Images of Galois representations with values in mod p Hecke algebras

Laia Amorós Carafí
Université du Luxembourg
Universitat de Barcelona

Images of Galois representations with values in mod p Hecke algebras

- $\bmod p$ modular forms, $\bmod p$ Hecke algebras

Images of Galois representations with values in mod p Hecke algebras

- $\bmod p$ modular forms, $\bmod p$ Hecke algebras
- Galois representations with values in these algebras

Images of Galois representations with values in mod p Hecke algebras

- $\bmod p$ modular forms, $\bmod p$ Hecke algebras
- Galois representations with values in these algebras
- Computation of the image of these Galois representations

Images of Galois representations with values in mod p Hecke algebras

- $\bmod p$ modular forms, $\bmod p$ Hecke algebras
- Galois representations with values in these algebras
- Computation of the image of these Galois representations
- Application
$\bmod p$ Hecke algebras

$\bmod p$ Hecke algebras

$S_{k}(N, \varepsilon ; \mathbb{C})$ space of modular forms $f(z)=\sum_{n \geq 0} a_{n} q^{n}\left(q=e^{2 \pi i z}\right)$ of level $N \geq 1$, weight $k \geq 2$ and Dirichlet character $\varepsilon:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$. Moreover assume $a_{0}=0$.

mod p Hecke algebras

$S_{k}(N, \varepsilon ; \mathbb{C})$ space of cuspidal modular forms or cusp forms

$\bmod p$ Hecke algebras

$S_{k}(N ; \mathbb{C})$ space of cusp forms

$\bmod p$ Hecke algebras

$S_{k}(N ; \mathbb{C})$ space of cusp forms
$\operatorname{End}_{\mathbb{C}}\left(S_{k}(N ; \mathbb{C})\right) \supset \mathbb{T}_{k}(N):=\left\langle T_{p}\right.$ Hecke operator : p prime \rangle

$\bmod p$ Hecke algebras

$S_{k}(N ; \mathbb{C})$ space of cusp forms
$\operatorname{End}_{\mathbb{C}}\left(S_{k}(N ; \mathbb{C})\right) \supset \mathbb{T}_{k}(N)$ finite-dimensional commutative \mathbb{Z}-algebra

$\bmod p$ Hecke algebras

$S_{k}(N ; \mathbb{C})$ space of cusp forms
$\operatorname{End}_{\mathbb{C}}\left(S_{k}(N ; \mathbb{C})\right) \supset \mathbb{T}_{k}(N)$ finite-dimensional commutative \mathbb{Z}-algebra $S_{k}(N ; \mathbb{Z})$

$\bmod p$ Hecke algebras

$S_{k}(N ; \mathbb{C})$ space of cusp forms
$\operatorname{End}_{\mathbb{C}}\left(S_{k}(N ; \mathbb{C})\right) \supset \mathbb{T}_{k}(N)$ finite-dimensional commutative \mathbb{Z}-algebra $S_{k}\left(N ; \mathbb{F}_{q}\right):=S_{k}(N ; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_{q}$

$\bmod p$ Hecke algebras

$S_{k}(N ; \mathbb{C})$ space of cusp forms
$\operatorname{End}_{\mathbb{C}}\left(S_{k}(N ; \mathbb{C})\right) \supset \mathbb{T}_{k}(N)$ finite-dimensional commutative \mathbb{Z}-algebra
$S_{k}\left(N ; \mathbb{F}_{q}\right):=S_{k}(N ; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_{q}$
$\overline{\mathbb{T}}:=\mathbb{T}_{k}(N) \otimes \mathbb{F}_{q}$ finite-dimensional commutative \mathbb{F}_{q}-algebra

$\bmod p$ Hecke algebras

$S_{k}(N ; \mathbb{C})$ space of cusp forms
$\operatorname{End}_{\mathbb{C}}\left(S_{k}(N ; \mathbb{C})\right) \supset \mathbb{T}_{k}(N)$ finite-dimensional commutative \mathbb{Z}-algebra
$S_{k}\left(N ; \mathbb{F}_{q}\right):=S_{k}(N ; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_{q}$
$\overline{\mathbb{T}}:=\mathbb{T}_{k}(N) \otimes \mathbb{F}_{q}$ finite-dimensional commutative \mathbb{F}_{q}-algebra
$\overline{\mathbb{T}} \simeq \prod_{\mathfrak{m}} \overline{\mathbb{T}}_{\mathfrak{m}}$, where $\overline{\mathbb{T}}_{\mathfrak{m}}$ localisation of $\overline{\mathbb{T}}$ at a maximal ideal \mathfrak{m} of $\overline{\mathbb{T}}$

$\bmod p$ Hecke algebras

$S_{k}(N ; \mathbb{C})$ space of cusp forms
$\operatorname{End}_{\mathbb{C}}\left(S_{k}(N ; \mathbb{C})\right) \supset \mathbb{T}_{k}(N)$ finite-dimensional commutative \mathbb{Z}-algebra $S_{k}\left(N ; \mathbb{F}_{q}\right):=S_{k}(N ; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_{q}$
$\overline{\mathbb{T}}:=\mathbb{T}_{k}(N) \otimes \mathbb{F}_{q}$ finite-dimensional commutative \mathbb{F}_{q}-algebra
$\overline{\mathbb{T}} \simeq \prod_{\mathfrak{m}} \overline{\mathbb{T}}_{\mathfrak{m}}$, where $\overline{\mathbb{T}}_{\mathfrak{m}}$ localisation of $\overline{\mathbb{T}}$ at a maximal ideal \mathfrak{m} of $\overline{\mathbb{T}}$
Let us take $f(z)=\sum_{n>0} a_{n} q^{n} \in S_{k}(N ; \mathbb{C}), q=e^{2 \pi i z}$, simultaneous eigenvector for all Hecke operators, $a_{1}=1$

$\bmod p$ Hecke algebras

$S_{k}(N ; \mathbb{C})$ space of cusp forms
$\operatorname{End}_{\mathbb{C}}\left(S_{k}(N ; \mathbb{C})\right) \supset \mathbb{T}_{k}(N)$ finite-dimensional commutative \mathbb{Z}-algebra $S_{k}\left(N ; \mathbb{F}_{q}\right):=S_{k}(N ; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_{q}$
$\overline{\mathbb{T}}:=\mathbb{T}_{k}(N) \otimes \mathbb{F}_{q}$ finite-dimensional commutative \mathbb{F}_{q}-algebra
$\overline{\mathbb{T}} \simeq \prod_{\mathfrak{m}} \overline{\mathbb{T}}_{\mathfrak{m}}$, where $\overline{\mathbb{T}}_{\mathfrak{m}}$ localisation of $\overline{\mathbb{T}}$ at a maximal ideal \mathfrak{m} of $\overline{\mathbb{T}}$ Let us take $f(z)=\sum_{n \geq 0} a_{n} q^{n} \in S_{k}(N ; \mathbb{C})$ normalised Hecke eigenform

$\bmod p$ Hecke algebras

$S_{k}(N ; \mathbb{C})$ space of cusp forms
$\operatorname{End}_{\mathbb{C}}\left(S_{k}(N ; \mathbb{C})\right) \supset \mathbb{T}_{k}(N)$ finite-dimensional commutative \mathbb{Z}-algebra $S_{k}\left(N ; \mathbb{F}_{q}\right):=S_{k}(N ; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_{q}$
$\overline{\mathbb{T}}:=\mathbb{T}_{k}(N) \otimes \mathbb{F}_{q}$ finite-dimensional commutative \mathbb{F}_{q}-algebra
$\overline{\mathbb{T}} \simeq \prod_{\mathfrak{m}} \overline{\mathbb{T}}_{\mathfrak{m}}$, where $\overline{\mathbb{T}}_{\mathfrak{m}}$ localisation of $\overline{\mathbb{T}}$ at a maximal ideal \mathfrak{m} of $\overline{\mathbb{T}}$ Let us take $\bar{f}(z)=\sum_{n \geq 0} \bar{a}_{n} q^{n} \in S_{k}\left(N ; \mathbb{F}_{q}\right)$ normalised Hecke eigenform $\bmod p$

$\bmod p$ Hecke algebras

$S_{k}(N ; \mathbb{C})$ space of cusp forms
$\operatorname{End}_{\mathbb{C}}\left(S_{k}(N ; \mathbb{C})\right) \supset \mathbb{T}_{k}(N)$ finite-dimensional commutative \mathbb{Z}-algebra $S_{k}\left(N ; \mathbb{F}_{q}\right):=S_{k}(N ; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_{q}$
$\overline{\mathbb{T}}:=\mathbb{T}_{k}(N) \otimes \mathbb{F}_{q}$ finite-dimensional commutative \mathbb{F}_{q}-algebra
$\overline{\mathbb{T}} \simeq \prod_{\mathfrak{m}} \overline{\mathbb{T}}_{\mathfrak{m}}$, where $\overline{\mathbb{T}}_{\mathfrak{m}}$ localisation of $\overline{\mathbb{T}}$ at a maximal ideal \mathfrak{m} of $\overline{\mathbb{T}}$ Let us take $\bar{f}(z)=\sum_{n \geq 0} \bar{a}_{n} q^{n} \in S_{k}\left(N ; \mathbb{F}_{q}\right)$ normalised Hecke eigenform $\bmod p$
$\bar{\lambda}_{f}: \overline{\mathbb{T}} \rightarrow \mathbb{F}_{q}, T_{n} \mapsto \bar{a}_{n}=a_{n} \bmod p \quad \mathfrak{m}_{f}:=\operatorname{ker} \bar{\lambda}_{f}$

$\bmod p$ Hecke algebras

$S_{k}(N ; \mathbb{C})$ space of cusp forms
$\operatorname{End}_{\mathbb{C}}\left(S_{k}(N ; \mathbb{C})\right) \supset \mathbb{T}_{k}(N)$ finite-dimensional commutative \mathbb{Z}-algebra $S_{k}\left(N ; \mathbb{F}_{q}\right):=S_{k}(N ; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_{q}$
$\overline{\mathbb{T}}:=\mathbb{T}_{k}(N) \otimes \mathbb{F}_{q}$ finite-dimensional commutative \mathbb{F}_{q}-algebra
$\overline{\mathbb{T}} \simeq \prod_{\mathfrak{m}} \overline{\mathbb{T}}_{\mathfrak{m}}$, where $\overline{\mathbb{T}}_{\mathfrak{m}}$ localisation of $\overline{\mathbb{T}}$ at a maximal ideal \mathfrak{m} of $\overline{\mathbb{T}}$ Let us take $\bar{f}(z)=\sum_{n \geq 0} \bar{a}_{n} q^{n} \in S_{k}\left(N ; \mathbb{F}_{q}\right)$ normalised Hecke eigenform $\bmod p$
$\bar{\lambda}_{f}: \overline{\mathbb{T}} \rightarrow \mathbb{F}_{q}, T_{n} \mapsto \bar{a}_{n}=a_{n} \bmod p \quad \mathfrak{m}_{f}:=\operatorname{ker} \bar{\lambda}_{f}$
$\mathbb{T}_{f}:=\overline{\mathbb{T}}_{\mathfrak{m}_{f}} \quad$ assume $\mathfrak{m}_{f}^{2}=0$

$\bmod p$ Hecke algebras

$S_{k}(N ; \mathbb{C})$ space of cusp forms
$\operatorname{End}_{\mathbb{C}}\left(S_{k}(N ; \mathbb{C})\right) \supset \mathbb{T}_{k}(N)$ finite-dimensional commutative \mathbb{Z}-algebra
$S_{k}\left(N ; \mathbb{F}_{q}\right):=S_{k}(N ; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_{q}$
$\overline{\mathbb{T}}:=\mathbb{T}_{k}(N) \otimes \mathbb{F}_{q}$ finite-dimensional commutative \mathbb{F}_{q}-algebra
$\overline{\mathbb{T}} \simeq \prod_{\mathfrak{m}} \overline{\mathbb{T}}_{\mathfrak{m}}$, where $\overline{\mathbb{T}}_{\mathfrak{m}}$ localisation of $\overline{\mathbb{T}}$ at a maximal ideal \mathfrak{m} of $\overline{\mathbb{T}}$
Let us take $\bar{f}(z)=\sum_{n \geq 0} \bar{a}_{n} q^{n} \in S_{k}\left(N ; \mathbb{F}_{q}\right)$ normalised Hecke eigenform $\bmod p$
$\bar{\lambda}_{f}: \overline{\mathbb{T}} \rightarrow \mathbb{F}_{q}, T_{n} \mapsto \bar{a}_{n}=a_{n} \bmod p \quad \mathfrak{m}_{f}:=\operatorname{ker} \bar{\lambda}_{f}$
$\mathbb{T}_{f}:=\overline{\mathbb{T}}_{\mathfrak{m}_{f}} \quad$ assume $\mathfrak{m}_{f}^{2}=0$
$\mathbb{T}_{f} \simeq \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right] /\left(X_{i} X_{j}\right)_{1 \leq i, j \leq m}$ finite-dimensional local commutative algebra, $\quad m=\operatorname{dim}_{\mathbb{F}_{q}} \mathfrak{m}_{f}$

Galois representations

Next we want to: attach a Galois representation to \mathbb{T}_{f}.

