial and computational biology of pseudoknot RNA,
Springer, Applied Math series 2010.

[24] G. Vernizzi, and H. Orland, Large-N random matrices for RNA folding, Acta
Phys. Polon. B36 (2005) 2821-2827.

[25] G. Vernizzi, H. Orland, and A. Zee, Enumeration of RNA structures by matrix
models, Phys. Rev. Lett. 94 168103, arXiv:q-bio/0411004 [q-bio.BM].



232 J. E. Andersen, H. Fuji, R. C. Penner, and C. M. Reidys

Jørgen Ellegaard Andersen
Centre for Quantum Geometry of Moduli Spaces,
Department of Mathematics, Aarhus University,
DK-8000 Aarhus C Denmark
jea.qgm@gmail.com

Hiroyuki Fuji
Faculty of Education, Kagawa University,
Takamatsu 760-8522 Japan
fuji@ed.kagawa-u.ac.jp

Robert C. Penner
Institut des Hautes Études Scientifiques,
35 route de Chartres, 91440 Burs-sur-Yvette, France;
Division of Physics, Mathematics and Astronomy,
California Institute of Technology, Pasadena, CA 91125, USA
rpenner@caltech.edu, rpenner@ihes.fr

Christian M. Reidys
Biocomplexity Institute of Virginia Tech
Blacksburg, VA 24061, USA
duckcr@vbi.vt.edu
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Partial Chord Diagrams and Matrix Models

by Jørgen Ellegaard Andersen, Hiroyuki Fuji, Masahide Manabe,

Robert C. Penner, and Piotr Su lkowski1

Abstract

In this article, the enumeration of partial chord diagrams is discussed
via matrix model techniques. In addition to the basic data such as the
number of backbones and chords, we also consider the Euler characteristic,
the backbone spectrum, the boundary point spectrum, and the boundary
length spectrum. Furthermore, we consider the boundary length and point
spectrum that unifies the last two types of spectra. We introduce matrix
models that encode generating functions of partial chord diagrams filtered
by each of these spectra. Using these matrix models, we derive partial
differential equations – obtained independently by cut-and-join arguments
in an earlier work – for the corresponding generating functions.

1 Introduction

A partial chord diagram is a special kind of graph, which is specified as follows.
The graph consists of a number of line segments (which are called backbones)
arranged along the real line (hence they come with an ordering), with a number
of vertices on each. A number of semi-circles (called chords) arranged in the upper
half plane is attached at a subset of the vertices of the line segments, in such a
way that no two chords have endpoints at the same vertex. The vertices which are
not attached to chord ends are called the marked points. A chord diagram is by

1Keywords: chord diagram, fatgraph, matrix model,
AMS Classification: 05A15, 05A16, 81T18, 81T45, 92-08
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for Scientific Research(B) [# 16H03927] from the Japan Ministry of Education, Culture, Sports,
Science and Technology. The work of MM and PS is supported by the ERC Starting Grant no.
335739 “Quantum fields and knot homologies” funded by the European Research Council under
the European Union’s Seventh Framework Programme. PS also acknowledges the support of
the Foundation for Polish Science, and RCP acknowledges the kind support of Institut Henri
Poincaré where parts of this manuscript were written.
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definition a partial chord diagram with no marked points. Partial chord diagrams
occur in many branches of mathematics, including topology [14, 30], geometry
[9, 10, 3] and representation theory [16].

To each partial chord diagram c one can associate canonically a two dimen-
sional surface with boundary Σc, see Figure 1. Moreover, as discussed in [56, 12,
2, 7], the notion of a fatgraph [42, 43, 44, 45] is a useful concept when studying
partial chord diagrams. A fatgraph is a graph together with a cyclic ordering on
each collection of half-edges incident on a common vertex. A partial linear chord
diagram c has a natural fatgraph structure induced from its presentation in the
plane.

c Σc

Figure 1: The partial chord diagram (with marked points) c and the corresponding
surface Σc. The type of this partial chord diagram reads {g, k, l; {bi}; {ni}; {pi}} =
{1, 6, 2; {b6 = 1, b8 = 1}; {n0 = 2, n1 = 2}; {p1 = 1, p2 = 2, p9 = 1}}. The
boundary length and point spectrum is {n(1) = 1, n(0,0) = 2, n(0,0,0,0,0,1,0,0,0) = 1}.

The partial chord diagram c is characterized by various topological data, and
we will consider the following five types of data, introduced in [2] and [7].

• The number of chords k in c and the number of backbones b in c.

• Euler characteristic χ and genus g.
Let χ and g denote respectively the Euler characteristic and genus of Σc,
which are related as follows

χ = 2 − 2g.

Denoting by n the number of boundary components of Σc, the Euler relation
can be written as

2 − 2g = b − k + n.(1.1)

• Backbone spectrum (b0, b1, . . .).
Let bi denote the number of backbones with i trivalent (i.e. chord ends) or
bivalent (i.e. marked points) vertices. The total number of backbones b is
then

b =
∑

i≥0

bi,(1.2)
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and the total number m of trivalent (i.e. chord ends) and bivalent (i.e.
marked points) vertices of the partial chord diagram c is

m =
∑

i≥1

ibi.(1.3)

• Boundary point spectrum (n0, n1, . . .).
Let ni denote the number of boundary components containing i ≥ 0 marked
points of Σc. The total number n of boundary components is

n =
∑

i≥0

ni,(1.4)

and the total number l of marked points is

l =
∑

i≥1

ini.(1.5)

These three numbers m, k and l satisfies

m = 2k + l.(1.6)

• Boundary length spectrum (p1, p2, . . .).
Define the length of a boundary component to be the sum of the number of
chords and the number of backbone undersides traversed by the boundary
cycle. Let pi be the number of boundary cycles with length i ≥ 1. By
definition, the following two relations hold

n =
∑

i≥1

pi,(1.7)

2k + b =
∑

i≥1

ipi.(1.8)

The data {g, k, l; {bi}; {ni}; {pi}} is called the type of a partial chord diagram c.
As a unification of the boundary length spectrum and the boundary point

spectrum, we consider the boundary length and point spectrum introduced in [7].
Let us here recall its definition.

• Boundary length and point spectrum.
We associate a K-tuple of numbers iii = (i1, . . . , iK) with a boundary compo-
nent of length K, where iL (L = 1, . . . , K) is the number of marked points
between the L’th and (L+1)’th (taken modulo K) either chord or underpass
of a backbone component (in either order) along the boundary.
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Let niii be the number of boundary components labeled in this way by iii. The
total number l of marked points is

l =
∑

K≥1

∑

iii

K∑

L=1

iLn(i1,...,iK),(1.9)

and the total number n of boundary cycles is

n =
∑

iii

niii.(1.10)

The data {g, k, l; {bi}, {niii}} stores more detailed information on the distribution
of marked points on each boundary component. One can determine the previous
two kinds of spectra from the boundary length and point spectrum by forgetting
the partitions of marked points on the boundary cycles.

It is known that the enumeration of chord diagrams is intimately related to
matrix models and cut-and-join equations [4, 5, 6, 20, 38]. In this paper, the
enumeration of partial chord diagrams labeled by the boundary length and point
spectrum with the genus filtration is studied using matrix model techniques. Let
Ng,k,l({bi}, {niii}) denote the number of connected chord diagrams labeled by the
set of parameters (g, k, l; {bi}; {niii}). We define the generating function of these
numbers

F(x, y; {si}; {uiii}) =
∑

b≥1

Fb(x, y; {si}; {uiii}),

Fb(x, y; {si}; {uiii}) =
1

b!

∑
∑

i bi=b

∑

{niii}
Ng,k,l({bi}, {niii})x2g−2yk

∏

i≥0

sbi
i

∏

K≥1

∏

{iL}K
L=1

uniii
iii .

(1.11)

Generating functions of disconnected and connected diagrams are related via the
exponential relation

Z(x, y; {si}; {uiii}) = exp [F(x, y; {si}; {uiii})] .(1.12)

To analyze this enumeration further, we write the above generating function as
a certain Hermitian matrix integral. Let ZN(y; {si}; {uiii}) be the matrix integral
over rank N Hermitian matrices HN

ZN(y; {si}; {uiii}) =

=
1

VolN

∫

HN

dM exp

[
− NTr

(
M2

2
−

∑

i≥0

si(y
1/2Λ−1

L M + ΛP)iΛ−1
L

)]
,

(1.13)

where ΛP and ΛL are external matrices [29] of rank N , and the normalization
factor VolN is defined in (2.4). In this matrix integral representation, the counting
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parameter u(i1,...,iK) is identified with the trace of the corresponding product of
external matrices

u(i1,...,iK) =
1

N
Tr

(
Λi1

P Λ−1
L Λi2

P Λ−1
L · · · ΛiK

P Λ−1
L

)
.(1.14)

In Theorem 2.13 we show that

ZN(y; {si}; {uiii}) = Z(N−1, y; {si}; {uiii}).(1.15)

Figure 2: The cut-and-join manipulations on chord diagrams.

This matrix integral representation provides a new, matrix model proof of
the cut-and-join equation found by combinatorial means in [7]. The cut-and-join
equation can be written as

∂

∂y
Z(x, y; {si}; {uiii}) = MZN(x, y; {si}; {uiii}),(1.16)

where M is the second order partial differential operator in variables uiii (see
Theorem 3.11 for details). This cut-and-join equation can be regarded as the
evolution equation in the variable y, and its formal solution reads

Z(x, y; {si}; {uiii}) = eyMZ(x, 0; {si}; {uiii}),

Z(x, 0; {si}; {uiii}) = eN2
∑

i≥0 siu(i) .
(1.17)

Expanding the operator eyM around y = 0, one determines the number of
connected partial chord diagrams Ng,k,l({bi}, {niii}) iteratively from this formal
solution. The cut-and-join equation is a powerful method to systematically count
partial chord diagrams of a given length and point spectrum.

In this work we also generalize the above analysis to non-oriented analogues of
partial chord diagrams. By non-oriented partial chord diagrams we mean diagrams
with all chords decorated by a binary variable, which indicates if they are twisted
or not. When associating the surface Σc to a non-oriented partial chord diagram,
twisted bands are associated along the twisted chords as indicated in Figure 3.
This construction leads to 2k orientable or non-orientable surfaces associated to
one particular partial chord diagram with k chords, if we consider all possible
assignments of twisting or untwisting of k bands. In the non-oriented case the
Euler characteristic is defined as follows.
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• Euler characteristic χ.
The Euler characteristic of the two dimensional surface Σc is defined by the
formula

χ = 2 − h,

where h is the number of cross-caps. The Euler relation holds

2 − h = b − k + n.(1.18)

With this setup, the enumeration of non-oriented partial chord diagrams can be
considered analogously to the orientable case.

Figure 3: A non-oriented surface Σc associated to a non-oriented partial chord
diagram c.

Let Ñh,k,l({bi}, {niii}) denote the number of connected non-oriented partial
chord diagrams with the cross-cap number h, k chords, the backbone spectrum
{bi}, l marked points, and the boundary length and point spectrum niii. The

generating function F̃(x, y; {si}; {uiii}) is defined by

F̃(x, y; {si}; {uiii}) =
∑

b≥1

F̃b(x, y; {si}; {uiii}),

F̃b(x, y; {si}; {uiii}) =
1

b!

∑
∑

i bi=b

∑

{niii}
Ñh,k,l({bi}, {niii})xh−2yk

∏

i≥0

sbi
i

∏

K≥1

∏

{iL}K
L=1

uniii
iii .

(1.19)

We also define the generating function of the numbers of connected and discon-
nected non-oriented partial chord diagrams

Z̃(x, y; {si}; {uiii}) = exp
[
F̃(x, y; {si}; {uiii})

]
.(1.20)

In Theorem 4.5 we show that this generating function can be expressed as a real
symmetric matrix integral with two external symmetric matrices ΩP and ΩL

Z̃(N−1, y; {si}; {uiii}) = Z̃N(y; {si}; {uiii}),

(1.21)
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Z̃N(y; {si}; {uiii}) =

=
1

VolN(R)

∫

HN (R)

dM exp

[
− NTr

(
M2

4
−

∑

i≥0

si(y
1/2Ω−1

L M + ΩP)iΩ−1
L

)]
,

(1.22)

where the normalization factor VolN(R) is defined in (4.8), and HN(R) is the
space of real symmetric matrices of rank N . The parameter u(i1,...,iK) is identified
with a trace of the external matrices via the formula

u(i1,...,iK) =
1

N
Tr

(
Ωi1

P Ω−1
L Ωi2

P Ω−1
L · · · ΩiK

P Ω−1
L

)
.(1.23)

Using this matrix integral representation of the generating function, one can
again prove the cut-and-join equation, established independently by combinatorial
arguments in [7]

∂

∂y
Z̃N(y; {si}; {uiii}) = M̃Z̃N(y; {si}; {uiii}),(1.24)

where M̃ is a second order partial differential operator in the variables uiii. The
details of the differential operator M̃ and the matrix model derivation of the
cut-and-join equation are presented in Theorem 4.10.

1.1 Motivation: RNA chains

One important motivation to study partial chord diagrams in this and the preced-
ing work [2, 7] is a complicated problem of RNA structure prediction in molecular
biology, which we now shortly review.

An RNA molecule is a linear polymer, referred to as the backbone, that con-
sists of four types of nucleotides: adenine, cytosine, guanine, and uracil, denoted
respectively A, C, G, and U. The backbone is endowed with an orientation
from 5’-end to 3’-end, and the primary sequence is the sequence of nucleotides
read with respect to this orientation. Between nucleotides hydrogen bonds are
formed, resulting in the so-called Watson-Click pairs involving A − U or G − C
nucleotides; in addition Wobble pairs U − G can be formed. The set of base pairs
formed by such hydrogen bonds is referred to as the secondary structure.2 Pre-
diction of the secondary structure from the primary sequence is an outstanding
problem that was initiated by the pioneering work of Michael Waterman [57] and
has been studied intensively for last three decades.

Topologically, we can represent the base pairings for a given RNA structure
by a partial chord diagram as follows. The backbone is represented as a disjoint
union of horizontal straight line segments (arranged along the real line in the

2There are other types of interactions in RNA secondary structure, which are however less
common and we ignore them in this discussion.
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H type Kissing hairpin

Figure 4: Pseudoknot structures in RNA. The long curved line, blobs (i.e. marked
points), and short lines represent the backbone, nucleotides, and base pairs, re-
spectively.

plane), one for each backbone component, and each nucleotide is represented as
a marked point on this union of line segments. The base pairs are represented by
chords in the upper-half plane attached at two marked points corresponding to
the bonded pair of nucleotides.

Note that a partial chord diagram has genus zero if no two of its chords cross
each other. If however such crossings exist, then the structure is referred to as a
pseudoknot, and its genus is non-zero. Considerable number of pseudoknot struc-
tures have been observed, e.g. tRNAs, RNAseP [31], telomerase RNA [53] and
ribosomal RNAs [28]. According to the online database “RNA-strand” half of the
known structures form pseudoknots [13]. There are various kinds of pseudoknots
classified by the topology of the RNA [12], referred to as e.g. H-type [1], kissing
hairpin [17, 51], etc.

In recent years, a combinatorial description of RNA structures in terms of
linear chord diagrams has been developed in a series of works [41, 56, 55, 12, 11,
8, 4, 5, 2, 49, 46]. However, a large class of reasonable energy-based models that
predict the secondary structure including pseudoknots are NP complete [32, 1],
and a fully satisfactory energy model for RNA, including pseudoknot structures,
has not been established yet.

In the search of a realistic energy function for RNA structures with pseudo-
knots, the boundary length and point spectrum should provide a useful tool that
includes more detailed information about the location of marked points. In stan-
dard algorithms developed by Waterman [58], Nussinov et al. [40], Zucker and
Stiegler [61], etc., dynamic programming (DP) has been used to predict most
likely secondary structures. Indeed, in famous algorithms such as [60, 25], the
(loop-based) energy in each configuration of RNA is considered. In these algo-
rithms, the most probable secondary structure is determined as the minimum free
energy configuration, and to make them more efficient the statistical mechanical
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(A) (A′)

(B′)(B)

Figure 5: Partial chord diagrams unveil the difference in the topological structure
of RNA molecules.

ensemble (i.e. the partition function algorithm) is implemented [34]. The ap-
plication of these algorithms, which include pseudoknot structures stratified by γ
structures, was studied in [50, 49]. Most of the energy functions essentially respect
the boundary point and length spectra independently. In order to improve the
energy model for RNA structure prediction with pseudoknots, it would be useful
to explore energy parameters for more realistic and efficient energy function on
the basis of the boundary length and point spectrum.

1.2 Plan of the paper

This paper is organized as follows. In Section 2 we construct Hermitian matrix
models with external matrices, which encode generating functions of orientable
partial chord diagrams labeled by the boundary point spectrum (in Subsection
2.1), the boundary length spectrum (in Subsection 2.2), and the boundary length
and point spectrum (in Subsection 2.3). All these constructions are established by
the correspondence between chord diagrams and Wick contractions via the Wick
theorem. The matrix model encoding the boundary length and point spectrum
is given in Theorem 2.13. In Section 3 we derive partial differential equations for
matrix integrals found in Section 2. These partial differential equations coincide
with the cut-and-join equations found combinatorially in [2, 7]. The cut-and-join
equation for partial chord diagrams labeled by the boundary length and point
spectrum is determined in Theorem 3.11. Section 4 is devoted to the analysis of
non-oriented analogues of the results obtained in Section 2 and 3. In Subsection
4.1 we find real symmetric matrix models with external matrices, that encode
generating functions of both orientable and non-orientable partial chord diagrams.
The non-oriented analogue of the matrix integral from Theorem 2.13 is given in
Theorem 4.5. Non-oriented analogues of cut-and-join equations from Section 3
are determined in Theorem 4.10. In Appendix A we derive a partial differential
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equation from Proposition 4.7 for a real symmetric matrix integral with external
matrices. In Appendix B we prove Lemma 4.9.

2 Enumerating partial linear chord diagrams via

matrix models

The enumeration problem of partial chord diagrams with respect to the genus
filtration has been reformulated in terms of matrix integrals. Matrix model tech-
niques for enumeration of the RNA structures with pseudoknots have been devel-
oped in a series of papers [41, 56, 55], and independently in [4, 5, 6]. Subsequently
the analysis involving boundary point and length spectra of partial linear chord
diagrams has been conducted in [2, 7]. In this section we develop a new perspec-
tive on this problem and construct a matrix model that enumerates partial chord
diagrams labeled by the boundary length and point spectrum.

2.1 A matrix model enumerating partial chord diagrams

In the first step we construct a matrix model that counts partial chord diagrams
labeled by the boundary point spectrum {ni}.

Definition 2.1. Let Ng,k,l({bi}, {ni}, {pi}) denote the number of connected par-
tial chord diagrams of type {g, k, l; {bi}; {ni}; {pi}}. In particular, focusing on
the boundary point spectrum we define the following number of partial chord
diagrams characterized by the data {g, k, l; {bi}, {ni}},

Ng,k,l({bi}, {ni}) =
∑

{pi}
Ng,k,l({bi}, {ni}, {pi}).

We introduce the generating function3 for the numbers Ng,k,l({bi}, {ni})

F (x, y; {si}; {ti}) =
∑

b≥1

Fb(x, y; {si}; {ti}),

Fb(x, y; {si}; {ti}) =
1

b!

∑
∑

i bi=b

∑

{ni}
Ng,k,l({bi}, {ni})x2g−2yk

∏

i≥0

sbi
i tni

i .
(2.1)

The generating function for the numbers N̂k,b,l({bi}, {ni}) of connected and
disconnected partial chord diagrams arises in the usual way from the exponent

ZP(x, y; {si}; {ti}) = exp [F (x, y; {si}; {ti})]

=
∑

{bi}

∑

{ni}
N̂k,b,l({bi}, {ni})x−b+k−nyk

∏

i≥0

sbi
i tni

i .(2.2)

3The parameters si and ti in this article and in [2] are related by si ↔ ti.
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In the following we rewrite the generating function ZP(x, y; {si}; {ti}) as a Her-
mitian matrix integral. To this end, we consider first Gaussian averages over
Hermitian matrices.

