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ABSTRACT

Microbial communities are ubiquitous and dynamic systems that inhabit a multitude of environments. They
underpin natural as well as biotechnological processes, and are also implicated in human health. The
elucidation and understanding of these structurally and functionally complex microbial systems using a broad
spectrum of toolkits ranging from in situ sampling, high-throughput data generation ("omics"), bioinformatic
analyses, computational modelling and laboratory experiments is the aim of the emerging discipline of
Eco-Systems Biology. Integrated workflows which allow the systematic investigation of microbial consortia
are being developed. However, in silico methods for analysing multi-omic data sets are so far typically
lab-specific, applied ad hoc, limited in terms of their reproducibility by different research groups and sub-
optimal in the amount of data actually being exploited. To address these limitations, the present work initially
focused on the development of the Integrated Meta-omic Pipeline (IMP), a large-scale reference-independent
bioinformatic analyses pipeline for the integrated analysis of coupled metagenomic and metatranscriptomic
data. IMP is an elaborate pipeline that incorporates robust read preprocessing, iterative co-assembly, analyses
of microbial community structure and function, automated binning as well as genomic signature-based
visualizations. The IMP-based data integration strategy greatly enhances overall data usage, output volume
and quality as demonstrated using relevant use-cases. Finally, IMP is encapsulated within a user-friendly
implementation using Python while relying on Docker for reproducibility. The IMP pipeline was then
applied to a longitudinal multi-omic dataset derived from a model microbial community from an activated
sludge biological wastewater treatment plant with the explicit aim of following bacteria-phage interaction
dynamics using information from the CRISPR-Cas system. This work provides a multi-omic perspective
of community-level CRISPR dynamics, namely changes in CRISPR repeat and spacer complements over
time, demonstrating that these are heterogeneous, dynamic and transcribed genomic regions. Population-level
analysis of two lipid accumulating bacterial species associated with 158 putative bacteriophage sequences
enabled the observation of phage-host population dynamics. Several putatively identified bacteriophages
were found to occur at much higher abundances compared to other phages and these specific peaks usually
do not overlap with other putative phages. In addition, there were several RNA-based CRISPR targets that
were found to occur in high abundances. In summary, the present work describes the development of a new
bioinformatic pipeline for the analysis of coupled metagenomic and metatranscriptomic datasets derived from
microbial communities and its application to a study focused on the dynamics of bacteria-virus interactions.
Finally, this work demonstrates the power of integrated multi-omic investigation of microbial consortia
towards the conversion of high-throughput next-generation sequencing data into new insights.
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Chapter 1 Microbial communities

1.1 Microbial communities

Naturally occurring microbial communities (or consortia) are ubiquitous in the environment and underpin
important biomedical, biotechnological and natural processes. For instance, the human microbiome (microbial
communities in and on the human body) plays an important role in human health [Turnbaugh et al., 2007;
Greenhalgh et al., 2016]; activated sludge microbial communities within biological wastewater treatment
plants are important for the remediation of communal wastewater prior its release into the environment
[Daims et al., 2006]; and marine microbial communities are believed to be the main photosynthetic oxygen
producers [Arrigo, 2005]. Given the importance of microbial communities, it is essential for the scientific
community to better understand these important components of nature in their natural environments.

This work utilizes the terms microorganisms and microbes interchangeably. While these terms may carry
a general definition and are used in various contexts, within this work these terms encompass a broad range
of microbial taxa including, but not limited to, bacteria, archaea, protozoa, micro-eukaryotes and viruses.
A collection of microbial cells of the same species/subtype present in the same place and at the same time,
is referred to as a population. In general, microbes rarely ever exist naturally as isolated populations, but
rather as mixtures of different microbial populations. These mixtures of microbial populations are referred
to as microbial communities (or mixed microbial communities), which may have emergent properties, i.e.
properties of the constituent populations do not sum to the properties of the entire community, and thus cannot
be predicted by studying individual populations separately [Odum and Barrett, 1971]. The complexities of
microbial communities vary a lot from one system to another. For example, acid mine drainage biofilms
represent relatively simple communities, with low diversity and dominance by specific taxa [Denef et al.,
2010]. On the other end of the spectrum, soil microbial communities exhibit far more complex structures, with
up to thousands of different microbial populations which undergo rapid changes of the community due to rapid
environmental fluctuations [Mocali and Benedetti, 2010]. In between these two extremes, there are microbial
communities such as those present within biological wastewater treatment plants which exhibit important
characteristics of both low and high complexity microbial communities [Sheik et al., 2014; Narayanasamy
et al., 2015; Muller et al., 2014a]. Such communities therefore represent good model systems for microbial
ecology [Daims et al., 2006].

Co-existing microbial populations within natural microbial communities are usually present in differing
abundances (i.e. differing community structures) and undergo constant change over time (i.e. community
dynamics). These complex structures and dynamics result from constant adaptation of the community to
environmental fluctuations which include physical (temperature, pH) and chemical (substrate availability)
changes [Muller et al., 2013; Narayanasamy et al., 2015]. Furthermore, populations within a microbial
community are constantly interacting with each other (e.g. predation, competition, mutualism, antagonism,
etc.), further affecting the overall dynamics of the community.

Understanding microbial community structure (i.e. what are the members of the community) is of
general interest. However, more recently interest has also focused on deciphering the function/phenotype of
different microbial populations within communities to elucidate what the different members of the community
are doing. This is under the assumption that different populations within a given microbial community
are believed to carry out specific functions or roles, thus contributing to the collective phenotype of the
community [Muller et al., 2013; Narayanasamy et al., 2015]. Given the aforementioned characteristics (i.e.
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Chapter 1 Model microbial community

the complexity and dynamics) of microbial communities, they may be viewed as omnipresent highly complex
systems, yet elusive components of the environment.

The field of microbiology and molecular biology have advanced greatly over the past years due to
the emergence of cutting-edge technologies that enable high-resolution and high-throughput molecular
measurements [Muller et al., 2013; Segata et al., 2013]. Thus, to complement classical tools, techniques
and strategies of microbiology based on strain cultivation within controlled lab conditions [Stewart, 2012],
the scientific community has moved towards the direct study of microbial communities within their natural
environments. Studying microbial consortia by application of high-throughput, high resolution molecular
measurements (“meta-omics”) provides the opportunity to discover novel organisms and functionalities
(genes), which may not be possible with classical microbiological methods, due to the unculturability of most
naturally occurring microbial taxa under standard laboratory conditions [Staley and Konopka, 1985; Amann
et al., 1995; Stewart, 2012]. However, it is important to define microbial communities that will serve as
models for fundamental understanding of microbial communities (i.e. complexity, interactions and dynamics)
as well as communities that play an important role, either in nature, biotechnological processes and/or human
health.

1.2 Model microbial community

This present work leveraged a model microbial community found within biological wastewater treatment
(BWWT) plants for extensive study. These communities are biotechnologically relevant due to their influence
on the wastewater treatment process, which is in turn important for the environment. In particular, this work
will focus on microbial populations that accumulate lipids that are present in floating sludge islets that occur
at the air-water interface of the anoxic tanks. The lipid accumulating phenotype of these organisms represent
a potential resource for renewable energy production from wastewater. More importantly for the present
work though, is the fact that this system is well suited for fundamental understanding of characteristics and
dynamics of natural occurring microbial community.

Direct discharge of organic (e.g., carbohydrates, fats, proteins, organic solvents) and inorganic (e.g.
phosphate, nitrate, metallic ions) compounds into natural water bodies may lead to severe perturbations of
ecosystems as they can either serve as nutrient and stimulate growth of heterotrophic organisms leading
to a reduction in dissolved oxygen or be toxic towards the native organisms [Conley et al., 2009; Roume
et al., 2013b]. Therefore, BWWT relies on naturally-occurring microbial community-driven remediation of
municipal and/or industrial wastewater, before its release into the environment. Since its conception about a
century ago by E. Arden and W.T. Lockett, BWWT plants, including the standard activated sludge process
and other ancillary processes, has become a widespread process that is present in most of the developed world.
For instance, in 2013 Luxembourg had 109 BWWT plants that handled approximately 95 % of the total
wastewater [Roume et al., 2013b]. While the overall procedure seems rather simplified, BWWT is a complex
process at the interface of engineering, biology and biochemistry, which is not completely understood to date
[Wang and Pereira, 1987]. Conventional BWWT plants are made up of a combination of physical, chemical
and biological stages that remove solids, organic matter and nutrients from wastewater (Figure 1.1). In
summary, the objectives of wastewater treatment include: i) minimizing the release of organic compounds
into natural water bodies to reduce the bloom of heterotrophic organisms and thereby reducing overall oxygen
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demand, ii) oxidization of ammonia to reduce toxicity and its deoxygenation effects and iii) reduction of
eutrophic substances, such as phosphate [Mara and Horan, 2003; Conley et al., 2009; Roume et al., 2013b].

Traditional BWWT plants consist of three stages including: i) physical treatments which removes
suspended solids from the wastewater, ii) primary treatment to remove settleable organic and inorganic solids
via sedimentation as well as grease and oil removal by skimming and iii) secondary treatment involving the
removal/reduction of organic matter in the wastewater using an aerobic biological treatment processes, i.e. the
activated sludge process (Figure 1.1). This process relies on naturally occurring microbial communities to
reduce organic compound availability in the wastewater [Wagner and Loy, 2002]. These organic compounds
are mainly assimilated into microbial biomass (carbon sources) or are oxidized and released as carbon dioxide.
In essence, wastewater treatment relies on the digestion of the energy-rich C-C bonds by microorganisms and
its transformation into microbial biomass as a means of removing these compounds from the wastewater.

Although the activated sludge process is one of the most widely used biotechnological processes in the
world, it is known to be highly energy- and resource-consuming (i.e. water pumping, air bubbling). Yet,
BWWT processes hold great potential for future sustainable production of various commodities, including
energy, from wastewater as well as from other mixed substrates, further expanding on their original function
of wastewater treatment [Sheik et al., 2014; Muller et al., 2014a]. Indeed, BWWT plants host diverse and
dynamic microbial communities, which in turn contain microbial species that possess varied metabolic
capabilities over changing environmental conditions, e.g. microorganisms accumulating various storage
compounds of biotechnological importance, thus making it a reservoir for potentially useful novel microbial
species [Sheik et al., 2014; Muller et al., 2014a; Narayanasamy et al., 2015]. Consequently, BWWT plants
represent a readily available resource (and facility) for production of biofuels, with relatively low cost
of modification to already existing structures. An approximated 226 prokaryotes were identified within
various BWWT microbial communities. However, information and detailed study of these potentially useful
microorganisms remain limited, with only 72 draft genomes reported so far, out of the total 226 identified
organisms [McIlroy et al., 2015].

The model microbial system subject of the present work is represented by microbial communities
occurring within floating sludge islets of an anoxic tank of a BWWT plant (Figures 1.1 to 1.3) [Sheik
et al., 2014; Muller et al., 2014b]. The anoxic tank (Figure 1.1) is part of the activated sludge process,
more specifically, within the secondary treatment of the BWWT process that promotes denitrification, i.e.
reduction of nitrate (NO3) to nitrogen gas (N2) by heterotrophic bacteria (i.e. bacteria that requires organic
carbon for growth). The removal of nitrogen from wastewater is achieved by limiting dissolved oxygen (O2)
levels, such that heterotrophic bacteria are forced to consume nitrate for energy, instead of oxygen, which
is then released as gaseous dinitrogen. The water surface of these anoxic tanks tend to accumulate foamy
sludge islets (Figure 1.3), which contain lipid accumulating microbial populations (LAMPs) whereby the
most notable is Candidatus Microthrix parvicella (also referred to as M. parvicella), a filamentous lipid
accumulating organism which is highly dominant (up to 30 % relative abundance) in the system [Blackall
et al., 1996; Muller et al., 2012; McIlroy et al., 2013]. Consequently, its lipid accumulating properties are of
pronounced interest from a biotechnological perspective, most specifically for lipid-based biofuel production
from wastewater [Muller et al., 2014a; Sheik et al., 2016]. The floating sludge islets could be easily collected
through surface skimming, compared to other by-products of BWWT plants. Therefore, it is of great interest
to maximize the abundance of LAMPs, such as M. parvicella, through systematic manipulation of this specific
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microbial community for consistent and optimal production of biofuels from BWWT plants [Sheik et al.,
2014].

In addition to being a resource for the production of high added value compounds, the LAMPs are also
well-suited for fundamental studies aimed at obtaining generalizable understanding and knowledge with
regards to the ecology of microbial consortia. LAMPs exist within a fluctuating environment (water/air
temperature, pH, oxygen and nutrient concentrations). However, these fluctuations are almost always within
well-defined/-controlled physical and chemical boundaries [Daims et al., 2006; Sheik et al., 2014; Muller et al.,
2014a]. Overall, LAMPs represent a unique combination of a highly fluctuating, yet relatively well-controlled
environment, which is rare in most natural ecosystems. More importantly, physico-chemical parameters,
such as temperature, pH, oxygen and nutrient concentrations are routinely monitored and recorded. Such
detailed monitoring allows the establishment of causal links between the influence of certain environmental
effects on microbial community structure and/or function when coupled to temporal sampling. As such, this
system also represents a convenient and virtually unlimited (high reproducibility) source of spatially and
temporally resolved samples (Figures 1.2 and 1.3). Obtaining temporal and/or spatial samples from other
microbial habitats, e.g. the marine environment, acid mine drainage biofilms, the human gastrointestinal tract,
etc. would be rather challenging or in some cases, near impossible.

While being highly dynamic, LAMPs maintain a medium to high range of diversity/complexity with
an alpha(α)-diversity of approximately 600, representing an important intermediary step/model between
communities of lower diversity, e.g. acid mine drainage biofilms [Denef et al., 2010], and complex communi-
ties, such as those from soil environments [Mocali and Benedetti, 2010]. In addition, LAMPs also exhibit a
baseline stability over time, such that there is temporal succession of repeatedly few quantitatively (up to
30 % relative abundance) dominant populations [Muller et al., 2014b,a; Roume et al., 2015]. Overall, the
model community demonstrates high dynamics, while retaining important and interesting hallmarks of other
microbial communities including, for example, quantitative dominance of specific taxa (a characteristic of
acid mine drainage biofilm communities) and rapid stochastic environmental fluctuations (a characteristic
of soil environments). Microbial consortia from BWWT plants, including LAMPs, are very amenable to
experimental validation at differing scales, ranging from laboratory-scale bioreactors to full-scale plants, thus
providing the facility of conducting controlled experiments Figure 1.2. Overall, LAMPs exhibit important
characteristics and properties rendering it an ideal model for microbial ecology [Daims et al., 2006], and
more specifically eco-systematic omic studies in line with a discovery-driven planning approach [Muller
et al., 2013], facilitating hypothesis formulation and verification in rapid succession (Figure 1.2).

In conclusion, the present work leverages a model community that is interesting from a biotechnological
perspective of renewable biofuel production while being a representative system for studying microbial
communities in general.
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Figure 1.1: Schematic representation of an activated sludge based biological wastewater treatment plant process. Primary
treatment consists of screening and grit removal in order to remove large-sized floating solids, while the primary clarifier is used to
remove settling solids. The pre-treated wastewater is then mixed with microbial biomass present in the activated sludge and iteratively
pumped into the aerobic tank where aerators enable its agitation and oxygenation and then into the anoxic tank. The activated sludge
flocs are decanting in the secondary clarifier: the majority of this biomass is recycled to the beginning of the activated sludge process and
the rest is either disposed or further used for methane production through anaerobic digestion. The treated wastewater effluent is then
released into the environment (Adapted from Zeimes [2015]).
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Figure 1.2: The path from large-scale integrated omics to hypothesis testing and biotechnological application in the context of
biological wastewater treatment. Step 1; spatially and temporal resolved samples from BWWT plants. Step 2; sequential isolation
of high-quality genomic deoxyribonucleic acid (DNA), ribonucleic acid (RNA), small RNA, proteins and metabolites from a single,
undivided sample for subsequent systematic multi-omic measurements. Also including physico-chemical records. Step 3; multi-omic
data integration and analysis for a multi-level snapshots of microbial community structure and function in situ. Step 4; statistical and
mathematical modelling. Step 5; testing through targeted laboratory and/or in situ perturbation experiments followed by additional omic
measurements. Step 6; control of microbial community structure and/or function (Adapted from Narayanasamy et al. [2015]).
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Figure 1.3: Biofuel production from wastewater sludge. Aerial photograph of the Schifflange biological wastewater treatment plant,
Esch-sur-Alzette, Luxembourg (49◦30’ 48.29” N; 6◦1’ 4.53” E) operated by Syndicat Intercommunal à Vocation Ecologique. The
“anoxic tank number 1” is highlighted by the blue circle and the corresponding photos, from that tank in autumn and winter show variable
content of sludge in the different seasons. The sludge islets (e.g. highlighted in yellow) contain lipid accumulating microbial populations
(LAMPs), which are potential biofuel producers (Courtesy of E.E.L Muller).
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1.3 Bacteriophage - bacterial host interactions

Viruses are known to be the most abundant and diverse biological entities on the planet, inhabiting almost
every environment, with an estimated range of 1030 to 1032 of total viral particles on Earth [Marcó et al.,
2012]. They are believed to be responsible for the lysis of up to 50 % of prokaryotic cells, thereby increasing
the bioavailability of carbon and overall playing an important role in the carbon cycle [Breitbart and Rohwer,
2005]. It is important to note that viruses (and all relevant subclasses of virus), are referred to as biological
entities/components within the scope of this work [Rybicki, 1990; Raoult and Forterre, 2008; Koonin and
Starokadomskyy, 2016].

Bacteriophages are a subclass of viruses that infect and replicate specifically within bacterial cells
(also referred to as phages throughout this work), which are believed to play an essential role in microbial
communities by shaping their structure and influencing their dynamics (Figure 1.4) [Samson et al., 2013].
Accordingly, studies have shown the involvement of phages within simple communities, such as acid mine
drainage biofilms [Andersson and Banfield, 2008] and more complex microbial communities such as the: i)
marine microbiome [Wommack and Colwell, 2000; Suttle, 2007; Sheik et al., 2014], ii) human gastrointestinal
tract microbiome [Stern et al., 2012], iii) laboratory scale sludge bioreactors [Kunin et al., 2008], and iv) full
scale BWWT plants [Yasunori et al., 2002].

Given the capability of phages to lyse bacterial cells (Figure 1.4), they have been suggested as a viable
microbial community control strategy in various biomedical and biotechnological processes that rely on
microbial communities [Withey et al., 2005; Jassim et al., 2016]. The idea itself could be traced back to as
early as 1962 [Claeys, 1962], while there were also documented cases of the application of phage therapy
[Withey et al., 2005; Jassim et al., 2016]. However, the inconsistent results of phage treatment coupled with
the emergence of antibiotics, brought about the decline of phage therapy [Withey et al., 2005; Jassim et al.,
2016]. More recently, the interest towards phage-based treatments has resurfaced, including its possible
application as a control strategy for BWWT process [Withey et al., 2005; Jassim et al., 2016].

In principle, phage treatment could be used to mitigate common issues that plague BWWT plants, such as:
i) foaming of activated sludge (i.e. anoxic tank floating sludge islets; Section 1.2), ii) sludge de-waterability
and digestibility, iii) removal of pathogenic bacterial strains or iv) reduce strains that compete with functionally
important/useful bacterial populations [Withey et al., 2005; Jassim et al., 2016]. In order to apply such
strategies, it is essential to understand the role of bacteriophages in shaping BWWT plant communities, such
as LAMPs [Withey et al., 2005; Jassim et al., 2016].

Despite the abundance and diversity of bacteriophages, information with regards these biological entities
are relatively sparse compared to their bacterial host counterparts with approximately 2,200 viral genomes
versus more than 45,000 bacterial genomes in publicly available databases [Reddy et al., 2015; Paez-Espino
et al., 2016]. This gap in information is due to several reasons including, but not limited to: i) large fraction of
their host populations cannot be cultivated, and thus preventing the culturing of the associated bacteriophages
(Section 1.1), ii) the absence of marker genes for bacteriophages, such as the 16S rRNA genes for bacteria,
create a challenge in classifying phage genomic material (Sections 1.1 and 1.4.3) [Roux et al., 2011] and
iii) some phages integrate their genomes within bacterial host genomes, hindering conclusive identification
of phage genomes. Finally, given that a majority of bacterial species within BWWT remain unclassified
Section 1.2, this translates to a sparse number of associated bacteriophages identified within LAMPs [Kunin
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et al., 2008].
Fortunately, the advent of high-throughput omic datasets Section 1.4.3 opens up new opportunities

to study bacteriophages unlike previous efforts [Pride et al., 2012; Reyes et al., 2012; Wommack et al.,
2012; Shirley et al., 2015; Paez-Espino et al., 2016]. For instance, metagenomics (Section 1.4.3) provides
access to all genomic (DNA) components within a given microbial community, including bacteriophages
[Edwards et al., 2015]. Specific techniques, including the use of information from bacterial antiviral defence
mechanisms to associate bacteriophages and their host populations [Edwards and Rohwer, 2005; Andersson
and Banfield, 2008; Stern et al., 2012; Wommack et al., 2012; Emerson et al., 2013b,a; Edwards et al., 2015].

1.3.1 Phage infection mechanisms

Phages are known to exhibit two types of life cycles (Figure 1.4). The first type is known as a lytic life
cycle (Figure 1.4), which constitutes immediate replication of phages leading to lysis of host cells. However,
certain bacteriophages follow a lysogenic life cycle (Figure 1.4) by being dormant within the host cells
via integration of their genetic material into the host genomes as prophages. They then replicate as a lytic
phage when the conditions are suitable. Overall, phages are obligate parasites which require successful
infection of a host in order to replicate [Edwards et al., 2015]. However, bacterial hosts are able to fend
off the infections of phages through an arsenal of defence mechanisms [Labrie et al., 2010; Edwards et al.,
2015]. Bacterial defense against phages include, but are not limited to: i) mutation of membrane receptors, ii)
lipopolysaccharide coating of bacterial membrane, iii) restriction-modification of DNA and iv) CRISPR-Cas

system [Labrie et al., 2010]. As a consequence of these defense mechanisms, phages are under selective
pressure to counter its hosts’ defences [Samson et al., 2013; Edwards et al., 2015]. Consequently, bacterial
hosts and phages are locked in a constant evolutionary arms race driven mainly by phage-bacteria interactions,
which in turn drive microbial community dynamics [Samson et al., 2013].
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Figure 1.4: Structure, life cycle and dynamics of bacteriophages. (A) Structure of a phage (Adapted from Gelbart and Knobler
[2008]). (B) Lytic phage life cycle involves: attachment to the bacterial cell; injection/adsorption of genetic material; replication of
phage genome and generation of phage components; assembly of new phages; bacterial cell lysis and phage release (Adapted from
Feiner et al. [2015]). (C) Lysogenic phage life cycle involves: attachment of phage to bacteria; injection/adsorption of genetic material;
integration/insertion of phage genome into host genome; dormant state of phage as a prophage. The prophage exits the dormant stage
and replicates as a lytic phage when conditions are favourable (Adapted from Feiner et al. [2015]). (D) Bacteriophage and bacterial host
dynamics (Adapted from Bull et al. [2014]).
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1.3.2 The CRISPR-Cas mechanism

While there are multiple ways of linking bacteriophage(s) with their host populations [Edwards et al.,
2015], this work primarily focuses on the CRISPR-Cas system as a means of associating of bacteriophages
and bacterial hosts. The “clustered regularly interspaced palindromic repeats” or CRISPRs, are a class of
sequences present within prokaryotic genomes that include distinct short repeat sequences, interspaced by
short unique sequences [Barrangou and van der Oost, 2013; Rath et al., 2015; Amitai and Sorek, 2016].
These sequences were first identified and described by Yoshizumi Ishino and colleagues upon accidentally
locating these regions within the E. coli K12 strain [Ishino et al., 1987]. Such regions were also later found
in other prokaryotic species, such as Haloferax mediterranei, Streptococcus pyogenes, Anabaena sp. PCC
7120 and Mycobacterium tuberculosis [Jansen et al., 2002]. The term “CRISPR” was coined by Jensen and
colleagues [Mojica et al., 2000; Jansen et al., 2002]. In addition, they also identified CRISPR-associated
(cas) genes (which translate to Cas proteins/enzymes) located adjacent (or in close proximity) to CRISPR
genomic regions, and thereby suggesting the functional relationships between those genes and the CRISPR
genomic regions. Since then, a large number of studies followed suit and deciphered the mechanism of the
system as a memory-based immune system against invasive foreign genetic elements, such as bacteriophages
and plasmids [Pourcel et al., 2005; Kunin et al., 2008; Shah et al., 2013; Zhang et al., 2013, 2014]. This form
of defense came to be known as the CRISPR-Cas system and is estimated to exist within ~40 % of bacteria
and ~90 % of archaea [Godde and Bickerton, 2006; Kunin et al., 2007; Karginov and Hannon, 2010]. The
simplified mechanism of the CRISPR-Cas system is represented in Figure 1.5.

The CRISPR genomic region within a prokaryotic genome is made up of multiple elements (Figure 1.5).
The first element is a direct repeat sequence of approximately 24 to 47 bp, which occurs multiple times
within a given CRISPR region [Ishino et al., 1987; Jansen et al., 2002; Datsenko et al., 2012]. CRISPR loci

are generally almost palindromic in nature implying that these regions could form hairpin structures upon
transcription (and post-transcriptional processing) and are thereby well conserved within different prokaryotic
clades [Kunin et al., 2007]. Direct repeats are separated (or interspaced) by unique sequences known as
spacers (Figure 1.5) [Ishino et al., 1987; Jansen et al., 2002; Kunin et al., 2007; Datsenko et al., 2012].
Unlike the direct repeat sequences, spacer sequencers were shown to be highly heterogeneous and dynamic,
with constant additions, deletions and replacements of spacers within the CRISPR regions [Pourcel et al.,
2005]. This causes spacers to be highly heterogeneous within populations of a single prokaryotic species
[Pourcel et al., 2005]. Last but not least, functional CRISPR regions were shown to include an AT-rich leader
sequence upstream [Bult et al., 1996; Klenk et al., 1997; Jansen et al., 2002; Karginov and Hannon, 2010].

The simplified mechanism of the CRISPR-Cas system can be separated into three main/general stages:
i) adaptation, ii) CRISPR-RNA (crRNA) biogenesis and iii) interference (Figure 1.5). The adaptation
stage involves Cas proteins/enzymes, that detect and sample short fragments of sequences from foreign
invasive elements. These short fragments are known as protospacers, i.e. the original elements of CRISPR
spacers. Protospacers are recognized by these Cas proteins through specific sequence motifs, known
as the protospacer adjacent motifs (PAM) [Marraffini and Sontheimer, 2010; Shah et al., 2013]. Upon
detection, the Cas proteins cleave a protospacer at two ends and incorporates the cleaved fragment into the
CRISPR array of the host genome, usually within the leading end (i.e. the first repeat sequence from the
AT-rich flanking leader sequence) [Marraffini and Sontheimer, 2010; Datsenko et al., 2012]. As such, the
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spacer information is conserved in the next generation of bacteria, storing the history of previous infections
[Marraffini and Sontheimer, 2010]. The crRNA biogenesis involves transcription of the CRISPR genomic
regions to generate an unprocessed crRNA (pre-crRNA) [van Rij and Andino, 2006; Labrie et al., 2010;
Marraffini and Sontheimer, 2010]. The pre-crRNA is then further processed by splicing, such that individual
spacer sequences are accompanied by a single repeat sequence, forming the processed crRNA [Marraffini
and Sontheimer, 2010]. In the interference phase, these crRNAs form a complex with Cas proteins to detect
and interfere with foreign genetic elements via splicing/inhibition [Marraffini and Sontheimer, 2010]. More
specifically, the repeat region within the crRNA folds into a hairpin structure which is used to bond with the
Cas proteins, while the spacer is utilized as a guide to target invasive genetic elements via complementary
binding [Nishimasu et al., 2014]. While the general mechanism of the CRISPR-Cas system is relatively
simple, specific CRISPR-Cas mechanisms can be further classified into types I, II and III. This classification
is based on their participating cas genes (or Cas enzymes) and could be further divided into various subtypes
[Makarova et al., 2011]. Furthermore, the catalogue of cas genes are continually expanding based on updated
knowledge and new data [Zhang et al., 2014]. Complementary to the discovery of new Cas enzymes, there
are also many recent studies uncovering novel CRISPR-Cas mechanisms within prokaryotes.

The CRISPR-Cas system was rapidly translated into biotechnological application through the development
of a genome editing tool based on the type II CRISPR-Cas system, mediated by Cas9 nuclease protein/enzyme
[Wiedenheft et al., 2011; Jinek et al., 2012; Sashital et al., 2012; Selle and Barrangou, 2015]. Yin and
collaborators applied the CRISPR-Cas9 based genome editing tool to successfully correct a mutation within a
mouse model of a human liver disease [Yin et al., 2014].

Given that CRISPR loci, more specifically the CRISPR spacers, represent the history of previous infections,
multiple studies effectively leveraged this information to identify concomitant phages, and thus representing
an important method of tracking host-phage interactions within microbial consortia [Stern et al., 2012;
Biswas et al., 2013; Zhang et al., 2013; Edwards et al., 2015; Paez-Espino et al., 2016]. In summary, the
aforementioned studies utilize CRISPR information and leverage omic data to expand the available genomic
resource with regards to phages, and thereby advancing the field [Paez-Espino et al., 2016] (Section 1.3.1).
Despite the wealth of information delivered by these studies, there is still a gap elucidating the long- and/or
short- term dynamics of bacteriophages and bacterial hosts within their natural environment, and thereby
understanding the overall influence of phages within microbial consortia [Labrie et al., 2010; Samson et al.,
2013].
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Figure 1.5: Mode of action of type II CRISPR-Cas systems. The direct repeats of the “clustered regularly interspaced palindromic
repeats” (CRISPR) locus are separated by short stretches of non-repetitive (unique) DNA called spacers, which are acquired from the
invading DNA of viruses or plasmids in a process known as adaptation, during which an additional repeat is also duplicated. The CRISPR
locus is transcribed as a long primary pre- CRISPR-RNA (crRNA) transcript, which is processed to produce a collection of short crRNAs
(a process referred to as biogenesis of crRNA). Each crRNA contains segments of a repeat and a full spacer and, in conjunction with a
set of Cas proteins, forms the core of CRISPR-Cas complexes. These complexes act as a surveillance system and provide immunity
against ensuing infections by phages or plasmids encoding DNA complementary to the crRNA. On recognition of a matching target
sequence, the plasmid or viral DNA is cleaved in a sequence-specific manner (known as interference). The nucleotide sequence of the
spacer must be highly similar to a region of the viral genome or plasmid (known as the protospacer) for the CRISPR-Cas complex to
inhibit replication of these foreign genetic element. In type I and II CRISPR-Cas systems, a conserved sequence motif adjacent to the
protospacer, known as the protospacer-adjacent motif (PAM), is needed for spacer acquisition and interference (Adapted from Samson
et al. [2013]).
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1.4 Eco-Systems Biology

It is important to address the concept of Systems Biology as a prerequisite to Eco-Systems Biology [Zengler,
2009; Zengler and Palsson, 2012]. Systems Biology involves the study of multiple biological components, in-
cluding but not limited to, biomolecules, cells, tissues, organs and entire organisms within a biological system.
The field of Systems Biology emerged due to the highly complex and dynamic nature of living systems which
cannot be predicted and/or elucidated by looking at individual components/parts of a given biological system
[Shahzad and Loor, 2012] . Consequently, Systems Biology is a highly inter-disciplinary field that combines
various methodologies spanning from high-throughput molecular measurements, bioinformatic analyses,
laboratory experiments and mathematical modelling. There are two generalized study designs/approaches
defined under the umbrella of Systems Biology which includes the “top-down” and “bottoms-up” approach.
Top-down systems biology characterizes biological components of a particular system using large-scale omic
datasets followed by subsequent generation of mathematical models of the system. Those generated models
may aid in uncovering new insights into the biological system in question [Zengler, 2009; Shahzad and Loor,
2012]. On the contrary, bottom-up systems biology begins with a detailed models of a specific biological
system on the basis of its molecular properties and are usually followed by targeted measurements. These
measurements stem from either isolation, cultivation and/or various single-cell techniques [Zengler, 2009].
Despite being regarded as isolated approaches, these approaches should not be viewed as separate, but rather
should applied in an integrated manner to elucidate biological systems [Zengler, 2009].

Molecular Eco-Systems Biology (hereafter referred to as Eco-Systems Biology) applies similar principles
and methodologies of Systems Biology within microbial systems, such as the complex microbial communities
described in Section 1.1 [Raes and Bork, 2008; Zengler, 2009; Zengler and Palsson, 2012]. Systematically
obtained in situ time- and space-resolved datasets will allow deconvolution of structure-function relationships
by identifying key community members and key community functions [Raes and Bork, 2008; Zengler and
Palsson, 2012; Muller et al., 2013; Narayanasamy et al., 2015]. Knowledge garnered from such studies
offers the potential to discover novel microorganisms and biological functionalities within the framework of
Eco-Systems Biology [Albertsen et al., 2013a; Muller et al., 2014a; Roume et al., 2015; Heintz-Buschart
et al., 2016; Laczny et al., 2016]. In general, such insights may enable the control of microbial communities
either through interventions for improvement/optimization of biomedical treatments and/or biotechnological
processes [Muller et al., 2013].

1.4.1 Eco-Systems Biology for the study of phage-host interactions

The application of Eco-Systems Biology can be extended to the study of bacteriophage and host interactions,
especially given the possible application of bacteriophages in controlling microbial communities (Section 1.3).

More specifically, the information derived from microbial community samples in situ allows access
to more information than compared to classical culture/isolate based methods. Accordingly, the current
work combined the advantage of three separate avenues to effectively study phage and host interactions
and dynamics. First, the facility to perform time-series sampling of microbial communities in situ, such as
the LAMPs (Section 1.2), will enable the study of host and phage interactions within a natural system on
a longitudinal scale. Second, the ability to mine for phage-related information from microbial community
derived data, as highlighted in Section 1.3. Finally, using the CRISPR-Cas system as a valuable information
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source of phage-host interaction (Section 1.3).
The characteristic of microbial communities (Section 1.1) render standard microbiology-based methods

(i.e. originally designed for pure isolate culture systems) ineffective [Muller et al., 2013; Roume et al.,
2013b,a]. It is therefore absolutely essential to apply specialized non-culture based systematic approaches
for the study of microbial systems. Eco-Systems Biology is an integrative framework that encompasses a
wide array of specialized methods/techniques/analysis including: i) concomitantly extracted biomolecules
ii) systematic high-throughput omic data measurements, iii) integration and analysis to the omic data, iv)
experimental validation and ultimately v) the control of microbial systems (Figure 1.2). Accordingly, the
following sections describe these aforementioned methods in detail, focusing primarily on the integration of
the different omic data types. Briefly, the described methods enable the extraction of the information necessary
for this work. These include, but are not limited to: i) genome sequences of both host and phage populations,
ii) their predicted genes and corresponding functional annotations, iii) association of bacteriophages and their
hosts (i.e. using CRISPR information) as well as iv) transcribed components, such as genes and CRISPR
RNA.

1.4.2 Biomolecular extraction

The biomolecular extraction protocol designed by Roume and colleagues allows the sequential isolation
of high-quality genomic deoxyribonucleic acid (DNA), ribonucleic acid (RNA), small RNA, proteins and
metabolites from a single, undivided sample for subsequent systematic multi-omic measurements (Figure 1.2;
step 2 and Figure 1.6) [Roume et al., 2013b,a]. Importantly, this eliminates the need for subsampling the
heterogeneous biomass and, therefore reduces the noise arising from incongruous omics data in the subsequent
downstream integration and analysis steps (Figure 1.2; step 3 and Figure 1.6) [Muller et al., 2013; Roume
et al., 2013b,a]. Biomolecular isolations obtained from the aforementioned methodologies are subjected
to high-throughput measurements, resulting in omic data derived from a single unique sample to fulfill the
premise of downstream integrated omic analysis (Figures 1.2 and 1.6) [Muller et al., 2014a; Roume et al.,
2015; Heintz-Buschart et al., 2016].
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Figure 1.6: Concomitant extraction of biomolecules from a single unique microbial community sample and their downstream
high-throughput measurement techniques (Courtesy of L. Wampach and A. Kaysen).
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1.4.3 Multi-omic measurements

Studies within the context of Eco-Systems Biology were made possible mainly through the advent and
availability of the high-throughput, high-resolution molecular measurements (referred to as omic data),
applied to microbial consortia that were derived in situ [Raes and Bork, 2008; Zengler, 2009; Zengler
and Palsson, 2012; Muller et al., 2013]. Omic data involves the collective analysis (characterization and
quantification) of certain features of a family/class of biomolecules (i.e. DNA, RNA, proteins or metabolites
(Figures 1.2 and 1.6). The application of omic measurements to microbial communities results in meta-omic
data, whereby the suffix “meta” (in the scope of this work) implies measurements/data derived from mixed
microbial communities [Muller et al., 2013; Segata et al., 2013]. More specifically, meta-omic datasets
(metagenomic, metatranscriptomic, metaproteomics and (meta-)metabolomics) enables high-resolution
molecular-level studies of such microbial systems on a much larger scale compared with previous efforts
[Muller et al., 2013].

Metagenomics

The concept of DNA sequencing was introduced by Fredrick Sanger and colleagues in 1975 when they
proposed a chemistry that combines the use of polymerase chain reaction, inhibition/termination of DNA
polymerase activity and labelled fluorescence dyes [Sanger and Coulson, 1975; Sanger et al., 1977]. This
chemistry was further developed to achieve more rapid and accurate sequencing method, which resulted in
the first sequenced genome of the phi-X174 bacteriophage [Sanger et al., 1977]. Sanger sequencing was the
only available method of sequencing until the emergence of next-generation sequencing (NGS) technologies,
which enabled large-scale and deep sequencing of DNA fractions with relatively lower cost [Liu et al., 2012].
Currently, there are multiple NGS technologies/platforms available, whereby each of these platforms employ
a specific chemistries in deciphering DNA sequences (Figure 1.7) [Blow, 2008; Met; Quail et al., 2012].
NGS technologies can be further divided into “second-generation sequencing” technologies, also called
massive parallel sequencing, such as Illumina [Bentley et al., 2008], Roche 454 [Margulies et al., 2005] and
SoLiD [McKernan et al., 2009] and the more recent “third generation sequencing” technologies, such as
Pacific Biosciences [Eid et al., 2009] and Oxford Nanopore [Manrao et al., 2012]. The clonal amplification
step of DNA molecules to produce DNA colonies (Figure 1.7) is the main difference between second and
third generation sequencing methods, whereby this step is absent in the latter, culminating in the concept of
single molecule sequencing [Blow, 2008; Eid et al., 2009; Manrao et al., 2012]. It is important to note that
the clonal amplification steps are necessary in generating the large volumes (throughput) in second-generation
sequencing methods, which is not possible with third-generation methods.