Galois representations

Next we want to: attach a Galois representation to \mathbb{T}_{f}.
Let $\bar{f}=\sum_{n \geq 0} \bar{a}_{n} q^{n} \in S_{k}\left(N ; \mathbb{F}_{q}\right)$ given by $\bar{\lambda}_{f}: \overline{\mathbb{T}} \rightarrow \mathbb{F}_{q}, T_{n} \rightarrow \bar{a}_{n}$

Galois representations

Next we want to: attach a Galois representation to \mathbb{T}_{f}.
Let $\bar{f}=\sum_{n \geq 0} \bar{a}_{n} q^{n} \in S_{k}\left(N ; \mathbb{F}_{q}\right)$ given by $\bar{\lambda}_{f}: \overline{\mathbb{T}} \rightarrow \mathbb{F}_{q}, T_{n} \rightarrow \bar{a}_{n}$
Deligne, Shimura: We can attach to \bar{f} a Galois representation

$$
\bar{\rho}_{f}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)
$$

unramified outside $N p$ and, for every $\ell \nmid N p$:

$$
\operatorname{tr}\left(\bar{\rho}_{f}\left(\operatorname{Frob}_{\ell}\right)\right)=\bar{\lambda}_{f}\left(T_{\ell}\right) \quad \text { and } \quad \operatorname{det}\left(\bar{\rho}_{f}\left(\operatorname{Frob}_{\ell}\right)\right)=\ell^{k-1}
$$

Galois representations

Next we want to: attach a Galois representation to \mathbb{T}_{f}.
Let $\bar{f}=\sum_{n \geq 0} \bar{a}_{n} q^{n} \in S_{k}\left(N ; \mathbb{F}_{q}\right)$ given by $\bar{\lambda}_{f}: \overline{\mathbb{T}} \rightarrow \mathbb{F}_{q}, T_{n} \rightarrow \bar{a}_{n}$
Deligne, Shimura: We can attach to \bar{f} a Galois representation

$$
\bar{\rho}_{f}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)
$$

unramified outside $N p$ and, for every $\ell \nmid N p$:

$$
\operatorname{tr}\left(\bar{\rho}_{f}\left(\operatorname{Frob}_{\ell}\right)\right)=\bar{\lambda}_{f}\left(T_{\ell}\right) \quad \text { and } \quad \operatorname{det}\left(\bar{\rho}_{f}\left(\operatorname{Frob}_{\ell}\right)\right)=\ell^{k-1}
$$

Let $\mathbb{T}_{f}:=\overline{\mathbb{T}}_{\mathfrak{m}_{f}}$ as before, but without the operators T_{ℓ} with $\ell \mid N p$.

Galois representations

Next we want to: attach a Galois representation to \mathbb{T}_{f}.
Let $\bar{f}=\sum_{n \geq 0} \bar{a}_{n} q^{n} \in S_{k}\left(N ; \mathbb{F}_{q}\right)$ given by $\bar{\lambda}_{f}: \overline{\mathbb{T}} \rightarrow \mathbb{F}_{q}, T_{n} \rightarrow \bar{a}_{n}$
Deligne, Shimura: We can attach to \bar{f} a Galois representation

$$
\bar{\rho}_{f}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)
$$

unramified outside $N p$ and, for every $\ell \nmid N p$:

$$
\operatorname{tr}\left(\bar{\rho}_{f}\left(\operatorname{Frob}_{\ell}\right)\right)=\bar{\lambda}_{f}\left(T_{\ell}\right) \quad \text { and } \quad \operatorname{det}\left(\bar{\rho}_{f}\left(\operatorname{Frob}_{\ell}\right)\right)=\ell^{k-1}
$$

Let $\mathbb{T}_{f}:=\overline{\mathbb{T}}_{\mathfrak{m}_{f}}$ as before, but without the operators T_{ℓ} with $\ell \mid N p$.
Carayol: If $\bar{\rho}_{f}$ is absolutely irreducible, then there exists a continuous Galois representation

$$
\rho_{f}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbb{T}_{f}\right)
$$

unramified outside $N p$ and, for every $\ell \nmid N p$:

$$
\operatorname{tr}\left(\rho_{f}\left(\operatorname{Frob}_{\ell}\right)\right)=\lambda_{f}\left(T_{\ell}\right) \quad \text { and } \quad \operatorname{det}\left(\rho_{f}\left(\operatorname{Frob}_{\ell}\right)\right)=\ell^{k-1}
$$

where $\lambda_{f}: \overline{\mathbb{T}} \rightarrow \mathbb{T}_{f}$. This representation is unique up to conjugation.

Image of ρ_{f}

Image of ρ_{f}

GOAL: Compute the image of $\rho_{f}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbb{T}_{f}\right)$.

Image of ρ_{f}

GOAL: Compute the image of $\rho_{f}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbb{T}_{f}\right)$.
Let $D=\operatorname{Im}\left(\operatorname{det} \circ \bar{\rho}_{f}\right) \subseteq \mathbb{F}_{q}^{\times}$
$\mathrm{GL}_{2}^{D}\left(\mathbb{T}_{f}\right):=\left\{g \in \mathrm{GL}_{2}\left(\mathbb{T}_{f}\right): \operatorname{det}(g) \in D\right\}$
$\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right):=\left\{g \in \mathrm{GL}_{2}\left(\mathbb{F}_{q}\right): \operatorname{det}(g) \in D\right\}$

Image of ρ_{f}

GOAL: Compute the image of $\rho_{f}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbb{T}_{f}\right)$.
Let $D=\operatorname{Im}\left(\operatorname{det} \circ \bar{\rho}_{f}\right) \subseteq \mathbb{F}_{q}^{\times}$
$\mathrm{GL}_{2}^{D}\left(\mathbb{T}_{f}\right):=\left\{g \in \mathrm{GL}_{2}\left(\mathbb{T}_{f}\right): \operatorname{det}(g) \in D\right\}$
$\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right):=\left\{g \in \mathrm{GL}_{2}\left(\mathbb{F}_{q}\right): \operatorname{det}(g) \in D\right\}$
Assume that $\operatorname{Im}\left(\rho_{f}\right) \subseteq \mathrm{GL}_{2}^{D}\left(\mathbb{T}_{f}\right)$.

Image of ρ_{f}

GOAL: Compute the image of $\rho_{f}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbb{T}_{f}\right)$.
Let $D=\operatorname{Im}\left(\operatorname{det} \circ \bar{\rho}_{f}\right) \subseteq \mathbb{F}_{q}^{\times}$
$\mathrm{GL}_{2}^{D}\left(\mathbb{T}_{f}\right):=\left\{g \in \mathrm{GL}_{2}\left(\mathbb{T}_{f}\right): \operatorname{det}(g) \in D\right\}$
$\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right):=\left\{g \in \mathrm{GL}_{2}\left(\mathbb{F}_{q}\right): \operatorname{det}(g) \in D\right\}$
Assume that $\operatorname{Im}\left(\rho_{f}\right) \subseteq \mathrm{GL}_{2}^{D}\left(\mathbb{T}_{f}\right)$.
We have the following commutative diagram

Image of ρ_{f}

GOAL: Compute the image of $\rho_{f}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbb{T}_{f}\right)$.
Let $D=\operatorname{Im}\left(\operatorname{det} \circ \bar{\rho}_{f}\right) \subseteq \mathbb{F}_{q}^{\times}$
$\mathrm{GL}_{2}^{D}\left(\mathbb{T}_{f}\right):=\left\{g \in \mathrm{GL}_{2}\left(\mathbb{T}_{f}\right): \operatorname{det}(g) \in D\right\}$
$\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right):=\left\{g \in \mathrm{GL}_{2}\left(\mathbb{F}_{q}\right): \operatorname{det}(g) \in D\right\}$
Assume that $\operatorname{Im}\left(\rho_{f}\right) \subseteq \mathrm{GL}_{2}^{D}\left(\mathbb{T}_{f}\right)$.
We have the following commutative diagram

that gives us a short exact sequence:

$$
1 \rightarrow \operatorname{ker}(\pi) \rightarrow \mathrm{GL}_{2}^{D}\left(\mathbb{T}_{f}\right) \xrightarrow{\pi} \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right) \rightarrow 1
$$

Image of ρ_{f} as a semi-direct product

Image of ρ_{f} as a semi-direct product

Assumptions:

- $\mathfrak{m}_{f}^{2}=0$

Image of ρ_{f} as a semi-direct product

Assumptions:

- $\mathfrak{m}_{f}^{2}=0$
- $\operatorname{Im}\left(\bar{\rho}_{f}\right)=\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$

Image of ρ_{f} as a semi-direct product

Assumptions:

- $\mathfrak{m}_{f}^{2}=0$
- $\operatorname{Im}\left(\bar{\rho}_{f}\right)=\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$ The residual representation has big image

Image of ρ_{f} as a semi-direct product

Assumptions:

- $\mathfrak{m}_{f}^{2}=0$
- $\operatorname{Im}\left(\bar{\rho}_{f}\right)=\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$ The residual representation has big image

$$
\left.\begin{array}{rl}
1
\end{array} \rightarrow \operatorname{ker}(\pi) \quad \rightarrow \quad \begin{array}{ccc}
\mathrm{GL}_{2}^{D}\left(\mathbb{T}_{f}\right) \\
\left(\begin{array}{cc}
a_{1}+a_{2} \mathfrak{m}_{f} & b_{1}+b_{2} \mathfrak{m}_{f} \\
c_{1}+c_{2} \mathfrak{m}_{f} & d_{1}+d_{2} \mathfrak{m}_{f}
\end{array}\right) & \xrightarrow{\pi} & \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)
\end{array} \rightarrow \begin{array}{c}
1 \\
a_{1} \\
c_{1} \\
c_{1} \\
d_{1}
\end{array}\right)
$$

Image of ρ_{f} as a semi-direct product

Assumptions:

- $\mathfrak{m}_{f}^{2}=0$
- $\operatorname{Im}\left(\bar{\rho}_{f}\right)=\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$ The residual representation has big image

$$
\begin{aligned}
& 1 \rightarrow \operatorname{ker}(\pi) \rightarrow \mathrm{GL}_{2}^{D}\left(\mathbb{T}_{f}\right) \quad \xrightarrow{\pi} \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right) \rightarrow 1 \\
& \left(\begin{array}{ll}
a_{1}+a_{2} \mathfrak{m}_{f} & b_{1}+b_{2} \mathfrak{m}_{f} \\
c_{1}+c_{2} \mathfrak{m}_{f} & d_{1}+d_{2} \mathfrak{m}_{f}
\end{array}\right) \quad \mapsto \quad\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right)
\end{aligned}
$$

Take $g=\left(\begin{array}{ll}a_{1}+a_{2} \mathfrak{m}_{f} & b_{1}+b_{2} \mathfrak{m}_{f} \\ c_{1}+c_{2} \mathfrak{m}_{f} & d_{1}+d_{2} \mathfrak{m}_{f}\end{array}\right) \in \mathrm{GL}_{2}^{D}\left(\mathbb{T}_{f}\right)$, with $a_{i}, b_{i}, c_{i}, d_{i} \in \mathbb{F}_{q}$.

Image of ρ_{f} as a semi-direct product

Assumptions:

- $\mathfrak{m}_{f}^{2}=0$
- $\operatorname{Im}\left(\bar{\rho}_{f}\right)=\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$ The residual representation has big image

$$
\begin{aligned}
& 1 \rightarrow \operatorname{ker}(\pi) \quad \rightarrow \quad \mathrm{GL}_{2}^{D}\left(\mathbb{T}_{f}\right) \quad \stackrel{\pi}{\rightarrow} \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right) \rightarrow 1 \\
& \left(\begin{array}{l}
a_{1}+a_{2} \mathfrak{m}_{f} \\
c_{1}+b_{1}+b_{2} \mathfrak{m}_{f} \\
c_{1}+\mathfrak{m}_{f} \\
d_{1}+d_{2} \mathfrak{m}_{f}
\end{array}\right) \mapsto \quad\left(\begin{array}{cc}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right)
\end{aligned}
$$

Take $g=\binom{a_{1}+a_{2} \mathfrak{m}_{f}}{c_{1}+c_{2} \mathfrak{m}_{f}+b_{2} \mathfrak{m}_{f}+d_{2} \mathfrak{m}_{f}} \in \mathrm{GL}_{2}^{D}\left(\mathbb{T}_{f}\right)$, with $a_{i}, b_{i}, c_{i}, d_{i} \in \mathbb{F}_{q}$. Then
$g \in \operatorname{ker}(\pi) \Leftrightarrow g=\left(\begin{array}{cc}1+a_{2} \mathfrak{m}_{f} & b_{2} \mathfrak{m}_{f} \\ c_{2} \mathfrak{m}_{f} & 1+d_{2} \mathfrak{m}_{f}\end{array}\right)$ and $\operatorname{det}(g)=1+\left(a_{2}+d_{2}\right) \mathfrak{m}_{f} \in D \subseteq \mathbb{F}_{q}^{\times}$.