Definition 2.2. Let O(M) be a function of a rank N Hermitian matrix M . The
Gaussian average ⟨O(M)⟩G

N is defined by the integral over the space HN of rank
N Hermitian matrices with respect to the Haar measure dM with the Gaussian

weight e−NTrM2

2 ,

⟨O(M)⟩G
N =

1

VolN

∫

HN

dM O(M) e−NTrM2

2 ,(2.3)

where the normalization factor VolN takes form

VolN =

∫

HN

dM e−NTrM2

2 = NN(N+1)/2Vol(HN).(2.4)

In particular for O(M) = MαβMγϵ (α, β, γ, ϵ = 1, . . . , N), the Gaussian average is

MαβMγδ := ⟨MαβMγϵ⟩G
N =

1

N
δαϵδβγ.(2.5)

This quantity is called the Wick contraction. By definition, a multiple Wick
contraction is a product of the Gaussian average of each Wick contracted pair.

It follows from the definition (2.3) that Gaussian averages of an odd number of
matrix elements vanish. On the other hand, Gaussian averages of an even number
of matrix elements are non-zero, and can be computed using the Wick theorem
[15, 43, 37], as we now recall. Consider an ordered sequence

Mα1β1Mα2β2 · · · Mα2kβ2k

of 2k matrix elements Mαnβn (n = 1, . . . , 2k).
Let Pk denote a set of matchings by k Wick contractions among the 2k matrix

elements in the above sequence. Pk is isomorphic to the following quotient of
groups

Pk ≃ GH/GE, GH = S2k, GE = Sk ⋊ (S2)
k.

Here the elements of the permutation group S2k permute 2k matrix elements. The
factors Sk of GE act by permuting k Wick contractions and (S2)

k swaps matrix
elements in each Wick contracted pair. The Wick theorem implies the following
result.

Theorem 2.3. The Gaussian average of 2k matrix elements Mαnβn (n = 1, . . . , k)
equals

⟨Mα1β1Mα2β2 · · · Mα2kβ2k
⟩G
N =

∑

σ∈Pk

k∏

i=1

Mασ(2i−1)βσ(2i−1)
Mασ(2i)βσ(2i)

=
1

Nk

∑

σ∈Pk

k∏

i=1

δασ(2i−1)βσ(2i)
δασ(2i)βσ(2i−1)

.

(2.6)
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2.1.1 Chord diagrams and Wick contractions

Let c be a chord diagram. We now recall the explicit relation between a surface
Σc associated to a chord diagram c and k-matchings or Wick contractions in
the Gaussian average. To illustrate this correspondence we depict chord ends on
backbones in Σc as trivalent vertices that consist of upright and horizontal line
segments, see Figure 6. This correspondence is specified by the following four
points C1–C4.

... ... ...

βj+1 α
′

j′

δαjβ
′

j′
δα′

j′
βj

αiαjβ2 βj βi β′

j′
α2α1 β1

αj+1

MM M M M M

N∑

αj+1,βj=1

δβjαj+1
N

N∑

α1,βi=1

δβiα1

Figure 6: Bijective correspondence between chord diagrams and Wick contrac-
tions.

C1 A matrix element Mαβ corresponds to a chord end on a backbone. Indices
α, β(= 1, . . . , N) are assigned to two upright line segments on the upper
edge of the backbone.

C2 If two matrix elements Mαjβj
Mαj+1βj+1

correspond to two adjacent chord ends
on the same backbone, then the following quantity is assigned to the hor-
izontal segment between these two chord ends on the upper edge of the
backbone

N∑

αj+1,βj=1

δβjαj+1
.

This assignment encodes matrix multiplication of matrix elements corre-
sponding to adjacent chord ends on the backbone.

C3 For the product of i matrix elements M

N∑

α2,...,αi=1

N∑

β1,...,bi−1=1

Mα1β1δβ1α2Mα2β2 . . . δβi−1αi
Mαiβi

= (M i)α1βi
,
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which corresponds to a backbone with i chord ends, the following quantity
is assigned to the bottom edge of the backbone

N

N∑

α1,βi=1

δβiα1 .

Thus, a backbone with i chord ends corresponds to a single trace of the i’th
power of M , namely NTrM i.

C4 The Wick contraction between Mαjβj
and Mα′

j′β
′
j′ corresponds to a band

connecting two chord ends. Each Wick contraction imposes a constraint
δαjβ′

j′ δα′
j′βj

on matrix indices assigned to the edges of the chord ends matched

by the Wick contraction.

The above rules imply the following bijective correspondence

WC
N ({bi}) =

⟨∏

i

(
NTrM i

)bi
⟩G

N
,

∑

i

ibi = 2k,(2.7)

between matchings by k Wick contractions in the Gaussian average on one hand,
and chord diagrams that consist of bi backbones with i chord ends on the other
hand, see Figure 7.

N

N∑

α1,α2,α3,α4=1

Mα1α2
Mα2α3

Mα3α4
Mα4α1

N

N∑

α1,α2,α3,α4=1

Mα1α2
Mα2α3

Mα3α4
Mα4α1

N

N∑

α1,α2,α3,α4=1

Mα1α2
Mα2α3

Mα3α4
Mα4α1

Figure 7: Chord diagrams and Wick contractions for ⟨NTrM4⟩G
N.

The Wick contractions (2.6) in WC
N ({bi}) replace all matrix elements M ’s by

products of δ’s, and summing over matrix indices along a boundary cycle one
finds a factor of N corresponding to each boundary cycle in a chord diagram.
Therefore the overall N dependence following from the above rules amounts to
assigning N b−k+n factor to the term WC

N ({bi}), corresponding to a chord diagram
with backbone spectrum {bi} and n boundary cycles. Combing the Wick theorem
and this bijective correspondence between matchings by k Wick contractions in
the Gaussian average WC

N ({bi}) and the set of chord diagrams with backbone
spectrum {bi}, the following proposition follows.
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Proposition 2.4. The Gaussian average WC
N ({bi}) in equation (2.7) agrees with

the generating function of chord diagrams with backbone spectrum {bi}

WC
N ({bi}) =

∑

n≥0

N̂k,b,n({bi})N b−k+n.(2.8)

Here N̂k,b,n({bi}) is the number of chord diagrams that consist of bi backbones
with i trivalent vertices

N̂k,b,n({bi}) =
∑

{pi}
N̂k,b,l=0({bi}, n0 = n, {ni = 0}i≥1, {pi}).(2.9)

2.1.2 Partial chord diagrams and Wick contractions

We now generalize the above bijective correspondence to partial chord diagrams.
Let c be a partial chord diagram. On the boundary cycles of the surface Σc

we add additional marked points, which correspond to those marked points on
c which are not chord ends. These marked points are represented by external
matrices ΛP of rank N in the Gaussian average. The rules P1–P5 below provide
the correspondence between partial chord diagrams with backbone spectrum {bi}
and matchings with k Wick contractions in the Gaussian average.

P1 A matrix element Mαβ corresponds to a chord end on a backbone. The
graphical rule is the same as the rule C1.

P2 A matrix element ΛPαβ corresponds to a marked point on a backbone in Σc.
Indices α, β(= 1, . . . , N) are assigned to two upright line segments at each
marked point on the upper edge of the backbone, see Figure 8.

P3 To a line segment (on the upper edge of the backbone) between adjacent chord
ends or marked points (located on the same backbone), corresponding to
matrix elements Uαjβj

and Vαj+1βj+1
(for U, V = M or ΛP), we assign

N∑

βj ,αj+1=1

δβjαj+1
,(2.10)

just as in C2.

P4 Let vj, wj ∈ Z≥0 (j = 1, . . . , i) with
∑i

j=1(vj +wj) = i. For an ordered matrix
product

(M v1Λw1
P M v2Λw2

P · · · M viΛwi
P )α1βi

,(2.11)

corresponding to a backbone which is an ordered sequence of vj chord ends
and wj marked points, we assign

N
N∑

α1,βi=1

δβiα1
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to the bottom edge of this backbone. It follows that the trace

NTr(M v1Λw1
P M v2Λw2

P · · · M viΛwi
P )(2.12)

is assigned to this backbone.

P5 The Wick contraction between Mαjβj
and Mα′

j′β
′
j′ corresponds to a band con-

necting two chord ends, and it is represented in the same way as specified
in C4.

... ... ...

βj+1
αiαjβ2

βj βi
α2α1 β1 αj+1 α

′

j′ β′

j′

δαjβ
′

j′
δα′

j′
βj

MMMM

N

N∑

α1,βi=1

δβiα1

N∑

αj+1,βj=1

δβjαj+1

ΛPΛP

Figure 8: Bijective correspondence between partial chord diagrams and matchings
of Wick contractions

For a fixed backbone spectrum {bi}, all possible sequences {αj, βj} in the
expression (2.12) are generated by the following product of traces

∏

i≥0

(
NTr(M + ΛP)i

)bi .(2.13)

Hence, by the above rules, all partial chord diagrams with the backbone spectrum
{bi} correspond bijectively to all matchings by Wick contractions among the M ’s
in the expansion of the Gaussian average

WP
N({bi}, {ri}) =

⟨∏

i≥0

(
NTr(M + ΛP)i

)bi
⟩G

N
,(2.14)

where we introduced the reverse Miwa times

ri =
1

N
TrΛi

P.(2.15)
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If there are ni boundary components containing i marked points, then one
finds a trace factor (TrΛi

P)ni in the corresponding term in the Gaussian average
(2.14), see Figure 9. Therefore, for partial chord diagrams with the backbone
spectrum {bi} and the boundary point spectrum {ni}, the corresponding term in
WP

N({bi}, {ri}) contributes the factor

N b−k+n
∏

i≥0

rni
i .

N

N∑

α1,α2,α3,α4=1

Mα1α2
Mα2α3

ΛPα3α4
ΛPα4α1

= NTrΛ
2

P

N

N∑

α1,α2,α3,α4=1

Mα1α2
ΛPα2α3

Mα3α4
ΛPα4α1

= (TrΛP)
2

ΛPΛP

ΛPΛP

Figure 9: Partial chord diagrams of types {g = 0, k = 1, l = 2; b4 = 1; n0 =
1, n2 = 1} and {g = 0, k = 1, l = 2; b4 = 1; n1 = 2}, and the corresponding Wick
contractions.

Therefore, from Wick theorem and the above bijective correspondence be-
tween partial chord diagrams and matchings by Wick contractions, one finds the
following proposition.

Proposition 2.5. The Gaussian average (2.14) is the generating function for the

numbers N̂k,b,l({bi}, {ni}) of partial chord diagrams with the backbone spectrum
{bi} and the boundary point spectrum {ni}

WP
N({bi}, {ri}) =

∑

{ni}
N̂k,b,l({bi}, {ni})N b−k+n

∏

i≥0

rni
i ,(2.16)

where the summation is constrained by
∑

ini =
∑

ibi − 2k.

Using this proposition, we consider the full generating function ZP
N(y; {si}; {ri})

for the numbers N̂k,b,l({bi}, {ni}) of partial chord diagrams weighted by

N b−k+nyk
∏

i≥0

sbi
i rni

i .
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Since the contribution from a partial chord diagram is invariant under permuta-
tions of its backbones, the full generating function

ZP
N(y; {si}; {ri}) =

∑

{bi}

∑

{ni}
N̂k,b,l({bi}, {ni})N b−k+nyk

∏

i≥0

sbi
i rni

i

can be rewritten as a sum over all backbone spectra {bi} of the terms

y
∑

i ibi/2WP
N({bi}, {y−i/2ri})

∏

i

sbi
i

bi!
.

It follows that

ZP
N(y; {si}; {ri}) =

∑

{bi}

∏

i≥0

sbi
i yibi/2

bi!

⟨(
NTr(M + y−1/2ΛP)i

)bi
⟩G

N
.

Performing the summation over bi’s, one finds that the full generating function is
given by the matrix integral

ZP
N(y; {si}; {ri}) =

=
1

VolN

∫

HN

dM exp

[
− NTr

(
M2

2
−

∑

i≥0

si(y
1/2M + ΛP)i

)]
.

(2.17)

This matrix integral and ZP(x, y; {si}; {ti}) in equation (2.2) are identified
by a change of variables. Since the reverse Miwa time for i = 0 yields r0 = 1
automatically, we need to introduce the parameter t0 by the following change of
variables

N → t0N, y → t0y, si → t−1
0 si, ri → t−1

0 ti.

As a result, we find the main theorem in this subsection.

Theorem 2.6. The generating function (2.2) is given by the matrix integral
(2.17),

(2.18) ZP(N−1, y; {si}; {ti}) = ZP
t0N(t0y; {t−1

0 si}; {t−1
0 ti}).

2.2 A matrix model for the enumeration of chord diagrams

Next we turn to the enumeration of chord diagrams labeled by the backbone spec-
trum {bi} and the boundary length spectrum {pi}. The number Ng,k({bi}, {pi})
of connected chord diagrams is given by

Ng,k({bi}, {pi}) =
∑

{ni}
Ng,k,0({bi}, {ni}, {pi}).

We introduce the following generating function of these numbers4

4The parameters qi’s in our paper correspond to si’s in [2].
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Definition 2.7. Let G(x, y; {si}; {qi}) denote the generating function of chord
diagrams labeled by the boundary length spectrum

G(x, y; {si}; {qi}) =
∑

b≥1

Gb(x, y; {si}; {qi}),

Gb(x, y; {si}; {qi}) =
1

b!

∑
∑

bi=b

∑

{pi}
Ng,k({bi}, {pi})x2g−2yk

∏

i≥0

sbi
i

∏

i≥1

qpi

i .
(2.19)

In the same way as the generating function ZP(x, y; {si}; {ti}) in (2.2), the gen-

erating function for the numbers N̂k,b({bi}, {pi}) of connected and disconnected
chord takes form

ZL(x, y; {si}; {qi}) = exp [G(x, y; {si}; {qi})]

=
∑

{bi}

∑

{pi}
N̂k,b({bi}; {pi})x−b+k−nyk

∏

i≥0

sbi
i

∏

i≥1

qpi

i .(2.20)

2.2.1 A matrix model for the boundary length spectrum

Let c be a chord diagram. The boundary length spectrum filters chord diagrams
according to combinatorial length of each boundary cycle, i.e. the sum of the
number of chords and backbone underpasses. This length can be determined by
counting marked points of a new type, which we now introduce. We introduce
marked points of a new type between all chord ends and backbone ends, see the left
diagram in Figure 10. For chord diagram decorated in this way, we get new marked
points on the boundaries of the surface Σc by sliding each new marked point along
the boundary of Σc until it reaches the first chord or backbone underside midpoint,
as indicated in the right hand side of Figure 10.

Λ
−1

L
Λ
−1

L
Λ
−1

L
Λ
−1

L
Λ
−1

L

Figure 10: Decorating a chord diagram with new marked points for partitions.

In order to construct a Gaussian matrix integral which counts this type of
chord diagrams we introduce another external matrix ΛL, which is an invertible
rank N matrix that keeps track of new marked points. We introduce a new model
model based on the following rules L1–L5, in which Wick contractions in the
Gaussian average correspond bijectively to decorated chord diagrams.

L1 A matrix element Mαβ corresponds to a chord end on a backbone. This
graphical rule is the same as the rule C1.
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L2 A matrix element (Λ−1
L )αjβj

is adjacent to a matrix element Mαj+1βj+1
on an

upper edge of a backbone in Σc. Without loss of generality, we can put Λ−1
P ’s

on the left hand side of the M ’s. Indices αj, βj(= 1, . . . , N) are assigned to
two upright line segments nipping a marked point in the upper edge of the
backbone, see Figure 11.

L3 If two matrix elements Uαjβj
and Vαj+1βj+1

(U, V = M or Λ−1
L ) on the same

backbone are adjacent, we form a matrix product (UV )αjβj+1
. This graphical

rule is the same as the rule C2.

L4 If a matrix product

(Λ−1
L M)i

α1βi

corresponds to a backbone with a marked point, we assign the expression

N
N∑

α1,βi=1

(Λ−1
L )α1βi

to the bottom edge of this backbone. This gives the contribution

NTr((Λ−1
L M)iΛ−1

L )

with i chord ends and therefore i + 1 new marked points.

L5 The Wick contraction between Mαjβj
and Mα′

j′β
′
j′ corresponds to a band con-

necting two chord ends. This graphical rule is the same as the rule C4.

... ... ...

βj+1αjβ2 βjα2α1 β1
αj+1

N∑

αj+1,βj=1

δβjαj+1

α
′

j′ β′

j′

M M M M

δαjβ
′

j′
δα′

j′
βj

N

N∑

αj+1,βj=1

Λ
−1

Lβ2iα1
α1

Λ
−1

L
Λ
−1

L
Λ
−1

L
Λ
−1

L

α2i−1 α2i β2iβ2i−1
α
′

j′−1 β′j′−1

β2i

Figure 11: Bijective correspondence between decorated chord diagrams and
matchings of Wick contractions.
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Repeating the same discussions as in the previous subsection, one finds that
every chord diagram with the backbone spectrum {bi} corresponds to matchings
with k =

∑
ibi/2 Wick contractions, which arise from the following Gaussian

average

W L
N({bi}; {qi}) =

⟨∏

i≥0

(
NTr(Λ−1

L M)iΛ−1
L

)bi
⟩G

N
,(2.21)

where we introduced Miwa times

qi =
1

N
TrΛ−i

L .(2.22)

Λ
−1

L
Λ
−1

L Λ
−1

L
Λ
−1

L
Λ
−1

L

Λ
−1

L
Λ
−1

L Λ
−1

L
Λ
−1

L
Λ
−1

L

N

N∑

α1,...,α9=1

Λ
−1

Lα1α2
Mα2α3

Λ
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Figure 12: Chord diagrams of types {g, k; {bi}; {pi}} = {0, 2; b5 = 1; p1 = 2, p3 =
1} and {g, k; {bi}; {pi}} = {1, 2; b5 = 1; p5 = 1}.

It follows from the rules L1–L5 that i Λ−1
L ’s are aligned along the boundary

cycle with length i. Therefore, for chord diagrams with the backbone spectrum
{bi} and the boundary length spectrum {pi}, the corresponding Wick contractions
in W L

N({bi}; {qi}) involve the factor

N b−k+n
∏

i≥1

qpi

i ,

see Figure 12. The key proposition of this subsection follows.

Proposition 2.8. The Gaussian average W L
N({bi}; {qi}) in eq.(2.21) is the gener-

ating function of the numbers N̂k,b({bi}, {pi}) of chord diagrams with the backbone
spectrum {bi}

W L
N({bi}; {qi}) =

∑

{pi}
N̂k,b({bi}, {pi})N b−k+n

∏

i≥1

qpi

i .(2.23)
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We also consider the full generating function for the numbers N̂k,b({bi}, {pi})
of chord diagrams

ZL
N(y; {si}; {qi}) =

∑

{bi}

∑

{pi}
N̂k,b({bi}, {pi})N b−k+nyk

∏

i≥0

sbi
i

∏

i≥1

qpi

i .

This full generating function is given by the sum of Gaussian averages (2.21), and
in consequence by the following Hermitian matrix integral

ZL
N(y; {si}; {qi}) =

∑

{bi}

1∏
i bi!

ykW L
N({bi}, {y−ibi/2qi})

∏

i

sbi
i

=
1

VolN

∫

HN

dM exp

[
− NTr

(
M2

2
−

∑

i≥0

siy
i/2

(
Λ−1

L M
)i

Λ−1
L

)]
.

(2.24)

Comparing this matrix integral and the generating function ZL
N(y; {si}; {qi}) in

equation (2.20), we arrive at the main theorem of this subsection.

Theorem 2.9. The matrix integral (2.24) agrees with the generating function
(2.20)

ZL
N(y; {si}; {qi}) = ZL(N−1, y; {si}; {qi}).(2.25)

Specialization of the model

The cut-and-join equation for the numbers of chord diagrams is discussed in Sub-
section 3.2. For technical reasons, the partial differential equation for the gener-
ating function (2.20) with general parameter {si} cannot be written in a simple
form. Therefore we consider the specialization of the generating function (2.20)
defined by5

si = s.

Under this specialization, the matrix integral (2.24) reduces to

ZL
N(y; s; {qi}) = ZL

N(y; {si = s}; {qi})

=
1

VolN

∫

HN

dM exp

[
− NTr

(
M2

2
− s

1 − y1/2Λ−1
L M

Λ−1
L

)]
.

(2.26)

For ZL(x, y; s; {qi}) = ZL(x, y; {si = s}; {qi}), we find

ZL
N(y; s; {qi}) = ZL(N−1, y; s; {qi}).(2.27)

In Subsection 3.2 we derive the cut-and-join equation for this specialized model,
and show the agreement with the cut-and-join equation found by combinatorial
means in [2].