NGS platforms are unable to read genome-sized (or long) DNA molecules, due to the current limitations
of all NGS technologies. Therefore, the general protocol of genome sequencing first involves a preparation
step of the DNA samples, such that they can be loaded onto NGS platforms (Figure 1.7), usually by
random fragmentation of multiple copies of a genome (for isolate genomic samples) to generate shorter
DNA fragments that would be readable by the NGS platforms. This overall preparatory procedure prior
to sequencing is widely known as a whole genome shotgun (WGS) procedure and result in WGS libraries.
More specifically, the term “shotgun” in WGS is used due to the aforementioned fragmentation process
which is akin to the quasi-random firing pattern of a shotgun. It is important to note that WGS library
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preparation protocols vary for different sequencing technologies (Figure 1.7) [Met; Liu et al., 2012]. WGS
libraries are processed by an NGS instrument/machine (i.e. sequencer) to yield in silico representations of the
biological DNA molecules, known as sequencing reads [Blow, 2008; Met; Quail et al., 2012]. The Illumina
sequencing platform is notably the most applied sequencing technology due to its ability to generate the
highest-throughput (i.e. largest number of bases/reads per sequencing run) with relatively low cost [Liu et al.,
2012].

It is also important to highlight that DNA sequencing may also be carried out using a targeted approach,
which typically refers to the sequencing of a known DNA locus, selected either for the encoded function
or, more often for its phylogenetic/taxonomic information, using primer-based amplification. In the specific
context of microbial communities, high-throughput ribosomal RNA (rRNA) gene amplicon sequencing
(usually 16S rRNA gene sequencing) facilitates the preliminary characterization of microbial community
composition and structure [Segata et al., 2013]. However, such targeted amplicon sequencing will not be
classified as metagenomic (MG) data within the scope of this work. Rather, this work defines MG data to
be the result of a WGS sequencing procedure applied on bulk microbial community-derived DNA samples.
Beyond targeted sequencing datasets, MG data is arguably the most commonly generated high-throughput
dataset for microbial community studies, with 37,239 datasets publicly available on NCBI sequence read
archive (SRA) [Leinonen et al., 2011], as of 24 October 2016. MG data provides information on the
community structure, (i.e. which microbial community members are present) as well as a prediction of gene
functions (i.e. the functional potential) [Muller et al., 2013; Vanwonterghem et al., 2014]. Within the scope
of this work, it is important to highlight that metagenomic sequencing entails the indiscriminate sequencing
of all DNA molecules within a sample which also includes viral (or phage) DNA genomes. Hence, MG data
was previously shown as a large resource that can be used to mine for viral sequences, which far surpasses the
what would be able to be achieved with classical microbiology methods [Paez-Espino et al., 2016].

Metatranscriptomics

Given that the RNA molecular structure is analogous to DNA, it can also be subjected to NGS with additional
laboratory processing protocols. It is important to note that NGS platforms are only able to sequence
DNA molecules. Therefore, the RNA samples serve as template to synthesize reverse transcribed DNA (i.e.
complementary DNA - cDNA) before undergoing NGS. Similar to the DNA samples, RNA samples can
also undergo targeted sequencing (as described in Section 1.4.3) or whole transcriptome shotgun (WTS)
sequencing, i.e. random shotgun sequencing of bulk RNA samples equivalent to WGS.

In the context of this work, WTS performed on bulk RNA samples derived from microbial communities
are considered as metatranscriptomic (MT) data. As of 24 October 2016, there are 397 MT datasets available
on the NCBI SRA [Leinonen et al., 2011], which is relatively little compared to MG data (37,239). In
addition, rRNA depletion (often partial depletion) of MT samples enables deeper sequencing of mRNA
and thus providing better access to functional readouts from MT data and other interesting RNA-based
components, such as RNA viral genomes. Functional expression can be characterized using MT data, and
by extension provides a snapshot of which members of the community are most active and the genes that
they are expressing (and the quantity of expression). Similar to MG data, it also provides access to RNA
sequences derived from viruses or bacteriophages, including both genes and RNA genomes. Finally, although
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this work focuses on the analysis of MG and MT data, it is important to note that additional function-based
omic datasets, such as metaproteomic and (meta-)metabolomic datasets are crucial to fully understand the
actual functional capacity of microbial communities (Figures 1.2 and 1.2).
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Figure 1.7: Next generation sequencing protocols and chemistries. Different types of starting molecules are converted into double-
stranded DNA molecules that are flanked by adapters. Adapters are sequencing platform-specific artificial DNA molecules which are
introduced to the biological DNA via ligation. They immobilize the biological DNA to surfaces that contain sequences complementary to
the adapters. These surfaces include either beads (454/SoLiD/PGM) or a flow cell (Illumina). DNA molecules attached to these surfaces
are amplified prior to sequencing. Clonal amplicons are spatially separated on the pico-titer plates (454), glass slides (SoLiD) or chips
(Illumina). Sequencing chemistries involve the detection of nucleotides incorporated via complementarity (A-T, G-C) to the immobilized
(and cloned) template DNA strand. Detection may be achieved either through usage of labelled nucleotides, light reaction (photon
release) or proton release upon nucleotide incorporation. Labelled nucleotides based chemistries include ligation based processes with
fluorescently labeled oligonucleotides of known sequence (SOLiD) or a sequencing by synthesis process (Illumina). During Illumina
sequencing, four differently labeled nucleotides are flushed over the flow cell in multiple cycles, depending on the desired read length.
During 454 and Ion PGM sequencing unlabeled nucleotides are flushed in a sequential order over the flow cell. Incorporation is detected
via a coupled light reaction (454) or the detection of proton release during nucleotide incorporation (Adapted from [Knief, 2014]).
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1.4.4 Meta-omic NGS data analysis

This work focuses mainly on the analysis of high-throughput MG and MT datasets generated from NGS
platforms. Given that both these datasets comprise NGS reads, the general analysis procedure is largely
similar, using sequence based methods (i.e. alignment- and kmer-based methodologies). Accordingly,
computational solutions for MG and MT data analyses can be broadly classified into reference-dependent or
reference-independent (de novo assembly-based) methods [Segata et al., 2013]. In addition, concomitant (or
coupled) MG and MT dataset, especially such as those produced via the protocol described in Section 1.4.2,
are complementary and suitable for integrated analyses. However, there is presently a lack of standardized
tools to perform integrated analysis of coupled MG and MT data. To that end, this work particularly focuses
on reference-independent methodologies for the integrated analysis of coupled MG and MT data.

Reference-based analyses

NGS-based reference-dependent methods rely on detecting similarity between NGS reads to reference
databases, such as a compendium of isolate genomes, gene catalogues and/or existing MG data. There
are multiple ways of performing reference-based analyses, whereby the most widely used method is the
alignment of NGS reads to reference databases using NGS read alignment tools. Modern NGS read alignment
tools, such as the Burrows-Wheels Aligner (BWA [Li and Durbin, 2009]) and Bowtie2 [Langmead et al.,
2009], can rapidly align massive numbers of NGS reads through the indexing a given databases using the
Burrows-Wheels transformation [Burrows and Wheeler, 1994; Langmead et al., 2009; Li and Durbin, 2009].
In essence, alignment to a set of isolate genome sequences will provide information about the community
structure while the alignment to an annotated gene catalogue will provide information about the community
genetic potential. Moreover, the advent of pseudo alignment methodologies, such as Kallisto [Bray et al.,
2016] show promise in the application of microbial community based NGS data analyses [Schaeffer et al.,
2015; Teo and Neretti, 2016].

In addition to the aforementioned classical alignment methods, more recent methods, such as Kraken
[Wood and Salzberg, 2014], Diamond [Buchfink et al., 2015] and Kaiju [Menzel et al., 2016], are currently
available for rapid taxonomic assignments of NGS reads. On the other hand, functional information is
obtained through gene annotation, which is a two-step process: i) genes are predicted from NGS reads using
tools, such as MetaGeneMark [Trimble et al., 2012] and ii) the predicted genes are annotated in silico using
searches against genes with known functions using either sequence alignment based programs, such as the
classical Basic Local Alignment Search Tool (blast [Pruitt et al., 2002; Johnson et al., 2008]) and/or Hidden
Markov model (HMM) profile based searches [Eddy, 1996, 1998; Finn et al., 2011]. Last but not least,
there are user-friendly web based pipelines, such as the Metagenomic - Rapid Annotation using Subsystem
Technology (MG-RAST) server [Meyer et al., 2008] that performs both taxonomic assignments and gene
annotation in a single workflow, directly using NGS reads. At present, most MT data analyses typically
involve reference-based [Leimena et al., 2013; Martinez et al., 2016; Westreich et al., 2016] or MG-dependent
analysis workflows [Franzosa et al., 2014; Bremges et al., 2015; Satinsky et al., 2015].

Reference-based methods provide a means for rapid analysis of MG and MT data. However, the quality
of the analyses are highly dependent on the information contained within the selected reference databases.
Therefore, a major drawback of such methods are the large number of NGS reads from uncultured species,
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divergent strains and/or unclassified genes that cannot be aligned (unmappable) due to their dissimilarity
from the reference databases, and thus not considered during data analysis, thereby resulting in the loss of
potentially useful information. This fact can be highlighted, based on analyses of MG data from the human
gastrointestinal tract microbiome (arguably the best characterized microbial community in terms of culture-
derived isolate genomes), approximately 43 % of the data are typically not mappable to the available isolate
genomes [Sunagawa et al., 2013]. Overall, reference-based approaches by themselves exhibit limitations,
which may result in the omission of potentially useful information.

Reference-independent analyses

Conversely, reference-independent methodologies involve de novo assembly of the short sequencing reads
into longer contiguous sequences (i.e. contigs). A simplified schema for reference-independent analysis is
shown in Figure 1.8.

NGS reads are typically preprocessed (Figure 1.8) prior to de novo assembly to: i) remove low quality
bases within reads, ii) low quality reads, iii) artificially introduced sequencing adapters and iv) other potentially
unwanted sequences (i.e. human derived NGS reads from human microbiome MG data and rRNA sequences
from MT data). Preprocessing was shown to increase the quality of contigs obtained in the downstream de

novo assembly [Mende et al., 2012]. De novo assemblies can be performed using two generalized de novo

assembly algorithms including the overlap layout consensus (OLC) and the de Bruijn graph (DBG) [Li et al.,
2012]. The OLC method is a classical de novo assembly method developed to assemble data from the Sanger
sequencing platform [Sanger et al., 1977; Staden, 1979]. The method can be broadly categorized by three
major steps: i) overlap - all reads are aligned against each other to determine overlapping regions ii) layout - a
graph is formulated based on the overlapping regions of the reads and iii) consensus - a consensus is generated
based on the overall agreement/similarity of overlapping reads [Staden, 1979; Li et al., 2012]. Widely used
OLC-based assemblers include Celera Assembler [Myers et al., 2000], Newbler [Margulies et al., 2005],
Cap3 [Huang and Madan, 1999] and Phrap [de la Bastide et al., 2007]. On the other hand, DBG [de Bruijn
and van der Woude, 1946] assemblers work in three stages: i) defining all kmers (i.e. stretches of nucleotides
of length k) within the collection of NGS reads, ii) the construction of the DBG based on the identified
kmers and iii) inferring assembled sequence from the DBG [Idury and Waterman, 1995; Pevzner et al., 2001;
Compeau et al., 2011]. Commonly used single-genome DBG assemblers include Velvet [Zerbino and Birney,
2008], ABySS [Simpson et al., 2009] and SOAPdenovo [Luo et al., 2012]. In addition, performing assemblies
over multiple kmer sizes, such as those carried out by IDBA, were shown to improve quality of the assembly
[Peng et al., 2010]. At present, DBG assemblers are more widely used for genome assemblies due to their
capability of handling the massive number of short NGS reads generated from the Illumina platform [Li et al.,
2012].

However, characteristics of microbial communities (described in Section 1.1), in particular the multiple
genomes stemming of different constituent populations, occurring differing abundances, and thus result in
differing sequencing depths within the generated MG data. Consequently, the aforementioned assembly
programs do not take into account the characteristics of MG data, as they were originally designed for isolate
genome assemblies. Fortunately, a wide array of MG-specific assemblers, such as MetaVelvet [Namiki et al.,
2012], IDBA-UD [Peng et al., 2012] and MEGAHIT [Li et al., 2015] have been developed to account for the
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uneven sequencing depth of MG data. In particular, given sufficient sequencing depth, current de novo MG
assemblers are highly effective for medium complexity communities, such as those present within BWWT
plant microbial communities [Segata et al., 2013; Muller et al., 2014a]. It was also shown that sequential
use of DBG assemblers, such as IDBA-UD and MEGAHIT and OLC assemblers, such as Cap3, result in
improved MG assemblies [Deng et al., 2015; Lai et al., 2015].

Contigs generated from de novo assemblies are subjected to various analyses to obtain meaningful
information from these stretches of nucleotide sequences. These procedures include, but are not limited
to the annotation of the sequences based on known taxonomy and/or gene functions (Figure 1.8). It has
been demonstrated that the assembly of NGS reads into longer contigs greatly improves the taxonomic
assignments and annotation of genes, as opposed to their direct identification from NGS reads [Nalbantoglu
et al., 2011; Celaj et al., 2014]. The same tools described in Section 1.4.4 may be applied at the contig level,
for taxonomic assignment and gene annotation. To that end, automated reference-independent bioinformatic
pipelines have so far been mainly developed for MG data. These include MOCAT [Kultima et al., 2012] and
MetAMOS [Treangen et al., 2013] which incorporate the entire process of MG data analysis, ranging from
preprocessing of sequencing reads, de novo assembly and post-assembly analysis (read alignment, taxonomic
classification, gene annotation, etc., Figure 1.8). MOCAT has been used in large-scale studies, such as those
within the MetaHIT Consortium [Qin et al., 2010; Li et al., 2014], while MetAMOS is a flexible pipeline
which allows customizable workflows [Treangen et al., 2013].

Similar to MG data, a comparative study by Celaj et al. [2014], has recently demonstrated that reference-
independent approaches for MT data analysis are extremely useful when using either specialized MT
assemblers (e.g. IDBA-MT [Leung et al., 2013; Celaj et al., 2014]), MG assemblers (e.g. IDBA-UD [Peng
et al., 2012; Leung et al., 2013, 2014] and MetaVelvet [Namiki et al., 2012; Celaj et al., 2014]) or even
single-species transcriptome assemblers (e.g. Trinity [Grabherr et al., 2011; Celaj et al., 2014]). All the
aforementioned assemblers are able to handle the uneven sequencing depths, which is a common characteristic
of MG and MT data. Importantly, the assembly of MT data may result in the assembly of novel genes (as
in MG data) while providing access to additional components, such as RNA viruses, which would not be
possible with a reference-based method and/or MG-only method. These include, but are not limited to RNA
viruses/phages and/or genes that are lowly abundant on a genomic (or MG) level, but are highly expressed
within a given microbial community, thus enhancing the overall information gain.

While this work mainly focuses on the analysis of MG and MT data, it is worth noting that the quality of
metaproteomic data analysis is highly dependent on the underlying database used for the peptide searches.
It was previously shown that amino acid sequences predicted from MG data improves overall detection of
peptides from concomitant metaproteomic data, further highlighting the advantages of reference-independent
MG and MT analysis methods in generating customized amino acid sequence databases for downstream
proteomic analyses [Ram et al., 2005; Heintz-Buschart et al., 2016].

Despite the highlighted advantages of reference-independent analysis methods, de novo assembly-based
methods are often not preferred due to high computing requirement and long runtimes. However, these issues
are currently mitigated by the development of the rapid and memory efficient de novo MG assemblers such
MEGAHIT [Li et al., 2015, 2016].
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Figure 1.8: Simplified workflow for reference-independent metagenomic and/or metatranscriptomic analyses.The boxes on the
left represent the data end product of each step.The bar on the right shows transition from biomolecules to in silico data, which is in turn
converted to information about community structure and/or function. The process begins with a DNA or RNA (complementary DNA-
cDNA) biological sample, which is followed by multiple steps including: (1) Shotgun next-generation sequencing (NGS) to generate in
silico representations of the biomolecules. (2) Preprocessing of NGS reads to remove low quality bases and/or artificially introduced
sequences, such as sequencing adapters. (3) De novo assembly involves the use of programs to align/overlaps reads against each other to
generate longer contiguous sequences, i.e. contigs, representing a consensus of all the overlapping reads. (4) Annotation is a process
of predicting gene sequences that occur within the contigs and assigning functions to those genes based on similarity to known genes
(not shown in figure). (5) Binning is a method of separating/clustering the assembled contigs into genomic bins which should ideally
represent a single population-level genome of an organism. Binning is exclusively applied to MG assemblies.
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Binning

The process of grouping/clustering contigs generated by MG assemblies is described as “binning” (Figure 1.8).
Binning may also be applied on the read level, although this is not typically performed due to the short read
length of NGS technologies (Section 1.4.3). The clusters obtained via binning are assumed to represent
genomes of single microbial populations, i.e. population-level genomes [Laczny, 2015; Laczny et al., 2016].

Binning of MG-derived sequences (i.e. sequencing reads or contigs) may be carried out in a supervised
or unsupervised manner. Supervised binning methods are analogous to reference-based methods (refer to
Section 1.4.4), whereby either MG reads or assembled contigs are clustered based on alignment against
genomes of known organisms, to determine population-level genomes [Laczny, 2015]. On the other hand,
unsupervised binning methods cluster sequences based on nucleotide signature and/or abundance information
[Laczny, 2015]. Unsupervised binning methods utilize assembled MG-contigs as input. These methods
require the input sequences to be of a certain length, in order to be effective [Laczny, 2015; Alneberg et al.,
2014; Nielsen et al., 2014]. Despite the aforementioned prerequisite of a de novo assembly, unsupervised
binning methods enable the resolution and/or retrieval of population-level genomes from hitherto undescribed
taxa, consequently resulting in the recovery of putatively novel genes, thereby allowing more of the data
to be mapped and exploited for analysis [Segata et al., 2013; Treangen et al., 2013; Narayanasamy et al.,
2015; Hugerth et al., 2015; Albertsen et al., 2013a; Muller et al., 2014a; Laczny et al., 2016]. Furthermore,
unsupervised binning methods are highly complementary to the current work, which focuses on reference-
independent analysis of microbial community datasets.

In light of the advantages of unsupervised binning methods, recent years have seen the development and
application of a wide range of automated [Imelfort et al., 2014; Nielsen et al., 2014; Wu et al., 2014; Eren
et al., 2015; Kang et al., 2015; Heintz-Buschart et al., 2016; Alneberg et al., 2014; Dick et al., 2009] and
manual [Dick et al., 2009; Albertsen et al., 2013a; Laczny et al., 2014, 2015, 2016; Eren et al., 2015] binning
tools and/or methods. Some of the first unsupervised binning methods used nucleotide signature as a means
of clustering MG sequences [Dick et al., 2009; Laczny et al., 2014, 2015]. More recently, methods utilize
abundance information for clustering MG sequences [Albertsen et al., 2013a]. Abundance information can be
estimated through the mapping of reads to the assembled contigs [Laczny, 2015; Albertsen et al., 2013a]. The
current state-of-art binning methods are able to utilize both nucleotide signature and abundance information
for the clustering of MG sequences [Heintz-Buschart et al., 2016; Laczny et al., 2015; Wu et al., 2014;
Kang et al., 2015]. Furthermore, the lowered cost of generating sequencing data promotes sequencing of
multiple MG samples from a given microbial community. These include multiple replicates, spatial samples,
time-series-based samples and/or large cohorts. Several binning methods leverage the abundance information
from multiple samples to further enhance the clustering of the sequences [Nielsen et al., 2014; Imelfort et al.,
2014; Kang et al., 2015; Wu et al., 2014; Alneberg et al., 2014; Eren et al., 2015].

Overall, unsupervised binning in combination with de novo metagenomic assemblies bypass the need
for culture-dependent methods to access potentially novel microbial taxa and functionalities (Section 1.1)
[Narayanasamy et al., 2015]. Genomic information derived from these methods are vital for the meaningful
interpretation of additional functional omic data [Narayanasamy et al., 2015; Muller et al., 2013; Segata et al.,
2013; Heintz-Buschart et al., 2016].
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1.4.5 Multi-omic analyses of meta-omic data

Multi-omic analyses have already been applied to provide novel insights into microbial community structure
and function in various different ecosystems. Some of them include studies of the human gut microbiome
[Franzosa et al., 2014], aquatic microbial communities from the Amazon river [Satinsky et al., 2015], soil
microbial communities [Hultman et al., 2015; Beulig et al., 2016], production-scale biogas plants [Bremges
et al., 2015], hydrothermal vents [Urich et al., 2014] and microbial communities from biological wastewater
treatment plants [Muller et al., 2014a; Roume et al., 2015]. These studies employed differing ways for
analysing the data including reference-based approaches [Franzosa et al., 2014; Urich et al., 2014; Satinsky
et al., 2015], MG assembly-based approaches [Bremges et al., 2015; Hultman et al., 2015], MT assembly-
based approaches [Urich et al., 2014], and integrated analyses of the meta-omic data [Muller et al., 2014a;
Urich et al., 2014; Roume et al., 2015; Heintz-Buschart et al., 2016]. An extensive list of studies that
leveraged on multi-omic data sets are listed in Table 1.1.

Although high-throughput MG and MT data allow deep profiling of microbial communities given the
relatively low cost of generating sequencing data, existing sequence-based approaches do have some important
limitations. Given the availability of omic technologies and their falling costs (in particular for metagenomics
and metatranscriptomics), fully integrated multi-omic analyses should be applied routinely in the study of
microbial consortia for greater effectiveness. For instance, despite this wealth of information, current MG
assemblies and analysis schemes, MG (and MT) data resulting from the use of current short-read NGS
technologies and assembly approaches do not allow the comprehensive resolution of microdiversity, e.g.
genetic heterogeneity of microbial populations [Wilmes et al., 2009]. Furthermore, RNAseq technologies are
subject to biases stemming from the extensive, yet compulsory pre-processing steps [Lahens et al., 2014],
thereby affecting the resulting MT data.

Integrated omic based analyses are currently gaining momentum towards providing enhanced understand-
ing of community structure, function and dynamics in situ. This is evident based on studies that further
extended the advantages of multi-omic analyses by integrating different omic datasets [Muller et al., 2014a;
Roume et al., 2015; Heintz-Buschart et al., 2016]. The backbone of these aforementioned studies are the de

novo co-assemblies of MG and MT data which promises higher quality compared with conventional de novo

MG assemblies, due to the ability to reconstruct and resolve genomic complements of low abundance (i.e. low
MG coverage) yet highly active populations (i.e. high MT coverage for expressed genes; Muller et al. [2014a];
Roume et al. [2015]; Heintz-Buschart et al. [2016]; Zengler and Palsson [2012]). Such co-assemblies allow
high-quality population-level genomic reconstructions after the application of binning/classification methods,
such as those developed for a single sample [Wu et al., 2014; Laczny et al., 2015] or for spatio-temporally
resolved samples [Albertsen et al., 2013a; Alneberg et al., 2014; Nielsen et al., 2014; Kang et al., 2015].
Furthermore, co-assemblies of MG and MT data allow the resolution of genetic variations with higher
confidence through replication and highlights their potential relative importance, thereby allowing more
detailed short-term evolutionary inferences regarding specific populations and while increasing sensitivity
for downstream metaproteomic analysis [Muller et al., 2014a; Roume et al., 2015; Heintz-Buschart et al.,
2016]. It is important to highlight that despite the increasing number of studies applying multi-omics to study
microbial consortia (Table 1.1), there is yet to be a study that leverages this data to perform a detailed study
of bacteriophage and host interactions.
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Chapter 1 Objectives of this work

1.5 Objectives of this work

There is presently a need for the application of multi-omic analyses for the study of phage and host interactions,
especially with the provision of MG data (DNA phages) and to a certain extent MT data (RNA phages) that
enables access to the phage genomic complements. The extended use of MT data provides an additional view
in terms of expression activity in both hosts and phages, especially with regards to bacterial antiviral defence
and replication of phages, while providing the possibility to assemble RNA-based invasive genetic elements.
The identification of a suitable natural model microbial community which enables time-series sampling have
made longitudinal sample sets available, thereby enabling the study of phage-host interactions and dynamics.
This work has for objectives to: i) develop a standardized method for effective integrated analysis of MG and
MT data and ii) studying phage-host interactions in a natural community using integrated multi-omics.

Although the studies that applied multi-omic (and integrated) analysis methodologies clearly demonstrated
the advantages of such analyses by providing deeper insights into structure and function of microbial consortia
from multiple environments (described in Section 1.4.5), there still lacks standardized and reproducible
dry-lab workflows for integrating and analysing the multi-omic data. Such standardized approaches are
required to compare results between different samples (i.e. cohorts, spatial- and time-resolved), studies and
microbial systems of study. In addition, integrative analysis of MG and MT data, specifically the de novo

co-assemblies of yet to be formally evaluated, benchmarked and documented to demonstrate the benefits of
integrated omic analysis. Therefore, the first part of this work focuses on highlighting the benefits of integrated
analysis of MG and MT datasets, and consequently the development of a standardized and reproducible
reference-independent bioinformatic pipeline for integrated omic analyses. Extensive benchmarking was
performed on the output from our method, comparing it to existing methods. The pipeline was mainly applied
to the model microbial system.

MG datasets greatly increase the resource and information with regards to bacteriophages (Section 1.3).
However, there is still lack an understanding of the dynamics of bacteriophages and their associated host
populations within a naturally occurring microbial system. Therefore, the second part of this work focused
on elucidating phage and host dynamics within a naturally occurring model microbial system, using an
unprecedented temporal-based, multi-omic datasets. The output obtained using the integrated multi-omic
pipeline, described in the first part of this work, was supplemented with specialized analysis to extract
information with regards to the CRISPR-Cas system and bacteriophages. The CRISPR information was
used to provide a broad summary of community-level CRISPR dynamics over time. The analysis then
focused on the population-level analysis through the identification of two bacterial host populations and their
corresponding 158 putative phage populations. The dynamics of the phage and host populations were then
described by following phage and host abundances over time. Furthermore, this work extended the use of
MT data to investigate putative RNA-based invasive elements, in addition to observing the expression of
bacterial host cas genes. In summary, this work involved the development of a new bioinformatics pipeline
for the integration of metagenomics and metatranscriptomic data and its subsequent application to the study
of phage-host dynamics.
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CHAPTER 2

A PIPELINE FOR REPRODUCIBLE REFERENCE-INDEPENDENT

INTEGRATED METAGENOMIC AND METATRANSCRIPTOMIC

ANALYSES

This chapter describes a bioinformatic pipeline designed specifically for integrated omics of coupled metage-
nomic and metatranscriptomic datasets. Moreover, the initial conception and workflow design was based
the involvement of the author in an integrated multi-omic study of the LAMPs. Accordingly, these includes
concepts and material from the following published first- and co-author peer-reviewed publications:

Shaman Narayanasamy†, Yohan Jarosz†, Emilie E.L. Muller, Anna Heintz-Buschart, Malte Herold, Anne
Kaysen, Cédric C. Laczny, Nicolàs Pinel, Patrick May, Paul Wilmes (2016) IMP: a pipeline for reproducible
reference-independent integrated metagenomic and metatranscriptomic analyses. Genome Biology 17: 260.
[Appendix A.2]
Emilie E.L. Muller, Nicolás Pinel, Cédric C. Laczny, Michael R. Hoopmann, Shaman Narayanasamy, Laura
A. Lebrun, Hugo Roume, Jake Lin, Patrick May, Nathan D. Hicks, Anna Heintz-Buschart, Linda Wampach,
Cindy M. Liu, Lance B. Price, John D. Gillece, Cédric Guignard, Jim M. Schupp, Nikkos Vlassis, Nitin S.
Baliga, Robert L. Moritz, Paul S. Keim, Paul Wilmes (2014). Community-integrated omics links dominance
of a microbial generalist to fine-tuned resource usage. Nature Communications 5: 5603. [Appendix A.3]

†Co-first author
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Chapter 2 Abstract

2.1 Abstract

Existing workflows for the analysis of multi-omic microbiome datasets are lab-specific and often result in
sub-optimal data usage. Here we present IMP, a reproducible and modular pipeline for the integrated and
reference-independent analysis of coupled metagenomic and metatranscriptomic data. IMP incorporates
robust read preprocessing, iterative co-assembly, analyses of microbial community structure and function,
automated binning as well as genomic signature-based visualizations. The IMP-based data integration strategy
enhances data usage, output volume and output quality as demonstrated using relevant use-cases. Finally,
IMP is encapsulated within a user-friendly implementation using Python and Docker. IMP is available at
http://r3lab.uni.lu/web/imp/ (MIT license).

2.2 Background

The previous chapter summarized the various studies that applied multi omic data analyses, demonstrating that
such studies are becoming more prevalent (Section 1.4.5). Due to the absence of established tools/workflows
to handle multi-omic datasets, most of the aforementioned studies utilized non-standardized, ad hoc analyses,
mostly consisting of custom workflows, thereby creating a challenge in reproducing the analyses [Treangen
et al., 2013; Belmann et al., 2015; Di Tommaso et al., 2015; Kenall et al., 2015]. Given that the lack of
reproducible bioinformatic workflows is not limited to those used for the multi-omic analysis of microbial
consortia [Treangen et al., 2013; Belmann et al., 2015; Di Tommaso et al., 2015; Kenall et al., 2015],
several approaches have recently been developed with the explicit aim of enhancing software reproducibility.
These include a wide range of tools for constructing bioinformatic workflows [Köster and Rahmann, 2012;
Amstutz et al., 2016; Leipzig, 2016] as well as containerizing bioinformatic tools/pipelines using Docker
[Belmann et al., 2015; Bremges et al., 2015; Di Tommaso et al., 2015; Leipzig, 2016]. Here, we present IMP,
the Integrated Meta-omic Pipeline, the first open source de novo assembly-based pipeline which performs
standardized, automated, flexible and reproducible large-scale integrated analysis of combined multi-omic
(MG and MT) datasets. IMP incorporates robust read preprocessing, iterative co-assembly of metagenomic
and metatranscriptomic data, analyses of microbial community structure and function, automated binning as
well as genomic signature-based visualizations. We demonstrate the functionalities of IMP by presenting the
results obtained on an exemplary data set. IMP was evaluated using datasets from ten different microbial
communities derived from three distinct environments as well as a simulated mock microbial community
dataset. We compare the assembly and data integration measures of IMP against standard MG analysis
strategies (reference-based and reference-independent) to demonstrate that IMP vastly improves overall data
usage. Additionally, we benchmark our assembly procedure against available MG analysis pipelines to show
that IMP consistently produces high-quality assemblies across all the processed datasets. Finally, we describe
a number of particular use cases which highlight

2.3 Methods

The details of the IMP workflow, implementation and customizability is described in further detail. We also
describe the additional analyses carried out for assessment and benchmarking of IMP.
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Chapter 2 Methods

2.3.1 Details of the IMP implementation and workflow

The details of the IMP workflow, implementation and customizability is A Python (ver. 3) wrapper script
was implemented for user-friendly execution of IMP via the command line. The full list of dependencies,
parameters (see below) and documentation are available on the IMP website (http://r3lab.uni.lu/
web/imp/doc.html). Although IMP was designed specifically for integrated analysis of MG and MT
data, it can also be used for single MG or MT analyses, as an additional functionality.

Reproducibility

IMP is implemented around a Docker container that runs the Ubuntu 14.04 operating system, with all
relevant dependencies. Five mounting points are defined for the Docker container with the -v option: i) input
directory, ii) output directory, iii) database directory, iv) code directory, and v) configuration file directory.
Environment variables are defined using the -e parameter, including: i) paired MG data, ii) paired MT data,
and iii) configuration file. The latest IMP Docker image will be downloaded and installed automatically upon
launching the command, but users may also launch specific versions based on tags or use modified/customized
versions of their local code base (documentation at http://r3lab.uni.lu/web/imp/doc.html).

Automation and modularity

Automation of the workflow is achieved using Snakemake 3.4.2 [Köster and Rahmann, 2012; Köster, 2014],
a Python-based make language implemented specifically for building reproducible bioinformatic workflows
and pipelines. Snakemake is inherently modular and thus allows various features to be implemented within
IMP including the options of: i) executing specific/selected steps within the pipeline, ii) check-pointing, i.e.
resuming analysis from a point of possible interruption/termination, iii) analysis of single-omic datasets (MG
or MT). For more details regarding the functionalities of IMP, please refer to the documentation of IMP
(http://r3lab.uni.lu/web/imp/doc.html).

Input data

The input to IMP includes MG and/or MT FASTQ paired files, i.e. pairs-1 and pairs-2 are in individual
files. The required arguments for the IMP wrapper script are metagenomic paired-end reads (“m” options)
and/or metatranscriptomic paired-end reads (“-t” option) with the specified output folder (“o” option).
Users may customize the command with the options and flags described in the documentation (http:
//r3lab.uni.lu/web/imp/doc.html) and in Section 2.3.1.

Trimming and quality filtering

Trimmomatic 0.32 [Bolger et al., 2014] is used to perform trimming and quality filtering of MG and
MT Illumina paired-end reads, using the following parameters: ILLUMINACLIP:TruSeq3-PE.fa:2:30:10;
LEADING:20; TRAILING:20; SLIDINGWINDOW:1:3; MAXINFO:40:0.5; MINLEN:40. The parameters
may be tuned via the command line or within the IMP config file. The output from this step includes retained
paired-end and single-end reads (mate discarded) which are all used for downstream processes. These
parameters are configurable in the IMP config file (Section 2.3.1).
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Ribosomal RNA filtering

SortMeRNA 2.0 [Kopylova et al., 2012] is used for filtering rRNA from the MT data. The process is applied
on FASTQ files for both paired- and single-end reads generated from the trimming and quality filtering
step. Paired-end FASTQ files are interleaved prior to running SortMeRNA. If one of the mates within
the paired-end read is classified as an rRNA sequence, then the entire pair is filtered out. After running
SortMeRNA, the interleaved paired-end output is split into two separate paired-end FASTQ files. The filtered
sequences (without rRNA reads) are used for the downstream processes. All available databases provided
within SortMeRNA are used for filtering and the maximum memory usage parameter is set to 4 GB (option:
-m 4000) which can be adjusted in the IMP config file (Section 2.3.1).

Read mapping

The read mapping procedure is performed using the bwa mem aligner [Li and Durbin, 2009] with settings: -v 1
(verbose output level), -M (Picard compatibility) introducing an automated samtools header using the -R option
[Li and Durbin, 2009]. Paired- and single-end reads are mapped separately, and the resulting alignments are
merged (using samtools merge [Li et al., 2009]). Read mapping is performed at various steps in the workflow
including: i) screening for host or contaminant sequences (Section 2.3.1), ii) recruitment of unmapped reads
within the IMP-based iterative co-assembly (Section 2.3.1), and iii) mapping of preprocessed MG and MT
reads to the final contigs. The memory usage is configurable in the IMP config file (Section 2.3.1).

Extracting unmapped reads

The extraction of unmapped reads (paired- and single-end) begins by mapping reads to a given reference
sequence (Section 2.3.1). The resulting alignment file (BAM format) is used as input for the extraction of
unmapped reads. A set of paired-end reads are considered unmappable if both or either one of the mates
do not map to the given reference. The unmapped reads are converted from BAM to FASTQ format using
samtools [Li and Durbin, 2009] and BEDtools 2.17.0 - bamToFastq utility [Quinlan and Hall, 2010]. Similarly,
unmapped single-end reads are also extracted from the alignment information.

Screening host or contaminant sequences

By default, the host/contaminant sequence screening is performed by mapping both paired- and single-
end reads (Section 2.3.1) onto the human genome version 38 (http://www.ncbi.nlm.nih.gov/
projects/genome/assembly/grc/), followed by extraction of unmapped reads (Section 2.3.1).
Within the IMP command line, users are provided with the option of: i) excluding this procedure with the
“no-filtering” flag, ii) using other sequence(s) for screening by providing the FASTA file (or URL) using
“screen” option or iii) specifying it in the configuration file (Section 2.3.1).

Parameters of the IMP-based iterative co-assembly

The IMP-based iterative co-assembly implements MEGAHIT 1.0.3 [Li et al., 2015] as the MT assembler
while IDBA-UD 1.1.1 [Peng et al., 2012] is used as the default co-assembler (MG & MT), with MEGAHIT
[Li et al., 2015] as an alternative option for the co-assembler (specified by the “-a” option of the IMP
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command line). All de novo assemblies are performed on kmers ranging from 25-mers to 99-mers, with an
incremental step of four. Accordingly, the command line parameters for IDBA-UD are –mink 25 –maxk
99 –step 4 –similar 0.98 –pre-correction [Peng et al., 2012]. Similarly, the command line parameters for
MEGAHIT are –k-min 25 –k-max 99 –k-step 4, except for the MT assemblies which are performed with
an additional –no-bubble option to prevent merging of bubbles within the assembly graph [Li et al., 2015].
Furthermore, contigs generated from the MT assembly are used as “long read” input within the -l flag of
IDBA-UD or -r flag of MEGAHIT [Peng et al., 2012; Li et al., 2015]. Kmer ranges for the IDBA-UD and
MEGAHIT can be adjusted/specified in the configuration file (Section 2.3.1). Cap3 is used to reduce the
redundancy and improve contiguity of the assemblies using a minimum alignment identity of 98 % (-p 0.98)
with a minimum overlap of 100 bases (-o 100), which are adjustable in the configuration file (Section 2.3.1).
Finally, the extraction of reads that are unmappable to the initial MT assembly and initial co-assembly is
described in Section 2.3.1.

Annotation and assembly quality assessment

Prokka 1.11 [Seemann, 2014] with the –metagenome setting is used to perform functional annotation. The
default blast and HMM databases of Prokka are used for the functional annotation. Custom databases may be
provided by the user (refer to Sections 2.3.1 and 2.3.1 for details).

