Laia Amorós Carafí Université du Luxembourg Universitat de Barcelona

• mod *p* modular forms, mod *p* Hecke algebras

- mod *p* modular forms, mod *p* Hecke algebras
- Galois representations with values in these algebras

- mod *p* modular forms, mod *p* Hecke algebras
- Galois representations with values in these algebras
- Computation of the image of these Galois representations

- mod *p* modular forms, mod *p* Hecke algebras
- Galois representations with values in these algebras
- Computation of the image of these Galois representations
- Application

 $S_k(N, \varepsilon; \mathbb{C})$ space of modular forms $f(z) = \sum_{n \ge 0} a_n q^n$ $(q = e^{2\pi i z})$ of level $N \ge 1$, weight $k \ge 2$ and Dirichlet character $\varepsilon : (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$. Moreover assume $a_0 = 0$.

 $S_k(N, \varepsilon; \mathbb{C})$ space of cuspidal modular forms or cusp forms

 $S_k(N; \mathbb{C})$ space of **cusp forms**

 $S_k(N; \mathbb{C})$ space of **cusp forms** $\operatorname{End}_{\mathbb{C}}(S_k(N; \mathbb{C})) \supset \mathbb{T}_k(N) := \langle T_p \text{ Hecke operator} : p \text{ prime } \rangle$

 $S_k(N; \mathbb{C})$ space of **cusp forms**

 $\operatorname{End}_{\mathbb{C}}(S_k(N;\mathbb{C})) \supset \mathbb{T}_k(N)$ finite-dimensional commutative \mathbb{Z} -algebra

 $S_k(N; \mathbb{C})$ space of **cusp forms** $\operatorname{End}_{\mathbb{C}}(S_k(N; \mathbb{C})) \supset \mathbb{T}_k(N)$ finite-dimensional commutative \mathbb{Z} -algebra $S_k(N; \mathbb{Z})$

 $S_k(N; \mathbb{C})$ space of **cusp forms** $\operatorname{End}_{\mathbb{C}}(S_k(N; \mathbb{C})) \supset \mathbb{T}_k(N)$ finite-dimensional commutative \mathbb{Z} -algebra $S_k(N; \mathbb{F}_q) := S_k(N; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_q$

 $S_k(N; \mathbb{C})$ space of **cusp forms** $\operatorname{End}_{\mathbb{C}}(S_k(N; \mathbb{C})) \supset \mathbb{T}_k(N)$ finite-dimensional commutative \mathbb{Z} -algebra $S_k(N; \mathbb{F}_q) := S_k(N; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_q$ $\overline{\mathbb{T}} := \mathbb{T}_k(N) \otimes \mathbb{F}_q$ finite-dimensional commutative \mathbb{F}_q -algebra

 $S_k(N; \mathbb{C})$ space of **cusp forms** $\operatorname{End}_{\mathbb{C}}(S_k(N; \mathbb{C})) \supset \mathbb{T}_k(N)$ finite-dimensional commutative \mathbb{Z} -algebra $S_k(N; \mathbb{F}_q) := S_k(N; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_q$ $\overline{\mathbb{T}} := \mathbb{T}_k(N) \otimes \mathbb{F}_q$ finite-dimensional commutative \mathbb{F}_q -algebra $\overline{\mathbb{T}} \simeq \prod_{\mathfrak{m}} \overline{\mathbb{T}}_{\mathfrak{m}}$, where $\overline{\mathbb{T}}_{\mathfrak{m}}$ localisation of $\overline{\mathbb{T}}$ at a maximal ideal \mathfrak{m} of $\overline{\mathbb{T}}$

 $S_k(N; \mathbb{C})$ space of **cusp forms** $\operatorname{End}_{\mathbb{C}}(S_k(N; \mathbb{C})) \supset \mathbb{T}_k(N)$ finite-dimensional commutative \mathbb{Z} -algebra $S_k(N; \mathbb{F}_q) := S_k(N; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_q$ $\overline{\mathbb{T}} := \mathbb{T}_k(N) \otimes \mathbb{F}_q$ finite-dimensional commutative \mathbb{F}_q -algebra $\overline{\mathbb{T}} \simeq \prod_m \overline{\mathbb{T}}_m$, where $\overline{\mathbb{T}}_m$ localisation of $\overline{\mathbb{T}}$ at a maximal ideal m of $\overline{\mathbb{T}}$ Let us take $f(z) = \sum_{n \ge 0} a_n q^n \in S_k(N; \mathbb{C})$, $q = e^{2\pi i z}$, simultaneous eigenvector for all Hecke operators, $a_1 = 1$

 $S_k(N; \mathbb{C})$ space of **cusp forms** $\operatorname{End}_{\mathbb{C}}(S_k(N; \mathbb{C})) \supset \mathbb{T}_k(N)$ finite-dimensional commutative \mathbb{Z} -algebra $S_k(N; \mathbb{F}_q) := S_k(N; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_q$ $\overline{\mathbb{T}} := \mathbb{T}_k(N) \otimes \mathbb{F}_q$ finite-dimensional commutative \mathbb{F}_q -algebra $\overline{\mathbb{T}} \simeq \prod_m \overline{\mathbb{T}}_m$, where $\overline{\mathbb{T}}_m$ localisation of $\overline{\mathbb{T}}$ at a maximal ideal m of $\overline{\mathbb{T}}$ Let us take $f(z) = \sum_{n \ge 0} a_n q^n \in S_k(N; \mathbb{C})$ normalised Hecke eigenform

 $S_k(N; \mathbb{C})$ space of **cusp forms** $\operatorname{End}_{\mathbb{C}}(S_k(N; \mathbb{C})) \supset \mathbb{T}_k(N)$ finite-dimensional commutative \mathbb{Z} -algebra $S_k(N; \mathbb{F}_q) := S_k(N; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_q$ $\overline{\mathbb{T}} := \mathbb{T}_k(N) \otimes \mathbb{F}_q$ finite-dimensional commutative \mathbb{F}_q -algebra $\overline{\mathbb{T}} \simeq \prod_{\mathfrak{m}} \overline{\mathbb{T}}_{\mathfrak{m}}$, where $\overline{\mathbb{T}}_{\mathfrak{m}}$ localisation of $\overline{\mathbb{T}}$ at a maximal ideal \mathfrak{m} of $\overline{\mathbb{T}}$ Let us take $\overline{f}(z) = \sum_{n \ge 0} \overline{a}_n q^n \in S_k(N; \mathbb{F}_q)$ normalised Hecke eigenform mod p

 $S_k(N; \mathbb{C})$ space of **cusp forms** $\operatorname{End}_{\mathbb{C}}(S_k(N; \mathbb{C})) \supset \mathbb{T}_k(N)$ finite-dimensional commutative \mathbb{Z} -algebra $S_k(N; \mathbb{F}_q) := S_k(N; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_q$ $\overline{\mathbb{T}} := \mathbb{T}_k(N) \otimes \mathbb{F}_q$ finite-dimensional commutative \mathbb{F}_q -algebra $\overline{\mathbb{T}} \simeq \prod_m \overline{\mathbb{T}}_m$, where $\overline{\mathbb{T}}_m$ localisation of $\overline{\mathbb{T}}$ at a maximal ideal m of $\overline{\mathbb{T}}$ Let us take $\overline{f}(z) = \sum_{n \ge 0} \overline{a}_n q^n \in S_k(N; \mathbb{F}_q)$ normalised Hecke eigenform mod p $\overline{\lambda}_f : \overline{\mathbb{T}} \to \mathbb{F}_q$, $T_n \mapsto \overline{a}_n = a_n \mod p$ $m_f := \ker \overline{\lambda}_f$

 $S_k(N;\mathbb{C})$ space of **cusp forms** $\operatorname{End}_{\mathbb{C}}(S_k(N;\mathbb{C})) \supset \mathbb{T}_k(N)$ finite-dimensional commutative \mathbb{Z} -algebra $S_k(N; \mathbb{F}_q) := S_k(N; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_q$ $\overline{\mathbb{T}} := \mathbb{T}_k(N) \otimes \mathbb{F}_q$ finite-dimensional commutative \mathbb{F}_q -algebra $\overline{\mathbb{T}} \simeq \prod_{\mathfrak{m}} \overline{\mathbb{T}}_{\mathfrak{m}}$, where $\overline{\mathbb{T}}_{\mathfrak{m}}$ localisation of $\overline{\mathbb{T}}$ at a maximal ideal \mathfrak{m} of $\overline{\mathbb{T}}$ Let us take $\overline{f}(z) = \sum_{n \ge 0} \overline{a}_n q^n \in S_k(N; \mathbb{F}_q)$ normalised Hecke eigenform mod p $\overline{\lambda}_f: \overline{\mathbb{T}} \to \mathbb{F}_a, \ T_n \mapsto \overline{a}_n = a_n \mod p \qquad \mathfrak{m}_f := \ker \overline{\lambda}_f$ $\mathbb{T}_f := \overline{\mathbb{T}}_{\mathfrak{m}_f}$ assume $\mathfrak{m}_f^2 = 0$

 $S_k(N;\mathbb{C})$ space of **cusp forms** $\operatorname{End}_{\mathbb{C}}(S_k(N;\mathbb{C})) \supset \mathbb{T}_k(N)$ finite-dimensional commutative \mathbb{Z} -algebra $S_k(N; \mathbb{F}_q) := S_k(N; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_q$ $\overline{\mathbb{T}} := \mathbb{T}_k(N) \otimes \mathbb{F}_q$ finite-dimensional commutative \mathbb{F}_q -algebra $\overline{\mathbb{T}} \simeq \prod_{\mathfrak{m}} \overline{\mathbb{T}}_{\mathfrak{m}}$, where $\overline{\mathbb{T}}_{\mathfrak{m}}$ localisation of $\overline{\mathbb{T}}$ at a maximal ideal \mathfrak{m} of $\overline{\mathbb{T}}$ Let us take $\overline{f}(z) = \sum_{n \ge 0} \overline{a}_n q^n \in S_k(N; \mathbb{F}_q)$ normalised Hecke eigenform mod p $\overline{\lambda}_f: \overline{\mathbb{T}} \to \mathbb{F}_q, \ T_n \mapsto \overline{a}_n = a_n \mod p$ $\mathfrak{m}_f := \ker \overline{\lambda}_f$ $\mathbb{T}_f := \overline{\mathbb{T}}_{\mathfrak{m}_f}$ assume $\mathfrak{m}_f^2 = 0$ $\mathbb{T}_f \simeq \mathbb{F}_q[X_1, \ldots, X_m]/(X_i X_i)_{1 \le i, i \le m}$ finite-dimensional local commutative algebra, $m = \dim_{\mathbb{F}_a} \mathfrak{m}_f$

Next we want to: attach a Galois representation to \mathbb{T}_{f} .

Next we want to: attach a Galois representation to \mathbb{T}_f .

Let $\overline{f} = \sum_{n \geq 0} \overline{a}_n q^n \in S_k(N; \mathbb{F}_q)$ given by $\overline{\lambda}_f : \overline{\mathbb{T}} \to \mathbb{F}_q, \ T_n \to \overline{a}_n$

Next we want to: attach a Galois representation to \mathbb{T}_f .

