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Private Functional Encryption –
Hiding What Cannot Be Learned Through

Function Evaluation

Dissertation defense committee

Dr. Peter Y.A. Ryan, dissertation supervisor

Professor, Université du Luxembourg
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Abstract

Functional encryption (FE) is a generalization of many commonly employed crypto-

graphic primitives, such as keyword search encryption (KS), identity-based encryption

(IBE), inner-product encryption (IPE) and attribute-based encryption (ABE). In an FE

scheme, the holder of a master secret key can issue tokens associated with functions of

its choice. Possessing a token for f allows one to recover f(m), given an encryption of

m. As it is important that ciphertexts preserve data privacy, in various scenarios it is

also important that tokens do not expose their associated function. A notable example

being the usage of FE to search over encrypted data without revealing the search query.

Function privacy is an emerging new notion that aims to address this problem. The

difficulty of formalizing it lies in the verification functionality, as the holder of a token

for function f may encrypt arbitrary messages using the public key, and obtain a large

number of evaluations of f .

Prior privacy models in the literature were fine-tuned for specific functionalities, did

not model correlations between ciphertexts and decryption tokens, or fell under strong

uninstantiability results. Our first contribution is a new indistinguishability-based privacy

notion that overcomes these limitations and is flexible enough to capture all previously

proposed indistinguishability-based definitions as particular cases.

The second contribution of this thesis is five constructions of private functional encryp-

tion supporting different classes of functions and meeting varying degrees of security: (1)

a white-box construction of an Anonymous IBE scheme based on composite-order groups,

shown to be secure in the absence of correlated messages; (2) a simple and functionality-

agnostic black-box construction from obfuscation, also shown to be secure in the absence

of correlated messages; (3) a more evolved and still functionality-agnostic construction

that achieves a form of function privacy that tolerates limited correlations between mes-
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sages and functions; (4) a KS scheme achieving privacy in the presence of correlated

messages beyond all previously proposed indistinguishability-based security definitions;

(5) a KS construction that achieves our strongest notion of privacy (but relies on a more

expressive form of obfuscation than the previous construction).

The standard approach in FE is to model complex functions as circuits, which yields

inefficient evaluations over large inputs. As our third contribution, we propose a new

primitive that we call “updatable functional encryption” (UFE), where instead of cir-

cuits we deal with RAM programs, which are closer to how programs are expressed in

von Neumann architecture. We impose strict efficiency constrains and we envision tokens

that are capable of updating the ciphertext, over which other tokens can be subsequently

executed. We define a security notion for our primitive and propose a candidate construc-

tion from obfuscation, which serves as a starting point towards the realization of other

schemes and contributes to the study on how to compute RAM programs over public-key

encrypted data.
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Chapter 1

Introduction

As cloud services become increasingly popular, security concerns arise from exposing the

user’s data to third-party service providers. Encryption can be used to protect the user’s

data, but traditional public-key encryption is intrinsically designed to provide all-or-

nothing security guarantees, meaning that either one possesses the decryption key and

can decrypt the entire plaintext or nothing can be learned about the plaintext (besides,

perhaps, its length). In this sense, usability is sacrificed if the owner of the data is

unable to specify a decryption policy or delegate search operations to the storage service

provider.

Over time, several cryptographic primitives emerged, with different use-case scenarios

in mind, where one can learn a function of the plaintext. The first of such primitives was

identity-based encryption (IBE), proposed by Shamir [Sha84] in 1984, but instantiations

only appeared later in 2001 with the seminal papers of Boneh and Franklin [BF01] and

Cocks [Coc01]. In an IBE scheme, an authority holding the master secret key can extract

decryption keys associated with identities, which are bit-strings that uniquely identify an

entity or a person, such as a passport number or an e-mail address. A ciphertext encrypted

under the master public-key and (let’s say) Alice’s identity (e.g. “alice.liddell@uni.lu”)

can only be decrypted with Alice’s decryption key, which only the holder of the master

secret key can issue.

Other primitives provide search delegation functionalities. The simplest of wich is

public-key encryption with keyword search (KS), introduced in [BDOP04]. It allows

exact-matching searches to be carried out over ciphertexts. A typical scenario where this

1



primitive can bring great benefits to users (and consequently to service providers wishing

to increase their customer base as well) is that of any email system. Suppose user Alice

stores her emails in the servers of some email service provider, so that she can access

them from either her laptop or her smartphone. Alice does not trust the service provider

or fears that government agencies may require the service provider to hand over all her

data. Using standard public key encryption, any user with Alice’s public key can send

her encrypted emails that only she can decrypt. For Alice to find a particular email later

on, the sender could also attach to the email some searchable ciphertexts, produced from

a KS scheme, with keywords that Alice might use when searching for this email. These

ciphertexts are searchable upon delegation, meaning that only Alice can authorize the

email service provider to search on her behalf by issuing a token that encodes Alice’s

search criteria (e.g. ciphertexts that encrypt the keyword “project RAPID20130115”),

generated from her own secret key. The service provider searches through all Alice’s emails

for those containing searchable ciphertexts that match the issued token, and returns to

her only those with a positive match.

For more expressive search queries, the works of Boneh and Waters [BW07] and

Katz, Sahai and Waters [KSW13] show how to compute conjunctive queries (P1∧ ...∧Pl),
disjunctive queries (P1∨...∨Pl), subset queries (x ∈ S) and range queries (x ∈ [a, b]) from

inner-product encryption (IPE) [AAB+15], where evaluating a token for vector a on a

ciphertext that encrypts vector b gives 1 if and only if 〈a,b〉 = 0. Some variants of IPE are

defined such that the evaluation returns a payload message m [KSW13, LOS+10, AFV11],

or the actual result of computing the inner product 〈a,b〉 [ABDP15, ABDP16]. The most

recent developments IPE give rise to efficient schemes from standard assumptions.

More generally, the concept of functional encryption (FE) was independently formal-

ized by Boneh, Sahai and Waters [BSW11] and O’Neil [O’N10]. In an FE scheme, the

holder of the master secret key can issue tokens associated with functions of its choice.

Possessing a token for function f allows one to recover f(m), given an encryption of m.

Informally, security dictates that only f(m) is revealed about m and nothing else. One

can easily see that IBE, KS and IPE fall in as particular cases of functional encryption

with restricted functionality support. The most common approach is to model functions

as circuits, and in an important fundamental result, Garg et al. [GGH+13] put forth
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the first construction of an FE scheme supporting all polynomial-size circuits based on

indistinguishability obfuscation (iO) for circuits, which is now known as a central hub for

the realization of many cryptographic primitives [SW14].

Standard notions of security for functional encryption [BSW11, O’N10] do not cover

important use cases where, not only encrypted data, but also the functions associated with

decryption tokens contain sensitive information. They guarantee that nothing about the

plaintexts beyond query results are revealed to the server. However, they do not guarantee

that the performed query, which may also contain sensitive information, remains hidden,

which is of particular relevance in the context of searchable encryption. Function privacy

is an emerging new notion that aims to address this problem. The difficulty of formalizing

it lies in the evaluation functionality of FE, as the holder of a token for f may encrypt

arbitrary messages using the public key, and obtain a large number of evaluations of f

via the decryption algorithm. This means that function privacy can only be achieved

as long as the token holder is unable to learn f through such an attack. How to define

function privacy and how construct FE schemes that offer such security guarantees are

the main questions addressed in this thesis.

1.1 Related work

The formal study of function privacy begins in the work of Boneh, Raghunathan and

Segev [BRS13a], where the authors focused on identity-based encryption (IBE) and pre-

sented the first constructions offering various degrees of privacy. From the onset, it

became clear that formalizing such a notion is challenging, even for simple functionalities

such as IBE, as a large number of evaluation can always be computed for each token via

the decryption algorithm. Boneh et al. therefore considered privacy for identities with

high min-entropy. In general, however, the previous observation implies that function

privacy can only be achieved as long as the token holder is unable to learn the function

associated with the token through function evaluation, immediately suggesting a strong

connection between private functional encryption and obfuscation.

Boneh, Raghunathan and Segev [BRS13a, BRS13b] give indistinguishability-based

definitions of function privacy for IBE and subspace membership (a generalization of
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inner-product encryption). Roughly speaking, the IBE model imposes that whenever the

token queries of the adversary have high min-entropy (or form a block source), decryption

tokens will be indistinguishable from those corresponding to identities sampled from

the uniform distribution. For subspace membership, the definition requires the random

variables associated with vector components to be a block source.

Tokens for high-entropy identities, however, rarely exist in isolation and are often

available in conjunction with ciphertexts encrypted for the very same identities. To ad-

dress this requirement, the same authors [BRS13a] proposed an enhanced model for IBE

in which the adversary also gets access to ciphertexts encrypted for identities associated

with the challenge tokens. We show this model to be infeasible under the formalism

of Boneh et al., as correlations with encrypted identities can lead to distinguishing at-

tacks, e.g. via repetition patterns. (We will discuss this later in the thesis.) Although

the model can be salvaged by further restricting the class of admissible distributions,

it becomes primitive-specific and formulating a definition for other functionalities is not

obvious (and indeed a similar extension was not formalized for subspace membership

in [BRS13b]). Additionally, this model also falls short of capturing arbitrary correla-

tions between encrypted messages and tokens, as it does not allow an adversary to see

ciphertexts for identities which, although correlated with those extracted in the challenge

tokens, do not match any of them.

Recently, Agrawal et al. [AAB+15] put forth a model for functional encryption that

aims to address this problem with a very general UC-style definition (called “wishful se-

curity”). The core of the definition is an ideal security notion for functional encryption,

which makes it explicit that both data privacy and function privacy should be simulta-

neously enforced. However, not only is this general simulation-based definition difficult

to work with, but also aiming for it would amount to constructing virtual black-box ob-

fuscation, for which strong impossibility results are known [BGI+01, GK05]. Indeed, the

positive results of [AAB+15] are obtained in idealized models of computation.
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1.2 Our contributions

The above discussion highlights the need for a general and convenient definition of pri-

vacy that incorporates arbitrary correlations between decryption tokens and encrypted

messages, and yet can be shown to be feasible without relying on idealized models of

computation. The first contribution of our work is an indistinguishability-based defi-

nition that precisely models arbitrary correlations for general circuits. Our definition

builds on a framework for unpredictable samplers and unifies within a single definition all

previous indistinguishability-based notions.

The second contribution of this thesis is five constructions of private functional en-

cryption schemes supporting different classes of functions and meeting varying degrees of

security: (1) a white-box construction of an Anonymous IBE scheme based on composite-

order groups, shown to be secure in the absence of correlated messages; (2) a simple and

functionality-agnostic black-box construction from obfuscation, also shown to be secure

in the absence of correlated messages; (3) a more evolved and still functionality-agnostic

construction that achieves a form of function privacy that tolerates limited correlations

between messages and functions; (4) a KS scheme achieving privacy in the presence of

correlated messages beyond all previously proposed indistinguishability-based security

definitions; (5) a KS construction that achieves our strongest notion of privacy (but relies

on a more expressive form of obfuscation than the previous construction). We also develop

an obfuscator for hyperplane membership that, when plugged into the third construction

above gives rise to a private inner-product encryption scheme, answering a question left

open by Boneh, Raghunathan and Segev [BRS13b] on how to define and realize enhanced

security (i.e., privacy in the presence of correlated messages) for schemes supporting this

functionality.

The standard approach in FE is to model complex functions as circuits, which yields

inefficient evaluations over large inputs. As our third contribution, we propose a new

primitive that we call “updatable functional encryption” (UFE), where instead of cir-

cuits we deal with RAM programs, which are closer to how programs are expressed in

von Neumann architecture. We impose strict efficiency constrains and we envision tokens

that are capable of updating the ciphertext, over which other tokens can be subsequently
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executed. We define a security notion for our primitive and propose a candidate construc-

tion from obfuscation, which serves as a starting point towards the realization of other

schemes and contributes to the study on how to compute RAM programs over public-key

encrypted data.

The unpredictability framework. At the core of our definitional work lies a pre-

cise definition characterizing which distributions over circuits and what correlated side

information can be tolerated by a private FE scheme. We build on ideas from obfusca-

tion [BST14, BC14, BBC+14], functional encryption [BSW11, O’N10] and prior work in

function privacy [BRS13a, BRS13b, ATR14, AAB+15] to define a game-based notion of

unpredictability for general functions. Our definition allows a sampler S to output a pair

of circuit vectors (C0,C1) and a pair of message vectors (m0,m1) with arbitrary correla-

tions between them, along with some side information z. Unpredictability then imposes

that no predictor P interacting with oracles computing evaluations on these circuits and

messages can find a point x such that C0(x) 6= C1(x). (We do not impose indistinguisha-

bility, which is stronger, results in a smaller class of unpredictable samplers, and hence

leads to weaker security.) The predictor P sees z and the outputs of the sampled circuits

on the sampled messages. It can run in bounded or unbounded time, but it can only

make polynomially many oracle queries to obtain additional information about the sam-

pled circuits and messages. To avoid attacks that arise in the presence of computationally

unpredictable auxiliary information [BM14, BST16] we adopt unbounded prediction later

in the security analysis of our private functional encryption schemes.

This formalism fixes the unpredictability notion throughout the thesis. We can then

capture specific types of samplers by imposing extra structural requirements on them. For

instance, we may require the sampler to output a bounded number of circuits and mes-

sages, or include specific data in the auxiliary information, or not include any auxiliary

information at all. Imposing that the sampler outputs single-circuit vectors, no messages,

and includes the circuits as auxiliary information leads to the notion of differing-inputs

obfuscation [ABG+13, BST14]. Further imposing that the sampler also includes in the

auxiliary information its random coins or allowing the predictor to run in unbounded time

leads to public-coin differing-inputs obfuscation [IPS15] and indistinguishability obfusca-

tion [GR14, BM14, GGH+13], respectively. A sampler outputting circuits and messages
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comes to hand to model the privacy for functional encryption. We emphasize that our

definition intentionally does not require the messages to be unpredictable. Further dis-

cussion on this choice can be found in Chapter 3.

The PRIV model. Building on unpredictability, we put forth a new indistinguishability-

based notion of function privacy. Our notion, which we call PRIV, bears close resemblance

to the standard IND-CPA model for functional encryption: it comes with a left-or-right

LR oracle, a token-extraction TGen oracle and the goal of the adversary is to guess

a bit. The power of the model lies in that we endow LR with the ability to generate

arbitrary messages and circuits via an unpredictable sampler. Trivial attacks are excluded

by the joint action of unpredictability and the usual FE legitimacy condition, imposing

equality of images on left and right. The enhanced model of Boneh, Raghunathan and

Segev [BRS13a] falls in as a special case where the sampler is structurally restricted to be a

block source. But our definition goes well beyond this and considers arbitrary and possibly

low-entropy correlations. Furthermore, since unpredictability is not imposed on messages,

PRIV implies IND-CPA security, and consequently it also guarantees anonymity for

primitives such as IBE and ABE [BSW11]. Correlated circuits may be “low entropy”

as long as they are identical on left and right, and since previous definitions adopted a

real-or-random definition, they had to exclude this possibility. By giving the sampler the

option to omit, manipulate and repeat the messages, our security notion implies previous

indistinguishability-based notions in the literature, including those in [BRS13a, BRS13b,

ATR14, AAB+15].

The implications of our new definition become clearer when we focus on (public-key

encryption with) keyword search (KS) [BDOP04]. Consider a scenario where a client

searches for a keyword but obtains no matching ciphertexts. The client then slightly

modifies the keyword and requests a new search, now resulting in one or more successful

matches. In this setting, the server sees ciphertexts encrypting unknown keywords that

are closely related to keywords which the server holds tokens for. Our model ensures that

if searched keywords are unpredictable from the perspective of the server, this uncertainty

is preserved by the KS scheme after the searches are carried out. This does not imply

that the server will be unable to distinguish a sequence of successful queries over the same

high-entropy keyword, from a sequence of successful queries over different high-entropy
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keywords (this is impossible to achieve [ATR14]). However, when keyword searches do not

match any of the correlated ciphertexts, then search patterns are guaranteed to remain

hidden, even in the presence of low-entropy correlated encrypted keywords. We note

that this captures a strong notion of unlinkability and untraceability between unmatched

queries.

Constructions. We start by looking at Boyen and Waters [BW06] anonymous identity-

based encryption scheme in the hope of showing that it already achieves some form of

function privacy, as the decryption keys are randomized. Towards this end, we first

present a simplified version of the original scheme and show that, in the random oracle

model, not only IND-CPA security is still guaranteed, we are also able to lift the selective-

id constraint in the proof. Next, we show that the scheme is PRIV secure up to two

decryption keys, in the absence of correlated messages. In fact, we also show that if the

sampler outputs vectors with just three identities, there is a trivial attack. To improve

security, we extend the scheme to groups of composite order and show that the extended

version is secure for an unbounded number of keys.

Taking a more general approach, we then formalize the intuition that obfuscating cir-

cuits before extraction should provide some level of privacy in FE. Using unpredictable

samplers, we first generalize distributionally-indistinguishable (DI) obfuscators [BC14]

from point functions to general circuits. Our obfuscate-then-extract OX transform shows

that PRIV security in the absence of correlated messages can be achieved using DI obfus-

cators. In the reverse direction, we also established that some weak form of DI obfusca-

tion (for samplers outputting single-circuit vectors) is also necessary. We also show that

composable VGB obfuscation implies full-fledged DI obfuscation. So, emerging positive

results on composable VGB obfuscation [BCKP14, BC14] already lead to PRIV-secure

functional encryption schemes (supporting the same class of circuits as the obfuscator)

in the absence of correlated messages.

To move beyond the above token-only model, we need to “decouple” the correlations

between encrypted messages and challenge circuits so we can take advantage of FE secu-

rity (that protects ciphertexts) and obfuscation (that protects the circuits) in a cumulative

way. Building on ideas from [ABSV15] and [BCKP14] we identify a class of concentrated

samplers that can be used in conjunction with the so-called “trojan” method—a tech-
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nique to boost selective security to adaptive security in FE—to achieve function privacy.

This construction improves on the security guarantees of OX considerably, but comes

with the caveat that a mild restriction on second-stage token queries must be imposed:

they must reveal (via circuit outputs) no more information about encrypted correlated

messages than those revealed by first-stage queries. We give non-trivial examples of con-

centrated samplers and derive constructions for classes of circuits that encompass, among

other functionalities, IBE, KS and inner-product encryption. By giving a construction of

a DI obfuscator for hyperplane membership, we resolve a question left open by Boneh,

Raghunathan and Segev [BRS13b] on the extension and realization of enhanced security

for inner-product encryption.

Our forth construction is specific to point functions, and besides being simpler and

more efficient, can tolerate arbitrary correlations between challenge keywords and en-

crypted messages. Put differently this construction removes the concentration restriction

on samplers. For this construction we require a functional encryption scheme that sup-

ports the OR composition of two DI-secure point obfuscations. The composable VGB

point obfuscator of Bitansky and Canetti [BC14] implies that the required DI point obfus-

cator exists. Furthermore, we also rely on a standard functional encryption scheme that

supports the evaluations of four group operations in a DDH group (corresponding to the

disjunction of two point function obfuscations), which is a relatively modest computation.

We are, however, unable to lift the mild second-stage restriction.

Our last construction lifts the second-stage restriction at the cost of relying on more

expressive forms of obfuscators. The novelty in this construction resides in the observation

that, in order to offer the keyword search functionality, it suffices to encrypt information

that enables equality checks between words and messages to be carried out. In our fourth

construction we encode a message m as an obfuscation of the point function C[m]. Con-

cretely, we obfuscate words before extraction and messages before encryption. Equality

with w can be checked using a circuit D[w] that on input an obfuscated point function

Obf(C[m]) returns Obf(C[m])(w). We emphasize that D[w] is not a point function. We

also need to ensure that an attacker cannot exploit the D[w] circuits by, say, encrypting

obfuscations of malicious circuits of its choice. We do this using NIZK proofs to ensure the

outputs of the point obfuscator are verifiable: one can publicly verify that an obfuscation
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indeed corresponds to some point function. To summarize, our construction relies on a DI

obfuscator supporting point functions C[m](w) := (m = w) and circuits D[w](C) := C(w)

and a general-purpose FE. The circuits C[m] and D[w] were used negatively by Barak et

al. [BGI+01] to launch generic attacks against VBB. Here, the restrictions imposed on

legitimate PRIV samplers ensure that these attacks cannot be carried out in our setting,

and obfuscators supporting them can be used positively to build private FE schemes.
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Chapter 2

Preliminaries, Notation and

Standard Definitions

2.1 Notation

We denote the security parameter by λ ∈ N and assume it is implicitly given to all

algorithms in unary representation 1λ. We denote the set of all bit strings of length ` by

{0, 1}` and the length of a string x by |x|. The bit complement of a string x is denoted

by x. We use the symbol ε to denote the empty string. A vector of strings x is written in

boldface, and x[i] denotes its ith entry. The number of entries of x is denoted by |x|. For

a finite set X, we denote its cardinality by |X| and the action of sampling a uniformly

random element x from X by x ←$ X. For a random variable X we denote its support

by [X]. For a circuit C we denote its size by |C|. We call a real-valued function µ(λ)

negligible if µ(λ) ∈ O(λ−ω(1)) and denote the set of all negligible functions by Negl.

Throughput this thesis, ⊥ denotes a special failure symbol outside the spaces underlying

a cryptographic primitive. We adopt the code-based game-playing framework [BR06].

As usual “ppt” stands for probabilistic polynomial time.

Circuit families. Let MSp := {MSpλ}λ∈N and OSp := {OSpλ}λ∈N be two families

of finite sets parametrized by a security parameter λ ∈ N. A circuit family CSp :=

{CSpλ}λ∈N is a sequence of circuit sets indexed by the security parameter. We assume

that for all λ ∈ N, all circuits in CSpλ share a common input domain MSpλ and output
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space OSpλ. We also assume that membership in sets can be efficiently decided. For a

vector of circuits C = [C1, . . . ,Cn] and a vector of messages m = [m1, . . . ,mm] we define

C(m) to be an n × m matrix whose ijth entry is Ci(mj). When OSpλ = {0, 1} for all

values of λ we call the circuit family Boolean.

Trees. We associate a tree T with the set of its nodes {nodei,j}. Each node is indexed

by a pair of non-negative integers representing the position (level and branch) of the node

on the tree. The root of the tree is indexed by (0, 0), its children have indices (1, 0), (1, 1),

etc. A binary tree is perfectly balanced if every leaf is at the same level.

2.2 Bilinear groups and complexity assumptions

We first review the basic properties of prime-order bilinear groups and the computa-

tional assumptions Decision Bilinear Diffie-Hellman (DBDH) [BF01] and Decision Lin-

ear (DLIN) [BBS04]. We then review the properties of composite-order bilinear groups

and the Composite 3-party Diffie-Hellman (C3DH) assumption made in [BW07]. Looking

ahead, these properties are relevant for our white-box construction of a function-private

AIBE scheme, described in Section 6.1.

2.2.1 Bilinear groups of prime order

A prime-order bilinear group generator is an algorithm GP that takes as input a security

parameter 1λ and outputs a description Γ = (p,G,GT, e, g) where:

• G and GT are groups of order p with efficiently-computable group laws, where p is

a λ-bit prime.

• g is a generator of G.

• e is an efficiently-computable bilinear pairing e : G x G→ GT, i.e. a map satisfying

the following properties:

– Bilinearity: ∀a, b ∈ Zp, e(ga, gb) = e(g, g)ab;

– Non-degeneracy: e(g, g) 6= 1.
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Definition 1. We say the DBDH assumption holds for group generator GP if for every

ppt adversary A we have that

Advdbdh
GP ,A(λ) := 2 · Pr[DBDHAGP (1λ)]− 1 ∈ Negl,

where game DBDH is described in Figure 2.1 on the left.

Definition 2. We say the DLIN assumption holds for group generator GP if for every

ppt adversary A we have that

Advdlin
GP ,A(λ) := 2 · Pr[DLINAGP (1λ)]− 1 ∈ Negl,

where game DLIN is described in Figure 2.1 on the right.

DBDHAGP (1λ):

Γ ←$ GP(1λ)

(p,G,GT, e, g)← Γ

z1, z2, z3 ←$ Zp

b ←$ {0, 1}
if (b = 0) then Z← e(g, g)z1z2z3

else Z ←$ GT

b′ ←$ A(Γ, gz1 , gz2 , gz3 ,Z)

return (b = b′)

DLINAGP (1λ):

Γ ←$ GP(1λ)

(p,G,GT, e, g)← Γ

z1, z2, z3, z4 ←$ Zp

b ←$ {0, 1}
if (b = 0) then Z← gz3+z4

else Z ←$ GT

b′ ←$ A(Γ, gz1 , gz2 , gz1z3 , gz2z4 ,Z)

return (b = b′)

Figure 2.1: Games defining DBDH and DLIN computational assumptions.

2.2.2 Bilinear groups of composite order

A composite-order bilinear group generator is an algorithm GC that takes as input a

security parameter 1λ and outputs a description Γ = (p, q,G,GT, e, g) where:

• G and GT are groups of order n = pq, where p and q are independent λ-bit primes,

with efficiently computable group laws.

• g is a generator of G.

• e is an efficiently-computable bilinear pairing e : G x G→ GT, i.e. a map satisfying

the following properties:
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– Bilinearity: ∀a, b ∈ Zn, e(ga, gb) = e(g, g)ab;

– Non-degeneracy: e(g, g) 6= 1.

Subgroups Gp ⊂ G and Gq ⊂ G of order p and order q can be generated respectively by

gp = gq and gq = gp. We recall some important properties regarding these groups:

• G = Gp x Gq

• e(gp, gq) = e(gq, gp) = e(g, g)n = 1

• e(gp, (gp)a · (gq)b) = e(gp, (gp)a) · e(gp, (gq)b) = e(gp, gp)a

Definition 3. We say the C3DH assumption holds for group generator GC if for every

ppt adversary A we have that

Advc3dh
GC ,A(λ) := 2 · Pr[C3DHAGC(1

λ)]− 1 ∈ Negl,

where game C3DH is described in Figure 2.2.