MetaQUAST 3.1 [Mikheenko et al., 2015] is used to perform taxonomic annotation of contigs with
the maximum number of downloadable reference genomes set to 20 (–max-ref-number 20). In addition,
MetaQUAST provides various assembly statistics. The maximum number of downloadable reference genome
can be changed in the IMP config file Customization and further development for details.

Depth of coverage

Contig- and gene-wise depth of coverage values are calculated (per base) using BEDtools 2.17.0 [Quinlan
and Hall, 2010] and aggregated (by average) using awk, adapted from the CONCOCT code [Alneberg
et al., 2014] (script: map-bowtie2-markduplicates.sh, https://github.com/BinPro/CONCOCT) and
is non-configurable.

Variant calling

The variant calling procedure is performed using Samtools 0.1.19 [Li and Durbin, 2009] (mpileup tool) and
Platypus 0.8.1 [Rimmer et al., 2014], each using their respective default settings and are non-configurable.
The input is the merged paired- and single-end read alignment (BAM) against the final assembly FASTA file
(Section 2.3.1). The output files from both the methods are indexed using tabix and compressed using gzip.
No filtering is applied to the variant calls, so that users may access all the information and filter them according
to their requirements. The output from samtools mpileup is used for the augmented VizBin visualization.

Non-linear dimensionality reduction of genomic signatures (NLDR-GS)

VizBin [Laczny et al., 2015] performs NLDR-GS onto contigs ≥ 1kb, using default settings, to obtain 2D
embeddings. Parameters can be modified in the IMP config file (Section 2.3.1).
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Automated binning

Automated binning of the assembled contigs is performed using MaxBin 2.0. Default setting are applied
and paired-end reads are provided as input for abundance estimation [Wu et al., 2014]. The sequence length
cut-off is set to be same as VizBin (Section 2.3.1) and is customizable using the config file (Section 2.3.1).

Visualization and reporting

IMP compiles the multiple summaries and visualizations into a HTML report. FASTQC [Patel and Jain,
2012] is used to visualize the quality and quantity of reads before and after preprocessing. MetaQUAST
[Mikheenko et al., 2015] is used to report assembly quality and taxonomic associations of contigs. A
custom script is used to generate KEGG-based [Kanehisa and Goto, 2000] functional Krona plots by running
KronaTools [Ondov et al., 2011] (script: genes.to.kronaTable.py, GitHub URL: https://github.com/
EnvGen/metagenomics-workshop). Additionally, VizBin output (2D embeddings) is integrated with
the information derived from the IMP analyses, using a custom R script for analysis and visualization of the
augmented maps. The R workspace image is saved such that users are able to access it for further analyses.
All the steps executed within an IMP run including parameters and runtimes are summarized in the form of a
workflow diagram and a log-file. The visualization script is not configurable.

Output

The output generated by IMP includes a multitude of large files. Paired- and single-end FASTQ files of
preprocessed MG and MT reads are provided such that the user may employ them for additional down-
stream analyses. The output of the IMP-based iterative co-assembly consists of a FASTA file, while the
alignments/mapping of MG and MT preprocessed reads to the final co-assembly are also provided as a binary
alignment format (BAM), such that users may use these for further processing. Predicted genes and their
respective annotations are provided in the various formats produced by Prokka [Seemann, 2014]. Assem-
bly quality statistics and taxonomic annotations of contigs are provided as per the output of MetaQUAST
[Mikheenko et al., 2015]. Two-dimensional embeddings from the NLDR-GS are provided such that they
can be exported to and further curated using VizBin [Laczny et al., 2015]. Additionally, abundance and
expression information is represented by contig- and gene-level average depth of coverage values. MG and
MT genomic variant information (VCF format), including both SNPs and INDELs (insertions and deletions),
is also provided. The results of the automated binning using MaxBin 2.0 [Wu et al., 2014] are provided in a
folder which contains the default output from the program (i.e. fasta files of bins and summary files).

The HTML reports, e.g. Additional file 2.1: HTML S1 & S2 compiles various summaries and visu-
alizations including: i) augmented VizBin maps, ii) MG- and MT-level functional Krona charts [Ondov
et al., 2011], iii) detailed schematics of the steps carried out within the IMP run, iv) list of parameters and
commands, and v) additional reports (FASTQC report [Patel and Jain, 2012], MetaQUAST report [Mikheenko
et al., 2015]). Please refer to the documentation of IMP for a detailed list and description of the output
(http://r3lab.uni.lu/web/imp/doc.html).
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Databases

The IMP database folder (db) contains required databases required for IMP analysis. The folder contains the
following subfolders and files with their specific content:

i) adapters folder –sequencing adapter sequences. Default version contains all sequences provided by
Trimmomatic version 0.32 [Bolger et al., 2014]

ii) cm, genus, hmm and kingdom folders – contains databases provided by Prokka 1.11 [Seemann, 2014].
Additional databases may be added into the corresponding folders as per the instructions in the Prokka
documentation (https://github.com/tseemann/prokka#databases)

iii) sortmerna folder - contains all the databases provided in SortMeRNA 2.0 [Kopylova et al., 2012]. Ad-
ditional databases may be added into the corresponding folders as per the instructions in the SortMeRNA
documentation (http://bioinfo.lifl.fr/RNA/sortmerna/code/SortMeRNA-user-manual-v2.
0.pdf)

iv) ec2pathways.txt - enzyme commission (EC) number mapping of amino acid sequences to pathways

v) pathways2hierarchy.txt - pathway hierarchies used to generated for KEGG-based functional Krona plot
(Section 2.3.1)

Customization and further development

Additional advanced parameters can be specified via the IMP command line including specifying a custom
configuration file (-c option) and/or specifying a custom database folders (-d option). Threads (–threads) and
memory allocation (–memcore and –memtotal) can be adjusted via the command line and the configuration
file. The IMP launcher script provides a flag (–enter) to launch the Docker container interactively and the
option to specify the path to the customized source code folder (-s option). These commands are provided
for development and testing purposes (described on the IMP website and documentation: http://r3lab.
uni.lu/web/imp/doc.html). Further customization is possible using a custom configuration file
(JSON format). The customizable options within the JSON file are specified in individual subsections within
section Section 2.3.1. Finally, the open source implementation of IMP allows users to customize the Docker
image and source code of IMP according to their requirements.

2.3.2 Iterative single-omic assemblies

In order to determine the opportune number of iterations within the IMP-based iterative co-assembly strategy
an initial assembly was performed using IMP preprocessed MG reads with IDBA-UD [Peng et al., 2012].
Cap3 [Huang and Madan, 1999] was used to further collapse the contigs and reduce the redundancy of the
assembly. This initial assembly was followed by a total of three assembly iterations, whereby each iteration
was made up of four separate steps: i) extraction of reads unmappable to the previous assembly (using the
procedure described in Section 2.3.1), ii) assembly of unmapped reads using IDBA-UD [Peng et al., 2012],
iii) merging/collapsing the contigs from the previous assembly using cap3 [Huang and Madan, 1999], and iv)
evaluation of the merged assembly using MetaQUAST [Mikheenko et al., 2015]. The assembly was evaluated
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in terms of the per-iteration increase in mappable reads, assembly length, numbers of contigs ≥ 1 kb, and
numbers of unique genes.

Similar iterative assemblies were also performed for MT data using MEGAHIT [Li et al., 2015] except,
CD-HIT-EST [Fu et al., 2012] was used to collapse the contigs at ≥ 95 % identity (-c 0.95) while MetaGene-
Mark [Zhu et al., 2010] was used to predict genes. The parameters and settings of the other programs were
the same as those defined in Section 2.3.1.

The aforementioned procedures were applied to all the datasets analyzed within this article. The merged
contig sets (non-redundant) from the first iteration of both the MG and MT iterative assemblies were
selected to represent the IMP single-omics assemblies (IMP_MG and IMP_MT) and were compared against
co-assemblies.

2.3.3 Execution of pipelines

MetAMOS ver. 1.5rc3 was executed using default settings [Treangen et al., 2013]. MG data was provided
as input for single-omic assemblies (MetAMOS_MG) while MG and MT data was provided as input for
multi-omic co-assemblies (MetAMOS_MGMT). All computations using MetAMOS were set to use eight
computing cores (-p 8).

MOCAT ver. 1.3 (MOCAT.pl) [Kultima et al., 2012] was executed using default settings. Paired-end MG
data was provided as input for single-omic assemblies (MOCAT_MG) while paired-end MG and MT data was
provided as input for multi-omic co-assemblies (MOCAT_MGMT). All computations using MOCAT were
set to use eight computing cores (-cpus 8). Paired-end reads were first preprocessed using the read_trim_filter
step of MOCAT (-rtf). For the human fecal microbiome datasets (HF1-5), the preprocessed paired- and
single-end reads were additionally screened for human genome derived sequences (-s hg19). The resulting
reads were afterwards the assembled with default parameters (-gp assembly –r hg19) using SOAPdenovo.

IMP ver. 1.4 was executed for each dataset using different assemblers for the co-assembly step: i)
default setting using IDBA-UD, and ii) MEGAHIT (-a megahit). Additionally, the analysis of human fecal
microbiome datasets (HF1-5) included the preprocessing step of filtering human genome sequences, which
was omitted for the wastewater sludge datasets (WW1-4) and the biogas (BG) reactor dataset. Illumina
TruSeq2 adapter trimming was used for wastewater datasets preprocessing, since the information was available.
Computation was performed using eight computing cores (–threads 8), 32 GB memory per core (–memcore
32) and total memory of 256 GB (–memtotal 256 GB). The customized parameters were specified in the IMP
configuration file (exact configurations available in Additional file 2.1: HTML S1 & S2). The analysis of the
CAMI datasets were carried using the MEGAHIT assembler option (-a megahit), while the other options
remained as default settings.

In addition, IMP was also used on a small scale dataset to evaluate performance of increasing the number
of threads from 1 to 32 and recording the runtime (time command). IMP was launched on the AWS cloud
computing platform running the MEGAHIT as the assembler (-a megahit) with 16 threads (–threads 16) and
122 GB of memory (–memtotal 122).
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2.3.4 Data usage assessment

Preprocessed paired-end and single-end MG and MT reads from IMP were mapped (Section 2.3.1) onto the
IMP-based iterative co-assemblies and IMP_MG assembly. Similarly, preprocessed paired-end and single-end
MG and MT reads from MOCAT were mapped onto the MOCAT co-assembly (MOCAT_MGMT) and the
MOCAT single-omic MG assembly (MOCAT_MG). MetAMOS does not retain single-end reads, therefore,
preprocessed MG and MT paired-end reads from MetAMOS were mapped onto the MetAMOS co-assembly
(MetAMOS_MGMT) and MetAMOS single-omic MG assembly (MetAMOS_MG).

Preprocessed MG and MT reads from the human fecal datasets (HF1-5) were mapped using the same
parameters described in Section 2.3.1 to the IGC reference database [Li et al., 2014] for evaluation of a
reference-based approach. Alignment files of MG and MT reads mapping to the IMP-based iterative co-
assemblies and the aforementioned alignments to the IGC reference database were used to report the fractions
of properly paired reads mapping in either IMP-based iterative co-assembly, IGC reference database, or both.
These fractions were then averaged across all the human fecal datasets (HF1-5).

2.3.5 Assembly assessment and comparison

Assemblies were assessed and compared using MetaQUAST by providing contigs (FASTA format) from
of all different (single- and multi-omic) assemblies of the same dataset as input [Mikheenko et al., 2015].
The gene calling function (-f) was utilized to obtain the number of genes which were predicted from the
various assemblies. An additional parameter within MetaQUAST was used for ground truth assessment of the
simulated mock (SM) community assemblies by providing the list of 73 FASTA format reference genomes
(-R). The CPM measure was computed based on the information derived from the results of MetaQUAST
[Mikheenko et al., 2015]. In order to be consistent with the reported values (i.e. N50 length), the CPM
measures reported within this article are based on alignments of 500 bp and above, unlike the 1kb cut-off
used in the original work [Deng et al., 2015]. Prodigal was also used for gene prediction to obtain the number
of complete and incomplete genes [Hyatt et al., 2010].

2.3.6 Analysis of contigs assembled from MT data

A list of contigs with no MG depth of coverage together with additional information on these contigs (contig
length, annotation, MT depth of coverage) was retrieved using the R workspace image which is provided as
part IMP output (Sections 2.3.1 and 2.3.1). The sequences of these contigs were extracted and subjected to a
blastn search on NCBI to determine their potential origin. Furthermore, contigs with length ≥ 1kb, average
depth of coverage ≥ 20 bases and containing genes encoding known virus/bacteriophage functions were
extracted.

2.3.7 Analysis of subsets of contigs

Subsets of contigs were identified by visual inspection of augmented VizBin maps generated by IMP. Detailed
inspection of contig-level MT to MG depth of coverage ratios was carried out using the R workspace provided
as part of IMP output (Sections 2.3.1 and 2.3.1). The alignment information of contigs to isolate genomes
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provided by MetaQUAST [Mikheenko et al., 2015] were used to highlight subsets of contigs aligning to
genomes of Escherichia coli P12B strain (E. coli) and Collinsella intestinalis DSM 13280 (C. intestinalis).

An additional reference-based analysis of MetaQUAST [Mikheenko et al., 2015] was carried out for
all the human fecal microbiome assemblies (HF1-5) by providing the genomes of Escherichia coli P12B
and Collinsella intestinalis DSM 13280 as reference (flag: -R), to assess the recovery fraction of the
aforementioned genomes within the different assemblies.

2.3.8 Computational platforms

IMP and MetAMOS were executed on a Dell R820 machine with 32 Intel(R) Xeon(R) CPU E5-4640 @
2.40GHz physical computing cores (64 virtual), 1024 TB of DDR3 RAM (32 GB per core) with Debian
7 Wheezy as the operating system. MOCAT, IMP single-omic assemblies and additional analyses were
performed on the Gaia cluster of the University of Luxembourg HPC platform (Varrette et al., 2014). IMP
was executed on the Amazon Web Services (AWS) cloud computing platform using EC2 R3 type (memory
optimized) model r3.4xlarge instance with 16 compute cores, 122 GB memory and 320 GB of storage space
running a virtual Amazon Machine Image (AMI) Ubuntu ver. 16.04 operating system.

2.3.9 Availability of data and material

All the data, software and source code related to this manuscript are publicly available.

Coupled metagenomic and metatranscriptomic datasets

The published human fecal microbiome datasets (MG and MT) were obtained from NCBI Bioproject PR-
JNA188481 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA188481). They include
samples from individuals: X310763260, X311245214, X316192082, X316701492, and X317690558 [Fran-
zosa et al., 2014], designated within this article as HF1-5, respectively. Only samples labeled as “Whole”
(samples preserved by flash-freezing) were selected for analysis [Franzosa et al., 2014].

The published wastewater sludge microbial community datasets (MG and MT) were obtained from NCBI
Bioproject with the accession code PRJNA230567 (https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA230567). These include samples A02, D32, D36 and D49, designated within this article as WW1-4,
respectively [Muller et al., 2014a].

The published biogas reactor microbial community data set (MG and MT) was obtained from the Euro-
pean Nucleotide Archive (ENA) project PRJEB8813 (http://www.ebi.ac.uk/ena/data/view/
PRJEB8813) and was designated within this article as BG [Bremges et al., 2015].

Simulated coupled metagenomic and metatranscriptomic dataset

The simulated MT data was obtained upon request from the original authors [Celaj et al., 2014]. A complemen-
tary metagenome was simulated using the same set of 73 bacterial genomes used for the aforementioned simu-
lated MT [Celaj et al., 2014]. Simulated reads were obtained using the NeSSM MG simulator (default settings)
[Jia et al., 2013]. The simulated mock community is designated as SM within this article [Jia et al., 2013]. The
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simulated data along with the corresponding reference genomes used to generate the MG data is made avail-
able via LCSB WebDav (https://webdav-r3lab.uni.lu/public/R3lab/IMP/datasets/)
and is archived on Zenodo (http://doi.org/10.5281/zenodo.160261).

CAMI simulated community metagenomic datasets

The medium complexity CAMI simulated MG data and the corresponding gold standard assembly were
obtained from the CAMI website: http://www.cami-challenge.org.

Test dataset for runtime assessment

A subset of ~5 % of the WW1 MG and MT dataset (Section 2.3.9) was selected and used as the data to perform
runtime assessments. This dataset could be used to test IMP on regular platforms such as laptops and desktops.
It is made available via the LCSB R3 WebDav (https://webdav-r3lab.uni.lu/public/R3lab/
IMP/datasets/) and is archived on Zenodo (http://doi.org/10.5281/zenodo.160708).

Software and source code

IMP is available under the MIT license, on the LCSB R3 website: http://r3lab.uni.lu/web/imp/
which contains necessary information related to IMP. These includes links to the Docker images on
the LCSB R3 WebDav (https://webdav-r3lab.uni.lu/public/R3lab/IMP/dist/) and is
archived on Zenodo (http://doi.org/10.5281/zenodo.160263). Source code is available on
LCSB R3 GitLab (https://git-r3lab.uni.lu/IMP/IMP), GitHub (https://github.com/
shaman-narayanasamy/IMP) and is archived on Zenodo (http://doi.org/10.5281/zenodo.
160703). Scripts and commands for additional analyses performed specifically within this manuscript are
available on LCSB R3 GitLab (https://git-r3lab.uni.lu/IMP/IMP_manuscript_analysis)
and on GitHub (https://github.com/shaman-narayanasamy/IMP_manuscript_analysis).
Frozen pages containing all necessary material related to this article are available at: http://r3lab.uni.
lu/frozen/imp/.

2.4 Results

2.4.1 Overview of the IMP implementation and workflow

IMP leverages Docker for reproducibility and deployment. The interfacing with Docker is facilitated through a
user-friendly Python wrapper script (Section 2.3.1). As such, Python and Docker are the only prerequisites for
the pipeline, enabling an easy installation and execution process. Workflow implementation and automation
is achieved using Snakemake [Köster and Rahmann, 2012; Köster, 2014]. The IMP workflow can be broadly
divided into five major parts: i) preprocessing, ii) assembly iii) automated binning, iv) analysis and v)
reporting (Figure 2.1).

The preprocessing and filtering of sequencing reads is essential for the removal of low quality bases/reads
and potentially unwanted sequences, prior to assembly and analysis. The input to IMP consists of MG and
MT data (the latter preferably depleted of ribosomal RNA prior to sequencing) paired-end reads in FASTQ
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format (Section 2.3.1). MG and MT reads are preprocessed independently of each other. This involves
an initial quality control step (Figure 2.1 and Section 2.3.1) [Bolger et al., 2014] followed by an optional
screening for host/contaminant sequences, whereby the default screening is performed against the human
genome while other host genome/contaminant sequences may also be used (Figure 2.1 and Section 2.3.1).
In silico rRNA sequence depletion is exclusively applied to MT data (Figure 2.1 and Section 2.3.1).

The customized assembly procedure of IMP starts with an initial assembly of preprocessed MT reads to
generate an initial set of MT contigs (Additional file 2.2: Figure S1). MT reads unmappable to the initial
set of MT contigs undergo a biological applications of the IMP workflow. second round of assembly. The
process of assembling unused reads, i.e. MG or MT reads unmappable to the previously assembled contigs, is
henceforth referred to as “iterative assembly”. The assembly of MT reads is performed first as transcribed
regions are covered much more deeply and evenly in MT data. The resulting MT-based contigs represent
high-quality scaffolds for the subsequent co-assembly with MG data overall leading to enhanced assemblies
[Muller et al., 2014a]. Importantly, the combined set of MT contigs from the initial and iterative assemblies
are used as scaffolds to enhance the subsequent assembly with the MG data. MT data is assembled using
the MEGAHIT de novo assembler using the appropriate option to prevent the merging of bubbles within the
de Bruijn assembly graph [Qin et al., 2010; Li et al., 2015]. Subsequently, all preprocessed MT and MG
reads, together with the generated MT contigs are used as input to perform a first co-assembly, producing
a first set of co-assembled contigs. The MG and MT reads unmappable to this first set of co-assembled
contigs then undergo an additional iterative co-assembly step. IMP implements two assembler options for
the de novo co-assembly, namely IDBA-UD or MEGAHIT. The contigs resulting from the co-assembly
procedure undergo a subsequent assembly refinement step by a contig-level assembly using the cap3 de novo

assembler [Huang and Madan, 1999]. This aligns highly similar contigs against each other, thus reducing
overall redundancy by collapsing shorter contigs into longer contigs and/or improving contiguity by extending
contigs via overlapping contig ends (Additional file 2.2: Figure S1). This step produces the final set of
contigs. Preprocessed MG and MT reads are mapped then back against the final contig set and the resulting
alignment information is used in the various downstream analysis procedures (Figure 2.1). In summary, IMP
employs four measures for the de novo assembly of preprocessed MG and MT reads including: i) iterative
assemblies of unmappable reads, ii) use of MT contigs to scaffold the downstream assembly of MG data, iii)
co-assembly of MG and MT data, and iv) assembly refinement by contig-level assembly. The entire de novo

assembly procedure of IMP is henceforth referred to as the “IMP-based iterative co-assembly” (Additional
file 2.2: Figure S1).

Contigs from the IMP-based iterative co-assembly undergo quality assessment as well as taxonomic
annotation [Mikheenko et al., 2015] followed by gene prediction and functional annotation [Seemann, 2014]
(Figure 2.1 and Section 2.3.1). MaxBin 2.0 [Wu et al., 2014], an automated binning procedure (Figure 2.1
and Section 2.3.1) which performs automated binning on assemblies produced from single datasets, was
chosen as the de facto binning procedure in IMP. Experimental designs involving single coupled MG and
MT datasets are currently the norm. However, IMP’s flexibility does not forego the implementation of
multi-sample binning algorithms such as CONCOCT [Alneberg et al., 2014], MetaBAT [Kang et al., 2015]
and canopy clustering [Nielsen et al., 2014] as experimental designs evolve in the future.

Non-linear dimensionality reduction of the contigs’ genomic signatures (Figure 2.1 and Section 2.3.1)
is performed using the Barnes-Hut Stochastic Neighborhood Embedding (BH-SNE) algorithm allowing
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visualization of the data as two-dimensional scatter plots henceforth referred to as VizBin maps [Laczny et al.,
2014, 2015]. Further analysis steps include, but are not limited to, calculations of the contig- and gene-level
depths of coverage (Section 2.3.1) as well as the calling of genomic variants (variant calling is performed
using two distinct variant callers; Section 2.3.1). The information from these analyses are condensed and
integrated into the generated VizBin maps to produce augmented visualizations (Section 2.3.1). These
visualizations and various summaries of the output are compiled into a HTML report (examples of the HTML
reports in Additional file 2.1).

Exemplary output of IMP (using the default IDBA-UD assembler) based on a human fecal microbiome
dataset is summarized in Figure 2.2. The IMP output includes taxonomic (Figure 2.2A) and functional
(Figure 2.2B & Figure 2.2C) overviews. The representation of gene abundances at the MG and MT levels
enables comparison of potential (Figure 2.2B) and actual expression (Figure 2.2C) for specific functional
gene categories (see Krona charts within Additional file 2.1: HTML S1). IMP provides augmented VizBin
maps [Laczny et al., 2014, 2015] including for example, variant densities (Figure 2.2D) as well as MT to
MG depth of coverage ratios (Figure 2.2E). These visualizations may aid users in highlighting subsets of
contigs based on certain characteristics of interest, i.e. population heterogeneity/homogeneity, low/high
transcriptional activity, etc. Although an automated binning method [Wu et al., 2014] is incorporated within
IMP (Figure 2.2F), the output is also compatible with and may be exported to other manual/interactive
binning tools such as VizBin [Laczny et al., 2015] and Anvi’o [Eren et al., 2015] for additional manual
curation. Please refer to Additional file 2.1 for additional examples.

The modular design (Section 2.3.1) and open source nature of IMP allow for customization of the pipeline
to suit specific user-defined analysis requirements (Section 2.3.1). As an additional feature, IMP also allows
single-omic MG or MT analyses (Section 2.3.1). Detailed parameters for the processes implemented in IMP
are described in the Section 2.3.1 and examples of detailed workflow schematics are provided in Additional
file 2.1: HTML S1 & S2.
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Figure 2.1: Schematic overview of the IMP pipeline Cylinders represent input and output while rectangles represent processes.
Arrows indicate the flow between input, processes and output. MG: Metagenomic data, MT: Metatranscriptomic data, rRNA: ribosomal
RNA, NLDR-GS: genomic signature non-linear dimensionality reduction. Processes, input and output specific to MG and MT data are
labeled in blue and red, respectively. Processes and output that involve usage of both MG and MT data, are represented in purple. A
detailed illustration of the “iterative co-assembly” is available in Figure S1 in Additional file 2.2.
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Figure 2.2: Example output from the IMP analysis of a human microbiome dataset (HF1). (A) Taxonomic overview based on the
alignment of contigs to the most closely related genomes present in the NCBI genome database (see also Additional file 2.1: HTML
S1), abundances of predicted genes (based on average depths of coverage) of various KEGG Ontology categories represented both at
the (B) MG and (C) MT levels (see also Krona charts within Additional file 2.1: HTML S1). Augmented VizBin maps of contigs ≥
1kb, representing (D) contig-level MG variant densities, (E) contig-level ratios of MT to MG average depth of coverage and (F) bins
generated by the automated binning procedure. Additional examples are available in Additional file 2.1.
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2.4.2 Assessment and benchmarking

IMP was applied to ten published coupled MG and MT datasets, derived from three types of microbial
systems, including five human fecal microbiome samples (HF1, HF2, HF3, HF4, HF5) [Franzosa et al., 2014],
four wastewater sludge microbial communities (WW1, WW2, WW3, WW4) [Muller et al., 2014b; Roume
et al., 2015] and one microbial community from a production-scale biogas (BG) plant [Bremges et al., 2015].
In addition, a simulated mock (SM) community dataset based on 73 bacterial genomes [Celaj et al., 2014],
comprising both MG and MT was generated to serve as a means for ground truth-based assessment of IMP
(details in Section 2.3.9). The SM dataset was devised given the absence of a standardized benchmarking
dataset for coupled MG and MT data (this does solely exist for MG data as part of the CAMI initiative:
http://www.cami-challenge.org).

Analysis with IMP was carried out with the two available de novo assembler options for the co-assembly
step (Figure 2.1 and Additional file 2.2: Figure S1), namely the default IDBA-UD assembler [Peng et al.,
2012] (hereafter referred to as IMP) and the optional MEGAHIT assembler [Li et al., 2015] (henceforth
referred to as IMP-megahit). IMP was quantitatively assessed based on resource requirement and analytical
capabilities. The analytical capabilities of IMP were evaluated based on data usage, output volume and output
quality. Accordingly, we assessed the advantages of the iterative assembly procedure as well as the overall
data integration strategy.

Resource requirement and runtimes

IMP is an extensive pipeline that utilizes both MG and MT data within a reference-independent (assembly-
based) analysis framework which renders it resource- and time-intensive. Therefore, we aimed to assess the
required computational resource and runtimes of IMP.

All IMP-based runs on all datasets were performed on eight compute cores with 32 GB RAM per core and
1024 GB of total memory (Section 2.3.8). IMP runtimes ranged from approximately 23 hours (HF1) to 234
hours (BG) and the IMP-megahit runtimes ranged from approximately 21 hours (HF1) up to 281 hours (BG).
IMP was also executed on the Amazon cloud computing (AWS) infrastructure, using the HF1 dataset on a
machine with 16 cores (Section 2.3.8) whereby the run lasted approximately 13 hours (refer to Additional
file 2.2: Note S1 for more details). The analysis of IMP resulted in an increase in additional data of around
1.2-3.6 times the original input (Additional file 2.2: Table S1). Therefore, users should account for the disc
space for both the final output and intermediate (temporary) files generated during an IMP run. Detailed
runtimes and data generated for all the processed data sets are reported in Additional file 2.3: Table S1.

We further evaluated the effect of increasing resources using a small scale test dataset (Section 2.3.9). The
tests demonstrated that reduced runtimes are possible by allocating more threads to IMP-megahit (Additional
file 2.3: Table S2). However, no apparent speed-up is achieved beyond allocation of eight threads, suggesting
that this would be the optimal number of threads for this particular test dataset. Contrastingly, no speed up
was observed with additional memory allocation (Additional file 2.3: Table S3). Apart from the resources,
runtime may also be affected by the input size, the underlying complexity of the dataset and/or behavior of
individual tools within IMP.
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Data usage - iterative assembly

De novo assemblies of MG data alone usually result in a large fraction of reads that are unmappable to the
assembled contigs and therefore remain unused, thereby leading to suboptimal data usage [Muller et al.,
2014b; Schürch et al., 2014; Reyes et al., 2015; Hitch and Creevey, 2016]. Previous studies have assembled
sets of unmappable reads iteratively to successfully obtain additional contigs, leading to an overall increase in
the number of predicted genes which in turn results in improved data usage [Muller et al., 2014b; Schürch
et al., 2014; Reyes et al., 2015; Hitch and Creevey, 2016]. Therefore, IMP uses an iterative assembly strategy
to maximize NGS read usage. In order to evaluate the best iterative assembly approach for application within
the IMP-based iterative co-assembly strategy, we attempted to determine the opportune number of assembly
iterations in relation to assembly quality metrics and computational resources/runtimes.

The evaluation of the iterative assembly strategy was applied to MG and MT datasets. For both omic
data types, it involved an “initial assembly” which is defined as the de novo assembly of all preprocessed
reads. Additional iterations of assembly were then conducted using the reads that remained unmappable
to the generated set of contigs (Section 2.3.2 for details and parameters). The evaluation of the iterative
assembly procedure was carried out based on the gain of additional contigs, cumulative contig length (bp),
numbers of genes and numbers of reads mappable to contigs. Table 1 shows the results of the evaluation for
four representative data sets and Additional file 2.3: Table S4 shows the detailed results of the application of
the approach to eleven datasets. In all the datasets evaluated, all iterations (1 to 3) after the initial assembly
lead to an increase in total length of the assembly and numbers of mappable reads (Table 1, Additional
file 2.3: Table S4). However, there was a notable decline in the number of additional contigs and predicted
genes beyond the first iteration. Specifically, the first iteration of the MG assembly yielded up to 1.6 %
additional predicted genes while the equivalent on the MT data yielded up to 9 % additional predicted genes
(Additional file 2.3: Table S4). Considering the small increase (< 1 %) in the number of additional contigs
and predicted genes beyond the first assembly iteration on one hand and the extended runtimes required to
perform additional assembly iterations on the other hand, a generalized single iteration assembly approach
was retained and implemented within the IMP-based iterative co-assembly (Figure 2.2 and Additional file
2.2: Figure S1). This approach aims to maximize data usage without drastically extending runtimes.

Despite being developed specifically for the analysis of coupled MG and MT datasets, the iterative
assembly can also be used for single omic datasets. To assess IMP’s performance on MG datasets, it was
applied to the simulated MG datasets from the CAMI challenge (http://www.cami-challenge.org)
and the results are shown in Additional file 2.2: Figure S2. IMP-based MG assembly using the MEGAHIT
assembler on the CAMI dataset outperforms well-established MG pipelines such as MOCAT in all measures.
In addition, IMP-based iterative assemblies also exhibit comparable performance to the gold standard assembly
with regards to contigs ≥ 1kb and number of predicted genes (http://www.cami-challenge.org).
Detailed results of the CAMI assemblies are available in Additional file 2.3: Table S5. However, as no MT
and/or coupled MG and MT datasets so far exist for the CAMI challenge, the full capabilities of IMP could
not be assessed in relation to this initiative.
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Chapter 2 Results

Data usage - multi-omic iterative co-assembly

In order to assess the advantages of integrated multi-omic co-assemblies of MG and MT data, IMP-based
iterative co-assemblies (IMP and IMP-megahit) were compared against MG-only based assemblies which
include single-omic iterative MG assemblies generated using IMP (referred to as IMP_MG) and standard
MG assemblies by MOCAT (hereafter referred to as MOCAT_MG) and MetAMOS (hereafter referred to as
MetAMOS_MG). Furthermore, the available reads from the human fecal microbiome dataset (preprocessed
with IMP) were mapped to the MetaHIT Integrated Gene Catalog (IGC) reference database [Li et al., 2014],
to compare the data usage of the different assembly procedures against a reference-dependent approach.

IMP-based iterative co-assemblies consistently recruited larger fractions of properly paired MG (Fig-
ure 2.3A) and/or MT (Figure 2.3B) reads, compared to single-omic assemblies. The resulting assemblies
also produced larger numbers of contigs ≥ 1kb (Figure 2.3C), predicted non-redundant unique genes (Fig-
ure 2.3D) and, even more important, complete genes as predicted with start and stop codon by Prodigal [Hyatt
et al., 2010] (Additional file 2.3: Table S5). Using the reference genomes from the SM data as ground truth,
IMP-based iterative co-assemblies resulted in up to 25.7 % additional recovery of the reference genomes,
compared to the single-omic MG assemblies (Additional file 2.3: Table S5).

IMP-based iterative co-assemblies of the human fecal microbiome datasets (HF1-5) allowed recruitment
of comparable fractions of properly paired MG reads and an overall larger fraction of properly paired MT
reads compared to those mapping to the IGC reference database (Table 2). The total fraction (union) of MG or
MT reads mapping to either IMP-based iterative co-assemblies and/or the IGC reference database was higher
than 90 %, thus demonstrating that the IMP-based iterative co-assemblies allow at least 10 % of additional
data to be mapped when using these assemblies in addition to the IGC reference database. In summary, the
complementary use of de novo co-assembly of MG and MT datasets in combination with iterative assemblies
enhances overall MG and MT data usage and thereby significantly increases the yield of useable information,
especially when combined with comprehensive reference catalogs such as the IGC reference database.
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Figure 2.3: Assessment of data usage and output generated from co-assemblies compared to single-omic assemblies. Heat maps
show (A) fractions of properly mapped MG read pairs, (B) fractions of properly mapped MT read pairs, (C) numbers of contigs ≥ 1kb,
and (D) numbers of unique predicted genes. IMP and IMP-megahit represent integrated multi-omic MG and MT iterative co-assemblies
while IMP_MG, MOCAT_MG and MetAMOS_MG represent single-omic MG assemblies. All numbers were row Z-score normalized
for visualization. Detailed results available in Additional file 2.3: Table S5.
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Table 2.2: Mapping statistics for human microbiome samples.

Reference
Average MG pairs
mapping (%)

Average MT pairs
mapping (%)

IGC 70.91 53.57

IMP 70.25 86.21

IMP-megahit 70.62 83.33

IMP_MG 68.08 58.54

MetAMOS_MG 57.31 37.34

MOCAT_MG 36.73 36.68

IMP + IGC 92.66 95.77

IMP-megahit + IGC 92.80 93.24

Average fractions (%) of properly paired reads from the human microbiome datasets (HF1-5)
mapping to various references including IMP-based iterative co-assemblies (IMP and IMP-megahit)
and single-omic co-assemblies (IMP_MG, MetAMOS_MG and MOCAT_MG) as well as the IGC
reference database. IMP + IGC and IMP-megahit + IGC reports the total number of properly paired
reads mapping to IMP-based iterative co-assemblies and/or the IGC reference database. Refer to
Additional file 2.3: Table S3, for detailed information.
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Assembly quality- multi-omic iterative co-assembly

In order to compare the quality of the IMP-based iterative co-assembly procedure to simple co-assemblies, we
compared the IMP-based iterative co-assemblies against co-assemblies generated using MetAMOS [Treangen
et al., 2013] (henceforth referred to as MetAMOS_MGMT) and MOCAT [Kultima et al., 2012] (henceforth
referred to as MOCAT_MGMT). Although MetAMOS and MOCAT were developed for MG data analysis,
we extended their use for obtaining MG and MT co-assemblies by including both MG and MT read libraries
as input (Section 2.3.3). The assemblies were assessed based on contiguity (N50 length), data usage (MG
and MT reads mapped) and output volume (number of contigs above 1kb and number of genes; Additional
file 2.3: Table S5). Only the SM dataset allowed for ground truth-based assessment by means of aligning
the generated de novo assembly contigs to the original 73 bacterial genomes used to simulate the data set
(Section 2.3.9) [Celaj et al., 2014; Mikheenko et al., 2015]. This allowed the comparison of two additional
quality metrics, i.e. the recovered genome fraction and the composite performance metric (CPM) proposed
by Deng et al. [2015].

Assessments based on real datasets demonstrate comparable performance between IMP and IMP-megahit
while both outperform MetAMOS_MGMT and MOCAT_MGMT in all measures (Figure 2.4A - C). The
ground truth assessment using the SM dataset shows that IMP-based iterative co-assemblies are effective
in recovering the largest fraction of the original reference genomes while achieving a higher CPM score
compared to co-assemblies from the other pipelines. Misassembled (chimeric) contigs are a legitimate
concern within extensive de novo assembly procedures such as the IMP-based iterative co-assembly. It has
been previously demonstrated that highly contiguous assemblies (represented by high N50 lengths), tend to
contain higher absolute numbers of misassembled contigs compared to highly fragmented assemblies, thereby
misrepresenting the actual quality of assemblies [Mende et al., 2012; Deng et al., 2015; Lai et al., 2015].
Therefore, the CPM score was devised as it represents a normalized measure reflecting both contiguity and
accuracy for a given assembly [Deng et al., 2015]. Based on the CPM score, both IMP and IMP-megahit
yield assemblies that balance high contiguity with accuracy and thereby outperform the other methods
(Figure 2.4C & D). In summary, cumulative measures of numbers of contigs ≥ 1kb, N50 lengths, numbers
of unique genes, recovered genome fractions (%) and CPM scores (the latter two were only calculated for
the SM dataset) as well as the mean fractions (%) of mappable MG and MT reads, show that the IMP-based
iterative co-assemblies (IMP and IMP-megahit) clearly outperform all other available methods (Figure 2.4E;
Additional file 2.3: Table S5).
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Figure 2.4: Assessment of the IMP-based iterative co-assemblies in comparison to MOCAT- and MetAMOS-based co-
assemblies. Radar charts summarizing the characteristics of the co-assemblies generated using IMP, MetAMOS and MOCAT pipelines
on: (A) human fecal microbiome, (B) wastewater sludge community, (C) biogas reactor, (D) simulated mock community. IMP co-
assemblies were performed with two de novo assembler options, IDBA_UD and MEGAHIT, whereas MetAMOS and MOCAT were
executed using default settings. Assessment metrics within the radar charts include, number of contigs ≥ 1kb, N50 length (contiguity,
cut-off 500bp), number of predicted genes (unique) and fraction of properly mapped MG and MT read pairs. N50 statistics are reported
using a 500bp cut-off. Additional ground truth assessments for simulated mock dataset included recovered genome fractions (%) and the
composite performance metric (CPM) score with a cut-off of [Deng et al., 2015]. (E) Summary radar chart reflecting the cumulative
measures and mean fraction of properly mapped MG and MT read pairs from all analyzed 11 datasets while incorporating ground
truth based measures from the simulated mock dataset. Higher values within the radar charts (furthest from center) represent better
performance. Detailed information on the assembly assessments is available in Additional file 2.3: Table S5.

