
Understanding Android App Piggybacking
Li Li∗, Daoyuan Li∗, Tegawendé F. Bissyandé∗, Jacques Klein∗, Yves Le Traon∗, David Lo†, Lorenzo Cavallaro‡

∗ Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg
† School of Information Systems, Singapore Management University
‡ Information Security Group, Royal Holloway, University of London

firstName.lastName@uni.lu; davidlo@smu.edu.sg; Lorenzo.Cavallaro@rhul.ac.uk

Abstract—The Android packaging model offers adequate op-
portunities for attackers to inject malicious code into popular
benign apps, attempting to develop new malicious apps that
can then be easily spread to a large user base. Despite the fact
that the literature has already presented a number of tools to
detect piggybacked apps, there is still lacking a comprehensive
investigation on the piggybacking processes. To fill this gap, in
this work, we collect a large set of benign/piggybacked app pairs
that can be taken as benchmark apps for further investigation.
We manually look into these benchmark pairs for understanding
the characteristics of piggybacking apps and eventually we report
20 interesting findings. We expect these findings to initiate new
research directions such as practical and scalable piggybacked
app detection, explainable malware detection, and malicious code
location.

I. INTRODUCTION

Thanks to a set of existing tools, Android apps can easily
be modified by third parties [1], [2]. Malware writers can thus
build on top of popular benign apps to rapidly spread new
malware. Indeed, it would be more effective to simply mutate
a popular benign app (e.g., by injecting some malicious code)
for distributing malicious functionalities. The resulting mutant,
which thus piggybacks a malicious payload, is referred to as
a piggybacked app.

Fig. 1 illustrates constituting parts of a piggybacked app.
The piggybacking process involves in selecting a given orig-
inal app, referred to in the literature [3] as the carrier, and
grafting to it a malicious code, known as the rider. The
connection between carrier to rider is known as hook, which
defines the point where the execution of malicious code can
be triggered.

Set of Android Apps

Carrier Rider

piggybacked APP (a2)

Hook

original
APP (a1)

Set of Piggybacked Apps

Set of Malware

Fig. 1. Piggybacking Terminology [4].

State-of-the-art works have mainly focused on detecting pig-
gybacked apps (or cloned apps in general) through similarity
comparison [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],

[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28], [29], [30], [31]. However, pairwise comparison
based approaches are not scalable for analyzing millions of
Android apps that are now available in various markets. Be-
sides, the comparison-based approaches also require that both
benign and piggybacked apps are available in the evaluated
app set. Instead of a brute-force comparison, a more practical
solution is to leverage semantic features collected through a
thorough understanding on piggybacking scenarios to tame the
problem of piggybacked apps. Indeed, understanding Android
app piggybacking could help in pushing further a number
of research directions: 1) Practical detection of piggybacked
apps (e.g., through machine learning based predictors); 2)
Explainable detection of piggybacked apps (e.g., through fine-
grained semantic features); and 3) Automatic localization of
piggybacked malicious payloads (e.g., through graph-based
analysis [32], [33]). Interested readers are encouraged to obtain
more information from the journal publication (cf. [4]) of this
extended abstract.

II. APPROACH

Our objective is to conduct a thorough dissection on pig-
gybacked Android apps and thereby to have a deep under-
standing on how Android apps are piggybacked. The observed
knowledge can then be used to invent advanced techniques
for taming the Android app piggybacking problem. Although
several approaches have been proposed to tackle this prob-
lem [34], [5], their associated datasets are not always released
to public [35], [6], [31], [36]. In other words, the research
on piggybacked apps is challenged by the scarcity of datasets
and benchmarks. To this end, in this work, we first present an
automate approach to systematically collect a set of trustable
benchmarks (i.e., piggybacked apps) before conducting in-
depth dissection on piggybacked apps.

A. Benchmark Collection

Our collection is based on AndroZoo [37], a large repository
of millions of apps crawled over several markets including
the official one named Google Play. As shown in Fig. 2, the
benchmark collection is mainly done in three steps. We now
briefly describe them respectively.

• VirusTotal Classification. First, we collect the malicious
status of Android apps through the associated anti-virus
scanning reports of VirusTotal. Based on the identified



identical packages

543,002 pairs (e.g., m1 -> b1) 71,206 pairs
different authors

malicious (m1, m2, ...)

benign (b1, b2, ...)