5In [2], the length spectrum generating function Gb(x, y; {si}) is the same as in this specialized
model.
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2.3 The boundary length and point spectrum and the uni-
fied model

So far we have discussed separately the enumeration of chord diagrams and par-
tial chord diagrams labeled by the boundary point spectrum and the boundary
length spectrum. In this subsection we consider a unification of these two kinds
of spectra, which is referred to as the boundary length and point spectrum. This
unified spectrum was introduced and analyzed by cut-and-join methods in [7]. In
what follows we construct a matrix model that encodes this new spectrum, and
in Subsection 3.3 we show how the cut-and-join equation found in [7] follows from
this matrix model.

Figure 13: Decorating a partial chord diagram with the boundary label iii =
(1, 0, 1, 4, 2) with marked points for partitions.

The boundary length and point spectrum {niii} is defined as follows [7].

Definition 2.10. Let c be a partial chord diagram. We associate the K tuple of
numbers iii = (i1, i2, . . . , iK) to a boundary component of Σc, if we find the tuple
iii of marked points around this boundary component, once we record different
numbers of marked points in between chord ends and backbone underpasses along
the boundary in the cyclic order induced from the orientation of Σc. The boundary
length and point spectrum {niii} counts the number of boundary cycles indexed
by iii for the partial chord diagram c.

To enumerate the number of partial chord diagrams labeled by {g, k, l; {bi}; {niii}},
we consider the generating functions introduced in [7].

Definition 2.11. Let Ng,k,l({bi}, {niii}) denote the number of connected chord di-
agrams labeled by the set of parameters (g, k, l; {bi}; {niii}) in the boundary length
and point spectrum. The generating function for these numbers is defined as

F(x, y; {si}; {uiii}) =
∑

b≥1

Fb(x, y; {si}; {uiii}),

Fb(x, y; {si}; {uiii}) =
1

b!

∑
∑

i bi=b

∑

{niii}
Ng,k,l({bi}, {niii})x2g−2yk

∏

i≥0

sbi
i

∏

K≥1

∏

{iL}K
L=1

uniii
iii .

(2.28)
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Exponentiating this generating function, one obtains the full generating function
for the numbers N̂k,b,l({bi}, {niii}) of partial chord diagrams

Z(x, y; {si}; {uiii}) = exp [F(x, y; {si}; {uiii})]

=
∑

{bi}

∑

{niii}
N̂k,b,l({bi}, {niii})x−b+k−nyk

∏

i≥0

sbi
i

∏

K≥1

∏

{iL}K
L=1

uniii
iii ,(2.29)

where l, k, and b obey

l =
∑

K≥1

∑

{iL}K
L=1

K∑

L=1

iLn(i1,...,iK), 2k + l =
∑

i≥1

ibi, b =
∑

i≥0

bi.

The enumeration of partial chord diagrams decorated by the boundary length
and point spectrum can also be expressed in terms of Gaussian averages over
Hermitian matrices. To this end we again make use of extra marked points, just
as in the previous section (concerning the length spectrum to mark the separation
between marked points on the backbone, counted by the index iii), see Figure
13. Indeed, the boundary length and point spectrum also encodes the length
spectrum, simply as the number K of partitions of marked points on boundary
cycles.

To represent the boundary length and point spectrum, we introduce two ex-
ternal matrices ΛP and ΛL. In order to faithfully represent the ordering between
marked points and partitions on each boundary cycle, we assume that these two
external matrices do not commute

[ΛP, ΛL] ̸= 0.

The correspondence between partial chord diagrams with the backbone spectrum
{bi} and matchings by Wick contractions in a Gaussian average is given by a com-
bination of the previous rules C1, C2, P2, L2, P4, L4, and L5. We summarize
this correspondence in Table 1.

Table 1: The correspondence between partial chord diagrams with the backbone
spectrum {bi} and matchings by Wick contractions in the Gaussian average.

A partial chord diagram Gaussian average

A chord end on a backbone Λ−1
L M

A marked point on a backbone ΛP

An underside of a backbone NΛ−1
L

A backbone NTr
(
Λ−1

L Λα1
P Λ−1

L Λα2
P Λ−1

L · · · ΛαK
P Λ−1

L

)

A chord Wick contraction MM
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Based on these rules, one finds a bijective correspondence between partial
chord diagrams with the backbone spectrum {bi} and matchings by Wick con-
tractions in the Gaussian average

WN({bi}; {uiii}) =
⟨∏

i≥0

(
NTr(Λ−1

L M + ΛP)iΛ−1
L

)bi
⟩G

N
,(2.30)

where in order to represent trace factors ΛP and ΛL we introduced the generalized
Miwa times

u(i1,...,iK) =
1

N
Tr

(
Λi1

P Λ−1
L Λi2

P Λ−1
L · · · ΛiK

P Λ−1
L

)
.(2.31)

If a partial chord diagram c contains a boundary cycle labeled by iii = (i1, . . . , iK),
one finds the following trace factor in the corresponding Wick contractions in
WN({bi}; {uiii})

Tr
(
Λi1

P Λ−1
L Λi2

P Λ−1
L · · · ΛiK

P Λ−1
L

)
.

Finally, combining Propositions 2.5 and 2.8, we obtain the key proposition.

Proposition 2.12. The Gaussian average WN({bi}; {uiii}) in the equation (2.30)

is the generating function for the numbers N̂k,b,l({bi}, {niii}) of partial chord dia-
grams

WN({bi}; {uiii}) =
∑

{niii}
N̂k,b,l({bi}, {niii})N b−k+n

∏

K≥1

∏

{iL}K
L=1

uniii
iii .(2.32)

Repeating the same combinatorics as in the previous subsections, we find the
main theorem of this section.

Theorem 2.13. The Hermitian matrix integral

ZN(y; {si}; {uiii}) =

=
1

VolN

∫
dM exp

[
− NTr

(
M2

2
−

∑

i≥0

si(y
1/2Λ−1

L M + ΛP)iΛ−1
L

)]
(2.33)

agrees with the generating function (2.29)

ZN(y; {si}; {uiii}) = Z(N−1, y; {si}; {uiii}).(2.34)

3 Cut-and-join equations via matrix models

In Section 2 we discussed matrix models that enumerate partial chord diagrams
filtered by the boundary point spectrum, the boundary length spectrum, and the
boundary length and point spectrum. In this section we derive partial differential
equations for these matrix models, and show that they agree with the cut-and-
join equations found in [2, 7]. To derive these differential equations, it is useful to
introduce the following matrix integral.
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Definition 3.1. Let A and B denote invertible matrices of rank N . We define
a formal matrix integral with parameters y, {gi}+∞

i=−∞, and matrices A and B, as
follows

ZN(y; {gi}; A; B) =

=
1

VolN

∫

HN

dM exp

[
− NTr

(
1

2
M2 −

∑

i∈Z

gi(y
1/2B−1M + A)iB−1

)]
.

(3.1)

By the following specializations of this matrix integral one finds matrix inte-
grals discussed in Section 2

ZP
N(y; {si}; {ri}) : gi<0 = 0, gi≥0 = si, A = ΛP, B = IN ,

ZL
N(y; {si}; {qi}) : gi<0 = 0, gi≥0 = si, A = 0, B = ΛL,

ZL
N(y; s; {qi}) : gi̸=−1 = 0, g−1 = −s, A = ΛL, B = −IN ,

ZN(y; {si}; {uiii}) : gi<0 = 0, gi≥0 = si, A = ΛP, B = ΛL,

where IN is the rank N identity matrix.
The matrix integral (3.1) satisfies the following partial differential equation.

Proposition 3.2. The matrix integral ZN(y; {gi}; A; B) obeys a partial differen-
tial equation

(3.2)

[
∂

∂y
− 1

2N
Tr(B−1)T ∂

∂A
(B−1)T ∂

∂A

]
ZN(y; {gi}; A; B) = 0,

where the trace in the second term is defined, for rank N matrices X and Y , as

TrX
∂

∂Y
=

N∑

α,β=1

Xαβ
∂

∂Yβα

.

Proof. By a shift M = X − y−1/2BA, the matrix integral (3.1) can be rewritten
as

ZN(y; {gi}; A; B) =

=
1

VolN

∫

H̃N

dX exp

[
− NTr

(
1

2
(X − y−1/2BA)2 −

∑

i∈Z

yi/2gi(B
−1X)iB−1

)]
.

(3.3)

Here H̃N is the space of shifted matrices X = M + y−1/2BA with M ∈ HN . The
invariance of this matrix integral under the infinitesimal scaling Xαβ → (1+ϵ)Xαβ

leads to a constraint equation

(3.4)

⟨
N2 − NTrX2 + y−1/2NTrBAX + N

∑

i∈Z

iyi/2giTr(B−1X)iB−1

⟩
= 0,
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where the first term N2 comes from the measure factor, as dX → (1 + N2ϵ)dX.
Here we have defined the unnormalized average for an observable O(X)

⟨O(X)⟩ =

∫

H̃N

dX O(X) exp

[
−NTr

(
1

2
(X−y−1/2BA)2−

∑

i∈Z

yi/2gi(B
−1X)iB−1

)]
.

Using

1

N
y1/2

N∑

γ=1

(B−1)T
βγ

∂

∂Aγα

ZN(y; {gi}; A; B) =

⟨
Xαβ − y−1/2N

N∑

γ=1

BαγAγβ

⟩
,

1

N

∂

∂gi

ZN(y; {gi}; A; B) = yi/2
⟨
Tr(B−1X)iB−1

⟩
,

one finds that the constraint equation (3.4) yields
[

− 1

N
yTr(B−1)T ∂

∂A
(B−1)T ∂

∂A
− TrAT ∂

∂A
+

∑

i∈Z

igi
∂

∂gi

]
ZN(y; {gi}; A; B) = 0.

It follows from (3.3) that the last two derivatives in the expression above can be
replaced by 2y∂/∂y, so that the partial differential equation (3.2) is obtained.

Remark 3.3. In the above proof of the constraint equation (3.4) we considered
the infinitesimal scaling Xαβ → (1 + ϵ)Xαβ. More generally, matrix integral (3.3)
is invariant under infinitesimal shifts

Xαβ −→ Xαβ + ϵ(Xn+1)αβ, n = −1, 0, 1, . . . .

It is known that for the matrix integral without external matrices A and B this
symmetry yields the Virasoro symmetry, and in particular the scaling Xαβ →
(1 + ϵ)Xαβ is related to the Virasoro generator LVir

0 [22, 19].6

3.1 The boundary point spectrum

In Subsection 2.1 we showed that the matrix integral ZP
N(y; {si}; {ri}) in (2.17)

ZP
N(y; {si}; {ri}) =

=
1

VolN

∫

HN

dM exp

[
− NTr

(
M2

2
−

∑

i≥0

siy
i/2(M + y−1/2ΛP)i

)]
,

enumerates partial chord diagrams labeled by the boundary point spectrum. By
the specialization

gi<0 = 0, gi≥0 = si, A = ΛP, B = IN = identity matrix,

6In [33, 18], the Schwinger-Dyson approach to the enumeration of chord diagrams is also
discussed.
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of the matrix integral ZN(y; {gi}; A; B) in (3.1) we see that

(3.5) ZN(y; si<0 = 0, {si}i≥0; ΛP; IN) = ZP
N(y; {si}; {ri}),

where the reverse Miwa times ri are defined in (2.15). From (3.2) we obtain the
partial differential equation satisfied by ZP

N(y; {si}; {ri}).

Corollary 3.4. The matrix integral ZP
N(y; {si}; {ri}) obeys the partial differential

equation

(3.6)

[
∂

∂y
− 1

2N
Tr

∂2

∂Λ2
P

]
ZP

N(y; {si}; {ri}) = 0.

This corollary implies the following theorem.

Theorem 3.5. Let L0 and L2 be the differential operators7

L0 =
1

2

∑

i≥2

i−2∑

j=0

irjri−j−2
∂

∂ri

,

L2 =
1

2

∑

i≥2

i−1∑

j=1

j(i − j)ri−2
∂2

∂ri∂ri−j

.

(3.7)

The matrix integral ZP
N(y; {si}; {ri}) obeys the cut-and-join equation

∂

∂y
ZP

N(y; {si}; {ri}) = LZP
N(y; {si}; {ri}),(3.8)

where

L = L0 +
1

N2
L2.

The formal solution of this cut-and-join equation, which gives the matrix integral
ZP

N(y; {si}; {ri}), is iteratively determined from the initial condition at y = 0,

ZP
N(y; {si}; {ri}) = eyLZP

N(0; {si}; {ri}) = eyLeN2
∑

i≥0 siri .(3.9)

This theorem follows from the lemma below by rewriting the derivative Tr∂2/∂Λ2
P

in the partial differential equation (3.6).

Lemma 3.6. For a function f({ri}) of the reverse Miwa times ri, the derivative
Tr∂2/∂Λ2

P can be rewritten as

1

2N
Tr

∂2

∂Λ2
P

f({ri}) =

(
L0 +

1

N2
L2

)
f({ri}).(3.10)

7In [36] the differential operators L0 and L2 were denoted by W (3).
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Proof. Consider the derivative ∂/∂ΛPβα of ri,

∂ri

∂ΛPβα

=
i

N
Λi−1

Pαβ, Tr
∂2ri

∂Λ2
P

= iN
i−2∑

j=0

rjri−j−2.

Then the derivative Tr∂2/∂Λ2
P of the function f({ri}) is re-expressed as

1

2N
Tr

∂2

∂Λ2
P

f({ri}) =
1

2N

∑

i≥0

Tr
∂2ri

∂Λ2
P

∂f({ri})

∂ri

+
1

2N

∑

i,j≥0

N∑

α,β=1

∂ri

∂ΛPβα

∂rj

∂ΛPαβ

∂2f({ri})

∂ri∂rj

=
1

2

∑

i≥2

i−2∑

j=0

irjri−j−2
∂f({ri})

∂ri

+
1

2N2

∑

i,j≥1

ijri+j−2
∂2f({ri})

∂ri∂rj

.

This coincides with the right hand side of (3.10).

The cut-and-join equation for the rescaled matrix integral (2.18) yields

∂

∂y
ZP

t0N(t0y; {t−1
0 si}; {t−1

0 ti}) = LZP
t0N(t0y; {t−1

0 si}; {t−1
0 ti}),(3.11)

where L is given by

L = L0 + x2L2, x = N−1,

L0 =
1

2

∑

i≥2

i−2∑

j=0

itjti−j−2
∂

∂ti
, L2 =

1

2

∑

i≥2

i−1∑

j=1

j(i − j)ti−2
∂2

∂ti∂ti−j

.
(3.12)

This cut-and-join equation agrees with the partial differential equation in Theorem
1 of [2], where it was proven combinatorially by the recursion relation for the
number of partial chord diagrams.8 This completes the proof of Theorem 2.6.

3.2 The boundary length spectrum

In Subsection 2.2 we showed that the matrix integral ZL
N(y; {si}; {qi}) in (2.24)

enumerates chord diagrams labeled by the boundary length spectrum. By the
specialization

gi<0 = 0, gi≥0 = si, A = 0, B = ΛL,

of the matrix integral ZN(y; {gi}; A; B) in (3.1) we see that

(3.13) ZN(y; si<0 = 0, {si}i≥0; 0; ΛL) = ZL
N(y; {si}; {qi}),

where the Miwa times qi are defined in equation (2.22).

8For the Grothendieck’s dessin counting, a similar cut-and-join equation was found in [27].
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Obviously, for A = 0 the partial differential equation (3.2) does not hold.
Instead we consider the matrix integral (2.26) obtained by the specialization si = s

ZL
N(y; s; {qi}) =

1

VolN

∫

HN

dM exp

[
− NTr

(
M2

2
+

s

y1/2M − ΛL

)]
.

The same matrix integral can be obtained by the specialization

gi̸=−1 = 0, g−1 = −s, A = ΛL, B = −IN ,

and thus

(3.14) ZN(y; si = −δi,−1; ΛL; B = −IN) = ZL
N(y; s; {qi}).

Then from (3.2) we obtain a partial differential equation for ZL
N(y; s; {qi}).

Corollary 3.7. The matrix integral ZL
N(y; s; {qi}) obeys the partial differential

equation

(3.15)

[
∂

∂y
− 1

2N
Tr

∂2

∂Λ2
L

]
ZL

N(y; s; {ri}) = 0.

This corollary implies the following theorem.

Theorem 3.8. Let K0 and K2 be the differential operators

K0 =
1

2

∑

i≥3

i−1∑

j=1

(i − 2)qjqi−j
∂

∂qi−2

,

K2 =
1

2

∑

i≥2

i−1∑

j=1

j(i − j)qi+2
∂2

∂qi∂qi−j

.

(3.16)

The matrix integral ZL
N(y; s; {qi}) obeys the cut-and-join equation

∂

∂y
ZL

N(y; s; {qi}) = KZL
N(y; s; {qi}),(3.17)

where

K = K0 +
1

N2
K2.

The formal solution of this cut-and-join equation, which gives the matrix integral
ZL

N(y; s; {qi}), is iteratively determined from the initial condition at y = 0,

ZL
N(y; s; {qi}) = eyKZL

N(y = 0; s; {qi}) = eyKeN2sq1 .(3.18)
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The cut-and-join equation (3.17) was combinatorially proven in Theorem 2 of
[2] for the generating function ZL(x, y; s; {qi}) in (2.19), and thus Theorem 2.9 for
si = s is reproved.

The claim of Theorem 3.8 is proven by rewriting the derivative Tr∂2/∂Λ2
L in

the partial differential equation (3.15) using the following lemma.

Lemma 3.9. For a function g({qi}) of the Miwa times {qi}, the derivative Tr∂2/∂Λ2
L

can be rewritten as follows

1

2N
Tr

∂2

∂Λ2
L

g({qi}) =

(
K0 +

1

N2
K2

)
g({qi}).(3.19)

Proof. By acting ∂/∂ΛL on the Miwa time qi one obtains

∂qi

∂ΛLαβ

= − i

N
Λ−i−1

Lβα , Tr
∂2qi

∂Λ2
L

= iN
i+1∑

j=1

qjqi−j+2.

Adopting this relation via the chain rule applied to the ΛL derivatives, one finds
that

1

2N
Tr

∂2g({qi})

∂Λ2
L

=
1

2N

∑

i≥0

Tr
∂2qi

∂Λ2
L

∂g({qi})

∂qi

+
1

2N

∑

i,j≥0

N∑

α,β=1

∂qi

∂ΛLαβ

∂qj

∂ΛLβα

∂2g({qi})

∂qi∂qj

=
1

2

∑

i≥1

iqjqi−j+2
∂g({qi})

∂qi

+
1

2N2

∑

i,j≥1

ijqi+j+2
∂2g({qi})

∂qi∂qj

.

This coincides with the right hand side of (3.19).

3.3 The boundary length and point spectrum

In Subsection 2.3 we showed that the matrix integral ZN(y; {si}; {uiii}) in (2.29)

ZN(y; {si}; {uiii}) =

=
1

VolN

∫

HN

dM exp

[
− NTr

(
M2

2
−

∑

i≥0

si(y
1/2Λ−1

L M + ΛP)iΛ−1
L

)]

enumerates partial chord diagrams labeled by the boundary length and point
spectrum. By the specialization

gi<0 = 0, gi≥0 = si, A = ΛP, B = ΛL,

of the matrix integral ZN(y; {gi}; A; B) in (3.1) we see that

(3.20) ZN(y; si<0 = 0, {si}i≥0; ΛP; ΛL) = ZN(y; {si}; {uiii}),
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where the generalized Miwa times u(i1,...,iK) are defined in (2.31)

u(i1,...,iK) =
1

N
Tr

(
Λi1

P Λ−1
L Λi2

P Λ−1
L · · · ΛiK

P Λ−1
L

)
.

From (3.2) we obtain a partial differential equation for ZN(y; {si}; {uiii}).

Corollary 3.10. The matrix integral ZN(y; {si}; {uiii}) obeys the partial differen-
tial equation

(3.21)

[
∂

∂y
− 1

2N
Tr(Λ−1

L )T ∂

∂ΛP

(Λ−1
L )T ∂

∂ΛP

]
ZN(y; {si}; {uiii}) = 0.

This corollary implies the following main theorem of this section.