2.4.3 Use-cases of integrated metagenomic and metatranscriptomic analyses in IMP

The integration of MG and MT data provides unique opportunities for uncovering community- or population-
specific traits, which cannot be resolved from MG or MT data alone. Here we provide two examples of
insights gained through the direct inspection of results provided by IMP.

Tailored preprocessing and filtering of MG and MT data

The preprocessing of the datasets HF1-5 included filtering of human-derived sequences, while the same step
was not necessary for the non-human derived datasets, WW1-4 and BG. MT data analyzed within this article
included RNA extracts which were not subjected to wet-lab rRNA depletion, i.e. BG (Bremges et al., 2015),
and samples which were treated with wet-lab rRNA removal kits (namely HF1-5 [Franzosa et al., 2014]
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and WW1-4 [Muller et al., 2014b]). Overall, the removal of rRNA pairs from the MT data showed a large
variation, ranging from as low as 0.51 % (HF5) to 60.91 % (BG), demonstrating that wet-lab methods vary in
terms of effectiveness and highlighting the need for such MT-specific filtering procedures (Additional file
2.2: Note S2 and Additional file 2.3: Table S6).

Identification of RNA viruses

To identify differences in the information content of MG and MT complements, the contigs generated using
IMP were inspected with respect to coverage by MG and MT reads (Additional file 2.3: Table S7). In
two exemplary datasets HF1 and WW1, a small fraction of the contigs resulted exclusively from MT data
(Additional file 2.3: Table S7). Longer contigs (≥ 1 kb) composed exclusively of MT reads and annotated
with known viral/bacteriophage genes were retained for further inspection (Table 3; complete list contigs
in Additional file 2.3: Table S8 & S9). A subsequent sequence similarity search against the NCBI NR
nucleotide database [Pruitt et al., 2002] of these candidate contigs revealed that the longer contigs represent
almost complete genomes of RNA viruses (Additional file 2.3: Table S10 & S11). This demonstrates that the
incorporation of MT data and its contrasting to the MG data allows the identification and recovery of nearly
complete RNA viral genomes, thereby allowing their detailed future study in a range of microbial ecosystems.

Table 2.3: Contigs with a likely viral/bacteriophage origin/function reconstructed from the metatranscriptomic data.

Sample Contig ID*
Contig
length

Average contig depth
of coverage

Gene product
Average gene depth
of coverage

HF1 contig_34 6468 20927 Virus coat protein (TMV like) 30668

Viral movement protein (MP) 26043

RNA dependent RNA polymerase 22578

Viral methyltransferase 18817

contig_13948 2074 46 RNA dependent RNA polymerase 41

Viral movement protein (MP) 56

WW2 contig_6405 4062 46 Tombusvirus p33 43

Viral RNA dependent RNA polymerase 42

Viral coat protein (S domain) 36

contig_7409 3217 21 Viral RNA dependent RNA polymerase 18

Viral coat protein (S domain) 21

contig_7872 2955 77 hypothetical protein 112

Phage maturation protein 103

*Contigs of ≥ 1kb and average depth of coverage ≥ 20 were selected.

Identification of populations with apparent high transcriptional activity

To further demonstrate the unique analytical capabilities of IMP, we aimed to identify microbial populations
with a high transcriptional activity in the HF1 human fecal microbiome sample. Average depth of coverage at
the contig- and gene-level is a common measure used to evaluate the abundance of microbial populations
within communities [Albertsen et al., 2013a; Alneberg et al., 2014; Muller et al., 2014b]. The IMP-based
integrative analysis of MG and MT data further extends this measure by calculation of average MT to MG
depth of coverage ratios, which provide information on transcriptional activity and which can be visualized
using augmented VizBin maps [Laczny et al., 2015].

In our example, one particular cluster of contigs within the augmented VizBin maps exhibited high MT to
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MG depth of coverage ratios (Additional file 2.2: Figure S3). The subset of contigs within this cluster aligned
to the genome of the Escherichia coli P12B strain (henceforth referred to as E. coli). For comparison, we also
identified a subset, which was highly abundant at the MG level (lower MT to MG ratio), which aligned to the
genome of Collinsella intestinalis DSM 13280 strain (henceforth referred to as C. intestinalis). Based on
these observations, we highlighted the subsets of these contigs in an augmented VizBin map (Figure 2.5A).
The C. intestinalis and E. coli subsets are mainly represented by clear peripheral clusters which exhibit
consistent intra-cluster MT to MG depth of coverage ratios (Figure 2.5A). The subsets were manually
inspected in terms of their distribution of average MG and MT depths of coverage and were compared against
the corresponding distributions for all contigs. The MG-based average depths of coverage of the contigs from
the entire community exhibited a bell-shape like distribution, with a clear peak (Figure 2.5B). In contrast,
MT depths of coverage exhibited more spread, with a relatively low mean (compared to MG distribution)
and no clear peak (Figure 2.5B). The C. intestinalis subset displays similar distributions to that of the entire
community, whereas the E. coli subset clearly exhibits unusually high MT-based and low MG-based depths
of coverage (Figure 2.5B). Further inspection of the individual omic datasets revealed that the E. coli subset
was not covered by the MG contigs, while approximately 80 % of the E. coli genome was recoverable from
a single-omic MT assembly (Figure 2.5C). In contrast, the C. intestinalis subset demonstrated genomic
recovery in all co-assemblies (IMP, IMP-megahit, MOCAT_MGMT, MetAMOS_MGMT) and the single-omic
MG assemblies (IMP_MG, MOCAT_MG, MetAMOS_MG; Figure 2.5C).

As noted by the authors of the original study by Franzosa et al. [2014], the cDNA conversion protocol
used to produce the MT data is known to introduce approximately 1-2 % of E. coli genomic DNA into the
cDNA as contamination which is then reflected in the MT data. According to our analyses, 0.12 % of MG
reads and 1.95 % of MT reads derived from this sample could be mapped onto the E. coli contigs which is
consistent with the numbers quoted by Franzosa et al. [2014].

Consistent recovery of the E. coli genome was also observed across all other assemblies of the human
fecal microbiome datasets (HF2-5) which included their respective MT data (Additional file 2.2: Figure S4
and Additional file 2.3: Table S12). The integrative analyses of MG and MT data within IMP enables users
to efficiently highlight notable cases such as this, and to further investigate inconsistencies and/or interesting
characteristics within these multi-omic datasets.
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Figure 2.5: Metagenomic and metatranscriptomic data integration of a human fecal microbiome. (A) Augmented VizBin map
highlighting contig subsets with sequences that are most similar to Escherichia coli P12b and Collinsella intestinalis DSM 13280
genomes. (B) Beanplots representing the densities of metagenomic (MG) and metatranscriptomic (MT) average contig-level depth of
coverage for the entire microbial community and two subsets (population-level genomes) of interest. The dotted lines represent the mean.
(C) Recovered portion of genomes of the aforementioned taxa based on different single-omic assemblies and multi-omic co-assemblies
(Additional file 2.3: Table S5).
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2.5 Discussion

The microbiome analysis workflow of IMP is unique in that it allows the integrated analysis of MG and MT
data. To the best of our knowledge, IMP represents the only pipeline that spans the preprocessing of NGS
reads to the binning of the assembled contigs, in addition to being the first automated pipeline for reproducible
reference-independent metagenomic and metatranscriptomic data analysis. Although existing pipelines such
as MetAMOS or MOCAT may be applied to perform co-assemblies of MG and MT data [Roume et al., 2015],
these tools do not include specific steps for the two data types in their pre- and post-assembly procedures,
which is important given the disparate nature of these datasets. The use of Docker promotes reproducibility
and sharing thereby allowing researchers to precisely replicate the IMP workflow with relative ease and
with minimal impact on overall performance of the employed bioinformatic tools [Belmann et al., 2015;
Bremges et al., 2015; Di Tommaso et al., 2015; Leipzig, 2016]. Furthermore, static websites will be created
and associated with every new version of IMP (Docker image), such that users will be able to download and
launch specific versions of the pipeline to reproduce the work of others. Thereby, IMP enables standardized
comparative studies between datasets from different labs, studies and environments. The open source nature
of IMP encourages a community-driven effort to contribute to and further improve the pipeline. Snakemake
allows the seamless integration of Python code and shell (bash) commands and the use of make scripting style,
which are arguably some of the most widely used bioinformatic scripting languages which support parallel
processing and the ability to interoperate with various tools and/or web services [Köster and Rahmann, 2012;
Köster, 2014]. Thus, users will be able to customize and enhance the features of the IMP according to their
analysis requirements with minimal training/learning.

Quality control of NGS data prior to de novo assemblies has been shown to increase the quality of down-
stream assembly and analyses (predicted genes) [Mende et al., 2012]. In addition to standard preprocessing
procedures (i.e. removal low quality reads, trimming of adapter sequences and removal), IMP incorporates
additional tailored and customizable filtering procedures which account for the different sample and/or omic
data types. For instance, the removal of host-derived sequences in the context of human microbiomes is re-
quired for protecting the privacy of study subjects. The MT-specific in silico rRNA removal procedure yielded
varying fractions of rRNA reads between the different MT datasets despite the previous depletion of rRNA
(Section 2.4.3) indicating that improvements in wet-lab protocols are necessary. Given that rRNA sequences
are known to be highly similar, they are removed in IMP in order to mitigate any possible misassemblies
resulting from such reads and/or regions [Salzberg and Yorke, 2005; Mariano et al., 2016]. In summary, IMP
is designed to perform stringent and standardized preprocessing of MG and MT data in a data-specific way
thereby enabling efficient data usage and resulting in high-quality output.

It is common practice that MG and MT reads are mapped against a reference (e.g. genes, genomes and/or
MG assemblies) [Franzosa et al., 2014; Bremges et al., 2015; Hultman et al., 2015] prior to subsequent
data interpretation. However, these standard practices lead to suboptimal usage of the original data. IMP
enhances overall data usage through its specifically tailored iterative co-assembly procedure which involves
four measures to achieve better data usage and yield overall larger volumes of output (i.e. a larger number of
contigs ≥ 1kb and predicted unique and complete genes):

i) The iterative assembly procedure leads to increases in data usage and output volume in each additional
iterative assembly step (Section 2.4.2). The exclusion of mappable reads in each iteration of the assembly,
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serves as a means of partitioning the data thereby reducing the complexity of the data and overall resulting in
a higher cumulative volume of output [Mende et al., 2012; Hitch and Creevey, 2016; Hug et al., 2016].

ii) The initial assembly of MT-based contigs enhances the overall assembly, as transcribed regions are
covered much more deeply and evenly in MT data, resulting in better assemblies for these regions [Muller
et al., 2014b]. The MT-based contigs represent high-quality scaffolds for the subsequent co-assembly with
MG data.

iii) The co-assembly of MG and MT data allows the integration of these two data types while resulting in
a larger number of contigs and predicted complete genes against which in turn a substantially higher fraction
of reads can be mapped (Section 2.4.2). Furthermore, the analyses of the human fecal microbiome datasets
(HF1-5) demonstrate that the numbers of MG reads mapping to the IMP-based iterative co-assemblies for each
sample are comparable to the numbers of reads mapping to the comprehensive IGC reference database (Table
2). Previously, only fractions of 74 %-81 % of metagenomic reads mapping to the IGC have been reported [Li
et al., 2014]. However, such numbers have yet to be reported for MT data, in which case we observe lower
mapping rates to the IGC reference database (35.5 %-70.5 %) compared to IMP-based assemblies (Additional
file 2.3: Table S3). This may be attributed to the fact that the IGC reference database was generated from
MG-based assemblies only, thus creating a bias [Li et al., 2014]. Moreover, an excess of 90 % of MG
and MT reads from the human fecal datasets (HF1-5) are mappable to either the IGC reference database
and/or IMP-based iterative co-assemblies, emphasizing that a combined reference-based and IMP-based
integrated-omics approach vastly improves data usage (Table 2). Although large fractions of MG and/or MT
reads can be mapped to the IGC, a significant advantage of using a de novo reference-independent approach
lies within the fact that reads can be linked to genes within their respective genomic context and microbial
populations of origin. Exploiting the maximal amount of information is especially relevant for microbial
communities with small sample sizes and which lack comprehensive references such as the IGC reference
database.

iv) The assembly refinement step via a contig-level assembly with cap3 improves the quality of the assem-
blies by reducing redundancy and increasing contiguity by collapsing and merging contigs (Section 2.4.2).
Consequently, our results support the described notion that the sequential use of multi-kmer-based de Bruijn
graph assemblers, such as IDBA-UD and MEGAHIT, with overlap-layout-consensus assemblers, such as
cap3, result in improved metagenomic assemblies [Deng et al., 2015; Lai et al., 2015] but importantly also
extend this to MG and MT co-assemblies.

When compared to commonly used assembly strategies, the IMP-based iterative co-assemblies consisted
of a larger output volume while maintaining a relatively high quality of the generated contigs. High-quality
assemblies yield higher quality taxonomic information and gene annotations while longer contigs (≥ 1kb)
are a prerequisite for unsupervised population-level genome reconstruction [Albertsen et al., 2013a; Laczny
et al., 2015, 2016] and subsequent multi-omics data integration [Muller et al., 2014b; Roume et al., 2015;
Heintz-Buschart et al., 2016]. Throughout all the different comparative analyses which we performed, IMP
performed more consistently across all the different datasets when compared to existing methods, thereby
emphasizing the overall stability and broad range of applicability of the method (Section 2.4.2).

Integrated analyses of MG and MT data with IMP provide the opportunity for analyses that are not
possible based on MG data alone, such as the detection of RNA viruses (Section 2.4.3) and the identification
of transcriptionally active populations (Section 2.4.3). The predicted/annotated genes may be used for
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further analyses and integration of additional omic datasets, most notably metaproteomic data [Muller et al.,
2014b; Roume et al., 2015; Heintz-Buschart et al., 2016]. Furthermore, the higher number of complete
genes improves the downstream functional analysis, because the read counts per gene will be much more
accurate when having full length transcript sequences and increase the probability to identify peptides. More
specifically, the large number of predicted genes may enhance the usage of generated metaproteomic data,
allowing more peptides, and thus proteins to be identified.

2.6 Conclusion

IMP represents the first self-contained and standardized pipeline developed to leverage the advantages of
integrating MG and MT data for large-scale analyses of microbial community structure and function in situ

[Muller et al., 2013; Narayanasamy et al., 2015]. IMP performs all the necessary large-scale bioinformatic
analyses including preprocessing, assembly, binning (automated) and analyses within an automated, repro-
ducible and user-friendly pipeline. In addition, IMP vastly enhances data usage to produce high-volume and
high-quality output. Since its conception, several versions of IMP were released, which include new features,
enhanced analytical and usability improvements (Table 4.1). The continuous improvement is a testament to
the customizability and flexibility of the pipeline, in addition to its emphasis on reproducibility. A notable
example would be the integration of automated binning into IMP version 1.4 as an added feature. This
represents a vital implementation with regards to reference independent analysis of microbial communities.
In addition, the IMP command line and installation procedure was continually enhanced for better user
experience.

From an analytical perspective, IMP has been applied to various microbial communities from a multitude
of environments, as highlighted within the current chapter. Out of these communities, one of the most
discussed instances included datasets derived from human fecal (HF1-5) microbiome samples, which is a proxy
for the microbial communities contained within the human gastrointestinal tract (GIT) [Greenhalgh et al.,
2016]. The microbial communities within the human GIT microbiome tend to exist in equilibrium/balance.
However, disruption of this balance may lead to microbial dysbiosis which has been associated to a range
of different diseases including but not limited to, colorectal cancer [Dulal and Keku, 2014; Vogtmann and
Goedert, 2016], type I diabetes mellitus [Heintz-Buschart et al., 2016] and Parkinson’s disease [Hawkes et al.,
2007; Keshavarzian et al., 2015]. Last but not least, the present challenge involves understanding if dysbiosis
within the GIT microbiome may be cause or consequence of particular diseases.

Given the biomedical importance of this microbial community, IMP was applied to human GIT micro-
biomes derived from cancer patients undergoing allogeneic hematopoietic stem cell transplantation, which is
an effective treatment for several hematologic malignancies. However, certain cases of such treatments result
in adverse outcomes, most notably graft-versus-host disease. Furthermore, allogeneic hematopoietic stem cell
transplantation is an intense treatment which is known to greatly impact the human GIT microbiome [Taur
et al., 2012]. Previous studies suggested potential links between the drastic changes in the GIT microbiome
and graft-versus-host disease [Jenq et al., 2012; Biagi et al., 2015].

Specifically, an early version of IMP (ver. 1.1) was used for detailed analyses of coupled MG and MT
datasets from one patient, before and after allogeneic hematopoietic stem cell transplantation for acute myeloid
leukaemia. This particular patient developed severe graft-versus-host disease, leading to his/her death nine
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months after the transplantation. IMP analyses from pre- and post-treatment samples of this patient revealed
a drastically decreased bacterial diversity after treatment. Furthermore, a large number of the remaining
bacterial populations post-treatment were of strains that encoded higher numbers and higher expression
levels for antibiotic resistance genes, thereby demonstrating the long-term effect of the treatment on the GIT
microbial community. Overall, the identification of these antibiotic resistant bacterial populations possible
within data derived from cancer patient GIT-derived is analogous to the use case highlighted in Section 2.4.3,
which involved the identification of bacterial populations with unique characteristics (Appendix A.6).

Section 2.4.3, demonstrated that IMP is effective for the recovery of complete or nearly complete known
viral genomes from microbial community samples. This particular capability of IMP was leveraged upon in
the analysis of temporal data sets of the LAMPs (the model system) and is described in detail within the next
chapter.

In summary, the analytical capabilities of IMP were successfully applied to both published (new analysis)
and new data sets (i.e. cancer patient GIT microbiome and LAMP-derived datasets) to effectively convert
these large datasets into information that could be used for detailed downstream analyses. More importantly,
this work demonstrates that specific use cases (Section 2.4.3) such as finding bacterial populations with
unique characteristics (Section 2.4.3) or detecting bacteriophage sequences (Section 2.4.3) are independent
of the datasets used, i.e.: i) identification of bacterial populations with unique characteristics (based on
abundance and expression of antibiotic resistance genes) has been possible in cancer patient GIT-derived data
(Appendix A.6) and ii) identification of putatively novel bacteriophage sequences and putative RNA-based
invasive genetic elements, which will be demonstrated in more detail in Chapter 3 using other LAMP-derived
datasets. Finally, the combination of these unique capabilities of IMP, open development and reproducibility
should promote the general paradigm of reproducible integrated multi-omic research within the scientific
community working on mixed microbial communities.
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CHAPTER 3

THE DYNAMICS OF BACTERIOPHAGES AND BACTERIAL HOST

POPULATIONS WITHIN THE MODEL SYSTEM

The material within this chapter is foreseen to be submitted for publication in a peer-reviewed journal.

64





Chapter 3 Abstract

3.1 Abstract

There is presently great interest towards uncovering phage-host interactions and dynamics within microbial
communities in situ. Accordingly, this chapter describes phage-host dynamics through time-resolved con-
comitant metagenomic and metatranscriptomic datasets derived from a model microbial system. Large-scale
integrated-omic analysis in combination with specialized tools for the extraction of CRISPR-Cas information
and phage sequences enabled the association of phage and host populations to follow phage-host dynamics.
The CRISPR information derived from the in situ datasets revealed variability within CRISPR repeats,
spacers and flanking regions across the time-series. The high number of identified CRISPR spacers shows
CRISPRs to be heterogeneous and dynamic genomic regions, while the high representation of CRISPR
repeats within metatranscriptomic data affirms CRISPRs to be transcribed genomic regions, within this system.
Population-level analyses focused on the two host populations, i.e. the dominant M. parvicella population
and a lowly abundant novel taxon termed LCSB005, revealed 150 and eight putative phages associated
with these populations, respectively. The observation of phage-host dynamics demonstrated that certain
putative phages tend to occur in peaks of high abundances. The abundances of most of these putative phages
are not necessarily in sync with their associated hosts, while specific high abundance peaks of particular
putative phages do not overlap with other putative phages. A separate analysis showed the high abundances
of MT-based contigs that contained protospacers associated with the M. parvicella host. In line with these
observations, the M. parvicella population exhibited high expression of an endoribonuclease Cas2 gene
throughout the entire time-series compared to other cas gene types. In conclusion, this study demonstrates the
use of an unprecedented time-series integrated multi-omic study to observe phage and host dynamics within a
naturally occurring microbial community.

3.2 Background

Recent studies have addressed the lack of information with regards to bacteriophages (and viruses in general)
by leveraging data derived from microbial consortia, namely MG information, for the identification of
previously unknown viruses [Andersson and Banfield, 2008; Roux et al., 2011, 2015a,b; Paez-Espino et al.,
2016]. Some of these aforementioned studies have relied upon publicly available MG datasets to expand the
previously sparse knowledge with regards to bacteriophages and bacteriophage-host interactions [Roux et al.,
2011, 2015a,b; Paez-Espino et al., 2016]. There have also been efforts aimed at deciphering the dynamics of
phage and hosts through laboratory-based co-culture experiments [Cairns et al., 2009], controlled in vivo

experiments [Reyes et al., 2013; Paez-Espino et al., 2015] and in naturally occurring microbial communities
[Andersson and Banfield, 2008; Parsons et al., 2012; Reyes et al., 2012; Stern et al., 2012]. However, there is
a relatively low number of studies that follow phage-host dynamics within a time-series setting [Paez-Espino
et al., 2015], especially within naturally occurring microbial communities [Parsons et al., 2012]. This is
mainly due to the limited number of natural microbial systems that allow time series based studies. In parallel,
multi-omic studies are becoming more common due to their superiority compared to single-omic based
analyses. However, to the best of our knowledge, there is presently a scarcity of such multi-omic studies
aiming at deciphering phage-host interactions (Table 1.1). In that light, this work combines the advantages
of a time-series and multi-omic data sets to study the model system of LAMPs within a BWWT plant to
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follow phage-host population dynamics. In order to perform this study, 53 samples of LAMPs, spanning
approximately one year and seven months, were subjected to the generation of paired (concomitant) MG and
MT datasets. These datasets then underwent sample-wise large-scale integrated-omic analysis using the IMP
pipeline (Chapter 2). The output produced by IMP was further analyzed to resolve phage-host dynamics
within the microbial system of LAMPs (Figure 3.1).

Specifically, this work leveraged information contained within CRISPR genomic regions as records of
bacteriophage infection histories (or CRISPR loci) and more importantly, to formulate associations between
bacterial host and bacteriophage populations. Previous studies have demonstrated that information from
the CRISPR genomic regions within bacterial genomes (i.e. CRISPR spacer sequences) could be used to
associate bacteriophages to specific bacterial populations [Andersson and Banfield, 2008; He and Deem, 2010;
Stern et al., 2012; Zhang et al., 2013; Edwards et al., 2015; Paez-Espino et al., 2016]. Given the information
contained within the CRISPR regions, and the general interest of the field towards the CRISPR-Cas system
(Section 1.3.2), several tools were designed to extract CRISPR information from isolate prokaryotic genomes
and metagenomes [Bland et al., 2007; Edgar, 2007; Skennerton et al., 2013]. In particular, PILER-CR
[Edgar, 2007] and the CRISPR recognition tool (CRT) [Bland et al., 2007] were developed to search for
CRISPR sequences within isolate genome sequences. Furthermore, metaCRT, which was an extension of the
aforementioned CRT [Bland et al., 2007], extracts CRISPR sequences from assembled MG contigs. However,
CRISPRs are semi-repetitive genomic regions that either elude, or result in low-quality de novo assembly
reconstructions [Skennerton et al., 2013]. Moreover, CRISPR sequences are heterogeneous, such that single
bacterial species may contain different compositions of CRISPR spacer information [He and Deem, 2010].
Therefore, consensus-based de novo assemblies may result in the dilution of the heterogeneity of the CRISPR
loci, and thereby reduce the overall information availability [Skennerton et al., 2013]. In order to mitigate this
issue, CRASS was developed to perform kmer based searches of CRISPR information directly from short MG
NGS reads (e.g. Illumina paired-end reads) and promises minimal loss of CRISPR sequence heterogeneity
information [Skennerton et al., 2013]. In summary, leveraging on both type of tools will increase CRISPR
related information from NGS datasets derived from microbial communities (Figure 3.1).

This work first describes community-wide dynamics with regards to the CRISPR-based information.
CRISPR-based information is defined as “CRISPR elements” in the context of this work and comprise
CRISPR repeats, spacers and in certain cases, flanking regions. On the other hand, protospacers are defined
as either the original sequence of which the spacers were possibly derived from and/or the targets of spacers,
given the mechanism of the CRISPR-Cas system (Section 1.3.2, [Amitai and Sorek, 2016]). Consequently,
contigs containing any protospacers are referred to as protospacers-containing contigs. We then focus on the
analyses of specific bacterial populations which contain at least one CRISPR loci and accompanying cas genes
(i.e. CRISPR operon [Jansen et al., 2002; Amitai and Sorek, 2016]). This was achieved by supplementing the
present study with information from isolate genomes of lipid accumulating bacterial species (i.e. subset of
LAMPs). The CRISPR information was then used to associate these bacterial populations to their putative
phages. These putative phages were further analyzed using specialized bacteriophage sequence prediction
tools. The abundance patterns of the associated phages and their hosts were following and particular cases of
phage-host dynamics were highlighted.
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3.3 Methods and material

3.3.1 Sampling and strain collection

Five individual sludge islets were sampled at 53 representative time points from the surface of anoxic tank
number one of a biological wastewater treatment plant treating communal effluents (Schifflange, Esch-
sur-Alzette, Luxembourg; 49◦30’48.29”N; 6◦1’4.53”E). Each ‘islet’ sample is independently collected,
transferred into a sterile tube, snap frozen on site and maintained at -80 ◦C until further processing, and thus
represent five biological replicates. The sampling time-series includes two initial sampling dates (4 October
2010 and 25 January 2011) followed by a higher frequency sampling phase beginning on 23 March 2011,
which has been carried out until the present day. Samples spanning from 4 October 2010 to 3 May 2012 were
selected for downstream processing and analyses (described in sections below). The interval between two
sampling dates typically span from 6 to 10 days, with several exceptions where sampling could not be carried
out on certain periods due to: i) no surface sludge islets (very often due to heavy precipitations which leads to
their dispersion) and ii) WWTP maintenance. In summary, samples used within this work spanned exactly
one year and seven months (i.e. 578 days including the start and end date).

In addition, 85 isolate cultures of lipid accumulating bacterial strains were derived from the sludge islets
sampled from the same anoxic tank described above. The isolation protocol is described in Appendix A.4
[Roume et al., 2015].

3.3.2 Extraction of biomolecules

A single biological replicate from all sampling dates between (and inclusive of) 4 October 2010 and 3
May 2012 (Section 3.3.1) was randomly selected for high-resolution omic measurements. All biomolecular
fractions were obtained using a biomolecular extraction framework that enables recovery of high-quality
biomolecular fractions (DNA, RNA, proteins, polar and non-polar metabolites from the biomass as well as
from the extracellular compartment) from unique undivided single samples [Roume et al., 2013b,b]. For
biomacromolecular purification, we used the AllPrep DNA/RNA/Protein Mini kit (Qiagen) on a batch of
randomly selected samples. Resulting biomolecular fractions comprising genomic DNA, RNA, proteins and
small molecules were subjected to high-throughput measurement techniques after stringent quality control.

3.3.3 Metagenome and metatranscriptome sequencing

DNA library preparation

The purified DNA fractions (Section 3.3.2) from the selected samples suspended in an elution buffer (pH 8.0)
were used to prepare a paired-end library with the AMPure XP/Size Select Buffer Protocol [Kozarewa et al.,
2009], modified to allow for size selection of fragments using the double solid phase reversible immobilization
procedure [Rodrigue et al., 2010]. Size selection yielded metagenomic library fragments with a mean size of
450 bp. All enzymatic steps in the protocol were performed using the Kapa Library Preparation Kit (Kapa
Biosystems) with the addition of 1M PCR-grade betaine in the PCR reaction to aid in the amplification of
high G+C percentage content templates. The resulting DNA library was subjected to Illumina sequencing
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(described below). Finally, the purified DNA samples from the isolate genomes were prepared based on a
previously described protocol, as highlighted in Appendix A.4 [Roume et al., 2015].

RNA library preparation

Following RNA purification (Section 3.3.2) from selected samples, RNA fractions were ethanol precipitated,
overlaid with RNAlater solution (Ambion) and stored at -80 ◦C. Before sequencing library preparation, the
RNA pellet was rinsed twice in 80 % ethanol and twice in 100 % ethanol to remove any excess of RNAlater
solution. The pellet was then left on ice to dry. After ethanol evaporation, the RNA pellets were re-suspended
in 1mM sodium citrate buffer at pH 6.4. Ribosomal RNAs were depleted using the Ribo-Zero Meta-Bacteria
rRNA Removal Kit (Epicentre) according to the manufacturer’s instructions. Transcriptome libraries were
subsequently prepared using the ScriptSeq v2 RNA-Seq Library Preparation Kit (Epicentre) according to the
manufacturer’s instructions. The resulting cDNA was subjected to Illumina sequencing (described below).

Next-generation sequencing

DNA and cDNA fractions from the microbial community samples were sequenced on an Illumina Genome
Analyser (GA) IIx sequencer, as per described in previous work [Muller et al., 2014b; Roume et al., 2015].
DNA and cDNA samples from all the sampling dates, with exception of the first two initial samples, were
randomized prior to sequencing to reduce possible batch effects. Selected samples from the two initial
sampling dates (4 October 2010 and 25 January 2011) and three time series sampling dates (5 October 2011,
12 October 2011 and 11 January 2012) were included in previously published work [Muller et al., 2014b;
Roume et al., 2015].

The purified DNA from the 85 isolate cultures (described in Section 3.3.1) were sequenced on an Illumina
HiSeq Genome Analyzer IIx as previously described for the published draft genome of Rhodococcus sp.
strain LCSB065 of Appendix A.4 [Roume et al., 2015].

All Illumina GAIIx and HiSeq reads produced were of 100 bp length with an insert size of approximately
300bp spanning the two pairs. Sequencing was performed at TGen North (AZ, USA).

3.3.4 Bioinformatic analyses

Large-scale integrated-omic analysis

Large-scale integrated MG and MT data (Illumina NGS reads) analyses was performed on all the time-series
datasets using IMP ver. 1.3. The Truseq2 adapter trimming was carried out in the NGS read preprocessing
step. The step for filtering reads of human origin was omitted from the preprocessing. The MEGAHIT de

novo assembler [Li et al., 2015] was selected for co-assembly of MG and MT data. All other parameters of
IMP were retained as the default. The number of threads was set to 8, total memory was set to 256 GB and
memory-per-core was set to 32 GB.

Isolate genome assembly

Illumina NGS reads from the DNA samples of isolate genome LCSB005 underwent de novo assembly using
SPAdes. The genome of Candidatus Microthrix parvicella Bio17-1 was obtained from NCBI (Bioproject:
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PRJNA174686).

Identification of CRISPR elements

CRASS [Skennerton et al., 2013] was applied to the IMP-preprocessed MG and MT paired-end and single-end
reads (Figure 3.1), using 12 threads while retaining all other parameters as default. Accordingly, CRASS
extracts information of CRISPR spacers, repeats and flanking regions. MetaCRT, i.e. the metagenome version
of CRT [Bland et al., 2007] was applied on the IMP-based MT-contigs and co-assembly (Figure 3.1) using
default parameters. MetaCRT extracts information on CRISPR spacers and repeats, but does not extract
CRISPR flanking regions. The FASTA header information of all sequences (CRISPR repeats and spacers)
extracted by metaCRT were edited to append sample information for use in downstream analyses.

All the CRISPR elements, i.e. spacers, repeats and flanking regions were clustered using CD-HIT-EST
[Fu et al., 2012] to reduce the redundancy of the information. Accordingly, CRISPR spacers were clustered
based 0.99 % sequence identity (-c 0.99), covering the entire length of the both compared sequence (-aL 1
-aS 1 -s 1). CRISPR flanking regions were collapsed using 99 % sequence identity (-c 0.99) with at least
97.5 % coverage of both the compared sequence (-aL 0.975 -aS 0.975 -s 0.975). The clustering parameters of
CRISPR repeats were determined by manually observing the clustering of known CRISPR repeats belonging
to a single CRISPR loci of Microthrix sp. Accordingly, the sequence identity was first set to 99 % (-c 0.99)
and the sequence coverage was set to 100 % (-s 1). Both these parameters were reduced by 5 % in each
iteration (manually) until all the CRISPR repeats from single CRISPR loci (of M. parvicella) were observed
to be clustered into a single cluster. At the end of these iterations, the parameters to cluster the CRISPR
repeats were set to 80 % sequence identity (-c 0.8), covering the length of at least 75 % of the shorter sequence
(-s 0.75). The FASTA headers of all the sequences were left unchanged (-d 0). 12 threads were used for
all CD-HIT-EST based analyses. The clustering procedure of the CRISPR elements yielded non-redundant
sequences CRISPR repeats, spacers and flanking regions.

Identification of protospacers and protospacers-containing contigs

A nucleotide blast (blastn [Johnson et al., 2008]) search was performed for the non-redundant CRISPR
spacers (i.e. defined as the blastn query sequences within the -query parameter) against all the IMP-based
co-assembled contigs (i.e. defined as the blastn reference database within the -db parameter) derived from
the time-series datasets. Matches based on the aforementioned search were defined as protospacers. The
parameters described for the initial blastn search of the CRISPRtarget software [Biswas et al., 2013; Edwards
et al., 2015] were replicated for this task. Accordingly, the parameters used included: i) the blastn-short
task setting (-task ’blastn-short’), ii) mismatch penalty of 1 (-penalty -1) iii) a gap opening penalty of 10
(-gapopen 10) and iv) dust filtering turned off (-dust “no”). Similarly, the non-redundant CRISPR repeats and
flanking regions were searched against all the IMP co-assembly contigs using blastn, with the blastn-short
task settings (-task ’blastn-short’), retaining all other parameters as default.

Self-matches of CRISPR spacers were removed/filtered in two ways: i) by removing any IMP co-
assembled contigs found to match to any CRISPR repeat sequence in the blastn search and ii) by removing all
IMP co-assembled contigs identified by metaCRT to be carrying CRISPR sequences (i.e. based on metaCRT
results). Accordingly, the remaining CRISPR spacer matches post-filtering are defined as protospacers and the

69



Chapter 3 Methods and material

respective contigs that contain these protospacers were defined protospacer-containing contigs and retained
for further analyses.

Identification of candidate bacterial host populations

CRISPR repeat elements were used to link the CRISPR sequences (i.e. associated repeats, spacers and
flanking regions) to bacterial populations by performing a blastn search against a collection of 86 isolate draft
genomes, of which 85 were derived from floating sludge islet containing LAMPs (described in Sections 3.3.1
and 3.3.3) with the exception of the draft genome of Candidatus Microthrix parvicella Bio17-1, which was
obtained from previously published work [Muller et al., 2012]. The two bacterial genomes containing the
highest number of CRISPR repeat matches were retained for further analyses.

The selected isolate genomes were scanned with metaCRT [Bland et al., 2007] to detect the presence
of CRISPR loci within the genomes. Additionally, the genes within those genomes were annotated, based
on function using Prokka ver. 1.11 [Seemann, 2014]. The presence of casgenes within those genomes were
manually inspected.

Identification of putative phage contigs

Protospacer-containing contigs of ≥ 1 kb, which were linked to the two bacterial isolate draft genomes
(via CRISPR repeats), were selected for further processing and analysis. In order to avoid false detection
of bacteriophage contigs, further removal of CRISPR spacer self-matches was performed. Accordingly,
all population-associated protospacer-containing contigs were: i) re-analyzed with metaCRT and ii) blast
[Johnson et al., 2008] searched (using default parameters) against their respective associated host genomes.
Protospacer-containing contigs encoding any CRISPR sequences (i.e. based on metaCRT [Bland et al., 2007]
output) and/or showing high similarity to their respective associated host genomes (based on blastn search)
were excluded from further downstream analyses. The remaining host-associated protospacer-containing
contigs were analyzed using VIRSorter [Roux et al., 2015a] to predict putative phage contigs. All the
host-associated protospacers containing contigs, including those not predicted by VIRSorter as putative phage
sequences, were retained for further downstream analyses.

Identification of putative RNA-based invasive genetic elements

Putative RNA-based invasive genetic elements (RIGes) were identified based on the following criteria: i)
contig is not represented on the MG level, ii) entire length of contig is covered by MT reads (i.e. from end to
end and not just intragenic regions).

Estimating the abundance of putative phages and corresponding bacterial hosts

IMP preprocessed MG and MT reads from all the time-series samples were mapped against the two bacterial
genomes of interest and all putative bacteriophage contigs. The average depth of coverage of MG (and MT)
data was computed to represent abundances of the host and phage populations.
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Observation of phage and host dynamics

Putative phage contigs associated with M. parvicella with a mean depth of coverage below one were excluded
from further analyses. Putative phages associated with LCSB005 were retained for further downstream
analyses, due to their overall low abundance.

Gene expression analyses

The DEseq2 package [Anders and Huber, 2010], within the R statistical software was used to normalize the
M. parvicella gene-level MT depth of coverage. An expression matrix was formulated using the “DESeq-
DataSetFromMatrix” function and normalized using the “estimateSizeFactors” function. Normalization was
carried out based on depth of coverage values of all predicted genes within the M. parvicella genome, but
only the normalized counts of the cas genes are reported in the analyses. This analysis was not performed on
the LCSB005 population due to the relatively low abundance of the population throughout the time-series.

Statistical analysis and visualization of data

The R statistical software was used for all statistical analysis (including those described in Sections 3.3.4
to 3.3.4) and data visualization (R ggplot2 package). Summaries of CRISPR elements were merged within R.
An artificial coverage value of 1 is added to CRISPR spacers detected using metaCRT, since this information is
not provided by the software. This is under the assumption that if a spacer was detected within the assembled
contigs, there should be a coverage of at least 1.