Let $\overline{f} = \sum_{n \geq 0} \overline{a}_n q^n \in S_k(N; \mathbb{F}_q)$ given by $\overline{\lambda}_f : \overline{\mathbb{T}} \to \mathbb{F}_q, \ T_n \to \overline{a}_n$

Deligne, Shimura: We can attach to \overline{f} a **Galois representation**

 $\overline{\rho}_f:\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\to\operatorname{GL}_2(\overline{\mathbb{F}}_p)$

unramified outside Np and, for every $\ell \nmid Np$:

 $\mathsf{tr}(\overline{\rho}_f(\mathrm{Frob}_\ell)) = \overline{\lambda}_f(\mathcal{T}_\ell) \quad \text{and} \quad \mathsf{det}(\overline{\rho}_f(\mathrm{Frob}_\ell)) = \ell^{k-1}$

Next we want to: attach a Galois representation to \mathbb{T}_f .

Let $\overline{f} = \sum_{n \ge 0} \overline{a}_n q^n \in S_k(N; \mathbb{F}_q)$ given by $\overline{\lambda}_f : \overline{\mathbb{T}} \to \mathbb{F}_q, \ T_n \to \overline{a}_n$

Deligne, Shimura: We can attach to \overline{f} a **Galois representation**

$$\overline{\rho}_f : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\overline{\mathbb{F}}_p)$$

unramified outside Np and, for every $\ell \nmid Np$:

$$\mathsf{tr}(\overline{\rho}_f(\mathrm{Frob}_\ell)) = \overline{\lambda}_f(\mathcal{T}_\ell) \quad \text{and} \quad \mathsf{det}(\overline{\rho}_f(\mathrm{Frob}_\ell)) = \ell^{k-1}$$

Let $\mathbb{T}_f := \overline{\mathbb{T}}_{\mathfrak{m}_f}$ as before, but without the operators T_ℓ with $\ell \mid Np$.

Next we want to: attach a Galois representation to \mathbb{T}_f .

Let $\overline{f} = \sum_{n \ge 0} \overline{a}_n q^n \in S_k(N; \mathbb{F}_q)$ given by $\overline{\lambda}_f : \overline{\mathbb{T}} \to \mathbb{F}_q, \ T_n \to \overline{a}_n$

Deligne, Shimura: We can attach to \overline{f} a **Galois representation**

 $\overline{\rho}_f:\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\to\operatorname{GL}_2(\overline{\mathbb{F}}_p)$

unramified outside Np and, for every $\ell \nmid Np$:

$$\mathsf{tr}(\overline{\rho}_f(\mathrm{Frob}_\ell)) = \overline{\lambda}_f(\mathcal{T}_\ell) \quad \text{and} \quad \mathsf{det}(\overline{\rho}_f(\mathrm{Frob}_\ell)) = \ell^{k-1}$$

Let $\mathbb{T}_f := \overline{\mathbb{T}}_{\mathfrak{m}_f}$ as before, but without the operators T_ℓ with $\ell \mid Np$.

Carayol: If $\overline{\rho}_f$ is absolutely irreducible, then there exists a continuous Galois representation

$$\rho_f : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{T}_f)$$

unramified outside Np and, for every $\ell \nmid Np$:

$$\mathsf{tr}(\rho_f(\mathrm{Frob}_\ell)) = \lambda_f(\mathcal{T}_\ell) \quad \mathsf{and} \quad \mathsf{det}(\rho_f(\mathrm{Frob}_\ell)) = \ell^{k-1}$$

where $\lambda_f : \overline{\mathbb{T}} \to \mathbb{T}_f$. This representation is unique up to conjugation.

GOAL: Compute the image of $\rho_f : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{T}_f)$.

GOAL: Compute the image of $\rho_f : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{T}_f)$.

Let $D = \operatorname{Im}(\det \circ \overline{\rho}_f) \subseteq \mathbb{F}_q^{\times}$ $\operatorname{GL}_2^D(\mathbb{T}_f) := \{g \in \operatorname{GL}_2(\mathbb{T}_f) : \det(g) \in D\}$ $\operatorname{GL}_2^D(\mathbb{F}_q) := \{g \in \operatorname{GL}_2(\mathbb{F}_q) : \det(g) \in D\}$

GOAL: Compute the image of $\rho_f : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{T}_f)$.

```
Let D = \operatorname{Im}(\det \circ \overline{\rho}_f) \subseteq \mathbb{F}_q^{\times}

\operatorname{GL}_2^D(\mathbb{T}_f) := \{g \in \operatorname{GL}_2(\mathbb{T}_f) : \det(g) \in D\}

\operatorname{GL}_2^D(\mathbb{F}_q) := \{g \in \operatorname{GL}_2(\mathbb{F}_q) : \det(g) \in D\}

Assume that \operatorname{Im}(\rho_f) \subseteq \operatorname{GL}_2^D(\mathbb{T}_f).
```

GOAL: Compute the image of $\rho_f : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{T}_f)$.

Let
$$D = \operatorname{Im}(\det \circ \overline{\rho}_f) \subseteq \mathbb{F}_q^{\times}$$

 $\operatorname{GL}_2^D(\mathbb{T}_f) := \{g \in \operatorname{GL}_2(\mathbb{T}_f) : \det(g) \in D\}$
 $\operatorname{GL}_2^D(\mathbb{F}_q) := \{g \in \operatorname{GL}_2(\mathbb{F}_q) : \det(g) \in D\}$
Assume that $\operatorname{Im}(\rho_f) \subseteq \operatorname{GL}_2^D(\mathbb{T}_f).$

We have the following commutative diagram

GOAL: Compute the image of $\rho_f : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{T}_f)$.

Let
$$D = \operatorname{Im}(\det \circ \overline{\rho}_f) \subseteq \mathbb{F}_q^{\times}$$

 $\operatorname{GL}_2^D(\mathbb{T}_f) := \{g \in \operatorname{GL}_2(\mathbb{T}_f) : \det(g) \in D\}$
 $\operatorname{GL}_2^D(\mathbb{F}_q) := \{g \in \operatorname{GL}_2(\mathbb{F}_q) : \det(g) \in D\}$
Assume that $\operatorname{Im}(\rho_f) \subseteq \operatorname{GL}_2^D(\mathbb{T}_f).$

We have the following commutative diagram

that gives us a short exact sequence:

$$1 \to \mathsf{ker}(\pi) \to \operatorname{GL}_2^D(\mathbb{T}_f) \xrightarrow{\pi} \operatorname{GL}_2^D(\mathbb{F}_q) \to 1$$

Assumptions:

•
$$\mathfrak{m}_f^2 = 0$$

Assumptions:

- $\mathfrak{m}_f^2 = 0$
- $\operatorname{Im}(\overline{\rho}_f) = \operatorname{GL}_2^D(\mathbb{F}_q)$

Assumptions:

•
$$\mathfrak{m}_f^2 = 0$$

• $\operatorname{Im}(\overline{\rho}_f) = \operatorname{GL}_2^D(\mathbb{F}_q)$ The residual representation has big image

Assumptions:

•
$$\mathfrak{m}_f^2 = 0$$

$$1 \rightarrow \mathsf{ker}(\pi) \rightarrow \operatorname{GL}_{2}^{D}(\mathbb{T}_{f}) \xrightarrow{\pi} \operatorname{GL}_{2}^{D}(\mathbb{F}_{q}) \rightarrow 1$$
$$\begin{pmatrix} a_{1}+a_{2}\mathfrak{m}_{f} & b_{1}+b_{2}\mathfrak{m}_{f} \\ c_{1}+c_{2}\mathfrak{m}_{f} & d_{1}+d_{2}\mathfrak{m}_{f} \end{pmatrix} \mapsto \begin{pmatrix} a_{1} & b_{1} \\ c_{1} & d_{1} \end{pmatrix}$$

Assumptions:

•
$$\mathfrak{m}_f^2 = 0$$

$$1 \rightarrow \operatorname{ker}(\pi) \rightarrow \operatorname{GL}_{2}^{D}(\mathbb{T}_{f}) \xrightarrow{\pi} \operatorname{GL}_{2}^{D}(\mathbb{F}_{q}) \rightarrow 1$$
$$\begin{pmatrix} a_{1}+a_{2}\mathfrak{m}_{f} \ b_{1}+b_{2}\mathfrak{m}_{f} \\ c_{1}+c_{2}\mathfrak{m}_{f} \ d_{1}+d_{2}\mathfrak{m}_{f} \end{pmatrix} \mapsto \begin{pmatrix} a_{1} \ b_{1} \\ c_{1} \ d_{1} \end{pmatrix}$$
$$\operatorname{Take} g = \begin{pmatrix} a_{1}+a_{2}\mathfrak{m}_{f} \ b_{1}+b_{2}\mathfrak{m}_{f} \\ c_{1}+c_{2}\mathfrak{m}_{f} \ d_{1}+d_{2}\mathfrak{m}_{f} \end{pmatrix} \in \operatorname{GL}_{2}^{D}(\mathbb{T}_{f}), \text{ with } a_{i}, b_{i}, c_{i}, d_{i} \in \mathbb{F}_{q}.$$

Assumptions:

•
$$\mathfrak{m}_f^2 = 0$$

$$1 \rightarrow \operatorname{ker}(\pi) \rightarrow \operatorname{GL}_{2}^{D}(\mathbb{T}_{f}) \xrightarrow{\pi} \operatorname{GL}_{2}^{D}(\mathbb{F}_{q}) \rightarrow 1$$
$$\begin{pmatrix} a_{1}+a_{2}\mathfrak{m}_{f} \ b_{1}+b_{2}\mathfrak{m}_{f} \\ c_{1}+c_{2}\mathfrak{m}_{f} \ d_{1}+d_{2}\mathfrak{m}_{f} \end{pmatrix} \mapsto \begin{pmatrix} a_{1} \ b_{1} \\ c_{1} \ d_{1} \end{pmatrix}$$
$$\operatorname{Take} g = \begin{pmatrix} a_{1}+a_{2}\mathfrak{m}_{f} \ b_{1}+b_{2}\mathfrak{m}_{f} \\ c_{1}+c_{2}\mathfrak{m}_{f} \ d_{1}+d_{2}\mathfrak{m}_{f} \end{pmatrix} \in \operatorname{GL}_{2}^{D}(\mathbb{T}_{f}), \text{ with } a_{i}, b_{i}, c_{i}, d_{i} \in \mathbb{F}_{q}. \text{ Then}$$

$$g \in \mathsf{ker}(\pi) \Leftrightarrow g = \left(egin{array}{c} 1+a_2\mathfrak{m}_f & b_2\mathfrak{m}_f \ c_2\mathfrak{m}_f & 1+d_2\mathfrak{m}_f \end{array}
ight) ext{ and } \mathsf{det}(g) = 1+(a_2+d_2)\mathfrak{m}_f \in D \subseteq \mathbb{F}_q^{ imes}.$$

Assumptions:

•
$$\mathfrak{m}_f^2 = 0$$

Take
$$g = \begin{pmatrix} a_1 + a_2 \mathfrak{m}_f & b_1 + b_2 \mathfrak{m}_f \\ c_1 + c_2 \mathfrak{m}_f & d_1 + d_2 \mathfrak{m}_f \end{pmatrix} \in \operatorname{GL}_2^D(\mathbb{T}_f)$$
, with $a_i, b_i, c_i, d_i \in \mathbb{F}_q$. Then

$$g \in \ker(\pi) \Leftrightarrow g = \left(\begin{smallmatrix} 1+a_2\mathfrak{m}_f & b_2\mathfrak{m}_f \\ c_2\mathfrak{m}_f & 1+d_2\mathfrak{m}_f \end{smallmatrix}\right) \text{ and } \det(g) = 1 + (a_2 + d_2)\mathfrak{m}_f \in D \subseteq \mathbb{F}_q^{\times}.$$

$$\Leftrightarrow g = 1 + \left(\begin{smallmatrix}a_2\mathfrak{m}_f & b_2\mathfrak{m}_f \\ c_2\mathfrak{m}_f & d_2\mathfrak{m}_f\end{smallmatrix}\right) \text{ and } a_2 = -d_2$$