Theorem 3.11. Let M0 and M2 be the following differential operators with respect
to parameters uiii

M0 =
1

2

∑

K≥1

∑

{i1,...,iK}

∑

1≤I ̸=M≤K

iI−1∑

ℓ=0

iM−1∑

m=0

u(iI−ℓ−1,iI+1,...,iM−1,m)u(iM−m−1,iM+1,...,iI−1,ℓ)
∂

∂u(i1,...,iK)

+
∑

K≥1

∑

{i1,...,iK}

K∑

I=0

∑

ℓ+m≤iI−2

u(ℓ,m,iI+1,...,iI−1)u(iI−ℓ−m−2)
∂

∂u(i1,...,iK)

,

M2 =
1

2

∑

K,L≥0

∑

{i1,...,iK}

∑

{j1,...,jL}

K∑

I=0

L∑

J=0

iI−1∑

ℓ=0

jJ−1∑

m=0

u(iI−ℓ−1,iI+1,...,iI−1,ℓ,jJ−m−1,jJ+1,...,jJ−1,m)
∂2

∂u(i1,...,iK)∂u(j1,...,jL)

,

(3.22)

where labels I, M ’s are defined modulo K, and the label J is defined modulo L.
The matrix integral ZN(y; {si}; {uiii}) obeys the cut-and-join equation

∂

∂y
ZN(y; {si}; {uiii}) = MZN(y; {si}; {uiii}),(3.23)

where

M = M0 +
1

N2
M2.

The formal solution of this cut-and-join equation, which gives the matrix integral
ZN(y; {si}; {uiii}), is iteratively determined from the initial condition at y = 0,

ZN(y; {si}; {uiii}) = eyMZN(y = 0; {si}; {uiii}) = eyMeN2
∑

i≥0 siu(i) .(3.24)
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The partial differential equation (3.23) agrees with the cut-and-equation ob-
tained combinatorially in Theorem 1.1 of [7]. Here we prove this theorem by
rewriting the derivative in the second term of the partial differential equation
(3.21), taking advantage of the following lemma.

Lemma 3.12. For a function h({uiii}) of the generalized Miwa times uiii, the deriva-
tive in the second term of the partial differential equation (3.21) can be rewritten
as follows

1

2N
Tr

[
(Λ−1

L )T ∂

∂ΛP

(Λ−1
L )T ∂

∂ΛP

]
h({uiii}) =

(
M0 +

1

N2
M2

)
h({uiii}).(3.25)

Proof. By the chain rule, the derivative on the left hand side of (3.25) is rewritten
as follows

Tr

[
(Λ−1

L )T ∂

∂ΛP

(Λ−1
L )T ∂

∂ΛP

]
h({uiii}) =

=
∑

K≥0

∑

(i1,...,iK)

Tr

[
(Λ−1

L )T ∂

∂ΛP

(Λ−1
L )T ∂

∂ΛP

u(i1,...,iK)

]
∂

∂u(i1,...,iK)

h({uiii})

+
∑

K,L≥0

∑

(i1,...,iK)

∑

(j1,...,jL)

Tr

[
(Λ−1

L )T ∂

∂ΛP

u(i1,...,iK)(Λ
−1
L )T ∂

∂ΛP

u(j1,...,jL)

]

× ∂2

∂u(i1,...,iK)∂u(j1,...,jL)

h({uiii}).

Each of the coefficients yields

Tr

[
(Λ−1

L )T ∂

∂ΛP

(Λ−1
L )T ∂

∂ΛP

u(i1,...,iK)

]
=

=
∑

1≤I ̸=M≤K

iI−1∑

ℓ=0

iM−1∑

m=0

1

N
Tr(ΛiI−ℓ−1

P Λ−1
L Λ

iI+1

P Λ−1
L · · · Λ

iM−1

P Λ−1
L Λm

P Λ−1
L )

× Tr(ΛiM−m−1
P Λ−1

L Λ
iM+1

P Λ−1
L · · · Λ

iI−1

P Λ−1
L Λℓ

PΛ−1
L )

+ 2
K∑

L=0

∑

ℓ+m≤iI−2

1

N
Tr(Λℓ

PΛ−1
L Λm

P Λ−1
L Λ

iI+1

P Λ−1
L · · · Λ

iL−1

P Λ−1
L )Tr(ΛiI−ℓ−m−2

P Λ−1
L )

= N
∑

1≤I ̸=M≤K

iI−1∑

ℓ=0

iM−1∑

m=0

u(iI−ℓ−1,iI+1,...,iM−1,m)u(iM−m−1,iM+1,...,iI−1,ℓ)

+ 2N
K∑

L=0

∑

ℓ+m≤iI−2

u(ℓ,m,iI+1,...,iI−1)u(iI−ℓ−m−2),

and

Tr

[
(Λ−1

L )T ∂

∂ΛP

u(i1,...,iK)(Λ
−1
L )T ∂

∂ΛP

u(j1,...,jL)

]
=
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=
K∑

I=1

L∑

J=1

iI−1∑

ℓ=0

jJ−1∑

m=0

1

N2
Tr(ΛiI−ℓ−1

P Λ−1
L Λ

iI+1

P Λ−1
L · · · ΛiI−1Λ−1

L Λℓ
PΛ−1

L

· ΛjJ−m−1
P Λ−1

L Λ
jJ+1

P Λ−1
L · · · Λ

jJ−1

P Λ−1
L Λm

P Λ−1
L )

=
1

N

K∑

I=1

L∑

J=1

iI−1∑

ℓ=0

jJ−1∑

m=0

u(iI−ℓ−1,iI+1,...,iI−1,ℓ,jJ−m−1,jJ+1,...,jJ−1,m).

In this way one obtains the right hand side of (3.25).

As a corollary of Theorem 3.11, one finds the cut-and-join equation for the
1-backbone generating function.9

Corollary 3.13. The 1-backbone generating function F1(x, y; {si}; {uiii}) obtained
by picking up the O(s1

i ) terms in ZN(y; {si}; {uiii}) as follows

F1(N
−1, y; {si}; {uiii})

=
1

VolN

∫

HN

dM e−NTrM2

2 N
∑

i≥0

siTr(y1/2Λ−1
L M + ΛP)iΛ−1

L ,
(3.26)

obeys the cut-and-join equation

∂

∂y
F1(x, y; {si}; {uiii}) = MF1(x, y; {si}; {uiii}),(3.27)

where M = M0 + x2M2. The solution is iteratively determined by

F1(x, y; {si}; {uiii}) = eyMF1(x, y = 0; {si}; {uiii}) = eyM
(

x−2
∑

i≥0

siu(i)

)
.(3.28)

4 Non-oriented analogues

In this section we consider the enumeration of both orientable and non-orientable
(jointly called non-oriented) partial chord diagrams [2, 7]. To this end we general-
ize the matrix models introduced in Section 2. In Subsection 4.1, matrix models for
the boundary point spectrum, the boundary length spectrum, and the boundary
length and point spectrum are introduced, based on the corresponding Gaussian
matrix integrals over the space of rank N real symmetric matrices. Subsequently,
in Subsection 4.2, we derive cut-and-join equations for the generating functions of
non-oriented partial chord diagrams, using analogous methods as those discussed
in Section 3.

9For ΛL = IN (or si = s and ΛP = 0) the cut-and-join equation for the 1-backbone generating
function labeled by the boundary point spectrum (or boundary length spectrum) was proven
combinatorially in [2].
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4.1 Non-oriented analogues of the matrix models

In this subsection we generalize matrix models found in Section 2, in order to
enumerate both orientable and non-orientable partial chord diagrams [2, 7].

Definition 4.1. Let Ñh,k,l({bi}, {ni}, {pi}) denote the number of connected non-
oriented partial chord diagrams of type {h, k, l; {bi}; {ni}; {pi}}. Analogously as
in the orientable case, we define

Ñh,k,l({bi}, {ni}) =
∑

{pi}
Ñh,k,l({bi}, {ni}, {pi}),

Ñh,k({bi}, {pi}) =
∑

{ni}
Ñh,k,l=0({bi}, {ni}, {pi}),

and introduce generating functions

F̃ (x, y; {si}; {ti}) =
∑

b≥1

F̃b(x, y; {si}; {ti}),

F̃b(x, y; {si}; {ti}) =
1

b!

∑
∑

i bi=b

∑

{ni}
Ñh,k,l({bi}, {ni})xh−2yk

∏

i≥0

sbi
i tni

i ,
(4.1)

and

G̃(x, y; {si}; {qi}) =
∑

b≥1

G̃b(x, y; {si}; {qi}),

G̃b(x, y; {si}; {qi}) =
1

b!

∑
∑

i bi=b

∑

{pi}
Ñh,k({bi}, {pi})xh−2yk

∏

i≥0

sbi
i

∏

i≥1

qpi

i .
(4.2)

Generating functions of connected and disconnected partial chord diagrams are
related by

Z̃P(x, y; {si}; {ti}) = exp
[
F̃ (x, y; {si}; {ti})

]
,(4.3)

Z̃L(x, y; {si}; {qi}) = exp
[
G̃(x, y; {si}; {qi})

]
.(4.4)

Furthermore, we introduce generating functions of non-oriented partial chord
diagrams labeled by the boundary length and point spectrum.

Definition 4.2. Let Ñh,k,l({bi}, {niii}) denote the number of connected orientable
and non-orientable partial chord diagrams of type {h, k, l; {bi}; {niii}} with the
boundary length and point spectrum niii. We define the generating functions

F̃(x, y; {si}; {uiii}) =
∑

b≥1

F̃b(x, y; {si}; {uiii}),

F̃b(x, y; {si}; {uiii}) =
1

b!

∑
∑

i bi=b

∑

{niii}
Ñh,k,l({bi}, {niii})xh−2yk

∏

i≥0

sbi
i

∏

K≥1

∏

{iL}K
L=1

uniii
iii .

(4.5)
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As usual, generating functions of connected and disconnected partial chord dia-
grams are related by

Z̃(x, y; {si}; {uiii}) = exp
[
F̃(x, y; {si}; {uiii})

]
.(4.6)

Non-oriented analogue of partial chord diagrams and Wick contractions

A non-oriented partial chord diagram is a partial chord diagrams with each chord
decorated by a binary variable, which indicates if it is twisted or not. Such
non-oriented partial chord diagrams are enumerated by real symmetric10 matrix
integrals. The Gaussian average ⟨O(M)⟩G̃

N over the space HN(R) of real symmetric
matrices is defined by

⟨O(M)⟩G̃
N =

1

VolN(R)

∫

HN (R)

dM O(M) e−NTrM2

4 ,(4.7)

where

VolN(R) =

∫

HN (R)

dM e−NTrM2

4 = NN(N+1)/2Vol(HN(R)),(4.8)

For the choice of O(M) = MαβMγϵ (α, β, γ, ϵ = 1, . . . , N), the Wick contraction
is defined as

MαβMγϵ := ⟨MαβMγϵ⟩G̃
N =

1

N
(δαϵδβγ + δαγδβϵ).(4.9)

This Wick contraction consists of two terms, which encode the corresponding
fatgraph as follows. The first term 1

N
δαϵδβγ is the same as in the Hermitian

matrix integral (2.5), and it can be identified with an untwisted band in the two
dimensional surface Σc associated to the partial chord diagram c. The second
term 1

N
δαγδβϵ in (4.9) relates opposite matrix indices compared to the first term

and can be identified with the twisted band in Σc, see Figure 14. Hence, for the
real symmetric Gaussian average, the correspondence rules C4, P5, L5 in Section
2 are replaced by the following rules [24, 54, 52, 26, 39, 23].

N5 The Wick contraction between Mαjβj
and Mα′

j′β
′
j′ corresponds to a band or a

twisted band connecting two chord ends. Each Wick contraction imposes ei-
ther the constraint δαjβ′

j′ δα′
j′βj

or the constraint δαjα′
j′ δβjβ′

j′ for matrix indices

assigned to edges of chord ends matched by Wick contractions.

In order to construct matrix models that enumerate non-oriented partial chord
diagrams, we introduce two external real symmetric matrices matrices ΩP and ΩL

ΩP = ΩT
P, ΩL = ΩT

L ,

10The Gaussian matrix integral over the space of real symmetric matrix is also referred to as
the Gaussian orthogonal ensemble [21, 35].
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+α

β γ

ǫ α

β γ

ǫ

MαβMγǫ =
1

N
(δαǫδβγ + δαγδβǫ)

Figure 14: Wick contraction and the untwisted / twisted bands.

which take account of the fact that boundary cycles of non-oriented partial chord
diagrams are not endowed with a specific orientation. To model the index struc-
ture iii of the boundary length and point spectrum correctly, we assume these two
matrices do not commute

[ΩP, ΩL] ̸= 0.

Furthermore, we introduce corresponding generalized Miwa times

u(i1,...,iK) =
1

N
Tr

(
Ωi1

P Ω−1
L Ωi2

P Ω−1
L · · · ΩiK

P Ω−1
L

)
,(4.10)

which are invariant under the symmetry

u(i1,...,iK) = u(iK ,iK−1,...,i1).

This assignment implies the bijective correspondence (analogous to the orientable
case discussed earlier) between non-oriented partial chord diagrams and Wick
contractions, which is summarized in Table 2.

Table 2: The correspondence between partial chord diagrams and operator prod-
ucts in the real symmetric matrix integral.

Partial chord diagram Gaussian average

A chord end on a backbone Ω−1
L M

A marked point on a backbone ΩP

An underside of a backbone NΩ−1
L

A backbone NTr
(
Ωα1

P Ω−1
L Ωα2

P Ω−1
L · · · ΩαK

P Ω−1
L

)

A Chord A Wick contraction MM

Using this correspondence, generating functions Z̃P(x, y; {si}; {ri}), Z̃L(x, y; {si}; {qi}),

and Z̃(x, y; {si}; {uiii}) can be re-expressed in terms of matrix integrals. Repeat-
ing the same combinatorial arguments as for the orientable case in Section 2, we
obtain the following three theorems.
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Theorem 4.3. Let Z̃P
N(y; {si}; {ri}) be the real symmetric matrix integral with

the external symmetric matrix ΩP of rank N

Z̃P
N(y; {si}; {ri}) =

=
1

VolN(R)

∫

HN (R)

dM exp

[
− NTr

(
M2

4
−

∑

i≥0

siy
i/2(M + y−1/2ΩP)i

)]
,

(4.11)

where ri are reverse Miwa times

ri =
1

N
TrΩi

P.(4.12)

This matrix integral agrees with the generating function (4.3)

Z̃P
N(y; {si}; {ri}) = Z̃P(N−1, y; {si}, t0 = 1, {ti = ri}i≥1).(4.13)

The t0-dependence can be implemented by the following rescaling of parameters

Z̃P
t0N(t0y; {t−1

0 si}; {t−1
0 ti}) = Z̃P(N−1, y; {si}; {ti = ri}).(4.14)

Theorem 4.4. Let Z̃L
N(y; {si}; {qi}) be the real symmetric matrix integral with

the external invertible symmetric matrix ΩL of rank N

Z̃L
N(y; {si}; {qi}) =

=
1

VolN(R)

∫

HN (R)

dM exp

[
− NTr

(
M2

4
−

∑

i≥0

siy
i/2

(
Ω−1

L M
)i

Ω−1
L

)]
,(4.15)

where qi are Miwa times

qi =
1

N
TrΩ−i

L .(4.16)

This matrix integral agrees with the generating function (4.4)

Z̃L
N(y; {si}; {qi}) = Z̃L(N−1, y; {si}; {qi}).(4.17)

As considered in (2.26) and Subsection 3.2, the specialization si = s of the
matrix integral (4.15) gives the following reduced model

Z̃L
N(y; s; {qi}) = Z̃L

N(y; {si = s}; {qi}) =

=
1

VolN(R)

∫

HN (R)

dM exp

[
− NTr

(
M2

4
+

s

y1/2M − ΩL

)]
.(4.18)

The cut-and-join equation that follows from this reduced model is derived in the
next subsection.
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Theorem 4.5. Let Z̃N(y; {si}; {uiii}) be the real symmetric matrix integral with
the external invertible symmetric matrices ΩP and ΩL of rank N

Z̃N(y; {si}; {uiii}) =

=
1

VolN(R)

∫

HN (R)

dM exp

[
− NTr

(
M2

4
−

∑

i≥0

si(y
1/2Ω−1

L M + ΩP)iΩ−1
L

)]
,

(4.19)

and uiii be the generalized Miwa times defined in (4.10). This matrix integral agrees
with the generating function (4.6)

Z̃N(y; {si}; {uiii}) = Z̃(N−1, y; {si}; {uiii}).(4.20)

4.2 Non-oriented analogues of cut-and-join equations

We derive now non-oriented analogues of cut-and-join equations discussed in Sec-
tion 3. Analogously to the Hermitian matrix integral in (3.1), we introduce the
following matrix integral.

Definition 4.6. Let U = UT and V = V T be rank N invertible symmetric
matrices. We define a formal real symmetric matrix integral with parameters y,
{gi}+∞

i=−∞ as follows

Z̃N(y; {gi}; U ; V ) =

=
1

VolN(R)

∫

HN (R)

dM exp

[
− NTr

(
1

4
M2 −

∑

i∈Z

gi(y
1/2V −1M + U)iV −1

)]
.

(4.21)

The matrix integrals discussed in the previous subsection follow from this
matrix integral by specializations

Z̃P
N(y; {si}; {ri}) : gi<0 = 0, gi≥0 = si, U = ΩP, V = IN ,(4.22)

Z̃L
N(y; {si}; {qi}) : gi<0 = 0, gi≥0 = si, U = 0, V = ΩL,(4.23)

Z̃L
N(y; s; {qi}) : gi ̸=−1 = 0, g−1 = −s, U = ΩL, V = −IN ,(4.24)

Z̃N(y; {si}; {uiii}) : gi<0 = 0, gi≥0 = si, U = ΩP, V = ΩL,(4.25)

where IN is the rank N identity matrix.
In Appendix A we prove the following proposition.

Proposition 4.7. The matrix integral Z̃N(y; {gi}; U ; V ) in (4.21) obeys the partial
differential equation

(4.26)

[
∂

∂y
− 1

4N
Tr(V −1)T ∂

∂A
(V −1)T ∂

∂A

]
Z̃N(y; {gi}; U ; V ) = 0,
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where A is a matrix such that

U = A + AT.

From this proposition and by the specializations (4.22), (4.24), and (4.25) we
find partial differential equations for the corresponding matrix integrals. For the
specialization (4.23), because of U = 0 (and thus A = 0), the partial differential
equation (4.26) cannot be reduced to a partial differential equation.

Corollary 4.8. The matrix integral Z̃P
N(y; {si}; {ri}) in (4.11), Z̃L

N(y; s; {qi}) in

(4.18) and Z̃N(y; {si}; {uiii}) in (4.19) obey partial differential equations

[
∂

∂y
− 1

4N
Tr

∂2

∂Λ2
P

]
Z̃P

N(y; {si}; {ri}) = 0,

[
∂

∂y
− 1

4N
Tr

∂2

∂Λ2
L

]
Z̃L

N(y; s; {qi}) = 0,

[
∂

∂y
− 1

4N
Tr(Ω−1

L )T ∂

∂ΛP

(Ω−1
L )T ∂

∂ΛP

]
Z̃N(y; {si}; {uiii}) = 0,

(4.27)

where ΛP and ΛL are matrices satisfying

ΩP = ΛP + ΛT
P, ΩL = ΛL + ΛT

L .

From this corollary we obtain non-oriented analogues of cut-and-join equa-
tions, by rewriting the derivatives with respect to the external matrices ΛP and
ΛL in Corollary 4.8 in terms of Miwa times ri in (4.12), qi in (4.16), and uiii in
(4.10) as follows.

Lemma 4.9. Let L1, K1, M1, and M∨
2 denote differential operators

L1 =
1

2

∑

i≥1

i(i + 1)ri
∂

∂ri+2

,(4.28)

K1 =
1

2

∑

i≥3

(i − 2)(i − 1)qi
∂

∂qi−2

,(4.29)

M1 =
1

2

∑

K≥1

∑

{i1,...,iK}

∑

1≤I ̸=M≤K

iI−1∑

ℓ=0

iM−1∑

m=0

u(m,iM−1,iM−2,...,iI+1,iI−ℓ−1,iM−m−1,iM+1,...,iI−1,ℓ)
∂

∂u(i1,...,iK)

+
∑

K≥1

∑

{i1,...,iK}

K∑

L=1

∑

ℓ+m≤iI−2

u(ℓ,iI−ℓ−m−2,m,iI+1,...,iI−1)
∂

∂u(i1,...,iK)

,

(4.30)
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and

M∨
2 =

1

2

∑

K,L≥1

∑

{i1,...,iK}

∑

{j1,...,jL}

K∑

I=1

L∑

J=1

iI−1∑

ℓ=0

jJ−1∑

m=0

u(ℓ,iI−1,...,iI+1,iI−ℓ−1,jJ−m−1,jJ+1,...,jJ−1,m)
∂2

∂u(i1,...,iK)∂u(j1,...,jL)

.

