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Abstract. Privacy issues of recommender systems have become a hot topic for the so-
ciety as such systems are appearing in every corner of our life. In contrast to the fact
that many secure multi-party computation protocols have been proposed to prevent in-
formation leakage in the process of recommendation computation, very little has been
done to restrict the information leakage from the recommendation results. In this paper,
we apply the differential privacy concept to neighborhood-based recommendation meth-
ods (NBMs) under a probabilistic framework. We first present a solution, by directly
calibrating Laplace noise into the training process, to differential-privately find the max-
imum a posteriori parameters similarity. Then we connect differential privacy to NBMs
by exploiting a recent observation that sampling from the scaled posterior distribution
of a Bayesian model results in provably differentially private systems. Our experiments
show that both solutions allow promising accuracy with a modest privacy budget, and
the second solution yields better accuracy if the sampling asymptotically converges. We
also compare our solutions to the recent differentially private matrix factorization (MF)
recommender systems, and show that our solutions achieve better accuracy when the pri-
vacy budget is reasonably small. This is an interesting result because MF systems often
offer better accuracy when differential privacy is not applied.
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1 Introduction

Recommender systems, particularly collaborative filtering (CF) systems, have been widely de-
ployed due to the success of E-commerce [29]. There are two dominant approaches in CF. One
is matrix factorization (MF) [15] which models the user preference matrix as a product of two
low-rank user and item feature matrices, and the other is neighborhood-based method (NBM)
which leverages the similarity between items or users to estimate user preferences [8]. Gener-
ally, MF is more accurate than NBM [29], while NBM has an irreplaceable advantage that it
naturally explains the recommendation results. In addition, recent research shows that MF falls
short in session-based recommendation while NBMs allow promising accuracy [13]. Therefore,
NBM is still an interesting research topic for the community.

In reality, industrial CF recommender and ranking systems often adopt a client-server model,
in which a single server (or, server cluster) holds databases and serves a large number of users.
CF exploits the fact that similar users are likely to prefer similar products, unfortunately this
property facilitates effective user de-anonymization and history information recovery through
the recommendation results [5, 21]. To this end, NBM is more fragile (e.g. [5, 19]), since it is
essentially a simple linear combination of user history information which is weighted by the
normalized similarity between users or items. In this paper, we aim at preventing information
leakage from the recommendation results, for the NBM systems. Note that a related research
topic is to avoid the server from accessing the users’ plaintext inputs, and many solutions exist
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for this (e.g. [22, 30]). Combining them with our solution will result in a comprehensive solution,
which prevent information leakage from both the computation process and final recommendation
results. We skip the details here.

Differential privacy [10] provides rigorous privacy protection for user information in statis-
tical databases. Intuitively, it offers a participant the possibility to deny his participation in a
computation. Some works, such as [17, 37], have been proposed for some specific NBMs, which
adopt correlations or artificially defined metrics as similarity [8] and are less appealing from the
perspective of accuracy. It remains as an open issue to apply the differential privacy concept to
more sophisticated NBM models, which automatically learn similarity from training data (e.g.
[26, 31, 33]). Particularly, probabilistic NBM [33] models the dependencies among observations
(ratings) which leads user preference estimation to a penalized risk minimization problem to
search optimal unobserved factors (In our context, the unobserved factor is similarity). It has
been shown that the instantiation in [33] outperforms most other NBM systems and even the
MF or probabilistic MF systems in many settings.

1.1 Our Contribution

Due to its accuracy advantages, we focus on the probabilistic NBM systems in our study. Inspired
by [4, 16], we propose two methods to instantiate differentially private solutions.

First, we calibrate noise into the training process (i.e. SGD) to differential-privately find
the maximum a posteriori similarity. This instantiation achieves differential privacy for each
rating value. Second, we link the differential privacy concept to probabilistic NBM, by sam-
pling from scaled posterior distribution. For the sake of efficiency, we employ a recent MCMC
method, namely Stochastic Gradient Langevin Dynamics (SGLD) [36], as the sampler. In order
to use SGLD, we derive an unbiased estimator of similarity gradient from a mini-batch. This
instantiation achieves differential privacy for every user profile (rating vector).