Assumptions:

•
$$\mathfrak{m}_f^2 = 0$$

$$1 \rightarrow \ker(\pi) \rightarrow \operatorname{GL}_{2}^{D}(\mathbb{T}_{f}) \xrightarrow{\pi} \operatorname{GL}_{2}^{D}(\mathbb{F}_{q}) \rightarrow 1$$
$$\begin{pmatrix} a_{1}+a_{2}\mathfrak{m}_{f} \ b_{1}+b_{2}\mathfrak{m}_{f} \\ c_{1}+c_{2}\mathfrak{m}_{f} \ d_{1}+d_{2}\mathfrak{m}_{f} \end{pmatrix} \mapsto \begin{pmatrix} a_{1} \ b_{1} \\ c_{1} \ d_{1} \end{pmatrix}$$

Take
$$g = \begin{pmatrix} a_1 + a_2 \mathfrak{m}_f & b_1 + b_2 \mathfrak{m}_f \\ c_1 + c_2 \mathfrak{m}_f & d_1 + d_2 \mathfrak{m}_f \end{pmatrix} \in \operatorname{GL}_2^D(\mathbb{T}_f)$$
, with $a_i, b_i, c_i, d_i \in \mathbb{F}_q$. Then

$$g \in \ker(\pi) \Leftrightarrow g = \left(egin{array}{c} 1+a_2\mathfrak{m}_f & b_2\mathfrak{m}_f \ c_2\mathfrak{m}_f & 1+d_2\mathfrak{m}_f \end{array}
ight) ext{ and } \det(g) = 1+(a_2+d_2)\mathfrak{m}_f \in D \subseteq \mathbb{F}_q^{ imes}.$$

$$\Leftrightarrow g = 1 + \left(\begin{smallmatrix} a_2\mathfrak{m}_f & b_2\mathfrak{m}_f \\ c_2\mathfrak{m}_f & d_2\mathfrak{m}_f \end{smallmatrix}\right) \text{ and } a_2 = -d_2 \Leftrightarrow \ker(\pi) = 1 + \operatorname{M}_2^0(\mathfrak{m}_f)$$

Assumptions:

•
$$\mathfrak{m}_f^2 = 0$$

Take
$$g = \begin{pmatrix} a_1 + a_2 \mathfrak{m}_f & b_1 + b_2 \mathfrak{m}_f \\ c_1 + c_2 \mathfrak{m}_f & d_1 + d_2 \mathfrak{m}_f \end{pmatrix} \in \operatorname{GL}_2^D(\mathbb{T}_f)$$
, with $a_i, b_i, c_i, d_i \in \mathbb{F}_q$. Then

$$g \in \ker(\pi) \Leftrightarrow g = \left(\begin{smallmatrix} 1 + a_2 \mathfrak{m}_f & b_2 \mathfrak{m}_f \\ c_2 \mathfrak{m}_f & 1 + d_2 \mathfrak{m}_f \end{smallmatrix}\right) \text{ and } \det(g) = 1 + (a_2 + d_2) \mathfrak{m}_f \in D \subseteq \mathbb{F}_q^{\times}.$$

$$\Leftrightarrow g = 1 + \left(\begin{smallmatrix} \mathsf{a}_2\mathfrak{m}_f & b_2\mathfrak{m}_f \\ \mathsf{c}_2\mathfrak{m}_f & \mathsf{d}_2\mathfrak{m}_f \end{smallmatrix}\right) \; \text{and} \; \mathsf{a}_2 = -\mathsf{d}_2 \Leftrightarrow \mathsf{ker}(\pi) = 1 + \mathrm{M}_2^0(\mathfrak{m}_f)$$

$$\begin{array}{ccccc} 0 & \to & \operatorname{M}_2^0(\mathfrak{m}_f) & \stackrel{\iota}{\to} & \operatorname{GL}_2^D(\mathbb{T}_f) & \stackrel{\pi}{\to} & \operatorname{GL}_2^D(\mathbb{F}_q) & \to & 1 \\ & \begin{pmatrix} a_2\mathfrak{m}_f & b_2\mathfrak{m}_f \\ c_2\mathfrak{m}_f & -a_2\mathfrak{m}_f \end{pmatrix} & \mapsto & 1 + \begin{pmatrix} a_2\mathfrak{m}_f & b_2\mathfrak{m}_f \\ c_2\mathfrak{m}_f & -a_2\mathfrak{m}_f \end{pmatrix} \end{array}$$

Let $\overline{G} := \operatorname{Im}(\overline{\rho}_f)$, and $G := \operatorname{Im}(\rho_f)$. They fit in a short exact sequence:

Let $\overline{G} := \operatorname{Im}(\overline{\rho}_f)$, and $G := \operatorname{Im}(\rho_f)$. They fit in a short exact sequence:

Let $\overline{G} := \operatorname{Im}(\overline{\rho}_f)$, and $G := \operatorname{Im}(\rho_f)$. They fit in a short exact sequence:

Let $\overline{G} := \operatorname{Im}(\overline{\rho}_f)$, and $G := \operatorname{Im}(\rho_f)$. They fit in a short exact sequence:

The first exact sequence splits, so $\operatorname{GL}_2^D(\mathbb{T}_f) \simeq \operatorname{M}_2^0(\mathfrak{m}_f) \rtimes \operatorname{GL}_2^D(\mathbb{F}_q)$.

Let $\overline{G} := \operatorname{Im}(\overline{\rho}_f)$, and $G := \operatorname{Im}(\rho_f)$. They fit in a short exact sequence:

The first exact sequence splits, so $\operatorname{GL}_2^D(\mathbb{T}_f) \simeq \operatorname{M}_2^0(\mathfrak{m}_f) \rtimes \operatorname{GL}_2^D(\mathbb{F}_q)$.

Let $\overline{G} := \operatorname{Im}(\overline{\rho}_f)$, and $G := \operatorname{Im}(\rho_f)$. They fit in a short exact sequence:

The first exact sequence splits, so $\operatorname{GL}_2^D(\mathbb{T}_f) \simeq \operatorname{M}_2^0(\mathfrak{m}_f) \rtimes \operatorname{GL}_2^D(\mathbb{F}_q).$

Theorem 1. (A.) Assume $q \neq 2, 3, 5$. The second exact sequence is also (non-trivially) split, so

$$G = \operatorname{Im}(\rho_f) \simeq H \rtimes \operatorname{GL}_2^D(\mathbb{F}_q).$$

Let $\overline{G} := \operatorname{Im}(\overline{\rho}_f)$, and $G := \operatorname{Im}(\rho_f)$. They fit in a short exact sequence:

The first exact sequence splits, so $\operatorname{GL}_2^D(\mathbb{T}_f) \simeq \operatorname{M}_2^0(\mathfrak{m}_f) \rtimes \operatorname{GL}_2^D(\mathbb{F}_q).$

Theorem 1. (A.) Assume $q \neq 2, 3, 5$. The second exact sequence is also (non-trivially) split, so

$$G = \operatorname{Im}(\rho_f) \simeq H \rtimes \operatorname{GL}_2^D(\mathbb{F}_q).$$

It is consequence of:

- $H^1(\operatorname{GL}^D_n(W_m), \mathbb{F}_q) = 0$
- there is an injection $H^2(\operatorname{GL}^D_n(W_m), N) \hookrightarrow H^2(\operatorname{GL}^D_n(W_m), M)$

Let $\overline{G} := \operatorname{Im}(\overline{\rho}_f)$, and $G := \operatorname{Im}(\rho_f)$. They fit in a short exact sequence:

The first exact sequence splits, so $\operatorname{GL}_2^D(\mathbb{T}_f) \simeq \operatorname{M}_2^0(\mathfrak{m}_f) \rtimes \operatorname{GL}_2^D(\mathbb{F}_q).$

Theorem 1. (A.) Assume $q \neq 2, 3, 5$. The second exact sequence is also (non-trivially) split, so

$$G = \operatorname{Im}(\rho_f) \simeq H \rtimes \operatorname{GL}_2^D(\mathbb{F}_q).$$

It is consequence of:

- $H^1(\operatorname{GL}^D_n(W_m), \mathbb{F}_q) = 0$
- there is an injection $H^2(\mathrm{GL}^D_n(W_m), N) \hookrightarrow H^2(\mathrm{GL}^D_n(W_m), M)$

 $N \subseteq M \subseteq M_2^0(\mathfrak{m}_f)$ are $\mathbb{F}_p[\operatorname{GL}_n^D(\mathbb{F}_q)]$ -submodules $W(\mathbb{F}_q)$ ring of Witt vectors of \mathbb{F}_q and $W_m := W(\mathbb{F}_q)/p^m$

We have

$$G \simeq H \rtimes \operatorname{GL}_2^D(\mathbb{F}_q)$$

with $H \subseteq \mathrm{M}_2^0(\mathfrak{m}_f)$ a submodule over $\mathbb{F}_p[\mathrm{GL}_2^D(\mathbb{F}_q)]$.

We have

$$G \simeq H \rtimes \mathrm{GL}_2^D(\mathbb{F}_q)$$

with $H \subseteq \mathrm{M}_2^0(\mathfrak{m}_f)$ a submodule over $\mathbb{F}_p[\mathrm{GL}_2^D(\mathbb{F}_q)]$.

Question: Which are the possible submodules H of $M_2^0(\mathfrak{m}_f)$?

We have

$$G \simeq H \rtimes \mathrm{GL}_2^D(\mathbb{F}_q)$$

with $H \subseteq \mathrm{M}_2^0(\mathfrak{m}_f)$ a submodule over $\mathbb{F}_p[\mathrm{GL}_2^D(\mathbb{F}_q)]$.

Question: Which are the possible submodules H of $M_2^0(\mathfrak{m}_f)$?

 $\mathbb{T}_f \simeq \mathbb{F}_q[X_1, \dots, X_m]/(X_i X_j)_{1 \leq i,j \leq m}$

We have

$$G \simeq H \rtimes \operatorname{GL}_2^D(\mathbb{F}_q)$$

with $H \subseteq \mathrm{M}_2^0(\mathfrak{m}_f)$ a submodule over $\mathbb{F}_p[\mathrm{GL}_2^D(\mathbb{F}_q)]$.

Question: Which are the possible submodules H of $M_2^0(\mathfrak{m}_f)$?

 $\mathbb{T}_f \simeq \mathbb{F}_q[X_1, \dots, X_m] / (X_i X_j)_{1 \le i, j \le m}$ and $\mathfrak{m}_f \simeq \underbrace{\mathbb{F}_q \oplus \ldots \oplus \mathbb{F}_q}_m$

We have

$$G \simeq H \rtimes \operatorname{GL}_2^D(\mathbb{F}_q)$$

with $H \subseteq \mathrm{M}_2^0(\mathfrak{m}_f)$ a submodule over $\mathbb{F}_p[\mathrm{GL}_2^D(\mathbb{F}_q)]$.

Question: Which are the possible submodules H of $M_2^0(\mathfrak{m}_f)$?

$$\mathbb{T}_{f} \simeq \mathbb{F}_{q}[X_{1}, \dots, X_{m}]/(X_{i}X_{j})_{1 \leq i,j \leq m} \quad \text{and} \quad \mathfrak{m}_{f} \simeq \underbrace{\mathbb{F}_{q} \oplus \dots \oplus \mathbb{F}_{q}}_{m}$$
$$\mathbb{M}_{2}^{0}(\mathfrak{m}_{f}) \simeq \underbrace{\mathbb{M}_{2}^{0}(\mathbb{F}_{q}) \oplus \dots \oplus \mathbb{M}_{2}^{0}(\mathbb{F}_{q})}_{m}$$

We have

$$G \simeq H \rtimes \mathrm{GL}_2^D(\mathbb{F}_q)$$

with $H \subseteq \mathrm{M}_2^0(\mathfrak{m}_f)$ a submodule over $\mathbb{F}_p[\mathrm{GL}_2^D(\mathbb{F}_q)]$.