Image of ρ_{f} as a semi-direct product

Assumptions:

- $\mathfrak{m}_{f}^{2}=0$
- $\operatorname{Im}\left(\bar{\rho}_{f}\right)=\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$ The residual representation has big image

$$
\begin{aligned}
& 1 \rightarrow \operatorname{ker}(\pi) \quad \rightarrow \quad \mathrm{GL}_{2}^{D}\left(\mathbb{T}_{f}\right) \quad \stackrel{\pi}{\rightarrow} \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right) \rightarrow 1 \\
& \left(\begin{array}{l}
a_{1}+a_{2} \mathfrak{m}_{f} \\
c_{1}+b_{1}+b_{2} \mathfrak{m}_{f} \\
c_{1}+\mathfrak{m}_{f} \\
d_{1}+d_{2} \mathfrak{m}_{f}
\end{array}\right) \quad \mapsto \quad\left(\begin{array}{cc}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right)
\end{aligned}
$$

Take $g=\left(\begin{array}{cc}a_{1}+a_{2} \mathfrak{m}_{f} & b_{1}+b_{2} \mathfrak{m}_{f} \\ c_{1}+c_{2} \mathfrak{m}_{f} & d_{1}+d_{2} \mathfrak{m}_{f}\end{array}\right) \in \mathrm{GL}_{2}^{D}\left(\mathbb{T}_{f}\right)$, with $a_{i}, b_{i}, c_{i}, d_{i} \in \mathbb{F}_{q}$. Then
$g \in \operatorname{ker}(\pi) \Leftrightarrow g=\left(\begin{array}{cc}1+a_{2} \mathfrak{m}_{f} & b_{2} \mathfrak{m}_{f} \\ c_{2} \mathfrak{m}_{f} & 1+d_{2} \mathfrak{m}_{f}\end{array}\right)$ and $\operatorname{det}(g)=1+\left(a_{2}+d_{2}\right) \mathfrak{m}_{f} \in D \subseteq \mathbb{F}_{q}^{\times}$.

$$
\Leftrightarrow g=1+\left(\begin{array}{ll}
a_{2} \mathfrak{m}_{f} & b_{2} \mathfrak{m}_{f} \\
c_{2} \mathfrak{m}_{f} & d_{2} \mathfrak{m}_{f}
\end{array}\right) \text { and } a_{2}=-d_{2}
$$

Image of ρ_{f} as a semi-direct product

Assumptions:

- $\mathfrak{m}_{f}^{2}=0$
- $\operatorname{Im}\left(\bar{\rho}_{f}\right)=\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$ The residual representation has big image

$$
\begin{aligned}
& 1 \rightarrow \operatorname{ker}(\pi) \quad \rightarrow \quad \mathrm{GL}_{2}^{D}\left(\mathbb{T}_{f}\right) \quad \stackrel{\pi}{\rightarrow} \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right) \rightarrow 1 \\
& \left(\begin{array}{l}
a_{1}+a_{2} \mathfrak{m}_{f} \\
b_{1}+b_{2} \mathfrak{m}_{f} \\
c_{1}+c_{2} \mathfrak{m}_{f} \\
d_{1}+d_{2} \mathfrak{m}_{f}
\end{array}\right) \quad \mapsto \quad\left(\begin{array}{c}
a_{1} \\
b_{1} \\
c_{1} \\
d_{1}
\end{array}\right)
\end{aligned}
$$

Take $g=\left(\begin{array}{cc}a_{1}+a_{2} \mathfrak{m}_{f} & b_{1}+b_{2} \mathfrak{m}_{f} \\ c_{1}+c_{2} \mathfrak{m}_{f} & d_{1}+d_{2} \mathfrak{m}_{f}\end{array}\right) \in \mathrm{GL}_{2}^{D}\left(\mathbb{T}_{f}\right)$, with $a_{i}, b_{i}, c_{i}, d_{i} \in \mathbb{F}_{q}$. Then
$g \in \operatorname{ker}(\pi) \Leftrightarrow g=\left(\begin{array}{cc}1+a_{2} \mathfrak{m}_{f} & b_{2} \mathfrak{m}_{f} \\ c_{2} \mathfrak{m}_{f} & 1+d_{2} \mathfrak{m}_{f}\end{array}\right)$ and $\operatorname{det}(g)=1+\left(a_{2}+d_{2}\right) \mathfrak{m}_{f} \in D \subseteq \mathbb{F}_{q}^{\times}$.

$$
\Leftrightarrow g=1+\left(\begin{array}{ll}
a_{2} \mathfrak{m}_{f} & b_{2} \mathfrak{m}_{f} \\
c_{2} \mathfrak{m}_{f} & d_{2} \mathfrak{m}_{f}
\end{array}\right) \text { and } a_{2}=-d_{2} \Leftrightarrow \operatorname{ker}(\pi)=1+\mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right)
$$

Image of ρ_{f} as a semi-direct product

Assumptions:

- $\mathfrak{m}_{f}^{2}=0$
- $\operatorname{Im}\left(\bar{\rho}_{f}\right)=\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$ The residual representation has big image

$$
\begin{aligned}
& 1 \rightarrow \operatorname{ker}(\pi) \quad \rightarrow \quad \mathrm{GL}_{2}^{D}\left(\mathbb{T}_{f}\right) \quad \stackrel{\pi}{\rightarrow} \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right) \rightarrow 1 \\
& \left(\begin{array}{l}
a_{1}+a_{2} \mathfrak{m}_{f} \\
b_{1}+b_{2} \mathfrak{m}_{f} \\
c_{1}+c_{2} \mathfrak{m}_{f} \\
d_{1}+d_{2} \mathfrak{m}_{f}
\end{array}\right) \quad \mapsto \quad\left(\begin{array}{c}
a_{1} \\
b_{1} \\
c_{1} \\
d_{1}
\end{array}\right)
\end{aligned}
$$

Take $g=\left(\begin{array}{cc}a_{1}+a_{2} \mathfrak{m}_{f} & b_{1}+b_{2} \mathfrak{m}_{f} \\ c_{1}+c_{2} \mathfrak{m}_{f} & d_{1}+d_{2} \mathfrak{m}_{f}\end{array}\right) \in \mathrm{GL}_{2}^{D}\left(\mathbb{T}_{f}\right)$, with $a_{i}, b_{i}, c_{i}, d_{i} \in \mathbb{F}_{q}$. Then
$g \in \operatorname{ker}(\pi) \Leftrightarrow g=\left(\begin{array}{cc}1+a_{2} \mathfrak{m}_{f} & b_{2} \mathfrak{m}_{f} \\ c_{2} \mathfrak{m}_{f} & 1+d_{2} \mathfrak{m}_{f}\end{array}\right)$ and $\operatorname{det}(g)=1+\left(a_{2}+d_{2}\right) \mathfrak{m}_{f} \in D \subseteq \mathbb{F}_{q}^{\times}$.

$$
\begin{aligned}
& \Leftrightarrow g=1+\left(\begin{array}{lll}
a_{2} \mathfrak{m}_{f} & b_{2} \mathfrak{m}_{f} \\
c_{2} \mathfrak{m}_{f} & d_{2} \mathfrak{m}_{f}
\end{array}\right) \text { and } a_{2}=-d_{2} \Leftrightarrow \operatorname{ker}(\pi)=1+\mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right) \\
& 0 \rightarrow \mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right) \quad \stackrel{\iota}{\rightarrow} \quad \mathrm{GL}_{2}^{D}\left(\mathbb{T}_{f}\right) \quad \xrightarrow{\pi} \quad \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right) \quad \rightarrow \quad 1 \\
& \left(\begin{array}{cc}
a_{2} \mathfrak{m}_{f} & b_{2} \mathfrak{m}_{f} \\
c_{2} \mathfrak{m}_{f} & -a_{2} \mathfrak{m}_{f}
\end{array}\right) \longmapsto 1+\left(\begin{array}{cc}
a_{2} \mathfrak{m}_{f} & b_{2} \mathfrak{m}_{f} \\
c_{2} \mathfrak{m}_{f} & -a_{2} \mathfrak{m}_{f}
\end{array}\right)
\end{aligned}
$$

Image of ρ_{f} as a semi-direct product

Let $\bar{G}:=\operatorname{Im}\left(\bar{\rho}_{f}\right)$, and $G:=\operatorname{Im}\left(\rho_{f}\right)$. They fit in a short exact sequence:

Image of ρ_{f} as a semi-direct product

Let $\bar{G}:=\operatorname{Im}\left(\bar{\rho}_{f}\right)$, and $G:=\operatorname{Im}\left(\rho_{f}\right)$. They fit in a short exact sequence:

Image of ρ_{f} as a semi-direct product

Let $\bar{G}:=\operatorname{Im}\left(\bar{\rho}_{f}\right)$, and $G:=\operatorname{Im}\left(\rho_{f}\right)$. They fit in a short exact sequence:

Image of ρ_{f} as a semi-direct product

Let $\bar{G}:=\operatorname{Im}\left(\bar{\rho}_{f}\right)$, and $G:=\operatorname{Im}\left(\rho_{f}\right)$. They fit in a short exact sequence:

The first exact sequence splits, so $\mathrm{GL}_{2}^{D}\left(\mathbb{T}_{f}\right) \simeq \mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right) \rtimes \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$.

Image of ρ_{f} as a semi-direct product

Let $\bar{G}:=\operatorname{Im}\left(\bar{\rho}_{f}\right)$, and $G:=\operatorname{Im}\left(\rho_{f}\right)$. They fit in a short exact sequence:

The first exact sequence splits, so $\mathrm{GL}_{2}^{D}\left(\mathbb{T}_{f}\right) \simeq \mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right) \rtimes \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$.

Image of ρ_{f} as a semi-direct product

Let $\bar{G}:=\operatorname{Im}\left(\bar{\rho}_{f}\right)$, and $G:=\operatorname{Im}\left(\rho_{f}\right)$. They fit in a short exact sequence:

The first exact sequence splits, so $\mathrm{GL}_{2}^{D}\left(\mathbb{T}_{f}\right) \simeq \mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right) \rtimes \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$.
Theorem 1. (A.) Assume $q \neq 2,3,5$. The second exact sequence is also (non-trivially) split, so

$$
G=\operatorname{Im}\left(\rho_{f}\right) \simeq H \rtimes \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right) .
$$

Image of ρ_{f} as a semi-direct product

Let $\bar{G}:=\operatorname{Im}\left(\bar{\rho}_{f}\right)$, and $G:=\operatorname{Im}\left(\rho_{f}\right)$. They fit in a short exact sequence:

The first exact sequence splits, so $\mathrm{GL}_{2}^{D}\left(\mathbb{T}_{f}\right) \simeq \mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right) \rtimes \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$.
Theorem 1. (A.) Assume $q \neq 2,3,5$. The second exact sequence is also (non-trivially) split, so

$$
G=\operatorname{Im}\left(\rho_{f}\right) \simeq H \rtimes \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right) .
$$

It is consequence of:

- $H^{1}\left(\mathrm{GL}_{n}^{D}\left(W_{m}\right), \mathbb{F}_{q}\right)=0$
- there is an injection $H^{2}\left(\mathrm{GL}_{n}^{D}\left(W_{m}\right), N\right) \hookrightarrow H^{2}\left(\mathrm{GL}_{n}^{D}\left(W_{m}\right), M\right)$

Image of ρ_{f} as a semi-direct product

Let $\bar{G}:=\operatorname{Im}\left(\bar{\rho}_{f}\right)$, and $G:=\operatorname{Im}\left(\rho_{f}\right)$. They fit in a short exact sequence:

The first exact sequence splits, so $\mathrm{GL}_{2}^{D}\left(\mathbb{T}_{f}\right) \simeq \mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right) \rtimes \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$.
Theorem 1. (A.) Assume $q \neq 2,3,5$. The second exact sequence is also (non-trivially) split, so

$$
G=\operatorname{Im}\left(\rho_{f}\right) \simeq H \rtimes \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right) .
$$

It is consequence of:

- $H^{1}\left(\operatorname{GL}_{n}^{D}\left(W_{m}\right), \mathbb{F}_{q}\right)=0$
- there is an injection $H^{2}\left(\mathrm{GL}_{n}^{D}\left(W_{m}\right), N\right) \hookrightarrow H^{2}\left(\mathrm{GL}_{n}^{D}\left(W_{m}\right), M\right)$
$N \subseteq M \subseteq M_{2}^{0}\left(\mathfrak{m}_{f}\right)$ are $\mathbb{F}_{p}\left[\mathrm{GL}_{n}^{D}\left(\mathbb{F}_{q}\right)\right]$-submodules $W\left(\mathbb{F}_{q}\right)$ ring of Witt vectors of \mathbb{F}_{q} and $W_{m}:=W\left(\mathbb{F}_{q}\right) / p^{m}$

Explicit determination of $\operatorname{Im}\left(\rho_{f}\right)$

Explicit determination of $\operatorname{Im}\left(\rho_{f}\right)$

We have

$$
G \simeq H \rtimes \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)
$$

with $H \subseteq \mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right)$ a submodule over $\mathbb{F}_{p}\left[\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)\right]$.