C3DHAGC (1
λ):

(p, q,G,GT, e, g) ←$ GC(1λ)

n← pq; gp ← gq; gq ← gp

Γ′ ← (n,G,GT, e, g, gp, gq)

X1,X2,X3 ←$ Gq

a, b, c ←$ Zn

b ←$ {0, 1}
if (b = 0) then R← X3(gp)c

else R ←$ G

b′ ←$ A(Γ′, (gp)a, (gp)b,X1(gp)ab,X2(gp)abc,R)

return (b = b′)

Figure 2.2: Game defining C3DH computational assumption.

2.3 Cryptographic primitives

We now review standard definitions of several cryptographic primitives, namely pseu-

dorandom permutations, public-key encryption, functional encryption (and its particu-
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lar forms anonymous identity-based encryption, keyword search encryption and inner-

product encryption), non-interactive zero-knowledge proof systems, collision-resistant

hash functions and puncturable pseudorandom functions. The definitions of functional

encryption will serve as a starting point towards the security modelling of what we call pri-

vate functional encryption. The remaining cryptographic primitives will serve as building

blocks in our constructions.

2.3.1 Pseudorandom permutations

Let KSp := {KSpλ}λ∈N and MSp := {MSpλ}λ∈N be two families of finite sets parametrized

by a security parameter λ ∈ N. A pseudorandom permutation (PRP) family PRP :=

(K,E,D) is a triple of ppt algorithms as follows. (1) K on input the security parameter

outputs a uniform element in KSpλ; (2) E is deterministic and on input a key k ∈ KSpλ

and a point x ∈ MSpλ outputs a point in MSpλ; (3) D is deterministic and on input

a k ∈ KSpλ and a point x ∈ MSpλ outputs a point in MSpλ. The PRP family PRP is

correct if for all λ ∈ N, all k ∈ KSpλ and all x ∈ MSpλ we have that D(k,E(k, x)) = x.

A pseudorandom permutation PRP := (K,E,D) is called PRP secure if for every ppt

adversary A we have that

Advprp
PRP,A(λ) := 2 · Pr

[
PRPAPRP(1λ)

]
− 1 ∈ Negl

where game PRPAPRP(1λ) is defined in Figure 2.3. For our purposes, we rely on the non-

strong security notion where inverse queries are not allowed. Furthermore, we do not

necessarily require the inverse map D to be efficiently computable.

PRPAPRP(1λ):

b ←$ {0, 1}
k ←$ K(1λ)

b′ ←$ AFn(1λ)

return (b = b′)

Fn(x):

if T [x] = ⊥ then

T [x] ←$ MSpλ \ T
if b = 1 return T [x]

else return E(k, x)

Figure 2.3: Game defining the security of a pseudorandom permutation PRP.
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2.3.2 Public-key encryption

A public-key encryption scheme PKE := (PKE.Setup,PKE.Enc,PKE.Dec) with message

space MSp := {MSpλ}λ∈N and randomness space RSp := {RSpλ}λ∈N is specified by three

ppt algorithms as follows. (1) PKE.Setup(1λ) is the probabilistic key-generation algo-

rithm, taking as input the security parameter and returning a secret key sk and a public

key pk. (2) PKE.Enc(pk,m; r) is the probabilistic encryption algorithm. On input a public

key pk, a message m ∈ MSpλ and possibly some random coins r ∈ RSpλ, this algorithm

outputs a ciphertext c. (3) PKE.Dec(sk, c) is the deterministic decryption algorithm. On

input of a secret key sk and a ciphertext c, this algorithm outputs a message m ∈ MSpλ

or failure symbol ⊥.

Correctness. The correctness of a public-key encryption scheme requires that for any

λ ∈ N, any (sk, pk) ∈ [PKE.Setup(1λ)], any m ∈ MSpλ and any random coins r ∈ RSpλ,

we have that PKE.Dec(sk,PKE.Enc(pk,m; r)) = m.

Security. We recall the standard security notions of indistinguishability under chosen

ciphertext attacks (IND-CCA) and its weaker variant known as indistinguishability under

chosen plaintext attacks (IND-CPA). We say that a public-key encryption scheme PKE

is IND-CCA secure if for every legitimate ppt adversary A

Advind-cca
PKE,A (λ) := 2 · Pr[IND-CCAAPKE(1λ)]− 1 ,

where game IND-CCAAPKE described in Figure 2.4, in which the adversary has access

to a left-or-right challenge oracle (LR) and a decryption oracle (Dec). We say that A
is legitimate if: (1) |m0| = |m1| whenever the left-or-right oracle is queried; and (2)

the adversary does not call the decryption oracle with c ∈ list. We obtain the weaker

IND-CPA notion if the adversary is not allowed to place any decryption query.

IND-CCAAPKE(1λ):

(sk, pk) ←$ PKE.Setup(1λ)

b ←$ {0, 1}
b′ ←$ ALR,Dec(1λ, pk)

return (b = b′)

LR(m0,m1):

c ←$ PKE.Enc(pk,mb)

list← c : list

return c

Dec(c):

m← PKE.Dec(sk, c)

return m

Figure 2.4: Game defining IND-CCA security of a public-key encryption scheme PKE.
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2.3.3 Functional encryption

Syntax. A functional encryption scheme FE associated with a circuit family CSp is

specified by four ppt algorithms as follows. (1) FE.Gen(1λ) is the setup algorithm and

on input a security parameter 1λ it outputs a master secret key msk and a master public

key mpk; (2) FE.TGen(msk,C) is the token-generation algorithm and on input a master

secret key msk and a circuit C ∈ CSpλ outputs a token tk for C; (3) FE.Enc(mpk,m) is the

encryption algorithm and on input a master public key mpk and a message m ∈ MSpλ

outputs a ciphertext c; (4) FE.Eval(c, tk) is the deterministic evaluation (or decryption)

algorithm and on input a ciphertext c and a token tk outputs a value y ∈ OSpλ or failure

symbol ⊥.

We adopt a computational notion of correctness for FE schemes and require that no

ppt adversary is able to produce a message m and a circuit C that violates the standard

correctness property of the FE scheme (that is, FE.Eval(FE.Enc(mpk,m),FE.TGen(msk,C))

6= C(m)), even with the help of an (unrestricted) token-generation oracle. We also adopt

the standard notion of IND-CPA security [BSW11, O’N10] where an adversary with ac-

cess to a token-generation oracle cannot distinguish encryptions of messages m0, m1 under

the standard restriction that it cannot obtain a decryption token for a circuit C for which

C(m0) 6= C(m1).

Correctness. We will adopt a game-based definition of computational correctness for

FE schemes which has been widely adopted in the literature [ABC+08, Gol04] and suffices

for the overwhelming majority of use cases. Roughly speaking, this property requires that

no efficient adversary is able to come up with a message and a circuit which violates the

correctness property of the FE scheme, even with the help of an (unrestricted) token-

generation oracle. Formally, we say that scheme FE is computationally correct if for all

ppt adversaries A
Advcc

FE,A(λ) := Pr
[
CCAFE(1λ)

]
∈ Negl ,

where game CCAFE(1λ) is shown in Figure 2.5 on the left. Perfect correctness corresponds

to the setting where the above advantage is required to be zero.

Security. A functional encryption scheme FE is IND-CPA secure [BSW11, O’N10] if
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for any legitimate ppt adversary A

Advind-cpa
FE,A (λ) := 2 · Pr

[
IND-CPAAFE(1λ)

]
− 1 ∈ Negl ,

where game IND-CPAAFE(1λ) is defined in Figure 2.5 on the right. We say A is legitimate

if for all messages pairs queried to the left-or-right oracle, i.e., for all (m0,m1) ∈ MList,

and all extracted circuits C ∈ TList we have that C(m0) = C(m1).

CCAFE(1λ):

(msk,mpk) ←$ FE.Gen(1λ)

(m,C) ←$ ATGen(mpk)

c ←$ FE.Enc(mpk,m)

tk ←$ FE.TGen(msk,C)

y ←$ FE.Eval(c, tk)

return (y 6= C(m))

TGen(C):

tk ←$ FE.TGen(msk,C)

return tk

IND-CPAAFE(1λ):

(msk,mpk) ←$ FE.Gen(1λ)

b ←$ {0, 1}
b′ ←$ ALR,TGen(mpk)

return (b = b′)

LR(m0,m1):

c ←$ FE.Enc(mpk,mb)

MList← (m0,m1) : MList

return c

TGen(C):

tk ←$ FE.TGen(msk,C)

TList← C : TList

return tk

Figure 2.5: Games defining the computational correctness and IND-CPA security of a

functional encryption scheme FE.

The IND-CPA notion self-composes in the sense that security against adversaries that

place one LR query is equivalent to the setting where an arbitrary number of queries is

allowed. It is also well known that IND-CPA security is weaker than generalizations

of semantic security for functional encryption [BSW11, O’N10, BF13], and strong im-

possibility results for the latter have been established [BSW11, GVW12, AGVW13].

On the other hand, IND-CPA-secure FE schemes for all polynomial-size circuit families

have been recently constructed [GVW12, GGH+13, GKP+13]. Other recent feasibility

results have been established in weaker forms of the IND-CPA model such as the selec-

tive model [GVW12, GGH+13, GKP+13] where the adversary commits to its challenge

messages at the onset; or the weak model for Boolean circuits, where the adversary is

restricted to extract tokens that evaluate to 0 on the challenge messages [GVW15].
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2.3.3.1 Anonymous identity-based encryption

Identity-based encryption (IBE) was first proposed by Shamir [Sha84], but instantia-

tions only appeared later with the seminal papers of Boneh and Franklin [BF01] and

Cocks [Coc01]. In an IBE scheme, an authority holding the master secret key can extract

decryption keys associated with identities, such as passport numbers or an e-mail ad-

dresses. A ciphertext encrypted under the master public-key and some identity can only

be decrypted with a decryption key for that identity, which only the authority holding

the master secret key can issue. Here, we describe the syntax, correctness and security of

anonymous identity-based encryption schemes (AIBE). Briefly, anonymity requires that

the ciphertext also hides the identity for which it is intended.

Syntax. An anonymous identity based encryption scheme AIBE is a functional encryp-

tion scheme for a circuit family CSpλ := {C[id?] : id? ∈ IdSpλ}, over identity space IdSpλ

and message space MSpλ, such that each circuit C is defined as:

C[id?](id,m) :=

m if (id = id?);

⊥ otherwise.

For simplicity, C is canonically represented by the identity id? with which it is associated.

We write the algorithms of an AIBE scheme as follows. (1) AIBE.Setup(1λ) is the setup

algorithm and on input a security parameter 1λ it outputs a master secret key msk and

a master public key mpk; (2) AIBE.Enc(mpk, id,m) is the encryption algorithm and on

input a master public key mpk, an identity id ∈ IdSpλ and a message m ∈ MSpλ, it

outputs a ciphertext c; (3) AIBE.KeyGen(msk, id) is the key-generation algorithm and on

input a master secret key msk and an identity id ∈ IdSpλ it outputs a decryption key

skid; (4) finally, AIBE.Dec(skid, c) is the decryption algorithm that on input a secret key

skid and a ciphertext c, it either outputs a message m ∈ MSpλ or a failure symbol ⊥.

The correctness and IND-CPA security of AIBE are defined identically to that of FE

schemes supporting the circuit class described above. Note that this results in semantic

security and anonymity in the traditional sense applied to identity-based encryption, i.e.

ciphertexts conceal both the message and the identity of the recipient.
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2.3.3.2 Keyword search encryption

Set circuits. In this work we are interested in Boolean circuits that assume the value

1 on only a polynomially large subset of their domains. We call these set circuits. We

define the canonical representation of a set circuit C with its corresponding set S as the

circuit C[S] that has the set S explicitly hardwired in it:

C[S](m) :=

1 if m ∈ S;

0 otherwise.

Formally, a family of Boolean circuits CSp is a set circuit family if there is a polynomial

poly such that for all λ ∈ N and all C ∈ CSpλ we have that |S(C)| ≤ poly(λ) where

S(C) := {m ∈ MSpλ : C(m) = 1}. Point circuits/functions correspond to the case

where poly(λ) = 1. We use C[m] to denote the point circuit that on input m returns 1

and 0 otherwise. Throughout the thesis, we assume that non-obfuscated set circuits are

canonically represented.

Syntax. A public-key encryption with keyword search scheme (or simply a keyword

search scheme) KS is a functional encryption scheme for a point circuit family over the

message space: CSpλ := {C[m] : m ∈ MSpλ}. We often identify circuit C[m] with its

message m, but in order to distinguish circuits from messages we use the term keyword to

refer to the former. We write the algorithms associated to a KS scheme as KS.Gen(1λ),

KS.Enc(pk,m), KS.TGen(sk,w) and KS.Test(c, tk), where the latter outputs either 0 or 1.

The computational correctness of a KS scheme is defined identically to that of an FE

scheme. We say the scheme has no false negatives if correctness advantage is negligible

and, whenever A outputs (w,C[w]), it is 0. IND-CPA security is also defined identically to

FE schemes for point function families. Note that weak and standard IND-CPA notions

are equivalent for KS schemes.

2.3.3.3 Inner-product encryption

Syntax. Let CSp := {CSpdp} be a set circuit family of hyperplane membership testing

functions that is defined for each value of the security parameter λ such that p is a λ-bit

prime and d is a positive integer. Every circuit C ∈ CSpdp is canonically represented by a
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vector ~a ∈ Zdp (i.e. ~a is a vector of d elements from Zp) and returns 1 if and only if the

input vector ~x ∈ Zdp is orthogonal to ~a. More precisely,

C[~a](~x) :=

1 if 〈~x,~a〉 = 0;

0 otherwise.

An inner-product encryption scheme IPE is a functional encryption scheme for a hy-

perplane membership testing circuit family CSpλ := {C[~a] : ~a ∈ Zdp}. The correctness

and IND-CPA security of inner-product encryption are defined identically to that of FE

schemes supporting the circuit class CSp as defined above.

2.3.4 NIZK proof systems

Syntax. A non-interactive zero-knowledge proof system for an NP language L with

an efficiently computable binary relation R consists of three ppt algorithms as follows.

(1) NIZK.Setup(1λ) is the setup algorithm and on input a security parameter 1λ it outputs

a common reference string crs; (2) NIZK.Prove(crs, x, ω) is the proving algorithm and on

input a common reference string crs, a statement x and a witness ω it outputs a proof π

or a failure symbol ⊥; (3) NIZK.Verify(crs, x, π) is the verification algorithm and on input

a common reference string crs, a statement x and a proof π it outputs either true or false.

Perfect completeness. Completeness imposes that an honest prover can always

convince an honest verifier that a statement belongs to L, provided that it holds a witness

testifying to this fact. We say a NIZK proof is perfectly complete if for every (possibly

unbounded) adversary A

Advcomplete
NIZK,A (λ) := Pr

[
CompleteANIZK(1λ)

]
= 0 ,

where game CompleteANIZK(1λ) is shown in Figure 2.6 on the left.

Statistical soundness. Soundness imposes that a malicious prover cannot convince

an honest verifier of a false statement. We say a NIZK proof is perfectly sound if for every

(possibly unbounded) adversary A we have that

Advsound
NIZK,A(λ) := Pr

[
SoundANIZK(1λ)

]
∈ Negl ,
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where game SoundANIZK(1λ) is shown in Figure 2.6 on the right. If the above advantage is

0, we say the NIZK proof system is perfectly sound.

Computational zero knowledge. The zero-knowledge property guarantees that

proofs do not leak information about the witnesses that originated them. Technically,

this is formalized by requiring the existence of a ppt simulator Sim = (Sim1, Sim2) where

Sim1 takes the security parameter 1λ as input and outputs a simulated common reference

string crs together with a trapdoor tp, and Sim2 takes the trapdoor as input tp together

with a statement x ∈ L for which it must forge a proof π. We say a proof system is

computationally zero knowledge if, for every ppt adversary A, there exists a simulator

Sim such that

Advzk
NIZK,A,Sim(λ) :=

∣∣∣Pr
[
ZK-RealANIZK(1λ)

]
−
[
ZK-IdealA,Sim

NIZK (1λ)
]∣∣∣ ∈ Negl ,

where games ZK-RealANIZK(1λ) and ZK-IdealA,Sim
NIZK (1λ) are shown in Figure 2.7.

CompleteANIZK(1λ):

crs ←$ NIZK.Setup(1λ)

(x, ω) ←$ A(1λ, crs)

if (x, ω) /∈ R return 0

π ←$ NIZK.Prove(crs, x, ω)

return ¬(NIZK.Verify(crs, x, π))

SoundANIZK(1λ):

crs ←$ NIZK.Setup(1λ)

(x, π) ←$ A(1λ, crs)

return (x /∈ L ∧
NIZK.Verify(crs, x, π))

Figure 2.6: Games defining the completeness and soundness properties of a non-

interactive zero-knowledge proof system NIZK.

ZK-RealANIZK(1λ):

crs ←$ NIZK.Setup(1λ)

b ←$ AProve(1λ, crs)

Prove(x, ω):

if (x, ω) /∈ R return ⊥
π ←$ NIZK.Prove(crs, x, ω)

return π

ZK-IdealA,Sim
NIZK (1λ):

(crs, tp) ←$ Sim1(1λ)

b ←$ AProve(1λ, crs)

Prove(x, ω):

if (x, ω) /∈ R return ⊥
π ←$ Sim2(crs, tp, x)

return π

Figure 2.7: Games defining the zero-knowledge property of a non-interactive zero-

knowledge proof system NIZK.
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2.3.5 Collision-resistant hash functions

A hash function family H := {Hλ}λ∈N is a set parametrized by a security parameter

λ ∈ N, where each Hλ is a collection of functions mapping {0, 1}m to {0, 1}n such that

m > n. The hash function family H is said to be collision-resistant if no ppt adversary

A can find a pair of colliding inputs, with noticeable probability, given a function picked

uniformly from Hλ. More precisely, we require that

Advcr
H,A(λ) := Pr[CRAH(1λ)] ∈ Negl,

where game CRAH(1λ) is defined in Figure 2.8.

CRAH (1λ):

h ←$ Hλ

(x0, x1) ←$ A(1λ, h)

return (x0 6= x1 ∧ h(x0) = h(x1))

Figure 2.8: Game defining collision-resistance of a hash function family H.

2.3.6 Puncturable pseudorandom functions

We define a puncturable pseudorandom function family PPRF := (PPRF.Gen,PPRF.Eval,

PPRF.Punc) as the following triple of ppt algorithms. (1) PPRF.Gen on input the security

parameter 1λ outputs a uniform element in KSpλ; (2) PPRF.Eval is deterministic and on

input a key k ∈ KSpλ and a point x ∈ Xλ outputs a point y ∈ Yλ; (3) PPRF.Punc is

probabilistic and on input a k ∈ KSpλ and a polynomial-size set of points S ⊆ Xλ outputs

a punctured key kS. As per [SW14], we require the PPRF to satisfy the following two

properties:

Functionality preservation under puncturing : It holds that for every λ ∈ N,

every polynomial-size set S ⊆ Xλ and every x ∈ Xλ \ S,

Pr

 PPRF.Eval(k, x) = PPRF.Eval(kS, x)

∣∣∣∣∣∣ k ←$ PPRF.Gen(1λ)

kS ←$ PPRF.Punc(k, S)

 = 1.

Pseudorandomness at punctured points : For every ppt adversary A,

Advpprf
PPRF,A(λ) := 2 · Pr[PPRFAPPRF(1λ)]− 1 ∈ Negl,
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where game PPRFAPPRF(1λ) is defined in Figure 2.9.

PPRFAPPRF(1λ):

(S, st) ←$ A0(1λ)

k ←$ PPRF.Gen(1λ)

kS ←$ PPRF.Punc(k,S)

b ←$ {0, 1}
b′ ←$ AFn

1 (1λ, kS, st)

return (b = b′)

Fn(x):

if x /∈ S return PPRF.Eval(kS, x)

if T [x] = ⊥ then

T [x] ←$ Yλ

if b = 1 return T [x]

else return PPRF.Eval(k, x)

Figure 2.9: Game defining the pseudorandomness at punctured points property of a

puncturable pseudorandom function PPRF.
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Chapter 3

Unpredictable Samplers

The results described in this section have been published in [ABF16].

The privacy notions that we will be developing in the coming sections rely on multistage

adversaries that must adhere to certain high-entropy requirements on the sampled cir-

cuits. Rather than speaking about specific distributions for specific circuit classes, we

introduce a uniform treatment for any circuit class via an unpredictability game. Our

framework allows one to introduce restricted classes of samplers by imposing structural

restrictions on their internal operation without changes to the reference unpredictability

game. Our framework extends that of Bellare, Stepanov and Tessaro [BST14] for obfus-

cators and also models the challenge-generation phase in private functional encryption in

prior works [BRS13a, BRS13b, ATR14, AAB+15].

3.1 Definitions

Syntax. A sampler for a circuit family CSp is an algorithm S that on input the security

parameter 1λ and possibly some state information st outputs a pair of vectors of CSpλ

circuits (C0,C1) of equal dimension, a pair of vectors of MSpλ messages (m0,m1) of

equal dimension, and some auxiliary information z. We require the components of the

two circuit (resp., message) vectors to be encoded as bit strings of equal length. Input

st may encode information about the environment where the sampler is run (e.g., the
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public parameters of a higher-level protocol) and z models side information available on

the sampled circuits or messages.

In the security games we will be considering later on, the goal of adversary will be to

distinguish which of two circuit distributions produced by an unpredictable sampler was

used to form some cryptographic data (e.g., an obfuscated circuit or an FE token). Our

unpredictability definition formalizes the intuition that by examining the input/output

behavior of the sampled circuits on messages of choice, the evaluation of legitimate cir-

cuits of choice on sampled messages, and the evaluation of sampled circuits on sampled

messages, a point leading to differing outputs on some pair of sampled circuits cannot be

found. Drawing a parallel to the functional encryption setting, once decryption tokens or

encrypted messages become available, the tokens can be used by a legitimate adversary

to compute the circuits underneath on arbitrary values, including some special messages

that are possibly correlated with the circuits.

Unpredictability. A legitimate sampler S is statistically (multi-instance) unpre-

dictable if for any unbounded legitimate predictor P that places polynomially many

queries

Adv
(m)pred
S,P (λ) := Pr

[
(m)PredPS (1λ)

]
∈ Negl ,

where games mPredPS (1λ) and PredPS (1λ) are shown in Figure 3.1. Sampler S is called

legitimate if C0(m′0) = C1(m′1) for all queries made to the Sp oracle in game mPredPS (1λ),

or simply required that C0(m0) = C1(m1) in game PredPS (1λ). Predictor P is legitimate

if C(m0) = C(m1) for all queries made to the Func oracle (in both multi-instance and

single-instance games).1

The mPred game is multi-instance and the predictor can place polynomially many

queries to Sam and set st arbitrarily. The latter essentially ensures that S generates fresh

entropy on any input st. We emphasize that the winning condition demands component-

wise inequality of circuit outputs. In particular the predictor is not considered successful

if it outputs a message which leads to different outputs across different Sam queries or

within the same Sam query but on different circuit indices.

1We do not impose that C0(m) = C1(m) within the Func oracle as this is exactly the event that P is

aiming to invoke to win the game. The restriction we do impose allows for a sampler to be unpredictable

while possibility outputting low-entropy messages that might even differ on left and right.
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mPredPS (1λ):

(i,m) ←$ PSam,Func,Sp(1λ)

(C0,C1,m0,m1)← list[i]

return (C0(m) 6= C1(m))

Sam(st):

(C0,C1,m0,m1, z) ←$ S(st)

list← list : (C0,C1,m0,m1)

return z

Func(i,m,C):

(C0,C1,m0,m1)← list[i]

return (C0(m),C(m0))

Sp(i, j):

(C0,C1,m0,m1)← list[i]

(C′0,C
′
1,m

′
0,m

′
1)← list[j]

return C0(m′0)

PredPS (1λ):

(st, st′) ←$ P1(1λ)

(C0,C1,m0,m1, z) ←$ S(st)

m ←$ PFunc
2 (1λ,C0(m0), z, st′)

return (C0(m) 6= C1(m))

Func(m,C):

return (C0(m),C(m0))

Figure 3.1: Games defining multi-instance and single-instance unpredictability of a sam-

pler S.

A number of technical choices have been made in devising these definitions. By

the legitimacy of the sampler C0(m0) = C1(m1) and hence only one of these values

is provided to the predictor. Furthermore, since the goal of the predictor is to find a

differing input, modifying the experiment so that Func returns C1(m) (or both values)

would result in an equivalent definition. Our definition intentionally does not consider

unpredictability of messages. Instead, one could ask the predictor to output either a

message that results in differing evaluations on challenge circuits or a circuit that evaluates

differently on challenge messages. This would, however, lead to an excessively restrictive

unpredictability notion and excludes many circuit samplers of practical relevance.

Composition. A standard guessing argument shows that any stateless sampler (one

that keeps no internal state and uses independent random coins on each invocation, but

might still receive st explicitly passed as input) is multi-instance unpredictable (where

P can place q queries to Sam) if and only if it is single-instance unpredictable (where

P can only place a single Sam query). The reduction in one direction is trivial. In the

other direction we guess the index i∗ that the multi-instance predictor P will output and

simulate Sam queries 1, . . . , (i∗ − 1) and (i∗ + 1), . . . , q by running the sampler S in the

reduction—this is where we need the stateless property—and answer the i∗th one using

the Sam oracle in the single-instance game. Queries to Func with index i∗ are answered

analogously using the single-instance counterpart whereas those with index different from

i∗ will use the explicit knowledge of the circuits and messages generated by the reduction.
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Queries Sp with index (i, j) are answered as follows. If both i and j are different from

i∗, use the explicit knowledge of circuits and messages. If i = i∗ but j 6= i∗, use the

explicit knowledge of the messages and the single-instance Func oracle on i∗. If i 6= i∗

but j = i∗, use the knowledge of the circuit and single-instance Func. For (i∗, i∗) queries,

use the Sp oracle in the single-instance game. Note that the legitimacy of the constructed

single-instance predictor follows from the legitimacy of the multi-instance predictor and

the sampler.

