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Case of study: real-time simulation for Kyphoplasty

In personalized healtcare application, a current challenge is to provide fast
and reliable simulation to support decisions in surgery planning.
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Image Segmentation

Figure: CT-Scan image provided by Dr. Hertel (CHL);Slicer segmentation of a
layer
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Computation model

Figure: 3D surface reconstruction; geometrical processing: smoothing
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Model: compressible linear eleasticity

The vertebra are considered to undergo small-deformations. The linear
compressible elasticity problem reads: find the displacement u such that

−div(σ(u, µ, λ)) = f (β, ρ, ci ) in Ω

u = 0 on ∂ΓD

σ(u, µ, λ) · n = g on ∂ΓN

Here the stress tensor σ is related to the displacement by Hooke’s law:

σ(u, µ, λ) = 2µε(u) + λtr(ε(u))I in Ω

And the source is defined as : f (β, ρ, ci ) = (0.0, −ρ · 9.8 · e−
∑3

i=1 ci ·(xi−βi )2)
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Finite element simulation: FEniCS

On simulation performance perspective: We are using FEniCS:
Flexible code style with respect different code languages
DSEL based-high level programming (easy to simulate complex
physical-mathematical model)
High scalability performance in assembly and solver based on parallel
distributed linear algebra
Universal installation on different operating system using light
containers (Docker)
Modifying the constitutive material law is done using one line of code
and differentiation is automatic
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Reliable and fast method: model reduction method

Given a solution setMh = {uh(µ) : µ ∈ P} of high-fidelity problem, the
RB method finds a few functions {ξi}Ni=1 such that:

uh(µ) =
N∑
i=1

uN(µ)iξi

where the coefficients uN(µ) could be obtained via Galerkin reduced basis
approximation:

[ξ1| . . . |ξN ]TAh(µ)[ξ1| . . . |ξN ]uN = [ξ1| . . . |ξN ]T fh(µ)

with Ah and fh are the discrete counterpart of the differential operator.

Figure: From “Reduced Basis Method for PDEs”(A.Quarteroni et al.)
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Reduced Basis technique: Greedy algorithm using SLEPc

Given tol and set of parameters {µ1, . . . , µn}.
Initialize the Reduced Basis space:
reducedbasis = SLEPc.BV().create(Comm)
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Reduced Basis technique: Greedy algorithm using SLEPc

Given tol and set of parameters {µ1, . . . , µn}.
1 Compute high-fidelity solution uh(µ1) for µ1
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Reduced Basis technique: Greedy algorithm using SLEPc

Given tol and set of parameters {µ1, . . . , µn}.
1 Compute high-fidelity solution uh(µ1) for µ1

2 Set Vrb = span {uh(µ1)}.
reducedbasis.insertVec(index, function)

3

4

5

Reduced Order Method with PETSc/SLEPc backend March 27, 2017 9 / 27



Reduced Basis technique: Greedy algorithm using SLEPc

Given tol and set of parameters {µ1, . . . , µn}.
1 Compute high-fidelity solution uh(µ1) for µ1

2 Set Vrb = span {uh(µ1)}.
3 For each µ ∈ P

Compute uRB =
∑N

i=1 u
i
Nξi (µ) where ξi are the basis of Vrb.

Evaluate the error estimator η(µ) = (resRB ,M
−1resRB)

αLB
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Reduced Basis technique: Greedy algorithm using SLEPc
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4 Choose µ̃ = arg maxµ∈Pη(µ)
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Reduced Basis technique: Greedy algorithm using SLEPc

Given tol and set of parameters {µ1, . . . , µn}.
1 Compute high-fidelity solution uh(µ1) for µ1

2 Set Vrb = span {uh(µ1)}.
3 For each µ ∈ P

Compute uRB =
∑N

i=1 u
i
Nξi (µ) where ξi are the basis of Vrb.

Evaluate the error estimator η(µ) = (resRB ,M
−1resRB)

αLB

4 Choose µ̃ = arg maxµ∈Pη(µ)

5 If η(µ̃) > tol and VRB = VRB ∪ {u(µ̃)}
reducedbasis.orthogonalizeVec(function)
reducedbasis.scaleColumn(norm)
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Online Galerkin Project with SLEPc

[ξ1| . . . |ξN ]TAh(µ)[ξ1| . . . |ξN ]uN = [ξ1| . . . |ξN ]T fh(µ)

with Ah and fh are the discrete counterpart of the differential operator.
reducedbasis.matProject(A, reducedbasis)
reducedbasis.dotVec(f)
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Reduced Integration

One of the major computational efforts in application of standard model
reduction to linear (non-linear) PDEs is the assemble the finite element
space operators and project onto the ROM basis.
We employ the novel technique "reduced integration“ which consists in:
Given a subspace of reduced basis VRB = {ξ1, . . . , ξN}, quadrature rule
order m and a coarse mesh ΩH := TH(Ω): For each basis ξi and a
tolerance tol .

