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Chapter 1

Introduction

It is not so easy to define in a mathematical but nevertheless elementary way what

a curve is without using our hands. We could try:

A curve is a geometric object of dimension one.

This definition leads to additional questions: What is a geometric object and

what is dimension. It will take us some time until we will be able to clarify the

notions.

In this introduction we start with examples.

Example.

La,b := {(x, y) ∈ R2 | y = ax− b}, a, b ∈ R, (1.1)

is a (straight) line in the plane R2, for every fixed pair of values a and b. These

values we call parameters. Moreover, we could even consider instead of the field R
any other field K.

Example. Consider

Qc := {(x, y) ∈ R2 | x2 + y2 = c}, c ∈ R. (1.2)

Here things get more interesting. Again c is a parameter.

1. If c > 0 then our Qc will be a circle with radius
√
c. It is a curve in the ‘usual”

sense.

2. If c = 0 then only {(0, 0)} is a solution of the defining equation. Hence the

“naive dimension” is zero.
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3. If c < 0 then there does not exists any solution at all, i.e. Qc = ∅. Nevertheless

the defining equation exists.

Example. We consider the defining equation above

x2 + y2 = c (1.3)

also over the field C of complex numbers, meaning that we look for (x, y) ∈ C2

solving it. Recall that C is an algebraically closed field, and it is a field extension

of R. The two cases 2. and 3. above loose their special behavior. We denote by i

the imaginary unit, i.e. i2 = −1.

1. c = 0: We write

x2 + y2 = (x+ i y)(x− i y) = 0. (1.4)

Hence, our D0 (over C) is the union of two straight (complex) lines

D0 = {(x, y) ∈ C2 | y = −ix} ∪ {(x, y) ∈ C2 | y = ix} (1.5)

meeting each other at the unique intersection point given by the origin (which

is a real solution).

2. c < 0: Then there again complex solutions. These are complex circles with

purely imaginary radii.

Our defining equation was given over the real numbers. But that it gives curves in

the usual sense could only be realized over the complex numbers, i.e. the algebraic

closure of R. We will have to take this into account.

The title of the lecture course is Algebraic Curves. Roughly speaking we

understand by this that the defining equation is given by algebraic operations, i.e.

additions, multiplications, and divisions. No transcendental functions, no exponen-

tial, no sine function, etc. are allowed in its formulation. Of course, we restrict

ourselves by this, but we gain a tremendous tool box. We have algebraic techniques

at our hand. Furthermore, we can consider curves over fields different from the clas-

sical fields, like R, Q, C. Prominent examples are given by finite fields. They and

the theory of algebraic curves play an important role in cryptography and coding

theory.

In the next chapter we will recall the fact from algebra about field and field

extensions which we need in this lecture course.



Chapter 2

Fields

In the following we recall some facts about fields. The details should have been

covered in an lecture course on algebra.

We will use the symbol K to denote an arbitrary field. Recall that a field has two

operations (1) addition “+” and (2) multiplication “·” fulfilling the known axioms

of a field. We take the convention that in our fields the multiplications are always

commutative.

We denote as usual the neutral element of the addition by 0 and the neutral

element of the multiplication by 1.

The characteristic of the field K (short: charK) is defined to be the smallest

natural number n such that

1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n

= 0, (2.1)

if such a number exists. In this case the field is said to have finite characteristic.

Otherwise one sets charK = 0.

Proposition 2.1. The characteristic of a field is either zero or a prime number.

Proof. Recall the proof as an exercise.

Examples of fields are

1. the fields of characteristic zero: C, R, Q, Q(t), ...

2. the finite fields Fp, and Fq with q = pr, p ∈ P a prime number, r ∈ N. These

fields have characteristic p.
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2.1 More about finite fields.

1. The field Fp is the residue class field Z/pZ. It has p elements. Its elements are

given as ā = a mod p with a = 0, 1, . . . , p− 1, with the operations

ā+ b̄ := a+ b, ā · b̄ := a · b, (2.2)

2. The field Fq, q = pr, is the splitting field of the polynomial

F (X) = Xq −X ∈ Fp[X]. (2.3)

In fact Fq consists exactly of all zeros of this polynomial (and such fields exists).

Theorem 2.2. Let K be a finite field, then charK = p is a prime number, and there

exists an r ∈ N, such that K ∼= Fpr .

Proof. (This is only a sketch. For details check your algebra lecture, respectively

do it yourself.) As K has only finitely many elements its characteristic has to be

finite and hence is a prime number p. Identifying the multiples of 1 in K with the

elements of the field Fp we can embed Fp into K. Moreover, K is a vector space

over Fp of certain finite dimension r. In particular K has exactly pr many elements.

We consider the multiplicate group K∗ = K \ {0}. It has pr − 1 elements. Hence by

little Fermat, for every element a ∈ K∗

(a)p
r−1 = 1. (2.4)

If we multiply this with a we obtain (a)p
r

= a. Hence the elements of K are exactly

the zeros of the polynomial Xp −X.

2.2 Algebraic Closure

Definition 2.3. A field K is algebraically closed if and only if every polynomial

f ∈ K[X] in one variable X, which is not a constant polynomial (i.e. deg f > 0)

admits a zero α ∈ K, i.e. f(α) = 0.

Sometimes one calls a zero of f also a root of the polynomial f .

The field R is not algebraically closed, as the polynomial X2 + 1 does not have

a real root. In contrast the field C is algebraically closed.
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Proposition 2.4. A field is algebraically closed if and only if every polynomial f 6= 0

of deg f > 0 can be written as product of linear polynomials.

Proposition 2.5. A finite field K is never algebraically closed.

Proof. We set

f(X) =
∏
α∈K

(X − α) + 1 ∈ K[X]. (2.5)

This is a well-defined non-constant polynomial. Moreover for all β ∈ K we have

f(β) = 1, as the first summand will always be zero.

Theorem 2.6. Let K be an arbitrary field. Then there exists always a field K such

that

1. K ≤ K, i.e. K is a field extension of K,

2. K is algebraically closed,

3. K is the smallest field with the above two properties, meaning: if ∃L : K ≤
L ≤ K and L is algebraically closed then L = K.

The field K is called the algebraic closure of K.

Two algebraic closures of the same field K will always be isomorphic.

Example. 1. The algebraic closure of R is C. It can be constructed easily by

adjoining to R a root of the irreducible polynomial X2 + 1, i.e. the imaginary unit

i.

2. The finite fields admit also algebraic closures. But in view of the Proposi-

tion 2.5 it will not be a finite field anymore. In particular, it cannot be obtained by

adjoining only finitely many roots.
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Chapter 3

Affine varieties and affine curves

3.1 The polynomial ring in n variables

Let n be a natural number. Let X1, X2, . . . , Xn be n different (formal) variables.

Then we will denoted by K[X1, X2, . . . Xn] the polynomial ring in n (commuting)

variables. It can be described as vector space of finite linear combinations of mono-

mials over the field K.

A monomial is an expression of the type

X i1
1 X i2

2 . . . X in
n , ik ∈ N0. (3.1)

Hence, a polynomial is a finite sum of the type

f(X) =
∑

ai1,i2,...,inX
i1
1 X i2

2 . . . X in
n , ai1,i2,...,in ∈ K. (3.2)

Here the sum is over the indices ik and the coefficients ai.. are nonzero only for

finitely many combinations. For simplicity we use

X = (X1, X2, . . . , Xn), i = (i1, i2, . . . , in), |i| =
∑

ik, (3.3)

and X i for the monomial (3.1).

An example of a polynomial in 4 variables is given by

X1X
2
2 +X4

3 + 2X2
1X2X4. (3.4)

The vector space K[X] is a commutative ring with unit 1 under the natural

product of monomials and their sum.
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The degree of a monomial X i is given by the sum

|i| :=
n∑
k=1

ik

of its individual degrees. The degree of a polynomial f , deg(f), is the maximal de-

gree of non-vanishing monomials (meaning appearing monomials with non-vanishing

coefficients in front of them). This is quite close to the case of polynomials in one

variable with the exception that the maximal non-vanishing monomial will not be

necessary unique.

Recall the following definition

Definition 3.1. Let R be a commutative ring. A non-empty subspace I is called

an ideal if

(a) I + I ⊆ I, (b) R · I ⊆ I. (3.5)

Let f1, f2, . . . , fr be a set of elements of R. The ideal generated by these elements

is the set

(f1, f2, . . . , fr) := {
∑
r

gr · fr | gr ∈ R}. (3.6)

It is easy to verify (exercise!) that this set is an ideal of R.

An ideal I is called finitely generated if there are finitely many f1, f2, . . . , fr such

that I = (f1, f2, . . . , fr). A ring is called a Noetherian ring if all ideals are finitely

generated 1.

From the algebra course you should know that indeed the polynomial ring in one

variable is Noetherian. Indeed it is a principal domain, saying that all ideals can be

generated by maximally one element.

Without proof here we quote:

Theorem 3.2. The polynomial ring K[X] in n variables over a field K is a Noethe-

rian ring.

See Section 9.2 for a proof.

Notation: If we have one, two or three variables we often also use instead of

K[X]

K[X], K[X, Y ], K[X, Y, Z]. (3.7)

1There exists quite a number of equivalent definitions for a ring being Noetherian, see Sec-

tion 9.2
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3.2 Affine varieties

We start with the affine space An(K) over the field K. After choosing an origin O

in An(K) and a basis in the associated vector space we can identify

An(K) ∼= Kn. (3.8)

For this section we will fix such a reference frame.

With respect to our reference frame, if P is a point in the affine space it can be

uniquely given by α = (α1, α2, . . . , αn) ∈ Kn with αi ∈ K. This vector is the vector

of coordinates of the point P . We will not always distinguish clearly between the

point and its coordinate vector. As long as we stick with one reference system this

will not create any problem.

Let f ∈ K[X] be polynomial in n variables given by

f(X) =
∑
i

aiX
i. (3.9)

Let P = α be a point. Then we can evaluate the polynomial at this point

f(α) =
∑
i

aiα
i =

∑
i

ai1,i2,...,in · αi11 · ·αi22 · · ·αinn ∈ K. (3.10)

This defines a map (also called polynomial function) defined by f .

K→ K, α 7→ f(α). (3.11)

The point α is called a zero of the polynomial f if f(α) = 0.

Definition 3.3. A subset A of An(K) is called an affine variety if there exists a

subset T ⊆ K[X] of polynomials such that

A = V(T ) := {α ∈ Kn | f(α) = 0 for all f ∈ T}. (3.12)

The set V(T ) is also called vanishing set of T .

Proposition 3.4. 1. Let S ⊆ T ⊆ K[X] then V(T ) ⊆ V(S).

2. Let S ⊆ K[X] and (S) the ideal generated by S then V(S) = V((S)).

Proof. Exercise. Recall that the ideal generated by S consists of all linear combina-

tion (with coefficients from K[X]) of elements from S.
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Recall that our polynomial ring is Noetherian hence all ideals are generated by

finitely many elements. By the above proposition we can use the two extremal

viewpoints: affine varieties are defined by ideals or, affine varieties are defined by

finitely many polynomials. Both viewpoints are equivalent.

Remark 3.5. Obviously, V(1) = ∅ and V(0) = Kn. If one takes the set Kn and

the affine varieties as closed sets we obtain a topology for Kn. It is called Zariski-

Topology. Those who know the definition of a topology are invited to show, that it

is indeed a topology. (You have to show that finite unions and arbitrary intersection

of closed sets are again closed.)

Example. 1. Points in Kn are always affine varieties. Let α = (α1, α2, . . . , αn) be

a point in Kn then

V(X1 − α1, X2 − α2, . . . , Xn − αn) = {α}. (3.13)

2. Hyperplanes are affine varieties. Hyperplanes are given as the vanishing set of

one linear polynomial. For example

V(X1) = {(0, α2, α3, . . . , αn) | α2, α3, . . . , αn ∈ K}. (3.14)

3. In generalization of 1. and 2. we have: Solutions of a system of linear equations

are always affine varieties (known from linear algebra). Each line of the matrix

equation gives a defining linear polynomial.

3.3 Values in extension fields

Above we introduced varieties by fixing a set of polynomials in K[X] (indeed finitely

many will do). In this sense our variety is defined over K, We evaluated them by

plugging in points of Kn. We say that the variety consists of K-valued points.

This can be extended by allowing to plug in points with coordinates from an

extension field L of K. Note that in this case Kn ⊆ Ln. The set of zeros are called

”the L-valued points” of the variety defined over K. We might get more solutions.

Of special importance is the case when L is the algebraic closure K of K.

We use the notation

VK(f1, f2, . . . , fr)[L] (3.15)

for the L-valued points of a variety which is defined over K by the polynomials fi

with coefficients from K. Now it is a subset of Ln.
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Our varieties defined in the previous sections we could also write as

VK(f1, f2, . . . , fr)[K],

but in most cases, when the situation is clear, we will reduce this notation to the

previous one.

Example. Let f(X, Y ) = X2 + Y 2 + 1 considered as real polynomial. We have

VR(X2 + Y 2 + 1)[R] = ∅. If take the extension field C then VR(X2 + Y 2 + 1)[C] is

a complex circle in C2, in particular it is non-empty.

3.4 Affine Curves - Planar curves

Affine Curves are affine varieties of dimension one. Unfortunately, to develop the

theory of dimension is already a quite involved task. Hence, we take here a simpler

approach by restricting ourselves to the case of curves which are subset of the affine

plane K2. The approach is restrictive as not all curves can be realized as planar

curves. The most elaborated curves which we discuss here are the elliptic curves

and they are planar.

Definition 3.6. An affine subset of A2(K) is called an affine planar curve C if it is

defined as the vanishing set of one polynomial f of degree ≥ 1, i.e. C = V(f).

From the example above VR(X2 + Y 2 + 1)[R] = ∅. we see that it could happen

that the curve (over R) is the empty set. But if we pass to the algebraic closure

C = R we get solutions. Being ”a curve” is something which has to do with the fact

that we consider the defining equation (given over K) over the algebraic closure K.

Example. Let K = F3 and consider V(Y 2 − X3 − X). In our field we have 3

elements {0̄, 1̄, 2̄}. A point (a, b) ∈ F2
3 lies on the curve if and only if b2 = a3 + a.

The solutions can be determined by inspecting all elements. For a = 0̄, only b = 0̄

is a solution. For a = 1̄ we have a3 + a = 2̄. As 2̄ is not a square in F3, there is no

solution. For a = 2̄ we have a3 + a = 1̄. We have two solutions for b, namely b = 1̄

and b = 2̄. Hence,

V(Y 2 −X3 −X) = {(0̄, 0̄), (2̄, 1̄), (2̄, 2̄)}. (3.16)

In particular our curve has only finitely many points. This is the typical behaviour

for curves defined over finite fields.
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Proposition 3.7. A curve C defined over a field K will have infinitely many points

C over the algebraic closure K. Moreover, the complimentary set K×K \ C will be

an infinite set too.