To evaluate our solutions, we carry out experiments to compare our solutions to the state-of-
the-art differentially private MFs, and also to compare our solutions between themselves. Our
results show that differentially private MFs are more accurate when privacy loss is large (ex-
tremely, in a non-private case), but differentially private NBMs are better when privacy loss is
set in a more reasonable range. Even with the added noises, both our solutions consistently out-
perform non-private traditional NBMs in accuracy. Despite the complexity concern, our solution
with posterior sampling (i.e. SGLD) outperforms the other from the accuracy perspective.

1.2 Organization

The rest of this paper is organized as follows. In Section 2, we recap the preliminary knowledge.
In Section 3 and 4, we present our two differentially private NBM solutions respectively. In
Section 5, we present our experiment results. In Section 6, we present the related work. In
Section 7, we conclude the paper.

2 Preliminary

Generally, NBMs can be divided into user-user approach (relies on similarity between users) and
item-item approach (relies on similarity between items) [8]. Probabilistic NBM can be regarded
as a generic methodology, to be employed by any other specific NBM system. Commonly, the
item-item approach is more accurate and robust than the user-user approach [8, 19]. In this
paper, we take the item-item approach as an instance to introduce the probabilistic NBM concept
from [33]. We also review the concept of differential privacy.
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Table 1: Notation

rui the rating that user u gave item i

sij the similarity between item i and j

R ∈ RN×M rating matrix

R>0 ⊂ R all the observed ratings or training data

S ∈ RM×M item similarity matrix

Si ∈ R1×M similarity vector of item i

R−u ∈ RM×1 u’s rating vector without the item being modeled

αS , αR hyperparameters of Si and rui respectively

f(Si, R
−
u ) any NBM which takes as input the Si and R−u

p(∗) prior distribution of ∗
p(Si|αS) likelihood function of Si conditioned on αS
p(rui|f(∗), αR) likelihood function of rui

Fig. 1: Graphical model of PNBM

2.1 Review Probabilistic NBM

Suppose we have a dataset with N users and M items. Probabilistic NBM [33] assumes the
observed ratings R>0 conditioned on historical ratings with Gaussian noise, see Fig. 1. Some
notation is summarized in Table 1. The likelihood function of observations R>0 and prior of
similarity S are written as

p(R>0|S,R−, αR) =

M∏
i=1

N∏
u=1

[N (rui|f(Si, R
−
u ), α−1

R )]Iui ; p(S|αS) =

M∏
i=1

N (Si|0, α−1
S I) (1)

whereN (x|µ, α−1) denotes the Gaussian distribution with mean µ and precision α. R− indicates
that if item i is being modeled then it is excluded from the training data R>0. f(Si, R

−
u ) denotes

any NBM which takes as inputs the Si and R−u . In the following, we instantiate it to be a typical
NBM [8]:

r̂ui ← f(Si, R
−
u ) = r̄i +

∑
j∈I\{i} sij(ruj − r̄j)Iuj∑

j∈I\{i} |sij |Iuj
=

SiR
−
u

|Si|I−u
(2)

r̂ui denotes the estimation of user u’s preference on item i, r̄i is item i’s mean rating value, Iuj
is the rating indicator Iuj = 1 if user u rated item j, otherwise, Iuj = 0. Similar with R−u , I−u
denotes user u’s indicator vector but set Iui = 0 if i is the item being estimated. For the ease of
notation, we will omit the term r̄i and present Equation (2) in a vectorization form in favor of
a slightly more succinct notation.
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The log of the posterior distribution over the similarity is

− logp(S|R>0, αS , αR) = − log p(R>0|S,R−, αR)p(S|αS) =

αR
2

M∑
i=1

N∑
u=1

(rui −
SiR

−
u

|Si|I−u
)2 +

αs
2

M∑
i=1

(||Si||2) +M2 log
αs√
2π

+ log
αR√
2π

M∑
i=1

N∑
u=1

Iui
(3)

Thanks to the simplicity of the log-posterior distribution (i.e.
∑M
i=1

∑N
u=1(rui − SiR

−
u

|Si|I−u
)2 +∑M

i=1(||Si||2), where we omit the constant terms in Equation (3)). We can have two approaches
to solve this risk minimization problem.