Computational platforms

IMP ver. 1.3 was executed on a Dell R820 machine with 32 Intel(R) Xeon(R) CPU E5-4640 @ 2.40GHz
physical computing cores (64 virtual), 1024 TB of DDR3 RAM (32 GB per core) with Debian 7 Wheezy as
the operating system. Additional large-scale analysis outside the scope of IMP was performed on the Gaia
cluster of the University of Luxembourg HPC platform [Varrette et al., 2014].

3.4 Results

A simplified schema of the applied workflow is represented in Figure 1.1. A total of 53 samples of sludge
islets derived from an anoxic tank of a BWWT plant were selected for extensive biomolecular extraction,
systematic high-throughput measurements and large-scale bioinformatic analyses. These samples represent
a time-series of one year and seven months. In most cases, the interval between two sampling events was
approximately one week (i.e. mean 8 days, standard deviation 16 days) apart, with the exception of the two
initial samples and several other samples within the time-series (described in Section 3.3.1).

These collected samples underwent a comprehensive biomolecular extraction that yields all types of
biomolecules (DNA, RNA, protein and metabolites), which were then subjected to high-throughput measure-
ments. This study focuses specifically on the data derived from the DNA and RNA fractions, namely MG
and MT data. The generated MG and MT data underwent integrated omic analyses with IMP. The output
from IMP, which was required for the extraction of information with regards to CRISPR genomic regions was
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retained for further downstream analyses. These included the: i) prepocessed MG and MT reads (paired-end
and singleton sequences), ii) MT contigs, iii) co-assembly contigs and, to a certain extent, iv) gene annotation
information. The results of their analysis are used to describe the community-level dynamics of elements
within CRISPR genomic regions (repeats and spacers) over time. Information from 86 draft genomes of
bacterial species that exhibit lipid accumulating phenotypes (Figure 3.1) were used to focus the analysis on
two specific lipid accumulating microbial populations (LAMPs).
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Figure 3.1: Simplified schema for the study of phage-host interaction. Samples of floating sludge islets, containing LAMPs are
collected from anoxic tank number 1 of the Schifflange biological wastewater treatment plant, Esch-sur-Alzette, Luxembourg (49◦30’
48.29” N; 6◦1’ 4.53” E). Selected samples were subjected to a comprehensive biomolecular extraction. The DNA and RNA fractions
undergo high-throughput sequencing to generate metagenomic (MG) and metatranscriptomic (MT) data, respectively. These datasets
undergo integrated omic analyses using IMP. The preprocessed MG and MT reads, MT contigs and co-assembly contigs generated by
IMP are used for the extraction CRISPR information, i.e. CRISPR-repeats (labelled R) and -spacers (labelled S1. . . S3). CRISPR repeat
sequences are used to link identified CRISPR sequences to draft isolate genomes of lipid accumulating bacterial strains. CRIPSR spacer
sequences are used to detect bacteriophage (phage) derived contigs from the co-assembly contigs. The complementary information from
the CRISPR-repeats and -spacers are used to associate bacterial populations to the phage contigs.

3.4.1 Large-scale analyses using IMP

Coupled MG and MT dataset (concomitant extractions) from each time point underwent sample-wise (i.e.
datasets from each sample processed separately) large-scale integrated omic processing and analyses using
IMP. NGS of DNA and RNA (cDNA) of all the time-series samples yielded a total of ~1.5 × 109 and ~1.75
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× 109 paired-end reads, respectively (3.26 × 109 in total). The processing and analysis using IMP yields
large volumes of output and information, including preprocessed NGS reads, assembled contigs (MT and
co-assembly contigs), gene annotation, taxonomic assignments of contigs, variant calls and population-level
genomic bins (Chapter 2 and Sections 2.3.1 and 2.4.1). However, within the scope of this work, only the
IMP: i) preprocessed MG reads ii) preprocessed MT reads, iii) MT contigs and iv) co-assembly contigs from
the IMP output were utilized for further analysis. The relevant information from IMP input and output used
within this work is summarized in Figure 3.2. Overall, the preprocessing of MG reads retained ~1.36 x 109

paired-end reads and ~9.54 × 108 singleton reads (for which the mate discarded). Similarly, the preprocessing
of MT reads retained a total of ~8.26 x 108 paired-end reads and ~1.04 x 108 single-end reads. A large
fraction of the MT reads were removed during the rRNA filtering step of IMP (Figure 3.2). Preprocessed
MG and MT reads were retained for the downstream IMP-based iterative co-assembly procedure and other
analyses steps. The iterative assembly of MT reads carried out within IMP yielded a total of ~5.34 × 106

MT contigs (mean 100,733; standard deviation 27,534 per sample), while the final co-assembly of MG and
MT data from IMP produced a total of ~2.1 x 107 contigs (mean 414,872; standard deviation 79,092 per
sample). The preprocessed NGS reads, MT contigs and co-assembly contigs were used for the extraction
of CRISPR elements. In addition, the co-assembled contigs were used for the extraction of putative phage
sequences/genomes.
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Figure 3.2: Summary of input and output of IMP analyses of the LAMPs time-series datasets. (A) Summary of the preprocessing
of metagenomic (MG) data using IMP. (B) Summary of the preprocessing of metatranscriptomic (MT) data using IMP. (C) Summary of
MT contigs generated by IMP. (D) Summary of co-assembled contigs generated by IMP. The x-axis represent the exact sampling dates.
Please refer to Table C.1 for detailed information.

3.4.2 Community-level analysis of CRISPR elements and protospacers

The output from IMP (Section 3.4.1) was used as input for CRASS [Skennerton et al., 2013] and metaCRT
[Bland et al., 2007] to extract CRISPR information. CRASS was used to extract CRISPR information directly
from the unassembled NGS reads (i.e. IMP preprocessed MG and MT paired and singleton reads). On the
other hand, metaCRT was used to detect CRISPRs in the assembled contigs (i.e. IMP-based MT-assembled
contigs and co-assembled contigs). Within the scope of this work, information content within CRISPR
genomic regions include CRISPR repeats, spacers and flanking regions and are collectively referred to
as CRISPR elements. Figure 3.3 summarizes the number of CRISPR elements detected by CRASS and
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Table 3.1: Summary of CRISPR elements detected by different methods.

CRISPR element MetaCRT CRASS

repeat 76,857 (86.54 %) 11,950 (13.46 %)

spacer 168,465 (32.16 %) 355,411 (67.84 %)

flanking regions NA 16,730

metaCRT, respectively. MetaCRT is more effective at extracting CRISPR repeat information, thereby allowing
the detection of 76,857 (86.5 %) non-unique repeats across datasets from the entire time-series, compared
to the 11,950 (13.46 %) detected by CRASS (Table 3.1). On the contrary, CRASS is more effective in
extracting CRISPR spacer information such that it detected approximately 68 % non-unique CRISPR spacers
(Table 3.1). In addition, CRASS also provides information of CRISPR flanking regions, which are regions
upstream (from the first repeat-spacer occurrence in the CRISPR locus) and downstream (from the last
repeat-spacer occurrence within the CRISPR locus) [Skennerton et al., 2013]. Overall, both methods are
complementary to each other and allowed the maximization of CRISPR information from the data.
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Figure 3.3: CRISPR detection summary using different methods. (A) CRISPR repeat detection. (B) CRISPR spacer detection.
Colours of the bars represent detection on the different omic levels. The labels in the x-axis represent the exact sampling dates.

CRISPRs are known to be highly dynamic and heterogeneous genetic regions, especially with regards
to the CRISPR spacers, which undergo constant change through either deletion of older spacers and/or
insertion of new spacers [Amitai and Sorek, 2016]. Using a time-resolved dataset, the changes to the different
CRISPR elements within community are observable over time. The results indicate that number of different
CRISPR elements detected vary over time, with changes to either CRISPR repeats (Figure 3.4A), spacers
(Figure 3.4B) and/or flanking sequences (Figure 3.4C). CRISPR spacers show the highest occurrences in
terms of absolute numbers, followed by repeat sequences. Furthermore, the present work leveraged the
availability of coupled MG and MT datasets to detect these CRISPR elements. Consequently, the different
CRISPR elements could be separated based on detection on a particular omic level. CRISPR repeats are
covered well in both MG and MT complements. On the other hand, CRISPR spacers and flanking regions
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appear to be more prominent within the MG data (Figure 3.4). Overall, a total of 88,807 (non-unique)
CRISPR repeats sequences were detected over the 53 time points with a mean length of 32 bp (standard
deviation 7.87) (Figure 3.5), while the shortest and longest repeats were 20 and 77 bp in length, respectively.
On the other hand, there were a total of 523,876 CRISPR spacers (non-unique) detected over the 53 time
points, with a mean length of 33 bp (standard deviation 5.04) (Figure 3.5), whilst the shortest and longest
spacers were 11 and 119 bp in length. Additionally, there were a total of 16,730 flanking regions detected by
CRASS, which span from 11 to 98 base pairs (mean 39, standard deviation 14.55) in length (Figure 3.5).
Based on the % G+C, CRISPR repeats demonstrate a slight skew (based on density) towards approximately
30 % G+C, while CRISPR spacers and flanking regions demonstrate an bell shaped distribution around the
centered around 50 % G+C (Figure 3.5).

In order to detect the occurrence frequencies of the different CRISPR elements across the time-series,
non-redundant sets of CRISPR repeats, spacers and flanks were generated using CD-HIT-EST [Fu et al., 2012].
CRIPSR repeats were clustered at a threshold of 80 % sequence identity, covering at least 75 % of the shorter
sequence. This threshold was tuned based on the observed (via manual inspection) convergence/clustering of
CRISPR repeats from a single CRISPR locus. Upon clustering, the number of non-redundant set of CRISPR
repeats were 8,101 for which > 50 % of them occurred only in a single time point within the entire time-series,
while there were seven CRISPR repeats that occurred in all 53 time points (Figure 3.5). On the other hand,
CRISPR spacers were clustered on a more stringent criteria, i.e. based on 99 % sequence identity, considering
the entire length of the sequences. This is mainly due to their requirement of being highly specific to their
target (protospacers), for them to effectively function as guide RNA molecules [Marraffini and Sontheimer,
2010; Amitai and Sorek, 2016]. Clustering of the spacers yielded 176,763 non-redundant spacers, for which
71.4 % of them occur within a single time point within the entire time-series with only two spacer occurring
in almost the entire time-series (Figure 3.5). Similarly, only one flanking sequences occurred in all the time
points.

Protospacers are complementary sequences of CRISPR spacers which represent either the origin of the
CRISPR spacer sequences and/or targets for inhibition/splicing of invasive genetic elements [Marraffini
and Sontheimer, 2010; Amitai and Sorek, 2016]. A blastn [Johnson et al., 2008] search was performed on
the non-redundant set of CRISPR spacers, obtained from all the time-series datasets against all IMP-based
iterative co-assembled contigs. The blastn parameters of CRISPRtarget were used for this task [Biswas
et al., 2013]. In this work, a protospacer is defined as the part of the contig either matching or showing high
similarity (based on identity and query sequence coverage with regards to the CRISPR spacer sequence) to a
CRISPR spacer sequence. In order to avoid possible self-matching of CRISPR-spacers, only protospacers
occurring within contigs that do not contain any CRISPR repeats were considered for further analyses.

A total of ~5.9 × 106 protospacers were detected within this analysis (Figure 3.4). In general, the number
of protospacers remain relatively constant throughout the time-series. Interestingly, the dataset that yielded
the highest number of CRISPR spacers (16 November 2011) did not necessarily yield many of protospacers
targets (Figure 3.4). On the other end of the spectrum, the dataset from 28 September 2011, yielded the
highest number of protospacers (508,357) protospacers, from 15,387 CRISPR spacers (Figure 3.4). Detailed
inspection of CRISPR spacers and their corresponding protospacer targets revealed one particular CRISPR
spacer with 20,900 apparent protospacers targets, while the mean and median of number of protospacers
targets per spacer is approximately 63 and 12 respectively (Table 3.2). In summary, this analysis demonstrates
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Figure 3.4: Community-wide dynamics of CRISPR elements. (A) Number of repeat sequences per time point. (B) Number of spacer
sequences per time point. (C) Number of flanking sequences. (D) Number of protospacers detected. (E) Number of protospacer-
containing contigs. Colours of the bars represent detection on the different omic levels. The labels in the x-axis represent the exact
sampling dates. Please refer to Table C.2 for detailed information.

that single CRISPR spacers are able to target multiple protospacers in distinct genomic locations.

A contig that contains at least one protospacer is hereby defined as protospacer-containing contig. Based
on this definition, all the protospacers detected within this analysis could be traced back to a total of ~1.37
× 106 protospacer-containing contigs, with a mean of 25,836 (standard deviation 5483.54) protospacer-
containing contigs per time-point (Figure 3.4). Overall, a high number of detected protospacers within
one dataset did not translate into a large number of protospacers-containing contigs (i.e. 28 September
2011 dataset, Figure 3.4). Detailed inspection of protospacers-containing contigs revealed the occurrence
of 1,081 protospacers within a single contig, which was the highest number detected within this analysis
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Figure 3.5: Summary of CRISPR element information. From top to bottom, each row represents a different measure, i.e. occurrence,
length and % G+C. From left to right, columns (and colours) represent the different CRISPR elements, i.e. repeat, spacer and flanking
sequence. Occurrence is based on the number of non-redundant CRISPR elements.

(Figure 3.2). It is also important to note that the large number of observed protospacers, relative to the lower
number of protospacer-containing contigs could also be attributed to the redundancy among the contigs.
In summary, we show that a single contig may carry multiple protospacers. Finally, these protospacers
containing contigs represent putative invasive genetic elements that are targeted by CRISPR-Cas systems
within bacterial populations, and thereby include putative phage-derived contigs.
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Table 3.2: Summary statistics of CRISPR elements.

CRISPR element Measure Min Q1 Median Mean Q3 Max Std. dev

repeat length (bp) 20 25 32 32 37 77 7.87

spacer length (bp) 11 32 33 33 36 119 5.04

flank length (bp) 11 34 37 39 41 98 14.55

repeat % G+C 0 36.11 45.65 47.56 57.89 100.00 15.03

spacer % G+C 0 37.50 47.06 48.40 59.38 100.00 14.29

flank % G+C 0 37.21 47.37 48.62 59.46 100.00 14.96

repeat occurrence (sample count) 1 1 1 3.65 3 53 6.24

spacer occurrence (sample count) 1 1 1 2.36 2 52 4.26

flank occurrence (sample count) 1 1 1 1.39 1 25 1.38

spacer protospacer (count) 1 3 12 62.57 44 20,900 194.07

protospacer-containing contig protospacer (count) 1 1 1 4.28 3 1,081 15.15

3.4.3 Population-level analysis of CRISPR elements

This work leveraged a compendium of 86 draft isolate genomes of lipid accumulating bacterial strains to
focus the analysis on specific bacterial populations. CRISPR repeats and flanking regions extracted from the
entire community were searched (blastn [Johnson et al., 2008]) against all draft isolate genomes, such that
identified CRISPR repeats could be conclusively linked to single bacterial populations. Out of the 86 draft
isolate genomes, only 16 draft genomes contained at least one associated CRISPR repeat sequence from the
entire collection of CRISPR repeats identified in the large-scale multi-omic analyses (Table 3.3). Given the
limited number of bacterial populations that could be identified, two specific strains that contained the highest
number of associated CRISPR repeats and flanking regions for were chosen for detailed population-level
analyses (Table 3.3). These strains include: i) the Candidatus Microthrix parvicella Bio17-1 (hereafter
referred to as M. parvicella) [Muller et al., 2012], a filamentous lipid accumulating bacteria that is known
to be dominant within BWWT plants, including the present system of study [Blackall et al., 1996] and ii) a
novel lipid accumulating organism referred to as LCSB005 (Figure B.1), that occurs in low abundance within
the model system (refer to Section 3.4.5 for inferred abundances and Figure B.1 for microscopy images).

These selected draft genomes were scanned for CRISPR loci (using metaCRT [Bland et al., 2007]) and
CRISPR-associated genes (using Prokka [Seemann, 2014]), to identify CRISPR-Cas systems within these
bacterial strains. Accordingly, there were four CRISPR loci detected within the M. parvicella genome,
whereby CRISPR repeats within different loci were different from each other. However, only one contained
more than 20 consecutive repeat-spacer pairs (89 total). Moreover, this particular CRISPR locus, (based on
metaCRT results [Bland et al., 2007]), is accompanied by six cas genes upstream (within positions 473,221 -
482,572 of scaffold 2, based on the annotation by Prokka [Seemann, 2014]). Similarly, seven CRISPR loci

were detected within the isolate genome of LCSB005 (based on metaCRT [Bland et al., 2007] and Prokka
[Seemann, 2014]). However, unlike M. parvicella the seven CRISPR loci detected within the genome of
LCSB005 shared four CRISPR repeat types. In addition, there were at least four of these CRISPR loci that
were located in close proximity to (upstream/downstream) clusters of cas genes, of which three contained
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Table 3.3: Summary of the number of CRISPR repeats and flanks detected within draft genomes of lipid accumulating bacterial
species.

Isolate genome No. of CRISPR repeats No. of CRISPR flanks

*Candidatus Microthrix parvicella Bio17-1 199 4720

LCSB005 79 2

LCSB403 35 1

LCSB408 29 29

LCSB454A 14 0

LCSB357A 6 6

LCSB589 4 2

LCSB455 3 0

LCSB556 3 1

LCSB663 3 0

LCSB252A 2 0

LCSB462B 2 1

LCSB406 1 0

LCSB541 1 1

LCSB565 1 8

LCSB660 1 0

*Published draft genomes

approximately 40 CRISPR repeat-spacer pairs.

CRISPR elements associated to M. parvicella were found in all the datasets throughout the time-series,
with the exception of the dataset from 4 October 2010. These datasets show that the M. parvicella CRISPR
repeats are consistently covered by both MG and MT data, demonstrating transcription of these regions
throughout all samples within time-series, with the exception of the first two initial time points (Figure 3.6).
In addition, a large number of CRISPR spacers and flanking regions are also observed for the M. parvicella

population (Figure 3.6). Due to the large number of CRISPR spacers associated to M. parvicella, there
is an accompanying large number of protospacer information, and therefore large number of associated
protospacer-containing contigs (Figure 3.6). Interestingly, similar abundance patterns are observed in the
CRISPR elements, protospacers and protospacers-containing contigs associated with the M. parvicella

population, which was contrary to the observations within the community-wide analysis (Section 3.4.2).

On the other hand, there was a sparse occurrence of CRISPR elements associated to LCSB005, appearing
only between datasets 5 September 2011 and 14 February 2012 (Figure 3.7A & B). However, despite the
relatively small amount of CRISPR information associated to this population, protospacers and protospacer-
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Figure 3.6: M. parvicella population-level dynamics of CRISPR elements The x-axis represent the exact sampling dates. (A) Number
of repeat sequences per time point. (B) Number of spacer sequences per time point. (C) Number of flanking sequences. (D) Number of
protospacers detected. (E)Number of protospacer-containing contigs. Colours of the bars represent detection on the different omic levels.
The labels in the x-axis represent the exact sampling dates. Please refer to Table C.3 for detailed information.

containing contigs could be detected in samples from all time points, with exception of the 4 October 2010
dataset.
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Figure 3.7: LCSB005 population-level dynamics of CRISPR elements The x-axis represent the exact sampling dates. (A) Number
of repeat sequences per time point. (B) Number of spacer sequences per time point. (C) Number of flanking sequences. (D) Number of
protospacers detected. (E) Number of protospacer-containing contigs. Colours of the bars represent detection on the different omic
levels. The labels in the x-axis represent the exact sampling dates. Please refer to Table C.4 for detailed information.

3.4.4 Putative bacteriophage sequences

The protospacer-containing contigs linked to the defined populations were selected for further analyses,
namely using a specialized viral sequence annotation and identification tool [Roux et al., 2015a]. A total
of 20,632 protospacer-containing contigs associated to the M. parvicella population yielded 150 putative
phage contigs (Table 3.4). Similarly, of the 4,232 protospacer-containing contigs identified for the LCSB005
population, only 8 of them were predicted to be phage derived sequences, whereby most of them were
predicted at a low confidence (Table 3.4) [Roux et al., 2015a].
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Out of the 150 predicted phage sequences (using VIRSorter [Roux et al., 2015a]) associated with the
M. parvicella population, five sequences were selected for further analyses (Table 3.4). This selection was
based on: i) high-confidence predictions by VIRSorter (i.e. category 1 or 2) [Roux et al., 2015a], ii) presence
of predicted genes of which at least one of them should be annotated by “phage hallmark genes” (defined
by VIRSorter [Roux et al., 2015a]), iii) length above 2kb, iv) contain ≥ 10 protospacers and v) exhibits
a mean depth of coverage of ≥ 1 throughout the entire time-series. The putative M. parvicella-associated
phages, selected based on the aforementioned criteria, are hereby referred to as “Putative phages M1 - 5”
(Table 3.4). Other notable examples, that were not considered for further analyses, include the two putative
phage sequences “D36_N_contig_120762” and “D36_N_contig_368349”. These sequences contained a
particularly high number of protospacers (306 and 252 respectively), and lengths > 10 kb, while the latter was
annotated with a known phage gene. However, these contigs were filtered out in the early stages as they did
not exhibit sufficient depth of coverage throughout the time-series (i.e. mean depth of coverage < 1).

Similarly, putative phage sequences associated with the LCSB005 population were also selected for
further inspection and analyses. Nevertheless, given the sparse number of protospacer-containing contigs
associated with the LCSB005 population and the overall low confidence predictions [Roux et al., 2015a], a
lower selection stringency was applied for the putative phages of LCSB005 resulting in two putative phage
contigs being selected, based on: i) predicted genes within contigs, ii) lengths of at least 2kb, iii) with at least
one protospacer occurring within contigs and iv) demonstrating high-depth of coverage in at least one sample
within the entire time-series. The putative LCSB005 associated phages, selected based on the aforementioned
criteria are hereby referred to as “Putative phage L1 and L2” (Table 3.4).

84



Ta
bl

e
3.

4:
Su

m
m

ar
y

of
pu

ta
tiv

e
ph

ag
es

of
th

e
M

.p
ar

vi
ce

lla
an

d
L

C
SB

00
5

po
pu

la
tio

ns
.

B
ac

te
ri

al
ho

st
C

on
tig

ID
*N

o.
of

pr
ed

ic
te

d
ge

ne
s

*C
at

eg
or

y
*N

o.
of

ph
ag

e
ha

llm
ar

k
ge

ne
s

C
on

tig
le

ng
th

P
ro

to
sp

ac
er

co
un

t
P

ea
rs

on
s

co
rr

el
at

io
n

M
.p

ar
vi

ce
lla

M
1

D
05

_G
7_

co
nt

ig
_3

28
36

7
5

1
1

3,
61

4
15

0.
45

0
M

.p
ar

vi
ce

lla
M

2
D

05
_N

_c
on

tig
_1

28
86

3
4

3
N

A
1,

04
2

13
0.

55
6

M
.p

ar
vi

ce
lla

M
3

D
38

_N
_c

on
tig

_1
03

08
5

3
1

2
2,

85
0

21
0.

17
5

M
.p

ar
vi

ce
lla

M
4

D
22

_N
_c

on
tig

_3
00

13
38

2
3

27
,4

14
12

0.
50

0
M

.p
ar

vi
ce

lla
M

5
D

38
_N

_c
on

tig
_8

72
03

19
2

3
15

,1
36

17
0.

39
4

M
.p

ar
vi

ce
lla

A
01

_C
9_

co
nt

ig
_1

03
13

3
4

2
1

2,
63

0
36

0.
35

9
M

.p
ar

vi
ce

lla
A

01
_C

9_
co

nt
ig

_1
23

27
4

2
N

A
2,

04
9

5
0.

42
0

M
.p

ar
vi

ce
lla

A
02

_N
_c

on
tig

_1
44

95
9

4
2

N
A

2,
47

8
12

0.
54

1
M

.p
ar

vi
ce

lla
D

01
_C

26
_c

on
tig

_1
60

03
12

2
1

4,
51

2
1

0.
54

7
M

.p
ar

vi
ce

lla
D

01
_C

26
_c

on
tig

_2
68

38
7

9
3

N
A

4,
26

3
1

0.
49

3
M

.p
ar

vi
ce

lla
D

01
_N

_c
on

tig
_2

07
45

8
35

3
N

A
19

,6
84

1
N

A
M

.p
ar

vi
ce

lla
D

01
_N

_c
on

tig
_2

31
22

1
9

1
3

6,
47

4
10

N
A

M
.p

ar
vi

ce
lla

D
01

_N
_c

on
tig

_2
55

65
3

4
2

1
1,

34
5

1
N

A
M

.p
ar

vi
ce

lla
D

01
_N

_c
on

tig
_8

89
40

13
2

2
8,

75
7

11
N

A
M

.p
ar

vi
ce

lla
D

02
_N

_c
on

tig
_1

23
06

9
4

2
2

2,
76

0
7

N
A

M
.p

ar
vi

ce
lla

D
02

_N
_c

on
tig

_1
36

52
6

4
2

1
3,

14
3

2
N

A
M

.p
ar

vi
ce

lla
D

02
_N

_c
on

tig
_1

60
91

9
4

2
1

2,
33

1
3

N
A

M
.p

ar
vi

ce
lla

D
02

_N
_c

on
tig

_2
19

75
5

3
2

N
A

2,
08

2
7

N
A

M
.p

ar
vi

ce
lla

D
02

_N
_c

on
tig

_2
98

84
7

11
2

3
6,

49
4

1
N

A
M

.p
ar

vi
ce

lla
D

02
_N

_c
on

tig
_3

71
48

5
4

2
1

1,
98

2
1

N
A

M
.p

ar
vi

ce
lla

D
02

_N
_c

on
tig

_4
06

64
6

8
3

N
A

7,
20

1
1

0.
02

0
M

.p
ar

vi
ce

lla
D

02
_N

_c
on

tig
_8

92
84

10
3

N
A

4,
06

5
1

N
A

M
.p

ar
vi

ce
lla

D
03

_G
6_

co
nt

ig
_2

03
81

9
2

4
9,

94
5

2
N

A
M

.p
ar

vi
ce

lla
D

04
_N

_c
on

tig
_1

62
23

4
8

2
1

5,
73

5
4

N
A

M
.p

ar
vi

ce
lla

D
04

_O
11

_c
on

tig
_1

19
58

5
4

2
1

4,
26

5
1

N
A

M
.p

ar
vi

ce
lla

D
04

_O
11

_c
on

tig
_1

81
24

4
9

1
1

4,
60

1
1

N
A

M
.p

ar
vi

ce
lla

D
05

_N
_c

on
tig

_1
40

33
9

3
N

A
8,

93
1

1
N

A
M

.p
ar

vi
ce

lla
D

05
_N

_c
on

tig
_2

15
66

6
4

2
1

1,
32

8
14

N
A

M
.p

ar
vi

ce
lla

D
06

_N
_c

on
tig

_1
56

37
5

6
1

3
5,

53
9

1
N

A
M

.p
ar

vi
ce

lla
D

06
_N

_c
on

tig
_1

64
57

8
3

N
A

2,
51

1
1

N
A

M
.p

ar
vi

ce
lla

D
06

_N
_c

on
tig

_2
42

07
4

14
2

2
10

,9
15

2
-0

.0
74

M
.p

ar
vi

ce
lla

D
06

_N
_c

on
tig

_9
46

27
6

2
1

2,
77

0
3

N
A

M
.p

ar
vi

ce
lla

D
07

_N
_c

on
tig

_1
15

93
8

5
2

2
3,

86
2

1
N

A
M

.p
ar

vi
ce

lla
D

08
_N

_c
on

tig
_1

45
49

4
4

2
1

2,
22

4
7

N
A

M
.p

ar
vi

ce
lla

D
08

_N
_c

on
tig

_2
36

81
9

4
2

1
1,

81
8

1
N

A
M

.p
ar

vi
ce

lla
D

08
_N

_c
on

tig
_3

56
35

8
18

2
2

16
,1

69
2

0.
19

2
M

.p
ar

vi
ce

lla
D

09
_N

_c
on

tig
_1

67
65

8
3

N
A

3,
16

9
27

0.
37

2
M

.p
ar

vi
ce

lla
D

09
_N

_c
on

tig
_5

11
51

4
1

1
2,

59
0

13
0.

31
0

M
.p

ar
vi

ce
lla

D
10

_N
_c

on
tig

_3
65

66
5

11
2

2
6,

64
5

2
N

A
M

.p
ar

vi
ce

lla
D

11
_N

_c
on

tig
_1

51
09

8
11

3
N

A
11

,3
64

5
N

A
M

.p
ar

vi
ce

lla
D

11
_N

_c
on

tig
_1

73
79

8
33

2
2

31
,1

93
3

0.
54

1
M

.p
ar

vi
ce

lla
D

11
_N

_c
on

tig
_1

74
23

8
6

2
N

A
2,

66
3

1
N

A
M

.p
ar

vi
ce

lla
D

11
_N

_c
on

tig
_1

78
86

0
5

2
N

A
4,

05
8

4
N

A
M

.p
ar

vi
ce

lla
D

11
_N

_c
on

tig
_2

64
49

2
19

2
1

12
,0

08
21

N
A

C
on

tin
ue

d
on

ne
xt

pa
ge

...



B
ac

te
ri

al
ho

st
C

on
tig

ID
*N

o.
of

pr
ed

ic
te

d
ge

ne
s

*C
at

eg
or

y
*N

o.
of

ph
ag

e
ha

llm
ar

k
ge

ne
s

C
on

tig
le

ng
th

P
ro

to
sp

ac
er

co
un

t
P

ea
rs

on
s

co
rr

el
at

io
n

M
.p

ar
vi

ce
lla

D
11

_N
_c

on
tig

_2
98

52
8

31
2

4
22

,7
59

1
N

A
M

.p
ar

vi
ce

lla
D

11
_N

_c
on

tig
_3

63
19

2
5

2
1

3,
00

0
1

0.
33

0
M

.p
ar

vi
ce

lla
D

12
_N

_c
on

tig
_1

78
98

1
7

3
N

A
1,

81
9

7
0.

31
1

M
.p

ar
vi

ce
lla

D
12

_N
_c

on
tig

_2
66

57
12

2
3

7,
47

5
1

N
A

M
.p

ar
vi

ce
lla

D
12

_N
_c

on
tig

_7
16

30
9

2
1

5,
87

7
1

N
A

M
.p

ar
vi

ce
lla

D
13

_C
22

_c
on

tig
_2

63
21

8
16

3
N

A
6,

25
7

9
N

A
M

.p
ar

vi
ce

lla
D

13
_C

22
_c

on
tig

_3
66

06
2

14
2

4
8,

35
6

1
N

A
M

.p
ar

vi
ce

lla
D

13
_N

_c
on

tig
_2

70
48

2
5

2
N

A
2,

11
4

6
N

A
M

.p
ar

vi
ce

lla
D

14
_N

_c
on

tig
_2

41
93

8
5

1
1

5,
30

3
1

N
A

M
.p

ar
vi

ce
lla

D
14

_N
_c

on
tig

_3
11

74
5

3
2

N
A

2,
23

4
2

0.
43

0
M

.p
ar

vi
ce

lla
D

14
_N

_c
on

tig
_3

36
16

6
4

3
N

A
1,

68
0

5
N

A
M

.p
ar

vi
ce

lla
D

15
_N

_c
on

tig
_2

60
05

7
4

2
1

1,
23

4
16

0.
22

0
M

.p
ar

vi
ce

lla
D

16
_N

_c
on

tig
_1

66
28

5
27

2
4

19
,3

08
1

N
A

M
.p

ar
vi

ce
lla

D
16

_N
_c

on
tig

_2
23

29
2

12
2

2
6,

30
6

4
N

A
M

.p
ar

vi
ce

lla
D

16
_N

_c
on

tig
_2

76
48

5
2

1
2,

65
6

2
N

A
M

.p
ar

vi
ce

lla
D

16
_N

_c
on

tig
_3

14
41

6
8

3
N

A
8,

41
0

5
N

A
M

.p
ar

vi
ce

lla
D

16
_N

_c
on

tig
_6

51
41

5
2

N
A

14
,8

67
1

N
A

M
.p

ar
vi

ce
lla

D
16

_O
7_

co
nt

ig
_1

63
86

10
1

3
6,

57
7

1
N

A
M

.p
ar

vi
ce

lla
D

16
_O

7_
co

nt
ig

_6
77

33
14

3
N

A
5,

30
3

1
0.

65
2

M
.p

ar
vi

ce
lla

D
17

_E
15

_c
on

tig
_2

95
12

7
12

3
N

A
13

,2
99

8
N

A
M

.p
ar

vi
ce

lla
D

19
_N

_c
on

tig
_3

46
07

8
2

1
4,

60
5

16
N

A
M

.p
ar

vi
ce

lla
D

21
_N

_c
on

tig
_1

08
79

6
6

2
1

5,
66

4
1

N
A

M
.p

ar
vi

ce
lla

D
21

_N
_c

on
tig

_1
31

83
4

8
3

N
A

6,
69

6
10

N
A

M
.p

ar
vi

ce
lla

D
21

_N
_c

on
tig

_1
47

22
1

12
1

4
7,

42
0

1
N

A
M

.p
ar

vi
ce

lla
D

22
_N

_c
on

tig
_1

54
54

17
2

3
10

,0
82

4
0.

44
3

M
.p

ar
vi

ce
lla

D
22

_N
_c

on
tig

_1
85

89
7

8
1

3
6,

38
9

1
N

A
M

.p
ar

vi
ce

lla
D

22
_N

_c
on

tig
_2

92
39

5
8

1
3

4,
48

9
1

0.
45

0
M

.p
ar

vi
ce

lla
D

22
_N

_c
on

tig
_3

31
16

5
13

2
2

8,
13

8
11

N
A

M
.p

ar
vi

ce
lla

D
22

_N
_c

on
tig

_3
99

72
0

5
2

N
A

5,
24

1
1

N
A

M
.p

ar
vi

ce
lla

D
22

_N
_c

on
tig

_4
19

70
6

1
1

3,
97

9
6

N
A

M
.p

ar
vi

ce
lla

D
22

_N
_c

on
tig

_5
46

52
5

2
2

2,
60

5
3

N
A

M
.p

ar
vi

ce
lla

D
23

_N
_c

on
tig

_2
18

24
6

10
3

N
A

5,
25

3
1

N
A

M
.p

ar
vi

ce
lla

D
23

_N
_c

on
tig

_6
89

34
9

3
N

A
5,

83
6

1
N

A
M

.p
ar

vi
ce

lla
D

24
_N

_c
on

tig
_4

23
17

9
8

3
N

A
5,

38
9

10
N

A
M

.p
ar

vi
ce

lla
D

24
_N

_c
on

tig
_8

23
09

15
2

2
10

,1
30

10
N

A
M

.p
ar

vi
ce

lla
D

25
_N

_c
on

tig
_1

07
83

7
8

3
N

A
2,

06
4

1
N

A
M

.p
ar

vi
ce

lla
D

26
_C

8_
co

nt
ig

_1
58

68
6

10
3

N
A

5,
39

7
1

N
A

M
.p

ar
vi

ce
lla

D
26

_C
8_

co
nt

ig
_3

46
10

3
12

3
N

A
6,

77
5

5
N

A
M

.p
ar

vi
ce

lla
D

27
_E

21
_c

on
tig

_1
94

41
5

9
2

2
6,

11
5

6
N

A
M

.p
ar

vi
ce

lla
D

27
_N

_c
on

tig
_1

11
81

2
6

2
1

2,
74

8
1

N
A

M
.p

ar
vi

ce
lla

D
28

_N
_c

on
tig

_3
37

07
8

19
3

N
A

18
,8

40
1

0.
45

2
M

.p
ar

vi
ce

lla
D

28
_N

_c
on

tig
_4

11
61

3
4

3
N

A
1,

22
7

6
N

A
M

.p
ar

vi
ce

lla
D

29
_N

_c
on

tig
_1

86
88

5
41

2
1

28
,9

69
1

N
A

M
.p

ar
vi

ce
lla

D
31

_N
_c

on
tig

_2
99

20
3

1
1

1,
50

5
5

0.
32

4
M

.p
ar

vi
ce

lla
D

31
_N

_c
on

tig
_3

63
35

5
14

3
N

A
6,

87
3

1
0.

13
8

M
.p

ar
vi

ce
lla

D
32

_N
_c

on
tig

_3
73

77
7

12
3

N
A

12
,8

47
1

N
A

C
on

tin
ue

d
on

ne
xt

pa
ge

...