Proof. As this is a statement about the curve over K we might assume for the

proof that K = K. The curve C = V(f) is defined by a non-constant polynomial

f ∈ K[X, Y ]. By separating the variables we write

f = a0 + a1X + · · ·+ arX
r, ai ∈ K[Y ], ar 6= 0. (3.17)

Case 1: (r = 0) then f = a0 is a polynomial only in Y . As such it has only finitely

many zeros. For each of this zeros we can take infinitely many values for X and

obtain points on the curve. If we take a non-zero for Y we obtain in the same way

infinitely many points not on the curve. Recall that an algebraically closed field

always has infinitely many elements, see Proposition 2.5.

Case 2: (r 6= 0) As polynomial in Y the ar(Y ) has only finitely many zeros. Hence,

there exists infinitely many β such that ar(β) 6= 0. For such β we consider

f(X, β) = a0(β) + aa(β)X + · · · ar(β)Xr. (3.18)

This is a non-constant polynomial in K[X]. As K is algebraically closed it has zeros.

If we take such a zero then (α, β) ∈ C. As we have infinitely many different β we

get infinitely many points on C. If α is not a zero we get infinitely many points in

the complement.

From the proof we can also read off that the complement is in a certain sense

”bigger than the curve”.

3.5 The polynomial ring is an UFD

Theorem 3.8. The polynomial ring in n variables over a field K is a unique fac-

torization domain (UFD).

This theorem (we assume) was shown in the algebra course. Even if not, it is easy

to understand what it means. The standard example of an UFD are the integers

Z. There we have the irreducible elements which are the prime numbers and the

units (the invertible elements) in Z which is the set {1,−1}. Each integer m can be

written as

m = ±pi11 · pi22 · · · pirr (3.19)



3.5. THE POLYNOMIAL RING IS AN UFD 17

a product of a unit and powers of prime numbers. This presentation is unique up

to the order of the prime factors. Strictly speaking we are also allowed to multiply

the prime numbers by units.

For our polynomial ring the only invertible elements are the constant polynomials

different from zero, i.e. K[X]∗ = K∗. A polynomial f is called irreducible if it cannot

be written as product of two other polynomials different from the units. Warning:

this notion depends on the field K. Furthermore, to decide whether a polynomial

is irreducible or not is usually not so simple. To find the decomposition (if it is

reducible) is usually even harder.

We use the general statement about polynomial rings for our situation of plane

affine curves.

Proposition 3.9. Let f be a non-constant polynomial then it can be decomposed

into distinct (non-equivalent) irreducible factors fi and a unit c

f = c · f i11 · f i22 · · · f irr . (3.20)

The factors fi, i = 1, . . . , r (up to permutations of the factors and to multiplication

with units) and their exponents are uniquely given.

Proposition 3.10. Let f be a polynomial which is decomposed as (3.20), then

V(f) = V(f1 · f2 · · · fr). (3.21)

Proof. If g is any polynomial and c is a unit (e.g. c 6= 0) then V(g) = V(c · g) as

the constant c does not influence whether α is a zero or not. Also V(g) = V(g2).

Combining these two facts we get the statement.

Definition 3.11. Given a curve C = V(f) with the polynomial decomposed into

its different irreducible factors fi as in (3.20), then the degree of C, deg C, is defined

to be the sum of the polynomial degrees of the different irreducible factors, i.e.

deg C =
r∑
i=1

deg fi. (3.22)

For any curve C = V(f) we can ignore multiple factors in the decomposition of

f . In such a way we obtain another polynomial f ′ such that C = V(f ′) which is

minimal with respect to the degree. This polynomial we call defining polynomial or

minimal polynomial for C.
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Remark 3.12. In more advanced algebraic geometry one likes to talk about geo-

metric objects with multiplicities. In this more general setup V(f) and V (f 2) (now

considered as geometric schemes) would make a difference.

Proposition 3.13. Let f1 and f2 be two polynomials and f = f1 · f2 then

V(f) = V(f1) ∪ V (f2). (3.23)

Proof. Let (a, b) ∈ V(f) then

0 = f(a, b) = f1(a, b) · f2(a, b) =⇒ f1(a, b) = 0 or f2(a, b) = 0. (3.24)

Hence (a, b) ∈ V(f1) or (a, b) ∈ V(f2). The opposite is clear.

This has the following consequence

Proposition 3.14. Let f be a polynomial which is decomposed as (3.20), then

V(f) = V(f1) ∪V(f2) ∪ · · · ∪ V (fr). (3.25)

For example, the affine variety V(X · Y ) decomposes as V(X)∪V(Y ). It is the

union of the coordinate axes.

Definition 3.15. Let C be a a (planar) affine curve. It is called reducible if and

only if there exists two curves C1 and C2, C1 6= C2 such that C = C1 ∪ C2.

Otherwise C is called irreducible.

Next we want to examine closer the relation between reducibility of curves and

defining polynomials. This correspondence in both ways will only work if we consider

curves and polynomials over algebraically closed fields.

Example. We consider V((X2 + Y 2)(X − Y )) over R (and as variety over R).

The polynomial there does not have multiple components. Hence it is the defining

polynomial. Clearly it is not irreducible. But V((X2 + Y 2)(X − Y )) = V(X − Y )

and this is a straight line which is irreducible. If we consider the variety over C,

meaning that we allow C-valued points, then the variety decomposes into the union

of three lines, hence it is also reducible.

Definition 3.16. (a) A polynomial f ∈ K[X, Y ] is called absolutely irreducible if

and only if f is irreducible as polynomial in K[X, Y ].

(b) A curve C = VK(f)[K] is called absolutely irreducible if and only if the curve

VK(f)[K] is irreducible.
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Proposition 3.17. A curve C is absolutely irreducible if and only if the defining

polynomial f for C is absolutely irreducible.

Before we say something on the proof, we formulate the following lemma which

we will discuss further down.

Lemma 3.18. Let K be algebraically closed. Let f, g ∈ K[X, Y ] without multiple

factors. Then

V(f) = V(g) =⇒ ∃c ∈ K∗ : g = c · f. (3.26)

This says that over an algebraically closed field the defining polynomial of a

curve is uniquely given (up to multiplications with units).

Proof. (of Proposition 3.17) Without restriction we may assume that we already

work over an algebraically closed field. Let C be irreducible with defining polynomial

f . Recall that by convention it will not have multiple factors. Assume that f = f1·f2

then V(f) = V(f1) ∪ V(f2). Hence C is the union of two curves C1 and C2. As C
is irreducible it has to be one of them, say C1. Then V(f) = V(f1) this contradicts

Lemma 3.18. Vice versa, let C = V (f) with f irreducible. Assume that C = C1 ∪ C2

is a non-trivial decomposition into curves. Let Ci = V(fi), and note that f1 and f2

are not equivalent. For the union we get C = V(f1 · f2) = V(f). Lemma 3.18 again

says that f = c · f1 · f2 which is a contradiction to the fact that f is irreducible.

If we give a curve C = V(f) by its defining polynomial f we can use the de-

composition of f into its irreducible factors fi and get (over an algebraically closed

field) a decomposition of C into its irreducible components:

Theorem 3.19. (over an algebraically closed field) Every algebraic curve C can be

decomposed into

C = C1 ∪ · · · ∪ Cr (3.27)

with Ci irreducible and distinct curves. The decomposition corresponds to the de-

composition of the defining polynomial f into irreducible factors Ci = V(fi). It is

unique up to reordering.

3.5.1 The Lemma 3.18

For this subsection let K be an algebraically closed field. Given a subset A ⊆ An(K)

we assign to it

I(A) := {f ∈ K[X] | ∀α ∈ A : f(α) = 0 }. (3.28)
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This set is called the vanishing ideal of A.

Exercise: I(A) is an ideal in K[X].

The question is how are V and I related.

Proposition 3.20. Let V be a variety. Then

V(I(V )) = V. (3.29)

Proof. Obviously, V ⊆ V(I(V )) as the elements of I(V ) on V vanish. But if

J = (f1, f2, . . . , fk) is a defining ideal for V (i.e. V = V(J)) then J ⊆ I(V ). This

implies that V = V(J) ⊇ V(I(V )). Hence equality.

Proposition 3.21. Let I be an ideal in K[X] then

I(V(I)) ⊇ I. (3.30)

Proof. From the definition of V(I) it follows that for all f ∈ I, f(α) = 0, hence

f ∈ I(V(I)).

Given an ideal I we define its radical Rad(I) to be

Rad(I) := {f ∈ K[X] | ∃r ∈ N : f r ∈ I }. (3.31)

For example for n = 1 and I = (X2) we get Rad(I) = (X).

Without proof (see [KK]) we quote

Theorem 3.22. (Hilbertscher Nullstellensatz (HNS)). Over an algebraically closed

field K
I(V(I)) = Rad(I). (3.32)

If I = Rad(I) then the ideal I is called radical ideal. A more refined analysis

shows that the set of radical ideals of K[X] is in 1:1 correspondence to varieties in

An(K) (for algebraically closed fields K). The bijective (inverse) maps are given by

I and by V. For example I(V(Rad(I)) = Rad(I), the vanishing ideal is always a

radical ideal, etc.

Proof. (of Lemma 3.18) Let V (f) = V (g). Then by the HNS g ∈ I(f)) = Rad((f)).

This says there exists a r ∈ N such that gr = k · f , with k ∈ K[X]. As f does

not have multiple components g = k · f . The same chain of arguments for f gives

f = l · g. This implies k · l = 1 and hence they are units. This was exactly to be

shown.
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Remark 3.23. 1. Lemma 3.18 (and its proof above) is valid for all dimensions.

2. In dimension two the use of HNS can be circumvented, see e.g. [Kunz].

3. In dimension two all nontrivial ideals are given as I = (f) with a polynomial f .

Then I is a radical ideal if and only if f does not have multiple irreducible factors.

3.5.2 Intersections

Above we saw that finite union of curves are again curves. One just multiplies the

defining polynomials. The situation is more complicated for the intersection of two

(plane) curves. In case that both curves are irreducible and different the intersection

will not be a curve anymore. It might be empty or consist of a collection of points.

Indeed the intersection is always finite. Without proof we quote here:

Proposition 3.24. Let f, g be non-constant relatively prime polynomials from K[X, Y ]

then V (f) ∩ V (g) is a finite set (possibly empty).

3.6 Singularities

To ”linearize’ a curve C at a point P one uses tangents at the point along the curve.

From elementary analysis and geometry you should remember that tangents are

related to derivatives of the defining equations at the point. But there might exist

“bad points” of the curve where it is not possible to define the tangent.

These points will be the singular points of the curve. In this section we will only

give the definition. The relation to tangent lines will be taken up later.

Tangents are defined with the help of derivatives of the defining equations, i.e. by

differential quotients. In analysis they are defined as limits of difference equations.

For arbitrary fields we do not have this basic tool of analysis at hand. Nevertheless

we know the rules

(Xn)′ = n ·X(n−1), etc. (3.33)

These rules are purely algebraic rules and make sense (as a definition) for our poly-

nomials.

Given a monomial X i = X i1
1 · · ·X in

n we define the formal partial derivative with

respect to the variable Xj to be

∂X i

∂Xj

:=

0, ij = 0

ijX
i1
1 · · ·X

ij−1
j · · ·X in

n , ij ≥ 1.
(3.34)
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Furthermore, we extend this K−linear to all of K[X]. For sure ∂f
∂Xj

is again a

polynomial and we have

Proposition 3.25. If ∂f
∂Xj
6= 0 then deg ∂f

∂Xj
= deg f − 1. Furthermore

∂(f · g)

∂Xj

=
∂f

∂Xj

· g + f · ∂g
∂Xj

. (3.35)

The relation (3.35) is called Leibniz rule.

Proof. This is an exercise. Clearly, it is enough to do it for monomials.

Remark 3.26. A word of warning is in order. Consider the monomial X2 in F2[X].

Then
∂X2

∂X
= 2 ·X = 0 (3.36)

as 2̄ = 0̄. This shows that the rule that if all partial derivatives are vanishing then

f is a constant is only true in characteristic zero.

Definition 3.27. (a) Let C = VK(f)[K] be an affine planar curve defined over the

field K with values in K. A point (a, b) ∈ K2 is called a singular point of C if and

only if

f(a, b) = 0,
∂f

∂X
(a, b) = 0,

∂f

∂Y
(a, b) = 0. (3.37)

(b) A curve C = VK(f)[K] is called non-singular if and only if VK(f)[K] does not

have any singular points (a, b) ∈ K.

To decide whether a curve is non-singular we have to consider the curve over the

algebraic closure of the defining field.

The equations (3.37) are algebraic equations with coefficients from K, hence the

following is obvious.

Proposition 3.28. Let (a, b) ∈ K2, and let L be an extension field of K. Then (a, b)

is a singular point of C = VK(f)[K] if and only if (a, b) considered as point in L2 is

a singular point of C = VK(f)[L].

Example.

f(X, Y ) = Y 2 −X4 − 2X2 − 1. (3.38)

Consider this curve over R. We calculate

∂f

∂Y
= 2Y,

∂f

∂X
= −4X(X2 + 1). (3.39)
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Assume that (x, y) ∈ R2 is a singular point, then from these equations it follows

that (x, y) = 0. But f(0, 0) = −1 6= 0. Hence VR[R] does not have singular points.

Next we have to consider the curve over C, the algebraic closure of R. Still y = 0 is

the only possible solution for y. But now we have also to consider (i , 0) and (−i , 0).

Indeed f(±i , 0) = 0. Hence VR[C] has these two points as singular points and the

curve is singular.

Example.

f(X, Y ) = Y 2 −X3 +X = Y 2 −X(X + 1)(X − 1). (3.40)

Over R we calculate
∂f

∂Y
= 2Y,

∂f

∂X
= −3X2 + 1. (3.41)

From the first equation ∂f
∂Y

(x, y) = 0 we conclude that for a singular point (x, y),

y = 0 is necessary. But then f(x, y) = 0 implies that x = 0, 1 or −1. None of these

values satisfies ∂f
∂X

(x, 0) = 0. Hence, there does not exist any singular points. This

is also true for the algebraic closure C. In particular this curve is non-singular.

Example.

f(X, Y ) = Y 2 −X3. (3.42)

Now
∂f

∂Y
= 2Y,

∂f

∂X
= −3X2. (3.43)

Obviously the point (0, 0) is a singular point (the only one). This curve is called

cuspidal cubic, see Figure 3.1

Example.

f(X, Y ) = Y 2 −X3 −X2 = Y 2 −X2(X + 1). (3.44)

Now
∂f

∂Y
= 2Y,

∂f

∂X
= −3X2 − 2X = −X(3X + 2). (3.45)

The point (0, 0) is a singular point (the only one). This curve is called nodal cubic,

see Figure 3.2

Proposition 3.29. Let C = C1 ∪ C2 be a reducible curve. Assume that there is a

point P ∈ C1 ∩ C2 in the intersection, then P is a singular point of C.
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Figure 3.1: cuspidal cubic.