– Stochastic Gradient Descent (SGD). In this approach, log p(S|R>0, αS , αR) is treated as an
error function. SGD can be adopted to minimize the error function. In each SGD iteration

we update the gradient of similarity (−∂ log p(S|R>0,αS ,αR)
∂Sij

) with a set of randomly chosen

ratings Φ by

Sij ← Sij − η(
∑

(u,j)∈Φ

(r̂ui − rui)
∂r̂ui
∂Sij

+ λSij) (4)

where η is the learning rate, λ = αS
αR

is the regular parameter, the set Φ may contain
n ∈ [1, N ] users. In Section 3, we will introduce how to build the differentially private SGD
to train probabilistic NBM.

– Monte Carlo Markov Chain (MCMC). We estimate the predictive distribution of an un-
known rating by a Monte Carlo approximation. In Section 4, we will connect differential
privacy to samples from the posterior p(S|R>0, αS , αR), via Stochastic Gradient Langevin
Dynamics (SGLD) [36].

2.2 Differential Privacy

Differential privacy [10], which is a dominate security definition against inference attacks, aims to
rigorously protect sensitive data in statistical databases. It allows to efficiently perform machine
learning tasks with quantified privacy guarantee while accurately approximating the non-private
results.

Definition 1. (Differential Privacy [10]) A random algorithm M is (ε, σ)-differentially private
if for all O ⊂ Range(M) and for any of all (D0,D1) which only differs on one single record
such that ||D0 −D1|| ≤ 1 satisfies

Pr[M(D0) ∈ O] ≤ exp(ε)Pr[(M(D1) ∈ O] + σ

And M guarantees ε-differential privacy if σ = 0.

The parameter ε states the difference of algorithmM’s output for any (D0,D1). It measures the
privacy loss. Lower ε indicates stronger privacy protection.

Laplace Mechanism [9] is a common approach to approximate a real-valued function f : D →
R with a differential privacy preservation using additive noise sampled from Laplace distribution:

M(D)
∆
= f(D) + Lap(0, ∆Fε ), where the ∆F indicates the largest possible change between the

outputs of the function f which takes as input any neighbor databases (D0,D1). It is referred
to as the L1-sensitivity which is defined as: ∆F = max

(D0,D1)
||f(D0)− f(D1)||1.

Sampling from the posterior distribution of a Bayesian model with bounded log-likelihood,
recently, has been proven to be differentially private [34]. It is essentially an exponential mecha-
nism [18]. Formally, suppose we have a dataset of L i.i.d examples X = {xi}Li=1 which we model
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using a conditional probability distribution p(x|θ) where θ is a parameter vector, with a prior
distribution p(θ). If p(x|θ) satisfies supx∈X ,θ∈Θ| log p(x|θ)| ≤ B, then releasing one sample from
the posterior distribution p(θ|X ) with any prior p(θ) preserves 4B-differential privacy. Alterna-
tively, ε differential privacy can be preserved by simply rescaling the log-posterior distribution
by a factor of ε

4B , under the regularity conditions where asymptotic normality (Bernstein-von
Mises theorem) holds.

3 Differentially Private SGD

When applying the differential privacy concept, treating the training model (process) as a black
box, by only working on the original input or finally output, may result in very poor utility [1, 4].
In contrast, by leveraging the tight characterization of training data, NBM and SGD, we directly
calibrate noise into the SGD training process, via Laplace mechanism, to differential-privately
learn similarity. Algorithm 1 outlines our differentially-private SGD method for training prob-
abilistic NBM.

Algorithm 1 Differentially Private SGD

Require: Database R>0, privacy parameter ε, regular parameter λ, rescale parameter β, learning rate
η, the total number of iterations K, initialized similarity S(1).