Proposition 1 (Unpredictability composition). A stateless sampler is multi-instance

unpredictable (Figure 3.1 on the left) if and only if it is single-instance unpredictable

(Figure 3.1 on the right).

The samplers that we study in this work are stateless and therefore we use the def-

inition in Figure 3.1 on the right for simplicity. Nevertheless, our framework can be

used to analyze stateful samplers as well. We leave the study of such samplers as an

important (and practically relevant) direction for future work. In the following section,

we define a number of special classes of samplers by imposing structural restrictions on

their internal operation. This serves to illustrate how various samplers that previously

appeared in the literature can be modeled within our framework. In particular, defini-

tions of high-entropy and block source samplers for keywords [BRS13a], block sources for

inner products [BRS13b], and circuit sampler distributions used in various obfuscation

definitions can be seen as particular cases within this framework.

3.2 Taxonomy of samplers

We define a number of special classes of samplers by imposing structural restrictions on

their internal operation.

Stateless. The sampler does not keep any internal state and uses independent set of

coins on each invocation. All samplers will be stateless in this work unless stated

otherwise.

(t, s)-bounded. For polynomials t and s, with overwhelming probability |C0| = |C1| ≤
t(λ) and |m0| = |m1| ≤ s(λ).

28



Circuits-only. The sampler outputs no messages with overwhelming probability, i.e. it

is (·, 0)-bounded.

One-sided. C0 = C1 and m0 = m1 with overwhelming probability. In this case we will

simply write (C,m, z) ←$ S(1λ, st) for the sampling operation. Note that every

one-sided sampler is trivially unpredictable.

Input-independent. For any 1λ and st, S(1λ, st) = S(1λ, ε) with overwhelming proba-

bility.

Aux-free. With overwhelming probability z = ε.

Simple. If the sampler is both aux-free and input-independent.

Random-aux. For a polynomial poly and a ppt algorithm S ′ the sampler takes the form

S(1λ, st) : z ←$ {0, 1}poly(λ);

(C0,C1,m0,m1) ←$ S ′(1λ, z, st);
return (C0,C1,m0,m1, z) .

Differing-inputs. With overwhelming probability z contains the sampler’s output cir-

cuits (C0,C1). Note that statistical unpredictability would imply that the sampled

circuits are functionally equivalent, whereas computational unpredictability would

lead to a notion of differing-inputs samplers used to formulate differing-inputs ob-

fuscation [ABG+13, BST14].

Block-source. A t-block-source is a random variable X = (X1, . . . , Xt) where for every

j ∈ [t] and x1, . . . , xj−1 it holds that Xj|X1=x1,...,Xj−1=xj−1
has high min-entropy.

There is therefore sufficient decorrelation between different components in such a

distribution. We can model block sources in our framework by restricting attention

to ppt samplers that take the form

S(1λ, st) : (C0,C1) ←$ S ′(1λ, st);
j ←$ [t];

return ((C0[j],C1[j]), (C0[1..(j − 1)],C1[1..(j − 1)]))

where S ′ is a (t, 0)-bounded sampler. The rationale here is that any indistinguisha-

bility-based security definition that imposes an adversary to output two block
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sources, and later on distinguish some computation performed on the sampled val-

ues, e.g. [BRS13a], would remain the same if a sampler such as the one above

was used instead (note that in this case, the adversary can only have an advan-

tage when outputting distributions that component-wise differ with non-negligible

probability).

Functionally-differing. S is a (t, ·)-bounded sampler and, with overwhelming proba-

bility over its random coins, ∀j ∈ [t], ∃x s.t. C0[j](x) 6= C1[j](x).
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Chapter 4

Obfuscators

The results described in this section have been published in [ABF16].

An obfuscator is an efficient compiler that takes as input a circuit description and out-

puts the description of another circuit with the same functionality that is of similar

size, but yet is unintelligible. In recent years, program obfuscation as found tremendous

applications in cryptography, ranging from functional encryption [GGH+13] to deniable

encryption [SW14] to multi-party computation [GGHR14]. Several of the constructions

we propose later in this thesis rely on obfuscation, so we take the time go over def-

initions and revisit concrete obfuscators for the classes of functions comprising point

functions and hyperplane membership testing functions. We generalize distributionally-

indistinguishable (DI) obfuscators [BC14] from point functions to general circuits, show

that DI is a weakening of composable virtual grey-box (CVGB) [BC14, BCKP14], and

construct a DI obfuscator for hyperplane membership testing functions.

Syntax. An obfuscator for a circuit family CSp is a uniform ppt algorithm Obf that on

input the security parameter 1λ and the description of a circuit C ∈ CSpλ outputs the

description of another circuit C. We require any obfuscator to satisfy the following two

requirements.

Functionality preservation : For any λ ∈ N, any C ∈ CSpλ and any m ∈ MSpλ,

with overwhelming probability over the choice of C ←$ Obf(1λ,C) we have that

C(m) = C(m).
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Polynomial slowdown : There is a polynomial poly such that for any λ ∈ N, any

C ∈ CSpλ and any C ←$ Obf(1λ,C) we have that |C| ≤ poly(|C|).

Security definitions for obfuscators can be divided into indistinguishability-based and

simulation-based notions. Perhaps the most natural notion is the virtual black-box (VBB)

property [BGI+01], which requires that whatever can be computed from an obfuscated

circuit can be also simulated using oracle access to the circuit. Here, we consider a

weakening of this notion, known as virtual grey-box (VGB) security [BC14, BCKP14]

that follows the VBB approach, but allows simulators to run in unbounded time, as long

as they make polynomially many queries to their oracles; we call such simulators semi-

bounded. Below we present a self-composable strengthening of this notion where the

VGB property is required to hold in the presence of multiple obfuscated circuits.

In the context of security definitions for obfuscators, we consider samplers that do not

output any messages. Furthermore, we call a sampler one-sided if its sampled circuits

are identical on left and right with probability 1.

4.1 Indistinguishability obfuscation

This property requires that given any two functionally equivalent circuits C0 and C1 of

equal size, the obfuscations of C0 and C1 should be computationally indistinguishable.

More precisely, for any ppt adversary A and for any sampler S that outputs two circuits

C0,C1 ∈ CSpλ such that C0(m) = C1(m) for all inputs m and |C0| = |C1|, we have that

Advio
Obf,S,A(λ) := 2 · Pr[iOS,AObf (1λ)]− 1 ∈ Negl,

where game iOS,AObf (λ) is defined in Figure 4.1.
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iOS,AObf (1λ):

(C0,C1, z) ←$ S(1λ)

b ←$ {0, 1}
C ←$ Obf(1λ,Cb)

b′ ←$ A1(1λ,C0,C1, z,C)

return (b = b′)

Figure 4.1: Game defining iO security of an obfuscator Obf.

4.2 Composable VGB obfuscation

An obfuscator Obf is composable VGB (CVGB) secure if for every ppt adversary A there

exists a semi-bounded simulator Sim such that for every ppt one-sided circuit sampler S
the advantage

Advcvgb
Obf,S,A,Sim(λ) :=

∣∣∣Pr
[
CVGB-RealS,AObf (1λ)

]
− Pr

[
CVGB-IdealS,Sim

Obf (1λ)
]∣∣∣ ∈ Negl,

where games CVGB-RealS,AObf (λ) and CVGB-IdealS,Sim
Obf (λ) are shown in Figure 4.2.

CVGB-RealS,AObf (1λ):

(C, z) ←$ S(1λ, ε)

C ←$ Obf(1λ,C)

b ←$ A(1λ,C, z)

return b

CVGB-IdealS,Sim
Obf (1λ):

(C, z) ←$ S(1λ, ε)

b ←$ SimFunc(1λ, 1|C|, z)

return b

Func(m):

return C(m)

Figure 4.2: Games defining the CVGB security of an obfuscator Obf.

By considering samplers that only output a single circuit we recover the standard

(worst-case) VGB property. The VBB property corresponds to the case where the sim-

ulator is required to run in polynomial time. Average-case notions of obfuscation cor-

respond to definitions where the circuit samplers are fixed. A result of Bitansky and

Canetti [BC14, Proposition A.3] on the equivalence of VGB with and without auxiliary

information can be easily shown to also hold in the presence of multiple circuits, from

which one can conclude that CVGB with auxiliary information is the same as CVGB

without auxiliary information.
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We also introduce the following adaptation of an indistinguishability-based notion of

obfuscation introduced in [BC14] for point functions.

4.3 Distributional indistinguishability obfuscation

An obfuscator Obf is DI secure if, for every unpredictable ppt sampler S and every ppt

adversary A,

Advdi
Obf,S,A(λ) := 2 · Pr

[
DIS,AObf (1λ)

]
− 1 ∈ Negl ,

where game DIS,AObf (1λ) is defined in Figure 4.3 on the left.

DIS,AObf (1λ):

b ←$ {0, 1}
b′ ←$ ASam(1λ)

return (b = b′)

Sam(st):

(C0,C1, z) ←$ S(1λ, st)

C ←$ Obf(1λ,Cb)

return (C, z)

OWAObf(1
λ):

1t ←$ A1(1λ)

w ←$ MSpλ

C← [C[w], . . . ,C[w]] // t copies

C ←$ Obf(1λ,C)

w′ ←$ A2(1λ,C)

return (w = w′)

Figure 4.3: Games defining the DI and OW security of an obfuscator Obf. (One-way

security is defined for point-functions only.)

The above definition strengthens the one in [BC14] and gives the sampler the possi-

bility to leak auxiliary information to the adversary. In particular, we can consider the

case where images of an (internally generated) vector of messages that are correlated with

the circuits are provided to A. (Our constructions will rely on this property for point

obfuscators.) Throughout the thesis we consider DI adversaries that place a single query

to the Sam oracle. It can easily be shown that the DI self-composes for stateless sam-

plers, meaning that security against adversaries that place one Sam query is equivalent

to the setting where an arbitrary number of queries are allowed. Note also that we allow

the adversary to pass some state information st to the sampler. Security with respect

to all ppt and statistically unpredictable samplers can be shown to be equivalent to a

variant definition where the adversary is run after the sampler and the state st is set to
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the empty string ε.

We recover the definition of indistinguishability obfuscation (iO) [GGH+13] when

samplers are required to output a single circuit on left and right and include these two

circuits explicitly in z. Differing-inputs obfuscation (diO) [ABG+13] is obtained if the

predictor is also limited to run in polynomial time.

It has been shown that, for point functions, the notions of CVGB and DI (without

auxiliary information) are equivalent [BC14, Theorem 5.1]. Following a similar argument

to the first part of the proof in [BC14, Theorem 5.1], we show that CVGB for any

circuit family implies distributional indistinguishability even with auxiliary information

for the same circuit family. Hence, our notion of DI obfuscation is potentially weaker

than CVGB. This proof crucially relies on the restriction that samplers are required to

be unpredictable in the presence of unbounded predictors. The proof of the converse

direction in [BC14, Theorem 5.1] uses techniques specific to point functions and we leave

a generalization to wider classes of circuits for future work.

Proposition 2 (CVGB =⇒ DI). Any CVGB obfuscator for a class of circuits CSp is

also DI secure with respect to all statistically unpredictable samplers for the same class

CSp.

Proof. Let (S,A) be a DI adversary against the obfuscator. We show that the advantage

of A must be negligible if S is unpredictable and the obfuscator is CVGB secure. Also,

let RSpλ denote the randomness space of A. Consider a one-sided circuit sampler S ′

that selects r ←$ RSpλ, runs A(1λ; r) until it outputs st, runs S(1λ, st), chooses a bit b

uniformly at random, and outputs the left or right outputs of S according to the bit b,

along with auxiliary information z and coins r. Let B be a CVGB-Real adversary that

runs A on the same coins and answers Sam oracle query with its challenge vector of

obuscations. B outputs whatever A outputs. By the CVGB property, for (S ′,B) there is

a (possibly unbounded) simulator Sim such that:

Advcvgb
Obf,S′,B,Sim(λ) =

∣∣∣Pr
[
CVGB-RealS

′,B
Obf (1λ)

]
− Pr

[
CVGB-IdealS

′,Sim
Obf (1λ)

]∣∣∣ .
Note that

Advdi
Obf,S,A(λ) = Pr

[
CVGB-RealS

′,B
Obf (1λ)|b = 1

]
− Pr

[
CVGB-RealS

′,B
Obf (1λ)|b = 0

]
.
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Hence,

Advdi
Obf,S,A(λ) ≤

∣∣∣Pr
[
CVGB-IdealS

′,Sim
Obf (1λ)|b = 1

]
− Pr

[
CVGB-IdealS

′,Sim
Obf (1λ)|b = 0

]∣∣∣+
+ 2 ·Advcvgb

Obf,S′,B,Sim(λ) .

Let Q(λ) denote the number of queries of Sim. We claim that there is a predictor P
making at most Q(λ) queries such that∣∣∣Pr
[
CVGB-IdealS

′,Sim
Obf (1λ)|b = 1

]
− Pr

[
CVGB-IdealS

′,Sim
Obf (1λ)|b = 0

]∣∣∣ ≤ Q(λ)·Advpred
S,P (λ) .

From this it follows that

Advdi
Obf,S,A(λ) ≤ Q(λ) ·Advpred

S,P (λ) + 2 ·Advcvgb
Obf,S′,B,Sim(λ) .

We prove the claim via unpredictability of the sampler. Observe that the views of Sim in

the CVGB-Ideal game for b = 0 and b = 1 are identical unless Sim queries its oracle on a

point that results in different outputs for the left and right circuits. This event, however,

immediately leads to a break of unpredictability. Consider a (possibly unbounded) pre-

dictor P = (P1,P2) as follows. P1 selects random coins r←$ RSpλ and runs A(1λ; r) until

it outputs st. P1 then outputs (st, r). P2(1λ, ε, z, r) chooses a random index i ←$ [Q(λ)]

indicating a guess for the first query of Sim that leads to a break of unpredictability. It

runs Sim(z||r) and answers its oracle queries using its own provided oracle (which always

respond for left circuits b = 0). At query i algorithm P2 stops and outputs the queried

value. With probability 1/Q(λ) this is the first query that the bad event occurs. Hence

P2 runs Sim perfectly until query i, at which point it wins the unpredictability game.

This concludes the proof as the above holds for any poly (which in turn implies that

the left hand side is negligible).

We conclude this discussion by introducing a new notion of one-way point obfuscation

that requires it to be infeasible to recover the point given many obfuscations of it.

One-way point obfuscation. Let Obf be an obfuscator for a point circuit family

CSp. We say Obf is OW secure if for every ppt adversary A

Advow
Obf,A(λ) := Pr

[
OWA

Obf(1
λ)
]
∈ Negl ,

where game OWA
Obf(1

λ) is shown in Figure 4.3 on the right. The next proposition shows

that OW is a weakening of DI for point circuits.
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Proposition 3 (DI =⇒ OW for point circuits). Let Obf be an obfuscator for a point

circuit family CSp. If Obf is DI secure with respect to all ppt samplers, then it is also

OW secure.

Proof. We show that OW is a weakening of DI for point circuits. Given an OW adversary

A we construct a sampler S and a distinguisher D attacking DI security as follows. First,

we partition each set CSpλ into two sets (of super-polynomial size) CSp0
λ and CSp1

λ, such

that |CSp0
λ| = |CSp1

λ| + negl(λ). This partition can be based on some lexicographic

criterion (e.g., the most significant bit of the point), as long as one can efficiently decide

membership in each partition. Our sampler S samples two point circuits C0 and C1,

uniformly at random from CSp0
λ and CSp1

λ, respectively. It then outputs two t-sized

vectors C0 = (C0, . . . ,C0) and C1 = (C1, . . . ,C1). (Here t is the length parameter initially

output by the one-wayness adversary A.) (Recall that auxiliary information z is empty.)

It is clear that S is unpredictable, and therefore legitimate as a DI sampler. On obtaining

the obfuscations, the distinguisher D runs adversary A on the same inputs and recover a

circuit C′. Observe that the distribution of the obfuscations provided to A is statistically

close to the correct distribution given the combined action of S and the challenge bit

in the DI game. Distinguisher D then returns 0 if C′ ∈ CSp0
λ and 1 otherwise. It

is straightforward to establish that a non-negligible advantage for A in the OW game

translates to a non-negligible advantage for (S,D) in the DI game.

4.3.1 Canetti’s point obfuscator

In this section, we recall the point function obfuscator constructed in [Can97] and proven

to be DI-secure under the Strong Vector DDH (SVDDH) assumption in [BC14]. Not only

this point function obfuscator can be used later to instantiate our OX, TOX and DOX

constructions (see Chapter 6), we use a similar approach to prove that the hyperplane

membership obfuscator by [CRV10] is also DI-secure under a generalization of the SVDDH

assumption. (We refer to the next section for more details on these results.)

Let G be a group of prime order p for which the SVDDH assumption [BC14] holds,

and let CSp := {C[x] : m ∈ Zp} be a point circuit family for points in the domain Zp. To

obfuscate the point circuit C[x], first sample a generator r uniformly at random from G,
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compute R ← gx, then construct the circuit C[r, R], which has r and R hardwired into

it, such that:

C[r, R](z) :=

1 if rz = R;

0 otherwise.

Under the SVDDH assumption [BC14, Assumption 6.1], this obfuscator can be shown

to be DI secure [BC14, Theorem 6.1].

4.3.2 An hyperplane membership obfuscator

Let CSp := {CSpdp} be a set circuit family of hyperplane membership testing functions

that is defined for each value of the security parameter λ such that there is a λ-bit prime

p and a positive integer d. Every circuit C ∈ CSpdp is canonically represented by a vector

~a ∈ Zdp and returns 1 if and only if the input vector ~x ∈ Zdp is orthogonal to ~a, i.e.,

C[~a](~x) :=

1 if 〈~x,~a〉 = 0;

0 otherwise.

We build on the results of [BC14, CRV10] to construct a DI-secure obfuscator for this

family of circuits under a generalization of the Strong Vector DDH (SVDDH) assumption

used in [BC14]. In order to avoid attacks similar to the one described in [BST16] that

puts a one element instance of SVDDH with arbitrary auxiliary information (or AI-

DHI assumption, as referred to by [BST16]) in contention with the existence of VGB

obfuscators supporting specific classes of circuits, we assume that our generalized SVDDH

assumption holds only in the presence of random auxiliary information. This immediately

translates to an obfuscator that tolerates the same type of leakage, which is enough to

serve as a candidate to instantiate our functionality-agnostic constructions and obtain

private inner-product encryption schemes, from which it is known how to derive expressive

predicates that include equality tests, conjunctions, disjunctions and evaluation of CNF

and DNF formulas (among others) [BW07, KSW13].

Canetti, Rothblum and Varia [CRV10] presented a virtual black-box obfuscator for

the hyperplane membership functionality, which works as follows. Let G be a group

of prime order p for which the SVDDH assumption [CRV10] holds. To obfuscate the
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hyperplane membership circuit represented by a vector ~a, sample a generator g uniformly

at random from G, compute gi ← g~a[i] for 1 ≤ i ≤ d, and construct the circuit that, given

a vector ~x, returns 1 if and only if
∏d

i=1 g
~x[i]
i is equal to G’s identity element. (Note

that
∏d

i=1 g
~x[i]
i = g〈~a,~x〉, so this is the case if 〈~a, ~x〉 = 0.) We assume that the resulting

obfuscated circuit is canonically represented by (g1, . . . , gd), generated as described above.

We will now prove that this same construction satisfies distributional indistinguishability

under a generalization of the SVDDH assumption, a DDH-style assumption we present

in Figure 4.5.

Unpredictable hyperplane membership samplers. We begin by refining the no-

tion of unpredictable samplers to the case of hyperplane membership circuits. In general,

a sampler for the hyperplane membership functionality will output two lists of message

vectors corresponding to candidate hyperplane members, and two lists of hyperplane

vectors, plus some auxiliary information z, which in this thesis we will assume to be a

random string of polynomial size poly(λ). However, since we are dealing with obfuscation,

we will consider samplers where no messages are produced. We recall the unpredictability

experiment for this special case in Figure 4.4, where notation 〈w,m〉 denotes the vector

that results from computing 〈w[i],m〉 ?
= 0, for all 1 ≤ i ≤ |w|. (Note that here w is a

list of vectors in Zdp and m is a vector in Zdp.) Sampler outputs only random auxiliary

information.

PredPS (1λ):

(st, st′) ←$ P1(1λ)

z ←$ {0, 1}poly(λ)

(w0,w1) ←$ S(1λ, z, st)

m ←$ PFunc
2 (1λ, z, st′)

return (〈w0,m〉 6= 〈w1,m〉)

Func(m):

return 〈w0,m〉

Figure 4.4: Game defining single-instance unpredictability of a hyperplane membership

sampler S.

Computational Assumption. Our computational assumption is a vectorized version

of the DDH variant introduced in [CRV10], in the style of the assumption that is used

in [BC14] to establish the DI property of a point function obfuscator. The assumption
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AssumptionS,A,G,t,d,poly(1
λ):

b ←$ {0, 1}; z ←$ {0, 1}poly(λ)

(w0,w1) ←$ S(1λ, z, ε)

~g ←$ Gt

Mb ←



~g[1]wb[1][1] . . . ~g[1]wb[1][d]

. . . . . . . . .

~g[t]wb[t][1] . . . ~g[t]wb[t][d]


b′ ←$ A(Mb, z)

return (b = b′)

Figure 4.5: Game defining a DDH-style computational assumption.

states that, for every unpredictable sampler, any distinguishing adversary has a negligible

advantage in the game in Figure 4.5. We note that the unpredictability restriction on the

sampler essentially excludes any challenge where a polynomial-size set of black-box linear

tests could be used by a semi-bounded predictor to distinguish the hidden bit. This is a

natural restriction, since the adversary is given enough information to trivially perform

such tests on its own. The assumption therefore states that ppt adversaries cannot do

better than what can be achieved with such linear tests. In particular, we note that such

linear tests can be used to extract coefficient equality patterns that might permit trivial

distinguishing attacks by checking group element repetitions in the received obfuscations.

DI obfuscation for hyperplane membership. The following theorem can be triv-

ially proven using a direct reduction.

Theorem 1. The hyperplane membership obfuscator of Canetti, Rothblum and Varia

[CRV10] is DI secure in the presence of random auxiliary information if the assumption

in Figure 4.5 holds in G. More precisely, for every unpredictable hyperplane membership

sampler S, any DI adversary A that breaks the DI property can be used (without change)

to break the underlying assumption with the same advantage.
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4.4 Instantiations and obfuscation-based attacks

A concrete instantiation of a CVGB obfuscator for point functions with auxiliary infor-

mation (AI) is given by Bitansky and Canetti [BC14]. This construction is based on

the hardness of a variant of the DDH assumption called strong vector-DDH (SVDDH)

assumption. The SVDDH assumption is an assumption that is formulated without ref-

erence to any auxiliary information. Recently, Bellare, Stepanovs and Tessaro [BST16]

have shown that the SVDDH assumption (and verifiable point obfuscation) in presence

of arbitrary AI is in contention with the existence of VGB obfuscation for general cir-

cuits (that is, one of the two cannot exist). We take a moment to clarify how these two

results relate to each other. In this discussion we assume that all obfuscation notions

are considered for a single circuit only (i.e. we do not consider composability). First,

note that the notion of AIPO (auxiliary-information point obfuscation) used in [BST16]

follows a notion equivalent to distributional indistinguishability where the right distri-

bution is fixed to be uniform. As shown in [BC14, Theorem 5.1] any point obfuscation

(without AI) is equivalent to VGB point obfuscation. It is also shown in [BC14, Propo-

sition A.3] that VGB obfuscation without AI is equivalent to VGB obfuscation with AI

for any circuit class. (Intuitively, to construct a simulator that works for all possible

AI, one uses the fact that the simulator is unbounded to find the best simulator that

works for a non-uniform adversary that takes a value of the AI as advice.) Together

with Proposition 2 above we get that all these notions (in their non-composable variants)

are equivalent. This then raises the question whether the results of [BST16] are also in

contention with PO without AI. To see that this does not follow from the equivalence of

notions, note that in Proposition 2 we crucially rely on a predictor that runs a possibly

unbounded simulator. Put differently, the AI must be statistically unpredictable. Indeed,

the results of [BST16] rely on special forms of AI which only computationally hide the

sampled point. (Roughly speaking, the AI contains a VGB obfuscation of a (non-point)

circuit that depends on the sampled point.) To avoid such attacks, and in line with the

above results, by considering statistically unpredictable samplers we constrain auxiliary

information to be statistically unpredictable.
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Chapter 5

Function Privacy: A Unified

Approach

The results described in this section have been published in [ABF16].

In this chapter, we define what function privacy for general functional encryption schemes

means and derive the model specific to keyword search schemes by restriction to point

circuit families. Our definition follows the indistinguishability-based approach to defining

FE security and comes with an analogous legitimacy condition that prevents the adversary

from learning the challenge bit simply by extracting a token for a circuit that has differing

outputs for the left and right challenge messages. The model extends the IND-CPA game

via a left-or-right (LR) oracle that returns ciphertexts and tokens for possibly correlated

messages and circuits. Since the adversary in this game has access to tokens that depend

on the challenge bit, we use the unpredictability framework of Chapter 3 to rule out

trivial guess attacks.

The game follows a left-or-right rather than a real-or-random formulation of the chal-

lenge oracle [BRS13a, BRS13b, ATR14, AAB+15] as this choice frees the definition from

restrictions that must be imposed to render samplers compatible with uniform distri-

bution over circuits. In particular, it allows the sampler to output low-entropy circuits

as long as they are functionally-equivalent on left and right. It also allows analyzing

security under repetitions of functionally-equivalent circuits in the presence of correlated

messages, which until now were properties captured separately by unlinkability [ATR14]
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and enhanced security [BRS13a], and never considered together, not even for the simple

case of point functions.