1,497 pairs

same SDK/version

Ground Truth (App pairs)

VirusTotal

Similarity Results

similarity analysis

Similarity Results

graph/manifest analysis

Ground Truth (Hook/Raiders)

Similarity Results

similarity analysis

Ground Truth (Similarities)

Set of 
Android 

Apps

VirusTotal 
Classification

Same App 
(Package Name)

Different Authors 
(Developer Certificate)

Similarity 
Checking

Ground 
Truth

Set of 
malicious 

Apps

Set of 
benign 
Apps

Same 
Version

F
I
L
T
E
R
I
N
G

Anteriority of 
benign App

Set of Android Apps

Benign/Malicious 
Apps

2) Irrational Filtration

Ground Truth

1) VirusTotal Classification
3) Similarity 
Inspection

(2.1)
Same App

(package name)

(2.2)
Different Authors

(certificate)

(2.3)
Same Versions

(e.g., SDK)

Fig. 2. The Benchmark Building Process [4].

malicious status, we divide the set of apps into two
subsets: benign set and malicious set.

• Irrelevance Filtering. Second, in order to only concen-
trate on piggybacked app pairs, we filter out irrelevant
results through a set of meta-data (including the unique
app package name, app certificate and the app version)
extracted from Android apps. We remind the readers that
this step may miss a number of piggybacking pairs, but
those that we have found will unlikely be false positives.

• Similarity Inspection. Finally, we conduct pairwise simi-
larity comparison on the candidate pairs (remaining in the
second step) to validate the correctness of piggybacked
pairs. Given a pair of candidate apps (a1, a2), we expect
that the majority code of a1 should be part of a2 while a2
should also include new code to constitute its malicious
payload.

The aforementioned three steps allow for a conservative
identification of piggybacking pairs. We would like to empha-
size that our focus was not to precisely detect all piggybacking
pairs. Instead, we aimed for collecting a sufficient number of
accurate pairs in order to be able to dissect and understand
piggybacking processes. Therefore, as indicated before, our
approach may have missed a number of piggybacking pairs,
but those that we have found are unlikely to be false positives.

B. Piggybacking Dissection

Based on the identified piggybacking pairs, we manually
look into the difference between the original and piggybacked
apps with an attempt to understand how piggybacking is done.
In addition to the manual investigation, we also leverage
some automated tools (e.g., Soot-based static analyzer) and
scripts (e.g., Shell and Python) to facilitate our analysis. As
an example, our similarity analysis approach (the similarity
inspection step) is implemented in Java on top of Soot,
a framework for analyzing and transforming Java/Android
apps [38]. The comparison is eventually conducted at Soot’s
Jimple level, where Jimple is a simplified representation of
Android Dalvik bytecode. The representation is conducted by
Dexpler [2], which now has been integrated as a plugin into
Soot.

III. FINDINGS

Our dissection explores several aspects of Android app
piggybacking in order to answer the following three research

dimensions: 1) Which app elements are manipulated by piggy-
backers? 2) How app functionality and behavior are impacted?
and 3) Where malicious code is hooked into benign apps?

With these three research dimensions in mind, our dissection
has eventually identified 20 interesting findings. Because of
space limitation, we only highlight take-home messages of
those findings. We recommend readers to read the detailed
explanation of those findings in our journal publication [4].
The abstracted findings are as follows:

1) The realization of malicious behavior is often accompa-
nied by a manipulation (i.e., adding/removing/replacing)
of app resource files.

2) Piggybacking modifies app behavior mostly by tamper-
ing with existing original app code.

3) Piggybacked apps are potentially built in batches.
4) Piggybacking often requires new permissions to allow

the realization of malicious behavior.
5) Some permissions appear to be more requested by

piggybacked apps than non-piggybacked apps.
6) Piggybacking is probably largely automated.
7) Piggybacked apps overly request permissions, while

leveraging permissions requested by their original apps.
8) Most piggybacked apps now include new user interfaces,

implement new receivers and services, but do not add
new database structures.

9) Piggybacking often consists in inserting a component
that offers the same capabilities as an existing compo-
nent in the original app.