Explicit determination of $\operatorname{Im}\left(\rho_{f}\right)$

We have

$$
G \simeq H \rtimes \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)
$$

with $H \subseteq \mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right)$ a submodule over $\mathbb{F}_{p}\left[\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)\right]$.
Question: Which are the possible submodules H of $\mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right)$?

Explicit determination of $\operatorname{Im}\left(\rho_{f}\right)$

We have

$$
G \simeq H \rtimes \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)
$$

with $H \subseteq \mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right)$ a submodule over $\mathbb{F}_{p}\left[\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)\right]$.
Question: Which are the possible submodules H of $\mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right)$?
$\mathbb{T}_{f} \simeq \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right] /\left(X_{i} X_{j}\right)_{1 \leq i, j \leq m}$

Explicit determination of $\operatorname{Im}\left(\rho_{f}\right)$

We have

$$
G \simeq H \rtimes \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)
$$

with $H \subseteq \mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right)$ a submodule over $\mathbb{F}_{p}\left[\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)\right]$.
Question: Which are the possible submodules H of $\mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right)$?
$\mathbb{T}_{f} \simeq \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right] /\left(X_{i} X_{j}\right)_{1 \leq i, j \leq m} \quad$ and $\quad \mathfrak{m}_{f} \simeq \underbrace{\mathbb{F}_{q} \oplus \ldots \oplus \mathbb{F}_{q}}_{m}$

Explicit determination of $\operatorname{Im}\left(\rho_{f}\right)$

We have

$$
G \simeq H \rtimes \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)
$$

with $H \subseteq \mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right)$ a submodule over $\mathbb{F}_{p}\left[\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)\right]$.
Question: Which are the possible submodules H of $\mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right)$?
$\mathbb{T}_{f} \simeq \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right] /\left(X_{i} X_{j}\right)_{1 \leq i, j \leq m} \quad$ and $\quad \mathfrak{m}_{f} \simeq \underbrace{\mathbb{F}_{q} \oplus \ldots \oplus \mathbb{F}_{q}}_{m}$
$\mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right) \simeq \underbrace{\mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right) \oplus \ldots \oplus \mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right)}_{m}$

Explicit determination of $\operatorname{Im}\left(\rho_{f}\right)$

We have

$$
G \simeq H \rtimes \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)
$$

with $H \subseteq \mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right)$ a submodule over $\mathbb{F}_{p}\left[\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)\right]$.
Question: Which are the possible submodules H of $\mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right)$?

$$
\begin{aligned}
& \mathbb{T}_{f} \simeq \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right] /\left(X_{i} X_{j}\right)_{1 \leq i, j \leq m} \text { and } \mathfrak{m}_{f} \simeq \underbrace{\mathbb{F}_{q} \oplus \ldots \oplus \mathbb{F}_{q}}_{m} \\
& \mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right) \simeq \underbrace{\mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right) \oplus \ldots \oplus \mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right)}_{m}=\underbrace{M^{0} \oplus \ldots \oplus M^{0}}_{m}
\end{aligned}
$$

Explicit determination of $\operatorname{Im}\left(\rho_{f}\right)$

We have

$$
G \simeq H \rtimes \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)
$$

with $H \subseteq \mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right)$ a submodule over $\mathbb{F}_{p}\left[\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)\right]$.
Question: Which are the possible submodules H of $\mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right)$?
$\mathbb{T}_{f} \simeq \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right] /\left(X_{i} X_{j}\right)_{1 \leq i, j \leq m} \quad$ and $\quad \mathfrak{m}_{f} \simeq \underbrace{\mathbb{F}_{q} \oplus \ldots \oplus \mathbb{F}_{q}}_{m}$
$\mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right) \simeq \underbrace{\mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right) \oplus \ldots \oplus \mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right)}_{m}=\underbrace{M^{0} \oplus \ldots \oplus M^{0}}_{m}$
Lemma 1 (one copy): If $p \neq 2, M^{0}$ is a simple module.

Explicit determination of $\operatorname{Im}\left(\rho_{f}\right)$

We have

$$
G \simeq H \rtimes \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)
$$

with $H \subseteq \mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right)$ a submodule over $\mathbb{F}_{p}\left[\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)\right]$.
Question: Which are the possible submodules H of $\mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right)$?
$\mathbb{T}_{f} \simeq \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right] /\left(X_{i} X_{j}\right)_{1 \leq i, j \leq m} \quad$ and $\quad \mathfrak{m}_{f} \simeq \underbrace{\mathbb{F}_{q} \oplus \ldots \oplus \mathbb{F}_{q}}_{m}$
$\mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right) \simeq \underbrace{\mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right) \oplus \ldots \oplus \mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right)}_{m}=\underbrace{M^{0} \oplus \ldots \oplus M^{0}}_{m}$
Lemma 1 (one copy): If $p \neq 2, M^{0}$ is a simple module.
So the only possible submodules of M^{0} are (0) and M^{0}.

Explicit determination of $\operatorname{Im}\left(\rho_{f}\right)$

We have

$$
G \simeq H \rtimes \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)
$$

with $H \subseteq \mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right)$ a submodule over $\mathbb{F}_{p}\left[\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)\right]$.
Question: Which are the possible submodules H of $\mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right)$?

$$
\begin{aligned}
& \mathbb{T}_{f} \simeq \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right] /\left(X_{i} X_{j}\right)_{1 \leq i, j \leq m} \quad \text { and } \quad \mathfrak{m}_{f} \simeq \underbrace{\mathbb{F}_{q} \oplus \ldots \oplus \mathbb{F}_{q}}_{m} \\
& \mathrm{M}_{2}^{0}\left(\mathfrak{m}_{f}\right) \simeq \underbrace{\mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right) \oplus \ldots \oplus \mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right)}_{m}=\underbrace{M^{0} \oplus \ldots \oplus M^{0}}_{m}
\end{aligned}
$$

Lemma 1 (one copy): If $p \neq 2, M^{0}$ is a simple module.
So the only possible submodules of M^{0} are (0) and M^{0}.
Lemma 2 (several copies): If M is a simple module, any submodule $N \subseteq M \oplus \ldots \oplus M$ is isomorphic to some copies of M.

Explicit determination of $\operatorname{Im}\left(\rho_{f}\right)$

\Rightarrow If $p \neq 2: H \simeq \underbrace{M^{0} \oplus \ldots \oplus M^{0}}_{\alpha}$ with $0 \leq \alpha \leq m$.

Explicit determination of $\operatorname{Im}\left(\rho_{f}\right)$

Lemma 3 (one copy): If $p=2, M^{0}$ has $\mathcal{S}=\left\{\lambda \mathrm{Id}_{2}: \lambda \in \mathbb{F}_{q}\right\}$ as a submodule.
Let $N \subseteq M^{0}$. Then either $N \subseteq \mathcal{S}$ subgroup or $N=M^{0}$.

Explicit determination of $\operatorname{Im}\left(\rho_{f}\right)$

Lemma 3 (one copy): If $p=2, M^{0}$ has $\mathcal{S}=\left\{\lambda \mathrm{Id}_{2}: \lambda \in \mathbb{F}_{q}\right\}$ as a submodule. Let $N \subseteq M^{0}$. Then either $N \subseteq \mathcal{S}$ subgroup or $N=M^{0}$.
Lemma 4 (several copies): Let $N \subseteq \overbrace{M^{0} \oplus \ldots \oplus M^{0}}^{m}$. Then $N \simeq N_{1} \oplus \ldots \oplus N_{n}$, with $N_{i} \subseteq M^{0}$ submodule .

Explicit determination of $\operatorname{Im}\left(\rho_{f}\right)$

Lemma 3 (one copy): If $p=2, M^{0}$ has $\mathcal{S}=\left\{\lambda \mathrm{Id}_{2}: \lambda \in \mathbb{F}_{q}\right\}$ as a submodule.
Let $N \subseteq M^{0}$. Then either $N \subseteq \mathcal{S}$ subgroup or $N=M^{0}$.
Lemma 4 (several copies): Let $N \subseteq \overbrace{M^{0} \oplus \ldots \oplus M^{0}}^{m}$. Then $N \simeq N_{1} \oplus \ldots \oplus N_{n}$, with $N_{i} \subseteq M^{0}$ submodule.

$$
\Rightarrow \text { If } p=2: H \simeq \underbrace{M^{0} \oplus \ldots \oplus M^{0}}_{\alpha} \oplus \underbrace{C_{2} \oplus \ldots \oplus C_{2}}_{\beta} \text {, with } C_{2} \subset \mathcal{S} \text {. }
$$

Explicit determination of $\operatorname{Im}\left(\rho_{f}\right)$

Theorem 1. (A.) \mathbb{F}_{q} with $q \neq 2,3,5$.

Explicit determination of $\operatorname{Im}\left(\rho_{f}\right)$

Theorem 1. (A.) \mathbb{F}_{q} with $q \neq 2,3,5$.
$(\mathbb{T}, \mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_{q}-algebra with $\mathbb{T} / \mathfrak{m} \simeq \mathbb{F}_{q}$.

Explicit determination of $\operatorname{Im}\left(\rho_{f}\right)$

Theorem 1. (A.) \mathbb{F}_{q} with $q \neq 2,3,5$.
$(\mathbb{T}, \mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_{q}-algebra with $\mathbb{T} / \mathfrak{m} \simeq \mathbb{F}_{q}$. Suppose that $\mathfrak{m}^{2}=0$.

Explicit determination of $\operatorname{Im}\left(\rho_{f}\right)$

Theorem 1. (A.) \mathbb{F}_{q} with $q \neq 2,3,5$.
$(\mathbb{T}, \mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_{q}-algebra with $\mathbb{T} / \mathfrak{m} \simeq \mathbb{F}_{q}$.
Suppose that $\mathfrak{m}^{2}=0$.
$\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathbb{T})$ continuous representation such that

Explicit determination of $\operatorname{Im}\left(\rho_{f}\right)$

Theorem 1. (A.) \mathbb{F}_{q} with $q \neq 2,3,5$.
$(\mathbb{T}, \mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_{q}-algebra with $\mathbb{T} / \mathfrak{m} \simeq \mathbb{F}_{q}$.
Suppose that $\mathfrak{m}^{2}=0$.
$\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathbb{T})$ continuous representation such that
(a) $\operatorname{Im}(\bar{\rho})=\operatorname{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$, where $\bar{\rho}=\rho \bmod \mathfrak{m}$ and $D:=\operatorname{Im}(\operatorname{det} \circ \bar{\rho})$

Explicit determination of $\operatorname{Im}\left(\rho_{f}\right)$

Theorem 1. (A.) \mathbb{F}_{q} with $q \neq 2,3,5$.
$(\mathbb{T}, \mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_{q}-algebra with $\mathbb{T} / \mathfrak{m} \simeq \mathbb{F}_{q}$. Suppose that $\mathfrak{m}^{2}=0$.
$\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathbb{T})$ continuous representation such that
(a) $\operatorname{Im}(\bar{\rho})=\operatorname{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$, where $\bar{\rho}=\rho \bmod \mathfrak{m}$ and $D:=\operatorname{Im}(\operatorname{det} \circ \bar{\rho})$
(b) $\operatorname{Im}(\rho) \subseteq \mathrm{GL}_{2}^{D}(\mathbb{T})$

Explicit determination of $\operatorname{Im}\left(\rho_{f}\right)$

Theorem 1. (A.) \mathbb{F}_{q} with $q \neq 2,3,5$.
$(\mathbb{T}, \mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_{q}-algebra with $\mathbb{T} / \mathfrak{m} \simeq \mathbb{F}_{q}$.
Suppose that $\mathfrak{m}^{2}=0$.
$\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathbb{T})$ continuous representation such that
(a) $\operatorname{Im}(\bar{\rho})=\operatorname{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$, where $\bar{\rho}=\rho \bmod \mathfrak{m}$ and $D:=\operatorname{Im}(\operatorname{det} \circ \bar{\rho})$
(b) $\operatorname{Im}(\rho) \subseteq \mathrm{GL}_{2}^{D}(\mathbb{T})$
(c) \mathbb{T} is generated as \mathbb{F}_{q}-algebra by the set of traces of ρ

Explicit determination of $\operatorname{Im}\left(\rho_{f}\right)$

Theorem 1. (A.) \mathbb{F}_{q} with $q \neq 2,3,5$.
$(\mathbb{T}, \mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_{q}-algebra with $\mathbb{T} / \mathfrak{m} \simeq \mathbb{F}_{q}$.
Suppose that $\mathfrak{m}^{2}=0$.
$\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathbb{T})$ continuous representation such that
(a) $\operatorname{Im}(\bar{\rho})=\operatorname{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$, where $\bar{\rho}=\rho \bmod \mathfrak{m}$ and $D:=\operatorname{Im}(\operatorname{det} \circ \bar{\rho})$
(b) $\operatorname{Im}(\rho) \subseteq \mathrm{GL}_{2}^{D}(\mathbb{T})$
(c) \mathbb{T} is generated as \mathbb{F}_{q}-algebra by the set of traces of ρ

Let $m:=\operatorname{dim}_{\mathbb{F}_{q}} \mathfrak{m}$, and $t=$ number of different traces in $\operatorname{Im}(\rho)$.