Question: Which are the possible submodules H of $M_2^0(\mathfrak{m}_f)$?

$$\mathbb{T}_{f} \simeq \mathbb{F}_{q}[X_{1}, \dots, X_{m}]/(X_{i}X_{j})_{1 \leq i,j \leq m} \quad \text{and} \quad \mathfrak{m}_{f} \simeq \underbrace{\mathbb{F}_{q} \oplus \dots \oplus \mathbb{F}_{q}}_{m}$$
$$\mathrm{M}_{2}^{0}(\mathfrak{m}_{f}) \simeq \underbrace{\mathrm{M}_{2}^{0}(\mathbb{F}_{q}) \oplus \dots \oplus \mathrm{M}_{2}^{0}(\mathbb{F}_{q})}_{m} = \underbrace{M^{0} \oplus \dots \oplus M^{0}}_{m}$$

We have

$$G \simeq H \rtimes \mathrm{GL}_2^D(\mathbb{F}_q)$$

with $H \subseteq \mathrm{M}_2^0(\mathfrak{m}_f)$ a submodule over $\mathbb{F}_p[\mathrm{GL}_2^D(\mathbb{F}_q)]$.

Question: Which are the possible submodules H of $M_2^0(\mathfrak{m}_f)$?

$$\mathbb{T}_{f} \simeq \mathbb{F}_{q}[X_{1}, \dots, X_{m}]/(X_{i}X_{j})_{1 \leq i,j \leq m} \quad \text{and} \quad \mathfrak{m}_{f} \simeq \underbrace{\mathbb{F}_{q} \oplus \dots \oplus \mathbb{F}_{q}}_{m}$$
$$\mathbb{M}_{2}^{0}(\mathfrak{m}_{f}) \simeq \underbrace{\mathbb{M}_{2}^{0}(\mathbb{F}_{q}) \oplus \dots \oplus \mathbb{M}_{2}^{0}(\mathbb{F}_{q})}_{m} = \underbrace{\mathbb{M}^{0} \oplus \dots \oplus \mathbb{M}^{0}}_{m}$$

Lemma 1 (one copy): If $p \neq 2$, M^0 is a simple module.

We have

$$G \simeq H \rtimes \operatorname{GL}_2^D(\mathbb{F}_q)$$

with $H \subseteq \mathrm{M}_2^0(\mathfrak{m}_f)$ a submodule over $\mathbb{F}_p[\mathrm{GL}_2^D(\mathbb{F}_q)]$.

Question: Which are the possible submodules H of $M_2^0(\mathfrak{m}_f)$?

$$\mathbb{T}_{f} \simeq \mathbb{F}_{q}[X_{1}, \dots, X_{m}]/(X_{i}X_{j})_{1 \leq i,j \leq m} \quad \text{and} \quad \mathfrak{m}_{f} \simeq \underbrace{\mathbb{F}_{q} \oplus \dots \oplus \mathbb{F}_{q}}_{m}$$
$$\mathbb{M}_{2}^{0}(\mathfrak{m}_{f}) \simeq \underbrace{\mathbb{M}_{2}^{0}(\mathbb{F}_{q}) \oplus \dots \oplus \mathbb{M}_{2}^{0}(\mathbb{F}_{q})}_{m} = \underbrace{\mathbb{M}^{0} \oplus \dots \oplus \mathbb{M}_{0}^{0}}_{m}$$

Lemma 1 (one copy): If $p \neq 2$, M^0 is a simple module.

So the only possible submodules of M^0 are (0) and M^0 .

We have

$$G \simeq H \rtimes \operatorname{GL}_2^D(\mathbb{F}_q)$$

with $H \subseteq \mathrm{M}_2^0(\mathfrak{m}_f)$ a submodule over $\mathbb{F}_p[\mathrm{GL}_2^D(\mathbb{F}_q)]$.

Question: Which are the possible submodules H of $M_2^0(\mathfrak{m}_f)$?

$$\mathbb{T}_{f} \simeq \mathbb{F}_{q}[X_{1}, \dots, X_{m}]/(X_{i}X_{j})_{1 \leq i,j \leq m} \quad \text{and} \quad \mathfrak{m}_{f} \simeq \underbrace{\mathbb{F}_{q} \oplus \dots \oplus \mathbb{F}_{q}}_{m}$$
$$\mathbb{M}_{2}^{0}(\mathfrak{m}_{f}) \simeq \underbrace{\mathbb{M}_{2}^{0}(\mathbb{F}_{q}) \oplus \dots \oplus \mathbb{M}_{2}^{0}(\mathbb{F}_{q})}_{m} = \underbrace{\mathbb{M}^{0} \oplus \dots \oplus \mathbb{M}_{0}^{0}}_{m}$$

Lemma 1 (one copy): If $p \neq 2$, M^0 is a simple module.

So the only possible submodules of M^0 are (0) and M^0 .

Lemma 2 (several copies): If M is a simple module, any submodule $N \subseteq M \oplus \ldots \oplus M$ is isomorphic to some copies of M.

$$\Rightarrow \text{ If } p \neq 2: \ H \simeq \underbrace{M^0 \oplus \ldots \oplus M^0}_{\alpha} \quad \text{ with } 0 \le \alpha \le m.$$

$$\Rightarrow \text{ If } p \neq 2: H \simeq \underbrace{M^0 \oplus \ldots \oplus M^0}_{\alpha} \quad \text{ with } 0 \le \alpha \le m.$$

Lemma 3 (one copy): If p = 2, M^0 has $S = \{\lambda Id_2 : \lambda \in \mathbb{F}_q\}$ as a submodule.

Let $N \subseteq M^0$. Then either $N \subseteq S$ subgroup or $N = M^0$.

$$\Rightarrow \text{ If } p \neq 2: H \simeq \underbrace{M^0 \oplus \ldots \oplus M^0}_{\alpha} \quad \text{ with } 0 \le \alpha \le m.$$

Lemma 3 (one copy): If p = 2, M^0 has $S = \{\lambda \operatorname{Id}_2 : \lambda \in \mathbb{F}_q\}$ as a submodule. Let $N \subseteq M^0$. Then either $N \subseteq S$ subgroup or $N = M^0$.

Lemma 4 (several copies): Let
$$N \subseteq \overbrace{M^0 \oplus \ldots \oplus M^0}^m$$
. Then $N \simeq N_1 \oplus \ldots \oplus N_n$, with $N_i \subseteq M^0$ submodule.

$$\Rightarrow \text{ If } p \neq 2: H \simeq \underbrace{M^0 \oplus \ldots \oplus M^0}_{\alpha} \quad \text{ with } 0 \le \alpha \le m.$$

Lemma 3 (one copy): If p = 2, M^0 has $S = \{\lambda \operatorname{Id}_2 : \lambda \in \mathbb{F}_q\}$ as a submodule. Let $N \subseteq M^0$. Then either $N \subseteq S$ subgroup or $N = M^0$.

Lemma 4 (several copies): Let
$$N \subseteq M^0 \oplus \ldots \oplus M^0$$
. Then $N \simeq N_1 \oplus \ldots \oplus N_n$, with $N_i \subseteq M^0$ submodule.

$$\Rightarrow \text{ If } p = 2: \ H \simeq \underbrace{M^0 \oplus \ldots \oplus M^0}_{\alpha} \oplus \underbrace{C_2 \oplus \ldots \oplus C_2}_{\beta}, \text{ with } C_2 \subset \mathcal{S}.$$

Theorem 1. (A.) \mathbb{F}_q with $q \neq 2, 3, 5$.

Theorem 1. (A.) \mathbb{F}_q with $q \neq 2, 3, 5$. (\mathbb{T}, \mathfrak{m}) finite-dimensional local commutative \mathbb{F}_q -algebra with $\mathbb{T}/\mathfrak{m} \simeq \mathbb{F}_q$.

Theorem 1. (A.) \mathbb{F}_q with $q \neq 2, 3, 5$. (\mathbb{T}, \mathfrak{m}) finite-dimensional local commutative \mathbb{F}_q -algebra with $\mathbb{T}/\mathfrak{m} \simeq \mathbb{F}_q$. Suppose that $\mathfrak{m}^2 = 0$.

Theorem 1. (A.) \mathbb{F}_q with $q \neq 2, 3, 5$.

 $(\mathbb{T},\mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_q -algebra with $\mathbb{T}/\mathfrak{m} \simeq \mathbb{F}_q$. Suppose that $\mathfrak{m}^2 = 0$.

 $\rho: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{T})$ continuous representation such that

Theorem 1. (A.) \mathbb{F}_q with $q \neq 2, 3, 5$. (\mathbb{T}, \mathfrak{m}) finite-dimensional local commutative \mathbb{F}_q -algebra with $\mathbb{T}/\mathfrak{m} \simeq \mathbb{F}_q$. Suppose that $\mathfrak{m}^2 = 0$. $\rho : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{T})$ continuous representation such that

(a) $\operatorname{Im}(\overline{\rho}) = \operatorname{GL}_2^D(\mathbb{F}_q)$, where $\overline{\rho} = \rho \mod \mathfrak{m}$ and $D := \operatorname{Im}(\det \circ \overline{\rho})$

Theorem 1. (A.) \mathbb{F}_q with $q \neq 2, 3, 5$. (\mathbb{T}, \mathfrak{m}) finite-dimensional local commutative \mathbb{F}_q -algebra with $\mathbb{T}/\mathfrak{m} \simeq \mathbb{F}_q$. Suppose that $\mathfrak{m}^2 = 0$. $\rho : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{T})$ continuous representation such that

- (a) $\operatorname{Im}(\overline{\rho}) = \operatorname{GL}_2^D(\mathbb{F}_q)$, where $\overline{\rho} = \rho \mod \mathfrak{m}$ and $D := \operatorname{Im}(\det \circ \overline{\rho})$
- (b) $\operatorname{Im}(\rho) \subseteq \operatorname{GL}_2^D(\mathbb{T})$

Theorem 1. (A.) \mathbb{F}_q with $q \neq 2, 3, 5$. (\mathbb{T}, \mathfrak{m}) finite-dimensional local commutative \mathbb{F}_q -algebra with $\mathbb{T}/\mathfrak{m} \simeq \mathbb{F}_q$. Suppose that $\mathfrak{m}^2 = 0$. $\rho : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{T})$ continuous representation such that

- (a) $\operatorname{Im}(\overline{\rho}) = \operatorname{GL}_2^D(\mathbb{F}_q)$, where $\overline{\rho} = \rho \mod \mathfrak{m}$ and $D := \operatorname{Im}(\det \circ \overline{\rho})$ (b) $\operatorname{Im}(\rho) \subseteq \operatorname{GL}_2^D(\mathbb{T})$
- (c) ${\mathbb T}$ is generated as ${\mathbb F}_q$ -algebra by the set of traces of ρ

Theorem 1. (A.) \mathbb{F}_q with $q \neq 2, 3, 5$. (\mathbb{T}, \mathfrak{m}) finite-dimensional local commutative \mathbb{F}_q -algebra with $\mathbb{T}/\mathfrak{m} \simeq \mathbb{F}_q$. Suppose that $\mathfrak{m}^2 = 0$. $\rho : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{T})$ continuous representation such that

- (a) $\operatorname{Im}(\overline{\rho}) = \operatorname{GL}_2^D(\mathbb{F}_q)$, where $\overline{\rho} = \rho \mod \mathfrak{m}$ and $D := \operatorname{Im}(\det \circ \overline{\rho})$ (b) $\operatorname{Im}(\rho) \subseteq \operatorname{GL}_2^D(\mathbb{T})$
- (c) ${\mathbb T}$ is generated as ${\mathbb F}_q\text{-algebra}$ by the set of traces of ρ

Let $m := \dim_{\mathbb{F}_a} \mathfrak{m}$, and t = number of different traces in $\operatorname{Im}(\rho)$.