The sampler allows us to model, within a single game, (a) token-only adversarial

strategies via samplers that output no message, as the non-enhanced security model

in [BRS13a] and those in [BRS13b, ATR14]; (b) adversarial strategies that admit simple

correlations between encrypted messages and extracted circuits, as the enhanced security

model in [BRS13a] for point circuits that allows the adversary to obtain ciphertexts that

match the tokens; (c) adversarial strategies that admit arbitrary correlations between

extracted circuits and encrypted messages (i.e., not only exact matches).

Our model is functionality-agnostic and unifies all previous indistinguishability-based

models in this area. When restricted to point circuits or inner-products families, it gives

rise to a new privacy notion that offers significant improvements over those in prior

works [BRS13a, BRS13b, ATR14].

PRIV security. A functional encryption scheme FE is PRIV secure if, for every unpre-

dictable ppt sampler1 S and every ppt adversary A

Advpriv
FE,A,S(λ) := 2 · Pr

[
PRIVA,SFE (1λ)

]
− 1 ∈ Negl ,

where game PRIVA,SFE (1λ) is defined in Figure 5.1. We exclude adversaries (A,S) that

attempt to trivially win the PRIV game via decryption tokens, by either extracting

them explicitly via the token-generation oracle, or implicitly via the left-or-right oracle.

Formally, the pair (A,S) is legitimate if, with overwhelming probability

∀(C0,C1) ∈ TList ,∀(m0,m1) ∈ MList : C0(m0) = C1(m1) .

Note also that for two sampler classes S1 and S2 with S1 ⊂ S2 security with respect to

samplers in S2 is a stronger security guarantee that one for those only in S1. In particular

a stronger restriction on sampler classes results in a weaker definition.

The definition also provides the adversary with the ability to adaptively obtain mul-

tiple challenges and tokens. However, similarly to unpredictability, a hybrid argument

1We limit samplers to ppt because in proving the security of our constructions, samplers are used to

construct computational adversaries against other schemes. In general, one could consider unbounded

samplers.
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PRIVA,SFE (1λ):

(msk,mpk) ←$ FE.Gen(1λ)

b ←$ {0, 1}
b′ ←$ ALR,TGen(mpk)

return (b = b′)

LR(st):

(C0,C1,m0,m1, z) ←$ S(st)

TList← TList : (C0,C1)

MList← MList : (m0,m1)

tk ←$ FE.TGen(msk,Cb)

c ←$ FE.Enc(mpk,mb)

return (tk, c, z)

TGen(C):

TList← TList : (C,C)

tk ←$ FE.TGen(msk,C)

return tk

Figure 5.1: Game defining full privacy of a functional encryption scheme FE.

shows that for (stateless) samplers the definition self-composes and we consider the sim-

pler single-shot game in the remainder of the thesis.

Restricted PRIV and PRIV-TO. We call an adversary token-only if S does not output

any messages, and call the resulting security notion PRIV-TO. Note that, for token-only

adversaries, the additional legitimacy constraint above is redundant. We call an adversary

restricted if for every second-phase TGen query C2 there is a first-phase TGen query

C1 such that C2(mb) = C1(mb) for b ∈ {0, 1}. Intuitively, this amounts to imposing that

images exposed via second-stage queries (i.e., those placed after receiving the challenge)

can reveal no more than the images obtained in the first stage (i.e., from queries placed

before receiving the challenge). We call the resulting security notion Res-PRIV. We

emphasize that the Res-PRIV model inherits many of the strengths of the full PRIV

model such as arbitrary correlations and a wide range of adaptive token queries.2

5.1 The case of keyword search

Two important aspects of our definition are that it considers (1) challenge keywords that

do not match any of the encrypted messages and challenge messages that not match any

of the keywords—we call these keywords and messages unpaired ; and (2) low-entropy mes-

sages/keywords that are correlated with the high-entropy searches whose privacy must be

protected. The former aspect entails that the full equality pattern of challenge messages

and keywords may remain hidden from the adversary (and hence a wider class of non-

2When the restriction here is imposed on the IND-CPA model for point function, the resulting model

remains as strong as the full IND-CPA model.

44



trivial attacks can be launched). Although the adversary always obtains the image matrix

resulting from evaluating tokens on ciphertexts (and hence sees the equality pattern be-

tween paired challenge keywords and messages), the repetition patterns among unpaired

messages or unpaired keywords is not necessarily leaked. In practice, this repetition

pattern may reveal sensitive information as well. Low entropy messages and keywords

model the presence of ciphertexts and tokens in the system, over which the uncertainty

of the adversary may be small, but which are correlated with sensitive data that must

still be protected. Indeed, our unpredictability notion allows the sampler to output such

low-entropy keywords and messages as long as low-entropy keywords are equal on left

and right. A real-or-random modeling of this setting cannot capture this scenario. When

low-entropy messages differ on the left and right, the adversary cannot learn them via the

TGen oracle due to the legitimacy condition: imposing that they are not leaked maps

to IND-CPA security. When they are equal on the left and right, they can be learned by

successive queries to the token extraction oracle, which permits capturing attack scenarios

where adaptive searches over low entropy correlated messages may be carried out. In par-

ticular, this permits an adversary to recover a correlated repetition search pattern after

the PRIV challenge has been revealed. As a result, low-entropy messages and keywords

are tolerated, even when correlated with other messages or keywords. Furthermore, the

values and equality patterns of high-entropy keywords are protected, as well as those of

all encrypted messages for which a token was not explicitly extracted. Our main results

in Sections 6.4 and 6.5 show the existence of keyword search schemes which are secure in

the aforementioned scenarios.

5.2 On revealing images

The outputs of challenge circuits on challenge messages can be always computed by

the adversary, and by imposing equality of images we ensure that they do not lead to

trivial distinguishing attacks. (This is similar to the legitimacy condition in FE security

models.) It is however less clear why these image values should be explicitly provide to

the predictor in the unpredictability game, even when they are equal for left and right

circuits-messages pairs. To see this, consider the sampler that for a random word w
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outputs

w0 = w, w1 = w, m0,i :=

w if w[i] = 1 ;

w otherwise,

and m1,i :=

w if w[i] = 1 ;

w otherwise.

Note that C[w0](m0,i) = C[w1](m1,i) = w[i] and hence the images are equal on left and

right. Word w0 can be recovered bit by bit from the image values C[wb](m0,i) and com-

puting 1 − C[wb](w0) would then reveal the challenge bit b. Finally, without access to

the images C[w0](m0,i) the sampler can be shown to be unpredictable as w is chosen ran-

domly. On the other hand, in the presence of images, the sampler is trivially predicable.

This counterexample is similar to that briefly discussed in [ATR14] and can be modified

to show that the enhanced model of Boneh, Raghunathan and Segev [BRS13a] for the

so-called (k1, . . . , kT )-distributions is not achievable.

PRIV PRIV-TO

CPA

PRIV-TO ^ CPA

ResPRIV

ResPRIV ^ CPA

Figure 5.2: Relations among security notions for private functional encryption. (The

dotted implication only holds for keyword search schemes.)

5.3 Relations among notions

Clearly PRIV implies its weaker variant Res-PRIV, which in turn implies PRIV-TO. It

is not too difficult to see that PRIV also implies IND-CPA.3 A noteworthy consequence

of this is that for all-or-nothing functionalities (such as PEKS, IBE or ABE) any PRIV-

secure construction is also index hiding (aka. anonymous), whereby ciphertexts do not

leak any information about their intended recipients (i.e., about tokens that may per-

mit recovering the payload). Res-PRIV would imply a restricted analogue of IND-CPA

3Consider a sampler which does not output any circuits and simply returns (possibly low-entropy)

messages included in the state st passed to it. This sampler is trivially unpredictable. Furthermore, the

legitimacy conditions in the two games exactly match.
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(where images in the second phase should match one in the first phase), which for point

functions is equivalent to the standard IND-CPA model. IND-CPA security does not

imply PRIV-TO: consider an IND-CPA-secure scheme that is modified to append cir-

cuits in the clear to their tokens. PRIV-TO does not imply IND-CPA either: consider

a PRIV-TO-secure scheme that is modified to return messages in the clear with cipher-

texts. (Note that these separations hold even for point functions.) Figure 5.2 summarizes

relations among notions of security.
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Chapter 6

Function Private Constructions

The results described in this chapter have been published in [ATR14, ABF16].

In this chapter, we present the second and main contribution of this thesis: five con-

structions of private functional encryption supporting different classes of functions and

meeting varying degrees of security, namely (1) a white-box construction of an Anony-

mous IBE scheme based on composite-order groups, shown to be secure in the absence of

correlated messages; (2) a simple and functionality-agnostic black-box construction from

obfuscation, also shown to be secure in the absence of correlated messages; (3) a more

evolved and still functionality-agnostic construction that achieves a form of function pri-

vacy that tolerates limited correlations between messages and functions; (4) a KS scheme

achieving privacy in the presence of correlated messages beyond all previously proposed

indistinguishability-based security definitions; (5) a KS construction that achieves our

strongest notion of privacy (but relies on a more expressive form of obfuscation than the

previous construction).

6.1 Two white-box constructions of AIBE schemes

We start by looking at Boyen and Waters [BW06] anonymous identity-based encryption

scheme in the hope of showing that it already achieves some form of function privacy,

as the decryption keys are randomized. Towards this end, we first present a simplified

version of the original scheme and show that, in the random oracle model, not only IND-
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CPA security is still guaranteed, we are also able to lift the selective-id constraint in the

proof. Next, we show that the scheme is PRIV-TO secure up to two decryption keys. In

fact, we also show that if the sampler outputs three keys, there is a trivial distinguishing

attack. To improve security, we extend the scheme to groups of composite order and

show that the extended version is PRIV-TO secure for an unbounded number of keys.

Remark. Using the anonymous identity-based encryption (AIBE) to public-key encryp-

tion with keyword search (KS) transform from [ABC+08], one can easily derive keyword

search schemes where privacy guarantees of the keywords in KS are identical to those of

identities in AIBE [ATR14].

6.1.1 A simplified Boyen-Waters AIBE scheme in the RO model

Here, we construct a new anonymous identity-based encryption scheme based on that of

Boyen and Waters [BW06]. Our scheme relies on a bilinear groups of prime order. To

eliminate the selective-id constraint of the original scheme, we replace identities with their

hash values and model the hash function as a random oracle. Furthermore, we simplify the

scheme by removing two group elements from the public parameters and from decryption

keys, and obtain the final scheme in Figure 6.1. Compared to the original scheme, our

scheme also saves two exponentiations in the key-extraction and encryption algorithms,

and saves two pairing computations in the decryption algorithm. Our scheme preserves

the original security properties, provided that the hash function h, sampled from the

family Hλ : IdSpλ → G, is modeled as a random oracle. Added to this, the scheme

also has a weak form of token-only privacy where the sampler is (2,0)-bounded, i.e. the

sampler outputs circuit-vectors with at most 2 identities and no correlated messages.

Theorem 2. The anonymous identity-based encryption scheme AIBE1 [Figure 6.1] is

IND-CPA secure [Figure 2.5], in the random oracle model, assuming DBDH and DLIN are

intractable [Definitions 1 and 2]. More precisely, for any adversary A in game IND-CPA

against AIBE1, there exists adversaries B1 and B2 such that

Advind-cpa
AIBE,A(λ) ≤ q ·Advdbdh

GP ,B1(λ) + q ·Advdlin
GP ,B2(λ) ,

where q is the number of queries A places to its random oracle.
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AIBE.Setup(1λ):

Γ ←$ GP(1λ)

(p,G,GT, e, g)← Γ

w, t1, t2 ←$ Zp

Ω← e(g, g)t1t2w

v1 ← gt1

v2 ← gt2

h ←$ Hλ
mpk← (Γ,Ω, v1, v2, h)

msk← (w, t1, t2)

return (mpk,msk)

AIBE.KeyGen(mpk,msk, id):

(Γ,Ω, v1, v2, h)← mpk

(p,G,GT, e, g)← Γ

(w, t1, t2)← msk

r ←$ Zp

h← h(id)

d0 ← grt1t2

d1 ← g−wt2 · h−rt2

d2 ← g−wt1 · h−rt1

skid ← (d0, d1, d2)

return skid

AIBE.Enc(mpk,m, id):

(Γ,Ω, v1, v2, h)← mpk

(p,G,GT, e, g)← Γ

s, s1 ←$ Zp

h← h(id)

ĉ← Ωsm

c0 ← hs

c1 ← vs−s1
1

c2 ← vs1
2

c← (ĉ, c0, c1, c2)

return c

AIBE.Dec(mpk, skid, c):

(Γ,Ω, v1, v2, h)← mpk

(p,G,GT, e, g)← Γ

(d0, d1, d2)← skid

(ĉ, c0, c1, c2)← c

e0 ← e(c0, d0)

e1 ← e(c1, d1)

e2 ← e(c2, d2)

m← ĉ · e0 · e1 · e2
return m

Figure 6.1: AIBE1, a simplified version of Boyen-Waters AIBE scheme.

Proof. The proof proceeds via a sequence of two game hops as follows.

Game0 : This game is identical to IND-CPA.

Game1 : In this game, we set ĉ ←$ GT instead of computing its value.

Game2 : We set c0←$ G. Here, the challenge ciphertext does not depend on the challenge

bit, therefore the advantage is 0.

We now reduce the distance between the games to the intractability of DBDH and DLIN

assumptions.

Game0 to Game1. Any adversary A with visible advantage difference in these two games

can be converted to an adversary B1 that breaks the DBDH assumption. More precisely,

we construct an adversary B1 [Figure 6.2] that interpolates between Game0 and Game1

by playing game DBDHB1GP (1λ) [Figure 2.1]. The hash function h is modeled as a random

oracle and we assume, without loss of generality, that A always asks for the hash value of

id before querying id to oracles TGen or LR. Furthermore, for simplicity of exposition,

we assume that A places at most q queries to the random oracle, where q is bounded by

some polynomial in the security parameter λ, since A is required to run in polynomial-

time. B1 randomly tries to guess which query i ∈ {0, q−1} contains idb on which adversary

A asks to be challenged. When i is not successfully guessed, B1 simply aborts. But when

it is, which happens with probability 1
q
, B1 perfectly simulates Game0 if Z is of the form
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e(g, g)z1z2z3 , and perfectly simulates Game1 if Z is just a random element in GT. Notice

that this implies w = z1z2 and s = z3.

Random function h is consistently computed: if queried twice on the same id, the

same result is returned. When B1 successfully completes its execution, the function is set

to (gz1)x for every id but idb, and to gx in this particular case, where x is a random value

sampled from Zp.

Challenge is well formed, as well as secret keys for random exponents r′ = r−z2
x

, where

x here is the value used to compute the hash of the corresponding id and r is sampled

from Zp. For completeness, we present the equalities between the original expressions and

those computed by B1. For ĉ we used the case where Z = e(g, g)z1z2z3 , which corresponds

to the simulation of Game0.

d0 = gr′t1t2 = g
r−z2

x
t1t2 = g

rt1t2
x · g−z2t1t2

x = g
rt1t2

x · Z
−t1t2

x
2

d1 = g−wt2 · h−r′t2 = g−z1z2t2 · [(gz1)x]− r−z2
x

t2 = Z−rt2
1

d2 = g−wt1 · h−r′t1 = g−z1z2t1 · [(gz1)x]− r−z2
x

t1 = Z−rt1
1

ĉ = Ωs ·m = [e(g, g)t1t2w]s ·m = [e(g, g)t1t2z1z2 ]z3 ·m = Zt1t2 ·m
c0 = hs = (gx)z3 = Zx

3

c1 = vs−s1
1 = (gt

1)z3−s1 = (Z3 · g−s1)t1

c2 = vs1
2

Therefore, we have that Pr[Game0(1λ)]− Pr[Game1(1λ)] ≤ q ·Advdbdh
GP ,B1(λ).

Game1 to Game2. For A to successfully distinguish between Game1 and Game2, the

DLIN assumption would have to be tractable. Formally, we show this by constructing an

algorithm B2 [Figure 6.3] that interpolates between Game1 and Game2 by playing game

DLINB2GP (1λ) [Figure 2.1]. As before, the hash function h is modeled as a random oracle to

which A places at most q queries and we assume that A always asks for the hash value

of id before querying it to TGen or LR oracles. Employing the same strategy as before,

algorithm B2 randomly tries to guess which query i ∈ {0, q−1} contains idb. When i is

successfully guessed, which happens with probability at least 1
q
, B2 perfectly simulates

Game1 if Z is of the form gz3+z4 , and perfectly simulates Game2 otherwise. This implies
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B1(Γ,Z1,Z2,Z3,Z):

t1, t2 ←$ Zp

Ω← e(Z1,Z2)t1t2

v1 ← gt1

v2 ← gt2

mpk← (Ω, v1, v2)

counter ← 0

i? ←$ {0, q−1}
b ←$ {0, 1}
b′ ←$ AH,TGen,LR(mpk)

return (b = b′)

H(id):

(x, i)← list[id]

if (x =⊥)

x ←$ Zp

i← counter

counter ← counter + 1

list[id]← (x, i)

if (i = i?) h← gx

else h← Zx
1

return h

TGen(id):

(x, i)← list[id]

if (i = i?) abort

r ←$ Zp

d0 ← g
rt1t2

x · Z
−t1t2

x
2

d1 ← Z−rt2
1

d2 ← Z−rt1
1

skid ← (d0, d1, d2)

return skid

LR((id0,m0), (id1,m1)):

(x, i)← list[idb]

if (i 6= i?) abort

s1 ←$ Zp

ĉ← Zt1t2 ·mb

c0 ← Zx
3

c1 ← Zt1
3 · g−t1s1

c2 ← vs1
2

c← (ĉ, c0, c1, c2)

return c

Figure 6.2: DBDH adversary B1, as part of proof of Theorem 2.

that t1 = z1 and t2 = z2. Random function h sets (gz2)x for every id but the idb, which is

set to gx, where x is a random value sampled from Zp. Challenge is well formed, as well

as secret keys for random exponents r′ = r
z2

, where r is sampled from Zp. Finally, notice

that s = z3 + z4 and s1 = z4, and that t1, t2, r′, s and s1 are uniformly distributed over

Zp, as they should be. For completeness, we present the equalities between the original

expressions and those computed by B2. For c0 we used the case where Z = gz3+z4 , which

corresponds to the simulation of Game1.

d0 = gr′t1t2 = g
r

z2
z1z2 = (gz1)r = Zr

1

d1 = g−wt2 · h−r′t2 = g−wz2 · [(gz2)x]
− r

z2
z2 = Z−w

2 · Z−xr
2 = Z−w−xr

2

d2 = g−wt1 · h−r′t1 = g−wz1 · [(gz2)x]
− r

z2
z1 = Z−w

1 · Z−xr
1 = Z−w−xr

1

c0 = hs = (gx)z3+z4 = Zx

c1 = vs−s1
1 = (gz1)(z3+z4)−z4 = Z13

c2 = vs1
2 = (gz2)z4 = Z24

Therefore, we have that Pr[Game1(1λ)] − Pr[Game2(1λ)] ≤ q ·Advdlin
GP ,B2(λ) . In Game2,

the challenge ciphertext is independent of the challenge bit b, which concludes our proof.
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B2(Γ,Z1,Z2,Z13,Z24,Z):

w ←$ Zp

Ω← e(Z1,Z2)w

v1 ← Z1; v2 ← Z2

mpk← (Ω, v1, v2)

i ←$ {0, q−1}
b ←$ {0, 1}
b′ ←$ AH,TGen,LR(mpk)

return (b = b′)

H(id):

(x, i)← list[id]

if (x =⊥)

x ←$ Zp

i← counter

counter ← counter + 1

list[id]← (x, i)

if (i = i?) h← gx

else h← Zx
2

return h

TGen(id):

(x, i)← list[id]

if (i = i?) abort

r ←$ Zp

d0 ← Zr
1

d1 ← Z−w−xr
2

d2 ← Z−w−xr
1

skid ← (d0, d1, d2)

return skid

LR((id0,m0), (id1,m1)):

(x, i)← list[idb]

if (i 6= i?) abort

ĉ ←$ GT

c0 ← Zx

c1 ← Z13

c2 ← Z24

c← (ĉ, c0, c1, c2)

return c

Figure 6.3: DLIN adversary B2, as part of proof of Theorem 2.

Besides being IND-CPA secure, we show that scheme AIBE1 also has a weak form of

token-only privacy against unpredictable samplers outputting at most 2 identities and no

correlated messages.

Theorem 3. The anonymous identity-based encryption scheme AIBE1 [Figure 6.1] is

PRIV-TO secure against unpredictable samplers that are (2, 0)-bounded and functionally-

differing, in the random oracle model, assuming DLIN is intractable [Definition 2].

Proof. Let (S,A) be a legitimate adversary in game PRIV-TOS,AAIBE1
[Figure 5.1]. S is

(2, 0)-bounded and functionally-differing. The proof proceeds as a sequence of two games

hops.

Game0 : This game is identical to PRIV-TO game.

Game1 : In this game, we set a bad event in case the adversary A queries to the random

oracle any of the identities output by S.

Game2 : Independently of the bit b, we always extract the challenge decryption keys as

if b = 1. Since the challenge keys do not depend on the challenge bit, the advantage

here is 0.

We now analyse the distance between the games.

Game0 to Game1. An adversary A that triggers the bad even can easily be used by a

predictor P to break the unpredictability of S, as asking for any of the identities output
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by S, which is functionally-differing, amounts to break its unpredictability. Therefore,

Pr[Game0(1λ)]− Pr[Game1(1λ)] ≤ Advpred
S,P (λ).

Game1 to Game2. Let id0 and id1 be the two challenge vectors output by S, each

containing at most two identities–recall that S is (2, 0)-bounded. It can either be that:

1. id0[0] 6= id0[1] ∧ id1[0] 6= id1[1]

2. id0[0] = id0[1] ∧ id1[0] = id1[1]

3. id0[0] = id0[1] ∧ id1[0] 6= id1[1]

4. id0[0] 6= id0[1] ∧ id1[0] = id1[1]

From the adversary’s point of view, Case 1 and Case 2 are identical in Game1 and Game2,

as the adversary has no access to the hash values of any of the identities. Case 3 and

Case 4 are symmetric.

By building an adversary B1 [Figure 6.4] that plays game DLINB1GP (1λ) [Figure 2.1] and

simulates game Game1 in such a way that A’s guess can be forward to game DLINB1GP (1λ),

we upper-bound the distance between Game1 and Game2 to the hardness of deciding on

an instance of this problem.

The master secret key is set as following: t1 = z1, t2 = z1 · a for random a ∈ Zp, and

w = z3·b
z1

for random b ∈ Zp. Although the values of t1, t2 and w are unknown to B1, the

corresponding public parameters can still be consistently computed:

Ω = e(g, g)t1t2w = e(g, g)
z1z1a

z3·b
z1 = e(Z13, g)ab

v1 = gt1 = Z1

v2 = gt2 = (Z1)a

The hash function H is modeled as a random oracle and set to (gz1)x ·g− 1
y , for random

(x, y) ∈ Z2
p. We assume, without loss of generality, that A always asks for the hash value

of id before querying id to oracle TGen. Whenever asked to extract a private key on some

id, we set r = w · y, where y is the value used to compute the hash of that particular id.

Note that this still makes r uniformly distributed over Zp and independent of h and w.

Given this, private keys can be extracted as follows:
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d0 = grt1t2 = gwyt1t2 = g
z3·b
z1

yz1z1a
= (Z13)aby

d1 = g−wt2 · h−rt2 = g−wt2 · [(gz1)x · g− 1
y ]−wyt2 = g−z1xwyt2 = g

−z1x
z3·b
z1

yz1a
= (Z13)−abxy

d2 = g−wt1 · h−rt1 = g−wt1 · [(gz1)x · g− 1
y ]−wyt1 = g−z1xwyt1 = g

−z1x
z3·b
z1

yz1 = (Z13)−bxy

To complete the simulation, we extract two private keys to challenge A, such that

these private keys are for the same id if B1 received a valid DLIN tuple, and for different

ids otherwise. Let sk? = (d?0, d
?
1, d

?
2) and sk◦ = (d◦0, d

◦
1, d
◦
2) be the challenge keys. We set

h = gz1z4 , r? = b
(z1)2

and r◦ = z2+b
(z1)2

. Note that h is uniformly distributed over G, and r? and

r◦ are uniformly distributed over Zp, independent of each other and of w. For complete-

ness, we present the equalities between the original expressions and those computed by B1:

d?0 = gr?t1t2 = g
b

(z1)
2 z1z1a

= gab

d?1 = g−wt2 · h−r?t2 = g
− z3b

z1
z1a · (gz1z4)

− b
(z1)

2 z1a
= (g−ab)z3 · (g−ab)z4 = Z−ab

d?1 = g−wt1 · h−r?t1 = g
− z3b

z1
z1 · (gz1z4)

− b
(z1)

2 z1
= (g−b)z3 · (g−b)z4 = Z−b

d◦0 = gr◦t1t2 = g
z2+b

(z1)
2 z1z1·a

= gz2·a+ab = (Z2)a · gab

d◦1 = g−wt2 · h−r◦t2 = g
− z3b

z1
z1a · (gz1z4)

− z2+b

(z1)
2 z1a

= (g−ab)(z3+z4) · (gz2z4)−a = Z−ab · (Z24)−a

d◦2 = g−wt1 · h−r◦t1 = g
− z3b

z1
z1 · (gz1z4)

− z2+b

(z1)
2 z1

= (g−b)(z3+z4) · (gz2z4)−1 = Z−b · (Z24)−1

Therefore, we have that

Pr[Game1(1λ)]− Pr[Game2(1λ)] ≤ Pr[Game1(1λ)]− 1

2
=

1

2
·Advdlin

GP ,B1(λ).

To conclude our proof:

Advpriv-to
AIBE1,(S,A)(λ) ≤ 2 ·Advpred

S,P (λ) + Advdlin
GP ,B1(λ).