10) Piggybacked apps can simply trick users by changing
the launcher component in the app, in order to trigger
the execution of rider code.

11) Piggybacking is often characterized by a naming mis-
match between existing and inserted components.

12) Malicious piggybacked payload is generally connected
to the benign carrier code via a single method call
statement, making it possible to automatically locate
grafted malicious payloads from piggybacked malicious
apps [32], [33].

13) Piggybacking hooks are generally placed within library
code rather than in core app code.

14) Injected payload is often reused across several piggy-
backed apps.

15) Piggybacking adds code which performs sensitive ac-
tions, often without referring to device users.

16) Piggybacking operations spread well-known malicious
behavior types.

17) Piggybacked apps increasingly hide malicious actions
via the use of reflection and dynamic class loading.

18) Piggybacking code densifies the overall app’s call graph,
while rider code can even largely exceed in size the
carrier code.

19) Piggybacked app writers are seldom authors of benign
apps.

20) Piggybacking code brings more execution paths where
sensitive data can be leaked.



REFERENCES

[1] R Winsniewski. Apktool: a tool for reverse engineering android apk files.
URL: https://ibotpeaches.github.io/Apktool/(vi sited on 07/27/2016),
2012.

[2] Alexandre Bartel, Jacques Klein, Martin Monperrus, and Yves Le Traon.
Dexpler: Converting android dalvik bytecode to jimple for static analysis
with soot. In SOAP, 2012.

[3] Wu Zhou, Yajin Zhou, Michael Grace, Xuxian Jiang, and Shihong
Zou. Fast, scalable detection of piggybacked mobile applications. In
CODASPY, 2013.

[4] Li Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Yves
Le Traon, David Lo, and Lorenzo Cavallaro. Understanding android
app piggybacking: A systematic study of malicious code grafting. IEEE
Transactions on Information Forensics & Security, 2017.

[5] Li Li, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon.
An investigation into the use of common libraries in android apps. In
SANER, 2016.

[6] Quanlong Guan, Heqing Huang, Weiqi Luo, and Sencun Zhu.
Semantics-based repackaging detection for mobile apps. In ESSoS, 2016.

[7] Li Li, Tegawendé F Bissyandé, and Jacques Klein. Simidroid: Identi-
fying and explaining similarities in android apps. In Technical Report,
2017.

[8] Xueping Wu, Dafang Zhang, Xin Su, and WenWei Li. Detect repackaged
android application based on http traffic similarity. SCN, 2015.

[9] Mingshen Sun, Mengmeng Li, and John C.S. Lui. Droideagle: seamless
detection of visually similar android apps. In WiSec, 2015.

[10] Charlie Soh, Hee Beng Kuan Tan, Yauhen Leanidavich Arnatovich, and
Lipo Wang. Detecting clones in android applications through analyzing
user interfaces. In ICPC, 2015.

[11] Jian Chen, Manar H. Alalfi, Thomas R. Dean, and Ying Zou. Detecting
android malware using clone detection. JCST, 2015.

[12] Kai Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang, Nan Zhang,
Heqing Huang, Zou Wei, and Peng Liu. Finding unknown malice in
10 seconds: Mass vetting for new threats at the google-play scale. In
USENIX Security, 2015.

[13] Hugo Gonzalez, Natalia Stakhanova, and Ali A Ghorbani. Droidkin:
Lightweight detection of android apps similarity. In International
Conference on Security and Privacy in Communication Systems, pages
436–453. Springer, 2014.

[14] Israel J. Ruiz, Bram Adams, Meiyappan Nagappan, Steffen Dienst,
Thorsten Berger, and Ahmed E. Hassan. A large scale empirical study
on software reuse in mobile apps. IEEE Software, 2014.

[15] Mario Linares-Vasquez, Andrew Holtzhauer, Carlos Bernal-Cardenas,
and Denys Poshyvanyk. Revisiting android reuse studies in the context
of code obfuscation and library usages. In MSR, 2014.

[16] Kai Chen, Peng Liu, and Yingjun Zhang. Achieving accuracy and
scalability simultaneously in detecting application clones on android
markets. In ICSE, 2014.

[17] Nicolas Viennot, Edward Garcia, and Jason Nieh. A measurement study
of google play. In SIGMETRICS, 2014.