B
ac

te
ri

al
ho

st
C

on
tig

ID
*N

o.
of

pr
ed

ic
te

d
ge

ne
s

*C
at

eg
or

y
*N

o.
of

ph
ag

e
ha

llm
ar

k
ge

ne
s

C
on

tig
le

ng
th

P
ro

to
sp

ac
er

co
un

t
P

ea
rs

on
s

co
rr

el
at

io
n

M
.p

ar
vi

ce
lla

D
32

_N
_c

on
tig

_4
07

29
6

5
1

2
4,

08
6

6
N

A
M

.p
ar

vi
ce

lla
D

33
_N

_c
on

tig
_1

46
63

5
3

1
2

3,
76

0
1

N
A

M
.p

ar
vi

ce
lla

D
33

_N
_c

on
tig

_3
24

07
8

4
2

1
1,

60
4

1
N

A
M

.p
ar

vi
ce

lla
D

33
_N

_c
on

tig
_3

57
92

6
6

1
1

3,
42

0
1

N
A

M
.p

ar
vi

ce
lla

D
34

_N
_c

on
tig

_1
79

66
3

8
3

N
A

5,
30

0
10

N
A

M
.p

ar
vi

ce
lla

D
35

_E
21

_c
on

tig
_2

51
50

15
2

2
10

,9
23

11
N

A
M

.p
ar

vi
ce

lla
D

35
_G

11
_c

on
tig

_2
40

77
2

22
3

N
A

8,
40

3
10

N
A

M
.p

ar
vi

ce
lla

D
35

_N
_c

on
tig

_1
34

35
4

2
1

2,
26

8
23

0.
33

2
M

.p
ar

vi
ce

lla
D

36
_N

_c
on

tig
_1

20
76

2
16

3
N

A
13

,7
80

30
6

N
A

M
.p

ar
vi

ce
lla

D
36

_N
_c

on
tig

_2
11

30
5

5
2

1
2,

20
6

3
N

A
M

.p
ar

vi
ce

lla
D

36
_N

_c
on

tig
_2

13
51

1
6

1
2

4,
60

1
9

N
A

M
.p

ar
vi

ce
lla

D
36

_N
_c

on
tig

_2
47

93
7

12
3

N
A

7,
23

1
2

N
A

M
.p

ar
vi

ce
lla

D
36

_N
_c

on
tig

_3
68

34
9

19
2

1
14

,0
85

25
2

N
A

M
.p

ar
vi

ce
lla

D
36

_N
_c

on
tig

_3
85

75
8

7
2

1
3,

58
9

1
N

A
M

.p
ar

vi
ce

lla
D

36
_N

_c
on

tig
_9

16
00

8
2

1
5,

13
3

5
N

A
M

.p
ar

vi
ce

lla
D

37
_G

11
_c

on
tig

_3
49

20
5

4
2

1
2,

15
3

2
N

A
M

.p
ar

vi
ce

lla
D

37
_N

_c
on

tig
_3

04
42

6
4

2
1

2,
28

0
1

N
A

M
.p

ar
vi

ce
lla

D
37

_N
_c

on
tig

_3
95

00
6

2
1

1,
98

0
9

N
A

M
.p

ar
vi

ce
lla

D
37

_N
_c

on
tig

_5
57

19
5

2
N

A
2,

37
8

6
N

A
M

.p
ar

vi
ce

lla
D

37
_N

_c
on

tig
_7

37
27

8
2

1
3,

21
8

1
N

A
M

.p
ar

vi
ce

lla
D

38
_N

_c
on

tig
_2

78
55

6
8

2
N

A
3,

60
8

8
N

A
M

.p
ar

vi
ce

lla
D

38
_N

_c
on

tig
_4

58
38

5
2

N
A

4,
20

3
9

0.
39

9
M

.p
ar

vi
ce

lla
D

39
_N

_c
on

tig
_1

77
40

0
9

2
N

A
10

,1
72

3
0.

19
3

M
.p

ar
vi

ce
lla

D
39

_N
_c

on
tig

_1
94

48
5

1
3

4,
26

1
1

N
A

M
.p

ar
vi

ce
lla

D
39

_N
_c

on
tig

_3
07

59
5

5
2

1
2,

73
8

4
N

A
M

.p
ar

vi
ce

lla
D

39
_N

_c
on

tig
_4

32
42

1
8

2
2

4,
19

9
1

N
A

M
.p

ar
vi

ce
lla

D
39

_N
_c

on
tig

_4
62

87
12

3
N

A
7,

13
2

4
N

A
M

.p
ar

vi
ce

lla
D

39
_N

_c
on

tig
_7

09
10

8
2

1
4,

60
0

1
N

A
M

.p
ar

vi
ce

lla
D

39
_N

_c
on

tig
_8

17
57

4
1

2
3,

60
8

1
N

A
M

.p
ar

vi
ce

lla
D

39
_N

_c
on

tig
_9

12
57

17
2

3
10

,8
73

9
0.

04
5

M
.p

ar
vi

ce
lla

D
40

_G
4_

co
nt

ig
_1

15
50

8
15

3
N

A
8,

09
1

4
N

A
M

.p
ar

vi
ce

lla
D

40
_G

4_
co

nt
ig

_1
18

58
4

12
3

N
A

4,
45

4
2

N
A

M
.p

ar
vi

ce
lla

D
40

_G
4_

co
nt

ig
_1

77
97

1
7

2
1

6,
45

3
1

N
A

M
.p

ar
vi

ce
lla

D
40

_N
_c

on
tig

_2
93

29
4

6
2

1
3,

16
1

1
N

A
M

.p
ar

vi
ce

lla
D

40
_N

_c
on

tig
_3

07
53

6
4

1
1

2,
05

0
4

N
A

M
.p

ar
vi

ce
lla

D
41

_N
_c

on
tig

_1
14

23
4

14
3

N
A

6,
94

5
1

N
A

M
.p

ar
vi

ce
lla

D
41

_N
_c

on
tig

_2
12

17
4

5
2

1
2,

63
1

3
N

A
M

.p
ar

vi
ce

lla
D

41
_N

_c
on

tig
_2

56
73

7
12

2
4

8,
29

4
1

N
A

M
.p

ar
vi

ce
lla

D
41

_N
_c

on
tig

_7
26

62
5

3
N

A
1,

09
7

3
N

A
M

.p
ar

vi
ce

lla
D

41
_N

_c
on

tig
_7

64
53

13
3

N
A

8,
87

4
4

0.
40

2
M

.p
ar

vi
ce

lla
D

42
_N

_c
on

tig
_3

02
94

0
7

2
1

4,
40

7
10

N
A

M
.p

ar
vi

ce
lla

D
43

_N
_c

on
tig

_3
23

35
9

17
2

4
11

,2
06

1
N

A
M

.p
ar

vi
ce

lla
D

45
_N

_c
on

tig
_7

41
56

16
3

N
A

9,
52

2
1

N
A

M
.p

ar
vi

ce
lla

D
46

_N
_c

on
tig

_3
13

02
4

6
2

N
A

5,
78

9
1

0.
03

2
M

.p
ar

vi
ce

lla
D

47
_P

30
_c

on
tig

_6
64

99
27

3
N

A
32

,4
30

4
N

A
M

.p
ar

vi
ce

lla
D

48
_N

_c
on

tig
_1

94
52

0
6

2
1

4,
34

2
9

N
A

C
on

tin
ue

d
on

ne
xt

pa
ge

...



B
ac

te
ri

al
ho

st
C

on
tig

ID
*N

o.
of

pr
ed

ic
te

d
ge

ne
s

*C
at

eg
or

y
*N

o.
of

ph
ag

e
ha

llm
ar

k
ge

ne
s

C
on

tig
le

ng
th

P
ro

to
sp

ac
er

co
un

t
P

ea
rs

on
s

co
rr

el
at

io
n

M
.p

ar
vi

ce
lla

D
48

_N
_c

on
tig

_2
01

3
6

2
N

A
4,

16
6

2
-0

.2
21

M
.p

ar
vi

ce
lla

D
48

_N
_c

on
tig

_2
79

42
9

1
3

5,
72

0
1

N
A

M
.p

ar
vi

ce
lla

D
48

_N
_c

on
tig

_3
42

27
2

13
2

3
7,

56
7

1
N

A
M

.p
ar

vi
ce

lla
D

48
_N

_c
on

tig
_3

92
35

6
2

1
2,

87
8

4
N

A
M

.p
ar

vi
ce

lla
D

48
_N

_c
on

tig
_5

62
15

4
2

1
2,

22
5

1
N

A
M

.p
ar

vi
ce

lla
D

49
_C

8_
co

nt
ig

_4
03

57
9

3
N

A
4,

66
2

2
N

A
M

.p
ar

vi
ce

lla
D

49
_N

_c
on

tig
_3

69
17

2
12

2
1

6,
60

5
1

N
A

M
.p

ar
vi

ce
lla

D
50

_E
20

_c
on

tig
_2

98
57

7
20

3
N

A
10

,6
89

1
N

A
M

.p
ar

vi
ce

lla
D

50
_N

_c
on

tig
_2

05
84

4
8

3
N

A
2,

31
9

5
N

A
M

.p
ar

vi
ce

lla
D

50
_N

_c
on

tig
_2

10
27

7
3

2
N

A
1,

50
7

6
N

A
M

.p
ar

vi
ce

lla
D

50
_N

_c
on

tig
_2

22
79

0
11

2
3

7,
14

3
1

N
A

M
.p

ar
vi

ce
lla

D
50

_N
_c

on
tig

_2
56

42
9

2
1

5,
52

3
4

N
A

M
.p

ar
vi

ce
lla

D
50

_N
_c

on
tig

_5
15

83
4

2
1

1,
76

9
6

N
A

M
.p

ar
vi

ce
lla

D
51

_N
_c

on
tig

_2
74

61
9

9
2

1
5,

64
5

1
N

A
LC

S
B

00
5

L
1

D
31

_E
31

_c
on

tig
_8

07
38

29
3

N
A

14
,9

67
73

0.
34

8
LC

S
B

00
5

L
2

D
48

_N
_c

on
tig

_2
90

93
0

4
2

N
A

2,
87

6
1

-0
.1

45
LC

S
B

00
5

D
01

_N
_c

on
tig

_1
28

14
2

17
3

N
A

11
,7

69
1

-0
.1

15
LC

S
B

00
5

D
04

_N
_c

on
tig

_9
70

06
9

3
N

A
3,

53
3

1
-0

.0
98

LC
S

B
00

5
D

07
_N

_c
on

tig
_4

87
7

25
3

N
A

19
,2

69
1

-0
.1

09
LC

S
B

00
5

D
11

_N
_c

on
tig

_6
62

32
24

3
N

A
18

,6
98

1
-0

.1
10

LC
S

B
00

5
D

17
_N

_c
on

tig
_2

31
00

6
9

3
N

A
4,

80
0

1
N

A
LC

S
B

00
5

D
43

_N
_c

on
tig

_3
61

97
7

23
3

N
A

12
,8

30
3

-0
.1

45

M
1

P
ut

at
iv

e
ph

ag
e

M
1

M
2

P
ut

at
iv

e
ph

ag
e

M
2

M
3

P
ut

at
iv

e
ph

ag
e

M
3

M
4

P
ut

at
iv

e
ph

ag
e

M
4

M
5

P
ut

at
iv

e
ph

ag
e

M
5

L
1

P
ut

at
iv

e
ph

ag
e

L1
L

2
P

ut
at

iv
e

ph
ag

e
L2



Chapter 3 Results

3.4.5 Bacteriophage and host dynamics

The hosts and putative phages were quantified by mapping the IMP-preprocessed MG reads, followed by
calling of the average contig-level depth of coverage, which was subsequently used as a proxy for inferring the
abundances. The abundance of the LCSB005 host and its putative phages (i.e. putative phage L1 and L2), are
represented in Figure 3.8. There were no observable patterns of co-abundances between the putative phages
and the host. However, a large spike in abundance of putative phage L1 is observed in the 29 November 2011
data point (> 150 average contig-level depth of coverage) that far surpasses the abundance of the host at that
particular time point (i.e. approximately 6 average contig-level depth of coverage). Additionally, there was
a general low abundance of this particular putative phage within samples from the rest of the time-series.
On the other hand, putative phage L2 demonstrates peak occurrences in certain points in the time-series,
decoupling its abundance trends to the one of its putative host.

The similar analysis applied to all selected putative phages of M. parvicella population (Putative phages
M1-5) demonstrated similar trends of sharp increases in bacteriophage abundances (as with putative phages
of LCSB005) (Figure 3.9). However, unlike the case of LCSB005, these putative phages never exceed the
abundance of their host, while putative phages M1 and M2 seem to occur throughout the entire time-series,
without diminishing. In addition, putative phage M1 demonstrates higher abundance throughout the entire
time-series compared to other putative phages associated with the M. parvicella population. Another clearly
observable trend is the drop in phage abundance occurring in tandem with the drop in host abundance. There
are also observed increases of putative phages M2 and M3 following increasing of the M. parvicella host
population. Finally, the putative phages do not seem to peak at the same time points, i.e. different phages
peak at different time points, although the absolute abundance of putative phage M1 is almost always higher
than other putative phages (M2-5).

The de novo assembly of MT data, carried out by IMP provides the possibility of assembling MT-based
sequences. In line with the recent discovery of bacterial and RNA phage interaction via the CRISPR-Cas

system [Abudayyeh et al., 2016], we went on to inspect the possibility of CRISPR-Cas interaction with
RNA-based invasive genetic elements using the MT-based protospacers-containing contigs. More specifically,
these contigs are well-represented on the MT level (i.e. average contig-level depth of coverage), but are
not represented on the MG level. In addition, only contigs that are fully covered by MT reads (i.e. from
end to end, and not just intragenic regions) were retained for further analyses. Such contigs were only
identified within the M. parvicella associated protospacers-containing contigs and were not detected for
LCSB005 associated protospacers-contigs. These MT-based protospacer-containing contigs revealed a
relatively higher contig-level depth of coverage compared to the putative DNA-based phages (Figure 3.10A),
demonstrating that such MT-based protospacers-containing contigs, despite being lower in richness, occur
in higher abundance. Furthermore, using the MT data, the expression of cas genes within the M. parvicella

genome could be inspected. Interestingly, the cas gene annotated as an endoribonuclease Cas2 demonstrated
the highest expression (based on unnormalized and normalized depths of coverage Figure 3.10B), throughout
the time-series. As the name indicates, this particular enzyme is believed to cleave RNA molecules and was
described to form a complex with the Cas1 protein to mediate spacer acquisition [Nuñez et al., 2014].

Since none of these MT-based protospacers-containing contigs were predicted as phages by VIRSorter
(Table 3.4), they are hereafter defined as a putative RNA-based invasive genetic element(s), abbreviated
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Figure 3.8: Dynamics of LCSB005 host and associated bacteriophages. The labels in the x-axis represent the exact sampling dates.

to RIGe. Accordingly, six of the highly abundant (throughout the entire time-series) putative RIGes were
observed in relation to the abundance of the M. parvicella host population. RIGe M8 demonstrated relatively
high peaks in time points 4 October 2010 (depth of coverage ~500) and 16 November 2011 (depth of coverage
~600), while being relatively low in abundance at other time points (Figure 3.10). Moreover, in the latter
time point, the expression of the aforementioned endoribonuclease Cas2 seemed to peak in correspondence to
the high abundance of RIGe M8 (Figure 3.10). This event was then followed by a sharp drop in the usually
dominant (i.e. quantitatively abundant) M. parvicella population. Another interesting observation about this
RIGe M8 is that it was present in high abundance (depth of coverage ~300) during the low abundance phase
of the M. parvicella host (between 7 November 2011 and 21 December 2011), unlike other observed phages
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Figure 3.9: Dynamics of M. parvicella host and associated bacteriophages. The labels in the x-axis represent the exact sampling
dates.

and RIGes (Figures 3.9 and 3.10) which tend to drop in abundance with the M. parvicella host population.
This may suggest that these RIGes may not be selectively “infecting” the M. parvicella population, but also

91



Chapter 3 Results

other host populations present within the community.
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Chapter 3 Results

Figure 3.10: Dynamics of M. parvicella host and associated RIGes. (A) Beanplot representing the densities of metagenomic (MG)
and metatranscriptomic (MT) of contig-level depth of coverage of protospacer-containing contigs associated to M. parvicella. Solid
lines represent the mean depth of coverage. Dotted line represents mean depth of coverage across both MG and MT based abundances.
(B) Expression levels of different cas genes found within M. parvicella genome. (C) Abundance of M. parvicella bacterial host and
associated putative RNA invasive genetic element (RIGe). The labels in the x-axis for figures (B) and (C) represent the exact sampling
dates.
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3.5 Discussion

The present study highlights the importance of using multiple methods to extract CRISPR information.
CRISPR loci represent highly repetitive regions within archaeal and bacterial genomes. Modern de novo

assemblers are unable to resolve repetitive regions, especially given the short read lengths produced by NGS
technologies. Therefore, de novo assemblies may not be able to effectively resolve CRISPR regions, leading
to a potential loss of information. MetaCRT detects CRISPRs from longer sequences, i.e. assembled contigs.
It demonstrated effectiveness in the recovery of CRISPR repeats, this is possible due to the fact that repeat
sequences are more abundant within the data, due to the usage of MG and MT data which may increase
the coverage or even improve the assembly of CRISPR regions. However, metaCRT appears to exhibit less
sensitivity in terms of CRISPR spacer detection. This could be due to the inherent heterogeneity of CRISPR
spacers, such that a consensus-based method (i.e. de novo assembly) would result in the loss of spacer
information, especially regarding less abundant and/or rare spacers. To that end, this work demonstrates that
CRASS, a read-level CRISPR sequence mining program, is able to detect a larger number spacers compared
to metaCRT. This read-level resolution of CRISPR spacers is important to extract the maximum amount
of information from the data in order to detect putative phage contigs. In addition, CRASS also provides
information on the CRISPR flanking regions (leader and downstream sequence), which enables the linking of
relevant populations. Both length values reported for CRISPR repeats and spacers (Figure 3.5) were longer
than the lengths reported in previous studies [Jansen et al., 2002; Haft et al., 2005; Amitai and Sorek, 2016].
This may be due to spurious detection by the software as these long spacers did not exhibit a high level of
identity (based on blastn) to their protospacers (data not shown).

The present study combines longitudinal data and dual-omic datasets (MG and MT) to result in multiple
advantages: i) the temporal nature of the study allows the resolution of CRISPR dynamics which are shown
to vary significantly across time, ii) the MT data confirms that these CRISPR loci are transcribed over time
and iii) the MT data allows for the detection of RIGes. Specifically, there is an apparent difference in the
expression of CRISPR loci of different bacterial populations, namely the CRISPRs from the M. parvicella

population appear to be constitutively expressed throughout most of the samples, while CRISPRs from the
LCSB005 population appear to be intermittently expressed. However, this may be due to the overall abundance
of M. parvicella within the community such that the sequencing is able to measure these characteristics, while
the lower abundance of LCSB005 may result in the apparent expression of the CRISPR loci in a single time
point. Overall, this supports the notion that CRISPR loci are highly dynamic and heterogeneous genomic
regions [Deveau et al., 2008; Amitai and Sorek, 2016; Silas et al., 2016].

In addition, changes in the community structure (i.e. changes in constituent populations) can affect
the CRISPR content within the overall community. This is observed with regards to the reduction in the
population size for M. parvicella in time points 23 and 29 November 2011 (Figure 3.9) resulted in the
reduction of CRISPR elements, protospacers and protospacers-containing contigs associated to M. parvicella

(Figure 3.6). Furthermore, this apparent collapse in the M. parvicella population coincides with an overall
increased population abundance and CRISPR element abundances associated with LCSB005 (Figure 3.7).
In addition, the time-resolved data highlights the occurrence frequency of different CRISPR elements. For
instance, there was approximately half of the non-redundant CRISPR repeats appearing only once in the
entire time-series, similar to LCSB005. This may be attributed to organisms that occur in low abundance and
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in one/very few samples of the time-series. CRISPR repeats that occur in all/almost all the time points will
probably belong to microbial population that exhibit quantitative dominance throughout the entire time-series,
such as M. parvicella (Figure 3.6). On the other hand, CRISPR spacers that occur in almost all time points
(which is rare in this dataset, Figure 3.5) are likely to represent conserved spacers, possibly due to the frequent
occurrence of a particular invasive genetic element, thus pressuring the host to select/retain these particular
spacers. Overall, all the CRISPR spacers are highly unique and specific compared to CRISPR repeats, which
are known to be conserved within specific prokaryotic clades, as demonstrated here by assigning CRISPR
repeats to specific species (Table 3.3) [Jansen et al., 2002].

CRISPR repeats are well represented in both MG and MT datasets, thereby demonstrating activity of
the CRISPR anti-viral defence mechanism through time. The availability of MT data reaffirms the notion
that CRISPR loci are indeed expressed/transcribed genomic regions. However, this pattern of MT coverage
is not observed in CRISPR spacers, despite being supposedly transcribed along with the repeat sequences.
CRISPR spacers are typically considered highly heterogeneous, such that a single bacterial population
(strain within a given species) may carry completely different spacers (intra-species variability) within their
CRISPR regions. On top of that, these spacers are also highly dynamic, with the constant insertion of new
spacers and/or removal of old spacers. The transcribed crRNA sequences are further processed to generate
shorter post-processed CRISPR spacer-repeat pairs which work together with Cas enzymes to silence/inhibit
invasive genetic elements [Barrangou et al., 2007; Amitai and Sorek, 2016]. Therefore, from a technical
perspective, the majority of NGS reads used within this work are generally longer than the processed CRISPR
spacer-repeat sequences. Furthermore, most of the data stems from paired-end reads, thus limiting the overall
detection of shorter sequences. The issue of CRISPR spacer detection within MT data could be circumvented
by lowering the length threshold for the retained MT preprocessed NGS reads such that shorter reads could be
used for downstream analyses. Following this, the threshold CRASS could also be adjusted to allow extraction
of shorter CRISPR sequences. More specifically, CRASS provides an option to extract so-called “singleton
spacers” [Skennerton et al., 2013]. Singleton spacers would represent a single CRISPR spacer-repeat pairing,
that should be more reflective of the nature of post-transcriptionally processed CRISPRs [Marraffini and
Sontheimer, 2010; Amitai and Sorek, 2016]. In summary, it is likely that the apparent “dilution” of spacer
representation on the MT level, may be traced back to this overall biological heterogeneity of the CRISPR
spacers, in addition to the technological limitations of measuring the short final products of the post-processed
CRISPR-RNA sequences, which in theory could be bypassed by using specific analysis parameters.

The presented data also shows that CRISPR spacers are highly sensitive to protospacers, suggesting that a
single spacer may have matches to multiple targets. Although, this is arguably dependent on the parameters
used for the blast search [Biswas et al., 2013], and can be attributed to spurious matches. However, it was
previously described that CRISPR-Cas systems allows non-identical spacer-protospacer matches (or priming
[Fineran and Charpentier, 2012; Amitai and Sorek, 2016]). It was further suggested that this mechanism
could be effective with up to 13 mismatches, which cannot be replicated using the parameters of current
computational approaches [Edwards et al., 2015]. Consequently, it is likely that there are much larger number
of protospacer-containing contigs (i.e. putative invasive genetic elements) found within the data which could
not be resolved due to the stringent criteria of the current analyses.

The community level analyses is rich in information and is a potential reservoir of putative phage
sequences. However, it does not allow the observation of phage and host dynamics, due to the absence of
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associations, i.e. there are no defined hosts. To that end, this work leveraged draft genome sequences from
isolated lipid accumulating bacterial strains. The provision of these genomes enabled the linking of CRISPR
repeats to the corresponding genomes. From there, one could match the complementary spacer and repeat
information in order to formulate associations between these defined bacterial populations and their putative
phages. It is estimated that half bacterial species encode the CRISPR-Cas system within their genomes
[Amitai and Sorek, 2016]. Although this work was able to identify bacterial species with corresponding
CRISPRs, the overall number was still limited. It is possible that the genomes within the isolate genome
compendium do not containing any CRISPR regions, or that they occur low abundances, such that there
were insufficient for necessary signal, with the latter case to be more likely. However, having reference
isolate genomes enabled the analysis to shift from a community-level perspective, to a population-level
study. Such associations could be further improved using population-level genomic reconstructions through
initial binning of the metagenomic data. However, genomic bins would need to be of high-quality (long
contigs) to formulate confident associations. More specifically, CRISPR-containing contigs would need to be
correctly assigned to such bins. As previously discussed, CRISPR regions are usually not well assembled
within de novo MG assemblies [Skennerton et al., 2013], thus resulting in short contigs or contigs that do not
contain sufficient flanking regions. With regards to nucleotide signature-based binning methods, short contigs
result in a reduced signal (signature) for effective bin assignment by such methods and/or while contigs
with limited flanking regions could result in a misrepresented nucleotide signature and thereby erroneous
binning of those CRISPR-containing contigs. Collectively, these would cause CRISPR-containing contigs
to be either unassigned or incorrectly assigned to these genomic bins. There are several ways this issue
could be bypassed including: i) close inspection and curation of generated genomic bins, especially with
regards to the assignment of CRISPR sequences, ii) relying on an abundance based binning method instead of
nucleotide signature based method and iii) leveraging on the flanking region information provided by CRASS
for conclusive linking to high-quality contigs that do not contain CRISPRs (Sections 3.4.2 and 3.4.3).

Despite the vast number of protospacer-containing contigs associated with the defined bacterial hosts, a
majority of those sequences could not be conclusively defined as bacteriophage populations by state-of-the-art
tools. This could, first and foremost highlight the under-representation of known bacteriophage (or virus)
genes. A second reason might be due to the fact that these sequences originate from other invasive genetic
elements such as plasmids and transposons (or generally mobile genetic elements). This implies that it
should be possible to scan these sequences for the presence of plasmids or transposons, to further expand the
annotation of these sequences. However, the present study is focused on deciphering the dynamic relationships
between phages and bacterial hosts.

This work described several different notable cases with regards to phage and host dynamics. The most
obvious is the two types of populations that were well resolvable, one being highly abundant and dominant (M.

parvicella), while the other being relatively low in abundance (LCSB005). The dominance of M. parvicella

population within this community leads to a high amount of CRISPR information (i.e. repeats, spacers and
flanking sequences), associated with this specific population. It is important to note that the flanking sequences
detected by CRASS are based on read-level resolution thereby resulting in the apparent high number of such
flanking sequences associated to the M. parvicella population (Table 3.3). Despite this, significant spikes in
phages related to the lowly abundant bacterial strain, LCSB005 were observed (Figure 3.8). This is possibly
due to the increased abundance (compared to the other time points) of the LCSB005 population from time
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point 16 November 2011 to 21 December 2011, suggesting a possible kill the winner scenario. However, this
was not accompanied with confident prediction of phage sequences and/or a high number of protospacers. In
general, the study of lowly abundant bacterial populations remains challenging, especially from a large-scale
bioinformatic approach. The problem may be compounded if the sequencing is bias towards higher abundant
populations such as the M. parvicella. Overall, this work showed the complementary use of in situ derived
data and classical microbiology derived isolate data could potentially result in higher quality output and
information.

The occurrence of the M. parvicella as a quantitatively dominant and stable population within this
community served as an advantage in this work. In particular, the abundance of CRISPR information provided
a large reservoir of protospacer-containing contigs, and thereby the identification of putative bacteriophage
contigs. More importantly, a high number of protospacers, or rather CRISPR spacer targets, may represent
the high rate of interactions occurring between the phage and host populations. Compared to the LCSB005
population, for which a total of eight predicted bacteriophages have been identified, there was a large
number (150 in total) of predicted phages associated to M. parvicella. This supports the idea of a “kill
the winner” scenario, such that the highly abundant bacterial populations within a community are targeted
by bacteriophages. Specifically, bacteriophages have a higher chance of infecting and replicating within
highly abundant host population that are constantly present as opposed to lowly abundant host populations.
It has been suggested that phages and their host populations tend to correlate with each other, in terms of
abundance [Edwards et al., 2015]. However, there were no particularly high correlations observed in this study
(Table 3.4), suggesting that the application of lagged correlations might be more effective in deciphering
phage-host associations with higher confidence [Edwards et al., 2015]. While correlation-based methods
are highly suitable for time-series datasets, the current work may not provide the necessary resolution for
such a study. The present datasets were taken on an almost weekly basis, while lytic phage infection (from
adsorption to lysis) was suggested to occur within minutes to hours [Shao and Wang, 2008].

This work also identified the RIGes within the data, which are MT-based contigs that contained pro-
tospacers, suggesting possible interactions between these components and the M. parvicella population.
Furthermore, these observations show the: i) high abundance of RIGes, which were reconstructed exclusively
from MT data, ii) the constitutively high expression of an endoribonuclease Cas2 gene within the host
populations and iii) the observed high abundance phase of the RIGe M8 coinciding high expression of
endoribonuclease Cas2 within the host (Figure 3.10). However, these RIGes would require further inspection
due to their lack of gene annotation (i.e. mostly annotated with hypothetical proteins). In that light, they may
represent highly expressed transcripts that were not detectable on the MG (DNA) level and may stem from
non-phage invasive elements such as plasmids. Furthermore, the endoribonuclease Cas2 enzyme, although
structurally well classified [Nuñez et al., 2014], still lacks conclusive evidence in terms of influence on
protospacer acquisition [Nuñez et al., 2014, 2015; Wang et al., 2015]. On the contrary, there are recent
observations of the CRISPR-Cas system interacting with RNA sequences. These includes the interaction of
bacteria with RNA phages [Abudayyeh et al., 2016] and modification of the Cas9 enzyme to target RNA
sequences [Price et al., 2015]. Indeed, the aforementioned studies relied on laboratory-based co-cultures of
phages and bacteria, as deciphering such interactions within a natural systems remain challenging. This is
mainly due to the sparse knowledge and resource with regards to RNA phages, thus limiting the annotation
and detection of such sequences. Despite the present challenges, this work does raise interesting questions
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with regards to the possible interaction of the CRISPR-Cas system with RIGes, for which validation through
laboratory based experiments would be absolutely essential in confirming the interaction of RIGes with
bacterial hosts.

As an outlook, time-series based information and associations garnered from this study would be suitable
for the generation of mathematical models. These models could potentially translate this information obtain
more knowledge about the influence and roles of bacteriophages on microbial communities. The knowledge
generated could hold the key for the manipulation of LAMPs through the addition of bacteriophages, for the
maximization of lipid accumulation and thus optimal biofuel production.

3.6 Conclusion

This study demonstrated the application of the developed large-scale integrated omic analysis pipeline (IMP,
Chapter 2) for the study of biological components of interest, which in this case represents bacteriophages
and their associated hosts. This study leveraged multiple tools in order to maximize the amount of information
with regards to the CRISPR elements (i.e. repeats, spacers and flanking regions). The community-level
analyses of the CRISPR elements revealed that CRISPR regions are: i) highly dynamic with fluctuations
over time ii) transcribed, as demonstrated by the use of MT data, and iii) highly heterogeneous, with the
presence of a large number of CRISPR spacers. The work focused on two bacterial populations, namely the
highly abundant M. parvicella population, and the low abundant LCSB005 population. Accordingly, a total
of 150 putative phages were predicted for the M. parvicella population while a total of eight putative phages
were predicted for LCSB005. We then selected five phages associated with M. parvicella and two phages
associated with LCSB005 to observe phage-host dynamics. It also demonstrated that certain phages are more
dominant compared to others, occurring in higher abundances relative to other phages. We also observed
that phages seem to demonstrate peak occurrences of large abundances within certain time points. In most
cases, the reduction of host abundance is accompanied by the reduction of associated phage abundances, with
several exceptions. It is also observed that putative phages associated to the M. parvicella population do
not demonstrate overlapping peaks of abundances. Further inspection of MT-based protospacers-containing
contigs associated to the M. parvicella population suggests the possible interactions with RNA-based elements
(RIGes). However, these cases should be thoroughly inspected to obtain more conclusive evidence.

In summary, the combination of an unprecedented multi-omic time-series dataset, a solid foundation of
large-scale integrated omic analysis that resulted in high-quality assemblies in complementary with high-
quality draft isolate genomes enabled the study of phage-host interactions unlike previous efforts, revealing
different dynamical patterns of phages in relation to their hosts, including the detection of putative RIGes,
which are rarely observed within a natural system. The information and associations garnered from this study
should be validated via laboratory methods and translated into mathematical models to further elucidate the
roles and influence of bacteriophages in microbial communities. Such knowledge would bring us a step
closer towards manipulation of LAMPs using bacteriophages [Withey et al., 2005; Jassim et al., 2016] for
the optimal production of biofuels [Sheik et al., 2014; Muller et al., 2014a]. More specifically, phages may
be used to target and reduce the abundance of bacterial species that may compete with LAMPs, such as M.

parvicella. Strategies such as these may allow control of LAMPs to make BWWT plants as a consistent and
abundant source for biodiesel production.
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CHAPTER 4

GENERAL CONCLUSIONS AND OUTLOOK

Parts of this chapter was adapted and modified from the following first-author peer-review publication:

Shaman Narayanasamy, Emilie E.L. Muller, Abdul R. Sheik, Paul Wilmes (2015). Integrated omics for the
identification of key functionalities in biological wastewater treatment microbial communities. Microbial

Biotechnology 8: 363-368. [Appendix A.1]
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4.1 Integrated omics: From data to associations

Culture-independent methodologies have overcome the limitations of classical microbiological methods
(Section 1.1). Specifically, the sampling of microbial consortia in situ combined with state-of-the-art wet-lab
biomolecular extraction methodologies (Section 1.4.2) and systematic high-throughput measurements (Sec-
tion 1.4.3) enables access to information not obtainable using culture-based methods. In addition, the falling
cost of NGS sequencing has enabled deep characterization of the metagenome and the metatranscriptome
(Sections 1.4.3 and 1.4.3). However, data-driven reference-independent methodologies (i.e. those not reliant
on reference genomes) are very important to realize the full potential of the high-throughput MG and MT
data sets as such methods enable the generation of hypotheses towards the discovery of novel microorganisms
as well as functionalities (i.e. genes or combination of genes; Section 1.4.4). Given the relative ease of
generating NGS-based datasets, such as MG and MT data, multi-omic studies of microbial communities
are becoming more and more prevalent (Section 1.4.5). However, until the present work there was a clear
lack in standardized workflows for the integrated analysis of these data types, resulting in the development
of multiple ad hoc analysis methodologies, which made reproducing the work of others a major challenge
(Section 1.4.5 and Chapter 2).

To further illustrate this, time-resolved samples from the chosen model microbial community (LAMPs)
(Section 1.2) were subject to two reference-independent integrated multi-omic studies that spanned multiple
omic data sets [Muller et al., 2014a; Roume et al., 2015]. The study by Roume et al. [2015] applied available
methods, more specifically the MOCAT pipeline [Kultima et al., 2012]. Although MOCAT was intended
for single-omic MG data analyses, in this case, it was successfully applied for integrated omic analysis
[Roume et al., 2015]. On the other hand, the study by Muller et al. [2014b] applied integrated analysis using
a customized ad hoc analysis workflow. Indeed, both these studies resulted in findings that would not be
possible with single-omic based analyses, i.e. identification of keystone genes and species [Roume et al.,
2015] and resolution of niche breadth of different populations [Muller et al., 2014b] within the LAMPs. The
utilization of MOCAT in the first study [Roume et al., 2015] demonstrates the application of a user-friendly
and convenient pipeline that could be easily installed and applied for the analyses of MG data, thus promoting
reproducibility and standardization. However, this work clearly showed that MOCAT performs suboptimally
in terms of data usage and assembly quality largely due to the fact that it was originally designed for single-
omic analyses and that it incorporates older de novo assemblers within its workflow. The latter study [Muller
et al., 2014b] solved these issues applying an ad hoc bioinformatic workflow that included an optimized
analysis for enhanced data usage and produces high-quality assemblies through the customized de novo MG
and MT co-assemblies [Muller et al., 2014b], in addition to using the latest tools [Peng et al., 2012, 2013].
Yet, ad hoc workflows such as these would be challenging to reproduce or replicated within other labs as they
are usually not automated, thereby hindering standardization of microbial community related studies.

The present work aimed to combine the advantages of the two highlighted integrated-omic studies, namely
being able to consistently generate high-quality output as in the ad hoc integrated omic analysis workflow
[Muller et al., 2014a] and replicating the reproducibility and user-friendly features of existing MG analyses
pipelines such as MOCAT [Kultima et al., 2012; Roume et al., 2015]. This work achieved the first objective
through the development of the integrated meta-omic pipeline, IMP (Appendix A.2 and A.8). Here my work
focused heavily on performing benchmarking and assessments on the measures applied within IMP, more
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specifically, highlighting the: i) need for separate preprocessing of MG and MT data and ii) the advantages
of the combined use of MG and MT data within an extensive co-assembly procedure (Chapter 2). This
represented in an important formal evaluation for assessing the effectiveness of the various measures applied
within the integrated-omic workflow, which have remained largely absent so far despite the recent increase of
multi-omic studies of microbial consortia (Section 1.4.5). Taking into account the very detailed evaluation,
IMP is highly effective in: i) optimizing/maximizing overall data usage, ii) maximising the overall output
volume while, iii) generating high-quality output. Overall, the integrated omics approach described by within
this work, demonstrated an important transition from systematic measurements to reproducible in silico

analyses to generate the necessary information for detailed studies of microbial communities, described in
Appendix A.6 and Chapter 3.

The second part of this work demonstrated the real power of the integrated omics approach within the
Eco-Systems Biology framework, through analysis of temporal datasets (Figure 1.1; steps 1 to 4;[Muller et al.,
2013; Zarraonaindia et al., 2013]). Such a study was only realizable due to the unique characteristics of the
model system (LAMPs), that enabled convenient long terms time-series sampling (Section 1.2). In addition,
this system offered the opportunity to study the dynamics of bacterial and bacteriophage species using
information from the CRISPR-Cas system (Chapter 3). More specifically, the output generated by IMP, i.e.
high-quality preprocessed reads and contigs enabled the extraction of CRISPR sequences and putative phage
contigs. Unlike previous studies, the facility of a temporal dataset enabled further observation of CRISPR
dynamics within this bacterial community, namely repeat, spacer and protospacer (spacer-complement)
dynamics. This work demonstrated that the CRISPR spacers are highly heterogeneous and dynamic elements
on the genomic (MG) level (Sections 3.4.2 and 3.4.3). On the other hand, the availability of MT datasets
demonstrated the CRISPRs to be transcribed genomic regions, mainly thorough the observation of the
CRISPR repeat dynamics. This case clearly demonstrates that the MG and MT datasets are more effective
at covering different aspects of the CRISPR information, i.e. MG data for CRISPR spacers and MT data
for CRISPR repeats, further emphasizing the necessity of multi-omic datasets for the study of microbial
communities. This work also leveraged on known isolate genomes to conclusively link bacterial taxa (using
CRISPR repeats and flanking regions) to bacteriophages (using CRISPR spacers), representing an effective
approach of complementary application of culture-independent and -dependent methodologies. This part of
the work yielded putatively novel bacteriophages associated to the dominant lipid accumulating bacterial
species of M. parvicella, which contained one main large CRISPR region, with accompanying cas genes
upstream (Section 3.4.3) for which 3,956 (non-redundant) spacers were identified. These spacers could be
linked to protospacers within 158 putative phage contigs, for which the dynamics of seven putative phages
were highlighted within this work (Section 3.4.5). Furthermore, the availability of the time-series data set
enabled the observation of phage-host dynamics. Overall, this part of the work represented the usage of
information to decipher associations and dynamics between different components within the system, namely
bacteriophages and bacterial hosts.

In summary, the overall objectives of this work were achieved through: i) the development of multi-omic
integrated pipeline for reproducible analyses of coupled MG and MT datasets and ii) the eventual application
of this pipeline for a detailed of bacteria-phage dynamics within the model microbial system of LAMPs.
As an outlook, this analysis should be followed with the generation of mathematical models and further
experimental validation. This will further aid the understanding of the roles and influences of bacteriophages
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within microbial communities.