(4.31)

Then the derivatives with respect to ΛP and ΛL in Corollary 4.8 are rewritten as

1

4N
Tr

∂2

∂Λ2
P

f({ri}) =

(
L0 +

1

N
L1 +

2

N2
L2

)
f({ri}),

1

4N
Tr

∂2

∂Λ2
L

g({qi}) =

(
K0 +

1

N
K1 +

2

N2
K2

)
g({qi}),

1

4N
Tr

[
(Ω−1

L )T ∂

∂ΛP

(Ω−1
L )T ∂

∂ΛP

]
h({uiii})

=

(
M0 +

1

N
M1 +

1

N2

(
M2 + M∨

2

))
h({uiii}),

(4.32)

where f({ri}), g({qi}), and h({uiii}) are functions of Miwa times ri, qi, and uiii,
respectively. Here L0,2, K0,2, and M0,2 are defined in (3.7), (3.16), and (3.22),
respectively.

The proof of this lemma is given in Appendix B. By combining Corollary 4.8
with Lemma 4.9 one arrives at the following theorem.

Theorem 4.10. The matrix integrals Z̃P
N(y; {si}; {ri}) in (4.11), Z̃L

N(y; s; {qi})

in (4.18), and Z̃N(y; {si}; {uiii}) in (4.19) obey the cut-and-join equations

∂

∂y
Z̃P

N(y; {si}; {ri}) = L̃Z̃P
N(y; {si}; {ri}),

∂

∂y
Z̃L

N(y; s; {qi}) = K̃Z̃L
N(y; s; {qi}),

∂

∂y
Z̃N(y; {si}; {uiii}) = M̃Z̃N(y; {si}; {uiii}),

(4.33)

where

L̃ = L0 +
1

N
L1 +

2

N2
L2,

K̃ = K0 +
1

N
K1 +

2

N2
K2,

M̃ = M0 +
1

N
M1 +

1

N2

(
M2 + M∨

2

)
.
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Assuming certain initial conditions at y = 0, one can iteratively determine the
above matrix integrals by solving the cut-and-join equations

Z̃P
N(y; {si}; {ri}) = eyL̃Z̃P

N(y = 0; {si}; {ri}) = eyL̃eN2
∑

i≥0 siri ,

Z̃L
N(y; s; {qi}) = eyK̃Z̃L

N(y = 0, s; {qi}) = eyK̃eN2sq1 ,

Z̃N(y; {si}; {uiii}) = eyM̃Z̃N(y = 0; {si}; {uiii}) = eyM̃e−N2
∑

i≥0 siu(i) .

(4.34)

The cut-and-join equations (4.33) agree with those of [2, 7]. Finally, from
Theorem 4.10 we find non-oriented analogues of cut-and-join equations for 1-
backbone generating functions.

Corollary 4.11. The 1-backbone generating function F̃1(x, y; {si}; {uiii}) obtained

by picking up the O(s1
i ) term in Z̃N(y; {si}; {uiii}) is given by the following matrix

integral

F̃1(N
−1, y; {si}; {uiii}) =

=
1

VolN(R)

∫

HN (R)

dM e−NTrM2

4 N
∑

i≥0

siTr(y1/2Ω−1
L M + ΩP)iΩ−1

L ,
(4.35)

and it obeys the cut-and-join equation

∂

∂y
F̃1(x, y; {si}; {uiii}) = M̃F̃1(x, y; {si}; {uiii}),(4.36)

where M̃ = M0 + xM1 + x2
(
M2 + M∨

2

)
. The solution is iteratively determined by

F̃1(x, y; {si}; {uiii}) = eyM̃F̃1(x, y = 0; {si}; {uiii}) = eyM̃
(

x−2
∑

i≥0

siu(i)

)
.(4.37)
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A Proof of Proposition 4.7

In this appendix we prove the Proposition 4.7, which states that the matrix inte-
gral

Z̃N(y; {gi}; U ; V ) =

=
1

VolN(R)

∫

HN (R)

dM exp

[
− NTr

(
1

4
M2 −

∑

i∈Z

gi(y
1/2V −1M + U)iV −1

)]
,

obeys the partial differential equation

(A.1)

[
∂

∂y
− 1

4N
Tr(V −1)T ∂

∂A
(V −1)T ∂

∂A

]
Z̃N(y; {gi}; U ; V ) = 0,

where A is a matrix that satisfies U = A + AT.

Proof. In order to differentiate the matrix integral Z̃N(y; {gi}; U ; V ) with respect
to A we use the identities

∂Uαβ

∂Aγϵ

= δαγδβϵ + δαϵδβγ,

∂(y1/2V −1X)−1
αβ

∂Aγϵ

= −(y1/2V −1X)−1
αγ (y1/2V −1X)−1

βϵ − (y1/2V −1X)−1
αϵ (y1/2V −1X)−1

βγ ,

where X = M + y−1/2V U . Using this shifted variable X one obtains

1

2N

∂

∂Aαβ

Z̃N(y; {gi}; U ; V ) =

⟨ ∞∑

i=0

y(i−1)/2gi

i−1∑

j=0

(
(V −1X)jV −1(V −1X)i−j−1

)
αβ

−
∞∑

i=1

y−(i+1)/2g−i

i−1∑

j=0

(
(V −1X)−j−1V −1(V −1X)−i+j

)
αβ

⟩

R
,

where ⟨· · · ⟩R denotes the unnormalized average

⟨O(X)⟩R =

∫

H̃N (R)

dX O(X) exp

[
−NTr

(
1

4
(X−y−1/2V U)2−

∑

i∈Z

yi/2gi(V
−1X)iV −1

)]
.

Here H̃N(R) is the space of shifted matrices X = M +y−1/2V U with M ∈ HN(R).
It follows that

1

2N2
Tr(V −1)T ∂

∂A
(V −1)T ∂

∂A
Z̃N(y; {gi}; U ; V ) =

=

⟨ ∞∑

i=0

y−1/2gi

i−1∑

j=0

Tr(X − y−1/2V U)V −1(y1/2V −1X)jV −1(y1/2V −1X)i−j−1
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−
∞∑

i=1

y−1/2g−i

i−1∑

j=0

Tr(X − y−1/2V U)V −1(y1/2V −1X)−j−1V −1(y1/2V −1X)−i+j

⟩

R
.

(A.2)

On the other hand, by differentiating the matrix integral Z̃N(y; {gi}; U ; V ) with
respect to y one obtains the same expression as (A.2) times N/2, from which the
partial differential equation (A.1) is obtained.

B Proof of Lemma 4.9

In this appendix we prove the Lemma 4.9, which states that for functions f({ri}),
g({qi}), and h({uiii}) of Miwa times ri in (4.12), qi in (4.16), and uiii in (4.10), we
find

1

4N
Tr

∂2

∂Λ2
P

f({ri}) =

(
L0 +

1

N
L1 +

2

N2
L2

)
f({ri}),(B.1)

1

4N
Tr

∂2

∂Λ2
L

g({qi}) =

(
K0 +

1

N
K1 +

2

N2
K2

)
g({qi}),(B.2)

1

4N
Tr

[
(Ω−1

L )T ∂

∂ΛP

(Ω−1
L )T ∂

∂ΛP

]
h({uiii})

=

(
M0 +

1

N
M1 +

1

N2

(
M2 + M∨

2

))
h({uiii}),

(B.3)

where L0,1,2, K0,1,2, M0,1,2, and M∨
2 are defined in (3.7), (3.16), (3.22), and in

Lemma 4.9. Here the matrices ΛP and ΛL satisfy ΩP = ΛP+ΛT
P and ΩL = ΛL+ΛT

L .

Proof. First we prove (B.1). Consider the derivative ∂/∂ΛP of the reverse Miwa
time ri

∂ri

∂ΛPβα

=
2i

N
Ωi−1

Pαβ, Tr
∂2ri

∂Λ2
P

= 2Ni

i−1∑

j=1

rj−1ri−j−1 + 2i(i − 1)ri−2.

Using these relations the left hand side of (B.1) is rewritten as

1

4N
Tr

∂2

∂Λ2
P

f({ri}) =
1

4N

∑

i≥1

Tr
∂2ri

∂Λ2
P

∂f({ri})

∂ri

+
1

4N

∑

i,j≥1

Tr
∂ri

∂ΛP

∂rj

∂ΛP

∂2f({ri})

∂ri∂rj

=
1

2

∑

i≥2

i−1∑

j=1

irj−1ri−j−1
∂f({ri})

∂ri

+
1

2N

∑

i≥2

i(i − 1)ri−2
∂f({ri})

∂ri

+
1

N2

∑

i,j≥1

ijri+j−2
∂

∂ri

∂

∂rj

f({ri}).
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This agrees with the right hand side of (B.1).
Second, we prove (B.2). Using the identity

∂Ω−1
Lγϵ

∂ΛLαβ

= −Ω−1
LβϵΩ

−1
Lγα − Ω−1

LαϵΩ
−1
Lγβ,

one finds that

∂qi

∂ΛLαβ

= −2
i

N
Ω−i−1

Lβα , Tr
∂2

∂Λ2
L

qi = 2i(i + 1)qi+2 + 2iN

i∑

j=0

qi+1qj+1.

Then the left hand side of (B.2) yields

1

4N
Tr

∂2

∂Λ2
L

g({qi}) =
1

2

∑

i≥1

i∑

j=0

iqi+1qj+1
∂g({qi})

∂qi

+
1

2N

∑

i≥1

i(i + 1)qi+2
∂g({qi})

∂qi

+
1

N2

∑

i,j≥1

ijqi+j+2
∂2g({qi})

∂qi∂qj

.

This agrees with the right hand side of (B.2).
Finally we prove (B.3). Using the chain rule, the derivative action on the left

hand side of (B.3) is written as

Tr

[
(Ω−1

L )T ∂

∂ΛP

(Ω−1
L )T ∂

∂ΛP

]
h({uiii}) =

=
∑

K≥1

∑

{i1,...,iK}
Tr

[
(Ω−1

L )T ∂

∂ΛP

(Ω−1
L )T ∂

∂ΛP

u(i1,...,iK)

]
∂

∂u(i1,...,iK)

h({uiii})

+
∑

K,L≥1

∑

{i1,...,iK}

∑

{j1,...,jL}
Tr

[
(Ω−1

L )T ∂

∂ΛP

u(i1,...,iK)(Ω
−1
L )T ∂

∂ΛP

u(j1,...,jL)

]

× ∂2

∂u(i1,...,iK)∂u(j1,...,jL)

h({uiii}).

Each of the coefficients yields

Tr

[
(Ω−1

L )T ∂

∂ΛP

(Ω−1
L )T ∂

∂ΛP

u(i1,...,iK)

]
=

= 2
K∑

1≤I ̸=M≤K

iI−1∑

ℓ=0

iM−1∑

m=0

1

N

(
Tr(ΩiI−ℓ−1

P Ω−1
L Ω

iI+1

P Ω−1
L · · · Ω

iM−1

P Ω−1
L Ωm

P Ω−1
L )

× Tr(ΩiM−m−1
P Ω−1

L Ω
iM+1

P Ω−1
L · · · Ω

iI−1

P Ω−1
L Ωℓ

PΩ−1
L )

+ Tr(Ωm
P Ω−1

L Ω
iM−1

P Ω−1
L Ω

iM−2

P Ω−1
L · · · Ω

iI+1

P Ω−1
L ΩiI−ℓ−1

P Ω−1
L )

· ΩiM−m−1
P Ω−1

L Ω
iM+1

P Ω−1
L Ω

iM+2

P Ω−1
L · · · Ω

iI−1

P Ω−1
L Ωℓ

PΩ−1
L )

)



Partial Chord Diagrams and Matrix Models 277

+ 4
K∑

I=1

∑

ℓ+m≤iI−2

( 1

N
Tr(Ωℓ

PΩ−1
L Ωm

P Ω−1
L Ω

iI+1

P Ω−1
L · · · Ω

iI−1

P Ω−1
L )Tr(ΩiI−ℓ−m−2

P Ω−1
L )

+ Tr(Ωℓ
PΩ−1

L Ωm
P Ω−1

L ΩiI−ℓ−m−2
P Ω−1

L Ω
iI+1

P Ω−1
L · · · Ω

iI−1

P Ω−1
L )

)

= 2
∑

1≤I ̸=M≤K

iI−1∑

ℓ=0

iM−1∑

m=0

(
Nu(iI−ℓ−1,iI+1,...,iM−1,m)u(iM−m−1,iM+1,...,iI−1,ℓ)

+ u(m,iM−1,iM−2...,iI+1,iI−ℓ−1,iM−m−1,iM+1,...,iI−1,ℓ)

)

+ 4
K∑

I=0

∑

ℓ+m≤iI−2

(
Nu(ℓ,m,iI+1,...,iI−1)u(iI−ℓ−m−2) + u(ℓ,iI−ℓ−m−2,m,iI+1,...,iI−1)

)
,

and

Tr

[
(Ω−1

L )T ∂

∂ΛP

u(i1,...,iK)(Ω
−1
L )T ∂

∂ΛP

u(j1,...,jL)

]
=

=
K∑

I=1

L∑

J=1

iI−1∑

ℓ=0

jJ−1∑

m=0

2

N2

(
Tr(ΩiI−ℓ−1

P Ω−1
L Ω

iI+1

P Ω−1
L · · · ΩiI−1Ω−1

L Ωℓ
PΩ−1

L

· ΩjJ−m−1
P Ω−1

L Ω
jJ+1

P Ω−1
L · · · Ω

jJ−1

P Ω−1
L Ωm

P Ω−1
L )

+ Tr(Ωℓ
PΩ−1

L Ω
iI−1

P Ω−1
L · · · ΩiI+1Ω−1

L ΩiI−ℓ−1
P Ω−1

L

· ΩjJ−m−1
P Ω−1

L Ω
jJ+1

P Ω−1
L · · · Ω

jJ−1

P Ω−1
L Ωm

P Ω−1
L )

)

=
2

N

K∑

I=1

L∑

J=1

iI−1∑

ℓ=0

jJ−1∑

m=0

(
u(iI−ℓ−1,iI+1,...,iI−1,ℓ,jJ−m−1,jJ+1,...,jJ−1,m)

+ u(ℓ,iI−1,...,iI+1,iI−ℓ−1,jJ−m−1,jJ+1,...,jJ−1,m)

)
.

Then one obtains the right hand side of (B.3).
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Enumeration of Chord Diagrams via
Topological Recursion and Quantum Curve Techniques

by Jørgen Ellegaard Andersen, Hiroyuki Fuji, Masahide Manabe,

Robert C. Penner, and Piotr Su lkowski1

Abstract

In this paper we consider the enumeration of orientable and non-orientable
chord diagrams. We show that this enumeration is encoded in appropriate
expectation values of the β-deformed Gaussian and RNA matrix models.
We evaluate these expectation values by means of the β-deformed topolog-
ical recursion, and – independently – using properties of quantum curves.
We show that both these methods provide efficient and systematic algo-
rithms for counting of chord diagrams with a given genus, number of back-
bones and number of chords.

1 Introduction

A chord diagram is a graph which can be realised in the plane as follows. It is
comprised of a collection of b line segments (called backbones) on the real axis
with k semi-circles (called chords) in the upper-half plane attached to the line
segments. All chords are attached at different points on the backbones. A chord
diagram comes from its realisation in the plane with a natural fatgraph structure,
namely, half edges incident to each trivalent vertex are endowed with a cyclic order
induced from the orientation of the plane. For a chord diagram c the fatgraph
structure allows us, in the usual way, to define a surface Σc, which is simply just a

1Keywords: Chord diagram, fatgraph, β-deformation, topological recursion, quantum curve
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small tubular neighbourhood of the realisation of the chord diagram in the plane,
see left and middle diagrams in Figure 1. Let n be the number of boundary cycles,
and g be the genus of the skinny surface Σc. Then the Euler characteristic χ of
Σc is given by

χ = 2 − 2g = b− k + n.

c Σc

Figure 1: A chord diagram c, its skinny surface Σc, and the associated ribbon
surface Rc.

To present a chord diagram c more simply and efficiently, we collapse each
fattened backbone in Σc into a polyvalent fattened vertex, see the right side of
Figure 1. We call the resulting surface Rc and we refer to it as the Ribbon surface
associated to c. In order for c to be uniquely determined by the ribbon surface
Rc, at each vertex we attach a tail at the place corresponding to the beginning of
the backbone, see Figure 2.

Figure 2: Polyvalent fatten vertex with a tail

In this paper we consider the enumeration of chord diagrams with the topo-
logical filtration induced by the genus and the number of backbones, employing
matrix model techniques. Chord diagrams are widely used objects in pure and
applied mathematics, see e.g. [19, 64, 14, 15, 8, 29]. Furthermore, they are now
used also in the biological context for characterisation of secondary and pseu-
doknot structures of RNA molecules [77, 76, 75, 86, 85, 17, 80].2 In particular,
motivated by the study of RNA pseudoknot structures, a matrix model for the
enumeration of chord diagrams – which we refer to as the RNA-matrix model –
was constructed in [9, 10]. In this paper we study the β-deformed version of this
model and present how it encodes orientable and non-orientable chord diagrams.

2The combinatorial aspects of interacting RNA molecules with the associated genus filtration
are also discussed in [23, 78, 79, 87, 16, 17, 18, 4, 11, 12], and folding algorithms are studied in
[22, 13, 81]. The matrix model approach to the enumeration of possible RNA structures is also
studied in [20, 21, 47, 48, 49, 50, 51, 52, 53].
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1.1 The RNA matrix model for orientable chord diagrams

Let cg,b(k) denote the number of connected chord diagrams with genus g, b back-
bones, and k chords.3 We consider the following generating function

Cg,b(w) =
∞∑

k=0

cg,b(k)wk.(1.1)

In [17], the number cg,1(k) of chord diagrams with 1 backbone was studied. In
particular for the class of planar graphs which have genus g = 0, the number
c0,1(k) is shown to be equal to the Catalan number

Ck =
(2k)!

(k + 1)!k!
.

We present explicitly the tailed ribbon surfaces with 1 backbone for k = 1, 2, 3, 4
in Figure 3.

k = 3

k = 4

k = 1 k = 2

Figure 3: The planar ribbon surfaces with tails for k = 1, 2, 3, 4, whose counts
agree with the Catalan numbers 1, 2, 5, 14.

In [9] the following theorem was established.

Theorem 1.1 (RNA matrix model for orientable chord diagrams [9]). Let HN

be the space of rank N Hermitian matrices. We consider the matrix integral with

3Harer and Zagier found a remarkable formula for cg,1(k), referred to as the Harer-Zagier
formula, in their computation of the virtual Euler characteristic of Riemann moduli space for
punctured surfaces [58].
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the potential

(1.2) VRNA(x) =
x2

2
− stx

1 − tx
,

defined by

(1.3) ZN(s, t) =
1

VolN

∫

HN

dM e− 1
ℏ TrVRNA(M),

where

VolN =

∫

HN

dM e−NTrM2

2 = NN(N+1)/2Vol(HN).(1.4)

Under the ’t Hooft limit

(1.5) ℏ → 0, N → ∞, µ = ℏN,

with the ’t Hooft parameter µ kept finite, the logarithm of the above matrix integral
(called the free energy) FN(s, t) = logZN(s, t) has an asymptotic expansion

(1.6) FN(s, t) =
∞∑

g=0

ℏ2g−2Fg(s, t).

Moreover, this free energy encodes generating functions (1.1) for the numbers
cg,b(k) of chord diagrams

(1.7) µ2g−2Fg(s, t) =
∞∑

b=1

sb

µbb!
Cg,b(µt

2) − s

µ
δg,0.

By (1.7) we see that Fg(s, t) enumerates orientable chord diagrams with genus
g, and s and t2 are generating parameters respectively for the number of backbones
and chords.

1.2 RNA matrix model for non-oriented chord diagrams

As a natural generalization of the above enumerative problem, we consider the
non-oriented4 analogue of the enumeration of chord diagrams. A non-oriented
chord diagram c is a chord diagram, where a binary quantity, twisted or untwisted,
is assigned to each chord. There is a natural non-oriented fatgraph structure
associated with a non-oriented chord diagram and the corresponding non-oriented
surface Σc, where the binary quantity assigned to each chord determines if the
band along the chord for the associated ribbon surface is twisted or not, as depicted
in Figure 4.
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Figure 4: A band and a twisted band.