Proof. Let C = V(f) = V(f1 · f2) be the decomposition. Let P given by the

coordinates (a, b). As P is on C, C1 and C2 we have f(a, b) = f1(a, b) = f2(a, b) = 0.

For the derivative we get

∂f

∂X
=
∂f1

∂X
· f2 +

∂f2

∂X
· f1. (3.46)

If we plug in (a, b) this gives 0. The same is true for the derivative with respect to

Y . Hence (a, b) is a singular point.

Note the existence of a point of intersection is crucial for the proof.



3.6. SINGULARITIES 25

Figure 3.2: nodal cubic.
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Chapter 4

Projective Varieties

Affine varieties have certain disadvantages:

1. Affine varieties over the field C are topological sets, more precisely they carry

the usual topology as subsets of R2n = Cn . But they are not compact in this

topology. In analysis if one deals with compact sets one has much stronger

results. For example, a continuous function defined on a compact set has a

maximum and a minimum. Many more things are valid.

2. In affine geometry one has too many case distinction . For example, given two

different straight lines. They will not always meet. They only meet if they are

not parallel.

We will introduce now the projective space, projective varieties and projective

curves. In projective geometry we will have the result that two straight lines will

always have a point of intersection. Moreover over an algebraically closed field two

projective curves in the plane will always have a non-empty intersection.

4.1 Projective Space

We consider the vector space Kn+1 and define the following relation on pairs of

points: α = (α0, .., αn) and β = (β0, .., βn)

α ∼ β if and only if ∃λ ∈ K∗ : β = λ · α .

Exercise: Show this is an equivalence relation. Recall what one has to show reflex-

ivity, symmetry and transitivity.

27
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The equivalence class of α ∈ Kn+1 is defined as

[α] := {β ∈ Kn+1 | β ∼ α} .

In can also be written as

[α] = K∗ · α .

The zero vector 0 ∈ Kn+1 is special in the sense that

[0] = {0} .

Definition 4.1. The projective space over K of dimension n is defined to be the set

of equivalence classes of vectors from Kn+1\{0} .
In symbols

Pn(K) = (Kn+1\{0})/ ∼ .

To denote a point [α] in projective space Pn(K) we use the α = (α0, .., αn) .

as homogeneous coordinates [α] = (α0 : .. : αn) .. Note that the homogeneous

coordinates are not uniquely defined as there exists β 6= α with [β] = [α]. Hence

[α] = (β0 : ... : βn)

is also a set of homogeneous coordinates for the same point. The relation between

these two coordinates are that there exists a λ ∈ K∗ such that

βi = λ · αi ∀i ∈ {0, 1, ..., n} .

To give an example, over a field K of char(K) 6= 2

(1 : 1 : ... : 1) = (2 : 2 : ... : 2) .

Question: Why do we have to exclude char(K) 6= 2 ?

We introduce the following subsets Ui ⊆ Pn(K), i = 0, 1, ..., n

Ui := {α = (α0 : .. : αn) ∈ Pn | αi 6= 0} .

The subset Ui can be identified with the n-dimensional affine space Kn by normal-

izing in the homogeneous coordinates the value αi = 1 for the points in Ui.

As an example we consider i = 0

An(K) ∼= Kn −→ U0 ⊆ Pn(K)
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(α1, .., αn) 7−→ (1 : α1 : .. : αn) .

This is a bijection.

What are the points in the complement of U0 ?

These are the points with homogeneous coordinate (0 : α0 : .. : αn). Of course the

condition remains that this vector should be different from 0. Hence, if we strip off

the first component we get exactly the projective space of one dimension less, i.e.

Pn−1(K) .

Hence

Pn(K) = U0 ∪ Pn−1(K) = An(K) ∪ Pn−1(K)

where the union is a disjoint union. What has been done for i = 0 could be done

with respect to every i ∈ {0, 1, ..., n}

Pn(K) = Ui ∪ Pn−1(K) .

The points of Pn(K) which lie in Pn−1(K) with respect to this decomposition are

called points at infinity (with respect to Ui), the points in Ui are called the affine

points. Globally we have

Pn(K) =
n⋃
i=0

Ui, Ui ∼= An(K) .

This is clear as by definition for every [α] ∈ Pn(K) there exists an i such that αi 6= 0,

hence [α] ∈ Ui .

Example. P1(K) the projective line.

We have by definition

P1(K) = {(α0 : α1) | α0, α1 ∈ K, (α0, α1) 6= (0, 0)} .

Our affine points are

U0 := {(1 : α1) | α1 ∈ K} ∼= K ,

U1 := {(α0 : 1) | α0 ∈ K} ∼= K .

For their intersection we obtain

U0 ∩ U1 = {(1 : α1) | α1 ∈ K, α1 6= 0} ∼= K\{0} .
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For their points at infinity

P1\U0 = {(0 : α1)} = {(0 : 1)} .

Hence it is exactly one point (0 : 1) this is the point with respect to U0 . The point

with respect to U1 is (1 : 0).

Remark 4.2. In the case K = C, the projective line P1(C) can be identified with

the two-sphere where the point at ∞ is the north pole.

Example. The projective plane P2(K).

Let us consider i = 2. Then

U2 := {(α0 : α1 : α2) | α0, α1 ∈ K, α2 6= 0} = {(α0 : α1 : 1) | α0, α1 ∈ K} ∼= A2(K) .

The complement is the “line at ∞”

P2\A2 = {(α0, α1, 0) | α0 6= 0 , or a1 6= 0} ∼= P1 .

4.2 Projective Varieties

Affine varieties were defined as zero sets of polynomials. This cannot be extended

without modifications to the projective situation. Let us start with a polynomial f

in (n+ 1) variables and a point [α] ∈ Pn with homogeneous coordinates

α = (α0 : ... : αn) .

If we fix homogeneous coordinates for [α] we can plug-in α in f(x) and get

f(α) ∈ K . If β are another homogeneous coordinates for the same point [α] we

will (in general) obtain different values f(β). Hence arbitrary polynomials are not

functions for the point in projective space.

Let M = X i0
0 · X i1

1 · · · · X in
n be a monomial of degree d =

∑n
k=0 ik. Recall that

the set of different monomials constitute a basis of K[X0, ..., Xn] .

Definition 4.3. A polynomial f ∈ K[X0, ..., Xn+1] is called homogeneous of degree

d if and only if f is a sum of monomials of the same degree d.

An example is given by

f(X, Y, Z) = X2Y + Y 3 + ZXY
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which is a homogeneous polynomial of degree 3.

Now we plug in α and β for [α] = [β] into such a monomial M of degree d. Recall

that [α] = [β] means that β = λ · α,with λ ∈ K∗

M(β) = (λ · α1)i0 · (λ · α2)i1 · · · · (λ · αn)in = λ
∑n

k=0 ik ·M(α) = λdM(α) .

If f is a homogeneous polynomial of degree d then

f(β) = λdf(α) .

This is still not a function but now at least we have

f(α) = 0⇐⇒ f(β) = 0 .

This means that the zeros of f are well-defined. For an arbitrary polynomial f even

this is not the case.

Definition 4.4. A subset V of Pn(K) is called projective variety if and only if there

exist k homogeneous polynomials fi (not necessarily of the same degree di) such

that

V = V(f1, ..., fk)

= VK(f1, ..., fk)[K]

= {[α] ∈ Pn(K) | f1(α) = f2(α) = ... = fk(α) = 0} .

A special case is

Definition 4.5. A subset C of the projective plane P2(K) is called (planar) pro-

jective curve if and only if there exist a homogeneous polynomial f ∈ K[X, Y, Z] of

degree d > 0 such that

C = V(f) .

If f does not have multiples factors then C is called a curve of degree d.

Next we want to examine the relation between affine and projective curves.

Let C̃ be a projective curve defined by the polynomial f̃ ∈ K[X, Y, Z],

i.e. C̃ = V(f̃) . Let us take as affine subset

U2 = {(α0 : α1 : 1) | α0, α1 ∈ K} .
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and consider

C̃ ∩ U2 = {(α0 : α1 : 1) | f̃(α0, α1, 1) = 0} .

If we identify U2 with K2 and set

f(X, Y ) := f̃(X, Y, 1) ∈ K[X, Y ] .

We obtain a polynomial in 2 variables (witch in general will not be homogeneous

anymore). Then

C̃ ∩ U2
∼= C = V(f) ,

which is an affine curve in K2 . Consequence: By restricting a projective curve to

an affine part of the projective plane we obtain an affine curve.

Now we go in the opposite direction. We start with an affine curve C = V(f)

with f ∈ K[X, Y ]. Let d be the maximal degree of monomials appearing in f . Let

M be one of the monomials in f of degree d(M), then we augment M by multiplying

it with Zd−d(M).

In total we obtain then a polynomial f̃(X, Y, Z) witch is homogeneous of degree

d .

Example. Let

f(X, Y ) = Y 2 − 4X3 −X

this is a polynomial of degree 3. Hence the maximal degree of monomials is 3. We

obtain

f̃(X, Y, Z) = Y 2Z − 4X3 −XZ2 .

By construction f̃(X, Y, 1) = f(X, Y ) .

Let C̃ be the projective curve defined by f̃ i.e. C̃ = V(f̃) . By construction

C̃ ∩ U2 = V(f̃) ∩ U2
∼= C = V(f) .

The curve C̃ obtained in this way is called projective completion of C .

Example. Let f1(X, Y ) = Y − a with a 6= 0, f2(X, Y ) = Y and L1 = V(f1), L2 =

V(f2), the two corresponding affine curves. In fact these are 2 parallel lines (dis-

tinct). Now L̃1 ∩ L̃2 = ∅ . We pass from K2 to P2(K).

For this we have to homogenize f1, f2 and get

f̃1(X, Y, Z) = Y − aZ, f̃2(X, Y, Z) = Y
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Let L̃1 and L̃2 be the projectively completed curves.

We calculate

L̃1 ∩ L̃2 = {(α : β : γ) | f̃1(α, β, γ) = 0 = f̃2(α, β, γ)}
= {(α : β : γ) | β − a · γ = β = 0}
= {(1 : 0 : 0)} .

Hence we obtain a point of intersection. Of course this point does not lie on the

affine part but on the line at infinity.

Exercise: Do the same for the affine lines which still are parallel but now have

a slope of r ∈ K, i.e.

f1(X, Y ) = Y − rX − a f2(X, Y ) = Y − rX

As point of intersection of the projectively completed lines you will calculate the

point (1 : r : 0). The intersection point on the line at infinity will be given by the

slope of the affine lines.

4.3 Singularities

Definition 4.6. Let f ∈ K[X, Y, Z], be homogeneous of degree d .

1. (a) C = V(f)[K] a curve of degree d over a field K for which charK - d is

called singular at the point P = [(α : β : γ)] if and only if all partial

derivatives are zero at the point P, i.e.

∂f

∂X
(P ) =

∂f

∂Y
(P ) =

∂f

∂Z
(P ) = 0 . (4.1)

The point P is called singular point of V(f) .

(b) In case that charK divides d we put f(P ) = 0 as additional condition for

P being a singular point of C..

2. The curve V(f)[K] is called non-singular if and only if V(f)[K] does not have

any singular points.

There are some remarks necessary:
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Proposition 4.7. 1. If f is homogeneous of degree d then ∂f
∂X
, ∂f
∂Y
, ∂f
∂Z

are homo-

geneous polynomials of degree d− 1 (or zero).

2. (Relation of Euler) If f is of degree d then

d · f = X · ∂f
∂X

+ Y · ∂f
∂Y

+ Z · ∂f
∂Z

. (4.2)

Proof. 1. This we showed already before, see Proposition 3.25.

2. Let m be a monomial of degree d , i.e.

m = Xd1Y d2Zd3 d = d1 + d2 + d3 ,

then
∂m

∂X
= d1X

d1−1Y d2Zd3

which is either zero or of degree d − 1. As f is homogeneous it is the sum of

monomials of the same degree d hence ∂m
∂X

is a sum of monomials of degree d − 1.

The same is of course true for the other partial derivatives.

Now

X · ∂m
∂X

= Xd1X
d1−1Y d2Zd3 = d1X

d1Y d2Zd3 = d1 ·m.

Correspondingly,

Y · ∂m
∂Y

= d2 ·m, Z · ∂m
∂Z

= d3 ·m.

In particular

X · ∂f
∂X

+ Y · ∂f
∂Y

+ Z · ∂f
∂Z

= (d1 + d2 + d3) ·m = d ·m.

As f is the sum of monomials of the same degree and the differentiation is linear

we obtain the result.

With the information from this proposition we know that Equation (4.1) makes

sense as the partial differentiated polynomials are homogeneous. Also, in case that

charK - d (e.g. charK = 0) we do not need the condition that P lies on the curve

(P ∈ V(f), i.e. f(P ) = 0) in the definition. as by Equation (4.2) from

∂f

∂X
(P ) =

∂f

∂Y
(P ) =

∂f

∂Z
(P ) = 0

it follows that d · f(P ) = 0. Hence, as d 6= 0 the relation f(P ) = 0 is automatic.
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Finally, we want to relate the singularities of an affine curve with the singularities

of its projective completion. Let

i : A2(K) −→ P2(K)

be the embedding of the affine plane into the projective plane given by

(α, β) 7−→ i(α, β) := (α : β : 1).

Let Q = (α, β) and i(Q) = P = (α : β : 1). Furthermore, let f ∈ K[X, Y, Z]

be the homogenization of the polynomial g ∈ K[X, Y ]. In particular, g(X, Y ) =

f(X, Y, 1).

Proposition 4.8. The point Q is a singular point of V(g) ⇐⇒ i(Q) is a singular

point for V(f).

Proof. We check the Euler Relation (4.2) for the point i(Q) = (α : β : 1)

d · f(α, β, 1) = α · ∂f
∂X

(α, β, 1) + β · ∂f
∂Y

(α, β, 1) + 1 · ∂f
∂Z

(α, β, 1) .

This can be rewritten as

d · g(a, b) = α · ∂g
∂X

(α, β) + β · ∂g
∂Y

(α, β) + 1 · ∂f
∂Z

(i(Q)) . (4.3)

Let Q = (α, β) be a singular point of the affine curve V(g). Then

∂g

∂X
(Q) =

∂g

∂Y
(Q) = g(Q) = 0 .

If we plug these into Equation (4.3) and use ∂f
∂X

(α, β, 1) = ∂g
∂X

(α, β) and ∂f
∂Y

(α, β, 1) =
∂g
∂Y

(α, β) we obtain

0 = 0 + 0 +
∂f

∂Z
(i(Q)) .

This implies ∂f
∂Z

(i(Q)) = 0 . The relations

∂f

∂X
(i(Q)) =

∂g

∂X
(Q) = 0,

∂f

∂Y
(i(Q)) =

∂g

∂Y
(Q) = 0 ,

and f(i(Q)) = g(P ) = 0 are automatic. Hence i(Q) is a singular point of the

projective curve V(f) .