1 Compute the estimator

η(ξi ,ΩH) =

∫
ΩH ,m

|ξi | −
∫

ΩH ,m+1
|ξi | (1)

2 If η(ξi ,ΩH) > tol then ΩH = REFINE(ΩH) and go to 1..
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Reduced Integration test
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Locally reduced integration

Due to local behaviour of modes/basis which is sensitive to the zone of
application of the external force/moments, we combine the
domain-decomposition paradigm "divide-et-impera” with reduced
integration technique.
The algorithm consist in

Decompose the physical domain in part (regular - ad hoc)
Restrict each reduced basis on each subdomain, constructing the
space VRB,i for i = 1, . . . ,NbSubDomains
Perform in each subdomain the reduced-integration
Re-orthonormalization of each local space.
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Non-conforming impera algorithm

Some domain decomposition technique: FETI-DP, BDDC, Mortar,
Discontinuous Galerkin, InterNODES, Nitsche, . . .
ROM + domain decomposition: Reduced Basis Element [RBE], DG-RBE,
static condensation reduced basis element, Latin Multiscale
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Why we choose Nitsche technique?

Pros.

do not require any additional unknown
has the same accurancy property of the underling discretization
avoid of mesh burden near interface
could treat also overlapping subdomains

Cons.
The stability of Nitsche method depends on the choose of a penalty scalar
value. However, it is possible to estimate this constant using trace
inequality ( S. Claus et al.).
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The Nitsche-type weak formulation associated to this problem is: Find a
uh ∈ V k

h such that

ah(uh, vh)− bh(uh, vh)− bh(vh, uh) + jh(uh, vh) = Lh(vh) ∀ vh ∈ V k
h
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The bilinear form ah and bh are defined as

a(uh, vh) =
2∑

i=1

∫
Ωi

σ(uih,mui , λi ) : ε(v ih)dX

b(uh, vh) =

∫
Γ
{(σ(uh,mu, λ))}κ, J(v · n)KdΓ

and the penalty-ghost form is

j(uh, vh) =

∫
Γ

α

{h}
JuhKJvhKdΓ
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Create decomposed mesh:
multimesh=dolfin.MultiMesh()
multimesh.add(mesh)
multimesh.build()
The MultiMeshForm for the first subdomain:
a = inner(sigma(u,mu0,lmbda0), grad(v))∗dX
b_u= − inner(w_avg(sigma(u,mu0,lmbda0),kappa0,kappa1),

tensor_jump(v,n))∗dI
b_v=− inner(w_avg(sigma(v,mu0,lmbda0),kappa0,kappa1),

tensor_jump(u,n))∗dI
j= alpha/avg(h)∗inner(jump(u), jump(v))∗dI
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The bilinear form ah and bh are defined as

a(uh, vh) =
2∑

i=1

∫
Ωi

σ(uih,mui , λi ) : ε(v ih)dX

b(uh, vh) =

∫
Γ
{(σ(uh,mu, λ))}κ, J(v · n)KdΓ

and the penalty-ghost form is

j(uh, vh) =

∫
Γ

α

{h}
JuhKJvhKdΓ

where the penalty parameter is

α =
CI (d , p) · (E1 · E2)

E1 + E2

with d is physical dimension and p the order of the polynomial Lagrange
discretization space.
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The bilinear form ah and bh are defined as

a(uh, vh) =
2∑

i=1

∫
Ωi

σ(uih,mui , λi ) : ε(v ih)dX

b(uh, vh) =

∫
Γ
{(σ(uh,mu, λ))}κ, J(v · n)KdΓ

and the penalty-ghost form is

j(uh, vh) =

∫
Γ

α

{h}
JuhKJvhKdΓ

{µu}κ = (κ1µ1u
1 + κ2µ2u

2)|Γ

where the weights are

κ1 =
E1

E1 + E2
, κ2 =

E2

E1 + E2
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Numerical test with single material
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Numerical test with two materials
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Numerical Validation Test:2D

Number of dof of high-fidelity discretization:7442
Number of dof of reduced integration discretization: 2796
Speed-up: x40 time with iRB+Nitsche
Speed-up: x10 time with reduced integration in assemble. Error in first
subdomain L2-norm:=3.92e-07, H1-norm=2.03e-06
Error in first subdomain L2-norm:=2.23e-08, H1-norm=5.47e-08
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Numerical Validation Test:3D

Number of dof of high-fidelity discretization:9600
Number of dof of reduced integration discretization: 6953
Speed-up: x1000 time with iRB+Nitsche
Speed-up: x8 time with reduced integration in assemble.
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Patient-specific application: Vertebra augemented by
kyphoplasty
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Reference vs Deformed Domain for each cemented domain
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Deformation of the surface of Vertebra
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Conclusion

Preliminary numerical comparison evidences:
flexible approach in online gluing with Nitsche formulation;
assemble speed-up by local reduced integration;
iRB-Nitsche provides a fast and reliable simulation in patient-specific
scenario;

Working in progress:
integration of iRB-Nitsche in multi-query UQ algorithm.
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Future perspective: Contact Bio-mechanics problem

Figure: Computational mesh of pelvic organ surface provided by Prof. M.Brieu
(Lille)
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Thank you for your attention
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