χ = 0

χ = 1χ = 2

non-orientableorientable

Figure 5: Non-oriented ribbon surfaces with 1 backbone for k = 1, 2.

The non-oriented analogue of the ribbon surface is again constructed by col-
lapsing the fattened backbones into polyvalent fattened vertices and, as before,
adding a tail for each fattened vertex. Some examples of non-oriented ribbon
surfaces are depicted in Figure 5 and in Appendix A.

Instead of the genus, for a surface Σc the cross-cap number (or the non-oriented
genus) h is well-defined, and the Euler characteristic is given by

χ = 2 − h = b− k + n.

Let crh,b(k) denote the number of non-oriented chord diagrams with the cross-
cap number h, b backbones, and k chords. In analogy to the oriented case, we
introduce the generating function Cr

h,b(w)

Cr
h,b(w) =

∞∑

k=0

crh,b(k)wk.(1.8)

As proven in [4], the non-oriented analogue of Theorem 1.1 is straightforwardly
obtained by replacing the integration over Hermitian matrices in (1.3) with the
integration over real symmetric matrices.

Theorem 1.2 (RNA matrix model for non-oriented chord diagrams). Let HN(R)
be the space of rank N real symmetric matrices. We consider the real symmetric
matrix integral with the potential (1.2) defined by

(1.9) Zr
N(s, t) =

1

VolN(R)

∫

HN (R)

dM e− 1
2ℏ TrVRNA(M),

4Non-oriented is a shorthand for the union of orientable and non-orientable.
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where

VolN(R) =

∫

HN (R)

dM e−NTrM2

4 = NN(N+1)/2Vol(HN(R)).(1.10)

Under the ’t Hooft limit

(1.11) ℏ → 0, N → ∞, µ = ℏN,

with the ’t Hooft parameter µ kept finite and fixed, the free energy F r
N(s, t) =

logZr
N(s, t) has an asymptotic expansion

(1.12) F r
N(s, t) =

1

2

∞∑

h=0

ℏh−2F r
h(s, t).

This free energy encodes generating functions (1.8) for the numbers crh,b(k) of
non-oriented chord diagrams

(1.13) µh−2F r
h(s, t) =

∞∑

b=1

sb

µbb!
Cr

h,b(µt
2) − s

µ
δg,0.

Note that matrix model techniques for the enumeration of non-oriented chord
diagrams are also considered in [55, 84, 83, 60, 73, 54].

1.3 β-deformed RNA matrix model as a unified model

In the context of matrix models, it is known that their β-deformation implements
the enumeration of non-oriented chord diagrams [70], as we shall now recall5.

Definition 1.3 (β-deformed RNA matrix model). The β-deformed eigenvalue
integral with the potential (1.2) is defined by

(1.14) Zβ
N(s, t) =

1

VolβN

∫

RN

N∏

a=1

dza∆(z)2βe−
√

β
ℏ

∑N
a=1 VRNA(za),

where ∆(z) denotes the Vandermonde determinant

∆(z) =
∏

a<b

(za − zb),

and

VolβN =

∫

RN

N∏

a=1

dza∆(z)2βe−
√

β
2ℏ

∑N
a=1 z2

a .(1.15)

5The β-deformed Dyson’s model is solved in various ways. See e.g. [61, 62, 63].
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In the cases of β = 1 and β = 1/2, the β-deformed eigenvalue integral (1.14)
reduces to the eigenvalue representation of the Hermitian matrix integral (1.3)
and the real symmetric matrix integral (1.9) upon the redefinition ℏ →

√
2ℏ,

respectively. Here za ∈ R (a = 1, · · · , N) correspond to the eigenvalues of the
matrix M in each matrix integral. The other special case is β = 2, for which the
eigenvalue integral (1.14) represents the quaternionic matrix integral. Under the
’t Hooft limit

(1.16) ℏ → 0, N → ∞, µ = β1/2ℏN,

with the fixed ’t Hooft parameter µ, the free energy F β
N(s, t) = logZβ

N(s, t) has
the asymptotic expansion

(1.17) F β
N(s, t) =

∞∑

g,ℓ=0

ℏ2g−2+ℓγℓFg,ℓ(s, t),

where
γ = β1/2 − β−1/2.

The free energies (1.6) for β = 1 and (1.12) for β = 1/2 satisfy

Fg(s, t) = Fg,0(s, t),

F r
h(s, t) =

∞∑

g,ℓ=0
2g+ℓ=h

2g(−1)ℓFg,ℓ(s, t).(1.18)

Combining (1.7) in Theorem 1.1 for β = 1 and (1.13) in Theorem 1.2 for
β = 1/2, we obtain the following proposition.

Proposition 1.4. Let C̃g,ℓ,b(w) be defined by

(1.19) (−µ)2g−2+ℓFg,ℓ(s, t) =
∞∑

b=1

sb

µbb!
C̃g,ℓ,b(µt

2) − s

µ
δg,0δℓ,0.

Then we have the following relations

Cg,b(w) = C̃g,0,b(w),

Cr
h,b(w) =

∞∑

g,ℓ=0
2g+ℓ=h

2gC̃g,ℓ,b(w).(1.20)

In the following sections, using β-deformed topological recursion and the the-
ory of quantum curves, we will develop the computational techniques of deter-
mining the functions Fg,ℓ.
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1.4 β-deformed topological recursion and Gaussian resol-
vents

In our first approach, we will employ an analytical method, referred to as the
β-deformed topological recursion [33, 28, 24, 68, 67]. β-deformed topological re-
cursion is a powerful machinery for analyzing the asymptotic expansion of a ma-
trix model free energy in the N → ∞ limit. Let Zβ

N({rn}) and F β
N({rn}) =

logZβ
N({rn}) denote the partition function and the free energy of the β-deformed

matrix model with a general potential

(1.21) V (x) =
K∑

n=0

rnx
n.

By the asymptotic expansion of the free energy F β
N({rn}) we mean the following

expansion in the ’t Hooft limit (1.16)

(1.22) F β
N({rn}) =

∞∑

g,ℓ=0

ℏ2g−2+ℓγℓFg,ℓ({rn}).

The β-deformed topological recursion in fact can be formulated more generally,
as a tool that assigns a series of multi-linear differentials to a given algebraic
curve. In the context of matrix models these multi-linear differentials are identified
with various matrix model correlators (and the topological recursion represents
Ward identities between these correlators), while the underlying algebraic curve
is identified with a spectral curve C (of the matrix model with β = 1)

C =
{

(x, ω) ∈ C2
∣∣ H(x, ω) = ω2 − 2V ′(x)ω − f(x) = 0

}
,

f(x) = lim
N→∞,ℏ→0

β→1

−4β1/2ℏ

⟨
N∑

a=1

V ′(x) − V ′(za)

x− za

⟩β

N

,
(1.23)

where ⟨O({za})⟩β
N denotes the β-deformed eigenvalue integral

(1.24) ⟨O({za})⟩β
N =

1

Zβ
N({rn})VolβN

∫

RN

N∏

a=1

dza∆(z)2βO({za})e−
√

β
ℏ

∑N
a=1 V (za).

In particular for the RNA matrix model presented in Definition 1.3, the spectral
curve takes the following form [9].

Example 1.5. For the potential VRNA(x) given in (1.2), the defining equation for
C in (1.23) takes form

(1.25) y2
RNA = MRNA(x)2(x− a)(x− b), yRNA = V ′

RNA(x) − ω,
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where the branch points a < b are solutions of the equations

S =
D2 − 4µ

t(3D2 − 4µ)
,

4s2t4(3D2 − 4µ)6 = D2(D2 − 4µ)2
(
4D2 − t2(3D2 − 4µ)2

)3
,

and σ and δ are defined as

σ = St =
a+ b

2
t, δ = Dt =

a− b

2
t.

The function MRNA(x) is given by

MRNA(x) =
(2tx− 2 + σ)2 + η

8(tx− 1)2
, η :=

σ(4 − 4δ2 − 7σ + 3σ2)

σ − 1
.

The multi-linear differentials computed by the β-deformed topological recur-
sion are defined as follows [33].

Definition 1.6. The connected h-point symmetric multi-linear differential Wh ∈
M1(C×h)s is defined as

(1.26) Wh(x1, . . . , xh) = βh/2

⟨ h∏

i=1

N∑

a=1

dxi

xi − za

⟩(c)

N,β

,

where ⟨O⟩(c)
N,β denotes the connected part [46] of ⟨O⟩β

N introduced in (1.24). In
the ’t Hooft limit (1.16), h-point multi-linear differentials admit an asymptotic
expansion

(1.27) Wh(x1, . . . , xh) =
∞∑

g,ℓ=0

ℏ2g−2+h+ℓγℓW
(g,h)
ℓ (x1, . . . , xh).

For the class of genus 0 spectral curves of the form

y(x)2 = M(x)2σ(x),

σ(x) = (x− a)(x− b), M(x) = c

f∏

i=1

(x− αi)
mi ,

(1.28)

the 2-point multi-linear differential W
(0,2)
0 (x1, x2) takes form

(1.29) W
(0,2)
0 (x1, x2) = B(x1, x2) − dx1dx2

(x1 − x2)2
,

where the Bergman kernel B(x1, x2) is a bilinear differential

(1.30) B(x1, x2) =
dx1dx2

2(x1 − x2)2

[
1 +

x1x2 − 1
2
(a+ b)(x1 + x2) + ab√
σ(x1)σ(x2)

]
.
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An exact formula for W
(0,1)
1 (x) is also known [32, 33, 28],

(1.31) W
(0,1)
1 (x) = −dy(x)

2y(x)
+

dx

2
√
σ(x)

[
1 +

f∑

i=1

mi

(
1 +

√
σ(αi)

x− αi

)]
.

All other differentials W
(g,h)
ℓ (x1, . . . , xh) in the asymptotic expansion (1.27) can

be determined recursively by means of the topological recursion, as stated in the
theorem below.

Theorem 1.7 ([33, 31, 28]). The differentials W
(g,h)
ℓ (xH) for (g, h, ℓ) ̸= (0, 1, 0),

(0, 2, 0), (0, 1, 1) in the asymptotic expansion (1.27) obey the β-deformed topolog-
ical recursion

W(0,1)
0 (x) = 0, W(0,2)

0 (x1, x2) = W
(0,2)
0 (x1, x2) +

dx1dx2

2(x1 − x2)2
,

W(g,h)
ℓ (xH) = W

(g,h)
ℓ (xH) for (g, h, ℓ) ̸= (0, 1, 0), (0, 2, 0),

W
(g,h+1)
ℓ (x, xH) =

∮

A

1

2πi

dS(x, z)

y(z)dz

[
W

(g−1,h+2)
ℓ (z, z, xH)

+

g∑

k=0

ℓ∑

n=0

∑

∅=J⊆H

W (g−k,|J |+1)
ℓ−n (z, xJ)W(k,|H|−|J |+1)

n (z, xH\J)

+ dz2 ∂

∂z

W
(g,h+1)
ℓ−1 (z, xH)

dz

]
,

(1.32)

where H = {1, 2, . . . , h} ⊃ J = {i1, i2, . . . , ij}, H\J = {ij+1, ij+2, . . . , ih}, and A
is the counterclockwise contour around the branch cut [a, b]. Here dS(x1, x2) is
the third type differential, which for the genus 0 spectral curve (1.28) takes form

(1.33) dS(x1, x2) =

√
σ(x2)√
σ(x1)

dx1

x1 − x2

.

Our task in what follows is to determine generating functions of chord diagrams
encoded in the free energy of the RNA matrix model (1.19). To this end we take
advantage of the following trick [9]. The potential of the RNA matrix model
VRNA(x) can be separated into the Gaussian part VG(x) and the rational part
Vrat(x)

VRNA(x) = VG(x) + Vrat(x) + s, VG(x) =
1

2
x2, Vrat(x) = − t−1s

t−1 − x
.(1.34)

Adopting this separation into the definition of Zβ
N(s, t) in (1.14), we find that the

partition function of the RNA matrix model can be re-expressed as an expectation
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value in the β-deformed Gaussian model

Zβ
N(s, t) = e−

√
β

ℏ sN

⟨
exp

[
s
√
β

tℏ

N∑

a=1

1

t−1 − za

]⟩G

N,β

,

where ⟨O({za})⟩G
N,β denotes ⟨O({za})⟩β

N defined in (1.24) with the Gaussian po-
tential V (x) = VG(x). It follows that the right hand side of this equation is given
by a sum of h-point multi-linear differentials with xi = t−1 (i = 1, . . . , h) in the
Gaussian model.

Proposition 1.8. Let ωb(x1, . . . , xb) denote the connected b-resolvent in the β-
deformed Gaussian model, which we also refer to as the Gaussian b-resolvent,

(1.35) ωb(x1, . . . , xb) =
Wh(x1, . . . , xb)

dx1 · · · dxb

= βb/2

⟨ b∏

i=1

N∑

a=1

1

xi − za

⟩(c)

N,β

.

Then the free energy F β
N(s, t) of the β-deformed RNA matrix model is given by

(1.36) F β
N(s, t) = −

√
β

ℏ
sN +

∞∑

b=1

sb

b!tbℏb
ωb

(
t−1, . . . , t−1

)
.

Combining the above relation with the form of the free energy in (1.19), we
obtain the key theorem for our enumeration of chord diagrams.

Theorem 1.9. The coefficients C̃g,ℓ,b(w) in (1.19) are obtained directly from the
principal specialization of the Gaussian b-resolvents

(1.37) ωb(x, . . . , x) =
1

xb

∞∑

g=0,ℓ=0

(µ−1ℏ)2g−2+b+ℓ(−γ)ℓC̃g,ℓ,b(µx
−2).

On the basis of this theorem, one can compute the generating function C̃g,ℓ,b(w)
of the numbers of non-oriented chord diagrams using the β-deformed topological
recursion for the Gaussian model. We will present some details of such a compu-
tation in Section 2, and compare its results with other methods of enumeration.

Finally, in order to find the complete form of the asymptotic expansion, we
also need to consider the unstable part of the free energy, which is not determined
by the topological recursion and must be computed independently. The unstable
part consists of four terms: F0,0(s, t), F0,1(s, t), F0,2(s, t), and F1,0(s, t). The two
terms F0,0(s, t) and F1,0(s, t) are the same as the terms F0(s, t) and F1(s, t) in the
asymptotic expansion (1.6) of the Hermitian matrix model. On the other hand,
F0,1({rn}) and F0,2({rn}) can be computed using famous formulae, referred to
respectively as the Dyson’s formula and Wiegmann-Zabrodin formula, which for
the genus 0 spectral curve (1.28) take the following form.
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Theorem 1.10. For the class of genus 0 spectral curves (1.28) determined by the
general potential (1.21), the unstable parts F0,1({rn}) and F0,2({rn}) of the free
energy are given by

∂

∂µ
F0,1({rn}) = 1 + log |c| +

1

2
log
(a− b

4

)2

+

f∑

i=1

mi log

[
1

2

(
αi − a+ b

2
+
√
σ(αi)

)]
,

(1.38)

F0,2({rn}) = −1

2

f∑

i=1

mi log
(
1 − s2

i

)
− 1

2

f∑

i,j=1

mimj log
(
1 − sisj

)

+
1

24
log
∣∣M(a)M(b)(a− b)4

∣∣,(1.39)

where si, i = 1, . . . , f are defined as

αi(si) =
a+ b

2
− a− b

4
(si + s−1

i ), |si| < 1.

The formula (1.38) for F0,1({rn}) was found in [33, 31, 28]. On the other hand,
the formula (1.39) for F0,2({rn}) is proven in appendix B.

1.5 A recursion relation from the quantum curve

The main object that we consider in our second approach is the wave-function for
the matrix model. The wave-function is the 1-point function defined as follows.

Definition 1.11. Let ϵ1,2 denote the parameters

(1.40) ϵ1 = −β1/2gs, ϵ2 = β−1/2gs, gs = 2ℏ.

For the general type potential (1.21), the 1-point function Zα(x; {rn}) (α = 1, 2)

Zα(x; {rn}) =
1

VolβN

∫

RN

N∏

a=1

dza∆(z)2βψα(x)e−
√

β
ℏ

∑N
a=1 V (za),(1.41)

with the eigenvalue operator

ψα(x) =
N∏

a=1

(x− za)
ϵ1
ϵα ,

is referred to as the wave-function. For the RNA matrix model we denote the
wave-function by Zα(x; s, t).
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A prominent property of the wave-function [2, 1, 67, 34] is that it satisfies
a partial differential equation, which is called the quantum curve6 or the time-
dependent Schrödinger equation.

Proposition 1.12 ([1, 67]). The wave-function Zα(x; {rn}) satisfies the partial
differential equation

[
−ϵ2α

∂2

∂x2
− 2ϵαV

′(x)
∂

∂x
+ f̂(x)

]
Zα(x; {rn}) = 0,(1.42)

where f̂(x) is the differential operator

f̂(x) = g2
s

K∑

n=0

xn∂(n), ∂(n) =
K+2∑

k=n+2

krk
∂

∂rk−n−2

,

and we denoted ∂/∂r0 = −N/(2ϵ2).

As its name suggests, the partial differential equation (1.42) is interpreted as
the quantization of the spectral curve C of the matrix model. Promoting the
parameters (x, ω) in (1.23) to the non-commutative operators (x̂, p̂), such that

p̂ = ϵα
∂

∂x
, x̂ = x, [p̂, x̂] = ϵα,

the partial differential equation (1.42) can be written in the form

ÂZα(x; {rn}) = 0, Â ≡ A(x̂, p̂),

for an appropriate choice of A(x̂, p̂). The operator Â is interpreted as a quan-
tization of the spectral curve C, and the equation (1.42) reduces to the defining
equation of the spectral curve in the classical limit [1, 67].

Note that, more generally, to a given spectral curve one may associate an
infinite family of wave-functions and corresponding quantum curves, which take
form of Virasoro singular vectors [67, 34]. In particular the quantum curves in
(1.42), for both values of α = 1, 2, correspond to singular vectors at level 2. In
this work we do not consider quantum curves at levels higher than 2.

In what follows we use the partial differential equation (1.42) as a tool to
determine the partition function Zβ

N(s, t) of the β-deformed RNA matrix model.
The point is that the partition function Zβ

N({rn}) of the matrix model with the

6The name “quantum curve” is also used for the ordinary differential equation for the wave
function [36, 35, 59, 57, 88, 72, 71, 66, 41, 44, 39, 82, 37, 42, 74, 56, 43, 38, 26, 40, 25]. In this
article, we also use this name for a partial differential equation which arises from the conformal
field theoretical description of the matrix model [65].
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general type potential (1.21) appears as the leading order term in the expansion
of the wave-function Zα(x; {rn}) around x = ∞

Zα(x; {rn}) = xϵ1N/ϵα

(
Zβ

N({rn}) + O(x−1)
)
.

Therefore, from the expansion of the wave-function with α = 2 for the RNA
matrix model

Zα=2(x; s, t) = exp [S(x, s, t)] ,

S(x, s, t) = −2µ

ϵ2
log x+

∞∑

b=0

∞∑

p=0

Sb,p(t)sbx−p,

the free energy F β
N(s, t) can be written as

F β
N(s, t) =

∞∑

b=0

Sb,p=0(t)s
b.

We use the partial differential equation (1.42) to determine each Sb,p(t). The main
result of this approach is summarized in the following theorem.

Theorem 1.13. The partial differential equation for the phase function S(x, s, t)
for the RNA matrix model takes form

ϵ22

[
∂2

∂x2
S(x, s, t) +

(
∂

∂x
S(x, s, t)

)2
]

+ 2ϵ2

(
x− st

(1 − tx)2

)
∂

∂x
S(x, s, t)

+ 4µ

(
1 − st2(2 − tx)

(1 − tx)2

)
+
ϵ1ϵ2st

2(2 − tx)

(1 − tx)2

∂

∂s
S(x, s, t) +

ϵ1ϵ2t
3

1 − tx

∂

∂t
S(x, s, t) = 0.

(1.43)

This equation generates a hierarchy of differential equations for the coefficients
Sb,p(t) of the phase function, and the phase function is determined recursively
with respect to the backbone number b.

As an independent verification of this algorithm, we checked iterative compu-
tations for b = 1, 2, 3, 4, 5 up to O(t12), and confirmed that they agree with the
results of the β-deformed topological recursion from the first approach.