Vice versa, if i(Q) is a singular point of V(f) then all partial derivative are zero,

and g(Q) = f(i(Q)) = 0. Hence Q is a singular point of the affine curve V(g) .
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This has as a consequence that for a projective curve we can check whether its

affine points are singular points also by checking the affine part of the curve. In

addition we have to consider only the points of the curve which are intersection

points with the line at infinity (i.e. have the third coordinate γ = 0) . This will be

our strategy in the following.



Chapter 5

Projective lines and quadrics

Recall that C = V(f) with f ∈ K[X, Y, Z], deg f > 1 is a curve in the plane. We

assume that f does not have multiple irreducible factors and defined degC = deg f .

The curve C is defined over the field K. If L ≥ K is an field extension then V(f)[L]

is called the set of L-valued points of V(f).

5.1 Lines

In this section we consider projective lines. This means degC = deg f = 1. This

implies that C = V(f) with

f(X, Y, Z) = a ·X + b · Y + c · Z, a, b, c ∈ K (5.1)

and at least one of the a, b, c is 6= 0.

The curve C is given as

C = {(α, β, γ) ∈ P2(K) | f(α, β, γ) = 0} .

For C∞, the ”line at ∞” with respect to the affine subset U2, we have the defining

polynomial f∞(X, Y, Z) = Z and

C∞ = {(α, β, 0) ∈ P2(K) | α, β ∈ K , α 6= 0 or β 6= 0} .

Proposition 5.1. 1. A line is always nonsingular.

2. Let L1,L2 be two lines, L1 6= L2 then ∃ a unique point P with {P} = L1 ∩L2 .

This says that two lines always have a unique intersection.
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3. Given two points P1,P2 with P1 6= P2 then there exists a unique line L which

passes through P1 and P2, i.e. P1,P2 ∈ L .

Proof. 1. Let L = V(f), with f given by Equation (5.1) . We calculate the deriva-

tives
∂f

∂X
= a ,

∂f

∂Y
= b ,

∂f

∂X
= c .

Hence at least one of them is different from zero. This implies that there does not

exist singular points.

2. Given the two lines as

L1 : V(a1 ·X + b1 · Y + c1 · Z) , L2 : V(a2 ·X + b2 · Y + c2 · Z) .

The condition L1 6= L2 implies that

∀λ ∈ K : (a1, b1, c1) 6= λ · (a2, b2, c2) . (5.2)

A point P = (α : β : γ) ∈ L1 ∩ L2 if and only if

a1 · α + b1 · β + c1 · γ = 0

a2 · α + b2 · β + c2 · γ = 0 .

This is a homogeneous system of linear equations. Equation (5.2) implies that the

rank of the system equals 2. Hence the space of solutions (in K3) is one-dimensional,

i.e.

{λ ·

αβ
γ

} ,

with a vector (α, β, γ) 6= ∅ . Interpreted in the projective plane this corresponds to

just a unique point P = (α : β : γ) . This was the claim.

3. This is the dual problem. We have two points P1 = (α1 : β1 : γ1), P2 = (α2 :

β2 : γ2). As P1 6= P2 the set of homogeneous coordinates are not multiples of each

others. We search a polynomial

f(X, Y, Z) = a ·X + b · Y + c · Z

such that

f(α1, β1, γ1) = 0, f(α2, β2, γ2) = 0 .

This is a system of 2 linear equations of rank 2. Hence again the space of solution

is one-dimensional and the function f is fixed up to multiplication with a non-zero

constant. This says C = V(f) is uniquely given.
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5.2 Quadrics in P2(K)

Quadrics are curves of degree two. Hence the degree of the defining polynomial f is

two. In its most general form the polynomial can be written as

f(X, Y, Z) = a ·X2 + b · Y 2 + c · Z2 + d ·XY + e ·XZ + h · Y Z, (5.3)

with a, b, c, d, e, h ∈ K.

We now make a change of projective coordinates to simplify this expression (For

more details about change of coordinates see the next chapter). It will turn out that

charK = 2 will need a special treatment which we are not intend to do here. Hence

we assume charK 6= 2 in the following. Our goal is to remove the mixed terms in

(5.3) .

Let us first assume a 6= 0. We express

a(X +
d

2a
Y +

e

2a
Z)2 = a ·X2 + d ·XY + e ·XZ +

de

4a
Y Z +

d2

4a
Y 2 +

e2

4a
Z2 .

(Question:Do you see why we needed to exclude charK = 2 ? )

We plug this expression into the expression (5.3) for f and introduce new vari-

ables

X ′ = (X +
d

2a
Y +

e

2a
Z)

Y ′ = Y

Z ′ = Z .

Our polynomial f can be written in the new coordinates as

a · (X ′)2 + b̃ · (Y ′)2 + c̃ · (Z ′)2 + h̃ · Y ′Z ′ ,

with suitable (calculable) b̃, c̃, and d̃ ∈ K.

We obtain less terms. In particular the X ′ appears purely quadratic. Assuming

that b̃ (or c̃)6= 0 we repeat the step above accordingly to remove the mixed term

Y ′Z ′ .

If a = 0 we check whether b or c are different from zero and start with the

corresponding variable. But we are stuck if we only have mixed terms. For example

XY . In this case we rewrite

X · Y =
1

4
((X + Y )2 − (X − Y )2)
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and set

X ′ = X + Y Y ′ = X − Y Z ′ = Z

(Note that X = 1
2
(X ′ + Y ′)).

In any case we will obtain an expression of the type

a · (X ′)2 + rest

and can continue as above. Finally we obtain

Proposition 5.2. Over a field K of charK 6= 2 each quadric can by given with

respect to suitable coordinates as C = V(f) with the polynomial

f(X, Y, Z) = a ·X2 + b · Y 2 + c · Z2 , (a, b, c) 6= (0, 0, 0) .

Attention: Some of the a,b,c can be zero but not all of them together!

Now assume that K is an algebraically closed field. In this case we go one step

further. Assume e.g. a 6= 0 then we take as new coordinate X ′ = (
√
aX) and get

rid of the coefficient a . Hence we obtain the following 3 cases (up to change of

coordinates)

(1) X2 + Y 2 + Z2

(2) X2 + Y 2

(3) X2

Case (1) : We look for singularities

∂f

∂X
= 2X,

∂f

∂Y
= 2Y,

∂f

∂Z
= 2Z .

The point (α : β : γ) is a simultaneous zero if and only if α = β = γ = 0 ; But this

is not a point in the projective plane. Hence

Proposition 5.3. C = V(X2 + Y 2 + Z2) is a nonsingular quadric.

Case (2) : As K is algebraically closed, there is a root
√
−1 of the polynomial

X2 + 1 . In particular
√
−1 ·
√
−1 = −1 . Now we calculate

X2 + Y 2 = (X +
√
−1 · Y ) · (X −

√
−1 · Y ) .
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Hence, our f decompose into two linear polynomials. Consequently, the quadric C

is the union of two different lines. The singular points are the simultaneous zeros of

∂f

∂X
= 2X,

∂f

∂Y
= 2Y,

∂f

∂Z
= 0 .

Hence α = β = 0 and γ arbitrary. We get one singular point (0 : 0 : 1) . This is an

affine point with respect to U2 . Its affine coordinate is (0, 0) .

Case (3) : In this case

C = V(X2) = V(X) = {(0 : β : γ) | β 6= 0 or γ 6= 0}

This is just one straight line given by the Y -axis. Strictly speaking, from a higher

point of view, we should consider C as V(X2) as a line with multiplicity 2, i.e. a

double line. From this description we would obtain also that all points are singular

points.

In this way we obtained a complete classification of quadrics over algebraically

closed fields.

If K is not algebraically closed the situation is much more complicated. As an

example we give a few remarks for K = R . If a > 0 we can argue as above. If

a < 0 then we compute it as a = −(−a) with −a > 0 . Consequently we obtain the

following different cases:

(1a) X2 + Y 2 + Z2

(1b) X2 +Y 2−Z2 (which is the same asX2−Y 2−Z2)

(2a) X2 + Y 2

(2b) X2 − Y 2

(3) X2

We will only have a look on (1a) and (1b). Clearly these curves will be nonsin-

gular, as they do not have singular points over the algebraic closure. Note that by

the passage to R = C both cases (1a) and (1b) will yield the case (1) above.

In case (1a) : We get V(f) = ∅ .

In case (1b) : We have solutions

C = {(α : β : γ) | α2 + β2 − γ2 = 0} .

What does the set of solutions look like? For this we want to study them on affine

parts.
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1. First we consider the solution set C on the affine part given by γ = 1 (this

means on U2) then

C
(1)
aff := {(α, β) | α2 + β2 = 1} ,

hence it is a circle. This does not have a ”point at∞” as γ = 0 and α2+β2 = 0

implies α = β = γ = 0 .

2. Next we consider points given by the affine part β = 1 (i.e. U1) . Then

C
(2)
aff := {(α, γ) | α2 + 1− γ2 = 0} = {(α, γ) | γ2 = α2 + 1} .

This is a hyperbola. The points at ∞ are given by β = 0 . This implies

α2 − γ2 = 0 = (α + γ)(α − γ)) . Hence there are two points (1 : 0 : 1) and

(1 : 0 : −1) .

3. The affine part with respect to U0, corresponds to the previous situation. But

we could also take other affine parts. Recall that X2 + Y 2 − Z2 corresponds

to X2 + Y Z after a change of coordinates.

Now we take γ = 1 in the new coordinates and get

C
(3)
aff := {(α, β) | β = −α2} ,

which is a parabola. There is one point at ∞ . It corresponds to α = 0 and

yields the point (0 : 1 : 0) .

With the above we saw that from the real projective point of view all the objects:

circles, hyperbolas, and parabolas are different affine parts of one projective object,

the real projective quadric V(X2 + Y 2 − Z2) .



Chapter 6

Transformation of variables

We already dealt with the transformation of variables in the previous chapter. Now

we want to have a closer look on them. After we fix an origin O and a basis in Kn ,

we have the identification An(K) ∼= Kn. Also

Pn(K) ∼= (Kn+1\{0})/ ∼ ,

where the identification is given after choosing a basis in Kn+1 .

6.1 Affine transformations

The following is just linear algebra. Let V be a vector space of dimV = n, and B and

B′ two sets of basis elements of V . We denote B = (e1, ..., en) and B′ = (e′1, ..., e
′
n) .

The base transformation matrix M := MB→B′ from the old basis B to the

new basis B′ is the invertible n × n matrix which has in the jth column (M∗j) the

coefficient of the new basis vector e′j in B′ with respect to the old basis vectors in

B.

Let P be a vector (respectively point) and α ∈ Kn its coordinate vector with

respect to the old basis B and α′ with respect to the new basis. Then we have the

relations:

α = M · α′ , α′ = (M)−1 · α .

We set N = M−1 .

This is the situation for a vector space. For the affine space we have also to take

a translation of the origin O into account.
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Hence: an affine transformation φ is given by

α′ = N · α + t , t ∈ Kn .

The map φ is uniquely fixed by the pair (N, t) , N ∈ GL(n,K) , t ∈ Kn .

Exercise: Write the formula for the composition of affine transformations. Give

the expression for the inverse transformation.

6.2 Projective transformations

Here the origin is always fixed by 0 ∈ Kn+1 . Hence with α ∈ Kn+1

α′ = N · α , N ∈ GL(n+ 1,K) .

Recall that for the points [α] = [β] in projective space we have

α ∼ β ↔ β = λ · α , λ ∈ K∗ .

Hence if N = λ · In+1 , λ 6= 0 the corresponding projective transformation φ is the

identity :

N ′ = λ ·N ↔ φN = φ′N .

The set {λ ·In+1 | λ ∈ K∗} with In+1 the (n+1)×(n+1) identity matrix, constitutes

a normal subgroup of GL(n + 1,K) , and the projective transformations are given

by the elements of the quotient group

PGL(n+ 1,K) := GL(n+ 1,K)/{λ · In+1 | λ ∈ K∗} .

This group is called projective linear group.

6.3 Transformation of affine and projective

varieties

One has two different ways of interpretations of the above transformations:

- change of coordinates

- action on the ambient space Kn , respectively on Kn+1 .
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Take X = (X1, X2, ..., Xn) and f(X) ∈ K[X] a polynomial. Given an affine

transformation (N, t) we set

fN,t(X) := f(N ·X + t) .

Note that in general fN,t 6= f . Given a variety V = V(f1, ..., fk) , we set VN,t =

V(f1,N,t, ..., fk,N,t) . In general both varieties will be different, but the points in the

two sets will be in 1 : 1 correspondence under an affine transformation.

Definition 6.1. Let V and V ′ be two affine varieties. V is called affine equivalent

to V ′ if and only if there exists an N ∈ GL(n,K) and t ∈ Kn such that V ′ = VN,t .

Obviously, this is an equivalence relation. Geometrically V ′ is obtained from V

by an affine map

An(K) −→ An(K) .

What has been done for affine variety makes sense also for projective varieties.

Definition 6.2. Let V and V ′ be two projective varieties, then V and V ′ are called

projectively equivalent if and only if ∃N ∈ GL(n+ 1,K) such that V ′ = VN .

Exercise : Let V and V ′ be two affine plane curves which are affine equivalent then

their projective completions are projectively equivalent (Attention: the opposite

direction is not true).

We give the relation between the affine and the projective transformations. Re-

call that the affine transformation is given by(
X ′

Y ′

)
= A ·

(
X

Y

)
+

(
tX

tY

)
, A = (aij)

respectively

X ′ = a11X + a12Y + tX

Y ′ = a21X + a22Y + tY .

We make this homogeneous via

tX 7−→ tXZ tY 7−→ tYZ ,
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and the transformation reads as

X ′Y ′
Z ′

 =


A tX

tY

0 0 1

 ·
XY
Z

 . (6.1)

In this sense for the group of affine respectively projective transformations we have

G(An(K)) � G(Pn(K))

as the last line of the projectivized matrix is always (0, 0, 1) . In particular, there

are more projective maps than affine maps.

Example. Let K = R. We discussed already earlier the 2 curves,

V1 : X2 + Y 2 − 1 V2 : X2 − Y 2 − 1 .

V1 and V2 are not equivalent as affine curves. Recall that V1 is a circle and V2 is a

hyperbola.

If we homogenize the defining equations we obtain

Ṽ1 : X2 + Y 2 − Z2 Ṽ2 : X2 − Y 2 − Z2 (= −X2 + Y 2 + Z2) .

The projective transformation relating both Ṽ1 and Ṽ2 is given as interchanging X

and Z 0 0 1

0 1 0

1 0 0

 .

Hence Ṽ1 ∼ Ṽ2 . Note that this matrix is not of the type (6.1). Hence, the projective

transformation does not come from an affine transformation.

6.4 Singularities and intersections

Proposition 6.3. 1. Let Φ : P2 −→ P2 be a transformation. Then P ∈ V(f) is

a singular point of C if and only if Φ(P ) is a singular point of CΦ = V(fΦ) .