Theorem 1. (A.) \mathbb{F}_q with $q \neq 2, 3, 5$. (\mathbb{T}, \mathfrak{m}) finite-dimensional local commutative \mathbb{F}_q -algebra with $\mathbb{T}/\mathfrak{m} \simeq \mathbb{F}_q$. Suppose that $\mathfrak{m}^2 = 0$. $\rho : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{T})$ continuous representation such that

(a) Im(p̄) = GL₂^D(F_q), where p̄ = ρ mod m and D := Im(det op̄)
(b) Im(ρ) ⊆ GL₂^D(T)
(c) T is generated as F_q-algebra by the set of traces of ρ
Let m := dim_{F_q}m, and t = number of different traces in Im(ρ).
If p ≠ 2: Im(ρ) ≃ (M₂⁰(F_q) ⊕ ... ⊕ M₂⁰(F_q)) ⋊ GL₂^D(F_q)

т

Theorem 1. (A.) \mathbb{F}_q with $q \neq 2, 3, 5$. (\mathbb{T}, \mathfrak{m}) finite-dimensional local commutative \mathbb{F}_q -algebra with $\mathbb{T}/\mathfrak{m} \simeq \mathbb{F}_q$. Suppose that $\mathfrak{m}^2 = 0$. $\rho : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{T})$ continuous representation such that

(a) $\operatorname{Im}(\overline{\rho}) = \operatorname{GL}_2^D(\mathbb{F}_q)$, where $\overline{\rho} = \rho \mod \mathfrak{m}$ and $D := \operatorname{Im}(\det \circ \overline{\rho})$ (b) $\operatorname{Im}(\rho) \subseteq \operatorname{GL}_2^D(\mathbb{T})$ (c) \mathbb{T} is generated as \mathbb{F}_q -algebra by the set of traces of ρ Let $m := \dim_{\mathbb{F}_q}\mathfrak{m}$, and t = number of different traces in $\operatorname{Im}(\rho)$. If $p \neq 2$: $\operatorname{Im}(\rho) \simeq (\underbrace{\operatorname{M}_2^0(\mathbb{F}_q) \oplus \ldots \oplus \operatorname{M}_2^0(\mathbb{F}_q)}_m) \rtimes \operatorname{GL}_2^D(\mathbb{F}_q)$ and $t = q^{m+1}$.

Theorem 1. (A.) \mathbb{F}_q with $q \neq 2, 3, 5$. $(\mathbb{T}, \mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_q -algebra with $\mathbb{T}/\mathfrak{m} \simeq \mathbb{F}_q$. Suppose that $\mathfrak{m}^2 = 0$. $\rho : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{T})$ continuous representation such that (a) $\operatorname{Im}(\overline{\rho}) = \operatorname{GL}_2^D(\mathbb{F}_q)$, where $\overline{\rho} = \rho \mod \mathfrak{m}$ and $D := \operatorname{Im}(\det \circ \overline{\rho})$ (b) $\operatorname{Im}(\rho) \subseteq \operatorname{GL}_2^D(\mathbb{T})$ (c) \mathbb{T} is generated as \mathbb{F}_q -algebra by the set of traces of ρ

Let $m := \dim_{\mathbb{F}_q} \mathfrak{m}$, and t = number of different traces in $\operatorname{Im}(\rho)$.

If
$$p \neq 2$$
: Im $(\rho) \simeq (\underbrace{\mathrm{M}_{2}^{0}(\mathbb{F}_{q}) \oplus \ldots \oplus \mathrm{M}_{2}^{0}(\mathbb{F}_{q})}_{m}) \rtimes \mathrm{GL}_{2}^{D}(\mathbb{F}_{q}) \text{ and } t = q^{m+1}.$
If $p = 2$: Im $(\rho) \simeq (\underbrace{\mathrm{M}_{2}^{0}(\mathbb{F}_{q}) \oplus \ldots \oplus \mathrm{M}_{2}^{0}(\mathbb{F}_{q})}_{\alpha} \oplus \underbrace{C_{2} \oplus \cdots \oplus C_{2}}_{\beta}) \rtimes \mathrm{GL}_{2}^{D}(\mathbb{F}_{q})$

Theorem 1. (A.) \mathbb{F}_q with $q \neq 2, 3, 5$. $(\mathbb{T},\mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_{a} -algebra with $\mathbb{T}/\mathfrak{m} \simeq \mathbb{F}_{a}$. Suppose that $\mathfrak{m}^2 = 0$. $\rho: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{T})$ continuous representation such that (a) $\operatorname{Im}(\overline{\rho}) = \operatorname{GL}_2^D(\mathbb{F}_q)$, where $\overline{\rho} = \rho \mod \mathfrak{m}$ and $D := \operatorname{Im}(\det \circ \overline{\rho})$ (b) $\operatorname{Im}(\rho) \subseteq \operatorname{GL}_2^D(\mathbb{T})$ (c) \mathbb{T} is generated as \mathbb{F}_q -algebra by the set of traces of ρ Let $m := \dim_{\mathbb{F}_{q}} \mathfrak{m}$, and t = number of different traces in $\text{Im}(\rho)$. If $p \neq 2$: $\operatorname{Im}(\rho) \simeq (\operatorname{M}_2^0(\mathbb{F}_q) \oplus \ldots \oplus \operatorname{M}_2^0(\mathbb{F}_q)) \rtimes \operatorname{GL}_2^D(\mathbb{F}_q)$ and $t = q^{m+1}$. m

If
$$p = 2$$
: Im $(\rho) \simeq (\underbrace{\mathrm{M}_{2}^{0}(\mathbb{F}_{q}) \oplus \ldots \oplus \mathrm{M}_{2}^{0}(\mathbb{F}_{q})}_{\alpha} \oplus \underbrace{C_{2} \oplus \cdots \oplus C_{2}}_{\beta}) \rtimes \mathrm{GL}_{2}^{D}(\mathbb{F}_{q})$
 $t = q^{\alpha} \cdot ((q-1)2^{\beta} + 1),$

10/17

Theorem 1. (A.) \mathbb{F}_q with $q \neq 2, 3, 5$. $(\mathbb{T},\mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_{a} -algebra with $\mathbb{T}/\mathfrak{m} \simeq \mathbb{F}_{a}$. Suppose that $\mathfrak{m}^2 = 0$. $\rho: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{T})$ continuous representation such that (a) $\operatorname{Im}(\overline{\rho}) = \operatorname{GL}_2^D(\mathbb{F}_q)$, where $\overline{\rho} = \rho \mod \mathfrak{m}$ and $D := \operatorname{Im}(\det \circ \overline{\rho})$ (b) $\operatorname{Im}(\rho) \subseteq \operatorname{GL}_2^D(\mathbb{T})$ (c) \mathbb{T} is generated as \mathbb{F}_{q} -algebra by the set of traces of ρ Let $m := \dim_{\mathbb{F}_{q}} \mathfrak{m}$, and t = number of different traces in $\text{Im}(\rho)$. If $p \neq 2$: $\operatorname{Im}(\rho) \simeq (\operatorname{M}_2^0(\mathbb{F}_q) \oplus \ldots \oplus \operatorname{M}_2^0(\mathbb{F}_q)) \rtimes \operatorname{GL}_2^D(\mathbb{F}_q)$ and $t = q^{m+1}$. m If p = 2: Im $(\rho) \simeq (\underbrace{\mathrm{M}_2^0(\mathbb{F}_q) \oplus \ldots \oplus \mathrm{M}_2^0(\mathbb{F}_q)}_{\alpha} \oplus \underbrace{C_2 \oplus \cdots \oplus C_2}_{\beta}) \rtimes \mathrm{GL}_2^D(\mathbb{F}_q)$

 $t = q^{\alpha} \cdot ((q-1)2^{\beta}+1)$, for $0 \leq \alpha \leq m$, $0 \leq \beta \leq d(m-\alpha)$.

Theorem 1. (A.) \mathbb{F}_q with $q \neq 2, 3, 5$. $(\mathbb{T},\mathfrak{m})$ finite-dimensional local commutative \mathbb{F}_{a} -algebra with $\mathbb{T}/\mathfrak{m} \simeq \mathbb{F}_{a}$. Suppose that $\mathfrak{m}^2 = 0$. $\rho: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{T})$ continuous representation such that (a) $\operatorname{Im}(\overline{\rho}) = \operatorname{GL}_2^D(\mathbb{F}_q)$, where $\overline{\rho} = \rho \mod \mathfrak{m}$ and $D := \operatorname{Im}(\det \circ \overline{\rho})$ (b) $\operatorname{Im}(\rho) \subset \operatorname{GL}_2^D(\mathbb{T})$ (c) \mathbb{T} is generated as \mathbb{F}_{q} -algebra by the set of traces of ρ Let $m := \dim_{\mathbb{F}_{q}} \mathfrak{m}$, and t = number of different traces in $\text{Im}(\rho)$. If $p \neq 2$: $\operatorname{Im}(\rho) \simeq (\operatorname{M}_2^0(\mathbb{F}_q) \oplus \ldots \oplus \operatorname{M}_2^0(\mathbb{F}_q)) \rtimes \operatorname{GL}_2^D(\mathbb{F}_q)$ and $t = q^{m+1}$. m If p = 2: Im $(\rho) \simeq (\underline{\mathrm{M}}_{2}^{0}(\mathbb{F}_{q}) \oplus \ldots \oplus \underline{\mathrm{M}}_{2}^{0}(\mathbb{F}_{q}) \oplus \underline{C_{2} \oplus \cdots \oplus C_{2}}) \rtimes \mathrm{GL}_{2}^{D}(\mathbb{F}_{q})$

 $t = q^{\alpha} \cdot ((q-1)2^{\beta} + 1)$, for $0 \le \alpha \le m$, $0 \le \beta \le d(m - \alpha)$. Moreover $\operatorname{Im}(\rho)$ is determined uniquely by t up to isomorphism.

Fix a prime p, a level $N \ge 1$ coprime to p, and a weight $k \ge 2$.

With the function HeckeAlgebras^1 implemented in *Magma* we obtain every local mod *p* Hecke algebra \mathbb{T}_f (up to Galois conjugacy) of level *N* and weight *k*

 $\mathbb{T}_{f} = \langle T_{\ell} \text{ Hecke operator } | \ell \leq \text{ Sturm bound, } \ell \nmid Np \rangle.$

¹It can be found in G. Wiese webpage http://math.uni.lu/ wiese/

Fix a prime p, a level $N \ge 1$ coprime to p, and a weight $k \ge 2$.

With the function HeckeAlgebras^1 implemented in *Magma* we obtain every local mod *p* Hecke algebra \mathbb{T}_f (up to Galois conjugacy) of level *N* and weight *k*

 $\mathbb{T}_f = \langle T_\ell \text{ Hecke operator } | \ell \leq \text{ Sturm bound, } \ell \nmid Np \rangle.$

Example: p = 2, N = 133 and k = 2.

¹It can be found in G. Wiese webpage http://math.uni.lu/ wiese/

Fix a prime p, a level $N \ge 1$ coprime to p, and a weight $k \ge 2$.