Explicit determination of $\operatorname{Im}\left(\rho_{f}\right)$

Theorem 1. (A.) \mathbb{F}_{q} with $q \neq 2,3,5$.
$(\mathbb{T}, \mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_{q}-algebra with $\mathbb{T} / \mathfrak{m} \simeq \mathbb{F}_{q}$.
Suppose that $\mathfrak{m}^{2}=0$.
$\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathbb{T})$ continuous representation such that
(a) $\operatorname{Im}(\bar{\rho})=\operatorname{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$, where $\bar{\rho}=\rho \bmod \mathfrak{m}$ and $D:=\operatorname{Im}(\operatorname{det} \circ \bar{\rho})$
(b) $\operatorname{Im}(\rho) \subseteq \mathrm{GL}_{2}^{D}(\mathbb{T})$
(c) \mathbb{T} is generated as \mathbb{F}_{q}-algebra by the set of traces of ρ

Let $m:=\operatorname{dim}_{\mathbb{F}_{q}} \mathfrak{m}$, and $t=$ number of different traces in $\operatorname{Im}(\rho)$.
If $p \neq 2: \operatorname{Im}(\rho) \simeq(\underbrace{\mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right) \oplus \ldots \oplus \mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right)}_{m}) \rtimes \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$

Explicit determination of $\operatorname{Im}\left(\rho_{f}\right)$

Theorem 1. (A.) \mathbb{F}_{q} with $q \neq 2,3,5$.
$(\mathbb{T}, \mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_{q}-algebra with $\mathbb{T} / \mathfrak{m} \simeq \mathbb{F}_{q}$.
Suppose that $\mathfrak{m}^{2}=0$.
$\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathbb{T})$ continuous representation such that
(a) $\operatorname{Im}(\bar{\rho})=\operatorname{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$, where $\bar{\rho}=\rho \bmod \mathfrak{m}$ and $D:=\operatorname{Im}(\operatorname{det} \circ \bar{\rho})$
(b) $\operatorname{Im}(\rho) \subseteq \mathrm{GL}_{2}^{D}(\mathbb{T})$
(c) \mathbb{T} is generated as \mathbb{F}_{q}-algebra by the set of traces of ρ

Let $m:=\operatorname{dim}_{\mathbb{F}_{q}} \mathfrak{m}$, and $t=$ number of different traces in $\operatorname{Im}(\rho)$.
If $p \neq 2: \operatorname{Im}(\rho) \simeq(\underbrace{\mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right) \oplus \ldots \oplus \mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right)}_{m}) \rtimes \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$ and $t=q^{m+1}$.

Explicit determination of $\operatorname{Im}\left(\rho_{f}\right)$

Theorem 1. (A.) \mathbb{F}_{q} with $q \neq 2,3,5$.
$(\mathbb{T}, \mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_{q}-algebra with $\mathbb{T} / \mathfrak{m} \simeq \mathbb{F}_{q}$.
Suppose that $\mathfrak{m}^{2}=0$.
$\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathbb{T})$ continuous representation such that
(a) $\operatorname{Im}(\bar{\rho})=\operatorname{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$, where $\bar{\rho}=\rho \bmod \mathfrak{m}$ and $D:=\operatorname{Im}(\operatorname{det} \circ \bar{\rho})$
(b) $\operatorname{Im}(\rho) \subseteq \mathrm{GL}_{2}^{D}(\mathbb{T})$
(c) \mathbb{T} is generated as \mathbb{F}_{q}-algebra by the set of traces of ρ

Let $m:=\operatorname{dim}_{\mathbb{F}_{q}} \mathfrak{m}$, and $t=$ number of different traces in $\operatorname{Im}(\rho)$.
If $p \neq 2: \operatorname{Im}(\rho) \simeq(\underbrace{\mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right) \oplus \ldots \oplus \mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right)}_{m}) \rtimes \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$ and $t=q^{m+1}$.
If $p=2: \operatorname{Im}(\rho) \simeq(\underbrace{\mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right) \oplus \ldots \oplus \mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right)}_{\alpha} \oplus \underbrace{C_{2} \oplus \cdots \oplus C_{2}}_{\beta}) \rtimes \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$

Explicit determination of $\operatorname{Im}\left(\rho_{f}\right)$

Theorem 1. (A.) \mathbb{F}_{q} with $q \neq 2,3,5$.
$(\mathbb{T}, \mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_{q}-algebra with $\mathbb{T} / \mathfrak{m} \simeq \mathbb{F}_{q}$.
Suppose that $\mathfrak{m}^{2}=0$.
$\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathbb{T})$ continuous representation such that
(a) $\operatorname{Im}(\bar{\rho})=\operatorname{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$, where $\bar{\rho}=\rho \bmod \mathfrak{m}$ and $D:=\operatorname{Im}(\operatorname{det} \circ \bar{\rho})$
(b) $\operatorname{Im}(\rho) \subseteq \mathrm{GL}_{2}^{D}(\mathbb{T})$
(c) \mathbb{T} is generated as \mathbb{F}_{q}-algebra by the set of traces of ρ

Let $m:=\operatorname{dim}_{\mathbb{F}_{q}} \mathfrak{m}$, and $t=$ number of different traces in $\operatorname{Im}(\rho)$.
If $p \neq 2: \operatorname{Im}(\rho) \simeq(\underbrace{\mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right) \oplus \ldots \oplus \mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right)}_{m}) \rtimes \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$ and $t=q^{m+1}$.
If $p=2: \operatorname{Im}(\rho) \simeq(\underbrace{\mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right) \oplus \ldots \oplus \mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right)}_{\alpha} \oplus \underbrace{C_{2} \oplus \cdots \oplus C_{2}}_{\beta}) \rtimes \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$
$t=q^{\alpha} \cdot\left((q-1) 2^{\beta}+1\right)$,

Explicit determination of $\operatorname{Im}\left(\rho_{f}\right)$

Theorem 1. (A.) \mathbb{F}_{q} with $q \neq 2,3,5$.
$(\mathbb{T}, \mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_{q}-algebra with $\mathbb{T} / \mathfrak{m} \simeq \mathbb{F}_{q}$.
Suppose that $\mathfrak{m}^{2}=0$.
$\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathbb{T})$ continuous representation such that
(a) $\operatorname{Im}(\bar{\rho})=\operatorname{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$, where $\bar{\rho}=\rho \bmod \mathfrak{m}$ and $D:=\operatorname{Im}(\operatorname{det} \circ \bar{\rho})$
(b) $\operatorname{Im}(\rho) \subseteq \mathrm{GL}_{2}^{D}(\mathbb{T})$
(c) \mathbb{T} is generated as \mathbb{F}_{q}-algebra by the set of traces of ρ

Let $m:=\operatorname{dim}_{\mathbb{F}_{q}} \mathfrak{m}$, and $t=$ number of different traces in $\operatorname{Im}(\rho)$.
If $p \neq 2: \operatorname{Im}(\rho) \simeq(\underbrace{\mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right) \oplus \ldots \oplus \mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right)}_{m}) \rtimes \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$ and $t=q^{m+1}$.
If $p=2: \operatorname{Im}(\rho) \simeq(\underbrace{\mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right) \oplus \ldots \oplus \mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right)}_{\alpha} \oplus \underbrace{C_{2} \oplus \cdots \oplus C_{2}}_{\beta}) \rtimes \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$
$t=q^{\alpha} \cdot\left((q-1) 2^{\beta}+1\right)$, for $0 \leq \alpha \leq m, 0 \leq \beta \leq d(m-\alpha)$.

Explicit determination of $\operatorname{Im}\left(\rho_{f}\right)$

Theorem 1. (A.) \mathbb{F}_{q} with $q \neq 2,3,5$.
$(\mathbb{T}, \mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_{q}-algebra with $\mathbb{T} / \mathfrak{m} \simeq \mathbb{F}_{q}$.
Suppose that $\mathfrak{m}^{2}=0$.
$\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathbb{T})$ continuous representation such that
(a) $\operatorname{Im}(\bar{\rho})=\operatorname{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$, where $\bar{\rho}=\rho \bmod \mathfrak{m}$ and $D:=\operatorname{Im}(\operatorname{det} \circ \bar{\rho})$
(b) $\operatorname{Im}(\rho) \subseteq \mathrm{GL}_{2}^{D}(\mathbb{T})$
(c) \mathbb{T} is generated as \mathbb{F}_{q}-algebra by the set of traces of ρ

Let $m:=\operatorname{dim}_{\mathbb{F}_{q}} \mathfrak{m}$, and $t=$ number of different traces in $\operatorname{Im}(\rho)$.
If $p \neq 2: \operatorname{Im}(\rho) \simeq(\underbrace{\mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right) \oplus \ldots \oplus \mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right)}_{m}) \rtimes \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$ and $t=q^{m+1}$.
If $p=2: \operatorname{Im}(\rho) \simeq(\underbrace{\mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right) \oplus \ldots \oplus \mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right)}_{\alpha} \oplus \underbrace{C_{2} \oplus \cdots \oplus C_{2}}_{\beta}) \rtimes \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$
$t=q^{\alpha} \cdot\left((q-1) 2^{\beta}+1\right)$, for $0 \leq \alpha \leq m, 0 \leq \beta \leq d(m-\alpha)$. Moreover $\operatorname{Im}(\rho)$ is determined uniquely by t up to isomorphism.

How can we compute $\operatorname{Im}\left(\rho_{f}\right)$ in concrete examples?

Fix a prime p, a level $N \geq 1$ coprime to p, and a weight $k \geq 2$.
With the function HeckeAlgebras ${ }^{1}$ implemented in Magma we obtain every local mod p Hecke algebra \mathbb{T}_{f} (up to Galois conjugacy) of level N and weight k

$$
\left.\mathbb{T}_{f}=\left\langle T_{\ell} \text { Hecke operator }\right| \ell \leq \text { Sturm bound, } \ell \nmid N p\right\rangle
$$

[^0]
How can we compute $\operatorname{Im}\left(\rho_{f}\right)$ in concrete examples?

Fix a prime p, a level $N \geq 1$ coprime to p, and a weight $k \geq 2$.
With the function HeckeAlgebras ${ }^{1}$ implemented in Magma we obtain every local mod p Hecke algebra \mathbb{T}_{f} (up to Galois conjugacy) of level N and weight k

$$
\left.\mathbb{T}_{f}=\left\langle T_{\ell} \text { Hecke operator }\right| \ell \leq \text { Sturm bound, } \ell \nmid N p\right\rangle
$$

Example: $p=2, N=133$ and $k=2$.

[^1]
How can we compute $\operatorname{Im}\left(\rho_{f}\right)$ in concrete examples?