2. The definition of a singular point does not depend on the basis chosen.
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Proof. 1. Let X ′ = Φ(X) = A ·X be the projective transformation associated with

the invertible matrix A. If P is a point on C with homogeneous coordinates α then

Φ(P ) is a point on CΦ with homogeneous coordinates α′ = A−1α. Furthermore,

fΦ(X) = f ′(A ·X) = f ′(X ′) .

Hence by the chain rule

∂f ′

∂X ′
=
∂fΦ

∂X ′
= A−1 · ∂f

∂X
, A =

∂Φ

∂X
.

A and A−1 have full rank 3, hence

∂f

∂X
(P ) = 0 ⇐⇒ ∂f ′

∂X ′
(Φ(P )) = 0 .

2. follows directly from (a), as a change of basis corresponds to such a Φ .

Important consequence: We can calculate the singular points in suitable coordi-

nates.

Proposition 6.4. Let L = V(aX + bY + cZ) be a projective line then there exists

a projective transformation Φ such that L′ = V(Z ′) = LΦ
∼= L .

Geometrically this means that in the projective plane we can move a given pro-

jective line “to infinity”.

Proof. Case 1: If c 6= 0 we take Z ′ = aX+ bY + cZ , X ′ = X , Y ′ = Y . The matrix

for the transformation reads as

A =

1 0 0

0 1 0

a b c

 .

Case 2,: If c = 0 then at least one of a or b are 6= 0 . For example if a 6= 0 we set

Z ′ = aX + bY , X ′ = Z , Y ′ = Y and obtain

A =

0 0 1

0 1 0

a b 0
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and if b 6= 0

A =

1 0 0

0 0 1

a b 0

 .

The following theorem will be of geometric importance later on.

Theorem 6.5. Let C be a projective curve of degree n and L be a projective line.

Assume L is not a component of C then C ∩ L is a set of finitely many points and

#(C ∩ L) ≤ n .

Proof. Let L be the projective line. Following Proposition 6.4 we can assume after

a change of projective coordinates that L = V(Z) . Let C = V(f) . Note that

(α : β : γ) ∈ L ↔ γ = 0 .

Hence (α : β : γ) ∈ C ∩ L if and only if f(α : β : 0) = 0 . We set g(X, Y ) =

f(X, Y, 0) , and f is homogeneous of degree n, i.e. it is a sum of monomials

Xd1Y d2Zd3 with d1 + d2 + d3 = n . Only those monomials will survive for g for

which d3 = 0 . But this means that g will be either identically zero or it will be

homogeneous of degree n (now of two variables).

If g ≡ 0 then L ⊂ V(f) . This says L is a component of C . But this was

excluded. Hence, our g can be written as

g(X, Y ) = a0Y
n + a1XY

n−1 + ...+ an−1X
n−1Y + anX

n ,

where not all ak = 0. If α = (1 : 0 : 0) ∈ L ∩ C then g(1, 0) = 0 = an · 1 . This

implies an = 0 . If α ∈ L ∩ C but α 6= (1 : 0 : 0) then we can write α = (x : 1 : 0) ,

g(α) = ĝ(x) = a0 + a1x+ ...+ an−1x
n−1 + anx

n .

Hence we have maximally n zeros of this type. If (1 : 0 : 0) ∈ L ∩ C then as

an = 0 we will have maximally (n − 1) roots of this type. Always the number of

intersection points will be bounded by n .
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Additional comments:

1. We can add intersection multiplicities for the bound (see later).

2. For K = K̄ and counted with multiplicities the above proof shows

#C ∩ L = n .

In fact the above theorem has an extension.

Theorem 6.6. (Theorem of Bezout). Let C1 and C2 be two projective (planar)

curves defined over K without common components in the algebraic closure K then∑
P∈C1∩C2

m(P,C1, C2) ≤ (degC1) · (degC2). (6.2)

If the field K is already algebraically closed, then in (6.2) we have equality.

We will not prove it here. Above we proved it if one of the curves is a line. For a

correct interpretation in general we would first have to extend the definition of the

multiplicity to m(P,C1, C2), which is not so simple. In case that the intersection

point P is a non-singular point on both curves and that the tangent lines of both

curves at this point P are distinct the multiplicity will be one (in complete accor-

dance with the case m(P,C, L) as in this case L is its own tangent and different

tangents means that L is not a tangent at the point P to the curve C).
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Chapter 7

Elliptic curves

7.1 Basic definitions

Next we consider projective curves C of degree 3, this says

C = V(f)[K], f(X, Y, Z) ∈ K[X, Y, Z], with deg f = 3 .

Definition 7.1. A curve C ⊆ P2(K) is called an elliptic curve if and only if C is a

non-singular projective curve of degC = 3 .

In case that degC = 3 (without requiring that C is nonsingular) we call C a

cubic curve.

Example. Let f = l1 · l2 · l3 with li linear polynomials. Then C = V(f) is a cubic

curve. It is the union of 3 lines where the intersection points are singular points of

the cubic curve. Hence it is not an elliptic curve (see Figure 7.1)

In fact our elliptic curves will always be indecomposable. This follows from the

fact, that if C has e.g. two components over the algebraic closure then they will

have a point of intersection (over the algebraic closure) which will be a singular

point. Recall that ”nonsingular curve” means ”no singular points over the algebraic

closure K” .

A general cubic homogeneous polynomial of degree 3 in 3 variables is a lin-

ear combination of 10 different monomials, i.e. it has 10 parameters. But by a

change of variables we obtain
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Figure 7.1: Three lines

Proposition 7.2. Let E be an elliptic (projective) curve which has (at least) one

K-valued point then after a change of variables the curve can be given as E = V(f)

with

f(X, Y, Z) = Y 2Z + a1XY Z + a3Y Z
2 − (X3 + a2X

2Z + a4XZ
2 + a6Z

3) , (7.1)

with a1, . . . , a6 ∈ K.

Proposition 7.3. (a) If char(K) 6= 2 then in (7.1) a1 = a3 = 0 can be obtained by

a further change of variables.

(b) If char(K) 6= 2, 3 then in (7.1) even a1 = a3 = a2 = 0 can be obtained. In

particular (7.1) transforms to

Y 2Z − (X3 + a4XZ
2 + a6Z

3) . (7.2)

The expression (7.2) is called Weierstraß normal form . We will not carry

through the proofs, you might consult the book [Wer, p.24-27].

Attention: We do not claim that a curve C given in the form of (7.2) or (7.1)

will be automatically nonsingular (see below).

Points at ”∞”: (with respect to standard affine coordinates (α : β : 1)).

For this we have to put Z = 0 (i.e. γ = 0) in our defining equation (7.1). It

remains the equation −X3, hence α = 0 and β arbitrary. This says there is a unique
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point Q = (0 : 1 : 0) lying on the elliptic curve and on the line at ∞, L = V(Z).

This is the point

O := L ∩ C = {(0 : 1 : 0)} .

We will discuss later that it is an intersection point of multiplicity 3.

Singular points: The cases charK = 2 or 3 would need a special treatment

case by case which we will not do here.1 In the other cases we can start from the

Weierstraß normal form

f(X, Y, Z) = −Y 2Z + (X3 + a4XZ
2 + a6Z

3) .

Singular points will be the simultaneous zeros of the partial derivatives of f (as the

characteristic of K does not divide 3)

∂f

∂X
(X, Y, Z) = 3X2 + a4Z

2 ,

∂f

∂Y
(X, Y, Z) = −2Y Z ,

∂f

∂Z
(X, Y, Z) = −Y 2 + 2a4XZ + 3a6Z

2 .

First we check the point (0 : 1 : 0) at ∞ , whether it is a singular point or not.

But ∂f
∂Z

(0, 1, 0) = −12 6= 0, hence it is not a singular point.

Now we consider the affine part of E. For Z we plug in 1 and obtain from above

for the point with affine coordinates (x, y) directly y = 0 (2nd equation). It remains

to check the other two equations. Let us assume that we have a singular point

(x, y) = (x, 0). Then

3x2 + a4 = 0→ 3x2 = −a4 ,

2a4x+ 3a6 = 0→ 2a4x = −3a6 .

Now we multiply the first equation by 4a2
4 , take the square of the 2nd equation,

multiply it with 3 (note that charK = 2, 3 was excluded) and we obtain

12a2
4x

2 = −4a3
4 ,

12a2
4x

2 = 27a2
6 .

Hence under the assumption that there is a singular point we obtain,

∆ = (4a3
4 + 27a6) = 0 . (7.3)

1Of course, the reader is invited to do it himself/herself.



54 CHAPTER 7. ELLIPTIC CURVES

The expression ∆ is called discriminant. Up to now we know that if ∆ 6= 0 there will

be no singular points, hence E = V(f) will be an elliptic curve. For the opposite

(meaning if there is a singular point then ∆ = 0), it is enough to consider the affine

part, as (0 : 1 : 0) is not a singular point, hence the points fulfilling

y2 = g(x) . with g(X) = X3 + a4X + a6 ∈ K[X]. (7.4)

We pass over to the algebraic closure K, over K and decompose the degree 3 poly-

nomial g into 3 linear polynomials as factors (we write it as an equation, with

e1, e2, e3 ∈ K)

g(X) = (X − e1)(X − e2)(X − e3)

= X3 − (e1 + e2 + e3)X2 + (e1 · e2 + e1 · e2 + e2 · e3)X − e1 · e2 · e3 .

If we compare the coefficients from (7.4) with the coefficients above we obtain for

the discriminant (7.3)

∆ = A · (e1 − e2)2 · (e1 − e3)2 · (e2 − e3)2 .

Here A is a constant 6= 0. Hence ∆ is the square of the differences of the zeros of

the polynomial g. (This is the usual algebraic discriminant of polynomials).

As a consequence we obtain that ∆ = 0 implies that at least two of the ei have

to coincide. We now show that then there is a singular point (x, y).

If two are the same then, e.g. e1 = e2 then

f(X, Y ) = −Y 2 + (X − e1)2(X − e3) . (7.5)

First of course ∂f
∂Y

= 0 implies as above y = 0. Then

∂f

∂X
(x, 0) =

∂g

∂X
(x) = 2 · (x− e1)(x− e3) + (x− e1)2

= (x− e1)(3x− 2e3 − e1) .

Two candidates for singular points exists. First we consider x = e1 . In this case

(e1, 0) lies on the curve E. Hence it is a singular point. The other point with

(x = 1
3
(2e3 + e1), 0) does not lie on the curve (see (7.5)).

Hence there is a unique singular point (e1, 0), respectively (e1 : 0 : 1). The

corresponding cubic curve is called nodal cubic, see Figure 3.2.

If all three ei are the same then

∂f

∂X
(x, 0) =

∂g

∂X
(x) = 3 · (x− e1)2 .
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Hence (e1, 0) is a singular point as obviously it lies on the curve. As e1+e2+e3 = 0

this implies e1 = e2 = e3 = 0 . In this case we obtain the cuspidal cubic, see Figure

3.1 .

We have shown

Theorem 7.4. (a) Let charK 6= 2, 3 and denote by E = E(a4, a6) the curve given

by the polynomial

Y 2Z − (X3 + a2XZ
2 + a4Z

3) ,

then E is nonsingular (i.e. elliptic) if and only if

∆ = (4a3
4 + 27a2

6) 6= 0 .

(b) Let K be the algebraic closure of K then the curve E can be given as

Y 2Z − (X − e1Z)(X − e2Z)(X − e3Z) , ei ∈ K .

The curve is nonsingular if and only if the e1, e2, e3 are pairwise distinct.

Remark 7.5. (About the condition of existence of a K-valued point in Proposi-

tion 7.2.) If we have the curve given in the form of (7.4) then the point at ∞, given

by (0 : 1 : 0), is always a K-valued point. The a priori existence of a K-valued point

is needed before we can transform the defining polynomial into the normal form. If

we work over an algebraically closed field we have always solutions as shown earlier,

see Proposition 3.7. Hence, it is only a condition over algebraically non-closed fields.

7.2 Group structure of an elliptic curve

In the following let E = V(f) be an arbitrary elliptic curve (i.e. a projective cubic

curve which is nonsingular) defined over an arbitrary field K . We assume that E has

a K-valued point. We will construct the structure of an abelian group for V(f)[K]

or more general for V(f)[L] ,L ≥ K , in a purely geometric manner.

To achieve this we will have to cut our elliptic curve with lines. For this to work

correctly we have to study intersection multiplicities first.

Definition 7.6. Let C = V(f) be a projective curve and P ∈ C a nonsingular (i.e.

a regular) point P = (α : β : γ) = α . Then the line Lp = V(lp) defined via

lp(X, Y, Z) =
∂f

∂X
(α) ·X +

∂f

∂Y
(α) · Y +

∂f

∂Z
(α) · Z , (7.6)

is called tangent line of the curve C at the point P ∈ C .
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Remark 7.7. 1. Tangent lines exists at regular points as in this case the equa-

tion (7.6) is not identically zero.

2. The point P lies itself on the tangent line at P , i.e. P ∈ Lp . Via the Euler

relation

lp(α) =
∂f

∂X
(α) · α +

∂f

∂Y
(α) · β +

∂f

∂Z
(α) · γ = d · f(α) ,

as P ∈ C i.e. f(α) = 0 , hence it follows that lp(α) = 0 , which says P ∈ Lp. In

particular, Lp ∩ C 6= ∅ .

Next we consider arbitrary lines L and C a projective curve which is irreducible

of degree d > 1 . We already showed in Theorem 6.5 that #C∩L ≤ d . Let C = V(g)

and P ∈ L a fixed point P = (α : β : γ) . Let P ′ = (α′ : β′ : γ′) 6= P be another

point on the line. We set

ψ(t) := g(α + tα′, β + tβ′, γ + tγ′) = g(P + tP ′) , t ∈ K . (7.7)

The function ψ(t) is a polynomial in t of degree 5 d .

Definition 7.8. The order of the zero at t = 0 of the polynomial ψ is called

multiplicity of the point P in the intersection L ∩ C, in symbols m = m(P,L,C) .

1. Note that

ψ(t) = ant
n + an+1t

n+1 + ...+ adt
d =

d∑
k=n

akt
k ,

with an 6= 0 . If we take instead of P ′ another point P ′′ on the line then the

coefficients may change but not the fact that n is the smallest order. Also the

multiplicity will always be smaller than d .

2. If we put t = 0 in (7.7) then ψ(0) = g(α, β, γ) hence

ψ(0) = 0 ↔ P ∈ L ∩ C ↔ m(P,L,C) > 0 .

3. We can also determine multiplicities of zeros of functions by considering deriva-

tives. If we differentiate (7.7) with respect to the variable t we get

ψ′(t) =
∂g

∂X
(α + tα′) · α′ + ∂g

∂Y
(α + tα′) · β′ + ∂g

∂Z
(α + tα′) · γ′ .
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Now m ≥ 2 if and only if ψ′(0) = 0 . This says

0 =
∂g

∂X
(α) · α′ + ∂g

∂Y
(α) · β′ + ∂g

∂Z
(α) · γ′ .