1: S(1) = S(1) · β . rescale the initialization
2: for t = 1 : K do
3: • uniform-randomly sample a mini-batch Φ ⊂ R>0.
4: ∆F = 2emax

τ
C

. emax = 0.5 + ϕ−1
t+1

; |Si|Iu ≥ C
5: eui = min(max(eui,−emax), emax) . eui = r̂ui − rui
6: G =

∑
(u,i)∈Φ eui

∂r̂ui
∂Si

+ Laplace( γK∆F
ε

) . γ = L
L

7: S(t+1) ← S(t) − η(βG + λS(t)) . up-scale the update
8: end for
9: return S(t+1)

According to Equation (3) and (4), for each user u (in a randomly chosen mini-batch Φ) the
gradient of similarity is

Gij(u) = eui
∂r̂ui
∂Sij

= eui(
ruj

SiI
−
u
− r̂ui

Iuj

SiI
−
u

) (5)

where eui = r̂ui − rui. For the convenience of notation, we omit Sij < 0 part in Equation (5)
which does not compromise the correctness of bound estimation.

To achieve differential privacy, we update the gradient G by adding Laplace noise (Algorithm
1, line 6). The amount of noise is determined by the bound of gradient Gij(u) (sensitivity ∆F)
which further depends on eui, (ruj − r̂uiIuj) and |Si|I−u . We reduce the sensitivity by exploiting
the characteristics of training data, NBM and SGD respectively, by the following tricks.

Preprocessing is often adopted in machine learning for utility reasons. In our case, it can
contribute to privacy protection. For example, we only put users who have more than 20 ratings
in the training data. It results in a bigger |Si|I−u thus will reduce sensitivity. Suppose the
rating scale is [rmin, rmax], removing “paranoid” records makes |ruj − r̂uiIuj | ≤ ϕ hold, where
ϕ = rmax − rmin.

Rescaling the value of similarity allows a lower sensitivity. NBM, see Equation (2), allows
us to rescale the similarity S to an arbitrarily large magnitude such that we can further re-
duce the sensitivity ( by increasing the value of |Si|Iu). However, the initialization of similarity
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Fig. 2: The distribution of |Si|Iu (β = 10). In order to have more detail of the distribution of those
points have low |Si|Iu values, the points |Si|Iu ≥ 500 are removed.

strongly influences the convergence of the training. Thus, it is important to balance the conver-
gence (accuracy) and the value of similarity (privacy). Another observation is that the gradient
down-scales when enlarging the similarity, see Equation (5). We can up-scale the gradient mono-
tonically during the training process (Algorithm 1, line 1 and 7). Fig. 2 shows , let β = 10, the
lower bound of |Si|Iu, denote as C, is 10.

The prediction error eui = r̂ui−rui decreases when the training goes to convergence such that
we can clamp eui to a lower bound dynamically. In our experiments, we bound the prediction
error as |eui| ≤ 0.5 + ϕ−1

t+1 , where t is the iteration index. This constraint trivially influences the
convergence under non-private training process.

After applying all the tricks, we have the dynamic gradient bound at iteration t as follows

max(|G(t)|) ≤ (0.5 +
ϕ− 1

t+ 1
)
ϕ

C
(6)

The sensitivity of each iteration is ∆F = 2max(|G(t)|) ≤ 2(0.5 + ϕ−1
t+1 ) ϕC .

Theorem 1. Uniform-randomly sample L examples from a dataset of the size L, Algorithm 1
achieves ε-differential privacy if in each SGD iteration t we set ε(t) = ε

Kγ where K is the number

of iterations and γ = L
L .

Proof. In Algorithm 1, suppose the number of iterations K is known in advance, and each SGD
iteration maintains ε

Kγ -differential privacy. The privacy enhancing technique [3, 14] indicates
that given a method which is ε-differentially private over a deterministic training set, then it
maintains γε-differential privacy with respect to a full database if we uniform-randomly sample
training set from the database where γ is the sampling ratio. Finally, combining the privacy
enhancing technique with composition theory [10], it ensures the K iterations SGD process
maintain the overall bound of ε-differential privacy. ut

4 Differentially Private Posterior Sampling

Sampling from the posterior distribution of a Bayesian model with bounded log-likelihood has
free differential privacy to some extent [34]. Specifically, for probabilistic NBM, releasing a
sample of the similarity S,