2 Enumeration of chord diagrams via the topo-

logical recursion

In the introduction, we extended the RNA matrix model proposed in [9] to the β-
deformed RNA matrix model given by (1.14), that enumerates both orientable and
non-orientable chord diagrams via Proposition 1.4. In this section we enumerate
orientable and non-orientable chord diagrams by the formalism of the β-deformed
topological recursion (1.32).
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2.1 Enumeration of chord diagrams via Gaussian resol-
vents

In principle, by applying the β-deformed topological recursion formalism to the
spectral curve (1.25) of the RNA matrix model, one can recursively compute
the asymptotic expansion (1.17) of the free energy F β

N(s, t). In [9], using the

topological recursion [5, 45, 46] for the β = 1 (which does not involve W
(g,h)
ℓ≥1 (xH)

terms) RNA matrix model (1.3), F2(s, t) = F2,0(s, t) and F3(s, t) = F3,0(s, t) were
explicitly computed. However, because of the complicated form of the curve (1.25),

an explicit computation of W
(g,h)
ℓ≥1 (xH) is not easy. In this section we consider

instead the β-deformed Gaussian matrix model with the Gaussian potential VG(x)
in (1.34).

Using Theorem 1.9, one can compute the coefficients C̃g,ℓ,b(w) in (1.19) of

the free energy F β
N(s, t) from the Gaussian b-resolvents (1.35). For the Gaussian

matrix model, the spectral curve takes form

(2.1) yG(x)2 = x2 − 4µ.

In order to apply the β-deformed topological recursion (1.32) to this Gaussian
curve, it is convenient to introduce the Zhukovsky variable z as

x(z) =
√
µ(z + z−1).

In this variable the branch points x = ±2
√
µ are mapped to z = ±1. To express

the β-deformed topological recursion (1.32) in this Zhukovsky variable, we define

ŷG(z)dz = yG(x(z))dx =
√
µ(z − z−1)dz,

dŜ(z1, z2) = dS(x1(z1), x2(z2)) =
dz1

z1 − z2

− dz1

z1 − z−1
2

,

Ŵ
(g,h)
ℓ (z1, . . . , zh) = W

(g,h)
ℓ (x1(z1), . . . , xh(zh)).

(2.2)

We then obtain the β-deformed topological recursion (1.32) for the Gaussian spec-
tral curve in the Zhukovsky variable. More generally, the β-deformed topological
recursion for genus 0 spectral curves (1.28) in the Zhukovsky is discussed in detail
in [68, 67].

Corollary 2.1. The differentials Ŵ
(g,h)
ℓ (zH) for (g, h, ℓ) ̸= (0, 1, 0), (0, 2, 0), (0, 1, 1)

obey the β-deformed topological recursion in the Zhukovsky variable

(2.3) Ŵ
(g,h+1)
ℓ (z, zH) =

∮

Ã

1

2πi

dŜ(z, ζ)

ŷG(ζ)dζ
Rec

(g,h+1)
ℓ (ζ, zH).

Here

Rec
(g,h+1)
ℓ (ζ, zH) = Ŵ

(g−1,h+2)
ℓ (ζ, ζ, zH)
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+

g∑

k=0

ℓ∑

n=0

∑

∅=J⊆H

Ŵ(g−k,|J |+1)
ℓ−n (ζ, zJ)Ŵ(k,|H|−|J |+1)

n (ζ, zH\J)

+ dζ2

[
∂

∂ζ
+
∂2ζ

∂w2

(
∂w

∂ζ

)2
]
Ŵ

(g,h+1)
ℓ−1 (ζ, zH)

dζ
,(2.4)

with w =
√
µ(ζ + ζ−1), |ζ| > 1, and

Ŵ (0,1)
0 (z) = 0, Ŵ(0,2)

0 (z1, z2) = Ŵ
(0,2)
0 (z1, z2) +

(z2
1 − 1)(z2

2 − 1)dz1dz2

2(z1 − z2)2(z1z2 − 1)2
,

Ŵ (g,h)
ℓ (zH) = Ŵ

(g,h)
ℓ (zH) for (g, h, ℓ) ̸= (0, 1, 0), (0, 2, 0),(2.5)

where Ã is the contour surrounding the unit disk |ζ| = 1. For the Gaussian model
the initial data of the recursion (1.30) and (1.31) takes form

Ŵ
(0,2)
0 (z1, z2) =

dz1dz2

(z1z2 − 1)2
,(2.6)

Ŵ
(0,1)
1 (z) =

(
1

z
− 1

2(z − 1)
− 1

2(z + 1)

)
dz.(2.7)

From Theorem 1.9 the coefficients C̃g,ℓ,b(w) of the free energy F β
N(s, t) can now

be computed. For example we find, for b = 1,

C̃0,0,1(w) =
1 −

√
1 − 4w

2w
, C̃0,1,1(w) =

1 −
√

1 − 4w

2(1 − 4w)
, C̃1,0,1(w) =

w2

(1 − 4w)5/2
,

C̃0,2,1(w) =
w
(
1 + w −

√
1 − 4w

)

(1 − 4w)5/2
, C̃1,1,1(w) =

w2
(
1 + 30w − (1 + 6w)

√
1 − 4w

)

2(1 − 4w)4
,

C̃0,3,1(w) =
5w2

(
1 + 2w − (1 + w)

√
1 − 4w

)

(1 − 4w)4
,

for b = 2,

C̃0,0,2(w) =
w

(1 − 4w)2
, C̃0,1,2(w) =

w
(
1 + 18w − (1 + 4w)

√
1 − 4w

)

2(1 − 4w)7/2
,

C̃1,0,2(w) =
w3(21 + 20w)

(1 − 4w)5
, C̃0,2,2(w) =

w2
(
8 + 98w + 38w2 − (8 + 45w)

√
1 − 4w

)

(1 − 4w)5
,

C̃1,1,2(w) =
w3
(
21 + 1462w + 2700w2 − (21 + 376w + 240w2)

√
1 − 4w

)

2(1 − 4w)13/2
,

C̃0,3,2(w) =
w3
(
117 + 1316w + 1182w2 − (117 + 854w + 292w2)

√
1 − 4w

)

(1 − 4w)13/2
,
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for b = 3,

C̃0,0,3(w) =
2w2(3 + 4w)

(1 − 4w)9/2
,

C̃0,1,3(w) =
w2
(
3 + 160w + 354w2 − (3 + 50w + 40w2)

√
1 − 4w

)

(1 − 4w)6
,

C̃1,0,3(w) =
12w4(45 + 207w + 68w2)

(1 − 4w)15/2
,

C̃0,2,3(w) =
2w3

(
58 + 1797w + 5232w2 + 1004w3 − (58 + 977w + 1416w2)

√
1 − 4w

)

(1 − 4w)15/2
.

Then, by (1.20) in Proposition 1.4, we obtain the generating functions Cg,b(w)
for orientable chord diagrams and Cr

h,b(w) for non-oriented chord diagrams. For
instance, we obtain

C0,1(w) = 1 + w + 2w2 + 5w3 + 14w4 + 42w5 + 132w6 + 429w7 + O(w8),

C1,1(w) = w2 + 10w3 + 70w4 + 420w5 + 2310w6 + 12012w7 + O(w8),

C0,2(w) = w + 8w2 + 48w3 + 256w4 + 1280w5 + 6144w6 + O(w7),

C1,2(w) = 21w3 + 440w4 + 5440w5 + 51840w6 + 421120w7 + O(w8),

C0,3(w) = 6w2 + 116w3 + 1332w4 + 11880w5 + 90948w6 + O(w7),

C1,3(w) = 540w4 + 18684w5 + 350736w6 + 4779720w7 + O(w8),

(2.8)

and

Cr
1,1(w) = w + 5w2 + 22w3 + 93w4 + 386w5 + 1586w6 + 6476w7 + O(w8),

Cr
2,1(w) = 5w2 + 52w3 + 374w4 + 2290w5 + 12798w6 + 67424w7 + O(w8),

Cr
1,2(w) = 8w2 + 117w3 + 1084w4 + 8119w5 + 53640w6 + O(w7),

Cr
2,2(w) = 111w3 + 2404w4 + 30442w5 + 295500w6 + O(w7),

Cr
1,3(w) = 116w3 + 3204w4 + 49248w5 + 561782w6 + O(w7),

Cr
2,3(w) = 2952w4 + 105300w5 + 2021396w6 + O(w7).

(2.9)

We note that the generating function Cr
h,b(w) with an even cross-cap number h =

2g enumerates both orientable and non-orientable chord diagrams, and therefore
non-orientable chord diagrams are enumerated by

(2.10) Cr
2g,b(w) − Cg,b(w).

2.2 The unstable part of the free energy

For a matrix model with the general potential (1.21), the unstable coefficients
F0,0({rn}), F0,1({rn}), F1,0({rn}) and F0,2({rn}) in the asymptotic expansion (1.22)
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of the free energy F β
N({rn}) must be computed separately. For the general poten-

tial (1.21) and the genus 0 spectral curve (1.28), the coefficients F0,0({rn}) [27, 69]
and F1,0({rn}) [7, 6] (see [3, 30] for multi-cut solutions) are given by

F0,0({rn}) = −µ
∫

[a,b]

dzρ(z)V (z) + µ2

∫

[a,b]2
dzdz′ρ(z)ρ(z′) log |z − z′|,(2.11)

F1,0({rn}) = − 1

24
log
∣∣M(a)M(b)(a− b)4

∣∣,(2.12)

where ρ(z) = limN→∞
1
N

∑N
a=1 δ(z − za) is the eigenvalue density given by

ρ(z) =
1

2πiµ

(
W

(0,1)
0 (z − iϵ) −W

(0,1)
0 (z + iϵ)

)
=

1

2πiµ
y(z), z ∈ [a, b].

In [9], F0,0(s, t) and F1,0(s, t) for the RNA matrix model (1.3) were computed
using the above formulae.

Furthermore, the coefficients F0,1(s, t) and F0,2(s, t) for the genus 0 spectral
curve (1.28) can be computed using Theorem 1.10. In particular, by Proposition
1.4 the generating function Cr

2,b(w) − C1,b(w) for the numbers of chord diagrams
with the topology of the Klein bottle takes form

(2.13) F1,0({rn})+F0,2({rn}) = −1

2

f∑

i=1

mi log
(
1−s2

i

)
−1

2

f∑

i,j=1

mimj log
(
1−sisj

)
.

Using the above formulae for the spectral curve (1.25) of the RNA matrix
model, we determined the generating functions C0,b(w), C1,b(w), Cr

1,b(w), and
Cr

2,b(w). We checked that the results coincide with the results obtained from the
Gaussian b-resolvents discussed in the previous subsection. Compared with the
method discussed in the previous subsection, the advantage of this method is that
we find all order generating functions for the backbone number b.

3 Enumeration of chord diagrams via quantum

curve techniques

In this section we consider a recursive computation of the numbers of chord dia-
grams, based on the quantum curve equation (1.42) for the wave-function of the
RNA matrix model defined in Definition 1.11. For the β-deformed RNA matrix
model the quantum curve equation reduces to a partial differential equation in
three parameters x, s, and t. We solve this partial differential equation recur-
sively and obtain the generating function for the numbers of chord diagrams as
the leading term in the expansion of the wave-function near x → ∞.
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3.1 Differential equation for the wave-function from the
quantum curve

The quantum curve for the β-deformed RNA matrix model is the key equation
we take advantage of in this section.

Proposition 3.1. Let Zα(x; s, t) (α = 1, 2) denote the wave-function for the β-
deformed RNA matrix model

Zα(x; s, t) =
1

VolβN

∫

RN

N∏

a=1

dza∆(z)2βψα(x)e−
√

β
ℏ

∑N
a=1 VRNA(za),(3.1)

where ψα(x) =
∏N

a=1(x− za)
ϵ1
ϵα and the potential V (x) = VRNA(x) is chosen as in

equation (1.2). Then the partial differential equation (1.42) reduces to

[
−
(
ϵα
∂

∂x

)2

− 2ϵα

(
x− st

(1 − tx)2

)
∂

∂x
− 4µ

(
1 − st2(2 − tx)

(1 − tx)2

)

− ϵ1ϵ2st
2(2 − tx)

(1 − tx)2

∂

∂s
− ϵ1ϵ2t

3

1 − tx

∂

∂t

]
Zα(x; s, t) = 0,

(3.2)

where µ denotes the ’t Hooft parameter µ = β1/2ℏN = −ϵ1N/2.

Proof. The RNA matrix model has the potential (1.2), with the coefficients rn in
(1.21) that take form

r0 = 0, r2 =
1

2
− st2, rn = −stn (n ̸= 0, 2).

Adopting this choice of coefficients, the action of f̂(x) in (1.42) on Zα(x; s, t) can
be rewritten solely in terms of derivatives with respect to s and t

f̂(x)Zα(x; s, t) = − 2

ϵ2
g2

sNZα(x; s, t) + g2
s

∞∑

n=0

xntn+3 ∂

∂t
Zα(x; s, t)

+ g2
ss

∞∑

n=0

(n+ 2)xntn+2

(
2

ϵ2
N +

∂

∂s

)
Zα(x; s, t)

= g2
s

[
− 2

ϵ2
N +

t3

1 − tx

∂

∂t
+ s

t2(2 − tx)

(1 − tx)2

(
2N

ϵ2
+

∂

∂s

)]
Zα(x; s, t).

Using the relation between N and µ stated in Proposition 3.1, one obtains the
partial differential equation (3.2).

For simplicity, in the following we choose α = 2 and consider the wave-function
Z2(x; s, t). On the basis of Proposition 3.1 we describe an algorithm to compute
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the free energy of the β-deformed RNA matrix model. To this end we consider
the wave-function in the two following limits.

The first limit we consider is such that x → ∞. By the definition of the
wave-function, the partition function Zβ

N(s, t) is encoded in this limit as follows

(3.3) Z2(x; s, t) = xϵ1N/ϵ2
(
Zβ

N(s, t) + O(x−1)
)
.

Equivalently, in the x → ∞ limit the free energy F β
N(x; s, t) = logZβ

N(x; s, t) is
found from the phase function

S(x, s, t) = logZ2(x; s, t).(3.4)

Taking advantage of Proposition 3.1, we find the nonlinear partial differential
equation (1.43) for the phase function S(x, s, t) in Theorem 1.13.

The second limit we consider is s → 0. In this limit the RNA matrix model
reduces to the Gaussian matrix model, and we denote by ZG

α (x) the corresponding
Gaussian wave-function

ZG
α (x) = lim

s→0
Zα(x; s, t) =

1

VolβN

∫

RN

N∏

a=1

dza∆(z)2βψα(x)e−
√

β
2ℏ

∑N
a=1 z2

a .(3.5)

This Gaussian wave-function obeys an ordinary differential equation

[
−
(
ϵα
∂

∂x

)2

− 2ϵαx
∂

∂x
− 4µ

]
ZG

α (x) = 0,(3.6)

which is obtained in the s → 0 limit of equation (3.2). Here we denote the phase
function of the Gaussian wave-function for α = 2 by

S0(x) = logZG
2 (x).(3.7)

In order to determine the free energy F β
N(s, t) = logZβ

N(s, t), we consider now
the expansion of the phase function S(x, s, t). First, we consider the expansion of
the phase function with respect to the backbone parameter s

S(x, s, t) =
∞∑

b=0

Sb(x, t)s
b,(3.8)

which has the following properties:

• The phase function S0(x) agrees with that of the Gaussian model

S0(x) = S0(x, t).(3.9)
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• The expansion of the phase function Sb(x, t) around x = ∞ takes form

Sb(x, t) = −2µ

ϵ2
δb,0 log x+

∞∑

p=0

Sb,p(t)x−p,(3.10)

where an additional log x term for b = 0 appears from the limit of ψα(x). In
particular S0,p ≡ S0,p(t) do not depend on t.

• The free energy F β
N(s, t) is obtained as the generating function of Sb,0(t)

F β
N(s, t) =

∞∑

b=1

Sb,0(t)s
b.(3.11)

Applying the expansion (3.8) to the nonlinear partial differential equation
(1.43), one finds a hierarchy of differential equations that determine the functions
Sb,p(t) recursively. Although our main task is to determine the functions Sb,0(t)
in (3.11), we need the extra data of the higher order terms Sb,p≥1(t) to determine
Sb,0(t).

7 In the following we solve the equation (1.43) systematically in four steps.

3.2 Solving the recursion relations in four steps

Now we solve the recursion relation for Sb,p(t) in the following steps.

Step 1 Determine the hierarchy of differential equations by expanding the equa-
tion (1.43) in the parameter s.

Step 2 Solve the ordinary differential equation (3.6) for the Gaussian wave-
function.

Step 3 Determine S1(x, t) iteratively by solving the differential equation to order
O(s1) in Step 1, with the initial data S0(x) obtained in Step 2.

Step 4 Repeat the same analysis for Sb(x, t), by adopting the Sb′(≤b−1)(x, t) as
an input data.

Step 1: Hierarchy of differential equations for the phase function. We
determine the form of the hierarchy of differential equations by substituting the
expansion (3.8) in the differential equation (1.43). Picking up coefficients of s0, s1,
and sb (b ≥ 2) respectively, we obtain nonlinear partial differential equations for
Sb(x, t)

ϵ22
∂2

∂x2
S0(x) + ϵ22

(
∂

∂x
S0(x)

)2

+ 2ϵ2x
∂

∂x
S0(x) + 4µ = 0,

(3.12)

7It is not easy to reduce this recursion relation between Sb,p(t) to a simple recursion relation
involving Sb,0(t) only.
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ϵ22
∂2

∂x2
S1(x, t) + 2ϵ22

∂

∂x
S0(x)

∂

∂x
S1(x, t) + 2ϵ2x

∂

∂x
S1(x, t) − 2ϵ2t

(1 − tx)2

∂

∂x
S0(x)

− 4µt2(2 − tx)

(1 − tx)2
+
ϵ1ϵ2t

2(2 − tx)

(1 − tx)2
S1(x, t) +

ϵ1ϵ2t
3

1 − tx

∂

∂t
S1(x, t) = 0,

(3.13)

and

ϵ22
∂2

∂x2
Sb(x, t) + ϵ22

b∑

a=0

∂

∂x
Sa(x, t)

∂

∂x
Sb−a(x, t) + 2ϵ2x

∂

∂x
Sb(x, t)

− 2ϵ2t

(1 − tx)2

∂

∂x
Sb−1(x, t) +

bϵ1ϵ2t
2(2 − tx)

(1 − tx)2
Sb(x, t) +

ϵ1ϵ2t
3

1 − tx

∂

∂t
Sb(x, t) = 0.

(3.14)

The first differential equation (3.12) for S0(x) is equivalent to the quantum curve
equation (3.6) for the Gaussian model, and we find that (3.12)–(3.14) can be
solved successively for Sb(x, t) (b = 1, 2, 3, . . .).

Step 2: The Gaussian phase function. The Gaussian part of the wave-
function is necessary as an input data in order to solve the equation (3.13).8

Substituting the expansion (3.10) for S0(x) in the differential equation (3.12),
we obtain the recursion relation for the t-independent (as follows from the t-
independence of S0(x)) coefficients S0,p ≡ S0,p(t).

Proposition 3.2. The coefficients S0,p in the 1/x expansion of the Gaussian phase
function S0(x) obey the recursion relation

S0,2p−3 = 0, S0,2 =
µ

2ϵ2
(2µ+ ϵ2),

S0,2p =
1

2p

{
ϵ2(p− 1)(2p− 1)S0,2p−2 − 4µ(p− 1)S0,2p−2

+ 2ϵ2

p−2∑

q=1

q(p− q − 1)S0,2qS0,2p−2q−2

}
,

(3.15)

where p is a positive integer with p ≥ 2.

Solving this recursion relation iteratively, one finds the expansion

S0(x) = − 2µ

ϵ2
log x+

µ

2ϵ2x2
(2µ+ ϵ2) +

µ

8ϵ2x4
(4µ+ 3ϵ2)(2µ+ ϵ2)

+
µ

24ϵ2x6
(2µ+ ϵ2)(15ϵ22 + 34µϵ2 + 20µ2)

8Any solution of the ordinary differential equation (3.6) can be expressed in terms of Hermite
polynomials.
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+
µ

64ϵ2x8
(2µ+ ϵ2)(105ϵ32 + 310µϵ22 + 316µ2ϵ2 + 112µ3)

+
µ

160ϵ2x10
(2µ+ ϵ2)(945ϵ42 + 3288µϵ32 + 4424µ2ϵ22 + 2752µ3ϵ2 + 672µ4)

+ O(x−12).(3.16)

Step 3: The 1-backbone phase function S1(x, t).
In this step we continue our analysis of the 1-backbone phase function S1(x, t).

For this purpose, we expand equation (3.13) with respect to x−1 and consider
differential equations obtained for the coefficients of x1, x0, x−1, and x−p (p ≥ 2).