Fix a prime p, a level $N \geq 1$ coprime to p, and a weight $k \geq 2$.
With the function HeckeAlgebras ${ }^{1}$ implemented in Magma we obtain every local mod p Hecke algebra \mathbb{T}_{f} (up to Galois conjugacy) of level N and weight k

$$
\left.\mathbb{T}_{f}=\left\langle T_{\ell} \text { Hecke operator }\right| \ell \leq \text { Sturm bound, } \ell \nmid N p\right\rangle .
$$

Example: $p=2, N=133$ and $k=2$. There are 3 such Hecke algebras.

[^2]
How can we compute $\operatorname{Im}\left(\rho_{f}\right)$ in concrete examples?

Fix a prime p, a level $N \geq 1$ coprime to p, and a weight $k \geq 2$.
With the function HeckeAlgebras ${ }^{1}$ implemented in Magma we obtain every local mod p Hecke algebra \mathbb{T}_{f} (up to Galois conjugacy) of level N and weight k

$$
\left.\mathbb{T}_{f}=\left\langle T_{\ell} \text { Hecke operator }\right| \ell \leq \text { Sturm bound, } \ell \nmid N p\right\rangle .
$$

Example: $p=2, N=133$ and $k=2$. There are 3 such Hecke algebras.
For every \mathbb{T}_{f}, let $\mathbb{F}_{q}:=\mathbb{T}_{f} / \mathfrak{m}_{f}$ be its residue field. We check if the residual image is $\operatorname{Im}\left(\bar{\rho}_{f}\right)=\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$.

[^3]
How can we compute $\operatorname{Im}\left(\rho_{f}\right)$ in concrete examples?

Fix a prime p, a level $N \geq 1$ coprime to p, and a weight $k \geq 2$.
With the function HeckeAlgebras ${ }^{1}$ implemented in Magma we obtain every local mod p Hecke algebra \mathbb{T}_{f} (up to Galois conjugacy) of level N and weight k

$$
\left.\mathbb{T}_{f}=\left\langle T_{\ell} \text { Hecke operator }\right| \ell \leq \text { Sturm bound, } \ell \nmid N p\right\rangle .
$$

Example: $p=2, N=133$ and $k=2$. There are 3 such Hecke algebras.
For every \mathbb{T}_{f}, let $\mathbb{F}_{q}:=\mathbb{T}_{f} / \mathfrak{m}_{f}$ be its residue field. We check if the residual image is $\operatorname{Im}\left(\bar{\rho}_{f}\right)=\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$. If $\mathfrak{m}_{f}^{2} \neq 0$, we take $\mathbb{T}_{f} / \mathfrak{m}_{f}^{2}$.

[^4]
How can we compute $\operatorname{Im}\left(\rho_{f}\right)$ in concrete examples?

Fix a prime p, a level $N \geq 1$ coprime to p, and a weight $k \geq 2$.
With the function HeckeAlgebras ${ }^{1}$ implemented in Magma we obtain every local mod p Hecke algebra \mathbb{T}_{f} (up to Galois conjugacy) of level N and weight k

$$
\left.\mathbb{T}_{f}=\left\langle T_{\ell} \text { Hecke operator }\right| \ell \leq \text { Sturm bound, } \ell \nmid N p\right\rangle .
$$

Example: $p=2, N=133$ and $k=2$. There are 3 such Hecke algebras.
For every \mathbb{T}_{f}, let $\mathbb{F}_{q}:=\mathbb{T}_{f} / \mathfrak{m}_{f}$ be its residue field. We check if the residual image is $\operatorname{Im}\left(\bar{\rho}_{f}\right)=\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$. If $\mathfrak{m}_{f}^{2} \neq 0$, we take $\mathbb{T}_{f} / \mathfrak{m}_{f}^{2}$.

From the 3 Hecke algebras, only one satisfies $\operatorname{Im}\left(\bar{\rho}_{f}\right)=\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$.

[^5]
How can we compute $\operatorname{Im}\left(\rho_{f}\right)$ in concrete examples?

Fix a prime p, a level $N \geq 1$ coprime to p, and a weight $k \geq 2$.
With the function HeckeAlgebras ${ }^{1}$ implemented in Magma we obtain every local mod p Hecke algebra \mathbb{T}_{f} (up to Galois conjugacy) of level N and weight k

$$
\left.\mathbb{T}_{f}=\left\langle T_{\ell} \text { Hecke operator }\right| \ell \leq \text { Sturm bound, } \ell \nmid N p\right\rangle .
$$

Example: $p=2, N=133$ and $k=2$. There are 3 such Hecke algebras.
For every \mathbb{T}_{f}, let $\mathbb{F}_{q}:=\mathbb{T}_{f} / \mathfrak{m}_{f}$ be its residue field. We check if the residual image is $\operatorname{Im}\left(\bar{\rho}_{f}\right)=\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$. If $\mathfrak{m}_{f}^{2} \neq 0$, we take $\mathbb{T}_{f} / \mathfrak{m}_{f}^{2}$.

From the 3 Hecke algebras, only one satisfies $\operatorname{Im}\left(\bar{\rho}_{f}\right)=\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$.

- The field is \mathbb{F}_{4}

[^6]
How can we compute $\operatorname{Im}\left(\rho_{f}\right)$ in concrete examples?

Fix a prime p, a level $N \geq 1$ coprime to p, and a weight $k \geq 2$.
With the function HeckeAlgebras ${ }^{1}$ implemented in Magma we obtain every local mod p Hecke algebra \mathbb{T}_{f} (up to Galois conjugacy) of level N and weight k

$$
\left.\mathbb{T}_{f}=\left\langle T_{\ell} \text { Hecke operator }\right| \ell \leq \text { Sturm bound, } \ell \nmid N p\right\rangle .
$$

Example: $p=2, N=133$ and $k=2$. There are 3 such Hecke algebras.
For every \mathbb{T}_{f}, let $\mathbb{F}_{q}:=\mathbb{T}_{f} / \mathfrak{m}_{f}$ be its residue field. We check if the residual image is $\operatorname{Im}\left(\bar{\rho}_{f}\right)=\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$. If $\mathfrak{m}_{f}^{2} \neq 0$, we take $\mathbb{T}_{f} / \mathfrak{m}_{f}^{2}$.

From the 3 Hecke algebras, only one satisfies $\operatorname{Im}\left(\bar{\rho}_{f}\right)=\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$.

- The field is \mathbb{F}_{4}
$-D=1$, so actually $\operatorname{Im}\left(\bar{\rho}_{f}\right)=\operatorname{SL}_{2}\left(\mathbb{F}_{q}\right)$, and $\operatorname{Im}\left(\rho_{f}\right) \subseteq \operatorname{SL}_{2}\left(\mathbb{T}_{f}\right)$

[^7]
How can we compute $\operatorname{Im}\left(\rho_{f}\right)$ in concrete examples?

Fix a prime p, a level $N \geq 1$ coprime to p, and a weight $k \geq 2$.
With the function HeckeAlgebras ${ }^{1}$ implemented in Magma we obtain every local mod p Hecke algebra \mathbb{T}_{f} (up to Galois conjugacy) of level N and weight k

$$
\left.\mathbb{T}_{f}=\left\langle T_{\ell} \text { Hecke operator }\right| \ell \leq \text { Sturm bound, } \ell \nmid N p\right\rangle .
$$

Example: $p=2, N=133$ and $k=2$. There are 3 such Hecke algebras.
For every \mathbb{T}_{f}, let $\mathbb{F}_{q}:=\mathbb{T}_{f} / \mathfrak{m}_{f}$ be its residue field. We check if the residual image is $\operatorname{Im}\left(\bar{\rho}_{f}\right)=\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$. If $\mathfrak{m}_{f}^{2} \neq 0$, we take $\mathbb{T}_{f} / \mathfrak{m}_{f}^{2}$.

From the 3 Hecke algebras, only one satisfies $\operatorname{Im}\left(\bar{\rho}_{f}\right)=\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$.

- The field is \mathbb{F}_{4}
- $D=1$, so actually $\operatorname{Im}\left(\bar{\rho}_{f}\right)=\operatorname{SL}_{2}\left(\mathbb{F}_{q}\right)$, and $\operatorname{Im}\left(\rho_{f}\right) \subseteq \mathrm{SL}_{2}\left(\mathbb{T}_{f}\right)$
$-\mathbb{T}_{f} / \mathfrak{m}_{f}^{2} \simeq \mathbb{F}_{4}[X, Y] /\left(X^{2}, Y^{2}, X Y\right)$

[^8]How can we compute $\operatorname{Im}\left(\rho_{f}\right)$ in concrete examples?
By Theorem 1: the number t of traces in $G:=\operatorname{Im}\left(\rho_{f}\right)$ determines G.

How can we compute $\operatorname{Im}\left(\rho_{f}\right)$ in concrete examples?
By Theorem 1: the number t of traces in $G:=\operatorname{Im}\left(\rho_{f}\right)$ determines G.
$\widetilde{t}=\#$ different operators T_{ℓ}, with $\ell<b$ bound

How can we compute $\operatorname{Im}\left(\rho_{f}\right)$ in concrete examples?
By Theorem 1: the number t of traces in $G:=\operatorname{Im}\left(\rho_{f}\right)$ determines G.
$\widetilde{t}=\#$ different operators T_{ℓ}, with $\ell<b$ bound
Since $\operatorname{tr}\left(\rho_{f}\left(\right.\right.$ Frob $\left.\left._{\ell}\right)\right)=T_{\ell}, \tilde{t}=\#$ different traces in G.

How can we compute $\operatorname{Im}\left(\rho_{f}\right)$ in concrete examples?
By Theorem 1: the number t of traces in $G:=\operatorname{Im}\left(\rho_{f}\right)$ determines G.
$\widetilde{t}=\#$ different operators T_{ℓ}, with $\ell<b$ bound
Since $\operatorname{tr}\left(\rho_{f}\left(\operatorname{Frob}_{\ell}\right)\right)=T_{\ell}, \tilde{t}=\#$ different traces in G. We have $\widetilde{t} \leq t$.

How can we compute $\operatorname{Im}\left(\rho_{f}\right)$ in concrete examples?
By Theorem 1: the number t of traces in $G:=\operatorname{Im}\left(\rho_{f}\right)$ determines G.
$\widetilde{t}=\#$ different operators T_{ℓ}, with $\ell<b$ bound
Since $\operatorname{tr}\left(\rho_{f}\left(\operatorname{Frob}_{\ell}\right)\right)=T_{\ell}, \tilde{t}=\#$ different traces in G. We have $\tilde{t} \leq t$. bound $=1000$. We find $\widetilde{t}=13$

How can we compute $\operatorname{Im}\left(\rho_{f}\right)$ in concrete examples?
By Theorem 1: the number t of traces in $G:=\operatorname{Im}\left(\rho_{f}\right)$ determines G.
$\widetilde{t}=\#$ different operators T_{ℓ}, with $\ell<b$ bound
Since $\operatorname{tr}\left(\rho_{f}\left(\operatorname{Frob}_{\ell}\right)\right)=T_{\ell}, \tilde{t}=\#$ different traces in G. We have $\tilde{t} \leq t$. bound $=1000$. We find $\widetilde{t}=13$
$t=q^{\alpha} \cdot\left((q-1) 2^{\beta}+1\right)$, for some $0 \leq \alpha \leq 2$ and $0 \leq \beta \leq 2(2-\alpha)$,

How can we compute $\operatorname{Im}\left(\rho_{f}\right)$ in concrete examples?
By Theorem 1: the number t of traces in $G:=\operatorname{Im}\left(\rho_{f}\right)$ determines G.
$\widetilde{t}=\#$ different operators T_{ℓ}, with $\ell<b$ bound
Since $\operatorname{tr}\left(\rho_{f}\left(\operatorname{Frob}_{\ell}\right)\right)=T_{\ell}, \tilde{t}=\#$ different traces in G. We have $\tilde{t} \leq t$. bound $=1000$. We find $\widetilde{t}=13$
$t=4^{0} \cdot\left((4-1) 2^{2}+1\right)=13$

How can we compute $\operatorname{Im}\left(\rho_{f}\right)$ in concrete examples?
By Theorem 1: the number t of traces in $G:=\operatorname{Im}\left(\rho_{f}\right)$ determines G.
$\widetilde{t}=\#$ different operators T_{ℓ}, with $\ell<b$ bound
Since $\operatorname{tr}\left(\rho_{f}\left(\operatorname{Frob}_{\ell}\right)\right)=T_{\ell}, \tilde{t}=\#$ different traces in G. We have $\tilde{t} \leq t$. bound $=1000$. We find $\widetilde{t}=13$
$t=4^{0} \cdot\left((4-1) 2^{2}+1\right)=13$

$$
\begin{array}{llll}
0 \times 38, & & \\
1 \times 12, & (Y+a) \times 12 & \left(X+Y+a^{2}\right) \times 10 & (a X+a Y+1) \times 13 \\
a \times 10, & \left(a Y+a^{2}\right) \times 10 & \left(X+a^{2} Y+a^{2}\right) \times 7 & \left(a^{2} X+a Y+a\right) \times 6 \\
a^{2} \times 7, & \left(a^{2} Y+1\right) \times 13 & (a X+Y+1) \times 16 & \left(a^{2} X+a^{2} Y+a\right) \times 11
\end{array}
$$

where $\mathbb{F}_{4}=\left\{0,1, a, a^{2}\right\}$.