S ∼ p(S|R>0, αS , αR) ∝ exp(
M∑
i=1

N∑
u=1

(rui −
SiR

−
u

|Si|I−u
)2 + λ

M∑
i=1

||Si||2) (7)
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achieves 4B-differential privacy at user level, if each user’s log-likelihood is bounded to B, i.e.
max
u∈R>0

∑
i∈Ru(r̂ui− rui)2 ≤ B. Wang et al. [34] showed that we can achieve ε-differential privacy

by simply rescaling the log-posterior distribution with ε
4B , i.e. ε

4B · log p(S|R>0, αS , αR).
Posterior sampling is computationally costly. For the sake of efficiency, we adopt a recent

introduced Monte Carlo method, Stochastic Gradient Langevin Dynamics (SGLD) [36], as our
MCMC sampler. To successfully use SGLD, we need to derive an unbiased estimator of similarity
gradient from a mini-batch which is a non-trivial task.

Next, we first overview the basic principles of SGLD (Section 4.1), then we derive an unbiased
estimator of the true similarity gradient (Section 4.2), and finally present our privacy-preserving
algorithm (Section 4.3).

4.1 Stochastic Gradient Langevin Dynamics

SGLD is an annealing of SGD and Langevin dynamics [27] which generates samples from a
posterior distribution. Intuitively, it adds an amount of Gaussian noise calibrated by the step
sizes (learning rate) used in the SGD process, and the step sizes are allowed to go to zero. When
it is far away from the basin of convergence, the update is much larger than noise and it acts as
a normal SGD process. The update decreases when the sampling approaches to the convergence
basin such that the noise dominated, and it behaves like a Brownian motion. SGLD updates the
candidate states according to the following rule.

∆θt =
ηt
2

(∆ log p(θt) +
L
L

L∑
i=1

∆ log p(xti|θt)) + zt; zt ∼ N (0, ηt) (8)

where ηt is a sequence of step sizes. p(x|θ) denotes conditional probability distribution, and θ is
a parameter vector with a prior distribution p(θ). L is the size of a mini-batch randomly sampled
from dataset XL. To ensure convergence to a local optimum, the following requirements of step
size ηt have to be satisfied:

∞∑
t=1

ηt =∞
∞∑
t=1

η2t <∞

Decreasing step size ηt reduces the discretization error such that the rejection rate approaches
zero, thus we do not need accept-reject test. Following the previous works, e.g. [16, 36], we set
step size ηt = η1t

−ξ, commonly, ξ ∈ [0.3, 1]. In order to speed up the burn-in phase of SGLD,
we multiply the step size ηt by a temperature parameter % (0 < % < 1) where

√
% · ηt � ηt [7].

4.2 Unbiased Estimator of The Gradient

The log-posterior distribution of similarity S has been defined in Equation (3). The true gradient
of the similarity S over R>0 can be computed as

G(R>0) =
∑

(u,i)∈R>0

gui(S;R>0) + λS (9)

where gui(S;R>0) = eui
∂r̂ui
∂Si

. To use SGLD and make it converge to true posterior distribution,
we need an unbiased estimator of the true gradient which can be computed from a mini-batch Φ ⊂
R>0. Assume that the size of Φ and R>0 are L and L respectively. The stochastic approximation
of the gradient is

G(Φ) = Lḡ(S, Φ) + λS ◦ I[i, j ∈ Φ] (10)
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where ḡ(S, Φ) = 1
L

∑
(u,i)∈Φ gui(S, Φ). I ⊂ BM×M is symmetric binary matrix, and I[i, j ∈ Φ] = 1

if any item-pair (i, j) exists in Φ, otherwise 0. ◦ presents element-wise product (i.e. Hadamard
product). The expectation of G(Φ) over all possible mini-batches is,

EΦ[G(Φ)] = EΦ[Lḡ(S, Φ)] + λEΦ[S ◦ I[i, j ∈ Φ]]

=
∑

(u,i)∈R>0

gui(S;R>0) + λEΦ[S ◦ I[i, j ∈ Φ]] (11)