One might wonder why AIBE1 is function private only up to two keys, and why we

cannot extend the result by applying a standard hybrid argument [BBM00]. We answer

this questions by means of a concrete attack against scheme.
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B1(Γ,Z1,Z2,Z13,Z24,Z):

a ←$ Zp, b ←$ Zp

Ω← e(Z13, g)ab

v1 ← Z1

v2 ← (Z1)a

mpk← (Ω, v1, v2)

b′ ←$ AH,TGen,LR(mpk)

if (id0[0] = id0[1]) return b′

else return ¬b′

H(id):

(x, y)← list[id]

if ((x, y) =⊥)

x ←$ Zp

y ←$ Zp

list[id]← (x, y)

h← (gz1)x · g− 1
y

return h

TGen(id):

(x, y)← list[id]

d0 ← (Z13)aby

d1 ← (Z13)−abxy

d2 ← (Z13)−bxy

skid ← (d0, d1, d2)

return skid

LR(st):

(id0, id1) ←$ S(st)

d?0 ← gab

d?1 ← Z−ab

d?2 ← Z−b

sk0 ← (d?0, d
?
1, d

?
2)

d◦0 ← (Z2)a · gab

d◦1 ← Z−ab · (Z24)−a

d◦2 ← Z−b · (Z24)−1

sk1 ← (d◦0, d
◦
1, d
◦
2)

return (sk0, sk1)

Figure 6.4: DLIN adversary B1, as part of proof of Theorem 3.

Suppose we have a (3, 0)-bounded sampler S that samples id0 and id1 uniformly at

random from IdSpλ and outputs ((id0, id0, id0), (id0, id0, id1)). S is clearly unpredictable.

Let (sk0, sk1, sk2) be the challenge decryption keys that adversary A receives. The goal

of A is to decide whether all these keys are associated with the same identity or not. We

further expand ski to (di0, di1, di2) according to our scheme. If the keys were generated

honestly, i.e. by following the algorithm AIBE1.KeyGen() as described in Figure 6.1, the

adversary simply has to check if

e(
d10

d00

,
d21

d01

)
?
= e(

d00

d20

,
d01

d11

)

to determine the form of the tuple. If the equality is true, then the three secret keys have

been extracted from the same id1. If the result is false, then keys have been extracted

from (id0, id0, id1). For completeness, we show this by expanding and simplifying the

1Collisions in the hash function h may lead to false positive results but only occur with negligible

probability.
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above expression.

e(
d10

d00

,
d21

d01

) = e(
d00

d20

,
d01

d11

)⇔

e(
gr1t1t2

gr0t1t2
,
g−wt2 · h−r2t2

2

g−wt2 · h−r0t2
0

) = e(
gr0t1t2

gr2t1t2
,
g−wt2 · h−r0t2

0

g−wt2 · h−r1t2
1

)⇔

e(
gr1t1t2

gr0t1t2
,
h−r2t2

2

h−r0t2
0

) = e(
gr0t1t2

gr2t1t2
,
h−r0t2

0

h−r1t2
0

)⇔

e(g(r1−r0), hr0
0 · h−r2

2 )t1(t2)2 = e(g(r0−r2), h
(r1−r0)
0 )t1(t2)2 ⇔

e(g, hr0
0 · h−r2

2 ) = e(g, h
(r0−r2)
0 )⇔

h2 = h0

Therefore, we come to the interesting conclusion that AIBE1 is PRIV-TO secure

against (2, 0)-bounded samplers, yet completely insecure against (t, 0)-bounded samplers,

for t > 2.

6.1.2 An extended version over composite-order groups

We extend AIBE1 to groups of composite order and obtain AIBE2 [Figure 6.5]. The exten-

sion is very simple: let all the parameters in the original scheme be from the subgroup Gp

(generated by gp) and randomize each element of the extracted secret key by a random

element from the subgroup Gq (generated by gq). Note that the message space is GT.

AIBE.Setup(1λ):

(p, q,G,GT, e, g) ←$ GC(1λ)

n← pq; gp ← gq; gq ← gp

Γ← (n,G,GT, e, g, gp, gq)

w, t1, t2 ←$ Zn

Ω← e(gp, gp)t1t2w

v1 ← gt1
p

v2 ← gt2
p

h ←$ Hλ
mpk← (Γ,Ω, v1, v2, h)

msk← (w, t1, t2)

return (msk,mpk)

AIBE.KeyGen(mpk,msk, id):

(w, t1, t2)← msk

(Γ,Ω, v1, v2, h)← mpk

(n,G,GT, e, g, gp, gq)← Γ

r ←$ Zn

x0, x1, x2 ←$ Gq

h← h(id)

d0 ← x0 · grt1t2
p

d1 ← x1 · g−wt2
p · h−rt2

d2 ← x2 · g−wt1
p · h−rt1

sk← (d0, d1, d2)

return sk

AIBE.Enc(mpk,m, id):

(Γ,Ω, v1, v2, h)← mpk

(n,G,GT, e, g, gp, gq)← Γ

s, s1 ←$ Zn

h← h(id)

ĉ← Ωsm

c0 ← hs

c1 ← vs−s1
1

c2 ← vs1
2

c← (ĉ, c0, c1, c2)

return c

AIBE.Dec(mpk, skid, c):

(Γ,Ω, v1, v2, h)← mpk

(n,G,GT, e, g, gp, gq)← Γ

(d0, d1, d2)← skid

(ĉ, c0, c1, c2)← c

e0 ← e(c0, d0)

e1 ← e(c1, d1)

e2 ← e(c2, d2)

m← ĉ · e0 · e1 · e2
return m

Figure 6.5: AIBE2, an extended version of AIBE scheme AIBE1, over composite-order

groups.
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The decryption algorithm remains correct, since

e0 = e(hs, x0 · grt1t2
p ) = e(hs, grt1t2

p )

e1 = e(vs−s1
1 , x1 · g−wt2

p · h−rt2) = e(vs−s1
1 , g−wt2

p · h−rt2)

e2 = e(vs1
2 , x2 · g−wt1

p · h−rt1) = e(vs1
2 , g

−wt1
p · h−rt1)

Also, IND-CPA secure is preserved, assuming DBDH and DLIN hold in Gp. However, we

show that the extra randomization of the decryption keys enhances the function privacy

guarantees (previously limited to only two keys) to an arbitrary number.

First, we introduce a new hardness assumption over composite order groups. We call

this assumption the Composite Decisional Diffie-Hellman (CDDH) and show that it is

weaker than the Composite 3-party Diffie-Hellman (C3DH) assumption made in [BW07]

by Boneh and Waters.

Definition 4. We say the CDDH assumption holds for group generator GC if for every

ppt adversary A we have that

Advcddh
GC ,A(λ) := 2 · Pr[CDDHAGC(1

λ)]− 1 ∈ Negl,

where game CDDH is described in Figure 6.6.

CDDHAGC (1
λ):

(p, q,G,GT, e, g) ←$ GC(1λ)

n← pq; gp ← gq; gq ← gp

Γ← (n,G,GT, e, g, gp, gq)

X1,X2,X3 ←$ Gq

a, b ←$ Zn

b ←$ {0, 1}
if (b = 0) then R← X3(gp)ab

else R ←$ G

b′ ←$ A(Γ,X1(gp)a,X2(gp)b,R)

return (b = b′)

Figure 6.6: Game defining CDDH computational assumption.

In game C3DH, adversary is given a tuple (Γ′, gp, gq, (gp)a, (gp)b,X1(gp)ab,X2(gp)abc,Z)

and has to decide whether Z = X3(gp)c, for some X3 ∈ Gq. For convenience, we rewrite
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this as (Γ′, gp, gq, (gp)a, (gp)b,X1(gp)ab,Y, X3(gp)c), where Y is either X2(gp)abc or random

in G. Now, notice that (Γ′, gp, gq, X1(gp)ab,X3(gp)c,Y) is a CDDH tuple. Therefore,

CDDH is a weaker assumption than C3DH.

We now show our main result for this construction. Assuming the hardness of CDDH,

we prove that AIBE2 is PRIV-TO secure for an arbitrary number of challenge keys.

Theorem 4. The anonymous identity-based encryption scheme AIBE2 [Figure 6.5] is

PRIV-TO secure against unpredictable samplers that are functionally-differing, in the

random oracle model, assuming CDDH is intractable [Definition 4].

Proof. Let (A,S) be a legitimate adversary against the PRIV-TO security of AIBE2,

where S is functionally-differing and outputs two vectors of t identities. The proof follows

a hybrid argument. The challenger starts by extracting decryption keys from the left side,

as if b = 0. Then, through a sequence of game, the challenger extracts the keys from

random identities, replacing one key at the time. We argue the indistinguishability of

each game hop with the hardness of CDDH. Finally, the challenger proceeds extracting

each key from the right vector of identities output by the sampler, again, replacing one

challenge key at the time. At the end, the challenger extracts decryption keys from the

right side, as if b = 1.

Game0 : This game is identical to PRIV-TO game when the challenge bit b = 0.

Game1 : In this game, we set a bad event in case the adversary A queries to the random

oracle any of the identities output by S. This hop is down to the unpredictability

of the sampler, given that S is functionally-differing.

Game(2,i), for i ∈ {0, t} : Instead of extracting a decryption key for id0[i], we extract

a decryption key for a random id ∈ IdSpλ. Game(2,0) is the same as Game1. In

Game(2,t) all decryption keys of the challenge are extracted from independently

sampled random identities. We construct an adversary Bi that plays the CDDH

game and simulates either Game(2,(i−1)) or Game(2,i), depending on the random bit

of game CDDH. Bi sets h(id0[i]) to (gp)a, and to extract ski it sets the randomness

r to b. Notice that ski is easily computable with the CDDH tuple, even without

actually knowing the value of (gp)a or b. If Bi has to extracts several keys for
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h(id0[i])—because of the sampler’s choices—it extracts all the other decryption

keys with independent random coins, instead of fixing r to be b. In this way, ski

is a decryption key for identity id0[i] if the CDDH tuple is well-formed, and is

a decryption key for a uniformly sampled identity if it is not. Thus, the distance

between Game(2,(i−1)) and Game(2,i) is bounded by the advantage of Bi against game

CDDH. We describe the internal functioning of algorithm Bi in Figure 6.7.

Game(3,i), for i ∈ {0, t} : Instead of extracting the ith decryption from a random id ∈
IdSpλ, we extract the decryption key from id1[i]. The argument is similar to the

previous game hops.

Game4 : In this game, we remove the bad event introduced earlier in Game1. Again,

this hop is down to the unpredictability of S. This game is identical to PRIV-TO

game when the challenge bit b = 1.

Therefore, we have that

Advpriv-to
AIBE2,(S,A)(λ) ≤ 2 ·Advpred

S,P (λ) + 2t ·Advcddh
GC ,B(λ).
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Bi(Γ,Za,Zb,Zab):

(n,G,GT, e, g, gp, gq)← Γ

w, t1, t2 ←$ Zn

Ω← e(gp, gp)t1t2w

v1 ← gt1
p

v2 ← gt2
p

mpk← (Γ,Ω, v1, v2)

msk← (w, t1, t2)

b ←$ {0, 1}
b′ ←$ AH,TGen,LR(mpk)

return (b = b′)

H(id):

h← list[id]

if (h =⊥)

h ←$ Gp

list[id]← h

return h

TGen(id):

skid ←$ AIBE.KeyGen(mpk,msk, id)

return skid

LR(st):

(id0, id1) ←$ S(st)

for j ∈ {0, (i− 1)}
id ←$ IdSpλ

sk[j] ←$ AIBE.KeyGen(mpk,msk, id)

id? ← id0[i]

x0, x1, x2 ←$ Gq

d0 ← x0 · Zt1t2
b

d1 ← x1 · Z−t2
ab · (gp)−wt2

d2 ← x2 · Z−t1
ab · (gp)−wt1

sk[i]← (d0, d1, d2)

for j ∈ {(i+ 1), t}
if (id0[j] = id?)

r ←$ Zn

x0, x1, x2 ←$ Gq

d0 ← x0 · grt1t2
p

d1 ← x1 · Z−rt2
a · (gp)−wt2

d2 ← x2 · Z−rt1
a · (gp)−wt1

sk[j]← (d0, d1, d2)

else

sk[j] ←$ AIBE.KeyGen(mpk,msk, id0[j])

return sk

Figure 6.7: CDDH adversary Bi, as part of proof of Theorem 4.

6.2 The obfuscate-extract (OX) transform

Our first black-box construction formalizes the intuition that obfuscating circuits before

computing a token for them will provide some form of token privacy.

The OX transform. Let Obf be an obfuscator supporting a circuit family CSp and

let FE be a functional encryption scheme supporting all polynomial-size circuits. We

construct a functional encryption scheme OX[FE,Obf] via the OX transform as follows.

Setup, encryption and evaluation algorithms are identical to those of the base func-

tional encryption scheme. The token-generation algorithm creates a token for the circuit

that results from obfuscating the extracted circuit, i.e. OX[FE,Obf].TGen(msk,C) :=

FE.TGen(msk,Obf(1λ,C)). Correctness of this construction follows from those of its un-
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derlying components. We now show that this construction yields function privacy against

PRIV-TO adversaries. Since PRIV-TO does not imply IND-CPA security—see the dis-

cussion in Section 5.3—we establish IND-CPA security independently. The proof of the

following theorem is straightforward and results from direct reductions to the base FE

and Obf schemes used in the construction.

Theorem 5 (OX is PRIV-TO ∧ IND-CPA). If obfuscator Obf is DI secure, then scheme

OX[FE,Obf] is PRIV-TO secure. Furthermore, if FE is IND-CPA secure OX[FE,Obf] is

IND-CPA secure.

Proof. The proof is straightforward and results from direct reductions to the underlying

components used in the construction. We start by proving that OX[FE,Obf] is PRIV-TO-

secure for a circuits family CSp and (circuits-only) sampler class S if Obf is DI-secure for

CSp and S. Given an adversary (S,A1) against PRIV-TO security of OX[FE,Obf], we

construct an adversary (S ′,B1) against the DI security of Obf as follows. We set S ′ to

be the same as S. Algorithm B1 runs FE.Gen(1λ) to generate on its own a master secret

key and master public key pair (msk,mpk). Then, B1 runs A1 on mpk, answering all its

token-generation queries by running FE.TGen(msk, ·), until A1 calls LR on some state st.

At this point, B1 calls its own LR oracle on st and receives as a challenge a vector of

obfuscated circuits. B1 generates a token for each circuit, and forwards the result to A1.

Thereafter, B1 continues running A1, answering its second-stage token-generation queries

as before until A1 outputs a bit b′, which B1 outputs as its own guess. The simulation is

perfect and S ′ is unpredictable because S is unpredictable.

We now prove the second part of the theorem, i.e. that OX[FE,Obf] is IND-CPA-secure

if FE is. Let A2 be an adversary against IND-CPA security of OX[FE,Obf]. We construct

an adversary B2 against IND-CPA security of FE. Algorithm B2(mpk) runs A2(mpk),

answering its first-stage TGen(C) queries by first computing an obfuscation C of circuit

C, placing a token-generation query on C to its own TGen oracle, and forwarding the

token to A2. When A2 asks to be challenged on messages (m0,m1), B2 calls its own

LR oracle on these messages and forwards the challenge ciphertext to A2. Second-stage

TGen queries are answered as before. Finally, B2 outputs A2’s guess b′ as its own guess.

Here again, the simulation is perfect and legitimacy of B2 follows from the legitimacy
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of A2 and the fact that the obfuscator preserves the functionality of the circuit, which

means that B2 has precisely the same advantage as A2. Therefore, we conclude that

Advpriv-to
OX[FE,Obf],S,A1

(λ) = Advdi
Obf,S,B1(λ), and that

Advind-cpa
OX[FE,Obf],A2

(λ) = Advind-cpa
FE,B2 (λ) .

We note that this proof holds for arbitrary classes of circuits and arbitrary (circuits-

only) samplers. Using the composable VGB point-function obfuscator of Bitansky and

Canetti [BC14] and any secure functional encryption scheme that is powerful enough to

support one exponentiation and one equality test (e.g. supports NC1 circuits) we ob-

tain a private keyword search scheme in the presence of tokens for arbitrarily correlated

keywords. If the underlying functional encryption scheme supports the more powerful

functionality that permits attaching a payload to the point, one obtains a PRIV-TO

anonymous identity-based encryption scheme where arbitrary correlations are tolerated.

In this case, on input (id,m), the functionality supported by the underlying FE scheme

would return m if C(id) = 1, where C was sampled from Obf(C[id?]) during token gener-

ation; it would return ⊥ otherwise.

The above theorem shows that DI is sufficient to build a PRIV-TO scheme. It is

however easy to see that the existence of a single-circuit DI obfuscator is also neces-

sary. Indeed, given any PRIV-TO scheme FE we can DI-obfuscate a single circuit C by

generating a fresh FE key pair, and outputting FE.Eval(·, tk) where tk is a token for C.

Proposition 4 (PRIV-TO vs. DI). A PRIV-TO-secure functional encryption for a cir-

cuits family CSp exists if a DI obfuscator for CSp exists. Conversely, a single-circuit DI

obfuscator for CSp exists if a PRIV-TO-secure functional encryption for CSp exists.

Proof. We first describe the operation of the required obfuscator. Given a circuit C, the

required obfuscator Obf generates an FE key pair (mpk,msk) and uses the master secret

key to extract a token tk for C. It then defines the obfuscated circuit to be one that

first encrypts m under mpk using trivial random coins, and then evaluates the resulting

ciphertext using tk, i.e. the circuit

C[mpk, tk](·) := FE.Eval(FE.Enc(·,mpk; 0poly(λ)), tk) .
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The correctness of this obfuscator follows from that of the FE scheme. The proof of DI

security for this construction with respect to samplers that output a single circuit pair

is a direct reduction to PRIV-TO. We construct a PRIV-TO adversary that uses the

DI sampler without change and does nothing in the first stage. In the second stage,

on obtaining the challenge token tk, constructs C[mpk, tk](·) and passes it on to the DI

distinguisher. It will return whatever the distinguisher outputs. This simulation is easily

seen to be perfect.

Remark. For arbitrary DI samplers the argument above fails. This is due to the

fact that communication between the sampler and the distinguisher is restricted (by the

unpredictability condition) and hence hybrid arguments cannot be made to go through.

A similar line of reasoning shows that the extractor-based constructions of private FE

by Boneh, Raghunathan and Segev [BRS13a] and Arriaga, Tang and Ryan [ATR14] give

rise to single-circuit DI obfuscators for point functions for the specific classes of samplers

considered in those works.

Agrawal et al. [AAB+15] have proposed a simulation-based definition of privacy that

strikes a different balance between practical relevance and feasibility. However, the

definition in [AAB+15] implies VBB obfuscation, which is known to be feasible only

for restricted classes of circuits [BR14a, BBC+14] or in idealized models of computa-

tion [CV13, BR14b, BGK+14]. The above proposition shows that our model is closer to

the weaker form of DI obfuscation, which as shown in Proposition 2 is implied by CVGB.

The particular case of single-circuit DI obfuscation is implied by VGB (and hence VBB)

obfuscation. Therefore, our model is more amenable to instantiations in the standard

model.

6.3 The trojan-obfuscate-extract (TOX) transform

We now present a generic construction that achieves Res-PRIV security for a class of sam-

plers that we call concentrated. To this end, we build on the ideas from [ABSV15, DIJ+13]

on converting selective to adaptive security and achieving simulation-based security from

IND-CPA security for FE schemes.
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The TOX transform. Given a symmetric encryption scheme SE, a general-purpose

obfuscator Obf and a functional encryption FE for all circuits, our Trojan-Obfuscate-

Extract (TOX) transform operates as follows. The master public key of the scheme is the

same as that of the base FE scheme. Its master secret key includes a symmetric key k

and the master secret key for the base FE scheme. To encrypt a message m we call the

base FE encryption routine on (0, 0λ,m). To generate a token for a circuit C, we first

generate an obfuscation C̄ ←$ Obf(C), a ciphertext c ←$ SE.Enc(k, 0n) and construct the

following circuit.

Troj[C̄, c](b, k,m) :=

 C̄(m) if b = 0 ;

C∗(m) if b = 1, where C∗ = SE.Dec(k, c) .

Finally, we extract a token for Troj[C̄, c]. Evaluation simply invokes the corresponding

operation in the underlying FE.

The correctness and IND-CPA security of this construction follow easily from the

correctness and IND-CPA security of the underlying functional encryption scheme via

straightforward reductions. Intuitively, during the normal operation of the scheme, the

tokens in the construction will simply evaluate an obfuscation of the extracted circuit. In

the proof of privacy, however, we will take advantage of the fact that a totally independent

circuit can be hidden inside the token within the symmetric encryption ciphertext, and

unlocked by a message containing the correct symmetric decryption key. For the proof to

go through, the hidden circuit must be carefully selected so that the legitimacy condition

is observed throughout. In order to meet this latter restriction, we consider the following

constrained class of samplers.

Concentrated samplers. We say a sampler S is S∗-concentrated if for all st, all

CSpλ-vectors C we have that

Pr [C(m0) = C(m1) 6= C(m∗)] ∈ Negl and Pr [C0(m0) 6= C∗(m∗)] ∈ Negl,

where the probability space of these is defined by the operations (C∗,m∗) ←$ S∗(z,C)

and (C0,C1,m0,m1, z) ←$ S(st).

Concentration is a property independent of unpredictability and we will be relying on

both in our construction. Unpredictability is used in the reduction to the DI assumption.
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Concentration guarantees the existence of a sampler S∗ that generates circuits C∗ and

messages m∗ which permit decoupling circuits and messages in the security proof. Intu-

itively, quantification over all C means that adversarially generated circuits will lead to

image matrices that collide with those leaked by the sampler with overwhelming prob-

ability. The additional restriction on C∗(m∗) guarantees that one can switch from the

honest branch of challenge tokens to one corresponding to the trojan branch. Both of

these properties are important to guarantee legitimacy when making a reduction to the

security of the FE scheme. We however need to impose that legitimacy also holds for

second-phase TGen queries as well, and this is where we need to assume Res-PRIV

security: the extra legitimacy condition allows us to ensure that by moving to m∗ the

legitimacy condition is not affected in the second phase either. Finally, an important ob-

servation is that, because we are dealing with concentrated samplers, our security proof

goes through assuming obfuscators that need only tolerate random auxiliary information.

Theorem 6 (TOX is Res-PRIV). If obfuscator Obf is DI secure, SE is IND-CPA se-

cure and FE is IND-CPA secure, then scheme TOX[FE,Obf, SE] is Res-PRIV secure with

respect to concentrated samplers.

Proof. The proof proceeds via a sequence of three games as follows.

Game0 : This game is identical to Res-PRIV: challenge vector Cb is extracted and mb

is encrypted for a random bit b and for all TGen queries, string 0n is encrypted

using SE in the trojan branch.

Game1 : In this game, instead of 0n we encrypt the circuits queried to the (first or

second-phase) TGen oracle under a symmetric key k∗ in the trojan branch. In

the challenge phase, we sample (C∗,m∗) ←$ S∗(z,C), where C are all first-phase

TGen queries, and encrypt C∗ under k∗ for the challenge circuits in the trojan

branch. This transition is negligible down to IND-CPA security of SE.

Game2 : In this game, instead of encrypting (0, 0,mb) we encrypt (1, k∗,m∗) in the

challenge phase where the latter is generated using S∗(z,C). We reduce this hop

to the IND-CPA security of FE. We generate a key k∗, answer first-stage TGen
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queries using the provided TGen oracle and encrypt circuits under k∗ in the tro-

jan branch to get st. We run S(st) and get (C0,m0,C1,m1, z). We then run

S∗(z,C), where C are all first-phase TGen queries, to get (C∗,m∗). We prepare

challenges tokens by encrypting C∗ under k∗ in the trojan branch and using the

provided TGen oracle we generate the challenge tokens. We query the provided

LR on (0, 0,mb) and (1, k∗,m∗) and receive the corresponding vector of cipher-

texts. Second-stage TGen queries are handled using provided TGen oracle and

k∗. Finally, we return the same bit that the distinguisher returns. Legitimacy of

first-stage TGen queries follows from the first condition on concentration that with

high probability C(mb) = C(m∗). For the challenge tokens, this follows from the

second concentration requirement that Cb(mb) = C∗(m∗). For the second-stage

queries we rely on the restriction on the adversary. Recall that in the Res-PRIV

model, any second-stage queries must have an image vector which matches one for

a first-stage query. Since the first-stage images match those on m∗ (and hence are

legitimate), the second-stage ones will be also legitimate. We output (b′ = b) where

the distinguisher outputs b′. As a result of this game, the challenge messages no

longer depend on b. It is easy to see that according to the IND-CPA challenge bit

this reduction interpolates between games Game1 and Game2.

Game3 : In this game we use C1 in challenge token generation even if b = 0. We show

this hop in unnoticeable down to the security of the obfuscator. We sample an

FE key pair and a symmetric key and simulating the first-stage TGen queries for

the adversary as before. We define a DI sampler that outputs the circuits that the

Res-PRIV sampler outputs, but extends the circuit list to include another copy of

C1 on both sides. This sampler also outputs as auxiliary information z′ the original

auxiliary information output by the PRIV sampler, extended with the random coins

used to generate the FE key, the symmetric key, and to run the first stage of the

adversary (this will allow the second stage DI adversary to reconstruct the keys

and first stage TGen queries). It follows that this sampler is unpredictable as

long as the Res-PRIV sampler is. When we receive the obfuscations and z′, we

generate (C∗,m∗) ←$ S∗(z,C), where C are all first-phase TGen queries. We
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form the challenge tokens using the received obfuscations and C∗, taking the C1

obfuscations from the duplicated part of the challenge, and the C0 obfuscations

from the original part (these can now be either C0 or C1 depending on the external

challenge bit). Challenge ciphertexts are generated by encrypting m∗ (rules of

Game2). We answer the second-stage TGen queries using the FE key and the

symmetric key. We return whatever the distinguisher returns. It is easy to see that

according to the DI challenge bit this reduction interpolates between games Game2

and Game3.

In Game3 both the challenge tokens and challenge ciphertexts are independent of the bit

b and hence the advantage of any adversary is 0.