This yields that the points P ′ = (α′ : β′ : γ′) are lying on the tangent line of

the curve C at the point P .

Proposition 7.9. The multiplicity m(P,L,C) ≥ 2⇔ L is a tangent line along the

curve at the point P .

Now we return to the case that our curve is an elliptic curve E .

Theorem 7.10. Let L be a projective line and E an elliptic curve then

∑
P∈P2(K)

m(P,L,E) =


0

1

3

.

First remark that
∑

P∈P2(K) can be replaced by
∑

P∈L∩E as far as for the other

points P we have m(P,L,E) = 0 . Also note that m(P,L,E) 5 degE = 3 , by

Theorem 6.5. In particular, the statement of the theorem is that a line will meet an

elliptic curve counted with multiplicities either not at all, or only once or exactly 3

times. Only 2 is excluded. The proof is done by case distinction and can be found

in Section 7.2.3 .

Now we draw some consequence of this theorem.

Theorem 7.11. Let E be an elliptic curve E = E[K] .

1. P,Q ∈ E,P 6= Q then there exists a projective line L through P and Q and a

3rd point R ∈ E ∩ L .

2. P ∈ E, L the tangent line of E at P then there exists another point R ∈ E∩L .

In the Statements 1 and 2 the multiplicities have to be taken into account.

“Multiplicities have to be taken into account” means for example in case if the line

fixed by P and Q happens to be a tangent line at Q then Q has to be taken with

multiplicity 2, hence the additional point R will coincide with Q .
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Proof. Case 1: For P and Q with P 6= Q there is a line L passing through P

and Q . Hence
∑
m(P ′, L, E) = 2 . and by Theorem 7.10 the sum has to be∑

m(P ′, L, E) = 3 . This shows that there is a 3rd point.

(a) If m(P,L,E) = m(Q,L,E) = 1 then the 3rd point R is different from P and Q .

(b) If one of the points has multiplicity 2 with respect to this line, then this point

will be equal to the 3rd point R .

(c) Two points with multiplicity equal 2 are not possible as otherwise
∑
m(P ′, L, E) =

4 which is a contradiction.

Case 2: Let P be the point and L the (unique) tangent line on E at P . Then

m(P,L,E) = 2 . Hence there is a 3rd point R of intersection. If m(P,L,E) = 2

then R 6= P and m(P,L,E) = 1 . If m(P,L,E) > 2 then the 3rd point coincides

with P and m(P,L,E) = 3 .

Now we are ready to define the group structure.

1. First recall that O = (0 : 1 : 0) is the unique point at infinity of the curve E.

Let P be another point on the line at infinity L∞ i.e. P = (1 : y : 0) . We obtain

from (7.7)

ψ(t) = f(O + t · P ) = −t3,

(note that all terms which include Z will vanish), hence m(O,L∞, E) = 3 . In

particular, the line at ∞ is the tangent line at the point O at ∞, The multiplicity

is 3.

2. Let P,Q ∈ E,P 6= Q . Take the line L1 through P and Q . Following the

theorem above we get a third point R in the intersection E ∩L1 . This 3rd point we

denote by P ×Q . Now we take the line L2 passing through P ×Q and O . The 3rd

point of intersection we take as P ⊕Q .

3. For the case P = Q, i.e. if we want to define P ⊕P we take as L1 the tangent

at P . Again by the theorem there is another point on the line and on the elliptic

curve. This point we denote by P × P . The 3rd point on the line through P × P
and O gives P ⊕ P .

4. In case that the above constructed lines meet with multiplicities greater than

1 at one of the points then the 3rd point will be this point.

These rules are the rules to define an ”addition” on the set of K-valued points of

the elliptic curve. A first remark is that the addition is commutative P⊕Q = Q⊕P ,

as the line L1 does not see the order of the points. Second, if one of the points is O

we get that on the line L1 defined by P and O the 3rd point is P×O . Hence our line
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Figure 7.2:

L2 = L1 and we obtain P ⊕O = P at least if P 6= O . To construct O ⊕O we take

the tangent at O . As shown above this tangent line is the line at ∞ . Furthermore

the 3rd point is again O (as the multiplicity is 3). Hence O × O = O and again L3

is the line at infinity and hence O ⊕O = O .

Theorem 7.12. The set of K-valued points E = E(K) together with the operation

⊕ introduced above gives (E(K),⊕) the structure of an abelian group with neutral

element O, which is the point at infinity on the curve.

It remains to show:

1. every element P has an inverse element 	P , i.e. P ⊕ (	P ) = O .

2. The addition is associative, i.e. (P ⊕Q)⊕R = P ⊕ (Q⊕R) .

To find the inverse element we first show

Lemma 7.13. a) Assume P,Q,R ∈ E different. If P,Q,R lie on a line then

(P ⊕Q)⊕R = O .

b) The statement is also true if they are not necessarily different but then counted

with multiplicities, i.e. the line is then tangent at the double point.
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Figure 7.3:

Proof. See Figure 7.3. If P,Q are given and L a line passing through them, then

L = L1 is the first line in the construction of ⊕ . In particular R = P ×Q . Next we

want to build (P⊕Q)⊕R . First we have to take the line through the points (P⊕Q)

and R and the 3rd point of intersection yields (P ⊕ Q) × R . But this 3rd point is

O . The line through O and O is the tangent at O and O is a point of multiplicity

3. Hence the 3. point is also O. We obtain (P ⊕Q)⊕R = O as required.

Proposition 7.14. Let P ∈ E(K). Take 	P to be the 3rd point of intersection

of E with the line through P and O then 	P is the additive inverse of P , i.e.

P ⊕ (	P ) = O . In particular each point P ∈ E(K) has an inverse element.

Proof. For the point 	P we obtain by the above lemma

O = (P ⊕O)⊕ (	P ) = P ⊕ (	P )

as claimed.

It remains to show associativity: This is the only more complicated part.
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Lemma 7.15. Given an elliptic curve E and 2 pairs of triples of projective lines

M1,M2,M3 and L1, L2, L3 such that all intersection points Mi∩Lj are different (this

Figure 7.4:

says we have 9 intersection points). Then if 8 of them lie on the elliptic curve E

then the point no. 9 will also lie on E .

Proof. First of course Figure 7.4 is misleading as there will be also intersections

between the Mi and between the Lj themselves, but in these points we are not

interested. We will prove the lemma in Section 7.2.2.

Using this lemma we will show the associativity at least if O,P,Q,R, P ×Q,Q×
R,P ⊕ Q,Q ⊕ R are pairwise distinct. We refer to Figure 7.5. The points A1

to A8 are the points with the labels in the figure. The points A1 to A8 are on the

corresponding lines and on E by the construction of the points. Hence by the lemma

A9 = M1 ∩L3 is also on E. By definition of the group structure P × (Q⊕R) lies on

M1 and on E, (P ⊕Q)× R lies on L3 and E . Now we have a line M1 and a cubic
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Figure 7.5:

curve E (irreducible). Hence we have maximally 3 points of intersection. One set

of intersection points is P,Q⊕R,P × (Q⊕R) another set P,Q⊕R,A9. Hence the

3rd points have to coincide, i.e.

A9 = P × (Q⊕R) .

In the same way for L3

A9 = (P ⊕Q)×R .

But

(P ⊕Q)⊕R = P ⊕ (Q⊕R) ↔ (P ⊕Q)×R = P × (Q⊕R) .

The latter relation is true, hence the first one too. This is the associativity.
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7.2.1 Calculations

The group operations can be done easily in coordinates (with respect to the normal

forms (7.1) and (7.2)). First for our neutral element O = (0 : 1 : 0) , −O = (0 : 1 : 0)

and O ⊕ P = P . Hence the interesting things only happen in the affine part. Let

P1 = (x1 : y1 : 1) then its affine coordinates are P1 = (x1 : y1) .

Inverse element

−P1 = (x1,−y1 − a1x1 − a3) , (7.8)

in case charK 6= 2, 3 we have a1 = a3 = 0 hence −P1 = (x1,−y1) . Why (7.8) is

true?

We have to take the line through P1 = (x1 : y1 : 1) and O = (0 : 1 : 0) and the

3rd point will be −P1. The points on the line have the coordinates (x1, y) with y

arbitrary. In particular the x-coordinate is fixed to be x1. The y coordinate of the

inverse has to be calculated from the defining equation

y2 + a1xy + a3y − (x3 + a2x
2 + a4x+ a6) = 0

for the elliptic curve. If we set

c = a1x1 + a3

d = −x3
1 − a2x

2
1 − a4x1 − a6

we obtain the quadratic equation

y2 + cy + d = 0 .

This equation has 2 solutions (maybe with multiplicities) y
(1)
1 and y

(2)
1 in the algebraic

closure. We know that one exists in K, e.g. y
(1)
1 as we start from a point on the

curve, hence the other also exists in K. Now

(y − y(1)
1 ) · (y − y(2)

1 ) = y2 + cy + d

and consequently

−y(1)
1 − y

(2)
1 = c = a1x1 + a3 .

This yields y
(2)
1 = −y(1)

1 − a1x − a3 which was the claim. If charK 6= 2, 3 we have

the nice Figure 7.6.
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Figure 7.6:

If P2 = (x2, y2), P1 = (x1, y1) then P1 + P2 = P3 = (x3, y3) where the x3 and y3

can be calculated only using multiplication, additions and divisions. We copy the

result from the book of Enge, p.42, Table 2.3, [Enge].

x3 =


(
y2−y1
x2−x1

)2

+ a1

(
y2−y1
x2−x1

)
− a2 − x1 − x2 if P 6= Q(

3x2+2a2x+a4−a1y
2y+a1x+a3

)2

+ a1

(
3x2+2a2x+a4−a1y

2y+a1x+a3

)
− a2 − 2x if P = Q

y3 =

 y2−y1
x2−x1 (x1 − x3)− y1 − (a1x3 + a3) if P 6= Q

3x2+2a2x+a4−a1y
2y+a1x+a3

(x− x3)− y − (a1x3 + a3) if P = Q.

(7.9)

Here we used x = x1 = x2 and y = y1 = y2 for P = Q.
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In case you are interested how to obtain these formulas see [Enge] or [Wer, p.47-

53].

If charK 6= 2, 3 we can reach a1 = a2 = a3 = 0 and the above expressions

simplify to

x3 =


(
y2−y1
x2−x1

)2

− x1 − x2 if P 6= Q(
3x2+a4

2y

)2

− 2x if P = Q

y3 =

 y2−y1
x2−x1 (x1 − x3)− y1 if P 6= Q

3x2+a4
2y

(x− x3)− y if P = Q.

(7.10)

7.2.2 Proof of Lemma 7.15

We do not repeat the formulations and notation of the lemma. Let V be the vector

space of homogeneous polynomials of degree k in n variables, then

dimV =

(
n− 1 + k

k

)
.

Here the degree is 3 and the number of variables is also 3. In particular we obtain

dimV = 10 for the space of cubic polynomials. Let V ′ be the subspace of those

cubic polynomials which are zero at all Ai , i = 1, .., 8 .

Exercise: verify that is indeed a subspace.

We want to determine the dimension of V ′. For this goal we consider the linear

maps ψs defined as follows (here s ∈ P2(K))

ψs : V −→ K ; q 7−→ q(s) .

The maps ψs are the evaluation of the polynomials q at the point s. These are linear

maps (in fact linear forms), i.e.

ψ(q1 + q2) = ψ(q1) + ψ(q2) as (q1 + q2)(s) = q1(s) + q2(s) .

For a fixed s we find a cubic polynomial q with q(s) 6= 0, hence we haveψs 6= 0 . In

particular, ψs is not the zero map and hence as a linear form ψs is surjective. As

dim kerψs = dimV − dim im ψs = 10− 1 = 9 .
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The elements of kerψs consists of cubic polynomials vanishing at the point s. Hence,

by definition

V ′ =
⋂

s∈A1,A2,..,A8

kerψs .

If we go step by step down each form reduces the previous dimension of the common

kernel by at most one. Hence dimV ′ ≥ 2 .

Claim dimV ′ = 2 .

Proof. Let S ∈ L1 ∩ L2. As two projective lines always have an intersection point

such a point S exists. Moreover, S /∈ {A1, A2, .., A8}. Let VS = kerψS . If we can

Figure 7.7:

show that dim(V ′∩VS) = 1 then dimV ′ = 2 as the dimension by cutting with kerψS

can maximally drop by 1.

Let p be an element of V ′ ∩ VS (i.e. a cubic polynomial) then p(A1) = p(A2) =

p(A3) = p(S) = 0 and A1, A2, A3, S ∈ L1 . Hence V(p)∩L1 has at least 4 intersection

points. If L1 is not a component of V(p) then the maximal number of intersection

points is 3. Hence L1 is a component of V(p). The same is true for L2. Being a
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component corresponds to writing the polynomial p as factor p = l1 · l2 · l with L1 =

V(l1), L2 = V(l2) and L = V(l) another line. But p ∈ V ′ hence p(A7) = p(A8) = 0.

As A7, A8 /∈ L1∪L2 they have to be zeros of the complimenting factor which is given

by L3, hence L = L3, i.e. p = l1 · l2 · l3 up to multiplication with a scalar. Hence

every such p will be a multiple of l1 · l2 · l3 . Consequently, dim(VS ∩V ′) = 1 and the

claim follows.

Now we give the proof of the Lemma 7.15.

Proof. Let the lines Mi be given by the linear polynomials mi and the lines Lj by

lj . We consider the two cubic polynomials

p1 = m1 ·m2 ·m3 p2 = l1 · l2 · l3 .

As they cannot be multiples of each others they are linearly independent. By con-

struction

p1(Ai) = p2(Ai) = 0 , i = 1, .., 9 .

In particular this implies that p1 and p2 ∈ V ′ (we take only A1, . . ., A8 into account).

And as dimV ′ = 2 they constitute a basis of V ′ . Our defining polynomial g for the

elliptic curve vanishes also for the 8 points A1, .., A8 , hence g ∈ V ′ . This means

that g is a linear combination of p1 and p2 , i.e.

g = αp1 + βp2 , α, β ∈ K.

Hence

g(A9) = αp1(A9) + βp2(A9) = 0 + 0 = 0 .

This was the claim.

7.2.3 Proof of Theorem 7.10

For the convenience of the reader we repeat the formulation of the theorem

Theorem. Let L be a projective line and E an elliptic curve then

∑
P∈E∩L

m(P,L,E) =


0

1

3

.
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Note that the sum over the points of the plane reduces to the sum over the points

in E ∩ L. The defining polynomials are

L : l(X, Y, Z) = aX + bY + cZ,

E : g(X, Y, Z) = Y 2Z + a1XY Z + a3Y Z
2 −X3 − a2X

2Z − a4XZ
2 − a6Z

3.

As we already made a transformation of variables to obtain the normal form for E

we cannot adjust the defining polynomial for L any further.

We have to make case distinction depending on the line L.