EΦ[G(Φ)] is not an unbiased estimator of the true gradient G(R>0) due to the prior term EΦ[S ◦
I[i, j ∈ Φ]]. Let H = EΦ[I[i, j ∈ Φ]], we can remove this bias by multiplying the prior term
with H−1 thus to obtain an unbiased estimator. Follow previous approach [2], we assume the
mini-batches are sampled with replacement, then H is,

Hij = 1− |Ii||Ij |
L2

(1− |Ij |
L

)L−1(1− |Ii|
L

)L−1 (12)

where |Ii| (resp. |Ij |) denotes the number of ratings of item i (resp. j) in the complete dataset
R>0. Then the SGLD update rule is the following:

S(t+1) ← S(t) − ηt
2

(Lḡ(S(t), Φ) + λS(t) ◦H−1) + zt (13)

4.3 Differential Privacy via Posterior Sampling

To construct a differentially private NBM, we exploit a recent observation that sampling from
scaled posterior distribution of a Bayesian model with bounded log-likelihood can achieve
ε-differential privacy [34]. We summarize the differentially private sampling process (via SGLD)
in Algorithm 2.

Algorithm 2 Differentially Private Posterior Sampling (via SGLD)

Require: Temperature parameter %, privacy parameter ε, regular parameter λ, initial learning rate η1.
Let K larger than burn-in phase.

1: for t = 1 : K do
2: • Randomly sample a mini-batch Φ ⊂ R>0.
3: ḡ(S(t), Φ) = 1

L

∑
(u,i)∈Φ eui

∂r̂ui

∂S
(t)
i

. gradient of S (mini-batch)

4: zt ∼ N (0, % · ηt) .
√
% · ηt � ηt

5: S(t+1) ← S(t) − ε
4B
· ηt

2
(Lḡ(S(t), Φ) + λS(t) ◦H−1) + zt

6: ηt+1 = η1
tγ

7: end for
8: return S(t+1)

Now, a natural question is how to determine the log-likelihood bound B? ( max
u∈R>0

∑
i∈Ru(r̂ui−

rui)
2 ≤ B, and see Equation (7)). Obviously, B depends on the max rating number per user.

To those users who rated more than τ items, we randomly remove some ratings thus to ensure
that each user at most has τ ratings. In our context, the rating scale is [1,5], let τ = 200, we
have B = (5− 1)2 × 200 (In reality, most users have less than 200 ratings [16]).

Theorem 2. Algorithm 2 provides (ε, (1 + eε)δ)-differential privacy guarantee to any user if
the distribution P ′X where the approximate samples from is δ-far away from the true posterior
distribution PX , formally ||P ′X − PX ||1 ≤ δ. And δ → 0 if the MCMC sampling asymptotically
converges.
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Proof. Essentially, differential privacy via posterior sampling [34] is an exponential mechanism
[18] which protects ε-differential privacy when releasing a sample θ with probability proportional
to exp(− ε

2∆F p(X|θ)), where p(X|θ) serves as the utility function. If p(X|θ) is bounded to B, we
have the sensitivity ∆F ≤ 2B. Thus, release a sample by Algorithm 2 preserves ε-differential
privacy. It compromises the privacy guarantee to (ε, (1 + eε)δ) if the distribution (where the
sample from) is δ-far away from the true posterior distribution, proved by [34]. ut

Note that when ε = 4B, the differentially private sampling process is identical to the non-
private sampling. This is also the meaning of some extent of free privacy. It starts to lose accuracy
when ε < 4B. One concern of this sampling approach is the distance δ between the distribution
where the samples from and the true posterior distribution, which compromises the differential
privacy guarantee. Fortunately, an emerging line of works, such as [28, 32], proved that SGLD
can converge in finite iterations. As such we can have arbitrarily small δ with a (large) number
of iterations.

5 Experiments and Evaluation

We test the proposed solutions on two real world datasets, ML100K and ML1M [20], which are
widely employed for evaluating recommender systems. ML100K dataset has 100K ratings that
943 users assigned to 1682 movies. ML1M dataset contains 1 million ratings that 6040 users gave
to 3952 movies. In the experiments, we adopt 5-fold cross validation for training and evaluation.
We use root mean square error (RMSE) to measure accuracy performance:

RMSE =

√∑
(u,i)∈RT (rui − r̂ui)2

|RT |

where |RT | is the total number of ratings in the test set RT . The lower the RMSE value the
higher the accuracy. As a result of cross validation, the RMSE value reported in the following
figures is the mean value of multiple runs.