Corollary 3.3. The coefficients S1,p(t) (p = 0, 1, . . .) obey the following differen-
tial equations in the parameter t:

2S1,1(t) + ϵ1t(Θt + 1)S1,0(t) − 4µt

ϵ2
= 0,(3.17)

4tS1,2(t) − 4S1,1(t) + ϵ1t
2(Θt + 1)S1,1(t) − ϵ1t(Θt + 2)S1,0(t) +

8µt

ϵ2
= 0,(3.18)

6t2S1,3(t) − 8tS1,2(t) + ϵ1t
3(Θt + 1)S1,2(t) − ϵ1t

2(Θt + 2)S1,1(t)

− 2ϵ2t
2S1,1(t) − 4µt2S1,1(t) + 2S1,1(t) − 4µt

ϵ2
= 0,(3.19)

and

2(p+ 2)t2S1,p+2(t) − 4(p+ 1)tS1,p+1(t) + ϵ1t
3(Θt + 1)S1,p+1(t)

− ϵ1t
2(Θt + 2)S1,p(t) − p(p+ 1)ϵ2t

2S1,p(t) − 4pµt2S1,p(t) + 2pS1,p(t)

+ 2(p− 1)pϵ2tS1,p−1(t) + 8(p− 1)µtS1,p−1(t) − (p− 2)(p− 1)ϵ2S1,p−2(t)

− 4(p− 2)µS1,p−2(t) − 2(p− 1)tS0,p−1 − 2ϵ2t
2

p−1∑

q=2

q(p− q)S0,qS1,p−q(t)

+ 4ϵ2t

p−1∑

q=3

(q − 1)(p− q)S0,q−1S1,p−q(t) − 2ϵ2

p−1∑

q=4

(q − 2)(p− q)S0,q−2S1,p−q(t) = 0,

(3.20)

where Θt = t∂/∂t, and S0,p are solutions of the recursion relation (3.15).

In Step 2, S0,p have been already determined iteratively. Therefore, substitut-
ing the solution (3.16) in equations (3.17)–(3.20), we obtain differential equations
for S1,p(t). Furthermore, the following condition follows from the recursive struc-
ture

S1,p(t) =
∞∑

k=1

S1,p,kt
k, S1,p,k = 0 for p+ k odd,



308 J. E. Andersen, H. Fuji, M. Manabe, R. C. Penner, and P. Su lkowski

whose implementation accelerates the iteration. We have implemented this iter-
ation on a computer and found iteratively solutions for S1,p(t) (p = 0, 1, 2, . . .),
which are summarized in appendix C.
Step 4: The multi-backbone phase functions Sb(x, t) (b ≥ 2).

To extend our analysis to the multi-backbone phase functions Sb(x, t) (b ≥ 2)
we expand the differential equation (3.14) with respect to the parameter x, in the
same way as in the previous steps.

Corollary 3.4. The coefficients Sb,p(t) of the multi-backbone phase function Sb(x, t)
obey

2(p+ 2)t2Sb,p+2(t) − 4(p+ 1)tSb,p+1(t) + ϵ1t
3(Θt + b)Sb,p+1(t) − ϵ1t

2(Θt + 2b)Sb,p(t)

− p(p+ 1)ϵ2t
2Sb,p(t) − 4pµt2Sb,p(t) + 2pSb,p(t) + 2(p− 1)pϵ2tSb,p−1(t)

+ 8(p− 1)µtSb,p−1(t) − (p− 2)(p− 1)ϵ2Sb,p−2(t) − 4(p− 2)µSb,p−2(t)

− 2(p− 1)tSb−1,p−1(t) − ϵ2t
2

b∑

a=0

p−1∑

q=1

q(p− q)Sa,q(t)Sb−a,p−q(t)

+ 2ϵ2t
b∑

a=0

p−1∑

q=2

(q − 1)(p− q)Sa,q−1(t)Sb−a,p−q(t)

− ϵ2

b∑

a=0

p−1∑

q=3

(q − 2)(p− q)Sa,q−2(t)Sb−a,p−q(t) = 0,

(3.21)

where Sb,p(t) = 0 for p ≤ −1.

The following conditions that follow from (3.21) again accelerate the iteration

Sb,p(t) =
∞∑

k=b

Sb,p,kt
k, Sb,0,k = 0 for b ≥ 2, k ≤ 2b− 3,

Sb,p,k = 0 for p+ k odd.

Programming this recursion on a computer, we determined the multi-backbone
phase function Sb(x, t) iteratively. Computational results for Sb,p(t) b = 2, 3 are
summarized in appendix C.

3.3 The free energy

Finally, we collect all Sb,0(t) obtained in the above four steps together, and substi-
tute them into the equation (3.11). Rewriting ϵα (α = 1, 2) in (1.40) in terms of
the parameters ℏ and γ = β1/2−β−1/2, we obtain the free energy of the β-deformed
RNA matrix model

F β
N(s, t) =

∞∑

ℓ=0

sbFb(µ, ℏ, γ; t),
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F1(µ, ℏ, γ; t) =

(
µ2

ℏ2
− µ

ℏ
γ

)
t2 +

(
2µ3

ℏ2
− 5µ2

ℏ
γ +

(
3γ2 + 1

)
µ

)
t4

+

(
5µ4

ℏ2
− 22µ3

ℏ
γ +

(
32γ2 + 10

)
µ2 −

(
15γ3 + 13γ

)
µℏ
)
t6

+

(
14µ5

ℏ2
− 93µ4

ℏ
γ +

(
234γ2 + 70

)
µ3 +

(
52γ3 + 43γ

)
µ2ℏ

+
(
105γ4 + 160γ2 + 1

)
µℏ2

)
t8 + O(t10),

F2(µ, ℏ, γ; t) =
µ

2ℏ2
t2 +

(
4µ2

ℏ2
− 4µ

ℏ
γ

)
t4

+

(
24µ3

ℏ2
− 117µ2

2ℏ
γ +

µ

2

(
69γ2 + 21

))
t6

+

(
128µ4

ℏ2
− 542µ3

ℏ
γ + µ2

(
762γ2 + 220

)
− µℏ

(
348γ3 + 282γ

)
)
t8

+ O(t10),

F3(µ, ℏ, γ; t) =
µ

ℏ2
t4 +

(
58µ2

3ℏ2
− 58µ

3
γ

)
t6

+

(
222µ3

ℏ2
− 534µ2

ℏ
γ + µ

(
312γ2 + 90

))
t8 + O(t10).

From (1.17) and (1.19) we obtain the coefficients C̃g,ℓ,b(w) in Fb(µ, ℏ, γ; t) via the
formula

Fb(µ, ℏ, γ; t) =
∞∑

g,ℓ=0

(−γ)ℓℏ2g−2+ℓ

µb−2+2g+ℓb!
C̃g,ℓ,b(µt

2) − µℏ−2δb,1.(3.22)

Taking into account the relations (1.20) for Cg,b(w) and Cr
h,b(w)

Cg,b(w) = C̃g,0,b(w), Cr
h,b(w) =

∞∑

g,ℓ=0
2g+ℓ=h

2gC̃g,ℓ,b(w),

we find complete agreement with the computational results (2.8) and (2.9) ob-
tained from the β-deformed topological recursion via Gaussian resolvents.

A Enumeration of non-orientable fatgraphs with

k = 3

For the case of one backbone (i.e. one vertex) and k = 3 chords, we list the
non-oriented fatgraphs with χ = 1 in Figure 6 and χ = 0 in Figure 7.
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Figure 6: Non-oriented tailed fatgraphs with b = 1, k = 3 and χ = 1. The total
number of graphs is 22.

Both of these numbers of graphs agree with the number computed from the
cut-and-join method and the time-dependent Schrödinger equation.

B The free energy F0,2 in 1-cut β-deformed mod-

els

In this appendix, we determine the unstable term F0,2({rn}) in the free energy
(1.22) for the β-deformed eigenvalue integral (1.14) with the general potential
(1.21)

(B.1) F0,2({rn}) = F I
0,2({rn}) + FA

0,2({rn}).

We consider genus s − 1 spectral curves of the form

y(x)2 = M(x)2σ(x),

σ(x) =
2s∏

i=1

(x− qi), M(x) = c

f∏

i=1

(x− αi)
mi ,

(B.2)

whose form is determined by the choice of the potential. The terms F I
0,2({rn})

and FA
0,2({rn}) are given by [33, 31]

F I
0,2({rn}) = − 1

8π2

∮

A

dy(z′)

y(z′)

∫

D

dS(z, z′) log |y(z)|,(B.3)

FA
0,2({rn}) = − 1

12
log

∣∣∣∣
2s∏

i=1

M(qi) ·
∏

1≤i<j≤2s

(qi − qj)

∣∣∣∣,(B.4)

where A =
∪s

i=1 Ai is the contour around the branch cut D =
∪s

i=1Di, Di =
[q2i−1, q2i]. Then dS(x1, x2) is the third type differential, which is a 1-form in x1
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Figure 7: Non-oriented tailed fatgraphs with b = 1, k = 3 and χ = 0. The total
number of graphs is 42.

and a multivalued function of x2, determined by the conditions

• dS(x1, x2) ∼
x1→x2

dx1

x1 − x2

+ reg., • dS(x1, x2) ∼
x1→x2

− dx1

x1 − x2

+ reg.,

•
∮

x2∈Ai

dS(x1, x2) = 0, i = 1, . . . , s − 1.(B.5)

Here x is the conjugate point of a point x on the spectral curve (B.2), such that

(B.6)
√
σ(x) = −

√
σ(x), M(x) = M(x).

In the following we consider the s = 1 case in (B.2)

(B.7) σ(x) = (x− a)(x− b), a < b,

and by applying the method used to derive the unstable term F0,2({rn}) in a 1-cut
matrix model with a hard edge [24], we prove the formula (1.39).

Proposition B.1. For the above genus 0 spectral curve, the unstable term F0,2({rn})
takes form

F0,2({rn}) = −1

2

f∑

i=1

mi log
(
1 − s2

i

)
− 1

2

f∑

i,j=1

mimj log
(
1 − sisj

)

+
1

24
log
∣∣M(a)M(b)(a− b)4

∣∣,
(B.8)
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where si, i = 1, . . . , f are defined by

(B.9) αi(si) =
a+ b

2
− a− b

4
(si + s−1

i ), |si| < 1.

Proof. In the above genus 0 case the third type differential dS(x1, x2) is given by

(B.10) dS(x1, x2) =

√
σ(x2)√
σ(x1)

dx1

x1 − x2

.

We introduce the Zhukovsky variable z by

(B.11) x(z) =
a+ b

2
− a− b

4
(z + z−1).

Then the branch points x = a, b are mapped to z = −1,+1, and the first and
second sheet of the spectral curve are mapped to the regions |z| ≥ 1 and |z| ≤ 1,
respectively. Under this map we obtain

√
σ(x) =

b− a

4
(z − z−1),

dx√
σ(x)

=
dz

z
,

√
σ(x2)

x1 − x2

=
z1

z1 − z2

− z1

z1 − z−1
2

,

and the third type differential (B.10) is rewritten as

(B.12) dS(x1, x2) =
dz1

z1 − z2

− dz1

z1 − z−1
2

.

Under the map (B.11), the zeros or poles αi of the moment function M(x) on the
spectral curve (B.2) are mapped to 2f points s±1

i , i = 1, . . . , f ,

αi(si) =
a+ b

2
− a− b

4
(si + s−1

i ),

and we obtain

x− αi =
b− a

4

(z − si)(z − s−1
i )

z
.

Without loss of generality, in this proof we can assume

|si| > 1.

First, let us consider (B.3). Since the variable z of the integrand is on the
branch cut D = [a, b], we can put z = eiθ in the Zhukovsky variable, and by
(B.12)

dS(z, z′) = −idθ
[

z

z′
1

1 − z
z′

+
1

1 − 1
zz′

]
= −idθ

[
1 +

∞∑

k=1

2

z′k cos kθ

]
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is obtained, where we have used |z′| > |z| = 1. Then we obtain

F̂ I
0,2(z

′) :=

∫

D

dS(z, z′) log |y(z)|

=

∫ π

0

idθ

[
1 +

∞∑

k=1

2

z′k cos kθ

][
log

∣∣∣∣c
b− a

4

f∏

i=1

(b− a

4

)mi

∣∣∣∣+ log(2 sin θ)

+ log

f∏

i=1

|eiθ − si|mi|eiθ − s−1
i |mi

]

= iπ log

∣∣∣∣c
b− a

4

f∏

i=1

(b− a

4

)mi

∣∣∣∣− iπ

∞∑

k=1

1

kz2k
2

+ i

f∑

i=1

mi

∫ π

0

dθ

[
1 +

∞∑

k=1

2

zk
2

cos kθ

]
log |eiθ − si||eiθ − s−1

i |,(B.13)

where we have used that
∫ π

0

dθ log(2 sin θ) = 0,

∫ π

0

dθ cos kθ log sin θ =

{
−π

k
if k is a nonzero even integer,

0 if k is an odd integer.

By

log |eiθ − si| = log |si| − 1

2

∞∑

k=1

1

k

( 1

sk
i

+
1

sk
i

)
cos kθ − i

2

∞∑

k=1

1

k

( 1

sk
i

− 1

sk
i

)
sin kθ,

log |eiθ − s−1
i | = −1

2

∞∑

k=1

1

k

( 1

sk
i

+
1

sk
i

)
cos kθ +

i

2

∞∑

k=1

1

k

( 1

sk
i

− 1

sk
i

)
sin kθ,

(B.13) is written as

(B.14) F̂ I
0,2(z) = iπ

[
log

∣∣∣∣c
b− a

4

f∏

i=1

(b− a

4
si

)mi

∣∣∣∣−
∞∑

k=1

1

kz2k
−

f∑

i=1

mi

∞∑

k=1

2

kzksk
i

]
.

Here we have used ∫ π

0

dθ cos kθ cos ℓθ =
π

2
δk,ℓ,

and the fact that for an arbitrary si, there exists an sj such that si = sj. By

dy(z)

y(z)
=

[
1

z − 1
+

1

z + 1
− 1

z
+

f∑

i=1

mi

( 1

z − si

+
1

z − s−1
i

− 1

z

)]
dz,
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and by (B.14), (B.3) is rewritten as

F I
0,2({rn}) =

1

4

∮

Ã

dz

2πi

[
1

z − 1
+

1

z + 1
− 1

z
+

f∑

i=1

mi

( 1

z − si

+
1

z − s−1
i

− 1

z

)]

×
[

log

∣∣∣∣c
b− a

4

f∏

i=1

(b− a

4
si

)mi

∣∣∣∣−
∞∑

k=1

1

kz2k
−

f∑

i=1

mi

∞∑

k=1

2

kzksk
i

]
,

where Ã is the contour around the unit disk |z| = 1. This contour can be changed
as ∮

Ã
−→ −

f∑

i=1

∮

Ãi

−
∮

Ã∞

,

where Ãi and Ã∞ are the contours around si and infinity, respectively. Then by

∞∑

k=1

uk

k
= − log(1 − u), |u| < 1,

we obtain

F I
0,2({rn}) = −1

2

f∑

i=1

mi log
(

1 − 1

s2
i

)
− 1

2

f∑

i,j=1

mimj log
(

1 − 1

sisj

)

+
1

8
log

∣∣∣∣M(a)M(b)
(a− b

4

)2
∣∣∣∣,

(B.15)

where we used

log

∣∣∣∣c
f∏

i=1

(b− a

4
si

)mi

∣∣∣∣ = −
f∑

i=1

mi log
(

1 − 1

s2
i

)
+

1

2
log
∣∣M(a)M(b)

∣∣.

With (B.4) for the genus 0 case, after changing si to s−1
i , we finally obtain the

formula (B.8), where we ignored the constant term − log
√

2.

C An iterative solution using the quantum curve

The 1-backbone phase function S1(x, t)
The solutions S1,p(t) (p = 0, 1, 2) of the equations (3.17) – (3.20) are found suc-
cessively as follows

S1,0(t) = −t3 2µ(2µ+ ϵ1 + ϵ2)

ϵ2ϵ2
− t4

µ

ϵ1ϵ2

(
5ϵ1ϵ2 + 8µ2 + 10µ(ϵ1 + ϵ2) + 3(ϵ21 + ϵ22)

)

− t6
µ

2ϵ1ϵ2

(
40µ3 + 88µ2(ϵ1 + ϵ2) + 64µ(ϵ21 + ϵ22) + 108µϵ1ϵ2 + 15(ϵ31 + ϵ32)
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+ 32ϵ1ϵ2(ϵ1 + ϵ1)
)

− t8
µ

4ϵ1ϵ2

(
224µ4 + 744µ3(ϵ1 + ϵ2) + 936µ2(ϵ21 + ϵ22) + 1592µ2ϵ1ϵ2

+ 520µ(ϵ31 + ϵ32) + 1130µϵ1ϵ2(ϵ1 + ϵ2) + 260ϵ1ϵ1(ϵ
2
1 + ϵ22)

+ 331ϵ21ϵ
2
2 + 105(ϵ41 + ϵ42)

)
+ O(t10),

S1,1(t) = t
2µ

ϵ2
+ t3

3µ(2µ+ ϵ1 + ϵ2)

ϵ2
+ t5

5µ

2ϵ2

(
8µ2 + 10µ(ϵ1 + ϵ2) + 3(ϵ21 + ϵ22) + 5ϵ1ϵ2

)

+ t7
7µ

4ϵ2

(
40µ3 + 88µ2(ϵ1 + ϵ2) + 64µ(ϵ21 + ϵ22) + 108µϵ1ϵ2 + 15(ϵ31 + ϵ32)

+ 32ϵ1ϵ2(ϵ1 + ϵ2)
)

+ O(t9),

S1,2(t) = t2
µ(2µ+ ϵ2)

ϵ2
+ t4

µ(2µ+ ϵ2)(4µ+ 2ϵ1 + 3ϵ2)

ϵ2

+ t6
3µ(2µ+ ϵ2)

(
20µ2 + 2µ(12ϵ1 + 17ϵ2) + 7ϵ21 + 15ϵ22 + 17ϵ1ϵ2

)

4ϵ2
+ O(t8).

The 2-backbone phase function S2(x, t)
The solutions S2,p(t) (p = 0, 1, 2) of equation (3.21) take form

S2,0(t) = −t2 2µ

ϵ1ϵ2
− t4

8µ(2µ+ ϵ1 + ϵ2)

ϵ1ϵ2

− t6
3µ

2ϵ1ϵ2

(
64µ2 + 78µ(ϵ1 + ϵ2) + 23(ϵ21 + ϵ2)

2 + 39ϵ1ϵ2
)

− t8
µ

ϵ1ϵ2

(
512µ3 + 1084µ2(ϵ1 + ϵ2) + 762µ(ϵ21 + ϵ22) + 1304µϵ1ϵ2

+ 174(ϵ31 + ϵ32) + 381ϵ1ϵ2(ϵ1 + ϵ2)
)

+ O(t10),

S2,1(t) = t3
4µ

ϵ2
+ t5

24µ(2µ+ ϵ1 + ϵ2)

ϵ2

+ t7
6µ

ϵ2

(
64µ2 + 78µ(ϵ1 + ϵ2) + 23(ϵ21 + ϵ22) + 39ϵ1ϵ2

)
+ O(t9),

S2,2(t) = t2
µ

ϵ2
+ t4

µ(16µ+ 3ϵ1 + 8ϵ2)

ϵ2

+ t6
3µ

4ϵ2

(
192µ2 + 2µ(61ϵ1 + 117ϵ2) + 13ϵ21 + 69ϵ22 + 61ϵ1ϵ2

)
+ O(t8).

The 3-backbone phase function S3(x, t)
The solutions S3,p(t) (p = 0, 1, 2) of equation (3.21) take form

S3,0(t) = −t4 4µ

ϵ1ϵ2
− t6

116µ(2µ+ ϵ1 + ϵ2)

3ϵ1ϵ2
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− t8
6µ

ϵ1ϵ2

(
148µ2 + 178µ(ϵ1 + ϵ2) + 52(ϵ21 + ϵ22) + 89ϵ1ϵ2

)
+ O(t10),

S3,1(t) = t5
14µ

ϵ2
+ t7

174µ(2µ+ ϵ1 + ϵ2)

ϵ2
+ O(t9),

S3,2(t) = t4
4µ

ϵ2
+ t6

2µ(58µ+ 15ϵ1 + 29ϵ2)

ϵ2
+ O(t8).
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