[18] Yury Zhauniarovich, Olga Gadyatskaya, Bruno Crispo, Francesco
La Spina, and Ermanno Moser. Fsquadra: fast detection of repackaged
applications. In IFIP Annual Conference on Data and Applications
Security and Privacy, pages 130–145. Springer, 2014.

[19] Fangfang Zhang, Heqing Huang, Sencun Zhu, Dinghao Wu, and
Peng Liu. Viewdroid: Towards obfuscation-resilient mobile application
repackaging detection. In WiSec, 2014.

[20] Xin Sun, Yibing Zhongyang, Zhi Xin, Bing Mao, and Li Xie. Detecting
code reuse in android applications using component-based control flow
graph. In IFIP SEC, 2014.

[21] Martina Lindorfer, Stamatis Volanis, Alessandro Sisto, Matthias
Neugschwandtner, Elias Athanasopoulos, Federico Maggi, Christian
Platzer, Stefano Zanero, and Sotiris Ioannidis. Andradar: Fast discovery
of android applications in alternative markets. In DIMVA, 2014.

[22] Su Mon Kywe, Yingjiu Li, Robert H. Deng, and Jason Hong. Detecting
camouflaged applications on mobile application markets. In ICISC,
2014.

[23] Min Zheng, Mingshen Sun, and John C.S. Lui. Droidanalytics: A
signature based analytic system to collect, extract, analyze and associate
android malware. In TrustCom, 2013.

[24] Clint Gibler, Ryan Stevens, Jonathan Crussell, Hao Chen, Hui Zang, and
Heesook Choi. Adrob: Examining the landscape and impact of android
application plagiarism. In MobiSys, 2013.

[25] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. Detecting
repackaged smartphone applications in third-party android marketplaces.
In CODASPY, 2012.

[26] Steve Hanna, Ling Huang, Edward Wu, Saung Li, Charles Chen, and
Dawn Song. Juxtapp: a scalable system for detecting code reuse among
android applications. In DIMVA, 2012.

[27] Jonathan Crussell, Clint Gibler, and Hao Chen. Attack of the clones:
detecting cloned applications on android markets. In ESORICS, 2012.

[28] Anthony Desnos. Android: Static analysis using similarity distance. In
System Science (HICSS), 2012 45th Hawaii International Conference
on, pages 5394–5403. IEEE, 2012.

[29] Rahul Potharaju, Andrew Newell, Cristina Nita-Rotaru, and Xiangyu
Zhang. Plagiarizing smartphone applications: Attack strategies and
defense techniques. In ESSoS, 2012.

[30] Israel J. Ruiz, Meiyappan Nagappan, Bram Adams, and Hassan Ahmed
E. Understanding reuse in the android market. In ICPC, 2012.

[31] Haoyu Wang, Yao Guo, Ziang Ma, and Xiangqun Chen. Wukong: A
scalable and accurate two-phase approach to android app clone detection.
In ISSTA, 2015.

[32] Li Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Haipeng
Cai, David Lo, and Yves Le Traon. Automatically locating malicious
packages in piggybacked android apps. In Technical Report, 2017.

[33] Li Li, Daoyuan Li, Tegawendé F Bissyandé, David Lo, Jacques Klein,
and Yves Le Traon. Ungrafting malicious code from piggybacked
android apps. Technical Report, 2016.

[34] Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer,
Alexandre Bartel, Damien Octeau, Jacques Klein, and Yves Le Traon.
Static analysis of android apps: A systematic literature review. Technical
report, SnT, 2016.

[35] Ke Tian, Danfeng (Daphne) Yao, Barbara G. Ryder, and Gang Tan. Anal-
ysis of code heterogeneity for high-precision classification of repackaged
malware. In MoST@S&P (W), 2016.

[36] Yuru Shao, Xiapu Luo, Chenxiong Qian, Pengfei Zhu, and Lei Zhang.
Towards a scalable resource-driven approach for detecting repackaged
android applications. In ACSAC, 2014.

[37] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon.
Androzoo: Collecting millions of android apps for the research commu-
nity. In MSR, 2016.

[38] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. The
soot framework for java program analysis: a retrospective. In CETUS,
2011.