Examples. Consider keyword samplers which output high-entropy keywords and mes-

sages with arbitrary image matrices. All such samplers are concentrated around a sampler

S∗ that outputs uniformly random keywords and messages subject to the same image pat-

tern. The second concentration condition is immediate and the first follows from the fact

that all messages and circuits have high entropy and C is selectively chosen. Although

this argument can be extended to samplers outputting low-entropy keywords whose com-

plete image matrix is predictable or is included in z, the latter requirement may not

always be the case in general. Consider, for example, a vector C consisting of circuits

for w = 0n and messages m0 = m1 whose components are randomly set to 0n and 1n.

The image matrix in this setting is unpredictable as long as a sufficiently large number

of messages are output.

Hyperplane membership circuits C[v](w) return 1 iff 〈v,w〉 = 0 (mod p) for a prime

p. As another example, consider unpredictable samplers of hyperplane membership cir-

cuits that output n vectors vi ∈ Zdp and m messages wi ∈ Zdp where all vector entries have

high entropy. Given the corresponding n ×m image matrix, whenever d(n + m) > nm,

a high-entropy pre-image to the image matrix can be sampled as the system will be un-

derdetermined. Under this condition, the second requirement needed for concentration is

met, and the first condition follows as this pre-image is high entropy and C is selectively

chosen. This observation implies that a DI obfuscator for the hyperplane membership

problem will immediately yield a private functional encryption scheme for the same func-
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tionality under arbitrary correlations via the TOX construction, a problem that was left

open in [BRS13b]. In Section 4.3.2 we gave a direct construction of a DI obfuscator

for hyperplane membership by proving that the obfuscator of Canetti, Rothblum and

Varia [CRV10] is DI secure in the presence of random auxiliary information under a

variant of the DDH assumption in the style of those used in [CRV10, BC14].

6.4 The disjunctively-obfuscate-extract (DOX)

transform

In this section, we present a construction specific to point functions. We were able to re-

move the limitation of the TOX transform that provides security guarantees only against

concentrated samplers, and achieve privacy in the presence of arbitrary correlations be-

tween searched keywords and encrypted messages. Our construction demands less from

the underlying functional encryption and obfuscator, and hence can potentially allow

more efficient instantiations of these primitives.

The DOX transform. Let Obf be an obfuscator supporting a point circuit family CSp

over message space MSp. Let FE be a functional encryption scheme supporting general

circuits, and let PRP be a pseudorandom permutation (see Section 2.3.1 for the formal

definition). We construct a keyword search scheme KS for keyword space WSp = MSp

via the Disjunctively-Obfuscate-Extract (DOX) transform as follows. The key-generation

algorithm samples a PRP key k←$ K(1λ) and an FE key pair (msk,mpk)←$ FE.Gen(1λ).

It returns ((k,msk),mpk). The encryption operation is identical to that of the FE scheme.

The test algorithm is identical to the evaluation algorithm of FE. The token-generation

algorithm computes

FE.TGen(msk,Obf(1λ,C[w]) ∨ Obf(1λ,C[E(k,w)])) .

The FE-extracted circuits are two-point circuits implemented as the disjunction of two

obfuscated point functions. One of the points will correspond to the searched query,

whereas the other point will be pseudorandom and will be only used for proofs of security.

(In a loose sense, the second point represents the second branch in the TOX construction.)
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As in OX, the composable VGB obfuscator of [BC14] for point functions and any general-

purpose functional encryption scheme (such as those in [GKP+13, GGH+13]) can be used

to instantiate the above construction. The supported circuit class would roughly amount

to two parallel group operations and two comparisons in a DDH group.

We show next that DOX is computationally correct. The proof relies on the fact that

correctness remains intact unless the adversary finds one of the hidden PRP values, and

the probability of the latter can be bounded by the one-way security of the obfuscator

and the pseudorandomness of PRP.

Theorem 7 (DOX is computationally correct). Let Obf be an obfuscator and let FE be a

computationally correct FE scheme. Then DOX[FE,PRP,Obf] is computationally correct

if the underlying PRP is pseudorandom and Obf is OW secure. More precisely, for any

adversary A in game CC against DOX[FE,PRP,Obf], placing at most t queries to TGen,

there exist adversaries B1, B2 and B3 such that

Advcc
KS,A(λ) ≤ Advcc

FE,B3(λ) + (t+ 1) ·Advow
Obf,B2(λ) + Advprp

PRP,B1(λ) +
t+ 1

|WSpλ|
.

Proof. The proof is simple and follows two game hops as follows.

Game0 : This is the CC game with respect to FE and PRP.

Game1 : In this game instead of a PRP a truly random permutation (simulated via lazy

sampling) is used in the calculation of tokens in TGen oracle and preparing tp.

Game2 : In this game, if a token generation query or one of A’s output words matches

any of the randomly generated words (via lazy sampling) the game aborts.

The analyses of the game transitions are straightforward. The transition from Game0

to Game1 relies on the security of the PRP. The transition from Game1 to Game2 is down

to the one-way security of the obfuscator (note that the only information leaked to the

adversary about each of the random keywords is via an obfuscated circuit included in

the extracted tokens). Finally, the advantage of the adversary in Game2 can be bounded

down to the correctness of FE. We give the details next.

Game0 to Game1. Any adversary A with visible advantage difference in these two games

can be converted to an adversary B1 against the security of the PRP. Assume that lazy
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sampling is implemented using a table T , i.e., T [w] indicates the random value assigned

to w. Algorithm B1 starts by generating an FE key pair. It handles a queries w of A
to TGen by first computing w′ ← Fn(w) via its Fn oracle, obfuscating the circuits

associated with these keywords, and finally generating a token for the disjunction of the

obfuscated circuits using the master secret key. Token generation after A terminates is

handled similarly, and the remaining operations in of the CC game can be simulated

using mpk. B1 will finally check if A succeeded in breaking correctness. If so, then its

output will be 0. Else, it will be 1.

Note that when the Fn oracle implements the PRP, Game0 is simulated for A, and

when it implements a random permutation Game1 is simulated. A simple probability

analysis yields,

Pr[Game0(1λ)]− Pr[Game1(1λ)] = Advprp
PRP,B1(λ) .

Game1 to Game2. Let us consider that the game is aborted if, at the end of the execution

of Game2, one considers all keywords explicitly output by the adversary (i.e., all w∗ in

the list of keywords queried from TGen plus the challenge keyword and message output

by the adversary when it terminates), and for some keyword w in table T we have:

w∗ = T [w] .

We bound the probability that this bad flag is set via the one-way security of the obfus-

cation. We build the required B2 against the (t + 1)-OW security of Obf as follows. B2

first guesses the query i in which A first produces w by choosing an index i ←$ [t + 1],

where t is an upper bound on the number of TGen queries that A makes and the extra

1 accounts for the challenge keyword it produces on termination. B2 then generates an

FE key pair, runs A and answers its TGen queries using the master secret key and con-

structing T [w] as before, except when the i-th query comes (and all future w queries). In

the latter case, B2 uses a new challenge obfuscated circuit it receives in the one-wayness

game. Note that we have implicitly programmed T [w] to be an unknown value, which

leads to an inconsistency with probability at most (t+ 1)/|WSp|: an upper bound on the

probability that this value collides with one of the values in T during the entire game.

When the bad event is detected, and if B2’s guess was correct, then B2 can recognize the
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faulty keyword by checking the obfuscated circuits it received for a match, and it can win

the one-wayness game. Hence,

Pr[Game1(1λ)]− Pr[Game2(1λ)] ≤ (t+ 1) ·Advow
Obf,t,B2(λ) +

t+ 1

|WSpλ|
.

Analysis of Game2. In this game we use A to build an adversary against the compu-

tational correctness of the underlying FE scheme. Note that if Game2 does not abort,

then m 6= T (w) when A terminates. We show that if A wins without any aborts we can

build an adversary B3 which wins the FE correctness game. Algorithm B3 gets mpk and

runs A on it. It answers A’s TGen queries using its own oracle, still lazily sampling T [w]

and asking for a trapdoor on the disjunction of the obfuscated circuits. When A returns

(m,w), algorithm B3 also returns these. Note that this is winning pair iff it is a winning

pair in the FE game. We therefore have

Pr[Game2(1λ)] = Advcc
FE,B3(λ) .

The proof of Res-PRIV security of this construction involves an intricate game hopping

argument, in order to deal with all possible correlations allowed by the Res-PRIV model

(which are the same as those allowed by full PRIV). We outline it below, highlighting

how various ingredients are used in the construction, and provide a detailed proof in

Appendix 8.

Theorem 8 (DOX is Res-PRIV). If FE is an IND-CPA-secure functional encryption

scheme, PRP is a PRP-secure pseudorandom permutation family and Obf is a DI-secure

obfuscator then scheme DOX[FE,PRP,Obf] is a Res-PRIV-secure keyword search scheme.

Outline. The proof proceeds along six games as follows. Roughly speaking, after moving

to a random permutation in Game1 (and some bookkeeping in Game2), in Game3 we move

from correlations between messages and keywords to their repetition patterns. In Game4,

we use obfuscation to deal with repetitions among keywords that do not match any of the

messages (and were not queried to TGen in first phase). In Game5, we use FE security

to remove repetitions among messages that do not match any of the challenge keywords

and were not queried to token-generation either (either due to legitimacy or adversarial
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restriction). Repetitions in all other cases can be dealt with using explicit values, the

image matrix, or obfuscations. These steps make challenge ciphertexts independent of the

challenge bit. In Game6, using the security of the obfuscator we move to a setting where

challenge tokens are also independent of the bit. In Game6 advantage of any adversary

is 0.

Game0 : This game is identical to the Res-PRIV game.

Game1 : Instead of PRP, a truly random permutation is used in TGen. We simulate the

random permutation via a lazily sampled table T . This transition is sound down

to PRP security.

Game2 : We introduce a bad flag. We generate PRP values for all keywords and messages.

If there are two T -values (x1, T (x2)) and (x2, T (x2)) such that x1 = T (x2) we set

bad. By the OW security of the obfuscator, these PRP values remain hidden and

bad can only be set with negligible probability.

Game3 : We compute the ciphertexts by encrypting T (m∗b) instead of m∗b . This hop

is reduced to the IND-CPA security of the FE, via explicit knowledge of challenge

keywords and message by running the ppt sampler. Legitimacy will be violated if

there is a w queried to TGen such that w = T (mb) or mb = T (w). Both of these

events set bad.

Game4 : Call a challenge keyword unpaired if it was not any of the challenge messages,

and new if it is not queried to first-phase TGen. In this game, instead of T

values we use forgetful random values for all new and unpaired keywords. We

bound this hop using DI. We simulate first-phase TGen using a lazily sampled

T and a msk. Next, we run the Res-PRIV sampler explicitly and identify all new

unpaired keywords. We define a DI sampler to sample consistent values on left

and forgetful values on right (both independently of T ), together with a second set

consisting of sufficiently many consistent values on both sides. (The DI sampler

does not need to respect any equality patterns.) This sampler can be shown to

be statistically unpredictable. Once we receive the obfuscations, we use the first

set, the explicit knowledge of challenge values and table T to form the challenge
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tokens and ciphertexts. For second-phase TGen queries we need to use consistent

T values throughout. For values which match a first-phase query or a challenge

messages we use T . If a query happens to match a new unpaired keywords—we

can check this using the explicit knowledge of the keywords—we use a value from

the second set of obfuscations. Otherwise we sample T values. We return 1 iff the

adversary succeeds.

Game5 : Call a challenge message unpaired if it is not any of the challenge keywords,

LR-identical if m∗0 = m1, LR-differing if not equal, and new if it is unpaired and

not queried to first-phase TGen. In this game instead of T values we use forgetful

values for all unpaired LR-differing messages and all new LR-identical messages.

We bound this hop down to IND-CPA. We will use the provided TGen oracle

and only need to set T -values correctly. For first-phase TGen queries we lazily

sample T . Next we run the sampler explicitly to obtain the challenges. For paired

keywords or messages we use T -consistent values. For new unpaired keywords we

use forgetful values (rule in Game4). For unpaired messages, if LR-identical and

queried to first-phase TGen (hence not new) we also use consistent T values. For

LR-differing or new LR-identical messages we call LR in FE game, asking for T -

consistent values on the left and independent forgetful values on the right. Note that

LR-differing messages and new LR-identical messages are not queried to TGen at

all due to our restriction on the adversary. If a second-phase TGen query matches

a forgetful value generated in computing the LR query, we stop and guess that

forgetful values were encrypted. (These values are information theoretically hidden

if not encrypted.) Otherwise, we return 1 iff the adversary succeeds.

Game6 : In this game, irrespective of the bit, we use the second set of keywords for

challenge token generation. We reduce this transition to the DI game. First-phase

TGen queries are answered using a lazily sampled T and a generated msk. We set

the DI sampler to run the PRIV sampler and on top of the output keywords, also

ask for obfuscations of messages that are at the same time LR-identical, unpaired

and new (it also outputs the random coins of first stage adversary, key generation

and token extraction, along with a full image matrix as extra auxiliary information
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that will be needed for the second stage simulation). Using the symmetry of roles

for keywords and messages in point functions, this sampler can be shown to be

unpredictable whenever the PRIV sampler is. The obfuscations of messages will

allow us to check if any of these messages (hidden under the obfuscation) match a

first-phase TGen query. We need this as according to the rules of Game5 we must

use T -consistent values. For paired messages, which we can find using the image

matrix, we also use T -consistent values. For unpaired keywords we use forgetful

values. For all other unpaired messages (be it LR-differing or never queried to

TGen) we use forgetful values (Game5). Second phase TGen queries are answered

using T -consistent values relying on the fact that we can use the obfuscations to

check matches with paired keywords and the restriction that adversary cannot query

a new unpaired LR-identical messages to TGen. We return 1 iff the adversary

succeeds.

Challenge tokens in Game6 are independent of the challenge bit. Due to the modi-

fications in Game4 and Game5, the challenge ciphertexts are also independent of it. To

see this note that ciphertexts contain on left and right: (1) identical T -consistent values

that follow the correct repetition pattern for paired massages; (2) forgetful (independent)

values for LR-differing messages; (3) identical T -consistent values that follow the correct

repetition pattern for LR-identical messages queried in the first stage; (4) forgetful (inde-

pendent) values for LR-identical messages not queried in the first stage. The adversary,

therefore, has zero advantage in this game.

6.5 The verifiably-obfuscate-encrypt-extract

(VOEX) transform

We now present a fifth construction for point functions, which although simpler, con-

ceptually relies on the observation that messages can be encoded as circuits that other

circuits can evaluate. The obfuscator that we will rely on in our construction needs to

be verifiable, meaning that there is an efficient algorithm to determine if a circuit C is an

obfuscation of a point function C[m] for a message m ∈ MSpλ. This property can be easily
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added by attaching a NIZK proof that there exist (m, r) such that C = Obf(1λ,C[m]; r).

The VOEX transform. Let NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) be a non-

interactive zero-knowledge proof system (see Section 2.3.4). Let Obf be an obfuscator

supporting a circuit family CSp := {CSp1
λ∪CSp2

λ}λ∈N, where CSp1
λ := {C[m] : m ∈ MSpλ}

and CSp2
λ := {D[crs,m] : m ∈ MSpλ, crs ∈ [NIZK.Setup(1λ)]} with

D[crs,w](C, π) :=

1 if NIZK.Verify(crs,C, π) ∧ C(w) = 1 ;

0 otherwise.

Let RSp := {RSpλ}λ∈N denote the randomness space of Obf. Let FE be a functional

encryption scheme supporting general circuits. We construct a keyword search scheme

KS := VOEX[FE,NIZK,Obf] via the Verifiably-Obfuscate-Encrypt-Extract (VOEX) trans-

form for keyword space WSp := MSp as follows.

Setup: Algorithm KS.Gen(1λ) generates a functional encryption key pair (msk,mpk)←$

FE.Gen(1λ) and a common reference string crs ←$ NIZK.Setup(1λ). It returns the

key pair ((msk, crs), (mpk, crs)).

Encryption: Algorithm KS.Enc((mpk, crs),m) generates C ←$ Obf(1λ,C[m]; r) for r ←$

RSpλ. It sets π←$ NIZK.Prove(crs,C, (m, r)) and finally returns FE.Enc(mpk, (C, π)).

Token generation: Algorithm KS.TGen((msk, crs),w) generates a token for the circuit

D[crs,w] using the token-extraction algorithm FE.TGen and returns the result.

Evaluation: Algorithm KS.Test(c, tk) simply runs FE.Eval(c, tk).

Correctness of the construction follows from the correctness of the obfuscator and

that of the functional encryption scheme, as well as the completeness of the proof system.

Before presenting the theorem, we clarify the requirements on the underlying obfuscation

scheme.

PRIV-restricted samplers. As shown in the work of Barak et al. [BGI+01], no 2-

circuits general-purpose VBB obfuscator exists. This impossibility result can be extended

to rule out general-purpose DI obfuscation as well and, in particular, DI obfuscation

supporting the class of circuits we require for instantiating our construction above. Briefly,

76



consider the circuits D[w](C) := C(w) and a sampler S that outputs circuits (D[w],C[w])

on the left and (D[w],C[w]) on the right for a uniform keyword w. This sampler can

be shown to be unpredictable. However, the DI game can be won by evaluating (an

obfuscation of) the first challenge circuit on an obfuscation of the second challenge circuit.

For our particular construction, however, we rely on a weaker form of obfuscation that

is only required to support samplers that output circuits and messages that are restricted

by the PRIV legitimacy condition (this is a result of our reduction strategy). Concretely,

such circuits and messages will result on image matrices that are identical on the left and

right, which completely rules out attacks akin to those in [BGI+01]. We call this class

of DI samplers PRIV-restricted. Formally, a DI sampler S is PRIV-restricted for circuit

class CSp if for a legitimate PRIV sampler S ′ and a non-interactive zero-knowledge proof

system NIZK it operates as follows.

S(1λ, st, crs) : (w0,w1,m0,m1, z) ←$ S ′(1λ, st);
if crs /∈ [NIZK.Setup(1λ)] return ([], [], ε)

else return ((D[crs,w0],C[m0]), (D[crs,w1],C[m1]), (z,C[w0](m0)))

The PRIV security of the VOEX construction is established in the following theorem.

Theorem 9 (VOEX is PRIV secure). If FE is IND-CPA secure, NIZK is perfectly sound

and computationally zero-knowledge, and obfuscator Obf is DI secure with respect to

PRIV-restricted samplers, then scheme VOEX[FE,Obf,NIZK] is PRIV secure.

Proof (Outline). The proof follows a sequence of three game hops.

Game0 : This is the PRIV game for the VOEX construction.

Game1 : We say a message mb[i] is unpaired if mb[i] /∈ wb. Note that for all legitimate

samplers if m0[i] is unpaired, so is m1[i]. In this game, the LR oracle replaces all un-

paired messages (on both sides) which are LR-differing (that is, when m0[i] 6= m0[i])

with random and independently sampled values. The distance to the previous game

can be upper bounded using the IND-CPA security of the FE scheme. The legiti-

macy of the algorithm playing the IND-CPA game in the reduction is guaranteed

because: (1) replaced messages are LR-differing and therefore the adversary cannot

77



ask tokens for those in the PRIV game (and hence also the IND-CPA hame); (2)

replacements are random and information-theoretically hidden from the adversary

when the original messages are encrypted, and if the adversary asks for token for

one of the random replacements, it can be only because the ciphertexts are leaking

one of these replacements.

Game2 : In this game we use Sim to generate simulated proofs in the LR oracle without

using the explicit knowledge of the messages. The distance to the previous game

can be bounded by the zero-knowledge property of the NIZK proof system.

Game3 : In this game, regardless of bit b, we use the second set of keywords and messages

to generate the challenge. We reduce this transition to the DI game. We set the

DI sampler to take a crs along with the state st required to run the PRIV sampler;

it runs the PRIV sampler to obtain keywords and messages, and it outputs a D

circuit (with a hardwired crs) for every keyword and a C circuit for every message

(after carefully replacing LR-differing unpaired messages with random values as in

Game1). This DI sampler is by definition PRIV-restricted and it is unpredictable

whenever the underlying PRIV sampler is unpredictable. The proof of this fact

relies on the perfect soundness of the proof system under the binding crs, whose

validity we assume can be efficiently checked [GS08]. The PRIV predictor uses

its oracle to answer the DI predictor’s queries (if a query contains an obfuscated

point circuit and the attached proof verifies, the unbounded PRIV predictor can

reverse-engineer the obfuscated circuit to recover its underlying point, and query its

own oracle on it). The adversary against the DI game simulates the environment

of Game2 as follows. It generates a key pair (msk,mpk) and simulated (crs, tp) for

the NIZK, and then it runs the first stage of the PRIV adversary until it obtains

state st for the LR oracle call. It then calls its own LR oracle on (st, crs), obtaining

a set of obfuscations. As before, the trapdoor tp is used to produce simulated

proofs of the obfuscations of C circuits corresponding to messages, resulting in well-

formed challenge ciphertexts. It then runs the second stage of the PRIV adversary,

answering its token extraction queries using the master secret key and, when this

adversary returns a bit b′, it uses it as its own guess.
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In Game3, the challenge is independent of bit b and therefore the adversary has zero

advantage.
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Chapter 7

Updatable Functional Encryption

The results described in this section have been published in [AIT16].

The concept of functional encryption (FE), a generalization of identity-based encryp-

tion, attribute-based encryption, inner-product encryption and other forms of public-key

encryption, was independently formalized by Boneh, Sahai and Waters [BSW11] and

O’Neil [O’N10]. In 2013, Garg et al. [GGH+13] put forth the first candidate construc-

tion of an FE scheme supporting all polynomial-size circuits based on indistinguishability

obfuscation (iO), which is now known as a central hub for the realization of many cryp-

tographic primitives [SW14].

The most common approach is to model functions as circuits. In some works, however,

functions are modeled as Turing machines (TM) or random-access machines (RAM). Re-

cently, Ananth and Sahai [AS16] constructed an adaptively secure functional encryption

scheme for TM, based on indistinguishability obfuscation. Nonetheless, their work does

not tackle the problem of having the token update the encrypted message, over which

other tokens can be subsequently executed.

In the symmetric setting, the notion of garbled RAM, introduced by Lu and Ostro-

vsky [LO13] and revisited by Gentry et al. [GHL+14], addresses this important use-

case where garbled memory data can be reused across multiple program executions.

Garbled RAM can be seen as an analogue of Yao’s garbled circuits [Yao86] (see also

[BHR12] for an abstract generalization) that allows a user to garble a RAM program

without having to compile it into a circuit first. As a result, the time it takes to eval-
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uate a garbled program is only proportional to the running time of the program on

a random-access machine. Several other candidate constructions were also proposed

in [GHRW14, CHJV14, CHJV15, CH16].

Desmedt et al. [DIPV14] proposed an FE with controlled homomorphic properties.

However, their scheme updates and re-encrypts the entire data, which carries a highly

inefficient evaluation-time.

Our contribution. In this chapter, we propose a new primitive that we call updat-

able functional encryption (UFE). It bears resemblance to functional encryption in that

encryption is carried out in the public-key setting and the owner of the master secret

key can issue tokens for functions—here, modeled as RAM programs—of its choice that

allow learning the outcome of the function on the message underneath a ciphertext. We

envision tokens that are also capable to update the ciphertext, over which other tokens

can be subsequently executed. We impose strict efficiency constrains in that the run-time

of a token P on ciphertext CT is proportional to the run-time of its clear-form counterpart

(program P on memory D) up to a polylogarithmic factor in the size of D. We define a se-

curity notion for our primitive and propose a candidate construction based on an instance

of distributional indistinguishability (DI) obfuscation. Recent results put differing-inputs

obfuscation (diO) [ABG+13] with auxiliary information in contention with other assump-

tions [BST16]; one might question if similar attacks apply to the obfuscation notion we

require in our reduction. As far as we can tell, the answer is negative. However, we view

our construction as a starting point towards the realization of other updatable functional

encryption schemes from milder forms of obfuscation.

7.1 RAM programs

In the RAM model of computation, a program P has random-access to some initial

memory data D, comprised of |D| memory cells. At each CPU step of its execution,

P reads from and writes to a single memory cell address, which is determined by the

previous step, and updates its internal state. By convention, the address in the first

step is set to the first memory cell of D, and the initial internal state is empty. Only

when P reaches the final step of its execution, it outputs a result y and terminates. We
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use the notation y ← PD→D? to indicate this process, where D? is the resulting memory

data when P terminates, or simply y ← PD if we don’t care about the resulting memory

data. We also consider the case where the memory data persists between a sequential

execution of n programs, and use the notation (y1, ..., yn)← (P1, ...,Pn)D→D? as short for

(y1 ← PD→D1
1 ; ... ; yn ← PDn−1→D?

n ). In more detail, a RAM program description is a

4-tuple P := (Q, T ,OSp, δ), where:

• Q is the set of all possible states, which always includes the empty state ε.

• T is the set of all possible contents of a memory cell. If each cell contains a single

bit, T = {0, 1}.

• OSp is the output space of P, which always includes the empty output ε.

• δ is the transition function, modeled as a circuit, which maps (Q × T ) to (T ×
Q× N× OSp). On input an internal state sti ∈ Q and a content of a memory cell

readi ∈ T , it outputs a (possibly different) content of a memory cell writei ∈ T , an

internal state sti+1 ∈ Q, an address of a memory cell addri+1 ∈ N and an output

y ∈ OSp.

In Figure 7.1 we show how program P is executed on a random-access machine with initial

memory data D.

To conveniently specify the efficiency and security properties of the primitive we

propose in the following section, we define functions runTime and accessPattern that on

input a program P and some initial memory data D return the number of steps required for

P to complete its execution on D and the list of addresses accessed during the execution,

respectively. In other words, as per description in Figure 7.1, runTime returns the value i

when P terminates, whereas accessPattern returns List. More generally, we also allow these

functions to receive as input a set of programs (P1, ...,Pn) to be executed sequentially on

persistent memory, initially set to D.
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Execute PD:

i← 0; addri ← 0; sti ← ε; y← ε; List← []

while (y = ε)

// step i

List← addri : List // record the access pattern

readi ← D[addri] // read from memory

(writei, sti+1, addri+1, y)← δ(sti, readi)

D[addri]← writei // write to memory

i← i+ 1

return (y)

Figure 7.1: Execution process of a program P on a RAM machine with memory D.