Case 1: (in the defining polynomial for L we have a = 0 = b). This says that

L = V(Z). In other words, L is the line at infinity. Hence

L ∩ E = {(α : β : 0) | g(P ) = 0} . (7.11)

If we plug this into the defining polynomial g for E we obtain

g(α : β : 0) = −α3 .

Hence the only point is (α : β : γ) ∈ L ∩ E = (0 : 1 : 0) = O. To check the

multiplicity we have to choose another point P ′ on L (the choice is arbitrary). We

take P ′ = (1 : 0 : 0); clearly l(P ′) = 0 . Now

ψ(t) = g ((0, 1, 0) + t((1, 0, 0)) = g(t, 1, 0) = −t3.

Hence, the point (0 : 1 : 0) has multiplicity 3, and the claim is true for this special

line L.

Case 2: (in the defining polynomial for L we have a 6= 0, b = 0). Hence, L is

given by l(X, Y, Z) = a ·X + c · Z (here c = 0 is not excluded). First note that the

point O = (0 : 1 : 0) ∈ L . Now let P ∈ L, with P = (α : β : γ). As P ∈ L we have

a · α + c · γ = 0, (i.e. α = − c
a
· γ) which says P = (− c

a
· γ : β : γ). Now we make

case distinctions with respect to the point P .

Case 2a: (γ = 0). This implies P = (0 : 1 : 0) = O and P lies on E. For

calculating its multiplicity with respect to the line L we take e.g. the point P ′ =

(−c : 0 : a) ∈ L and obtain

ψ(t) = g(O + t · P ′) = g(−ct, 1, at) = a · t+O(t2) .

Hence m(P,L,E) = 1
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Case 2b: (γ 6= 0). Of course we require that P has to lie on E. In particular

also P 6= O. It might be that there are no such points. In case that we have such a

point we can normalize it to be P = (− c
a
· γ : β : 1) where the new β is βold

γ
) . We

consider the polynomial

h(s) = g(− c
a
, s, 1),

in the variable s. As P ∈ E, i.e. g(P ) = 0 we get that β is a zero of the polynomial

h. Now we take as auxiliary point the point O = (0 : 1 : 0) and obtain

ψ(t) = g(P + t ·O) = g(− c
a
, β + t, 1) = h(β + t) .

We write

h(s) = (s− β)k · h∗(s)

where k is the order of the zero β of the polynomial h(s) and h∗(β) 6= 0 . We write

ψ(t) = h(β + t) = (β + t− β)k · h∗(β + t) = tk · h∗(β + t).

As h∗(β) 6= 0 the term h∗(t + β) has order zero in t and hence the order of the

zero of t in ψ is equal to order of the zero of β in h. Now we check in more detail

the polynomial

h(s) = g(− c
a
, s, 1) .

The variable s corresponds to the variable Y in the defining equation g for E. As

there it is of degree two, h(s) is also a degree two polynomial. Hence, we will either

have no zeros, one zero with multiplicity two or two zeros with multiplicity one.

In total we will have from Case (2a) a contribution of 1 to the sum and from

Case (2b) either no contribution or a contribution of 2. Hence, also in this case for

the line L the relation #(E ∩ L) = 1, or 3. Which was to show.

Case 3: (in the defining polynomial for L we have b 6= 0). This is the remaining

case. In this case the point O = (0 : 1 : 0) does not lie on L. Hence all points of

L ∩ E lie in the affine part. The point on the line can be written as

P = (α : β : 1) ∈ L ↔ β = −c
b
− a

b
· α .

These can be parameterized by

Pα = (α : −c
b
− a

b
· α : 1)

For α ∈ K we get all points on the affine part of the line.
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We set h(α) = g(α,− c
b
− a

b
·α, 1) and obtain that Pα ∈ E if and only if h(α) = 0 ,

Equivalently, α is a zero of h(s) = g(s,− c
b
− a

b
s, 1). As auxiliary point we take

P ′ = (−b : a : 0) ∈ L

and get

ψ(t) = g(Pα + tP ′) = g(α− tb,−c
b
− a

b
(α− tb), 1) = h(α− tb) .

As in the previous case we obtain “multiplicity of t in ψ”= “zero order of α in h”.

Now h(s) is a polynomial of order 3 in s. (To see this just plug in (s,− c
b
− a

b
·α, 1) into

the defining equation of E given by g and check the order of s.) Such a polynomial

has in K (the algebraic closure of K) exactly 3 roots counted with multiplicities

h(s) = −(s− α1)(s− α2)(s− α3) .

We rewrite this to

h(s) = −s3 + (α1 + α2 + α3)s2 + ..

which is now a polynomial with coefficients from K.

How many zero with multiplicities are possible over K? We have three cases: no

zero at all, 1 zero or 3 zeros. The possibility of two zeros is excluded, as if α1, α2 ∈ K,

then from (α1 + α2 + α3) = η ∈ K it follows that the 3rd root α3 = η − (α1 + α2) is

also in K.

Altogether this shows Theorem 7.10.

7.3 An application of the group structure

Given an elliptic curve E defined over a finite field Fq, q = pn, p ∈ P we showed

above that on E we have the structure of an abelian group (E,⊕). The elements of

E define a subset of the projective plane over Fq. The number of points in P2(Fq)
is finite. In fact, it is equal to q2 + q + 1 2. In particular, (E,⊕) is a finite group.

In general it will not be a cyclic group. But if we fix a point Q ∈ E we obtain

the finite cyclic subgroup 〈Q〉 generated by Q. In fact with a suitable Q we obtain

cyclic groups which have many elements. Calculations in E (and hence in 〈Q〉) are

very easy (see the expressions (7.9), (7.10)). Nevertheless, the discrete logarithm

2Exercise: show this formula for the number of points in P2(Fq).
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problem (see Section 9.1) is very hard to solve - at least if some special curves are

excluded. Such groups are needed in cryptography. The method is now widely used.

As an example used in the context of bitcoins (see [Bit]) we quote the following.

One takes Fp with p the prime number

p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1, (7.12)

which is slightly less than 2256. One considers the elliptic curve E (in affine descrip-

tion)

Y 2 = X3 + 7. (7.13)

As generator for the cyclic subgroup considered one takes the (affine) point

Q = (qx, qy) ∈ E with affine coordinates3

qx = 55066263022277343669578718895168534326250603453777594175500187360389116729240,

qy = 32670510020758816978083085130507043184471273380659243275938904335757337482424.

For more details on the application of elliptic curves in crypto, see [Wer] and [Enge].

3Up to copy-errors.
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Chapter 8

Elliptic curves over C and Tori

In this chapter we will discuss elliptic curves over the field of complex numbers

C from an analytic point of view. It will turn out that complex one-dimensional

tori can be identified with elliptic curves (over C) as introduced before. We will

occasionally use some language and results from complex analysis. Nevertheless, it

should be understandable with only limited background. In case that you want to

know more, please consult [RS] where the construction is done in detail.

Let ω1, ω2 be two complex numbers which are linearly independent over the real

numbers. In particular λ1, λ2 ∈ R with λ1ω1 + λ2ω2 = 0 implies that λ1 = λ2 = 0.

The set

Γ := {nω1 +mω2 | n,m ∈ Z}

is a 2-dimensional lattice in R2 ∼= C. In particular, Γ is a subgroup of (C,+), the

additive group of complex numbers. We consider the quotient group

T = C/Γ.

Recall that the quotient group consists of equivalence classes z̄ with respect to the

equivalence relation

z′ ∼ z if and only if z′ = z + ω with ω ∈ Γ.

Recall the definition of the equivalence class as

z̄ := {z′ ∈ C | z′ ∼ z}.

By dividing each complex numbers by ω1 we can rescale the whole situation with-

out changing the principle. The rescaled lattice will now be generated by the two

73
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Figure 8.1: A two-dimensional standard lattice

complex numbers

1 =
ω1

ω1

, τ :=
ω2

ω1

.

We will even choose τ such that its imaginary part is strictly positive (we choose as

generator instead of ω2 the element −ω2 if needed). Such a lattice is called standard

lattice. For the following we will always assume that the lattice is given as a standard

lattice

Γ := {n+mτ | n,m ∈ Z}, (8.1)

see the corresponding picture Fig. 8.1. The points of the subset

F := {z ∈ C | z = a+ b τ, 0 ≤ a, b < 1, a, b ∈ R}, (8.2)

correspond 1:1 to the points of T , i.e. to the equivalence classes. This F is called

fundamental region of T .

The space C carries a topological and complex structure. We can do complex

analysis. We define what holomorphic functions are, what meromorphic functions

are, make power (or Laurent) series expansions, and many more things. This com-

plex structure will be exported to the quotient T = C/Γ. The T will be a com-

plex manifold of dimension 1, i.e. a Riemann surface. It will be a complex one-

dimensional torus. Topologically it will be obtained by identifying the two compli-

mentary edges of the fundamental region, see Fig. 8.2. We note the fact, that the

complex structure will depend on the value of τ , as the lattice will depend on it.

A function f on the complex plane will be a function on the torus T if and only

if f is doubly periodic with respect to the lattice. Doubly periodic means that

f(z + n+mτ) = f(z), ∀n,m ∈ Z ∀z ∈ C.
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Figure 8.2: Glueing of the torus.

Such f defines a function f̄ on T by setting f̄(z̄) := f(z). Vice versa, given g a

function on T , we get by defining f(z) := g(z+Γ) a function f on C which is doubly

periodic and satisfies f̄ = g.

This correspondence remains true if we consider holomorphic or even meromor-

phic doubly periodic functions. Recall that holomorphic functions on C are functions

which have at every point of C a power series expansion in the complex coordinate z.

A meromorphic functions f is defined as holomorphic function on an open dense sub-

set of C with discrete complement and such that f has maybe algebraic poles of the

points of the complement (saying that for those points we have Laurent expansions

which have only finitely many negative terms).

As holomorphy and meromorphy are local conditions they transfer directly from

C to T . In particular, the doubly periodic (with respect to Γ) meromorphic functions

on C coincide with the meromorphic functions on the torus T = C/Γ. These func-

tions are also called elliptic functions. We denote the set of meromorphic functions

on T by M(T ). In fact, it is a (transcendental) field extension of the complex field

C, as the sum, resp. product of two meromorphic functions is again a meromorphic

function. Also for f 6= 0 (the zero function) 1/f is also a meromorphic function, as

f can only have a discrete set of zeros of finite order.

Next we want to study this in detail.

Proposition 8.1. The only global holomorphic functions on the torus T = C/Γ are
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the constants.

Proof. (Only for those who know a little bit more about complex analysis.) A holo-

morphic function will be bounded on the fundamental region F . By the double

periodicity it will be bounded in C. Hence, by Liouville theorem it will be a con-

stant.

Proposition 8.2. There is no meromorphic function on the torus which has exactly

one pole of order 1.

Proof. (Only for those who know a little bit more about complex analysis.) Let f̄

be a meromorphic function on the torus, f be the corresponding doubly periodic

meromorphic function on C, and F the fundamental region as defined above (re-

spectively its closure). To start with let us assume that f does not have poles on

the boundary ∂F . The classical residue theorem of complex analysis says

1

2πi

∫
∂F

f(z) dz =
∑
a∈F

resa(f).

Due to the double periodicity of f we obtain that the integrals over parallel edges

cancel; hence in total ∫
∂F

f(z) dz = 0,

and consequently ∑
a∈F

resa(f) = 0.

A function which has only one pole of order one inside of F would have a residue.

Hence, it cannot exist. In case f has a pole on the boundary ∂F we deform the

region of integration by adding an small open neighbourhood around this special

point on one side of F and subtracting it on the other side and argue as above.

To describe all functions on the torus we use the Weierstraß ℘−function (on C)

℘(z) :=
1

z2
+
∑
ω∈Γ

′
(

1

(z − ω)2
− 1

ω2

)
.

The ′ denotes that we leave out ω = 0 from the summation. This series converges

for all z 6∈ Γ to a holomorphic function. It has poles of second order at the lattice
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points. It is doubly periodic and an even function. 1 If we differentiate ℘ we obtain

℘′(z) = −
∑
ω∈Γ

2

(z − ω)3
.

The function ℘′ is obviously doubly periodic and has poles of order 3 at the lattice

points and is an odd function.

Of course ℘ and ℘′ are linearly independent, but they are not algebraically

independent.

If we compare the coefficients of the power series for ℘ and ℘′ we get the relation

(℘′)2 = 4℘3 − g2℘− g3, (8.3)

with

g2 = 60
∑
ω∈Γ

′ 1

ω4
=
∑
n,m∈Z

′ 1

(n+mτ)4
,

g3 = 140
∑
ω∈Γ

′ 1

ω6
=
∑
n,m∈Z

′ 1

(n+mτ)6
.

These g2, g3 are called Eisenstein series. If the lattice is fixed then they are constants.

But they vary with the lattice. For our standard lattices they are holomorphic

functions in the variable τ (for im τ > 0).

Starting with the Eisenstein series we are able to construct the (analytic) dis-

criminant function

∆̃(τ) = g2
3(τ)− 27g3

2(τ).

An important result is that ∆̃(τ) 6= 0, and we define

j(τ) = 1728 · g2
3(τ)

∆̃(τ)
.

This j function classifies the isomorphy classes of tori. It is also called the elliptic

modular function.

Theorem 8.3. The field of meromorphic functions on the torus, or equivalently the

field of doubly periodic (i.e. elliptic functions) can be given as

M(T ) = C(℘, ℘′)

with the relation (8.3). In a more algebraic notation this writes as

M(T ) ∼= C(X)[Y]/(Y2 − 4X3 + g2X + g3).

1see Hurwitz-Courant,[HC], p.161 for these results.
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Remarks on the notation:

(1) C(℘, ℘′) denotes the field of quotients of polynomial expressions in ℘ and ℘′.

(2) C(X) denotes the field of rational functions in the formal variable X, i.e. the

field of quotients of polynomials, or equivalently C(X) = QuotC[X].

Proof. Let f ∈M(T ) be given with a pole of order m at the point ā 6= 0̄.

g(z̄) = f(z̄) · (℘(z̄)− ℘(ā))m

is now another function which has this pole removed. By induction we reach a

function having only poles at 0̄. Subtracting complex multiples of ℘ and ℘′ and

taking into account that there are no doubly periodic functions which have only a

pole of order one (see Proposition 8.2, we get finally an everywhere holomorphic

function on the torus, hence a constant. Working backwards we get the claim.

Next we want to identify T with an elliptic curve in P2(C). We consider the

cubic curve E = V(f) with

f(X, Y, Z) = Y 2Z − 4X3 + g2XZ
2 + g3Z

3, with ∆̃ = g3
2 − 27g2

3 6= 0. (8.4)

To make contact with the Weierstraß normal forms of the kind which we discussed

in the previous chapter we rewrite the polynomial −f/4 (which gives of course the

same E) as

−
(
Y

2

)2

Z +
(
X3 − g2

4
XZ2 − g3

4
Z3
)
.

If we set Y ′ = Y/2, a4 = −g2/4, and a6 = −g3/4 we obtain our previous form (with

variables Y ′ and X) (7.2). The discriminant (7.3) calculates as

∆ = 4a3
4 + 27a2

6 = − 1

42
(g3

2 − 27g2
3) = − 1

42
∆̃.