4.2 Extending the functionality of IMP

IMP is currently in version 1.4 thereby demonstrating that it is a software that has undergone a large number
of changes, since it’s conception (Table 4.1). More specifically, the 1.4 release tag was due to the inclusion
of the automated binning step and further improvement to the command line interface. IMP is relatively
extensive compared to other available tools, such that it is able to perform either integrated metagenomic and
metatranscriptomic analysis or single omic analysis and is currently the only pipeline which incorporates
a binning method (Chapter 2). IMP is an open source software, which enables customization by any of
the users. This open source nature would hopefully translate into community wide development of the IMP
to include more tools and functionality. Updates and modifications to the pipeline are possible due to the
modular implementation of IMP through Snakemake, which provides a facility to easily add new steps or
modify existing steps (Sections 2.3.1 and 2.3.1). The adding of new tools is facilitated through the use of
Docker, such that tools need to be install only once and stored as a Docker image, making reproducibility more
convenient (Section 2.3.1). Here I discuss new features and improvements that could be further incorporated
into IMP as described in the sections below.
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Table 4.1: The development of IMP.

IMP version Release date Implementation

Template
integrated-omic
workflow

14 November 2014

• Pipeline constructed using shell scripts and was applied to the
study by Muller et al. [2014a]

• Semi-automated

Initial developmental
version

15 February 2015

• Workflow constructed by wrapping bash scripts with
Snakemake

• New analyses steps

• All software and dependencies wrapped in Docker

• Trinity [Grabherr et al., 2011] replaces IDBA-tran [Peng et al.,
2013] as the MT assembler

1.1.1 30 September 2015

• Complete migration of workflow to Snakemake (bash scripts
deprecated)

• Implementation of Python wrapper script

• Update software and dependencies

1.2.1 10 February 2016

• Enhancements of the iterative co-assembly procedure

• MEGAHIT [Li et al., 2016, 2015] replaces Trinity [Grabherr
et al., 2011] as MT assembler

• MEGAHIT [Li et al., 2016, 2015] as an additional option for
co-assembly of MG and MT data

• Update software and dependencies

1.3 16 June 2016

• Update of tools

• Enhancement of Python wrapper script

• Enhancements on Docker container

1.4 14 October 2016

• Implementation of Binning procedure (MaxBin 2.0 [Wu et al.,
2014])

• Enhancement of workflow for improved modularity

• Enhancement of Python wrapper script

• Enhancements on Docker container

*1.4.1 January 2017
• New binning tools [Kang et al., 2015; Heintz-Buschart et al.,

2016]

*1.4.2 February 2017

• New assembler(s) [Nurk et al., 2016]

• New reference based workflow [Schaeffer et al., 2015; Ye and
Tang, 2016]

*2.0 July 2017
• Digital normalization for preprocessing [Brown et al., 2012]

• Metaproteomic analysis engine [Tang et al., 2016]

*Foreseen future versions
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4.2.1 Updates with state-of-the-art tools

In order to keep up with the ever-changing world of bioinformatic software, IMP will require updates
through inclusion of additional state-of-the art tools. IMP is centred on extensive iterative co-assemblies of
metagenomic and metatranscriptomic data to produce high-quality assemblies. Recent years have not only
witnessed steady improvements to metagenomic de novo assemblers either in the form of assembly quality
[Peng et al., 2012] and/or efficiency (i.e. speed and memory usage) [Li et al., 2015, 2016], but also various
enhancements in various pre- and post-analysis steps of NGS datasets (e.g. digital normalization of data and
pseudo alignment based methodologies).

Efficient preprocessing of NGS reads prior to assembly was shown to improve downstream de novo

assemblies [Mende et al., 2012]. While IMP already incorporates a rather stringent preprocessing procedure
(Section 2.4.1), it could still be improved by the incorporation of digital normalization. This recently
introduced concept is a kmer-based method to normalize the coverage of shogun metagenome data. The
method was shown to: i) reduce sampling variation, ii) discard redundant reads possibly representing
highly abundant populations, and iii) the removal of sequencing errors through removal of unique kmers
[Brown et al., 2012]. The use of digital normalization would then reduce the overall volume of assembly
input, while reducing the complexity of the data, to result in higher quality assemblies. The application of
this normalization method would be particularly useful for very large (deeply sequenced) datasets and/or
datasets that combine multiple samples/extractions/sequencing runs, and may prove especially powerful when
combined with the use of highly efficient de novo assembly programs such as MEGAHIT, which is already
implemented as an option within IMP [Li et al., 2015, 2016]. Such a method could also be applied to MT data
as it has similar uneven depth characteristics when compared to MG data. To that end, it would be important
to incorporate additional de novo assemblers to further enhance the quality of the assemblies generated by
IMP, while also providing users with additional choice of assemblers. One notable assembler that could be
integrated in the future versions of IMP (Table 4.1) would be MetaSPAdes, which promises high-quality,
microdiversity-aware assemblies [Nurk et al., 2016].

In addition, there are possibilities for improving the post-assembly steps within IMP, such as the estimation
of sequence abundance (contigs and genes). The introduction of pseudo-alignments was shown to be as
accurate as direct mapping of reads with the additional advantage of being rapid and memory efficient
compared to available mapping algorithms [Teo and Neretti, 2016]. The incorporation of rapid methods such
as these would reduce the presently extensive runtime of IMP (Section 2.4.2). Furthermore, the quality of
IMP output could also be enhanced by updating the gene annotation databases [Seemann, 2014] or by the
inclusion of highly customized databases, such as the manually curated viral gene databases of VIRSorter
[Roux et al., 2015a]. However, the latter would be highly dependent on the aims of the study.

4.2.2 Integration of reference-based analysis

Although the present work advocates the use of reference-independent methods for the analyses of microbiome
NGS data, there are certain advantages associated with reference-based analysis methods (Section 1.4.4),
especially when applied to well explored microbiomes, with comprehensive collections of sequenced isolates
and/or gene catalogues such as the human GIT (Section 2.4.2). Therefore, providing the user with an option
to perform analyses based on alignment to reference databases (i.e. isolate genomes or gene catalogues)
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would enhance the overall functionality and flexibility of the IMP (Section 1.4.4). More specifically, this
would warrant the inclusion of a standard/traditional reference-based workflow within IMP, which would rely
on standard read aligners such as bwa [Li and Durbin, 2009] (already implemented within IMP) or bowtie2
[Langmead et al., 2009], whereas a more modern approach would incorporate the previously described
pseudo-alignment based software (Section 4.2.1). In addition, information such as depth of coverage (for
abundance estimation) and SNPs (for observing population-level heterogeneity) could be drawn from the
aforementioned alignment information.

Moreover, the present work has highlighted the possibility of combining reference-dependent and
reference-independent methods to further improve overall data usage and thereby increasing information
gain (Section 2.4.2). Given the complementarity of reference-based and referenced-independent methods, a
possible integrated solution could leverage on the advantages of both methods (described in Sections 1.4.4
and 1.4.4). More specifically, reference-based methods would be effective in recovering well known and
lowly abundant bacterial taxa and/or genes from the data. On the opposite side, reference-independent meth-
ods would enable the recovery of abundant bacterial taxa, and more importantly genomes from previously
uncharacterised bacterial taxa (and thereby novel genes). Furthermore, the mapping of reads to a reference
prior to assembly may reduce the total number of reads in a subsequent de novo assembly, thus speeding up
the overall process. In conclusion, this prospective integration of reference-based and reference-independent
methods will further enhance data usage and increase information gain.

4.2.3 Extension to multi-sample analyses

Given the lowering cost of NGS data production, it is currently possible to perform coupled metagenomic and
metatranscriptomic studies on a much larger scale than previously envisioned. These include studies that
involve: i) a large number of environmental samples [Muller et al., 2014b; Roume et al., 2015; Satinsky et al.,
2015], ii) large cohorts [Franzosa et al., 2014; Heintz-Buschart et al., 2016] and iii) long term time-series
studies (Chapter 3). Therefore, an important future expansion of IMP would be to incorporate multi-sample
analysis. This would be further possible with the incorporation of rapid and memory efficient tools described
in Section 4.2.1.

The facility to handle multiple samples would further allow the incorporation of multi-sample binning
algorithms such as CONCOCT [Alneberg et al., 2014], MetaBAT [Kang et al., 2015] and canopy clustering-
based binning [Nielsen et al., 2014]. Finally, there is also an option to link bins defined within different
samples (based on single sample analyses) using highly conserved marker genes [Herold et al., unpublished].

4.2.4 Metaproteomic analyses engine

Proteins and metabolites can be measured using methods which couple chromatography to mass spectrometry
and result in metaproteomic and (meta-)metabolomics data, respectively. Although this work does not
specifically cover metaproteomic and metabolomic analyses, they are recognized as a crucial step for
downstream data integration for enhanced understanding of the actual functional capacity of microbial
communities. Metaproteomic data analysis is reference-based, and thereby require protein sequence databases
to perform mass spectrometry based peptide sequence searches. Therefore, the quality of the reference
database determines the effectiveness of these searches and thus impacts the final output volume and quality.
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It has previously been highlighted that protein sequences predicted from concomitant MG and/or MT data
(derived from the same sample) enhance the detection of peptide sequences (Section 1.4.4) [Ram et al.,
2005; Muller et al., 2014a; Roume et al., 2015; Heintz-Buschart et al., 2016; Ye and Tang, 2016]. IMP
generates a large number of predicted sequences, and thereby provides ideal databases for such protein
searches (Chapter 2). Therefore, the possible incorporation of the current range of available proteomic or
metaproteomic analysis engine, such as MetaProteomeAnalyzer [Muth et al., 2015], MetaProSIP [Sachsenberg
et al., 2015], Pipasic [Penzlin et al., 2014] and/or the recently introduced integrated de Bruijn graph-based
approach for protein identification [Tang et al., 2016]. In summary, the addition of a metaproteomic analysis
engine will further extend the functionality of IMP to cover a larger spectrum of omic data sets.

4.2.5 Keeping up with technological advancements

There will be significant technological advancements in all high-throughput measurement techniques particu-
larly in the area of long-read sequencing, chromatography as well as mass spectrometry. Naturally, these
technological improvements will be complemented by equally sophisticated in silico data processing and
analysis methods, which in turn will allow integrated omics to provide comprehensive multi-level snapshots
of microbial population structures and functions in situ (Figure 1.1; step 3).

Long read sequencing platforms, such as PacBio and Oxford Nanopore, will further increase the quality
of assemblies. However, different types of de novo assemblers will need to be used for these data types. The
main issue with these “third generation” sequencing technologies is lower throughput (i.e. bases per run or
sequencing depth) and lower accuracy compared to current NGS technologies (Section 1.4.3). Therefore, it is
not foreseeable that third generation sequencing methods will take over in the near future. Rather, it is more
realistic that a combination of NGS and long read sequencing, such that it would combine the high-throughput
capabilities from NGS, while longer reads from the third-generation sequencing technologies would be used
as a means to scaffold the shorter NGS reads, thus increasing the quality of the assemblies. On the other hand,
metaproteomic and (meta-)metabolomic data types are currently limited in their profiling depth, compared
to NGS platforms. While the situation for metaproteomics is rapidly improving [Hettich et al., 2012],
community-wide metabolomic studies are still limited in their scope due to the poor detection/sensitivity
of high-throughput metabolomic instruments and high dependency on a limited knowledgebase reflected in
current metabolite databases.

In summary, a long term outlook of IMP would have to include continual updates of the pipeline to handle
data from these new technologies, which may either come from different formats and or require specialized
programs for their analysis. It would be an important measure to ensure parallel development of technologies
and reproducible (standardized) analyses workflows.

4.2.6 Standardized benchmarking for integrated omics

Standardized benchmarks are required for ground truth assessment of any bioinformatic analyses. This is
especially relevant for de novo assembly (reference-independent) based methods. There are several efforts for
standardizing benchmarking and analysis of de novo assemblies, such as GAGE (http://gage.cbcb.umd.edu/,
[Salzberg et al., 2012]) and Assemblathon (http://assemblathon.org/, [Bradnam et al., 2013]) for isolate
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genome, while CAMI (http://www.cami-challenge.org/) was founded specifically for assessment of metage-
nomic data sets.

In addition to these standardized efforts, metagenomic data sets could be computationally simulated
using the wide array of metagenomic simulation tools available. However, the opposite is true for metatran-
scriptomic data sets, whereby there is a sparsity of simulated mock metatranscriptome and even more so for
metaproteomic data sets, for which there are no known simulated data sets. This work utilized a simulated
mock community, for which the simulated MT data was obtained from previously published work and the
MG data was simulated using available metagenome simulators. In my opinion, efforts to produce good
software should in fact be centralized around a widely accepted benchmarking dataset (Section 2.3.9). This
particular data set was also made available on a long term archiving platform, to hopefully standardize the
efforts involving integrated omic analyses of MG and MT datasets. To that end, I believe that efforts such as
CAMI, which simulated a wide range of metagenomes, should be replicated for other meta-omic datasets
(MT and metaproteomic).

Computationally simulated mock communities are the most widely used benchmarking datasets because
they can be generated rather easily, especially for MG data. However, computationally simulated mock
communities of any omic data types will not be able to simulate data derived from real high-throughput omic
measurements of real microbial communities. This is mainly due to the underlying complex characteris-
tics of microbial communities (Section 1.1) and the technical biases stemming from the high-throughput
measurements themselves. In order to mitigate this issue, wet-lab based mock communities are currently
generated by mixing cultures of different bacterial strains in known amounts (HMP, [Shakya et al., 2013]).
MG data derived from mock communities are widely available, despite certain datasets, e.g. HMP mock
community remain obsolete (i.e. single end sequencing and shallow sequencing) while more recent datasets
provide a better option for benchmarking exercises [Shakya et al., 2013]. However, concomitant MT and
metaproteomic data derived from these same mock communities are yet to be made available to date. In my
opinion, there should be a concerted and collaborative effort to generate all possible meta-omic data sets
from a single mock community such that integrated omic analysis could be effectively evaluated from the
metagenome up to the metaproteome. While this would be presently challenging, I believe that a concerted
collaborative initiative would be worthwhile such that it would be able to standardize all efforts towards the
improvement of integrated omic analyses, more effectively compared to the present standard of relying on
computationally simulated data sets.

4.3 Bacterial-phage interactions

The study of bacteriophages could be improved through targeted analysis of viral/phage genetic material
derived from microbial communities in situ. This would specifically involve the filtering and purification
of viral-like particles from microbial community samples to perform targeted analyses of these viromes
subsequently. NGS sequencing measurements on viromes bypass the limitations of NGS technologies which
tend to be biased towards highly abundant organisms with larger genomes, such as the M. parvicella bacterial
population within LAMPs, and thereby provide better access to the viral/phage genomic components within
the community. With regards to the current work, it would be of interest to validate these finding using a
combination of phage-specific culture and single-cell methodologies. Therefore, the extracted virus-like
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particles could also be used for co-culturing with bacterial species, which would be useful for the study of
low abundant populations such as LCSB005. Finally, virome sequencing would also allow higher quality de

novo reconstructions of phage genomes.

Laboratory validation is crucial in confirming observations within large-scale bioinformatic analyses.
With regards to the phage host interactions, the first step could involve the quantification of phages (and
associated) hosts using quantitative polymerase chain reaction (on DNA) and/or reverse-transcription quanti-
tative polymerase chain reaction (on RNA). These protocols provide more robust quantitative estimations
of population abundances and expression of genes compared to NGS-based estimations. This approaches
would be particularly advantageous in the quantification of lowly abundant populations such as LCSB005. In
addition one would be apply more advanced targeted methods such as digital PCR, viral tagging, PhageFISH
and single-cell sequencing [Edwards et al., 2015; Jover et al., 2016]. Such targeted methods would be able to
conclusively confirm phage-host relationships and interactions.

4.3.1 Moving beyond associations and hypotheses

This work represents the conversion of data into information and associations, allowing the formulation of
hypotheses which may be tested for ascertaining causality. Hypotheses can be generated using a combination
of appropriate statistical and mathematical modelling methods to enable the deconvolution of the information
to uncover unprecedented insights into the structure and function of microbial communities (Figure 1.2;
step 4) [Muller et al., 2013; Segata et al., 2013; Zarraonaindia et al., 2013]. Data mining, machine learning
and/or modelling approaches will be useful for extracting features of interest, e.g. known and unknown
populations/genes, and also to derive associations (or links) between desired features utilizing measures
such as correlation, co-occurrence, mutual information and hyper-geometric overlap [Muller et al., 2013;
Segata et al., 2013]. Such associations may allow the prediction of gene functions using the concept of ‘guilt
by association’ and interactions/dependencies between community members [Wolfe et al., 2005; Muller
et al., 2013; Segata et al., 2013; Solomon et al., 2014]. Within the scope of the present work, the respective
information and associations drawn through the longitudinal-based integrated omic analyses, will enable
downstream hypothesis generation through the postulation of phage and host interaction networks and/or
dynamic modelling thereof. The application of these methodologies will enable the elucidation of phage-host
interaction as well as gaining new knowledge about phage biology and thereby the generation of novel
hypothesis.

However, the derived associations will always be ‘mere’ hypotheses, which will require rigorous testing
through targeted laboratory experiments (Figure 1.2; step 5) and/or in situ perturbation experiments followed
by additional omic measurements [Muller et al., 2013; Segata et al., 2013]. Although integrated omics-based
approaches are highly effective for large-scale analysis and formulation of hypotheses (including within the
context of BWWT plant communities), these efforts are limited due to current high-throughput measurement
methods (see previous section) and the reliance on a priori knowledge for both taxonomical and functional
inferences [Röling et al., 2010]. Hence, there is a need to validate newly generated hypotheses using full-
scale plants, customized laboratory-based experiments, such as batch cultures, bioreactors or pilot plants
(Figure 1.2; step 5) and/or single-cell methods. Hypotheses may be tested using additional integrated omic
datasets generated from ancillary samples [Muller et al., 2014b] by using molecular biology techniques
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such as heterologous gene expression [Wexler et al., 2005; Maixner et al., 2008] or single-cell approaches
using microautoradiography-fluorescent in situ hybridisation (MAR-FISH), nano-scale secondary-ion mass
spectrometry (nanoSIMS) and/or Raman spectroscopy [Huang et al., 2007; Lechene et al., 2007; Musat et al.,
2012; Sheik et al., 2014, 2016]. Such a combination of technologies can be used to test hypotheses regarding:
(i) community dynamics, (ii) gene expression patterns/interactions, (iii) metabolite abundances, (iv) effect
of physico-chemical factors on distinct microbial species and functionalities, (v) gene function associations
between any of these. With regards to the current work, it would be of interest to validate these finding using
a combination of phage specific culture and single-cell methodologies, including, but not limited to, viral
tagging, microfluidic-PCR, single-cell sequencing, Hi-C sequencing and/or phage-FISH [Edwards et al.,
2015]. Identified patterns may be subsequently formulated as cues and can be used as input to facilitate
knowledge-driven control of different microbial community structures and/or functions using bacteriophages
(Figure 1.2; step 6) [Withey et al., 2005; Jassim et al., 2016]. Thus, large-scale integrated omic analyses and
modelling of in situ biological samples, coupled to carefully controlled laboratory experiments, will allow the
effective elucidation of novel functions within LAMPs with potential biotechnological applications.

4.3.2 From Eco-Systems Biology to applications

Integrated-omics under the framework of Eco-Systems Biology will aid in the understanding of biotechno-
logical and biomedical processes by dissecting interactions among its constituent populations, their genes
and the biotope, with the ultimate aim of maximizing outcomes through various control strategies [Sheik
et al., 2014; Muller et al., 2014b]. This work demonstrated that information of gene function, regulation and
physiological potential derived from integrated omic data over different spatial and temporal scales holds
great promise in harnessing the biotechnological potential of microbial consortia. In particular, advancements
in integrated omics followed by hypothesis testing may generate new knowledge [Muller et al., 2013], which
may for example be exploited in new approaches for the optimized production of biotechnologically relevant
compounds under varying environmental conditions (Chen and Nielsen, 2013). The derived knowledge-base
may further be used to fine-tune metabolic pathways at the transcriptional, translational and post-translational
levels using the ever-expanding synthetic biology toolbox [Peralta-Yahya et al., 2012]. Examples of possible
future applications may include, for instance the bioengineering of fatty acid utilization and production for
the production of biodiesel from ‘dirty’ mixed substrates, the engineering of different gene combinations
for the production of various alcohols from mixed substrates [Lee et al., 2008] and the generation of hybrid
processes by combining biological and chemical production steps resulting in new compounds that could
serve as biofuels [Román-Leshkov et al., 2007].

In the context of this work, the use of bacteriophages for manipulation of LAMPs could be foreseen as
a viable control strategy. For instance, specific phages could be used to target selected bacterial species to
alleviate competition for carbon sources and, thus, promoting the growth of a specific bacterial populations
of interest, i.e. populations that are efficient in accumulating lipids such as M. parvicella and thus making
BWWT plants as a viable source for biodiesel production [Sheik et al., 2014; Muller et al., 2014a]. However,
this could only be achieved by thorough understanding of the different aspects that may influence LAMPs
(e.g. which are the competing populations, effect of physico-chemical parameters and effect of substrate
availability) and a generalized fundamental understanding on the influence of phages on community structure,
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dynamics and phenotype. I therefore believe that the combination of such knowledge would bring us closer
towards the ultimate goal of controlling LAMPs and perhaps other biotechnologically interesting microbial
communities in situ.

Integrated omics through facilitating direct linkages between genetic potential and final phenotype may
become an essential tool in future bioprospecting. Therefore, in my opinion, integrated omics should
become the standard means of analysing microbial consortia in the near future and will allow meta-omics to
fulfil their promise for the comprehensive discovery of biotechnology- relevant microbial traits in natural
consortia. Integrated-omics under the framework of Eco-Systems Biology will aid in the understanding of
biotechnological and biomedical processes by dissecting interactions among its constituent populations, their
genes and the biotope, with the ultimate aim of maximizing outcomes through various control strategies
[Withey et al., 2005; Muller et al., 2013; Sheik et al., 2014; Muller et al., 2014a].

111





REFERENCES

O. O. Abudayyeh, J. S. Gootenberg, S. Konermann, J. Joung, I. M. Slaymaker, D. B. Cox, S. Shmakov, K. S.
Makarova, E. Semenova, L. Minakhin, K. Severinov, A. Regev, E. S. Lander, E. V. Koonin, and F. Zhang.
C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, Epub,
2016.

M. Albertsen, P. Hugenholtz, A. Skarshewski, K. L. Nielsen, G. W. Tyson, and P. H. Nielsen. Genome
sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes.
Nature biotechnology, 31:533–538, 2013a.

M. Albertsen, A. Stensballe, K. L. Nielsen, and P. H. Nielsen. Digging into the extracellular matrix of
a complex microbial community using a combined metagenomic and metaproteomic approach. Water

science and technology, 67:1650–1656, 2013b.

J. Alneberg, B. S. Bjarnason, I. de Bruijn, M. Schirmer, J. Quick, U. Z. Ijaz, L. Lahti, N. J. Loman, A. F.
Andersson, and C. Quince. Binning metagenomic contigs by coverage and composition. Nature methods,
11:1144–1146, 2014.

R. I. Amann, W. Ludwig, and K. H. Schleifer. Phylogenetic identification and in situ detection of individual
microbial cells without cultivation. Microbiological reviews, 59:143–169, 1995.

G. Amitai and R. Sorek. CRISPR-Cas adaptation: insights into the mechanism of action. Nature reviews

microbiology, 14:67–76, 2016.
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GLOSSARY

k-mer Sequence of short length, e.g., between 4 and 6 symbols. Symbols are from a fixed alphabet, e.g.,
"A","C","G", or "T" in the case of DNA.

De novo Starting from the beginning.

In silico Conducted or produced by means of computational representations, modeling or simulation (of
scientific measurements, experiments, research).

In situ In its original place.

Amplicon sequencing The process of sequencing a set of target sequences, e.g., genetic fragments from a
specific genomic region. Typically, the respective sequences are amplified prior to sequencing, e.g., via
polymerase chain reactions.

AWS Amazon Web Services.

BG biogas.

BH-SNE Barnes-Hut stochastic neighbour embedding.

Binning Process of grouping sequence fragments derived from closely related taxa.

bp base pair.

BWWT biological wastewater treatment.

CAMI Critical Assessment of Metagenome Interpretation.

cDNA complementary-DNA.

CDS coding DNA sequence.

CG composite genome.
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Glossary

Community Collection of populations of (micro)organisms.

Community structure Composition of a community with respect to individual, constituent populations.

Contig Contiguous sequence, generally a product of sequence assembly.

CRISPR clustered regularly inter-spaced palindromic repeats.

crRNA CRISPR RNA.

DBG de Bruijn graph.

DNA deoxyribonucleic acid.

Dysbiosis Microbial imbalance.

FISH fluorescence in situ hybridisation.

Genomic signature Signature of a genomic sequence defined using, e.g., %GC content or k-mer composition.
Can be seen as a fingerprint of the respective genome.

GFF general feature format.

GIT gastrointestinal tract.

HF human fecal.

HMM hidden Markov model.

HMP Human Microbiome Project.

ICG Integrated Gene Catalogue.

IMP Integrated Meta-omic Pipeline.

INDELs insertions and deletions.

Kb kilo base.

KEGG Kyoto Encyclopaedia of Genes and Genomes.

LAMPs lipid accumulating microbial populations.

MetaHIT Metagenomics of Human Intestinal Tract.

MG metagenomic.

MT metatranscriptomic.
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Glossary

NCBI National Center for Biotechnology Information.

NCBI NR National Center for Biotechnology Information non-redundant.

NGS Next-Generation Sequencing.

OLC overlap concensus layout.

Omics Collective technologies used to explore the roles, relationships, and actions of the various types of
biomolecules.

ONT Oxford Nanopore Technologies R©.

PacBio Pacific Biosciences R©.

PCR polymerase chain reaction.

Population A collection of microbial cells of the same species/subtype present in the same place and at the
same time.

qPCR quantitative polymerase chain reaction.

Read Sequencing product.

RIGe(s) RNA-based invasive genetic elements.

RNA ribonecleic acid.

rRNA ribosomal RNA.

SM simulated mock.

SMRT single molecule real-time.

SNE stochastic neighbour embedding.

SNPs single nucleotide polymorphisms.

SRA Sequence read archive.

t-SNE t-distributed stochastic neighbour embedding.

Taxon Unit of classification, e.g., species, family, or phylum.

tRNA transfer RNA.

VCF variant call format.

WGS whole genome shotgun.

WW wastewater.

ZMW zero-mode waveguide.
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APPENDIX A

ARTICLE MANUSCRIPTS

This appendix contains all manuscripts authored as a first author or co-author. Journal formatted articles are
provided for published manuscripts. Submitted manuscripts or manuscripts that are ready for submission are
provided as the submitted versions.
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Opinion

Integrated omics for the identification of key
functionalities in biological wastewater treatment
microbial communities

Shaman Narayanasamy, Emilie E. L. Muller,
Abdul R. Sheik and Paul Wilmes*
Luxembourg Centre for Systems Biomedicine, University
of Luxembourg, 7 avenue des Hauts-Fourneaux,
Esch-Sur-Alzette L-4362, Luxembourg.

Summary

Biological wastewater treatment plants harbour
diverse and complex microbial communities which
prominently serve as models for microbial ecology
and mixed culture biotechnological processes. Inte-
grated omic analyses (combined metagenomics,
metatranscriptomics, metaproteomics and meta-
bolomics) are currently gaining momentum towards
providing enhanced understanding of community
structure, function and dynamics in situ as well as
offering the potential to discover novel biological
functionalities within the framework of Eco-Systems
Biology. The integration of information from genome
to metabolome allows the establishment of associa-
tions between genetic potential and final phenotype, a
feature not realizable by only considering single
‘omes’. Therefore, in our opinion, integrated omics
will become the future standard for large-scale char-
acterization of microbial consortia including those
underpinning biological wastewater treatment pro-
cesses. Systematically obtained time and space-
resolved omic datasets will allow deconvolution of
structure–function relationships by identifying key
members and functions. Such knowledge will form
the foundation for discovering novel genes on a

much larger scale compared with previous efforts. In
general, these insights will allow us to optimize
microbial biotechnological processes either through
better control of mixed culture processes or by
use of more efficient enzymes in bioengineering
applications.

Biological wastewater treatment as a model system
for Eco-Systems Biology

Biological wastewater treatment (BWWT), including the
standard activated sludge process and other ancillary pro-
cesses, relies on microbial community-driven remediation
of municipal and industrial wastewater. Biological waste-
water treatment plants host diverse and dynamic micro-
bial communities possessing varied metabolic capabilities
over changing environmental conditions, e.g. microorgan-
isms accumulating various storage compounds of
biotechnological importance. Given their structural and
functional diversity, BWWT processes hold great potential
for future sustainable production of various commodities
from wastewater as well as from other mixed substrates
(Muller et al., 2014; Sheik et al., 2014). Eco-Systems
Biology is an integrative framework that includes system-
atic measurements, data integration, analysis, modelling,
prediction, experimental validation (e.g. through targeted
perturbations) and ultimately control of microbial ecosys-
tems (Muller et al., 2013). This framework will aid in the
understanding of BWWT processes by dissecting interac-
tions among its constituent populations, their genes
and the biotope, with the ultimate aim of maximizing
biotechnological outcomes through various control strat-
egies (Muller, Pinel et al., 2014; Sheik et al., 2014).

Biological wastewater treatment plants typically
possess a relatively homogeneous environment (com-
pared with most natural ecosystems) with well-defined
physico-chemical boundaries and are widespread in
developed and developing countries (Daims et al., 2006;
Muller, Pinel et al., 2014; Sheik et al., 2014). Furthermore,
contrary to other microbial habitats, e.g. the marine
environment, acid mine drainage biofilms, the human
gastrointestinal tract, etc., BWWT plants represent a
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convenient and virtually unlimited source of spatially and
temporally resolved samples (Fig. 1; step 1). Physico-
chemical parameters such as temperature, pH, oxygen
and nutrient concentrations are routinely monitored and
recorded, thereby facilitating hypothesis formulation and
verification in rapid succession. This allows for example,
the establishment of causal links between the influence of
certain environmental parameters on microbial commu-
nity structure and/or function derived from temporal sam-
pling. Importantly, microbial consortia from BWWT plants
are very amenable to experimental validation at differing
scales, ranging from laboratory-scale bioreactors to full-
scale plants (see section “From Eco-Systems Biology to
biotechnology” below).

While being highly dynamic, microbial communities
within BWWT plants maintain a medium to high range of
diversity/complexity, thereby exhibiting a baseline stability
over time such that there is temporal succession of
repeatedly few quantitatively dominant populations

(Albertsen et al., 2012; Zhang et al., 2012; Muller, Pinel
et al., 2014; N. Pinel, pers. comm.). These characteristics
reduce the complexity of downstream omic data analyses.
In particular, given sufficient sequencing depth, current de
novo metagenomic assemblers are highly effective for
medium complexity communities, such as BWWT plant
microbial communities (Segata et al., 2013; Muller, Pinel
et al., 2014). Representative population-level genomic
reconstructions can now be obtained for abundant com-
munity members (Albertsen et al., 2013; Muller, Pinel
et al., 2014), and such genomic information is vital for the
meaningful interpretation of additional functional omic
data. Overall, BWWT plant microbial communities repre-
sent an important intermediary step/model between com-
munities of lower diversity, e.g. acid mine drainage
biofilms (Denef et al., 2010), and complex communities
such as those from soil environments (Mocali and
Benedetti, 2010), while retaining important hallmarks of
both extremes including, for example, quantitative

Fig. 1. The path from large-scale integrated omics to hypothesis testing and biotechnological application in the context of biological wastewa-
ter treatment.
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dominance of specific taxa (a characteristic of acid mine
drainage biofilm communities), rapid stochastic environ-
mental fluctuations (a characteristic of soil environments).
Therefore, BWWT plant microbial communities exhibit
important properties rendering them an ideal model for
microbial ecology (Daims et al., 2006), and more specifi-
cally eco-systematic omic studies in line with a discovery-
driven planning approach (Muller et al., 2013).

Laboratory protocols, systematic measurements
and in silico analyses

Mixed microbial communities, such as those present in
BWWT plants, exhibit varying degrees of inter- and intra-
sample heterogeneity, rendering standard (i.e. originally
designed for pure isolate culture systems) biomolecular
extractions protocols and computational analyses ineffec-
tive (Muller et al., 2013; Roume et al., 2013a). In our
opinion, it is therefore absolutely essential to apply
tailored and systematic approaches such as the
biomolecular isolation protocol designed by Roume and
colleagues (Roume et al., 2013a) to microbial commu-
nities. The protocol allows the sequential isolation of high-
quality genomic deoxyribonucleic acid (DNA), ribonucleic
acid (RNA), small RNA, proteins and metabolites from a
single, undivided sample for subsequent systematic multi-
omic measurements (Fig. 1, step 2). Importantly, this
eliminates the need for subsampling the heterogeneous
biomass and, therefore, reduces the noise arising from
incongruous omics data in the subsequent downstream
integration and analysis steps (Fig. 1, step 3; Muller et al.,
2013; Roume et al., 2013a,b).

Following standardized and systematized biomolecular
isolations, multi-omic datasets are generated in addition
to the physico-chemical parameters recorded at the time
of sampling (Fig. 1; step 2). The multi-omic data are then
subjected to bioinformatic pre-processing and analyses.
Preliminary characterization of microbial communities can
be facilitated either by high-throughput ribosomal RNA
gene amplicon sequencing to determine broad commu-
nity composition from shotgun metagenomic analyses to
resolve the overall structure as well as the functional
potential of the communities (Vanwonterghem et al.,
2014). More importantly, hybrid de novo assemblies of
metagenomic and metatranscriptomic reads promises
higher quality compared with conventional de novo
metagenomic assemblies due to the ability to reconstruct
and resolve genomic complements of low abundance (i.e.
low metagenomic coverage) yet highly active populations
(i.e. high metatranscriptomic coverage for expressed
genes; Muller, Pinel et al., 2014). Hybrid assemblies allow
high-quality population-level genomic reconstructions
after the application of binning/classification methods,
such as those developed for a single sample (Laczny

et al., 2014) or for spatio-temporally resolved samples
(Albertsen et al., 2013; Alneberg et al., 2014; Nielsen
et al., 2014). Furthermore, hybrid metagenomic and
metatranscriptomic data assemblies allow the resolution
of genetic variations with higher confidence through rep-
lication and highlights their potential relative importance,
thereby allowing more detailed short-term evolutionary
inferences regarding specific populations and while
increasing sensitivity for downstream metaproteomic
analysis (Muller, Pinel et al., 2014). Thus, the generation
of metatranscriptomic and metaproteomic data is crucial
to fully understand the functional capacity of microbial
communities. Therefore, we believe that the integrated
omic approach as elucidated by Muller and colleagues
(Muller, Pinel et al., 2014), from systematic measure-
ments to in silico analysis, is highly effective in: (i) mini-
mizing errors by cancelling out noise and biases
stemming from single omic analyses and (ii) optimizing/
maximizing overall data usage.

Although high-throughput metagenomics and meta-
transcriptomics allow deep profiling of microbial commu-
nities at relatively low cost, existing sequence-based
approaches do have some important limitations. Given
the availability of omic technologies and their non-
prohibitive costs (in particular for metagenomics and
metatranscriptomics), fully integrated omic analyses
should be applied routinely in the study of microbial con-
sortia for greater effectiveness. For instance, despite this
wealth of information, current metagenomic assemblies
and analysis schemes, metagenomic (and meta-
transcriptomic) data resulting from the use of current
short-read sequencing and assembly approaches do not
allow the comprehensive resolution of microdiversity, e.g.
genetic heterogeneity of microbial populations (Wilmes
et al., 2009). Furthermore, RNAseq technologies are
subject to biases stemming from the extensive, yet
compulsory pre-processing steps (Lahens et al., 2014),
thereby affecting the resulting metatranscriptomic data.
On the other hand, chromatography and mass
spectrometry-based metaproteomics and metabolomics
currently remain limited in their profiling depth. While the
situation for metaproteomics is rapidly improving (Hettich
et al., 2012), community-wide metabolomic studies are
still limited in their scope due to the poor detection/
sensitivity of high-throughput metabolomic instruments
and high dependency on a limited knowledgebase
reflected in current metabolite databases. Overall, we
anticipate significant technological advancements in all
high-throughput measurement techniques particularly in
the area of long-read sequencing, chromatography as
well as mass spectrometry. Naturally, these technological
improvements will be complemented by equally sophisti-
cated in silico data processing and analysis methods,
which in turn will allow integrated omics to provide
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comprehensive multi-level snapshots of microbial popula-
tion structures and functions in situ (Fig. 1; step 3).

In our opinion, the real power of the integrated omics
approach within the Eco-Systems Biology framework
will stem from applying the approach to temporally and
spatially resolved samples (Fig. 1, steps 1 to 4; Muller
et al., 2013; Zarraonaindia et al., 2013). In combination
with appropriate statistical and mathematical modelling
methods, the deconvolution of the data will unveil unprec-
edented insights into the structure and function of micro-
bial communities (Fig. 1; step 4; Muller et al., 2013;
Segata et al., 2013; Zarraonaindia et al., 2013). Data
mining, machine learning and/or modelling approaches
will be useful for extracting features of interest, e.g.
known and unknown populations/genes, and also to
derive associations (or links) between desired features
utilizing measures such as correlation, co-occurrence,
mutual information and hyper-geometric overlap (Muller
et al., 2013; Segata et al., 2013). Such associations may
allow the prediction of gene functions using the concept of
‘guilt by association’ and interactions/dependencies
between community members (Wolfe et al., 2005; Segata
et al., 2013; Solomon et al., 2014). Biological wastewater
treatment plants offer particularly exciting opportunities to
link responses in community structure and function to
fluctuating environmental conditions because of the rela-
tive ease of sampling and routine recording of metadata
(Muller et al., 2013; Segata et al., 2013; Vanwonterghem
et al., 2014). Systematic omic analyses of BWWT micro-
bial communities may therefore uncover (i) the effect of
physico-chemical parameters on the expression of spe-
cific genes or phenotypes and (ii) the linkage of unknown
genes to specific metabolites as well as to both known
and unknown community members. However, the derived
associations will always be ‘mere’ hypotheses, which will
require rigorous testing through targeted laboratory
experiments (Fig. 1; step 5) and/or in situ perturbation
experiments followed by additional omic measurements
(Muller et al., 2013; Segata et al., 2013).