With the function HeckeAlgebras^1 implemented in *Magma* we obtain every local mod *p* Hecke algebra \mathbb{T}_f (up to Galois conjugacy) of level *N* and weight *k*

 $\mathbb{T}_f = \langle T_\ell \text{ Hecke operator } | \ell \leq \text{ Sturm bound, } \ell \nmid Np \rangle.$

Example: p = 2, N = 133 and k = 2. There are 3 such Hecke algebras.

¹It can be found in G. Wiese webpage http://math.uni.lu/ wiese/

Fix a prime p, a level $N \ge 1$ coprime to p, and a weight $k \ge 2$.

With the function HeckeAlgebras^1 implemented in *Magma* we obtain every local mod *p* Hecke algebra \mathbb{T}_f (up to Galois conjugacy) of level *N* and weight *k*

 $\mathbb{T}_f = \langle T_\ell \text{ Hecke operator } | \ell \leq \text{ Sturm bound, } \ell \nmid Np \rangle.$

Example: p = 2, N = 133 and k = 2. There are 3 such Hecke algebras.

For every \mathbb{T}_f , let $\mathbb{F}_q := \mathbb{T}_f/\mathfrak{m}_f$ be its residue field. We check if the residual image is $\operatorname{Im}(\overline{\rho}_f) = \operatorname{GL}_2^D(\mathbb{F}_q)$.

¹It can be found in G. Wiese webpage http://math.uni.lu/ wiese/

Fix a prime p, a level $N \ge 1$ coprime to p, and a weight $k \ge 2$.

With the function HeckeAlgebras^1 implemented in *Magma* we obtain every local mod *p* Hecke algebra \mathbb{T}_f (up to Galois conjugacy) of level *N* and weight *k*

 $\mathbb{T}_f = \langle T_\ell \text{ Hecke operator } | \ell \leq \text{ Sturm bound, } \ell \nmid Np \rangle.$

Example: p = 2, N = 133 and k = 2. There are 3 such Hecke algebras.

For every \mathbb{T}_f , let $\mathbb{F}_q := \mathbb{T}_f/\mathfrak{m}_f$ be its residue field. We check if the residual image is $\operatorname{Im}(\overline{\rho}_f) = \operatorname{GL}_2^D(\mathbb{F}_q)$. If $\mathfrak{m}_f^2 \neq 0$, we take $\mathbb{T}_f/\mathfrak{m}_f^2$.

¹It can be found in G. Wiese webpage http://math.uni.lu/ wiese/

Fix a prime p, a level $N \ge 1$ coprime to p, and a weight $k \ge 2$.

With the function HeckeAlgebras^1 implemented in *Magma* we obtain every local mod *p* Hecke algebra \mathbb{T}_f (up to Galois conjugacy) of level *N* and weight *k*

 $\mathbb{T}_f = \langle T_\ell \text{ Hecke operator } | \ell \leq \text{ Sturm bound, } \ell \nmid Np \rangle.$

Example: p = 2, N = 133 and k = 2. There are 3 such Hecke algebras.

For every \mathbb{T}_f , let $\mathbb{F}_q := \mathbb{T}_f/\mathfrak{m}_f$ be its residue field. We check if the residual image is $\operatorname{Im}(\overline{\rho}_f) = \operatorname{GL}_2^D(\mathbb{F}_q)$. If $\mathfrak{m}_f^2 \neq 0$, we take $\mathbb{T}_f/\mathfrak{m}_f^2$.

From the 3 Hecke algebras, only one satisfies $\operatorname{Im}(\overline{\rho}_f) = \operatorname{GL}_2^D(\mathbb{F}_q)$.

¹It can be found in G. Wiese webpage http://math.uni.lu/ wiese/

Fix a prime p, a level $N \ge 1$ coprime to p, and a weight $k \ge 2$.

With the function HeckeAlgebras^1 implemented in *Magma* we obtain every local mod *p* Hecke algebra \mathbb{T}_f (up to Galois conjugacy) of level *N* and weight *k*

 $\mathbb{T}_f = \langle T_\ell \text{ Hecke operator } | \ell \leq \text{ Sturm bound, } \ell \nmid Np \rangle.$

Example: p = 2, N = 133 and k = 2. There are 3 such Hecke algebras.

For every \mathbb{T}_f , let $\mathbb{F}_q := \mathbb{T}_f/\mathfrak{m}_f$ be its residue field. We check if the residual image is $\operatorname{Im}(\overline{\rho}_f) = \operatorname{GL}_2^D(\mathbb{F}_q)$. If $\mathfrak{m}_f^2 \neq 0$, we take $\mathbb{T}_f/\mathfrak{m}_f^2$.

From the 3 Hecke algebras, only one satisfies $\operatorname{Im}(\overline{\rho}_f) = \operatorname{GL}_2^D(\mathbb{F}_q)$.

– The field is \mathbb{F}_4

¹It can be found in G. Wiese webpage http://math.uni.lu/ wiese/

Fix a prime p, a level $N \ge 1$ coprime to p, and a weight $k \ge 2$.

With the function HeckeAlgebras^1 implemented in *Magma* we obtain every local mod *p* Hecke algebra \mathbb{T}_f (up to Galois conjugacy) of level *N* and weight *k*

$$\mathbb{T}_f = \langle T_\ell | \mathsf{Hecke operator} \mid \ell \leq \mathsf{Sturm bound}, \ \ell \nmid \mathsf{Np}
angle.$$

Example: p = 2, N = 133 and k = 2. There are 3 such Hecke algebras.

For every \mathbb{T}_f , let $\mathbb{F}_q := \mathbb{T}_f/\mathfrak{m}_f$ be its residue field. We check if the residual image is $\operatorname{Im}(\overline{\rho}_f) = \operatorname{GL}_2^D(\mathbb{F}_q)$. If $\mathfrak{m}_f^2 \neq 0$, we take $\mathbb{T}_f/\mathfrak{m}_f^2$.

From the 3 Hecke algebras, only one satisfies $\operatorname{Im}(\overline{\rho}_f) = \operatorname{GL}_2^D(\mathbb{F}_q)$.

- The field is \mathbb{F}_4
- D = 1, so actually $\operatorname{Im}(\overline{\rho}_f) = \operatorname{SL}_2(\mathbb{F}_q)$, and $\operatorname{Im}(\rho_f) \subseteq \operatorname{SL}_2(\mathbb{T}_f)$

¹It can be found in G. Wiese webpage http://math.uni.lu/ wiese/

Fix a prime p, a level $N \ge 1$ coprime to p, and a weight $k \ge 2$.

With the function HeckeAlgebras^1 implemented in *Magma* we obtain every local mod *p* Hecke algebra \mathbb{T}_f (up to Galois conjugacy) of level *N* and weight *k*

$$\mathbb{T}_f = \langle T_\ell | \mathsf{Hecke operator} \mid \ell \leq \mathsf{Sturm bound}, \ \ell \nmid \mathsf{Np}
angle.$$

Example: p = 2, N = 133 and k = 2. There are 3 such Hecke algebras.

For every \mathbb{T}_f , let $\mathbb{F}_q := \mathbb{T}_f/\mathfrak{m}_f$ be its residue field. We check if the residual image is $\operatorname{Im}(\overline{\rho}_f) = \operatorname{GL}_2^D(\mathbb{F}_q)$. If $\mathfrak{m}_f^2 \neq 0$, we take $\mathbb{T}_f/\mathfrak{m}_f^2$.

From the 3 Hecke algebras, only one satisfies $\operatorname{Im}(\overline{\rho}_f) = \operatorname{GL}_2^D(\mathbb{F}_q)$.

- The field is \mathbb{F}_4
- D = 1, so actually $\operatorname{Im}(\overline{\rho}_f) = \operatorname{SL}_2(\mathbb{F}_q)$, and $\operatorname{Im}(\rho_f) \subseteq \operatorname{SL}_2(\mathbb{T}_f)$
- $-\mathbb{T}_f/\mathfrak{m}_f^2\simeq \mathbb{F}_4[X,Y]/(X^2,Y^2,XY)$

¹It can be found in G. Wiese webpage http://math.uni.lu/ wiese/

By Theorem 1: the number t of traces in $G := \text{Im}(\rho_f)$ determines G.

By Theorem 1: the number t of traces in $G := \text{Im}(\rho_f)$ determines G.

 $\widetilde{t} = \#$ different operators T_ℓ , with $\ell < b$ bound

By Theorem 1: the number t of traces in $G := \text{Im}(\rho_f)$ determines G.

 $\widetilde{t} = \#$ different operators T_ℓ , with $\ell < b$ bound

Since $tr(\rho_f(Frob_\ell)) = T_\ell$, $\tilde{t} = \#$ different traces in G.

By Theorem 1: the number t of traces in $G := \text{Im}(\rho_f)$ determines G.

 $\widetilde{t} = \#$ different operators T_ℓ , with $\ell < b$ bound

Since $tr(\rho_f(Frob_\ell)) = T_\ell$, $\tilde{t} = \#$ different traces in G. We have $\tilde{t} \leq t$.

By Theorem 1: the number t of traces in $G := \text{Im}(\rho_f)$ determines G. $\tilde{t} = \#$ different operators T_ℓ , with $\ell < b$ bound Since $\text{tr}(\rho_f(\text{Frob}_\ell)) = T_\ell$, $\tilde{t} = \#$ different traces in G. We have $\tilde{t} \le t$. bound = 1000. We find $\tilde{t} = 13$

By Theorem 1: the number t of traces in $G := \text{Im}(\rho_f)$ determines G. $\tilde{t} = \#$ different operators T_ℓ , with $\ell < b$ bound Since $\text{tr}(\rho_f(\text{Frob}_\ell)) = T_\ell$, $\tilde{t} = \#$ different traces in G. We have $\tilde{t} \le t$. bound = 1000. We find $\tilde{t} = 13$

 $t = q^{\alpha} \cdot ((q-1)2^{\beta}+1), \text{ for some } 0 \leq \alpha \leq 2 \text{ and } 0 \leq \beta \leq 2(2-\alpha),$

By Theorem 1: the number t of traces in $G := \text{Im}(\rho_f)$ determines G. $\tilde{t} = \#$ different operators T_ℓ , with $\ell < b$ bound Since $\text{tr}(\rho_f(\text{Frob}_\ell)) = T_\ell$, $\tilde{t} = \#$ different traces in G. We have $\tilde{t} \le t$. bound = 1000. We find $\tilde{t} = 13$ $t = 4^0 \cdot ((4-1)2^2 + 1) = 13$