As ∆̃ 6= 0 also ∆ 6= 0 and our cubic curve (8.4) is non-singular. Which says that it

is an elliptic curve.

We define the following map

Ψ : T → P2, z̄ 7→

(℘(z) : ℘′(z) : 1), z̄ 6= 0̄ ,

(0 : 1 : 0), z̄ = 0̄ ,
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where z̄ = z + L. Recall that 0̄ is the class of lattice points. Furthermore note that

℘(z+L) = ℘(z). By the differential equation of the Weierstraß ℘ function (8.3) the

images of the non-lattice points lie on the affine part of the elliptic curve E (8.4).

The class of the lattice points maps to the point at ∞ of E.

Proposition 8.4. The map Ψ is an analytic isomorphism of T with E.

Proof. ℘ is an analytic function on the torus. As such it can be considered as a

map to P1(C); the poles are mapped to ∞ ∈ P1(C). From the theory of analytic

functions on Riemann surfaces one knows that it takes every value of P1(C) equally

often (calculated with multiplicity). It has a pole of order 2 at 0̄ ∈ T and nowhere

else. Hence every value occurs two times. But ℘ is an even function hence the two

points with the same value are z̄ and −z̄.

Injectivity. Assume that (℘(z), ℘′(z)) = (℘(w), ℘′(z)) then w̄ = −z̄ and hence

℘′(w) = ℘′(−z) = −℘′(z). If ℘′(z) 6= 0 the second components cannot be the same.

It remains to study the the zeros of ℘′. As ℘′ has poles of order 3 at the lattice

points (hence at 0̄ ∈ T ) it has also 3 zeros on T . These zeros are 1/2, τ/2, (1+τ)/2.

Why? We calculate (using the fact that ℘′ is doubly-periodic)

℘′(1/2) = ℘′(1/2− 1) = ℘′(−1/2) = −℘(1/2),

hence −℘(1/2) = 0. Similar calculations work for the other two points. For these

three points we have z̄ = −z̄. Hence, there is only one point of the torus which

maps to the point on the curve we started with. This shows Injectivity on the affine

part. Injectivity at the point 0̄ is by definition of the map.

Analyticity. On the affine part the map is given by the holomorphic functions ℘ and

℘′. Hence the statement is clear. For checking it around 0 we rewrite

Ψ(z̄) = (
℘(z)

℘′(z)
: 1 :

1

℘′(z)
)

in a neighbourhood of z not containing the zeros of ℘′. This expression also makes

sense for z = 0 in the limit and yields (0 : 1 : 0). Hence, Ψ is also analytic at 0, and

0̄ respectively.

Surjectivity. Let us take (α, β) a point in the affine part of the elliptic curve E.

In particular, the coefficients fulfill the equation of the curve. The doubly periodic

function ℘(z) − α has a pole of order two at the lattice points, hence it has also

two zeros in F (respectively on T ). Let z1 be such a zero. If we plug in this point
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into the differential equation for ℘ we get that ℘′(z1)2 = β2. Hence, β = ±℘′(z1).

If β = +℘(z1) we are done, as Ψ(z1) = (℘(z1), ℘′(z1)) = (α, β). Otherwise, we take

as pre-image z2 = −z1 and obtain Ψ(z2) = (℘(−z1), ℘′(−z1)) = (℘(z1,−℘′(−z1)) =

(α, β). As our curve has only one point at ∞, the point (0 : 1 : 0) which is the

image point of 0̄ we showed surjectivity.

Remark 8.5.

1. In this way we showed that each complex 1-dimensional torus is an elliptic

curve over C. Indeed it is also possible to show the opposite. In particular, from

the complex analytic point of view they are the same objects.

2. Note that ψ is not an algebraic isomorphism as it is given by transcendental

functions.

3. The identification gives another interpretation of the group law on elliptic

curves. Note that T has a group structure coming from the group

(C,+) : z̄1 + z̄2 = z1 + z2 .

If we transfer this group law via Ψ we get a group law on the elliptic curve. In

fact, it is exactly the group law we have expressed in (7.10). To show that they

coincide one needs some additional arguments which we will not reproduce here. As

a consequence from Ψ we obtain the so-called addition theorem for the ℘ function2.

We obtain for z1 6= z2

℘(z1 + z2) =
1

4

(
℘′(z1)− ℘′(z2)

℘(z1)− ℘(z2)

)2

− (℘(z1) + ℘(z2)) . (8.5)

℘(2z) = −2℘(z) +
1

4

(
6℘2(z)− 1/2 g2

℘′(z)

)2

. (8.6)

Recall that the x-coordinate of the point on the elliptic curve is given by the ℘

function. If we write down the corresponding formula (7.10) for the y-coordinate we

get similar expressions for an addition theorem for ℘′.

2The factor of 1/4 in the first expression comes from the fact that our Y ′ = ℘′/2.



Chapter 9

Mixed topics

9.1 The discrete logarithm problem (DLP)

Let G be a finite group with neutral element e. Let a be an element of G and 〈a〉
the cyclic subgroup of G generated by a, i.e.

〈a〉 := {an |n ∈ Z} .

Of course 〈a〉 will only have finitely many different elements. Set ord(a) = #〈a〉.
Then

〈a〉 := {a0 = e, a1, a2, .., aord(a)−1} .

The group G itself is called a cyclic group if an a ∈ G exists with G = 〈a〉. Such

an a is called a generator of G. Given a ∈ G and k ∈ N then calculating b = ak is

simple (assuming that we have a group in which we can easily do multiplication).

But: Given b and a searching k such that ak = b is typically difficult. Finding

such a k is called the discrete logarithm problem (DLP) as “k = loga b
′′ . One ”brute

force” approach is to calculate all ak for all k and compare the result with b. This

is not feasible if our group G is large.

Before discussing suitable groups I like to show how this can be used to exchange

a secret key c between partners A and B. The procedure is called Diffie-Helmann

key exchange.

1.The parties A and B choose a cyclic group G and a generator a, i.e. the pair

(G, a). These data can be revealed to everybody.

2. Now A chooses a secret key k and calculates ak, and B chooses a secret key l and

calculate al.

81
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3. They exchange the calculated values.

4. Hence A receives al, takes its kth power and calculates (al)k = al·k . The party

B receives ak, takes its lth power and calculates (ak)l = al·k .

5. The common value c = al·k is their shared secret.

6. Known (as it went over the transmission channel) are a, al, ak but neither k, nor

l nor c = al·k. To determine c one would have to know l or k . In other words, one

would need to calculate the discrete logarithm of al or ak.

Encoding (this means calculating ak) can be done very effectively by squaring

and multiplying as the Figure 9.1 shows.

Figure 9.1: operation diagram

This gives O(log k) operations.

Whether decoding is simple or not depends on the realization of the cyclic group.

1. The group (Z\nZ,+) with generator a = 1 . In this case the discrete logarithm

problem is totally trivial. Given ”al” means that we have l directly given. The

group operations are residue class additions.

2. The multiplicative group F∗q is also a cyclic group of order (q−1) where q = pn,

p ∈ P. It is more secure but q must be quite large. The group operations are

polynomial multiplication combined with residue class multiplication.
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3. Much better is the group E(Fq) of Fq valued points on an elliptic curve (suitable

chosen). In general it will not be a cyclic group, but we take cyclic subgroups of

it. The group operations are still reasonable simple but the discrete logarithm

problem is hard. It is a very effective method. See Section 7.3 for an example.

9.2 Noetherian rings, the Hilbert’s basis theorem.

Let R be a commutative ring with unit.

Definition 9.1. R is called Noetherian if every ideal I ⊂ R is finitely generated,

i.e. there exists f1, .., fr ∈ R such that

I = (f1, .., fr) = {
r∑
i=1

gi · fi | gi ∈ R} .

Claim: The following statements are equivalent:

a) R is Noetherian.

b) Every ascending chain of ideals I1 ⊂ I2 ⊂ I3 ⊂ ... becomes stationary, i.e. there

exists an n0 such that In0 = In0+1 = In0+2 = ....

c) Every non-empty set of ideals in R has maximal elements.

Proof. a) ⇒ b) Let R be Noetherian and consider an arbitrary ascending chain of

ideals I1 ⊂ I2 ⊂ I3 ⊂ .... Set I =
⋃∞
i=1 Ii and notice that I is an ideal as well.

Then I = (f1, .., fr) for some f1, .., fr ∈ R . Each fi belongs to some Ini
. For

n = maxi=1,..,r ni we get fi ∈ In ∀i = 1, .., r . Therefore, Ii ⊂ I ⊂ In, ∀i , in

particular In = In+1 = In+2 = ... .

b) ⇒ c) Assume that there exists a non-empty set M of ideals without a maximal

element. Then for every I1 ∈ M there exists I2 ∈ M with I1 $ I2. This

gives an ascending chain of ideals I1 $ I2 $ I3 $ ... that does not become

stationary. This is a contradiction to b).

c) ⇒ a) Take an arbitrary ideal I ⊆ R. Consider the set M of all finitely-generated

ideals with generators from I. By assumption M has maximal elements.

We take one and call it I0. As I0 lies in M it is finitely generated, e.g.

I0 = (f1, .., fr0) with fi ∈ I. For every f ∈ I we consider the ideal J =



84 CHAPTER 9. MIXED TOPICS

(f1, .., fr0 , f) ∈ M . Now I0 ⊂ J , and as I0 is maximal under the finitely gen-

erated ones we obtain I0 = J . Hence, f ∈ I0. As this is true for all f ∈ I we

obtain I = I0. In particular I, itself is finitely generated.

Recall that a principle ideal domain (PID) is a ring without zero divisors (a

domain) for which all ideals can be generated by one element. Such ideals are called

principal ideals. In particular, a PID is always Noetherian. Examples of PID, and

hence of Noetherian rings, are given by: the integers Z, the polynomial ring in one

variable and the ring of formal power series K[[X]] in one variable. In fact, for K[[X]]

the only ideals are the zero ideal and the ideals (Xn) with n ∈ Z>0.

Starting from these rings the following theorem gives more examples of Noethe-

rian rings.

Theorem 9.2. (Hilbert’s basis theorem) Let R be a Noetherian ring. Let R[X] be the

polynomial ring in one variable with coefficients from R. Then R[X] is Noetherian.

Proof. Suppose R[X] is not Noetherian. Hence there exists an ideal I of R[X] that

is not finitely generated. Let f1 ∈ I be a polynomial with smallest degree. We write

f1 = a1X
n1 + ... ,with n1 = deg f1 . Here ... means terms of degree lower than

the one given explicitely. Since I is not finitely generated, there exists f2 ∈ I\(f1).

Choose f2 of smallest degree n2 with: f2 = a2X
n2 + .... For chosen f1, ..., fk we take

fk+1 ∈ I\(f1, ..., fk) of smallest degree nk+1 with fk+1 = ak+1X
k+1 + .... Clearly

n1 ≤ n2 ≤ ... by our construction.

Next we consider the chain of ideals in R generated by the coefficients (a1) ⊂
(a1, a2) ⊂ (a1, a2, a3) ⊂ .... As R was assumed to be Noetherian, the chain becomes

stationary, i.e. ∃k : (a1, ..., ak) = (a1, ..., ak, ak+1). Hence, ak+1 ∈ (a1, ..., ak) which

says that ∃b1, .., bk ∈ R such that ak+1 =
∑k

1 bi · ai .
We set g := fk+1−

∑k
i=1 bi ·fi ·Xnk+1−ni . Since fk+1 /∈ (f1, ..., fk) the same is true

for g. However deg g < nk+1, which contradicts to our choice of fk+1. Therefore,

every ideal in R[X] is finitely generated and R[X] is thus Noetherian.

Corollary 9.3. If R is Noetherian then R[X1, ..., Xn] is Noetherian too.

Proof. Notice R[X1, ..., Xn] ∼= R[X1, ..., Xn−1][Xn] and apply induction.

By this we directly get



9.2. NOETHERIAN RINGS, THE HILBERT’S BASIS THEOREM. 85

Theorem 9.4. Z[X1, ..., Xn] is Noetherian. K[X1, ..., Xn] is Noetherian. In other

words, the polynomial ring in n variables over a field K or over the integers Z is

Noetherian.

In particular, all ideals in the polynomial ring K[X] are finitely generated.

This statement has some geometric consequences.

Theorem 9.5. Let K ⊂ L be a field extension. Then every descending chain V1 ⊃
V2 ⊃ .. of affine varieties in An(L) defined over K in An(L) becomes stationary.

Proof. Recall that to every variety V we can assign its vanishing ideal I(V ), see

Section 3.5.1. The descending chain of varieties give an ascending chain of ideals

I(V1) ⊂ I(V2) ⊂ ... ⊂ K[X1, ..., Xn] .

As the polynomial ring is Noetherian this chain becomes stationary, hence for some

n, I(Vn) = I(Vn+1) = ..... But this implies

Vn = V(I(Vn)) = V(I(Vn=1) = Vn+1... .

In particular each affine variety has only finitely many affine subvarieties.

Zariski topology:

This is a topology defined for An(K) = Kn. A topology on a set M can be given

by defining which sets are the closed sets and taking care that certain basic axioms

are fulfilled. These axioms are

1. M and ∅ are closed,

2. finite unions of closed sets are closed,

3. arbitrary intersections of closed sets are closed.

It is also possible to define a topology by defining what are the open set. Both

definitions are related. The open sets will be the complements of the closed sets. In

the axioms the role of union and intersection will be inverted.

In our case we declare the affine varieties V(I) ⊂ An(K) = Kn to be closed

sets (hence their complements are declared open). Then the axioms of topology are

satisfied as
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- ∅ = V(1), Kn = V(0) are closed.

-
⋃r
i=1 V(Ii) = V(I1 · · · · Ir) is closed.

-
⋂
iV(Ii) = V(

∑
Ii) (for any number of V(Ii)) is closed.

With this definition Kn = An(K) becomes a topological space. Note also that we

can either take the definitions using vanishing sets of ideals or vanishing sets of

finitely many polynomials. Due to the fact that the polynomial ring is Noetherian

both definitions coincide.

Example. (Closed subsets in A1(K) = K). The relevant ring is the polynomial

ring in one variable. Clearly K = V(0) and ∅ = V(1). Since all ideals in K[X]

are principal, the only other closed sets are V(f), f ∈ K[X] with f a non-constant

polynomial in one variable. Since a polynomial of degree d can have at most d

zeros, all such sets are finite. On the other hand, for every finite set of points

{a1, ..., ar} ∈ K, the set Y = V ((f)) with

f(X) = (X − a1)(X − a2) · · · (X − ar)

consists exactly of these points, i.e. is an affine variety. Hence we obtain

Proposition 9.6. The only Zariski closed sets in K are the sets ∅, K, and its finite

subsets.
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