How can we compute $\operatorname{Im}\left(\rho_{f}\right)$ in concrete examples?
By Theorem 1: the number t of traces in $G:=\operatorname{Im}\left(\rho_{f}\right)$ determines G.
$\tilde{t}=\#$ different operators T_{ℓ}, with $\ell<b$ bound
Since $\operatorname{tr}\left(\rho_{f}\left(\operatorname{Frob}_{\ell}\right)\right)=T_{\ell}, \tilde{t}=\#$ different traces in G. We have $\tilde{t} \leq t$. bound $=1000$. We find $\widetilde{t}=13$
$t=4^{0} \cdot\left((4-1) 2^{2}+1\right)=13$

$$
\begin{array}{llll}
0 \times 38, & & \\
1 \times 12, & (Y+a) \times 12 & \left(X+Y+a^{2}\right) \times 10 & (a X+a Y+1) \times 13 \\
a \times 10, & \left(a Y+a^{2}\right) \times 10 & \left(X+a^{2} Y+a^{2}\right) \times 7 & \left(a^{2} X+a Y+a\right) \times 6 \\
a^{2} \times 7, & \left(a^{2} Y+1\right) \times 13 & (a X+Y+1) \times 16 & \left(a^{2} X+a^{2} Y+a\right) \times 11
\end{array}
$$

where $\mathbb{F}_{4}=\left\{0,1, a, a^{2}\right\}$.
It seems likely that $t=\tilde{t}=13$. So, according to Theorem 1 :

$$
\operatorname{Im}\left(\rho_{f}\right) \simeq\left(C_{2} \oplus C_{2}\right) \times \mathrm{SL}_{2}\left(\mathbb{F}_{4}\right) \simeq \mathrm{SL}_{2}\left(\mathbb{F}_{4}[X, Y] /\left(X^{2}, Y^{2}, X Y\right)\right)
$$

More examples in characteristic 2: $m=1$

More examples in characteristic 2: $m=1$

$1 \leq N \leq 1500, \quad k=2,3$
$m=\operatorname{dim}_{\mathbb{F}_{q}} \mathfrak{m}_{f} / \mathfrak{m}_{f}^{2}=1$
$t=q^{\alpha} \cdot\left((q-1) 2^{\beta}+1\right), \quad 0 \leq \alpha \leq 1$ and $0 \leq \beta \leq d(1-\alpha)$

More examples in characteristic 2: $m=1$

$1 \leq N \leq 1500, \quad k=2,3$
$m=\operatorname{dim}_{\mathbb{F}_{q}} \mathfrak{m}_{f} / \mathfrak{m}_{f}^{2}=1$
$t=q^{\alpha} \cdot\left((q-1) 2^{\beta}+1\right), \quad 0 \leq \alpha \leq 1$ and $0 \leq \beta \leq d(1-\alpha)$

\mathbb{F}_{24}		β					
		0	1	2	3	4	
α	0	$\mathbf{1 6}$	$\mathbf{3 1}$	$\mathbf{6 1}$	$\mathbf{1 2 1}$	$\mathbf{2 4 1}$	
	1	$\mathbf{2 5 6}$	-	-	-		

Table : Possible number of traces when $m=1$.

More examples in characteristic 2: $m=1$

$1 \leq N \leq 1500, \quad k=2,3$
$m=\operatorname{dim}_{\mathbb{F}_{q}} \mathfrak{m}_{f} / \mathfrak{m}_{f}^{2}=1$
$t=q^{\alpha} \cdot\left((q-1) 2^{\beta}+1\right), \quad 0 \leq \alpha \leq 1$ and $0 \leq \beta \leq d(1-\alpha)$

Table : Possible number of traces when $m=1$.

More examples in characteristic 2: $m=1$

$1 \leq N \leq 1500, \quad k=2,3$
$m=\operatorname{dim}_{\mathbb{F}_{q}} \mathfrak{m}_{f} / \mathfrak{m}_{f}^{2}=1$
$t=q^{\alpha} \cdot\left((q-1) 2^{\beta}+1\right), \quad 0 \leq \alpha \leq 1$ and $0 \leq \beta \leq d(1-\alpha)$

$\mathbb{F}_{2^{2}}$		β			$\mathbb{F}_{2}{ }^{3}$		β			
		0	1	2			0	1	2	3
α	0	4	7	13	α	0	8	15	29	57
	1	16	-	-		1	64	-	-	-

$\mathbb{F}_{2^{4}}$		β					
		0	1	2	3	4	
α	0	16	31	61	121	241	
	1	256	-	-	-	-	

Table : Possible number of traces when $m=1$.

This corresponds always to the group $G \simeq C_{2} \times \mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)$.

More examples in characteristic 2: $m=2$

More examples in characteristic 2: $m=2$

$$
\begin{aligned}
& m=\operatorname{dim}_{\mathbb{F}_{q}} \mathfrak{m}_{f} / \mathfrak{m}_{f}^{2}=2 \\
& t=q^{\alpha} \cdot\left((q-1) 2^{\beta}+1\right), \quad 0 \leq \alpha \leq 2 \text { and } 0 \leq \beta \leq d(2-\alpha)
\end{aligned}
$$

More examples in characteristic 2: $m=2$

$$
\begin{aligned}
& m=\operatorname{dim}_{\mathbb{F}_{q}} \mathfrak{m}_{f} / \mathfrak{m}_{f}^{2}=2 \\
& t=q^{\alpha} \cdot\left((q-1) 2^{\beta}+1\right), \quad 0 \leq \alpha \leq 2 \text { and } 0 \leq \beta \leq d(2-\alpha)
\end{aligned}
$$

\mathbb{F}_{22}		β					
		0	1	2	3	4	
α	0	$\mathbf{4}$	$\mathbf{7}$	$\mathbf{1 3}$	$\mathbf{2 5}$	$\mathbf{4 9}$	
	1	$\mathbf{1 6}$	$\mathbf{2 8}$	$\mathbf{5 2}$	$\mathbf{1 0 0}$	-	
	2	$\mathbf{6 4}$	-	-	-	-	

$\mathbb{F}_{2}{ }^{3}$		β						
		0	1	2	3	4	5	6
α	0	8	15	29	57	113	225	449
	1	64	120	232	456	-	-	-
	2	512	-	-	-	-	-	-

$\mathbb{F}_{2^{4}}$		β								
		0	1	2	3	4	5	6	7	8
α	0	16	31	61	121	241	481	916	1921	3841
	1	256	496	976	1936	3856	-	-	-	-
	2	4096	-	-	-	-	-	-	-	-

Table: Possible number of traces when $m=2$.

More examples in characteristic 2: $m=2$

$$
\begin{aligned}
& m=\operatorname{dim}_{\mathbb{F}_{q}} \mathfrak{m}_{f} / \mathfrak{m}_{f}^{2}=2 \\
& t=q^{\alpha} \cdot\left((q-1) 2^{\beta}+1\right), \quad 0 \leq \alpha \leq 2 \text { and } 0 \leq \beta \leq d(2-\alpha)
\end{aligned}
$$

$\mathbb{F}_{2^{2}}$		β				
		0	1	2	3	4
α	0	4	7	13	25	49
	1	16	28	52	100	-
	2	64	-	-	-	-

$\mathbb{F}_{2}{ }^{3}$		β						
		0	1	2	3	4	5	6
α	0	8	15	29	57	113	225	449
	1	64	120	232	456	-	-	-
	2	512	-	-	-	-	-	-

$\mathbb{F}_{2^{4}}$		β								
		0	1	2	3	4	5	6	7	8
α	0	16	31	61	121	241	481	916	1921	3841
	1	256	496	976	1936	3856	-	-	-	-
	2	4096	-	-	-	-	-	-	-	-

Table: Possible number of traces when $m=2$.

More examples in characteristic 2: $m=2$

$$
\begin{aligned}
& m=\operatorname{dim}_{\mathbb{F}_{q}} \mathfrak{m}_{f} / \mathfrak{m}_{f}^{2}=2 \\
& t=q^{\alpha} \cdot\left((q-1) 2^{\beta}+1\right), \quad 0 \leq \alpha \leq 2 \text { and } 0 \leq \beta \leq d(2-\alpha)
\end{aligned}
$$

$\mathbb{F}_{2^{2}}$		β				
		0	1	2	3	4
α	0	4	7	13	25	49
	1	16	28	52	100	-
	2	64	-	-	-	-

$\mathbb{F}_{2}{ }^{3}$		β						
		0	1	2	3	4	5	6
α	0	8	15	29	57	113	225	449
	1	64	120	232	456	-	-	-
	2	512	-	-	-	-	-	-

\mathbb{F}_{24}		β								
		0	1	2	3	4	5	6	7	8
α	0	16	31	61	121	241	481	916	1921	3841
	1	256	496	976	1936	3856	-	-	-	-
	2	4096	-	-	-	-	-	-	-	-

Table: Possible number of traces when $m=2$.

More examples in characteristic 2: $m=3$

More examples in characteristic 2: $m=3$

$$
\begin{aligned}
& m=\operatorname{dim}_{\mathbb{F}_{q}} \mathfrak{m}_{f} / \mathfrak{m}_{f}^{2}=3 \\
& t=q^{\alpha} \cdot\left((q-1) 2^{\beta}+1\right), \quad 0 \leq \alpha \leq 3 \text { and } 0 \leq \beta \leq d(3-\alpha)
\end{aligned}
$$

More examples in characteristic 2: $m=3$

$$
\begin{aligned}
& m=\operatorname{dim}_{\mathbb{F}_{q}} \mathfrak{m}_{f} / \mathfrak{m}_{f}^{2}=3 \\
& t=q^{\alpha} \cdot\left((q-1) 2^{\beta}+1\right), \quad 0 \leq \alpha \leq 3 \text { and } 0 \leq \beta \leq d(3-\alpha)
\end{aligned}
$$

$\mathbb{F}_{2^{2}}$		β						
		0	1	2	3	4	5	6
α	0	4	7	13	25	49	97	193
	1	16	28	52	100	196	-	-
	2	64	112	208	-	-	-	-
	3	256	-	-	-	-	-	-

$\mathbb{F}_{2}{ }^{3}$		β									
		0	1	2	3	4	5	6	7	8	9
α	0	8	15	29	57	113	225	449	897	1793	3585
	1	64	120	232	456	904	1800	3592	-	-	-
	2	512	960	1856	3648	-	-	-	-	-	-
	3	4096	-	-	-	-	-	-	-	-	-

\mathbb{F}_{24}		β								
		0	1	2	3	4	5	6	7	8
α	0	16	31	61	121	241	481	961	1921	3841
	1	256	496	976	1936	3856	7969	15376	30736	61456
	2	4096	7936	15616	30976	61696	-	-	-	-
	3	65536	-	-	-	-	-	-	-	-

Table: Possible number of traces when $m=3$.

More examples in characteristic 2: $m=3$

$$
\begin{aligned}
& m=\operatorname{dim}_{\mathbb{F}_{q}} \mathfrak{m}_{f} / \mathfrak{m}_{f}^{2}=3 \\
& t=q^{\alpha} \cdot\left((q-1) 2^{\beta}+1\right), \quad 0 \leq \alpha \leq 3 \text { and } 0 \leq \beta \leq d(3-\alpha)
\end{aligned}
$$

$\mathbb{F}_{2^{2}}$		β						
		0	1	2	3	4	5	6
α	0	4	7	13	25	49	97	193
	1	16	28	52	100	196	-	-
	2	64	112	208	-	-	-	-
	3	256	-	-	-	-	-	-

$\mathbb{F}_{2}{ }^{3}$		β									
		0	1	2	3	4	5	6	7	8	9
α	0	8	15	29	57	113	225	449	897	1793	3585
	1	64	120	232	456	904	1800	3592	-	-	-
	2	512	960	1856	3648	-	-	-	-	-	-
	3	4096	-	-	-	-	-	-	-	-	-

$\mathbb{F}_{2^{4}}$		β								
		0	1	2	3	4	5	6	7	8
α	0	16	31	61	121	241	481	961	1921	3841
	1	256	496	976	1936	3856	7969	15376	30736	61456
	2	4096	7936	15616	30976	61696	-	-	-	-
	3	65536	-	-	-	-	-	-	-	-

Table: Possible number of traces when $m=3$.