7.2 Definitions

We propose a new primitive that we call updatable functional encryption. It bears re-

semblance to functional encryption in that encryption is carried out in the public-key

setting and the owner of the master secret key can issue tokens for functions of its choice

that allows the holder of the token to learn the outcome of the function on the message

underneath a ciphertext. Here, we model functions as RAM programs instead of circuits,

which is closer to how programs are expressed in von Neumann architecture and avoids

the RAM-to-circuit compilation. Not only that, we envision tokens that are capable to

update the ciphertext, over which other tokens can be subsequently executed. Because

the ciphertext evolves every time a token is executed and for better control over what

information is revealed, each token is numbered sequentially so that it can only be exe-

cuted once and after all previous extracted tokens have been executed on that ciphertext.

Informally, the security requires that the ciphertext should not reveal more than what can

be learned by applying the extracted tokens in order. As for efficiency, we want the run-

time of a token to be proportional to the run-time of the program up to a polylogarithmic

factor in the length of the encrypted message.

Syntax. An updatable functional encryption scheme UFE for program family P :=

{Pλ}λ∈N with message space MSp := {MSpλ}λ∈N is specified by three ppt algorithms as

follows.
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• UFE.Setup(1λ) is the setup algorithm and on input a security parameter 1λ it out-

puts a master secret key msk and a master public key mpk;

• UFE.TokenGen(msk,P, tid) is the token-generation algorithm and on input a master

secret key msk, a program description P ∈ Pλ and a token-id tid ∈ N, outputs a

token (i.e. another program description) Ptid;

• UFE.Enc(mpk,D) is the encryption algorithm and on input a master public key mpk

and memory data D ∈ MSpλ outputs a ciphertext CT.

We do not explicitly consider an evaluation algorithm. Instead, the RAM program P

output by UFE.TokenGen executes directly on memory data CT, a ciphertext resulting

from the UFE.Enc algorithm. Note that this brings us close to the syntax of Garbled

RAM, but in contrast encryption is carried out in the public-key setting.

Correctness. We say that UFE is correct if for every security parameter λ ∈ N,

for every memory data D ∈ MSpλ and for every sequence of polynomial length in λ of

programs (P1, ...,Pn), it holds that

Pr


y1 = y′1 ∧ ... ∧ yn = y′n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(msk,mpk) ←$ UFE.Setup(1λ)

CT ←$ UFE.Enc(mpk,D)

for i ∈ [n]

Pi ←$ UFE.TokenGen(msk,Pi, i)

(y1, ..., yn)← (P1, ...,Pn)D

(y′1, ..., y
′
n)← (P1, ...,Pn)CT


= 1.

Efficiency. Besides the obvious requirement that all algorithms run in polynomial-time

in the length of their inputs, we also require that the run-time of token P on ciphertext

CT is proportional to the run-time of its clear-form counterpart (program P on memory

D) up to a polynomial factor in λ and up to a polylogarithmic factor in the length of

D. More precisely, we require that for every λ ∈ N, for every sequence of polynomial

length in λ of programs (P1, ...,Pn) and every memory data D ∈ MSpλ, there exists a
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fixed polynomial function poly and a fixed polylogarithmic function polylog such that

Pr


runTime((P1, ...,Pn),CT) ≤
runTime((P1, ...,Pn),D)·
poly(λ) · polylog(|D|)

∣∣∣∣∣∣∣∣∣∣∣∣

(msk,mpk) ←$ UFE.Setup(1λ)

CT ←$ UFE.Enc(mpk,D)

for i ∈ [n]

Pi ←$ UFE.TokenGen(msk,Pi)

 = 1.

In particular, this means that for a program P running in sublinear-time in |D|, the

run-time of P over the encrypted data remains sublinear.

Security. Let UFE be an updatable functional encryption scheme. We say UFE is

selectively secure if for any legitimate ppt adversary A

Advsel
UFE,A(λ) := 2 · Pr

[
SELAUFE(1λ)

]
− 1 ∈ Negl,

where game SELAUFE(1λ) is defined in Figure 7.2. We say A is legitimate if the following

two conditions are satisfied:

1. (P1, ...,Pn)D0 = (P1, ...,Pn)D1

2. accessPattern((P1, ...,Pn),D0) = accessPattern((P1, ...,Pn),D1)

These conditions avoid that the adversary trivially wins the game by requesting tokens

whose output differ on left and right challenge messages or have different access patterns.

SELAUFE(1λ):

(D0,D1, (P1, ...,Pn), st) ←$ A0(1λ)

(msk,mpk) ←$ UFE.Setup(1λ)

b ←$ {0, 1}
CT ←$ UFE.Enc(mpk,Db)

for i ∈ [n]

Pi ←$ UFE.TokenGen(msk,Pi)

b′ ←$ A1(CT, (P1, ...,Pn), st)

return (b = b′)

Figure 7.2: Selective security of an updatable functional encryption scheme UFE.
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7.3 Candidate construction

The idea of our construction is the following. Before encryption we append to the cleartext

the token-id of the first token to be issued, the address of the first position to be read

and the initial state of the program. These values are all pre-defined at the beginning.

We then split the data into bits and label each of them with a common random tag, their

position on the array and a counter that keeps track of how many times that bit was

updated (initially 0). Then, we build a Merkle tree over the labeled bits. Later, this will

allow us to check the consistency of the data without having to read through all of it. It

also binds a token-id, a read-position and a state to the data at a particular stage. Finally,

we encrypt each node of the tree, twice, and attach a NIZK proof attesting that they

encrypt the same content. Tokens include the decryption key inside their transition circuit

in order to perform the computation over the clear data and re-encrypt the nodes at the

end of each CPU step. These circuits are obfuscated to protect the decryption key, and

the random coins necessary to re-encrypt come from a puncturable PRF. The proof then

follows a mix of different strategies seen in [NY90, IPS15, GGH+13, ABF16, GJKS15].

• UFE.Setup(1λ) samples public-key encryption key pairs (sk0, pk0)←$ PKE.Setup(1λ)

and (sk1, pk1)←$ PKE.Setup(1λ), a common reference string crs←$ NIZK.Setup(1λ)

and a collision-resistant hash function H ←$ Hλ. It then sets constants (l1, l2, l3)

as the maximum length of token-ids, addresses and possible states induced by

the supported program set Pλ, respectively, encoded as bit-strings. Finally, it

sets msk ← sk0 and mpk ← (pk0, pk1, crs,H, (l1, l2, l3)) and outputs the key pair

(msk,mpk).

• UFE.Enc(mpk,D) parses mpk as (pk0, pk1, crs,H, (l1, l2, l3)) and appends to the mem-

ory data D the token-id 1, address 0 and the empty state ε, encoded as bit-stings

of length l1, l2 and l3, respectively: D ← (D, 1, 0, ε). (We assume from now on

that |D| is a power of 2. This is without loss of generality since D can be padded.)

UFE.Enc sets z← log(|D|), samples a random string tag ←$ {0, 1}λ and constructs

a perfectly balanced binary tree T := {node(i,j)}, where leafs are set as

∀j ∈ {0, ..., (|D| − 1)}, node(z,j) ← (D[j], tag, (z, j), 0)
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and intermediate nodes are computed as

∀i ∈ {(z− 1), ..., 0}, ∀j ∈ {0, ..., (2i − 1)},

node(i,j) ← (H(node(i+1,2j), node(i+1,2j+1))).

UFE.Enc then encrypts each node independently under pk0 and pk1, i.e.

∀i ∈ {0, ..., z}, ∀j ∈ {0, ..., (2i − 1)},

r
(i,j)
0 ←$ RSpλ ; r

(i,j)
1 ←$ RSpλ

CT
(i,j)
0 ← PKE.Enc(pk0, node

(i,j); r
(i,j)
0 )

CT
(i,j)
1 ← PKE.Enc(pk1, node

(i,j); r
(i,j)
1 )

and computes NIZK proofs that CT
(i,j)
0 and CT

(i,j)
1 encrypt the same content. More

precisely,

∀i ∈ {0, ..., z}, ∀j ∈ {0, ..., (2i − 1)},

π(i,j) ←$ NIZK.Prove(crs, x(i,j), (node(i,j), r
(i,j)
0 , r

(i,j)
1 )),

where x(i,j) is the NP statement

∃(m, r0, r1) : CT
(i,j)
0 = PKE.Enc(pk0,m; r0) ∧ CT

(i,j)
1 = PKE.Enc(pk1,m; r1).

Finally, UFE.Enc lets

CT := {(CT(i,j)
0 ,CT

(i,j)
1 , π(i,j))},

which encodes a perfectly balanced tree, and outputs it as a ciphertext of memory

data D under mpk.

• UFE.TokenGen(msk,mpk,P, tid) parses (pk0, pk1, crs,H, (l1, l2, l3))← mpk, sk0 ← msk

and (Q, T ,OSp, δ)← P. Then, a new puncturable PRF key k ←$ PPRF.Gen(1λ) is

sampled. Next, it sets a circuit δ̂ as described in Figure 7.3, using the parsed values

as the appropriate hardcoded constants with the same naming. UFE.TokenGen then

obfuscates this circuit by computing δ ←$ Obf(δ̂). Finally, for simplicity in order

to avoid having to explicitly deal with the data structure in the ciphertext, and

following a similar approach as in [CCHR15], we define token P not by its transi-

tion function, but by pseudocode, as the RAM program that executes on CT the

following:
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1. Set initial state st← ε, initial address addr← 0 and empty output y← ε.

2. While (y = ε)

(a) Construct a tree T by selecting from CT the leaf at address addr and the

last (l1 + l2 + l3) leafs (that should encode tid, addr and st if CT is valid),

as well as all the necessary nodes to compute the hash values of their path

up to the root.

(b) Evaluate (T, addr, y)← δ(T).

(c) Update CT by writing the resulting T to it.

3. Output y.

Theorem 10. Let PKE be an IND-CCA secure public-key encryption scheme, let NIZK be

a non-interactive zero knowledge proof system with perfect completeness, computational

zero knowledge and statistical soundness, let H be a collision-resistant hash function fam-

ily, let PPRF be a puncturable pseudorandom function and let Obf be an iO-secure obfus-

cator that is also DI-secure w.r.t. the class of samplers described in Game4. Then, the

updatable functional encryption scheme UFE[PKE,NIZK,H,PPRF,Obf] detailed in Sec-

tion 7.3 is selectively secure (as per definition in Figure 7.2).

Proof (Outline). The proof proceeds via a sequence of games as follows.

Game0 : This game is identical to the real SEL game when the challenge bit b = 0, i.e.

the challenger encrypts D0 in the challenge ciphertext.

Game1 : In this game, the common reference string and NIZK proofs are simulated. More

precisely, at the beginning of the game, the challenger executes (crs, tp)←$ Sim0(1λ)

to produce the crs that is included in the mpk, and proofs in the challenge ciphertext

are computed with Sim1 and tp. The distance to the previous game can be bounded

by the zero-knowledge property of NIZK.

Game2 : Let T0 := {node(i,j)
0 } be the perfectly balanced tree resulting from the encoding

of D0 with tag0, and T1 := {node(i,j)
1 } the one resulting from the encoding of D1

with tag1, where (D0,D1) are the challenge messages queried by the adversary and
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Hardcoded: Transition circuit δ, token-id tid∗, secret key sk0, puncturable PRF key k, public keys pk0 and pk1,
common reference string crs, hash function H and bit-length constants (l1, l2, l3).
Input: Tree T.

Execute these 7 steps:

1. Verify the NIZK proof in each node of tree T, and decrypt the first ciphertext of each node with sk0. Let
T be the resulting decrypted tree.

∀(i, j) ∈ N2 : node
(i,j) ∈ T,

parse node
(i,j)

as (CT
(i,j)
0 ,CT

(i,j)
1 , π(i,j)) or return ⊥

if NIZK.Verify(crs, x(i,j), π(i,j)) = false return ⊥
node(i,j) ← PKE.Dec(sk0,CT

(i,j)
0 )

let T := {node(i,j)}

2. On the decrypted tree T, verify the path of each leaf up to the root (i.e. intermediate nodes must be
equal to the hash of their children) and check that all leafs are marked with the same random tag.

z← max{i ∈ N : node(i,j) ∈ T, ∃j ∈ N}
∀j ∈ N : node(z,j) ∈ T,
∀i ∈ {(z− 1), ..., 0}

if node
(i,b j

2(z−i) c) 6= H(node
((i+1),2b j

2(z−i) c), node
((i+1),(2b j

2(z−i) c+1))
) return ⊥

parse node(z,j) as (value(z,j), tag(z,j), position(z,j), counter(z,j)) or return ⊥
if ∃(j, j′) ∈ N2 : node(z,j) ∈ T ∧ node(z,j′) ∈ T ∧ tag(z,j) 6= tag(z,j′) return ⊥

3. Read the token-id, address and state of the current step encoded in tree T. Check that the token-id
matches the one hardcoded in this token. Then, evaluate the transition circuit δ.

read (tid, addr, st) with fixed bit-length (l1, l2, l3) from T or return ⊥
if tid 6= tid∗ return ⊥
(value(z,addr), st, addr, y)← δ(st, value(z,addr))

4. If the transition circuit δ outputs some result y then increase the token-id and reset the internal state and
address.

if y 6= ε then tid← tid + 1 ; st← 0 ; addr← 0

5. Write the (possibly new) token-id, address and state to tree T, update the counters of leaf nodes and
recompute the path of each leaf up to the root.

write (tid, addr, st) with fixed bit-length (l1, l2, l3) to T
∀j ∈ N : node(z,j) ∈ T,
counter(z,j) ← counter(z,j) + 1
∀j ∈ N : node(z,j) ∈ T,
∀i ∈ {(z− 1), ..., 0}
node

(i,b j

2(z−i) c) ← H(node
((i+1),2b j

2(z−i) c), node
((i+1),(2b j

2(z−i) c+1))
)

6. Re-encrypt all nodes of T (as before, encrypt under pk0 and pk1 and add NIZK proofs under crs). To
extract the necessary random coins, we use the puncturable PRF under key k, providing as input the
input of this circuit, i.e. T.
∀(i, j) ∈ N2 : node(i,j) ∈ T,

(r
(i,j)
0 , r

(i,j)
1 , r

(i,j)
π )← PPRF.Eval(k, (T, (i, j)))

∀(i, j) ∈ N2 : node(i,j) ∈ T,

CT
(i,j)
0 ← PKE.Enc(pk0, node

(i,j); r
(i,j)
0 )

CT
(i,j)
1 ← PKE.Enc(pk1, node

(i,j); r
(i,j)
1 )

π(i,j) ← NIZK.Prove(crs, x(i,j), (node(i,j), r
(i,j)
0 , r

(i,j)
1 ); r

(i,j)
π )

7. Finally, output the updated (encrypted) tree T, the address for next iteration and possibly the outcome
of the token.

return (T, addr, y)

Figure 7.3: Specification of circuit δ̂, as part of our updatable functional encryption
scheme.



(tag0, tag1) are independently sampled random tags. In this game, CT
(i,j)
1 in the

challenge ciphertext encrypts node
(i,j)
1 ; the NIZK proofs are still simulated. This

transition is negligible down to the IND-CPA security of PKE.

Game3 : In this game we hardwire a pre-computed lookup table to each circuit δ̂l, con-

taining fixed inputs/outputs that allow to bypass the steps described in Figure 7.3.

If the input to the circuit is on the lookup table, it will immediately return the cor-

responding output. The lookup tables are computed such that executing the tokens

in sequence starting on the challenge ciphertext will propagate the execution over

D0 in the left branch and D1 in the right branch. Because the challenge ciphertext

evolves over time as tokens are executed, to argue this game hop we must proceed

by hardwiring one input/output at the time, as follows: (1) We hardwire the in-

put/output of the regular execution [iO property of Obf]; (2) we puncture the PPRF

key of δ̂l on the new hardwired input [functionality preservation under puncturing

of PPRF + iO property of Obf]; (3) we replace the pseudorandom coins used to

produce the hardwired output with real random coins [pseudorandomness at punc-

tured points of PPRF]; (4) we use simulated NIZK proofs in the new hardwired

output [zero-knowledge property of NIZK]; (5) we compute circuit δl independently

on the right branch before encrypting the hardwired output [IND-CPA security of

PKE].

Game4 : In all circuits δ̂l, we switch the decryption key sk0 with sk1 and perform

the operations based on the right branch, i.e. we modify the circuits such that

node(i,j) ← PKE.Dec(sk1,CT
(i,j)
1 ). This hop can be upper-bounded by the distribu-

tional indistinguishability of Obf. To show this, we construct an adversary (S,B)

against the DI game that runs adversary A as follows.

Sampler S runs A0 to get the challenge messages (D0,D1) and circuits δl. Then,

it produces the challenge ciphertext (same rules apply on Game3 and Game4), and

compute circuits δ̂l according to rules of Game3 (with decryption key sk0) on one

hand and according to rules of Game4 (with decryption key sk1) on the other. Fi-

nally, it outputs the two vectors of circuits and the challenge ciphertext as auxiliary

information.
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Adversary B receives the obfuscated circuits δl either containing sk0 or sk1 and the

challenge ciphertext. With those, it runs adversary A1 perfectly simulating Game3

or Game4. B outputs whatever A1 outputs.

It remains to show that sampler S is computationally unpredictable. Suppose there

is a predictor Pred that finds a differing input for the circuits output by sampler

S. It must be because either the output contains a NIZK proof for a false state-

ment (which contradicts the soundness property of NIZK), or there is a collision in

the Merkle tree (which contradicts the collision-resistance of H), or the predictor

was able to guess the random tag in one of the ciphertexts (which contradicts the

IND-CCA security of PKE). Note that (1) the random tag is high-entropy, so lucky

guesses can be discarded; (2) we cannot rely only on IND-CPA security of PKE

because we need the decryption oracle to check which random tag the predictor

was able to guess to win the indistinguishability game against PKE. We also rely

on the fact that adversary A0 is legitimate in its own game, so the outputs in clear

of the tokens are the same in Game3 and Game4.

Game5 : In this game, we remove the lookup tables introduced in Game3. We remove

one input/output at the time, from the last input/output pair added to the first,

following the reverse strategy of that introduced in Game3.

Game6 : Here, the challenge ciphertext is computed exclusively from D1 (with the same

random tag on both branches). This transition is negligible down to the IND-CPA

security of PKE.

Game7 : In this game, we move back to regular (non-simulated) NIZK proofs in the

challenge ciphertext. The distance to the previous game can be bounded by the

zero-knowledge property of NIZK.

Game8 : We now switch back the decryption key to sk0 and perform the decryption

operation on the left branch. Since NIZK is statistically sound, the circuits are

functionally equivalent. We move from sk1 to sk0 one token at the time. This

transition is down to the iO property of Obf. This game is identical to the real SEL

game when the challenge bit b = 1, which concludes our proof.
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It is easy to check that the proposed scheme meets the correctness and efficiency properties

as we defined in Section 7.2 for our primitive. The size of the ciphertext is proportional

to the size of the cleartext. The size expansion of the token is however proportional to

the number of steps of its execution, as the circuit δ must be appropriately padded for

the security proof.
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Chapter 8

Conclusion and Open Problems

Function privacy is limited to what cannot be learned through trivial function evaluation.

In this thesis we propose a precise definition of private functional encryption that models

not only the privacy of encrypted messages but also that of (possibly) correlated tokens.

Compared to previous definitions, ours is more general in that it can be used to model

any function class through our unpredictability framework, capturing a strong degree

of security in real world usage of functional encryption schemes, without the caveat of

having a definition that is so strong that we stumble into the known impossibility results.

Several constructions achieving various degrees of security depending on the expres-

siveness of the supported function class and on the underlying assumptions have been

proposed, including a concrete construction of an IBE scheme from groups of composite

order. We leave, however, some open problems for future work, namely the construction

of functional encryption schemes that achieve full PRIV security from simple forms of

obfuscation or are more efficient under restricted versions of the PRIV model.

For general circuits, a possible path towards a solution to this open problem would be

to consider the FE construction of Garg et al. [GGH+13]. There, a token for a circuit C

is (roughly speaking) an indistinguishability obfuscation of the circuit C(PKE.Dec(sk, ·)).
A natural question is whether this construction already achieves some form of privacy

under the conjecture that the indistinguishability obfuscator achieves VGB obfusca-

tion [BCKP14, Section 1.1]. For specific classes, one can follow the various constructions

presented here and explore variations and optimizations of their underlying primitives.

Indeed, since Res-PRIV constitutes a very mild weakening of PRIV, it could be that a
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modification of it allows the proof of security to be extended to the PRIV model.

Alternatively, a different direction would be to try to instantiate our DOX construc-

tion, which offers very strong privacy guarantees for the keyword search functionality,

with an efficient FE scheme supporting the necessary function class. Currently we only

know how to instantiate such construction from general-purpose FE schemes, such that

in [GGH+13, Wat15, GGHZ14]. However, since we only require one exponentiation and

one equality test, more efficient FE schemes for this particular functionality are likely to

exist.

We also proposed the notion of updatable functional encryption, a new primitive that

models functions as RAM programs, instead of circuits, and allows memory to be persis-

tent across the execution of different programs. The problem at hand showed up to be

quite challenging to realize, even when taking strong cryptographic primitives as build-

ing blocks. Still, one might wish to strengthen the proposed security model by allowing

the adversary to obtain tokens adaptively, or by relaxing the legitimacy condition that

imposes equal access patterns of extracted programs on left and right challenge messages

using known results on Oblivious RAM. In this regard, we view our construction as a

starting point towards the realization of other updatable functional encryption schemes.
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Appendix A

Detailed Security Proof of DOX

Transform

Theorem 1 (Res-PRIV security of DOX). If FE is an IND-CPA secure functional en-

cryption scheme, PRP is pseudorandom and Obf is a DI-secure obfuscator then scheme

DOX[FE,PRP,Obf] is Res-PRIV secure. More precisely, for any adversary (S,A) in

game Res-PRIV against scheme DOX[FE,PRP,Obf], in which A places at most q queries

to TGen oracle and S outputs a tuple (w0,w1,m0,m1, z) such that |w0| = |w1| = t and

|m0| = |m1| = s, there exists adversaries B1, B2, B3, (S4,B4), B5, (S6,B6) such that

Advres-priv
DOX,S,A(λ) ≤ 2 ·Advprp

PRP,B1(λ) + 2 · (t+ s+ q) ·Advow
Obf,B2(λ) +

2 ·Advind-cpa
FE,B3 (λ) + 2 ·Advdi

Obf,S4,B4(λ) + 2 · (Advind-cpa
FE,B5 (λ) +

s · q
|WSpλ|

) + Advdi
Obf,S6,B6(λ) .

Proof. The proof follows from a sequence of six game hops. We refer the reader to Fig-

ure A.4 and Figure A.5 for a formal description of each game in a code-based language.

Since the definition of Res-PRIV composes for stateless samplers, we assume A calls LR

oracle exactly once.

Game0 : This game is identical to the Res-PRIV game.

Game1 : Instead of a PRP, a truly random permutation (simulated via lazy sampling) is

used in token generation. The table used to maintain the lazy sampling, which we
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denote by T , has at most (t+ q) entries. The distance to the previous game can be

bounded using the security of the PRP.

Game2 : When sampler S outputs, we generate PRP values of all messages in mb as

well. Since Game1, these are now simulated via lazy sampling, which causes the

expansion of table T to at most (t + s + q) entries. All keywords and messages

whose PRP value was generated are registered in list. Before setting the outcome of

the game, if there are values w1 and w2 in list such that w1 = T [w2], game aborts.

Throughout the game T [w] is obfuscated, so the distance to the previous game can

be upper bounded by the one-wayness property of the obfuscator.

Game3 : LR oracle computes the vector of ciphertexts c by encrypting T [mb] instead of

mb. The distance to the previous game can be upper bounded using the IND-CPA

security property of the underlying FE scheme.

Game4 : We say a keyword w is unpaired if w ∈ wb and w /∈mb. All first-phase queries to

TGen oracle are recorded in FirstPhase list, i.e. all keywords A queries to TGen

oracle before calling LR. During the simulation of LR oracle and second-phase

TGen oracle, if w is an unpaired keyword not in FirstPhase list, we extract its

token from circuit (Obf(1λ,C[w]) ∨ Obf(1λ,C[r])), where r is a fresh random value

uniformly sampled from WSpλ. We precise that by fresh we mean that a new and

independent random value is sampled each time, even in case of multiple token

extractions of the same keyword. The distance to the previous game can be upper

bounded to the DI security of the obfuscator.

Game5 : Analogously, we say a message m is unpaired if m ∈ mb and m /∈ wb. During

the simulation of LR oracle, if m is an unpaired message not in FirstPhase list, we

encrypt r instead of T [m], where r is a fresh random value uniformly sampled from

WSpλ. We precise that by fresh we mean that a new and independent random value

is sampled each time, even in case of repetitions of the same message. We bound

this hop down to IND-CPA.

Game6 : In this game, irrespective of the bit b, we use the second set of keywords for

challenge token generation.
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We now analyze the transitions between each game and the reduction of Game5 to DI

game.

Game0 to Game1. Any adversary (S,A) with visible advantage difference in these two

games can be converted to an adversary B1 against the security of PRP. Assume that lazy

sampling is implemented using a table T , i.e., T [w] indicates the random value assigned

to w. Algorithm B1 runs adversary (S,A) inside it, simulating all the details of Game0,

bar the computation of the PRP. For this, algorithm B1 uses its Fn oracle. When A
terminates, B1 checks if A succeeded in winning the game. If so, it outputs 0. Otherwise,

it outputs 1.

When the Fn oracle implements the PRP, Game0 is simulated for A, and when Fn

implements a random permutation, Game1 is simulated. Therefore,

Pr[Game0(1λ)]− Pr[Game1(1λ)] = Advprp
PRP,B1(λ) .