5.1 Experiments Setup

In the following, the differentially-private SGD based PNBM is referred to as DPSGD-PNBM,
and the differentially-private posterior sampling PNBM is referred as DPPS-PNBM. The exper-
iment source code is available at Github1.

We compare their performances with the following (state-of-the-art) baseline algorithms.

– non-private PCC and COS: There exist differentially-private NBMs based on Pearson cor-
relation (PCC) or Cosine similarity (COS) NBMs (e.g. [17, 37, 12]). Since their accuracy is
worse than the non-private algorithms, we directly focus on these non-private ones.

– DPSGD-MF: Differentially private matrix factorization from [4], which calibrates Laplacian
noise into the SGD training process.

– DPPS-MF: Differentially private matrix factorization from [16], which exploits the posterior
sampling technique.

We empirically choose the optimal parameters for each model using a heuristic grid search
method. We summarize them as follows.

1 https://github.com/lux-jwang/Experiments/tree/master/dpnbm
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– DPSGD-PNBM: The learning rate η is searched in {0.1, 0.4}, and the iteration number
K ∈ [1, 20], the regular parameter λ ∈ {0.05, 0.005}, the rescale parameter β ∈ {10, 20}.
The neighbor size Nk = 500, the lower bound of |Si|Iu : C ∈ {10, 15}. In the training
process, we decrease K and increase {η, C} when requiring a stronger privacy guarantee (a
smaller ε).

– DPPS-PNBM: The initial learning rate η1 ∈ {8 · 10−8, 4 · 10−7, 8 · 10−6}, λ ∈ {0.02, 0.002},
the temperature parameter % = {0.001, 0.006, 0.09}, the decay parameter ξ = 0.3. Nk = 500.

– DPSGD-MF: η ∈ {6 · 10−4, 8 · 10−4}, K ∈ [10, 50] (the smaller privacy loss ε the less
iterations), λ ∈ {0.2, 0.02}, the latent feature dimension d ∈ {10, 15, 20}.

– DPPS-MF: η ∈ {2 ·10−9, 2 ·10−8, 8 ·10−7, 8 ·10−6}, λ ∈ {0.02, 0.05, 0.1, 0.2}, % = {1 ·10−4, 6 ·
10−4, 4 · 10−3, 3 · 10−2}, d ∈ {10, 15, 20},ξ = 0.3.

– non-private PCC and COS: For ML100K, we set NK = 900. For ML1M, we set NK = 1300.

5.2 Comparison Results

We first compare the accuracy between DPSGD-PNBM, DPSGD-MF, non-private PCC and
COS and show the results in Fig. 3 for the two datasets respectively. When ε ≥ 20, DPSGD-MF
does not lose much accuracy, and it is better than non-private PCC and COS. However, the
accuracy drops quickly (or, the RMSE increase quickly) when the privacy loss ε is reduced. This
matches the observation in [4]. In the contrast, DPSGD-PNBM maintains a promising accuracy
when ε ≥ 1, and is better than non-private PCC and COS.

Fig. 3: Accuracy Comparison: DPSGD-PNBM, DPSGD-MF, non-private PCC, COS.

DPPS-PNBM and DPPS-MF preserve differential privacy at user level. We denote the pri-
vacy loss ε in form of x × τ where x is a float value which indicates the average privacy loss
at a rating level, and τ is the max rate number per user. The comparison is shown in Fig. 4.
In our context, for both datasets, τ = 200. Both DPPS-PNBM and DPPS-MF allow accurate
estimations when ε ≥ 0.1 × 200. It may seem that ε = 20 is a meaningless privacy guarantee.
We remark that the average privacy of a rating level is 0.1. Besides the accuracy performance
is better than the non-private PCC and COS, from the point of privacy loss ratio, our models
match previous works [16, 17], where the authors showed that differentially private systems may
not lose much accuracy when ε > 1.
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Fig. 4: Accuracy Comparison: DPPS-PNBM, DPPS-MF, non-private PCC, COS.