By Theorem 1: the number t of traces in $G := \text{Im}(\rho_f)$ determines G. $\widetilde{t} = \#$ different operators T_ℓ , with $\ell < b$ bound Since $\operatorname{tr}(\rho_f(\operatorname{Frob}_{\ell})) = T_{\ell}$, $\tilde{t} = \#$ different traces in G. We have $\tilde{t} \leq t$. bound = 1000. We find $\tilde{t} = 13$ $t = 4^{0} \cdot ((4-1)2^{2} + 1) = 13$ 0×38 . 1×12 , $(Y + a) \times 12$ $(X + Y + a^2) \times 10$ $(aX + aY + 1) \times 13$ $a \times 10$, $(aY + a^2) \times 10$ $(X + a^2Y + a^2) \times 7$ $(a^2X + aY + a) \times 6$ $a^2 \times 7$. $(a^2Y+1) \times 13$ $(aX+Y+1) \times 16$ $(a^2X+a^2Y+a) \times 11$

where $\mathbb{F}_4 = \{0, 1, a, a^2\}.$

By Theorem 1: the number t of traces in $G := \text{Im}(\rho_f)$ determines G. $\widetilde{t} = \#$ different operators T_{ℓ} , with $\ell < b$ bound Since $\operatorname{tr}(\rho_f(\operatorname{Frob}_\ell)) = T_\ell$, $\widetilde{t} = \#$ different traces in G. We have $\widetilde{t} < t$. bound = 1000. We find $\tilde{t} = 13$ $t = 4^{0} \cdot ((4-1)2^{2} + 1) = 13$ 0×38 . 1×12 , $(Y + a) \times 12$ $(X + Y + a^2) \times 10$ $(aX + aY + 1) \times 13$ $a \times 10$, $(aY + a^2) \times 10$ $(X + a^2Y + a^2) \times 7$ $(a^2X + aY + a) \times 6$ $a^2 \times 7$, $(a^2Y+1) \times 13$ $(aX+Y+1) \times 16$ $(a^2X+a^2Y+a) \times 11$ where $\mathbb{F}_4 = \{0, 1, a, a^2\}.$ It seems likely that $t = \tilde{t} = 13$. So, according to Theorem 1: $\operatorname{Im}(\rho_f) \simeq (C_2 \oplus C_2) \times \operatorname{SL}_2(\mathbb{F}_4) \simeq \operatorname{SL}_2(\mathbb{F}_4[X, Y]/(X^2, Y^2, XY)).$

$$egin{aligned} &1\leq N\leq 1500,\quad k=2,3\ &m=\dim_{\mathbb{F}_q}\mathfrak{m}_f/\mathfrak{m}_f^2=1\ &t=q^lpha\cdot((q-1)2^eta+1),\quad 0\leq lpha\leq 1 ext{ and } 0\leq eta\leq d(1-lpha) \end{aligned}$$

$$egin{aligned} &1\leq N\leq 1500,\quad k=2,3\ &m=\dim_{\mathbb{F}_q}\mathfrak{m}_f/\mathfrak{m}_f^2=1\ &t=q^lpha\cdot((q-1)2^eta+1),\quad 0\leq lpha\leq 1 ext{ and } 0\leq eta\leq d(1-lpha) \end{aligned}$$

Table : Possible number of traces when m = 1.

$$\begin{split} &1 \leq N \leq 1500, \quad k = 2,3 \\ &m = \dim_{\mathbb{F}_q} \mathfrak{m}_f/\mathfrak{m}_f^2 = 1 \\ &t = q^{\alpha} \cdot ((q-1)2^{\beta}+1), \quad 0 \leq \alpha \leq 1 \text{ and } 0 \leq \beta \leq d(1-\alpha) \end{split}$$

T			β		1	F		β				
\mathbb{F}_{2}	22	0	1	2	1	T,	23	0	1	2	3	
α	0	4	7	13		α	0	8	<mark>15</mark>	29	57	
u	1	16	-	-	J	$\begin{array}{c} \alpha \\ 1 \end{array}$		64	-	-	-	
			_									
		म	24				β					
			24	0		1	2	3	4			

1°24		0	1	2	3	4
0	0	16	31	61	121	241
α	1	256	-	-	-	-

Table : Possible number of traces when m = 1.

$$\begin{split} & 1 \leq N \leq 1500, \quad k = 2,3 \\ & m = \dim_{\mathbb{F}_q} \mathfrak{m}_f/\mathfrak{m}_f^2 = 1 \\ & t = q^{\alpha} \cdot ((q-1)2^{\beta}+1), \quad 0 \leq \alpha \leq 1 \text{ and } 0 \leq \beta \leq d(1-\alpha) \end{split}$$

म			β			म		β				
<i>F</i> ₂ ²		0	1	2	\mathbb{F}_{2^3}			0	1	2	3	
Q	α 0		7	13		α	0	8	15	29	57	
u	α 1		-	-		a	1	64	-	-	-	
										_		
		म					β					
	F ₂ ⁴ 0		0		1	2	3	4				
		α	0	16		31	61	121	241			
	α 1 256			-	-	-	-					

Table : Possible number of traces when m = 1.

This corresponds always to the group $G \simeq C_2 \times SL_2(\mathbb{F}_q)$.

13 / 17

$$egin{aligned} m &= \dim_{\mathbb{F}_q} \mathfrak{m}_f/\mathfrak{m}_f^2 = 2 \ t &= q^lpha \cdot ((q-1)2^eta + 1), \quad 0 \leq lpha \leq 2 ext{ and } 0 \leq eta \leq d(2-lpha) \end{aligned}$$

$$\begin{split} m &= \dim_{\mathbb{F}_q} \mathfrak{m}_f/\mathfrak{m}_f^2 = 2 \\ t &= q^{\alpha} \cdot ((q-1)2^{\beta}+1), \quad 0 \leq \alpha \leq 2 \text{ and } 0 \leq \beta \leq d(2-\alpha) \end{split}$$

T			β							
Ŀ	22	0	0 1 2 3							
	0	4	7	13	25	49				
α	1	16	28	52	100	-				
	2	64	-	-	-	-				

T			β											
\mathbb{F}	23	0	1	2	3	4	5	6						
	0	8	15	29	57	113	225	449						
α	1	64	120	232	456	-	-	-						
	2	512	-	-	-	-	-	-						

\mathbb{F}			β										
П.	24	0	1	2	3	4	5	6	7	8			
	0	16	31	61	121	241	481	916	1921	3841			
α	1	256	496	976	1936	3856	-	-	-	-			
	2	4096	-	-	-	-	-	-	-	-			

Table : Possible number of traces when m = 2.

$$\begin{split} m &= \dim_{\mathbb{F}_q} \mathfrak{m}_f/\mathfrak{m}_f^2 = 2 \\ t &= q^{\alpha} \cdot ((q-1)2^{\beta}+1), \quad 0 \leq \alpha \leq 2 \text{ and } 0 \leq \beta \leq d(2-\alpha) \end{split}$$

T			β									
\mathbb{F}_{2}	23	0	0 1		2 3		5	6				
	0	8	15	29	<mark>57</mark>	113	225	449				
α	1	64	<mark>120</mark>	232	456	-	-	-				
	2	512	-	-	-	-	-	-				

मा			β									
F ₂ ⁴		0	1	2	3	4	5	6	7	8		
	0	16	31	<mark>61</mark>	121	241	481	916	1921	3841		
α	1	256	496	976	1936	3856	-	-	-	-		
	2	4096	-	-	-	-	-	-	-	-		

Table : Possible number of traces when m = 2.

$$\begin{split} & m = \dim_{\mathbb{F}_q} \mathfrak{m}_f / \mathfrak{m}_f^2 = 2 \\ & t = q^{\alpha} \cdot ((q-1)2^{\beta} + 1), \quad 0 \leq \alpha \leq 2 \text{ and } 0 \leq \beta \leq d(2-\alpha) \end{split}$$

T			β										
F	23	0	0 1		3	4	5	6					
	0	8	15	29	57	113	225	449					
α	1	64	120	232	456	-	-	-					
	2	512	-	-	-	-	-	-					

म						β				
F	24	0	1	2	3	4	5	6	7	8
	0	16	31	61	121	241	481	916	1921	3841
α	1	256	496	976	1936	3856	-	-	-	-
	2	4096	-	-	-	-	-	-	-	-

Table : Possible number of traces when m = 2.

$14 \, / \, 17$

$$\begin{split} m &= \dim_{\mathbb{F}_q} \mathfrak{m}_f / \mathfrak{m}_f^2 = 3 \\ t &= q^{\alpha} \cdot ((q-1)2^{\beta} + 1), \quad 0 \leq \alpha \leq 3 \text{ and } 0 \leq \beta \leq d(3-\alpha) \end{split}$$

More examples in characteristic 2: m = 3

$$\begin{split} m &= \dim_{\mathbb{F}_q} \mathfrak{m}_f / \mathfrak{m}_f^2 = 3 \\ t &= q^{\alpha} \cdot ((q-1)2^{\beta} + 1), \quad 0 \leq \alpha \leq 3 \text{ and } 0 \leq \beta \leq d(3-\alpha) \end{split}$$

F		β									
1.	22	0	1	2	3	4	5	6			
	0	4	7	13	25	49	97	193			
	1	16	28	52	100	196	-	-			
α	2	64	112	208	-	-	-	-			
	3	256	-	-	-	-	-	-			

मा	_		eta										
\mathbb{F}_{2^3}		0	1	2	3	4	5	6	7	8	9		
	0	8	15	29	57	113	225	449	897	1793	3585		
	1	64	120	232	456	904	1800	3592	-	-	-		
α	2	512	960	1856	3648	-	-	-	-	-	-		
	3	4096	-	-	-	-	-	-	-	-	-		

F ₂₄			β									
11	24	0	1	2	3	4	5	6	7	8		
	0	16	31	61	121	241	481	961	1921	3841		
	1	256	496	976	1936	3856	7969	15376	30736	61456		
α	2	4096	7936	15616	30976	61696	-	-	-	-		
	3	65536	-	-	-	-	-	-	-	-		

Table : Possible number of traces when m = 3.

More examples in characteristic 2: m = 3

$$\begin{split} m &= \dim_{\mathbb{F}_q} \mathfrak{m}_f / \mathfrak{m}_f^2 = 3 \\ t &= q^{\alpha} \cdot ((q-1)2^{\beta} + 1), \quad 0 \leq \alpha \leq 3 \text{ and } 0 \leq \beta \leq d(3-\alpha) \end{split}$$

	\mathbb{F}_{2^2}			β									
_	щ	22	0	1 2		3	4	5	6				
		0	4	7	13	25	<mark>49</mark>	97	193				
	α	1 16		28	<mark>52</mark>	100	196	-	-				
		2	64	112	208	-	-	-	-				
		3	256	-	-	-	-	-	-				

سا	_		β										
F ₂ 3		0	1	2	3	4	5	6	7	8	9		
	0	8	15	29	57	113	225	449	897	1793	3585		
α	1	64	120	232	456	904	1800	3592	-	-	-		
1 a	2	512	960	1856	3648	-	-	-	-	-	-		
	3	4096	-	-	-	-	-	-	-	-	-		

	F ₂ 4			β									
			0	1	2	3	4	5	6	7	8		
ſ		0	16	31	61	121	241	481	961	1921	3841		
	α	1	256	496	976	1936	3856	7969	15376	30736	61456		
	a	2	4096	7936	15616	30976	61696	-	-	-	-		
l		3	65536	-	-	-	-	-	-	-	-		

Table : Possible number of traces when m = 3.

More examples in characteristic 2: m = 3

$$\begin{split} m &= \dim_{\mathbb{F}_q} \mathfrak{m}_f / \mathfrak{m}_f^2 = 3 \\ t &= q^{\alpha} \cdot ((q-1)2^{\beta} + 1), \quad 0 \leq \alpha \leq 3 \text{ and } 0 \leq \beta \leq d(3-\alpha) \end{split}$$

تي ا	_	β									
F	22	0	1	2	3	4	5	6			
	0	4	7	7 13		<mark>49</mark>	97	193			
α	1	16	28	<mark>52</mark>	100	196	-	-			
	2	64	112	208	-	-	-	-			
	3	256	-	-	-	-	-	-			

ন্য			β										
\mathbb{F}_2	23	0	1	2	3	4	5	6	7	8	9		
	0	8	15	29	57	113	225	449	897	1793	3585		
α	1	64	120	232	456	904	1800	3592	-	-	-		
	2	512	960	1856	3648	-	-	-	-	-	-		
	3	4096	-	-	-	-	-	-	-	-	-		

\mathbb{F}_{2^4}			β										
		0	1	2	3	4	5	6	7	8			
	0	16	31	61	121	241	481	961	1921	3841			
α	1	256	496	976	1936	3856	7969	15376	30736	61456			
	2	4096	7936	15616	30976	61696	-	-	-	-			
	3	65536	-	-	-	-	-	-	-	-			

Table : Possible number of traces when m = 3.