Game1 to Game2. Both games are exactly the same unless the bad event that causes

abortion is triggered. Game2 aborts if there are values w1 and w2 in list such that

w1 = T [w2]. We show that an adversary (S,A) that triggers the bad event in Game2

can be converted to an adversary B2 against the one-wayness property of Obf. For an

intuition on this game hop, observe that all occurrences of T [w] are obfuscated and T [w]

is uniformly distributed.

During the simulation of Game2, table T expands up to (t+ s+ q) entries. Algorithm

B2 receives in its challenge (t + q) obfuscated copies of a random point circuit. At the

beginning of its execution, B2 randomly guesses the first occurrence of w2 in the game,

by sampling i is uniformly from {1, ..., (t+ s+ q)}. (Keyword w2 is of course unknown to

B2 at this point, the guess reflects a prediction of when such keyword involved in the bad

event will be added to table T .) Then, B2 simulates for adversary (S,A) all the details

of Game2 until a new keyword comes that will cause table T to expand to i entries.

Instead of sampling T [w2], B2 embeds one of its challenge circuits in the computation

of Obf(1λ,C[T [w2]]). (If w2 is a message, nothing needs to be done.) Thenceforth, B2

embeds a new circuit from its challenge each time it needs to extract a token for w2. In

any case, B2 never needs more than (t+ q) challenge circuits to complete its simulation.

At the end of the game, if B2’s guess is correct, which happens with probability
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1/(t + s + q), there is w1 ∈ list such that w1 = T [w2]. This equality can be checked by

evaluating w1 on one of B2’s obfuscated circuits. If so, B2 outputs w1 and wins the game.

Hence,

Pr[Game1(1λ)]− Pr[Game2(1λ)] ≤ (t+ s+ q) ·Advow
Obf,B2(λ) .

Game2 to Game3. Any legitimate adversary (S,A) with visible advantage difference in

these two games can be converted to an adversary B3 against IND-CPA security of FE.

For an intuition on this reduction, observe that all tokens are extracted from circuits

of the form (Obf(1λ,C[w]) ∨ Obf(1λ,C[T [w]])), which return 1 when evaluated on both

w and T [w]. Illegitimate tokens that would allow to distinguish encryptions of m from

encryption of T [m] have been excluded in Game2, given that the game aborts if adversary

(S,A) outputs a value sampled for the simulation of the random permutation.

Algorithm B3 runs adversary (S,A) inside it, simulating all the details common to

Game2 and Game3. B3 receives mpk and runs adversary A with it. For token-generation

and encryption, B3 relies on its oracles. When B3 needs to compute a token for some

keyword w, it queries its own TGen oracle with circuit (Obf(1λ,C[w])∨Obf(1λ,C[T [w]])).

When B3 needs to compute the encryption of some message m in Game2 or T [m] in

Game3, it queries its own LR oracle with (m, T [m]). The ciphertexts output by LR

oracle in game IND-CPA allow B3 to interpolate between the simulation of Game2 and

Game3. The simulation is perfect. Eventually, A outputs b′, which B3 forwards as its

own guess.

Now, let’s analyze legitimacy of B3. Legitimacy condition of IND-CPA requires that

for all C queried to TGen and all (m0,m1) queried to LR, we have that C(m0) = C(m1).

In the execution of B3, queried circuits are of the form (Obf(1λ,C[w])∨Obf(1λ,C[T [w]]))

and queried messages of the form (m, T [m]). More precisely, legitimacy requires that
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∀w ∈ TList,∀m ∈ MList,

(Obf(1λ,C[w]) ∨ Obf(1λ,C[T [w]]))(m) = (Obf(1λ,C[w]) ∨ Obf(1λ,C[T [w]]))(T [m])

⇔ (C[w] ∨ C[T [w]])(m) = (C[w] ∨ C[T [w]])(T [m]) // func. preserving

⇔ C[w](m) ∨ C[T [w]](m) = C[w](T [m]) ∨ C[T [w]](T [m])

⇔ C[w](m) = C[T [w]](T [m]) // bad event in Game2

⇔ (w
?
= m) = (T [w]

?
= T [m])

⇔True .

Therefore, B3 is a legitimate adversary against IND-CPA and we have that

Pr[Game2(1λ)]− Pr[Game3(1λ)] = Advind-cpa
FE,B3 (λ) .

Game3 to Game4. Any legitimate adversary (S,A) with visible advantage difference in

these two games can be converted to an adversary (S4,B4) against DI security of Obf. The

intuition here is the following: Without a ciphertext that encrypts T [w], the adversary

cannot detect if tokens for w are extracted from (Obf(1λ,C[w])∨Obf(1λ,C[T [w]])) or from

(Obf(1λ,C[w]) ∨ Obf(1λ,C[r])), where r is a fresh random value uniformly sampled from

WSpλ. Details of adversary (S4,B4) are shown in Figure A.1.

Sampler S4 computes two t× (t+ q) matrices M0 and M1. Each row in M0 contains

(t + q) repetitions of a unique random point circuit. M1 contains t × (t + q) fresh ran-

dom point circuits. S4 is clearly unpredictable. Algorithm B4 runs S and A inside it,

simulating all the details common to Game3 and Game4, which only differ on unpaired

keywords not in FirstPhase list. For those, B4 carefully picks circuits from its challenge

matrix of obfuscated circuits: A new row is assigned to a new keyword; a circuit is picked

from a new column in case of repetitions. If M0 is selected in game DI, algorithm B4

will simulate Game3. On the other hand, if M1 is selected in game DI, algorithm B4 will

simulate Game4. Finally, when A outputs its guess, B4 checks if A succeeded in winning

the game. If so, B4 outputs 0. Otherwise, it outputs 1. Therefore, we have that

Pr[Game3(1λ)]− Pr[Game4(1λ)] = Advdi
Obf,S4,B4(λ) .
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S4(1λ, st):

for i ∈ {1, ..., t}

T [i] ←$ WSpλ \ T

for j ∈ {1, ..., (t + q)}

M0[i][j]← C[T [i]]

r ←$ WSpλ

M1[i][j]← C[r]

return (M0,M1, ε)

B4(1λ):

(msk,mpk) ←$ FE.Gen(1λ)

b ←$ {0, 1}

M ←$ DI.Sam(ε)

b′ ←$ ALR,TGen(mpk)

return (b = b′)

TGen(w):

CL ←$ Obf(1λ, C[w])

if T [w] = ⊥ then

T [w] ←$ WSpλ \ T

List← List : w
if (w ∈ wb ∧ w /∈ mb ∧ w /∈ FirstPhase)

CR ← Select(w)
else

CR ←$ Obf(1λ, C[T [w]])

tk ←$ FE.TGen(msk, (CL ∨ CR))

return tk

LR(st):

FirstPhase← List

(w0,w1,m0,m1, z) ←$ S(st)

for all w ∈ wb ∪mb

if T [w] = ⊥ then

T [w] ←$ WSpλ \ T

List← List : w

c ←$ FE.Enc(mpk, T [mb])

for all w ∈ wb

CL ←$ Obf(1λ, C[w])
if (w /∈ mb ∧ w /∈ FirstPhase) then

CR ← Select(w)
else

CR ←$ Obf(1λ, C[T [w]])

tk← tk : FE.TGen(msk, (CL ∨ CR))

return (tk, c, z)

Select(w) :

if (Row[w] =⊥) then

// assign next available row to w

Row[w]← |Row| + 1

// initialize counter for w

Column[Row[w]]← 0

// increase counter for w

Column[Row[w]]← Column[Row[w]] + 1

// return fresh obfuscated circuit

return (M[Row[w]][Column[Row[w]]])

Figure A.1: DI adversary (S4,B4), as part of proof of Theorem 8.

Game4 to Game5. Any legitimate adversary (S,A) with visible advantage difference in

these two games can be converted to an adversary B5 against IND-CPA security of FE.

The intuition here is simple: Without a token for m, the adversary cannot detect if we

encrypt a fresh random value r instead if T [m]. Details of adversary B5 are shown in

Figure A.2.

Let d denote the challenge bit in the IND-CPA game for FE. Let d′ denote B5’s output.

By definition, we have that

Advind-cpa
FE,B5 (λ) = Pr[d′ = 0|d = 0]− Pr[d′ = 0|d = 1].
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Also, let Ter be the event that B5 terminates because A queried w ∈ RList. We have that

Pr[d′ = 0|d = 0] = Pr[d′ = 0|d = 0 ∧ ¬Ter] · Pr[¬Ter] + Pr[d′ = 0|d = 0 ∧ Ter] · Pr[Ter]

= Pr[d′ = 0|d = 0 ∧ ¬Ter] · Pr[¬Ter] + 0 // B5 never outputs 0 if Ter

= Pr[d′ = 0|d = 0 ∧ ¬Ter] · (1− s · q
|WSpλ|

) // d = 0, so RList is hidden

≥ Pr[d′ = 0|d = 0 ∧ ¬Ter]− s · q
|WSpλ|

= Pr[Game4(1λ)]− s · q
|WSpλ|

Pr[d′ = 0|d = 1] = Pr[d′ = 0|d = 1 ∧ ¬Ter] · Pr[¬Ter] + Pr[d′ = 0|d = 1 ∧ Ter] · Pr[Ter]

= Pr[d′ = 0|d = 1 ∧ ¬Ter] · Pr[¬Ter] + 0 // B5 never outputs 0 if Ter

≤ Pr[d′ = 0|d = 1 ∧ ¬Ter] = Pr[Game5(1λ)].

We now analyze legitimacy of B5. Legitimacy condition of IND-CPA requires that for

all C queried to TGen and all (m0,m1) queried to LR, we have that C(m0) = C(m1).

In the execution of B5, queried circuits are of the form (Obf(1λ,C[w])∨Obf(1λ,C[T [w]]))

and queried messages of the form (T [m], r). More precisely, legitimacy requires that

∀w ∈ TList,∀m ∈mb s.t. m /∈ wb ∧m /∈ FirstPhase,∀r ∈ RList, we have that

(Obf(1λ,C[w]) ∨ Obf(1λ,C[T [w]]))(T [m]) = (Obf(1λ,C[w]) ∨ Obf(1λ,C[T [w]]))(r)

⇔ (C[w] ∨ C[T [w]])(T [m]) = (C[w] ∨ C[T [w]])(r) // func. preserving

⇔ C[w](T [m]) ∨ C[T [w]](T [m]) = C[w](r) ∨ C[T [w]](r)

⇔ C[T [w]](T [m]) = C[w](r) ∨ C[T [w]](r) // bad event in Game2

⇔ C[T [w]](T [m]) = C[T [w]](r) // B5 outputs 1, Ter event

⇔ C[w](m) = C[T [w]](r)

⇔ 0 = C[T [w]](r) // Res-PRIV restriction

⇔ 0 = 0 // with high probability C[T [w]](r) = 0 .

Therefore,

Pr[Game4(1λ)]− Pr[Game5(1λ)] ≤ Advind-cpa
FE,B5 (λ) +

s · q
|WSpλ|

.
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B5(1λ,mpk):

b ←$ {0, 1}

b′ ←$ ALR,TGen(mpk)

if (∃ w1,w2 ∈ List s.t. w1 = T [w2]) abort

return (¬(b = b′))

LR(st):

FirstPhase← List

(w0,w1,m0,m1, z) ←$ S(st)

for all w ∈ wb ∪mb

if T [w] = ⊥ then

T [w] ←$ WSpλ \ T

List← List : w

for all m ∈ mb
if (m /∈ wb ∧ m /∈ FirstPhase) then

r ←$ WSpλ

RList← RList : r

c ←$ IND-CPA.LR(T [m], r)
else

c ←$ FE.Enc(mpk, T [m])

c← c : c

for all w ∈ wb

CL ←$ Obf(1λ, C[w])

if (w /∈ mb ∧ w /∈ FirstPhase) then

r ←$ WSpλ

CR ←$ Obf(1λ, C[r])

else

CR ←$ Obf(1λ, C[T [w]])

tk← tk : IND-CPA.TGen((CL ∨ CR))

return (tk, c, z)

TGen(w):

if w ∈ RList exit 1 // B5 terminates and outputs 1

CL ←$ Obf(1λ, C[w])

if T [w] = ⊥ then

T [w] ←$ WSpλ \ T

List← List : w

if (w ∈ wb ∧ w /∈ mb ∧ w /∈ FirstPhase)

r ←$ WSpλ

CR ←$ Obf(1λ, C[r])

else

CR ←$ Obf(1λ, C[T [w]])

tk ←$ IND-CPA.TGen((CL ∨ CR))

return tk

Figure A.2: IND-CPA adversary B5, as part of proof of Theorem 8.

Game5 to Game6. In this game, irrespective of the bit, we use the second set of keywords

for challenge token generation. We construct an adversary (S6,B6) against DI as follows.

B6 generates by itself a master secret key and master public key pair (msk,mpk), then

runs A(mpk). First-phase TGen queries are answered using a lazily sampled T and a

generated msk. We set the DI sampler S6 to run the PRIV sampler S and on top of the

output keywords, also ask for obfuscations of messages that match a first-phase query.

By legitimacy of A, these messages must be LR-identical. Using the symmetry of roles for

keywords and messages in point functions, this sampler can be shown to be unpredictable

whenever the PRIV sampler is. We find paired messages using the image matrix. The

obfuscations of messages will allow us to check if any of these messages (hidden under the

obfuscation) match a first-phase TGen query. For messages that were queried during

the first stage, we select the correct T -value. For messages that are at the same time new

and paired, we sample a new T -value the first time and answer consistently throughout

the game. For all unpaired messages that were never queried to TGen, we use forgetful

values (rules of Game5). Second phase TGen queries are answered using T -consistent

values relying on the fact that we can use the obfuscations to check matches with paired

111



keywords and the restriction that adversary cannot query a new unpaired message to

TGen. Finally, we output whatever the PRIV adversary A outputs. More details on

how to construct S6,B6 are available in Figure A.3.

Pr[Game5(1λ)]− Pr[Game6(1λ)] ≤ Pr[Game5(1λ)]− 1

2
=

1

2
·Advdi

Obf,S6,B6(λ) .

It remains to show that S6 is unpredictable if S is. For this, we build a predictor Q
against sampler S, from a predictor P against sampler S6 (bottom of Figure A.3). Since

S6 outputs the same vector of circuits as S plus circuits that are LR-identical, a distin-

guishing message for the output of S6 is also a distinguishing message for the output of

S. Therefore, we have that

Advpred
S,Q (λ) = Advpred

S6,P(λ) .

To conclude our proof, we put everything together:

Advres-priv
DOX,S,A(λ) := 2 · Pr[Game0(1λ)]− 1

≤ 2 ·Advprp
PRP,B1(λ) + 2 · (t+ s+ q) ·Advow

Obf,B2(λ) +

2 ·Advind-cpa
FE,B3 (λ) + 2 ·Advdi

Obf,S4,B4(λ) + 2 · (Advind-cpa
FE,B5 (λ) +

s · q
|WSpλ|

) + Advdi
Obf,S6,B6(λ) .
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S6(1λ, st):

(st′, FirstPhase)← st

(w0,w1,m0,m1, z
′) ←$ S(1λ, st)

for i ∈ {1, ..., s}

if (m0[i] ∈ FirstPhase)

// by legitimacy of A, m0[i] ∈ FirstPhase⇒ m0[i] = m1[i]

// the following line ensures unpredictability of S6
if (m0[i] 6= m1[i]) return ([], [],⊥)

m? ← m? : m0[i]

else

m? ← m? : ⊥ // C[⊥](.) := 0 is the zero circuit

z ← (z′,C[w0](m0))

return (w0 : m?,w1 : m?, z)

B6(1λ):

(msk,mpk) ←$ FE.Gen(1λ)

b′ ←$ ALR,TGen(mpk)

return b′

LR(st):

FirstPhase← List

(C, z) ←$ DI.Sam((st, FirstPhase))

(z′, ImgMatrix)← z

for i ∈ {1, ..., s}

flag ← 0

if (ImgMatrix[i][] 6= [0, ..., 0])

flag ← 1 // mb[i] ∈ wb

for w ∈ FirstPhase

if (C[(t + i)](w) = 1)

flag ← 2 // mb[i] ∈ FirstPhase

m? ← w // mb[i] = w

if (flag = 0) // encrypt random message

r ←$ WSpλ

c ←$ FE.Enc(mpk, r)

if (flag = 1) // encrypt T -consistent

(...)

if (flag = 2) // encrypt T [m?]

c ←$ FE.Enc(mpk, T [m?])

c← c : c

(...)

return (tk, c, z′)

TGen(w):

CL ←$ Obf(1λ, C[w])

if T [w] = ⊥ then

T [w] ←$ WSpλ \ T

List← List : w

flagRandom← 0

for i ∈ {1, ..., t}

if (C[i](w) = 1)

// w ∈ wb

if (ImgMatrix[][i] = [0, ..., 0])

// w /∈ mb

if w /∈ FirstPhase

flagRandom← 1

if (flagRandom = 1)

r ←$ WSpλ

CR ←$ Obf(1λ, C[r])

else

CR ←$ Obf(1λ, C[T [w]])

tk ←$ FE.TGen(msk, (CL ∨ CR))

return tk

Q1(1
λ):

(st, st′) ←$ P1(1
λ)

(st′′, FirstPhase)← st

return (st′′, (st′, FirstPhase))

QFunc
2 (1λ,C[w0](m0), z

′, (st′, FirstPhase)):

m ←$ PFunc′
2 (1λ, ε, (z′,C[w0](m0)), st

′)

return m

Func′(m,−):

(C[w0](m),−)← Func(m,−)

if (m ∈ FirstPhase)

(−, C[m](m0))← Func(−,m) // if this query is not legit, Adv
pred
S6,P

(λ) = 0

return (C[w0](m) : C[m](m0))

else

return (C[w0](m) : [0, ..., 0])

Figure A.3: DI adversary (S6,B6) and predictor Q, as part of proof of Theorem 8.
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Game0(1
λ):

(msk,mpk) ←$ FE.Gen(1λ)

k ←$ KSp(1λ)

b ←$ {0, 1}

b′ ←$ ALR,TGen(mpk)

return (b = b′)

LR(st):

(w0,w1,m0,m1, z) ←$ S(st)

c ←$ FE.Enc(mpk,mb)

for all w ∈ wb

CL ←$ Obf(1λ, C[w])

CR ←$ Obf(1λ, C[E(k,w)])

tk← tk : FE.TGen(msk, (CL ∨ CR))

return (tk, c, z)

TGen(w):

CL ←$ Obf(1λ, C[w])

CR ←$ Obf(1λ, C[E(k,w)])

tk ←$ FE.TGen(msk, (CL ∨ CR))

return tk

Game1(1
λ):

(msk,mpk) ←$ FE.Gen(1λ)

k ←$ KSp(1λ)

b ←$ {0, 1}

b′ ←$ ALR,TGen(mpk)

return (b = b′)

LR(st):

(w0,w1,m0,m1, z) ←$ S(st)
for all w ∈ wb

if T [w] = ⊥ then

T [w] ←$ WSpλ \ T
c ←$ FE.Enc(mpk,mb)

for all w ∈ wb

CL ←$ Obf(1λ, C[w])

CR ←$ Obf(1λ, C[T [w]])

tk← tk : FE.TGen(msk, (CL ∨ CR))

return (tk, c, z)

TGen(w):

CL ←$ Obf(1λ, C[w])
if T [w] = ⊥ then

T [w] ←$ WSpλ \ T

CR ←$ Obf(1λ, C[T [w]])

tk ←$ FE.TGen(msk, (CL ∨ CR))

return tk

Game2(1
λ):

(msk,mpk) ←$ FE.Gen(1λ)

b ←$ {0, 1}

b′ ←$ ALR,TGen(mpk)

if (∃ w1,w2 ∈ List s.t. w1 = T [w2]) abort

return (b = b′)

LR(st):

(w0,w1,m0,m1, z) ←$ S(st)

for all w ∈ wb ∪mb

if T [w] = ⊥ then

T [w] ←$ WSpλ \ T

List← List : w

c ←$ FE.Enc(mpk,mb)

for all w ∈ wb

CL ←$ Obf(1λ, C[w])

CR ←$ Obf(1λ, C[T [w]])

tk← tk : FE.TGen(msk, (CL ∨ CR))

return (tk, c, z)

TGen(w):

CL ←$ Obf(1λ, C[w])

if T [w] = ⊥ then

T [w] ←$ WSpλ \ T

List← List : w

CR ←$ Obf(1λ, C[T [w]])

tk ←$ FE.TGen(msk, (CL ∨ CR))

return tk

Game3(1
λ):

(msk,mpk) ←$ FE.Gen(1λ)

b ←$ {0, 1}

b′ ←$ ALR,TGen(mpk)

if (∃ w1,w2 ∈ List s.t. w1 = T [w2]) abort

return (b = b′)

LR(st):

(w0,w1,m0,m1, z) ←$ S(st)

for all w ∈ wb ∪mb

if T [w] = ⊥ then

T [w] ←$ WSpλ \ T

List← List : w

c ←$ FE.Enc(mpk, T [mb])

for all w ∈ wb

CL ←$ Obf(1λ, C[w])

CR ←$ Obf(1λ, C[T [w]])

tk← tk : FE.TGen(msk, (CL ∨ CR))

return (tk, c, z)

TGen(w):

CL ←$ Obf(1λ, C[w])

if T [w] = ⊥ then

T [w] ←$ WSpλ \ T

List← List : w

CR ←$ Obf(1λ, C[T [w]])

tk ←$ FE.TGen(msk, (CL ∨ CR))

return tk

Figure A.4: Sequence of games in proof of Theorem 8 (part 1 of 2).



Game4(1
λ):

(msk,mpk) ←$ FE.Gen(1λ)

b ←$ {0, 1}

b′ ←$ ALR,TGen(mpk)

if (∃ w1,w2 ∈ List s.t. w1 = T [w2]) abort

return (b = b′)

LR(st):

FirstPhase← List

(w0,w1,m0,m1, z) ←$ S(st)

for all w ∈ wb ∪mb

if T [w] = ⊥ then

T [w] ←$ WSpλ \ T

List← List : w

c ←$ FE.Enc(mpk, T [mb])

for all w ∈ wb

CL ←$ Obf(1λ, C[w])
if (w /∈ mb ∧ w /∈ FirstPhase) then

r ←$ WSpλ

CR ←$ Obf(1λ, C[r])
else

CR ←$ Obf(1λ, C[T [w]])

tk← tk : FE.TGen(msk, (CL ∨ CR))

return (tk, c, z)

TGen(w):

CL ←$ Obf(1λ, C[w])

if T [w] = ⊥ then

T [w] ←$ WSpλ \ T

List← List : w
if (w ∈ wb ∧ w /∈ mb ∧ w /∈ FirstPhase)

r ←$ WSpλ

CR ←$ Obf(1λ, C[r])
else

CR ←$ Obf(1λ, C[T [w]])

tk ←$ FE.TGen(msk, (CL ∨ CR))

return tk

Game5(1
λ):

(msk,mpk) ←$ FE.Gen(1λ)

b ←$ {0, 1}

b′ ←$ ALR,TGen(mpk)

if (∃ w1,w2 ∈ List s.t. w1 = T [w2]) abort

return (b = b′)

LR(st):

FirstPhase← List

(w0,w1,m0,m1, z) ←$ S(st)

for all w ∈ wb ∪mb

if T [w] = ⊥ then

T [w] ←$ WSpλ \ T

List← List : w

for all m ∈ mb
if (m /∈ wb ∧ m /∈ FirstPhase) then

r ←$ WSpλ

c ←$ FE.Enc(mpk, r)
else

c ←$ FE.Enc(mpk, T [m])

c← c : c

for all w ∈ wb

CL ←$ Obf(1λ, C[w])

if (w /∈ mb ∧ w /∈ FirstPhase) then

r ←$ WSpλ

CR ←$ Obf(1λ, C[r])

else

CR ←$ Obf(1λ, C[T [w]])

tk← tk : FE.TGen(msk, (CL ∨ CR))

return (tk, c, z)

TGen(w):

CL ←$ Obf(1λ, C[w])

if T [w] = ⊥ then

T [w] ←$ WSpλ \ T

List← List : w

if (w ∈ wb ∧ w /∈ mb ∧ w /∈ FirstPhase)

r ←$ WSpλ

CR ←$ Obf(1λ, C[r])

else

CR ←$ Obf(1λ, C[T [w]])

tk ←$ FE.TGen(msk, (CL ∨ CR))

return tk

Game6(1
λ):

(msk,mpk) ←$ FE.Gen(1λ)

b ←$ {0, 1}

b′ ←$ ALR,TGen(mpk)

if (∃ w1,w2 ∈ List s.t. w1 = T [w2]) abort

return (b = b′)

LR(st):

FirstPhase← List

(w0,w1,m0,m1, z) ←$ S(st)

for all w ∈ w1 ∪m1

if T [w] = ⊥ then

T [w] ←$ WSpλ \ T

List← List : w
for all m ∈ m1

if (m /∈ w1 ∧ m /∈ FirstPhase) then
r ←$ WSpλ

c ←$ FE.Enc(mpk, r)

else

c ←$ FE.Enc(mpk, T [m])

c← c : c

for all w ∈ w1

CL ←$ Obf(1λ, C[w])

if (w /∈ m1 ∧ w /∈ FirstPhase) then

r ←$ WSpλ

CR ←$ Obf(1λ, C[r])

else

CR ←$ Obf(1λ, C[T [w]])

tk← tk : FE.TGen(msk, (CL ∨ CR))

return (tk, c, z)

TGen(w):

CL ←$ Obf(1λ, C[w])

if T [w] = ⊥ then

T [w] ←$ WSpλ \ T

List← List : w

if (w ∈ w1 ∧ w /∈ m1 ∧ w /∈ FirstPhase)

r ←$ WSpλ

CR ←$ Obf(1λ, C[r])

else

CR ←$ Obf(1λ, C[T [w]])

tk ←$ FE.TGen(msk, (CL ∨ CR))

return tk

Figure A.5: Sequence of games in proof of Theorem 8 (part 2 of 2).
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