More examples in characteristic 2: $m=3$

$$
\begin{aligned}
& m=\operatorname{dim}_{\mathbb{F}_{q}} \mathfrak{m}_{f} / \mathfrak{m}_{f}^{2}=3 \\
& t=q^{\alpha} \cdot\left((q-1) 2^{\beta}+1\right), \quad 0 \leq \alpha \leq 3 \text { and } 0 \leq \beta \leq d(3-\alpha)
\end{aligned}
$$

Table: Possible number of traces when $m=3$.

Conclusions

Conjecture. If $\operatorname{dim}_{\mathbb{F}_{q}} \mathfrak{m}_{f} / \mathfrak{m}_{f}^{2}=2$, then

$$
\operatorname{Im}\left(\rho_{f}\right) \simeq\left\{\begin{array}{l}
\left(C_{2} \oplus C_{2}\right) \times \mathrm{SL}_{2}\left(\mathbb{F}_{q}\right), \text { or } \\
\left(C_{2} \oplus C_{2} \oplus C_{2}\right) \times \mathrm{SL}_{2}\left(\mathbb{F}_{q}\right), \text { or } \\
\left(\mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right) \oplus C_{2}\right) \rtimes \mathrm{SL}_{2}\left(\mathbb{F}_{q}\right) .
\end{array}\right.
$$

Conclusions

Conjecture. If $\operatorname{dim}_{\mathbb{F}_{q}} \mathfrak{m}_{f} / \mathfrak{m}_{f}^{2}=2$, then

$$
\operatorname{Im}\left(\rho_{f}\right) \simeq\left\{\begin{array}{l}
\left(C_{2} \oplus C_{2}\right) \times \mathrm{SL}_{2}\left(\mathbb{F}_{q}\right), \text { or } \\
\left(C_{2} \oplus C_{2} \oplus C_{2}\right) \times \mathrm{SL}_{2}\left(\mathbb{F}_{q}\right), \text { or } \\
\left(\mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right) \oplus C_{2}\right) \rtimes \mathrm{SL}_{2}\left(\mathbb{F}_{q}\right) .
\end{array}\right.
$$

Conjecture. If $\operatorname{dim}_{\mathbb{F}_{q}} \mathfrak{m}_{f} / \mathfrak{m}_{f}^{2}=3$, then

$$
\operatorname{Im}\left(\rho_{f}\right) \simeq\left\{\begin{array}{l}
\left(C_{2} \oplus C_{2} \oplus C_{2}\right) \times \mathrm{SL}_{2}\left(\mathbb{F}_{q}\right), \text { or } \\
\left(C_{2} \oplus C_{2} \oplus C_{2} \oplus C_{2}\right) \times \mathrm{SL}_{2}\left(\mathbb{F}_{q}\right), \text { or } \\
\left(\mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right) \oplus C_{2} \oplus C_{2}\right) \rtimes \mathrm{SL}_{2}\left(\mathbb{F}_{q}\right) .
\end{array}\right.
$$

Application: existence of p-elementary abelian extensions

Application: existence of p-elementary abelian extensions

Proposition. \mathbb{F}_{q} finite field of characteristic $p \neq 2$ with $q \geq 7$.
$\left(\mathbb{T}, \mathfrak{m}_{\mathbb{T}}\right.$) finite-dimensional local commutative \mathbb{F}_{q}-algebra with residue field $\mathbb{T} / \mathfrak{m}_{\mathbb{T}} \simeq \mathbb{F}_{q}$ and $\mathfrak{m}_{\mathbb{T}}^{2}=0$.
$m:=\operatorname{dim}_{\mathbb{F}_{q}} \mathfrak{m}_{\mathbb{T}}$ and $t=\#$ different traces in $\operatorname{Im}(\rho)$.
$\rho: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}(\mathbb{T})$ Galois representation unramified outside $N p$ such that
(i) $\operatorname{Im}(\bar{\rho})=\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$, where $\bar{\rho}:=G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$ is the residual representation and $D=\operatorname{Im}(\operatorname{det} \circ \bar{\rho})$.
(ii) $\operatorname{Im}(\rho) \subseteq \mathrm{GL}_{2}^{D}(\mathbb{T})$.
(iii) \mathbb{T} is generated as \mathbb{F}_{q}-algebra by the set of traces of ρ.

Application: existence of p-elementary abelian extensions

Proposition. \mathbb{F}_{q} finite field of characteristic $p \neq 2$ with $q \geq 7$.
$\left(\mathbb{T}, \mathfrak{m}_{\mathbb{T}}\right)$ finite-dimensional local commutative \mathbb{F}_{q}-algebra with residue field $\mathbb{T} / \mathfrak{m}_{\mathbb{T}} \simeq \mathbb{F}_{q}$ and $\mathfrak{m}_{\mathbb{T}}^{2}=0$.
$m:=\operatorname{dim}_{\mathbb{F}_{q}} \mathfrak{m}_{\mathbb{T}}$ and $t=$ \#different traces in $\operatorname{Im}(\rho)$.
$\rho: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}(\mathbb{T})$ Galois representation unramified outside $N p$ such that
(i) $\operatorname{Im}(\bar{\rho})=\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$, where $\bar{\rho}:=G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$ is the residual representation and $D=\operatorname{Im}(\operatorname{det} \circ \bar{\rho})$.
(ii) $\operatorname{Im}(\rho) \subseteq \mathrm{GL}_{2}^{D}(\mathbb{T})$.
(iii) \mathbb{T} is generated as \mathbb{F}_{q}-algebra by the set of traces of ρ.

Then there are number fields $L / K / \mathbb{Q}$ with $G_{L}=\operatorname{ker}(\rho)$ and $G_{K}=\operatorname{ker}(\bar{\rho})$ such that $\operatorname{Gal}(K / \mathbb{Q})=\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$

Application: existence of p-elementary abelian extensions

Proposition. \mathbb{F}_{q} finite field of characteristic $p \neq 2$ with $q \geq 7$.
$\left(\mathbb{T}, \mathfrak{m}_{\mathbb{T}}\right.$) finite-dimensional local commutative \mathbb{F}_{q}-algebra with residue field $\mathbb{T} / \mathfrak{m}_{\mathbb{T}} \simeq \mathbb{F}_{q}$ and $\mathfrak{m}_{\mathbb{T}}^{2}=0$.
$m:=\operatorname{dim}_{\mathbb{F}_{q}} \mathfrak{m}_{\mathbb{T}}$ and $t=$ \#different traces in $\operatorname{Im}(\rho)$.
$\rho: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}(\mathbb{T})$ Galois representation unramified outside $N p$ such that
(i) $\operatorname{Im}(\bar{\rho})=\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$, where $\bar{\rho}:=\mathrm{G}_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$ is the residual representation and $D=\operatorname{Im}(\operatorname{det} \circ \bar{\rho})$.
(ii) $\operatorname{Im}(\rho) \subseteq \mathrm{GL}_{2}^{D}(\mathbb{T})$.
(iii) \mathbb{T} is generated as \mathbb{F}_{q}-algebra by the set of traces of ρ.

Then there are number fields $L / K / \mathbb{Q}$ with $G_{L}=\operatorname{ker}(\rho)$ and $G_{K}=\operatorname{ker}(\bar{\rho})$ such that $\operatorname{Gal}(K / \mathbb{Q})=\operatorname{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$ and

$$
\operatorname{Gal}(L / \mathbb{Q})=\underbrace{\mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right) \oplus \ldots \oplus \mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right)}_{m} \rtimes \operatorname{Gal}(K / \mathbb{Q}),
$$

Application: existence of p-elementary abelian extensions

Proposition. \mathbb{F}_{q} finite field of characteristic $p \neq 2$ with $q \geq 7$.
$\left(\mathbb{T}, \mathfrak{m}_{\mathbb{T}}\right.$) finite-dimensional local commutative \mathbb{F}_{q}-algebra with residue field $\mathbb{T} / \mathfrak{m}_{\mathbb{T}} \simeq \mathbb{F}_{q}$ and $\mathfrak{m}_{\mathbb{T}}^{2}=0$.
$m:=\operatorname{dim}_{\mathbb{F}_{q}} \mathfrak{m}_{\mathbb{T}}$ and $t=$ \#different traces in $\operatorname{Im}(\rho)$.
$\rho: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}(\mathbb{T})$ Galois representation unramified outside $N p$ such that
(i) $\operatorname{Im}(\bar{\rho})=\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$, where $\bar{\rho}:=\mathrm{G}_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$ is the residual representation and $D=\operatorname{Im}(\operatorname{det} \circ \bar{\rho})$.
(ii) $\operatorname{Im}(\rho) \subseteq \mathrm{GL}_{2}^{D}(\mathbb{T})$.
(iii) \mathbb{T} is generated as \mathbb{F}_{q}-algebra by the set of traces of ρ.

Then there are number fields $L / K / \mathbb{Q}$ with $G_{L}=\operatorname{ker}(\rho)$ and $G_{K}=\operatorname{ker}(\bar{\rho})$ such that $\operatorname{Gal}(K / \mathbb{Q})=\operatorname{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$ and

$$
\operatorname{Gal}(L / \mathbb{Q})=\underbrace{\mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right) \oplus \ldots \oplus \mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right)}_{m} \rtimes \operatorname{Gal}(K / \mathbb{Q}),
$$

with $\operatorname{Gal}(K / \mathbb{Q})$ acting on $\operatorname{Gal}(L / K)$ by conjugation.

Application: existence of p-elementary abelian extensions

Proposition. \mathbb{F}_{q} finite field of characteristic $p \neq 2$ with $q \geq 7$.
$\left(\mathbb{T}, \mathfrak{m}_{\mathbb{T}}\right)$ finite-dimensional local commutative $\mathbb{F}_{q^{-}}$-algebra with residue field $\mathbb{T} / \mathfrak{m}_{\mathbb{T}} \simeq \mathbb{F}_{q}$ and $\mathfrak{m}_{\mathbb{T}}^{2}=0$.
$m:=\operatorname{dim}_{\mathbb{F}_{\mathfrak{q}}} \mathfrak{m}_{\mathbb{T}}$ and $t=$ \#different traces in $\operatorname{Im}(\rho)$.
$\rho: G_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}(\mathbb{T})$ Galois representation unramified outside $N p$ such that
(i) $\operatorname{Im}(\bar{\rho})=\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$, where $\bar{\rho}:=\mathrm{G}_{\mathbb{Q}} \rightarrow \mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$ is the residual representation and $D=\operatorname{Im}(\operatorname{det} \circ \bar{\rho})$.
(ii) $\operatorname{Im}(\rho) \subseteq \mathrm{GL}_{2}^{D}(\mathbb{T})$.
(iii) \mathbb{T} is generated as \mathbb{F}_{q}-algebra by the set of traces of ρ.

Then there are number fields $L / K / \mathbb{Q}$ with $G_{L}=\operatorname{ker}(\rho)$ and $G_{K}=\operatorname{ker}(\bar{\rho})$ such that $\operatorname{Gal}(K / \mathbb{Q})=\mathrm{GL}_{2}^{D}\left(\mathbb{F}_{q}\right)$ and

$$
\operatorname{Gal}(L / \mathbb{Q})=\underbrace{\mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right) \oplus \ldots \oplus \mathrm{M}_{2}^{0}\left(\mathbb{F}_{q}\right)}_{m} \rtimes \operatorname{Gal}(K / \mathbb{Q}),
$$

with $\operatorname{Gal}(K / \mathbb{Q})$ acting on $\operatorname{Gal}(L / K)$ by conjugation.
L / K is abelian of degree $p^{3 d m}$ unramified at all primes $\ell \nmid p N$, and cannot be defined over \mathbb{Q}.

Gràcies!

[^0]: ${ }^{1}$ It can be found in G. Wiese webpage http://math.uni.lu/ wiese/

[^1]: ${ }^{1}$ It can be found in G. Wiese webpage http://math.uni.lu/ wiese/

[^2]: ${ }^{1}$ It can be found in G. Wiese webpage http://math.uni.lu/ wiese/

[^3]: ${ }^{1}$ It can be found in G. Wiese webpage http://math.uni.lu/ wiese/

[^4]: ${ }^{1}$ It can be found in G. Wiese webpage http://math.uni.lu/ wiese/

[^5]: ${ }^{1}$ It can be found in G. Wiese webpage http://math.uni.lu/ wiese/

[^6]: ${ }^{1}$ It can be found in G. Wiese webpage http://math.uni.lu/ wiese/

[^7]: ${ }^{1}$ It can be found in G. Wiese webpage http://math.uni.lu/ wiese/

[^8]: ${ }^{1}$ It can be found in G. Wiese webpage http://math.uni.lu/ wiese/