Conclusions

Conjecture. If $\dim_{\mathbb{F}_q} \mathfrak{m}_f / \mathfrak{m}_f^2 = 2$, then

$$\operatorname{Im}(\rho_f) \simeq \begin{cases} (C_2 \oplus C_2) \times \operatorname{SL}_2(\mathbb{F}_q), \text{ or} \\ (C_2 \oplus C_2 \oplus C_2) \times \operatorname{SL}_2(\mathbb{F}_q), \text{ or} \\ (\operatorname{M}_2^0(\mathbb{F}_q) \oplus C_2) \rtimes \operatorname{SL}_2(\mathbb{F}_q). \end{cases}$$

Conclusions

Conjecture. If $\dim_{\mathbb{F}_q} \mathfrak{m}_f / \mathfrak{m}_f^2 = 2$, then

$$\operatorname{Im}(\rho_f) \simeq \begin{cases} (C_2 \oplus C_2) \times \operatorname{SL}_2(\mathbb{F}_q), \text{ or} \\ (C_2 \oplus C_2 \oplus C_2) \times \operatorname{SL}_2(\mathbb{F}_q), \text{ or} \\ (\operatorname{M}_2^0(\mathbb{F}_q) \oplus C_2) \rtimes \operatorname{SL}_2(\mathbb{F}_q). \end{cases}$$

Conjecture. If $\dim_{\mathbb{F}_q} \mathfrak{m}_f/\mathfrak{m}_f^2 = 3$, then

$$\operatorname{Im}(\rho_f) \simeq \left\{ \begin{array}{l} (C_2 \oplus C_2 \oplus C_2) \times \operatorname{SL}_2(\mathbb{F}_q), \text{ or} \\ (C_2 \oplus C_2 \oplus C_2 \oplus C_2) \times \operatorname{SL}_2(\mathbb{F}_q), \text{ or} \\ (\operatorname{M}_2^0(\mathbb{F}_q) \oplus C_2 \oplus C_2) \rtimes \operatorname{SL}_2(\mathbb{F}_q). \end{array} \right.$$

Proposition. \mathbb{F}_q finite field of characteristic $p \neq 2$ with $q \geq 7$. $(\mathbb{T}, \mathfrak{m}_{\mathbb{T}})$ finite-dimensional local commutative \mathbb{F}_q -algebra with residue field $\mathbb{T}/\mathfrak{m}_{\mathbb{T}} \simeq \mathbb{F}_q$ and $\mathfrak{m}_{\mathbb{T}}^2 = 0$. $m := \dim_{\mathbb{F}_q}\mathfrak{m}_{\mathbb{T}}$ and t = #different traces in $\operatorname{Im}(\rho)$. $\rho : G_{\mathbb{Q}} \to \operatorname{GL}_2(\mathbb{T})$ Galois representation unramified outside Np such that

- (*i*) $\operatorname{Im}(\overline{\rho}) = \operatorname{GL}_2^D(\mathbb{F}_q)$, where $\overline{\rho} := G_{\mathbb{Q}} \to \operatorname{GL}_2^D(\mathbb{F}_q)$ is the residual representation and $D = \operatorname{Im}(\det \circ \overline{\rho})$.
- (*ii*) $\operatorname{Im}(\rho) \subseteq \operatorname{GL}_2^D(\mathbb{T}).$
- (iii) \mathbb{T} is generated as \mathbb{F}_q -algebra by the set of traces of ρ .

Proposition. \mathbb{F}_q finite field of characteristic $p \neq 2$ with $q \geq 7$. $(\mathbb{T}, \mathfrak{m}_{\mathbb{T}})$ finite-dimensional local commutative \mathbb{F}_q -algebra with residue field $\mathbb{T}/\mathfrak{m}_{\mathbb{T}} \simeq \mathbb{F}_q$ and $\mathfrak{m}_{\mathbb{T}}^2 = 0$. $m := \dim_{\mathbb{F}_q} \mathfrak{m}_{\mathbb{T}}$ and t = #different traces in $\operatorname{Im}(\rho)$. $\rho : G_{\mathbb{Q}} \to \operatorname{GL}_2(\mathbb{T})$ Galois representation unramified outside Np such that

- (*i*) $\operatorname{Im}(\overline{\rho}) = \operatorname{GL}_2^D(\mathbb{F}_q)$, where $\overline{\rho} := G_{\mathbb{Q}} \to \operatorname{GL}_2^D(\mathbb{F}_q)$ is the residual representation and $D = \operatorname{Im}(\det \circ \overline{\rho})$.
- (*ii*) $\operatorname{Im}(\rho) \subseteq \operatorname{GL}_2^D(\mathbb{T}).$
- (iii) \mathbb{T} is generated as \mathbb{F}_{q} -algebra by the set of traces of ρ .

Then there are number fields $L/K/\mathbb{Q}$ with $G_L = \ker(\rho)$ and $G_K = \ker(\overline{\rho})$ such that $\operatorname{Gal}(K/\mathbb{Q}) = \operatorname{GL}_2^D(\mathbb{F}_q)$

Proposition. \mathbb{F}_q finite field of characteristic $p \neq 2$ with $q \geq 7$. $(\mathbb{T}, \mathfrak{m}_{\mathbb{T}})$ finite-dimensional local commutative \mathbb{F}_q -algebra with residue field $\mathbb{T}/\mathfrak{m}_{\mathbb{T}} \simeq \mathbb{F}_q$ and $\mathfrak{m}_{\mathbb{T}}^2 = 0$. $m := \dim_{\mathbb{F}_q} \mathfrak{m}_{\mathbb{T}}$ and t = #different traces in $\operatorname{Im}(\rho)$. $\rho : \mathcal{G}_{\mathbb{Q}} \to \operatorname{GL}_2(\mathbb{T})$ Galois representation unramified outside Np such that

- (*i*) $\operatorname{Im}(\overline{\rho}) = \operatorname{GL}_2^D(\mathbb{F}_q)$, where $\overline{\rho} := \mathcal{G}_{\mathbb{Q}} \to \operatorname{GL}_2^D(\mathbb{F}_q)$ is the residual representation and $D = \operatorname{Im}(\det \circ \overline{\rho})$.
- (*ii*) $\operatorname{Im}(\rho) \subseteq \operatorname{GL}_2^D(\mathbb{T}).$
- (*iii*) \mathbb{T} is generated as \mathbb{F}_q -algebra by the set of traces of ρ .

Then there are number fields $L/K/\mathbb{Q}$ with $G_L = \ker(\rho)$ and $G_K = \ker(\overline{\rho})$ such that $\operatorname{Gal}(K/\mathbb{Q}) = \operatorname{GL}_2^D(\mathbb{F}_q)$ and

$$\operatorname{Gal}(L/\mathbb{Q}) = \underbrace{\operatorname{M}_2^0(\mathbb{F}_q) \oplus \ldots \oplus \operatorname{M}_2^0(\mathbb{F}_q)}_{m} \rtimes \operatorname{Gal}(K/\mathbb{Q}),$$

Proposition. \mathbb{F}_q finite field of characteristic $p \neq 2$ with $q \geq 7$. $(\mathbb{T}, \mathfrak{m}_{\mathbb{T}})$ finite-dimensional local commutative \mathbb{F}_q -algebra with residue field $\mathbb{T}/\mathfrak{m}_{\mathbb{T}} \simeq \mathbb{F}_q$ and $\mathfrak{m}_{\mathbb{T}}^2 = 0$. $m := \dim_{\mathbb{F}_q} \mathfrak{m}_{\mathbb{T}}$ and t = #different traces in $\operatorname{Im}(\rho)$. $\rho : \mathcal{G}_{\mathbb{Q}} \to \operatorname{GL}_2(\mathbb{T})$ Galois representation unramified outside Np such that

- (*i*) $\operatorname{Im}(\overline{\rho}) = \operatorname{GL}_2^D(\mathbb{F}_q)$, where $\overline{\rho} := G_{\mathbb{Q}} \to \operatorname{GL}_2^D(\mathbb{F}_q)$ is the residual representation and $D = \operatorname{Im}(\det \circ \overline{\rho})$.
- (*ii*) $\operatorname{Im}(\rho) \subseteq \operatorname{GL}_2^D(\mathbb{T}).$
- (iii) \mathbb{T} is generated as \mathbb{F}_{q} -algebra by the set of traces of ρ .

Then there are number fields $L/K/\mathbb{Q}$ with $G_L = \ker(\rho)$ and $G_K = \ker(\overline{\rho})$ such that $\operatorname{Gal}(K/\mathbb{Q}) = \operatorname{GL}_2^D(\mathbb{F}_q)$ and

$$\operatorname{Gal}(L/\mathbb{Q}) = \underbrace{\operatorname{M}_2^0(\mathbb{F}_q) \oplus \ldots \oplus \operatorname{M}_2^0(\mathbb{F}_q)}_m \rtimes \operatorname{Gal}(K/\mathbb{Q}),$$

with $\operatorname{Gal}(K/\mathbb{Q})$ acting on $\operatorname{Gal}(L/K)$ by conjugation.

Proposition. \mathbb{F}_q finite field of characteristic $p \neq 2$ with $q \geq 7$. $(\mathbb{T}, \mathfrak{m}_{\mathbb{T}})$ finite-dimensional local commutative \mathbb{F}_q -algebra with residue field $\mathbb{T}/\mathfrak{m}_{\mathbb{T}} \simeq \mathbb{F}_q$ and $\mathfrak{m}_{\mathbb{T}}^2 = 0$. $m := \dim_{\mathbb{F}_q} \mathfrak{m}_{\mathbb{T}}$ and t = #different traces in $\operatorname{Im}(\rho)$. $\rho : \mathcal{G}_{\mathbb{Q}} \to \operatorname{GL}_2(\mathbb{T})$ Galois representation unramified outside Np such that

- (*i*) $\operatorname{Im}(\overline{\rho}) = \operatorname{GL}_2^D(\mathbb{F}_q)$, where $\overline{\rho} := \mathcal{G}_{\mathbb{Q}} \to \operatorname{GL}_2^D(\mathbb{F}_q)$ is the residual representation and $D = \operatorname{Im}(\det \circ \overline{\rho})$.
- (*ii*) $\operatorname{Im}(\rho) \subseteq \operatorname{GL}_2^D(\mathbb{T}).$
- (*iii*) \mathbb{T} is generated as \mathbb{F}_q -algebra by the set of traces of ρ .

Then there are number fields $L/K/\mathbb{Q}$ with $G_L = \ker(\rho)$ and $G_K = \ker(\overline{\rho})$ such that $\operatorname{Gal}(K/\mathbb{Q}) = \operatorname{GL}_2^D(\mathbb{F}_q)$ and

$$\operatorname{Gal}(L/\mathbb{Q}) = \underbrace{\operatorname{M}_2^0(\mathbb{F}_q) \oplus \ldots \oplus \operatorname{M}_2^0(\mathbb{F}_q)}_m \rtimes \operatorname{Gal}(K/\mathbb{Q}),$$

with $\operatorname{Gal}(K/\mathbb{Q})$ acting on $\operatorname{Gal}(L/K)$ by conjugation. L/K is abelian of degree p^{3dm} unramified at all primes $\ell \nmid pN$, and cannot be defined over \mathbb{Q} . 16 / 17

Gràcies!