For bandwidth and efficiency reason, mobile service providers may prefer to store the trained
model (e.g. item similarity) in mobile devices directly. Commercial recommender systems often
have very large similarity matrix such that the shortage of memory space in mobile devices may
become a bottleneck. In order to alleviate this issue, we choose the Top-N most similar neighbors
only by similarity matrix, by removing the rest neighbors of each item, such that we can sparsely
store the matrix in practice. We compare accuracy with different number of neighbors with
ε = 1, and summarize the results in Fig. 5. We stress two observations. Both DPSGD-PNBM
and DPPS-PNBM reach their best accuracy with a smaller neighbor size. The accuracy of both
DPSGD-PNBM and DPPS-PNBM is less sensitive than PCC and COS, when neighbor size is
changed. This helps mitigate over-fitting problem and enhance system robustness.

Fig. 5: Accuracy comparison with different neighbor sizes

DPSGD-PNBM and DPPS-PNBM achieve differential privacy at rating level (a single rating)
and user level (a whole user profile) respectively. Below, we try to compare them at rating level,
precisely at the average rating level for DPPS-PNBM. Fig. 6 shows that both solutions can
obtain quite accurate predictions with a privacy guarantee (ε ≈ 1). With the same privacy
guarantee, DPPS-PNBM seems to be more accurate. However, DPPS-PNBM has its potential
drawback. Recall from Section 4, the difference δ between the distribution where samples from
and the true posterior distribution compromises differential privacy guarantee. In order to have
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an arbitrarily small δ, DPPS-PNBM requires a large number of iterations [28, 32]. At this point,
it is less efficient than DPSGD-PNBM. In our comparison, we assume δ → 0.

Fig. 6: Accuracy comparison between DPSGD-PNBM and DPPS-PNBM

5.3 Summary

In summary, DPSGD-MF and DPPS-MF are more accurate when privacy loss is large (e.g.
in a non-private case). DPSGD-PNBM and DPPS-PNBM are better when we want to reduce
the privacy loss to a meaningful range. Both our models consistently outperform non-private
traditional NBMs, with a meaningful differential privacy guarantee. Note that similarity is
independent of NBM itself, thus other neighborhood-based recommenders can use our models
to differential-privately learn Similarity, and deploy it to their existing systems without requiring
extra effort.

6 Related Work

A number of works have demonstrated that an attacker can infer the user sensitive informa-
tion, such as gender and politic view, from public recommendation results without using much
background knowledge [5, 11, 21, 35].

Randomized data perturbation is one of earliest approaches to prevent user data from infer-
ence attack in which people either add random noise to their profiles or substitute some randomly
chosen ratings with real ones (e.g.[23–25]). While this approach is very simple, it does not offer
rigorous privacy guarantee. Differential privacy [10] aims to precisely protect user privacy in sta-
tistical databases, and the concept has become very popular recently. [17] is the first work to ap-
ply differential privacy to recommender systems, and it has considered both neighborhood-based
methods (using correlation as similarity) and latent factor model (e.g. SVD). [37] introduced
a differentially private neighbor selection scheme by injecting Laplace noise to the similarity
matrix. [12] presented a scheme to obfuscate user profiles that preserves differential privacy. [4,
16] applied differential privacy to matrix factorization, and we have compared our solutions to
theirs in Section 5.

Secure multiparty computation (SMC) recommender systems allow users to compute rec-
ommendation results without revealing their inputs to other parties. Many protocols have been
proposed in the literature, e.g. [6, 30, 22]. Unfortunately, these protocols do not prevent infor-
mation leakage from the recommendation results.
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7 Conclusion

In this paper, we have proposed two different differentially private NBMs, under a probabilistic
framework. We firstly introduced a way to differential-privately find the maximum a posteriori
similarity by calibrating noise to the SGD training process. Then we built differentially private
NBM by exploiting the fact that sampling from scaled posterior distribution can result in differ-
entially private systems. While the experiment results have demonstrated that our models allow
promising accuracy with a modest privacy budget in some well-known datasets, we consider it
as an interesting future work to test the performances in other real world datasets.
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