Moving beyond associations and hypotheses

Although integrated omics-based approaches are highly
effective for large-scale analysis and formulation of
hypotheses (including within the context of BWWT plant
communities), these efforts are limited due to current
high-throughput measurement methods (see previous
section) and the reliance on a priori knowledge for both
taxonomical and functional inferences (Röling et al.,
2010). Hence, there is a need to validate newly gener-
ated hypotheses using full-scale plants, customized
laboratory-based experiments, such as batch cultures,
bioreactors or pilot plants (Fig. 1; step 5) and/or single-cell
methods. Hypotheses may be tested using additional inte-

grated omic datasets generated from ancillary samples
(e.g. Muller, Pinel et al, 2014) by using molecular biology
techniques such as heterologous gene expression (e.g.
Wexler et al., 2005; Maixner et al., 2008) or single-cell
approaches using microautoradiography-fluorescent in
situ hybridisation (MAR-FISH), nano-scale secondary-ion
mass spectrometry (nanoSIMS) and/or Raman spectros-
copy (e.g. Huang et al., 2007; Lechene et al., 2007; Musat
et al., 2012). Such a combination of technologies can be
used to test hypotheses regarding (i) community dynam-
ics, (ii) gene expression patterns/interactions, (iii) metabo-
lite abundances, (iv) effect of physico-chemical factors on
distinct microbial species and functionalities, (v) gene
function associations between any of these. Identified
patterns may be subsequently formulated as cues and
can be used as input to facilitate knowledge-driven control
of different microbial community structures and/or func-
tions (Fig. 1; step 6). Thus, large-scale integrated omic
analyses of in situ biological samples (section “Laboratory
protocols, systematic measurements and in silico analy-
ses”), coupled to carefully controlled laboratory experi-
ments, will allow the effective elucidation of novel
functions within BWWT plant microbial communities with
potential biotechnological applications.

From Eco-Systems Biology to biotechnology

Knowledge of gene function, regulation and physiological
potential derived from integrated omic data over different
spatial and temporal scales holds great promise in
harnessing the biotechnological potential of microbial
consortia. In particular, advancements in integrated omics
followed by hypothesis testing may generate new knowl-
edge (Muller et al., 2013), which may for example be
exploited in new approaches for the optimized production
of biotechnologically relevant compounds under varying
environmental conditions (Chen and Nielsen, 2013). The
derived knowledge-base may further be used to fine-tune
metabolic pathways at the transcriptional, translational
and post-translational levels using the ever-expanding
synthetic biology toolbox (Peralta-Yahya et al., 2012).
Examples of possible future applications may include, for
instance the bioengineering of fatty acid utilization and
production for the production of biodiesel from ‘dirty’
mixed substrates, the engineering of different gene com-
binations for the production of various alcohols from
mixed substrates (Lee et al., 2008) and the generation of
hybrid processes by combining biological and chemical
production steps resulting in new compounds that could
serve as biofuels (Román-Leshkov et al., 2007). Through
exploration of BWWT plant microbial consortia using inte-
grated omics, we are therefore poised to unravel key
functionalities, which will find applications in a whole
range of different biotechnologies. In this context,

4 S. Narayanasamy, E. E. L. Muller, A. R. Sheik and P. Wilmes

© 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology



integrated omics through facilitating direct linkages
between genetic potential and final phenotype may
become an essential tool in future bioprospecting. There-
fore, in our opinion, integrated omics will become the
standard means of analysing microbial consortia in the
near future and will allow meta-omics to fulfil their promise
for the comprehensive discovery of biotechnology-
relevant microbial traits in natural consortia.
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Abstract

Existing workflows for the analysis of multi-omic microbiome datasets are lab-specific and often result in sub-optimal
data usage. Here we present IMP, a reproducible and modular pipeline for the integrated and reference-independent
analysis of coupled metagenomic and metatranscriptomic data. IMP incorporates robust read preprocessing, iterative
co-assembly, analyses of microbial community structure and function, automated binning, as well as genomic
signature-based visualizations. The IMP-based data integration strategy enhances data usage, output volume,
and output quality as demonstrated using relevant use-cases. Finally, IMP is encapsulated within a user-friendly
implementation using Python and Docker. IMP is available at http://r3lab.uni.lu/web/imp/ (MIT license).

Keywords: Multi-omics data integration, Metagenomics, Metatranscriptomics, Microbial ecology, Microbiome,
Reproducibility

Background
Microbial communities are ubiquitous in nature and
govern important processes related to human health and
biotechnology [1, 2]. A significant fraction of naturally
occurring microorganisms elude detection and investiga-
tion using classic microbiological methods due to their
unculturability under standard laboratory conditions [3].
The issue of unculturability is largely circumvented
through the direct application of high-resolution and
high-throughput molecular measurements to samples
collected in situ [4–6]. In particular, the application of
high-throughput next-generation sequencing (NGS) of
DNA extracted from microbial consortia yields metage-
nomic (MG) data which allow the study of microbial
communities from the perspective of community struc-
ture and functional potential [4–6]. Beyond metage-
nomics, there is also a clear need to obtain functional
readouts in the form of other omics data. The sequen-
cing of reverse transcribed RNA (cDNA) yields

metatranscriptomic (MT) data, which provides informa-
tion about gene expression and therefore allows a more
faithful assessment of community function [4–6]. Al-
though both MG and MT data allow unprecedented in-
sights into microbial consortia, the integration of such
multi-omic data is necessary to more conclusively link
genetic potential to actual phenotype in situ [4, 6]. Given
the characteristics of microbial communities and the
resulting omic data types, specialized workflows are re-
quired. For example, the common practice of subsamp-
ling collected samples prior to dedicated biomolecular
extractions of DNA, RNA, etc. has been shown to inflate
variation, thereby hampering the subsequent integration
of the individual omic datasets [7, 8]. For this purpose,
specialized wet-lab methods which allow the extraction
of concomitant DNA, RNA, proteins, and metabolites
from single, unique samples were developed to ensure
that the generated data could be directly compared
across the individual omic levels [7, 8]. Although stan-
dardized and reproducible wet-lab methods have been
developed for integrated omics of microbial communi-
ties, corresponding bioinformatic analysis workflows
have yet to be formalized.
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Bioinformatic analysis methods for MG and MT NGS
data can be broadly classified into reference-dependent or
reference-independent (de novo) methods [5]. Reference-
dependent methods are based on the alignment/mapping
of sequencing reads onto isolate genomes, gene catalogs,
or existing MG data. A major drawback of such methods
is the large number of sequencing reads from uncultured
species and/or divergent strains which are discarded dur-
ing data analysis, thereby resulting in the loss of poten-
tially useful information. For example, based on analyses
of MG data from the human gut microbiome (arguably
the best characterized microbial community in terms of
culture-derived isolate genomes), approximately 43% of
the data are typically not mappable to the available isolate
genomes [9]. Conversely, reference-independent meth-
odologies, such as approaches based on de novo assem-
blies, enable the retrieval of the actual genomes and/or
potentially novel genes present in samples, thereby
allowing more of the data to be mapped and exploited
for analysis [4, 5, 10]. Furthermore, it has been demon-
strated that the assembly of sequencing reads into lon-
ger contiguous sequences (contigs) greatly improves the
taxonomic assignments and prediction of genes as
opposed to their direct identification from short se-
quencing reads [11, 12]. Finally, de novo MG assem-
blies may be further leveraged by binning the data to
resolve and retrieve population-level genomes, includ-
ing those from hitherto undescribed taxa [13–21].
Given the advantages of reference-independent

methods, a wide array of MG-specific assemblers such as
IDBA-UD [22] and MEGAHIT [23] have been developed.
Most MT data analyses involve reference-based [24–26]
or MG-dependent analysis workflows [27–29]. A com-
parative study by Celaj et al. [12] demonstrated that
reference-independent approaches for MT data analyses
are also applicable using either specialized MT assemblers
(e.g., IDBA-MT [12, 30]), MG assemblers (e.g., IDBA-UD
[22, 30, 31] and MetaVelvet [12, 32]) or single-species
transcriptome assemblers (e.g., Trinity [12, 33]). In all
cases, the available assemblers are able to handle the un-
even sequencing depths of MG and MT data. Although
dedicated assembly methods have been developed for MG
and MT data, formalized pipelines allowing the integrated
use of both data types are not available yet.
Automated bioinformatic pipelines have so far been

mainly developed for MG data. These include
MOCAT [34] and MetAMOS [10], which incorporate
the entire process of MG data analysis, ranging from
preprocessing of sequencing reads, de novo assembly,
and post-assembly analysis (read alignment, taxo-
nomic classification, gene annotation, etc.). MOCAT
has been used in large-scale studies such as those
within the MetaHIT Consortium [35, 36], while MetA-
MOS is a flexible pipeline which allows customizable

workflows [10]. Both pipelines use SOAPdenovo [37]
as the default de novo assembler, performing single-
length kmer-based assemblies which usually result in
fragmented (low contiguity) assemblies with low gene
coverage values [38].
Multi-omic analyses have already provided new insights

into microbial community structure and function in various
ecosystems. These include studies of the human gut micro-
biome [28, 39], aquatic microbial communities from the
Amazon river [27], soil microbial communities [40, 41],
production-scale biogas plants [29], hydrothermal vents
[42], and microbial communities from biological wastewa-
ter treatment plants [43, 44]. These studies employed differ-
ing ways for analyzing the data, including reference-based
approaches [27, 28, 42], MG assembly-based approaches
[29, 40], MT assembly-based approaches [42], and inte-
grated analyses of the meta-omic data [39, 42–44].
Although these studies clearly demonstrate the power
of multi-omic analyses by providing deep insights into
community structure and function, standardized and
reproducible computational workflows for integrating
and analyzing the multi-omic data have so far been un-
available. Importantly, such approaches are, however,
required to compare results between different studies
and systems of study.
Due to the absence of established tools/workflows to

handle multi-omic datasets, most of the aforementioned
studies utilized non-standardized, ad hoc analyses,
mostly consisting of custom workflows, thereby creating
a challenge in reproducing the analyses [10, 45–47].
Given that the lack of reproducible bioinformatic work-
flows is not limited to those used for the multi-omic
analysis of microbial consortia [10, 45–47], several ap-
proaches have recently been developed with the explicit
aim of enhancing software reproducibility. These include
a wide range of tools for constructing bioinformatic
workflows [48–50] as well as containerizing bioinfor-
matic tools/pipelines using Docker [29, 46–48].
Here, we present IMP, the Integrated Meta-omic

Pipeline, the first open source de novo assembly-based
pipeline which performs standardized, automated, flex-
ible, and reproducible large-scale integrated analysis of
combined multi-omic (MG and MT) datasets. IMP in-
corporates robust read preprocessing, iterative co-
assembly of metagenomic and metatranscriptomic data,
analyses of microbial community structure and function,
automated binning, as well as genomic signature-based vi-
sualizations. We demonstrate the functionalities of IMP
by presenting the results obtained on an exemplary data
set. IMP was evaluated using datasets from ten different
microbial communities derived from three distinct
environments as well as a simulated mock microbial com-
munity dataset. We compare the assembly and data inte-
gration measures of IMP against standard MG analysis
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strategies (reference-based and reference-independent) to
demonstrate that IMP vastly improves overall data usage.
Additionally, we benchmark our assembly procedure
against available MG analysis pipelines to show that IMP
consistently produces high-quality assemblies across all
the processed datasets. Finally, we describe a number of
particular use cases which highlight biological applications
of the IMP workflow.

Results
Overview of the IMP implementation and workflow
IMP leverages Docker for reproducibility and deploy-
ment. The interfacing with Docker is facilitated through
a user-friendly Python wrapper script (see the “Details of
the IMP implementation and workflow” section). As
such, Python and Docker are the only prerequisites for
the pipeline, enabling an easy installation and execution
process. Workflow implementation and automation is
achieved using Snakemake [49, 51]. The IMP workflow
can be broadly divided into five major parts: i) prepro-
cessing, ii) assembly, iii) automated binning, iv) analysis,
and v) reporting (Fig. 1).
The preprocessing and filtering of sequencing reads is

essential for the removal of low quality bases/reads, and
potentially unwanted sequences, prior to assembly and
analysis. The input to IMP consists of MG and MT (the
latter preferably depleted of ribosomal RNA prior to se-
quencing) paired-end reads in FASTQ format (section
“Input data”). MG and MT reads are preprocessed inde-
pendently of each other. This involves an initial quality
control step (Fig. 1 and section “Trimming and quality
filtering”) [52] followed by an optional screening for
host/contaminant sequences, whereby the default
screening is performed against the human genome while
other host genome/contaminant sequences may also be
used (Fig. 1 and section “Screening host or contaminant
sequences”). In silico rRNA sequence depletion is exclu-
sively applied to MT data (Fig. 1 and section “Ribosomal
RNA filtering”).
The customized assembly procedure of IMP starts with

an initial assembly of preprocessed MT reads to generate
an initial set of MT contigs (Additional file 1: Figure S1).
MT reads unmappable to the initial set of MT contigs
undergo a second round of assembly. The process of as-
sembling unused reads, i.e., MG or MT reads unmappable
to the previously assembled contigs, is henceforth referred
to as “iterative assembly”. The assembly of MT reads is
performed, first as transcribed regions are covered much
more deeply and evenly in MT data. The resulting MT-
based contigs represent high-quality scaffolds for the
subsequent co-assembly with MG data, overall leading to
enhanced assemblies [43]. Therefore, the combined set of
MT contigs from the initial and iterative MT assemblies
are used to enhance the subsequent assembly with the

MG data. MT data are assembled using the MEGAHIT de
novo assembler using the appropriate option to prevent
the merging of bubbles within the de Bruijn assembly
graph [23, 36]. Subsequently, all preprocessed MT and
MG reads, together with the generated MT contigs, are
used as input to perform a first co-assembly, producing a
first set of co-assembled contigs. The MG and MT reads
unmappable to this first set of co-assembled contigs then
undergo an additional iterative co-assembly step. IMP
implements two assembler options for the de novo co-
assembly step, namely IDBA-UD or MEGAHIT. The con-
tigs resulting from the co-assembly procedure undergo a
subsequent assembly refinement step by a contig-level as-
sembly using the cap3 [53] de novo assembler. This aligns
highly similar contigs against each other, thus reducing
overall redundancy by collapsing shorter contigs into
longer contigs and/or improving contiguity by extending
contigs via overlapping contig ends (Additional file 1:
Figure S1). This step produces the final set of contigs. Pre-
processed MG and MT reads are then mapped back
against the final contig set and the resulting alignment in-
formation is used in the various downstream analysis pro-
cedures (Fig. 1). In summary, IMP employs four measures
for the de novo assembly of preprocessed MG and MT
reads, including: i) iterative assemblies of unmappable
reads, ii) use of MT contigs to scaffold the downstream
assembly of MG data, iii) co-assembly of MG and MT
data, and iv) assembly refinement by contig-level as-
sembly. The entire de novo assembly procedure of IMP
is henceforth referred to as the “IMP-based iterative
co-assembly” (Additional file 1: Figure S1).
Contigs from the IMP-based iterative co-assembly

undergo quality assessment as well as taxonomic annota-
tion [54] followed by gene prediction and functional anno-
tation [55] (Fig. 1 and section “Annotation and assembly
quality assessment”). MaxBin 2.0 [20], an automated bin-
ning procedure (Fig. 1 and section “Automated binning”)
which performs automated binning on assemblies pro-
duced from single datasets, was chosen as the de facto
binning procedure in IMP. Experimental designs involving
single coupled MG and MT datasets are currently the
norm. However, IMP’s flexibility does not forego the im-
plementation of multi-sample binning algorithms such as
CONCOCT [16], MetaBAT [18], and canopy clustering
[15] as experimental designs evolve in the future.
Non-linear dimensionality reduction of the contigs’

genomic signatures (Fig. 1 and section “Non-linear di-
mensionality reduction of genomic signatures”) is per-
formed using the Barnes-Hut Stochastic Neighborhood
Embedding (BH-SNE) algorithm allowing visualization
of the data as two-dimensional scatter plots (henceforth
referred to as VizBin maps [13, 56]). Further analysis
steps include, but are not limited to, calculations of the
contig- and gene-level depths of coverage (section

Narayanasamy et al. Genome Biology  (2016) 17:260 Page 3 of 21



“Depth of coverage”) as well as the calling of genomic
variants (variant calling is performed using two distinct
variant callers; section “Variant calling”). The informa-
tion from these analyses are condensed and integrated
into the generated VizBin maps to produce augmented
visualizations (sections “Visualization and reporting”).
These visualizations and various summaries of the out-
put are compiled into a HTML report (examples of the
HTML reports available via Zenodo [57]).

Exemplary output of IMP (using the default IDBA-UD
assembler) based on a human fecal microbiome dataset
is summarized in Fig. 2. The IMP output includes taxo-
nomic (Fig. 2a) and functional (Fig. 2b, c) overviews.
The representation of gene abundances at the MG and
MT levels enables comparison of potential (Fig. 2b) and
actual expression (Fig 2c) for specific functional gene
categories (see Krona charts within HTML S1 [57]). IMP
provides augmented VizBin maps [13, 56], including, for

Fig. 1 Schematic overview of the IMP pipeline. Cylinders represent input and output while rectangles represent processes. Arrows indicate the flow
between input, processes, and output. MG— Metagenomic data, MT— Metatranscriptomic data, rRNA— ribosomal RNA, NLDR-GS— genomic
signature non-linear dimensionality reduction. Processes, input, and output specific to MG and MT data are labeled in blue and red, respectively.
Processes and output that involve usage of both MG and MT data are represented in purple. A detailed illustration of the “iterative
co-assembly” is available in Additional file 1: Figure S1
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Fig. 2 (See legend on next page.)
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example, variant densities (Fig. 2d) as well as MT to MG
depth of coverage ratios (Fig. 2e). These visualizations
may aid users in highlighting subsets of contigs based on
certain characteristics of interest, i.e., population hetero-
geneity/homogeneity, low/high transcriptional activity,
etc. Although an automated binning method [20] is in-
corporated within IMP (Fig. 2f ), the output is also com-
patible with and may be exported to other manual/
interactive binning tools such as VizBin [56] and Anvi’o
[17] for additional manual curation. Please refer to the
HTML reports for additional examples [57].
The modular design (section “Automation and modu-

larity”) and open source nature of IMP allow for
customization of the pipeline to suit specific user-
defined analysis requirements (section “Customization
and further development”). As an additional feature,
IMP also allows single-omic MG or MT analyses (sec-
tion “Details of the IMP implementation and work-
flow”). Detailed parameters for the processes implemented
in IMP are described in the section “Details of the IMP
implementation and workflow” and examples of detailed
workflow schematics are provided within the HTML
reports [57].

Assessment and benchmarking
IMP was applied to ten published coupled MG and MT
datasets, derived from three types of microbial systems,
including five human fecal microbiome samples (HF1,
HF2, HF3, HF4, HF5) [28], four wastewater sludge micro-
bial communities (WW1, WW2, WW3, WW4) [43, 44],
and one microbial community from a production-scale
biogas (BG) plant [29]. In addition, a simulated mock
(SM) community dataset based on 73 bacterial genomes
[12], comprising both MG and MT data was generated to
serve as a means for ground truth-based assessment of
IMP (details in section “Coupled metagenomic and meta-
transcriptomic datasets”). The SM dataset was devised
given the absence of a standardized benchmarking dataset
for coupled MG and MT data (this does solely exist for
MG data as part of the CAMI initiative (http://www.cami-
challenge.org)).
Analysis with IMP was carried out with the two avail-

able de novo assembler options for the co-assembly step
(Fig. 1; Additional file 1: Figure S1), namely the default
IDBA-UD assembler [22] (hereafter referred to as IMP)
and the optional MEGAHIT assembler [23] (henceforth

referred to as IMP-megahit). IMP was quantitatively
assessed based on resource requirement and analytical
capabilities. The analytical capabilities of IMP were eval-
uated based on data usage, output volume, and output
quality. Accordingly, we assessed the advantages of the
iterative assembly procedure as well as the overall data
integration strategy.

Resource requirement and runtimes
IMP is an extensive pipeline that utilizes both MG and
MT data within a reference-independent (assembly-
based) analysis framework which renders it resource-
and time-intensive. Therefore, we aimed to assess the
required computational resource and runtimes of IMP.
All IMP-based runs on all datasets were performed on

eight compute cores with 32 GB RAM per core and
1024 GB of total memory (section “Computational plat-
forms”). IMP runtimes ranged from approximately 23 h
(HF1) to 234 h (BG) and the IMP-megahit runtimes
ranged from approximately 21 h (HF1) up to 281 h (BG).
IMP was also executed on the Amazon cloud computing
(AWS) infrastructure, using the HF1 dataset on a machine
with 16 cores (section “Computational platforms”)
whereby the run lasted approximately 13 h (refer to
Additional file 1: Note S1 for more details). The analysis
of IMP resulted in an increase in additional data of around
1.2–3.6 times the original input (Additional file 2: Table
S1). Therefore, users should account for the disc space for
both the final output and intermediate (temporary) files
generated during an IMP run. Detailed runtimes and data
generated for all the processed data sets are reported in
Additional file 2: Table S1.
We further evaluated the effect of increasing resources

using a small scale test dataset (section “Test dataset for
runtime assessment”). The tests demonstrated that re-
duced runtimes are possible by allocating more threads
to IMP-megahit (Additional file 2: Table S2). However,
no apparent speed-up is achieved beyond allocation of
eight threads, suggesting that this would be the optimal
number of threads for this particular test dataset. Con-
trastingly, no speed-up was observed with additional
memory allocation (Additional file 2: Table S3). Apart
from the resources, runtime may also be affected by the
input size, the underlying complexity of the dataset and/
or behavior of individual tools within IMP.

(See figure on previous page.)
Fig. 2 Example output from the IMP analysis of a human microbiome dataset (HF1). a Taxonomic overview based on the alignment of contigs
to the most closely related genomes present in the NCBI genome database (see also HTML report S1 [57]). a, b Abundances of predicted genes
(based on average depths of coverage) of various KEGG Ontology categories represented both at the MG (b) and MT (c) levels (see also Krona
charts within HTML report S1). d–f Augmented VizBin maps of contigs ≥1 kb, representing contig-level MG variant densities (d), contig-level ratios
of MT to MG average depth of coverage (e), and bins generated by the automated binning procedure (f). Please refer to the HTML reports [57]
for additional examples
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Data usage: iterative assembly
De novo assemblies of MG data alone usually result in a
large fraction of reads that are unmappable to the assem-
bled contigs and therefore remain unused, thereby leading
to suboptimal data usage [43, 58–60]. Previous studies
have assembled sets of unmappable reads iteratively to
successfully obtain additional contigs, leading to an overall
increase in the number of predicted genes, which in turn
results in improved data usage [43, 58–60]. Therefore,
IMP uses an iterative assembly strategy to maximize NGS
read usage. In order to evaluate the best iterative assembly
approach for application within the IMP-based iterative
co-assembly strategy, we attempted to determine the
opportune number of assembly iterations in relation to
assembly quality metrics and computational resources/
runtimes.
The evaluation of the iterative assembly strategy was

applied to MG and MT datasets. For both omic data
types, it involved an “initial assembly” which is defined
as the de novo assembly of all preprocessed reads.
Additional iterations of assembly were then conducted
using the reads that remained unmappable to the gener-
ated set of contigs (see section “Iterative single-omic as-
semblies” for details and parameters). The evaluation of
the iterative assembly procedure was carried out based
on the gain of additional contigs, cumulative contig
length (bp), numbers of genes, and numbers of reads
mappable to contigs. Table 1 shows the evaluation results
of four representative data sets and Additional file 2:

Table S4 shows the detailed results of the application of
the approach to 11 datasets. In all the datasets evaluated,
all iterations (1 to 3) after the initial assembly lead to an
increase in total length of the assembly and numbers of
mappable reads (Table 1; Additional file 2: Table S4).
However, there was a notable decline in the number of
additional contigs and predicted genes beyond the first it-
eration. Specifically, the first iteration of the MG assembly
yielded up to 1.6% additional predicted genes while the
equivalent on the MT data yielded up to 9% additional
predicted genes (Additional file 2: Table S4). Considering
the small increase (<1%) in the number of additional con-
tigs and predicted genes beyond the first assembly iter-
ation on one hand and the extended runtimes required to
perform additional assembly iterations on the other
hand, a generalized single iteration assembly approach
was retained and implemented within the IMP-based it-
erative co-assembly (Fig. 1; Additional file 1: Figure S1).
This approach aims to maximize data usage without dras-
tically extending runtimes.
Despite being developed specifically for the analysis of

coupled MG and MT datasets, the iterative assembly
can also be used for single omic datasets. To assess
IMP’s performance on MG datasets, it was applied to
the simulated MG datasets from the CAMI challenge
(http://www.cami-challenge.org) and the results are
shown in Additional file 1: Figure S2. IMP-based MG as-
sembly using the MEGAHIT assembler on the CAMI
dataset outperforms well-established MG pipelines such

Table 1 Statistics of iterative assemblies performed on MG and MT datasets

MG iterative assembly MT iterative assembly

Dataset Iteration Number of
contigs
(≥1 kb)

Cumulative length
of assembled
contigs (bp)

Number of
predicted
genes

Number of
mapped reads

Number of
contigs (all)

Cumulative length
of assembled
contigs (bp)

Number of
predicted
genes

Number of
mapped
reads

SM Initial assembly 29063 182673343 186939 18977716 13436 8994518 13946 822718

1 16 483336 329 9515 1286 502535 1272 16038

2 6 213094 126 3425 48 18460 49 656

3 1 86711 47 1536 0 0 0 0

HF1 Initial assembly 27028 145938650 154760 20715368 40989 45300233 66249 17525586

1 15 966872 274 39839 2471 969614 2238 329400

2 −1 26822 5 1276 26 10315 24 45642

3 0 4855 0 172 3 1640 6 54788

WW1 Initial assembly 14815 77059275 81060 6513708 45118 22525759 49859 8423603

1 28 3146390 1136 73511 2115 723904 1589 529441

2 2 175634 114 4031 250 82048 201 13335

3 1 30032 16 572 31 10280 18 65866

BG Initial assembly 105282 545494441 593688 109949931 47628 27493690 60566 3754432

1 417 10998269 3902 456821 3956 1397409 3061 130131

2 5 335313 219 21647 717 250223 754 12766

3 7 79022 20 2511 24 9060 22 5827

Results for all datasets available in Additional file 2: Table S2
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as MOCAT in all measures. In addition, IMP-based it-
erative assemblies also exhibit comparable performance
to the gold standard assembly with regards to contigs
≥1 kb and number of predicted genes (http://www.cami-
challenge.org). Detailed results of the CAMI assemblies
are available in Additional file 2: Table S5. However, as
no MT and/or coupled MG and MT datasets so far exist
for the CAMI challenge, the full capabilities of IMP
could not be assessed in relation to this initiative.

Data usage: multi-omic iterative co-assembly
In order to assess the advantages of integrated multi-omic
co-assemblies of MG and MT data, IMP-based iterative co-

assemblies (IMP and IMP-megahit) were compared against
MG-only-based assemblies which include single-omic itera-
tive MG assemblies generated using IMP (referred to as
IMP_MG) and standard MG assemblies by MOCAT (here-
after referred to as MOCAT_MG) and MetAMOS (here-
after referred to as MetAMOS_MG). Furthermore, the
available reads from the human fecal microbiome dataset
(preprocessed with IMP) were mapped to the MetaHIT
Integrated Gene Catalog (IGC) reference database [35] to
compare the data usage of the different assembly proce-
dures against a reference-dependent approach.
IMP-based iterative co-assemblies consistently re-

cruited larger fractions of properly paired MG (Fig. 3a)
and/or MT (Fig. 3b) reads compared to single-omic

a

c

b

d

Fig. 3 Assessment of data usage and output generated from co-assemblies compared to single-omic assemblies. Heat maps show (a) fractions of
properly mapped MG read pairs, (b) fractions of properly mapped MT read pairs, (c) numbers of contigs ≥1 kb, and (d) numbers of unique predicted
genes. IMP and IMP-megahit represent integrated multi-omic MG and MT iterative co-assemblies while IMP_MG, MOCAT_MG, and MetAMOS_MG
represent single-omic MG assemblies. All numbers were row Z-score normalized for visualization. Detailed results available in Additional file 2: Table S5
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assemblies. The resulting assemblies also produced
larger numbers of contigs ≥1 kb (Fig. 3c), predicted non-
redundant unique genes (Fig. 3d), and, even more im-
portant, complete genes as predicted with start and stop
codon by Prodigal [61] (Additional file 2: Table S5).
Using the reference genomes from the SM data as
ground truth, IMP-based iterative co-assemblies resulted
in up to 25.7% additional recovery of the reference ge-
nomes compared to the single-omic MG assemblies
(Additional file 2: Table S5).
IMP-based iterative co-assemblies of the human fecal

microbiome datasets (HF1–5) allowed recruitment of
comparable fractions of properly paired MG reads and an
overall larger fraction of properly paired MT reads com-
pared to those mapping to the IGC reference database
(Table 2). The total fraction (union) of MG or MT reads
mapping to either IMP-based iterative co-assemblies and/
or the IGC reference database was higher than 90%, thus
demonstrating that the IMP-based iterative co-assemblies
allow at least 10% of additional data to be mapped when
using these assemblies in addition to the IGC reference
database. In summary, the complementary use of de novo
co-assembly of MG and MT datasets in combination with
iterative assemblies enhances overall MG and MT data
usage and thereby significantly increases the yield of
useable information, especially when combined with com-
prehensive reference catalogs such as the IGC reference
database.

Assembly quality: multi-omic iterative co-assembly
In order to compare the quality of the IMP-based itera-
tive co-assembly procedure to simple co-assemblies, we
compared the IMP-based iterative co-assemblies against
co-assemblies generated using MetAMOS [10] (hence-
forth referred to as MetAMOS_MGMT) and MOCAT
[34] (henceforth referred to as MOCAT_MGMT).

Although MetAMOS and MOCAT were developed for
MG data analysis, we extended their use for obtaining
MG and MT co-assemblies by including both MG and
MT read libraries as input (section “Execution of pipe-
lines”). The assemblies were assessed based on con-
tiguity (N50 length), data usage (MG and MT reads
mapped), and output volume (number of contigs above
1 kb and number of genes; Additional file 2: Table S5).
Only the SM dataset allowed for ground truth-based
assessment by means of aligning the generated de novo
assembly contigs to the original 73 bacterial genomes
used to simulate the data set (section “Simulated
coupled metagenomic and metatranscriptomic dataset”)
[12, 54]. This allowed the comparison of two additional
quality metrics, i.e., the recovered genome fraction and
the composite performance metric (CPM) proposed by
Deng et al. [62].
Assessments based on real datasets demonstrate

comparable performance between IMP and IMP-
megahit while both outperform MetAMOS_MGMT
and MOCAT_MGMT in all measures (Fig. 4a–c). The
ground truth assessment using the SM dataset shows
that IMP-based iterative co-assemblies are effective in
recovering the largest fraction of the original reference ge-
nomes while achieving a higher CPM score compared to
co-assemblies from the other pipelines. Misassembled
(chimeric) contigs are a legitimate concern within exten-
sive de novo assembly procedures such as the IMP-based
iterative co-assembly. It has been previously demonstrated
that highly contiguous assemblies (represented by high
N50 lengths) tend to contain higher absolute numbers of
misassembled contigs compared to highly fragmented as-
semblies, thereby misrepresenting the actual quality of
assemblies [38, 62, 63]. Therefore, the CPM score was de-
vised as it represents a normalized measure reflecting both
contiguity and accuracy for a given assembly [62]. Based
on the CPM score, both IMP and IMP-megahit yield as-
semblies that balance high contiguity with accuracy and
thereby outperform the other methods (Fig. 4c, d). In
summary, cumulative measures of numbers of contigs
≥1 kb, N50 lengths, numbers of unique genes, recovered
genome fractions (%), and CPM scores (the latter two
were only calculated for the SM dataset), as well as the
mean fractions (%) of mappable MG and MT reads, show
that the IMP-based iterative co-assemblies (IMP and
IMP-megahit) clearly outperform all other available
methods (Fig. 4e; Additional file 2: Table S5).

Use-cases of integrated metagenomic and
metatranscriptomic analyses in IMP
The integration of MG and MT data provides unique
opportunities for uncovering community- or population-
specific traits, which cannot be resolved from MG or
MT data alone. Here we provide two examples of

Table 2 Mapping statistics for human microbiome samples

Reference Average MG pairs
mapping (%)

Average MT pairs
mapping (%)

IGC 70.91 53.57

IMP 70.25 86.21

IMP-megahit 70.62 83.33

IMP_MG 68.08 58.54

MetAMOS_MG 57.31 37.34

MOCAT_MG 36.73 36.68

IMP + IGC 92.66 95.77

IMP-megahit + IGC 92.80 93.24

Average fractions (%) of properly paired reads from the human microbiome
datasets (HF1–5) mapping to various references, including IMP-based iterative
co-assemblies (IMP and IMP-megahit) and single-omic co-assemblies (IMP_MG,
MetAMOS_MG, and MOCAT_MG) as well as the IGC reference database. IMP +
IGC and IMP-megahit + IGC reports the total number of properly paired reads
mapping to IMP-based iterative co-assemblies and/or the IGC reference
database. Refer to Additional file 2: Table S3 for detailed information
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insights gained through the direct inspection of results
provided by IMP.

Tailored preprocessing and filtering of MG and MT data
The preprocessing of the datasets HF1–5 included filter-
ing of human-derived sequences, while the same step
was not necessary for the non-human-derived datasets,
WW1–4 and BG. MT data analyzed within this article
included RNA extracts which were not subjected to wet-
lab rRNA depletion, i.e., BG [29], and samples which
were treated with wet-lab rRNA removal kits (namely
HF1–5 [28] and WW1–4 [43]). Overall, the removal of
rRNA pairs from the MT data showed a large variation,
ranging from as low as 0.51% (HF5) to 60.91% (BG),
demonstrating that wet-lab methods vary in terms of

effectiveness and highlighting the need for such MT-
specific filtering procedures (Additional file 1: Note S2;
Additional file 2: Table S6).

Identification of RNA viruses
To identify differences in the information content of
MG and MT complements, the contigs generated using
IMP were inspected with respect to coverage by MG
and MT reads (Additional file 2: Table S7). In two exem-
plary datasets HF1 and WW1, a small fraction of the
contigs resulted exclusively from MT data (Additional
file 2: Table S7). Longer contigs (≥1 kb) composed exclu-
sively of MT reads and annotated with known viral/bac-
teriophage genes were retained for further inspection
(Table 3; complete list contigs in Additional file 2: Table S8

a d

eb

c

Fig. 4 Assessment of the IMP-based iterative co-assemblies in comparison to MOCAT- and MetAMOS-based co-assemblies. Radar charts summarizing
the characteristics of the co-assemblies generated using IMP, MetAMOS, and MOCAT pipelines on: a human fecal microbiome, b wastewater sludge
community, c biogas reactor, d simulated mock community. IMP co-assemblies were performed with two de novo assembler options, IDBA_UD and
MEGAHIT, whereas MetAMOS and MOCAT were executed using default settings. Assessment metrics within the radar charts include number of contigs
≥1 kb, N50 length (contiguity, cutoff 500 bp), number of predicted genes (unique), and fraction of properly mapped MG and MT read pairs. N50
statistics are reported using a 500-bp cutoff. Additional ground truth assessments for simulated mock dataset included recovered genome
fractions (%) and the composite performance metric (CPM) score with a cutoff of 500 bp [62]. e Summary radar chart reflecting the cumulative
measures and mean fraction of properly mapped MG and MT read pairs from all analyzed 11 datasets while incorporating ground truth-based
measures from the simulated mock dataset. Higher values within the radar charts (furthest from center) represent better performance. Detailed
information on the assembly assessments is available in Additional file 2: Table S5
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and S9). A subsequent sequence similarity search against
the NCBI NR nucleotide database [64] of these candidate
contigs revealed that the longer contigs represent almost
complete genomes of RNA viruses (Additional file 2: Table
S10 and S11). This demonstrates that the incorporation of
MT data and their contrasting to the MG data allow the
identification and recovery of nearly complete RNA viral
genomes, thereby allowing their detailed future study in a
range of microbial ecosystems.

Identification of populations with apparent high
transcriptional activity
To further demonstrate the unique analytical capabilities
of IMP, we aimed to identify microbial populations with
a high transcriptional activity in the HF1 human fecal
microbiome sample. Average depth of coverage at the
contig- and gene-level is a common measure used to
evaluate the abundance of microbial populations within
communities [14, 16, 43]. The IMP-based integrative
analysis of MG and MT data further extends this meas-
ure by calculation of average MT to MG depth of cover-
age ratios, which provide information on transcriptional
activity and which can be visualized using augmented
VizBin maps [56].
In our example, one particular cluster of contigs within

the augmented VizBin maps exhibited high MT to MG
depth of coverage ratios (Additional file 1: Figure S3). The
subset of contigs within this cluster aligned to the genome
of the Escherichia coli P12B strain (henceforth referred to
as E. coli). For comparison, we also identified a subset,
which was highly abundant at the MG level (lower MT
to MG ratio), which aligned to the genome of Collin-
sella intestinalis DSM 13280 strain (henceforth referred

to as C. intestinalis). Based on these observations, we
highlighted the subsets of these contigs in an aug-
mented VizBin map (Fig. 5a). The C. intestinalis and E.
coli subsets are mainly represented by clear peripheral
clusters which exhibit consistent intra-cluster MT to
MG depth of coverage ratios (Fig. 5a). The subsets were
manually inspected in terms of their distribution of
average MG and MT depths of coverage and were com-
pared against the corresponding distributions for all
contigs. The MG-based average depths of coverage of
the contigs from the entire community exhibited a bell-
shape like distribution, with a clear peak (Fig. 5b). In
contrast, MT depths of coverage exhibited more spread,
with a relatively low mean (compared to MG distribution)
and no clear peak (Fig. 5b). The C. intestinalis subset dis-
plays similar distributions to that of the entire community,
whereas the E. coli subset clearly exhibits unusually high
MT-based and low MG-based depths of coverage (Fig. 5b).
Further inspection of the individual omic datasets revealed
that the E. coli subset was not covered by the MG contigs,
while approximately 80% of the E. coli genome was
recoverable from a single-omic MT assembly (Fig. 5c). In
contrast, the C. intestinalis subset demonstrated genomic
recovery in all co-assemblies (IMP, IMP-megahit,
MOCAT_MGMT, MetAMOS_MGMT) and the single-
omic MG assemblies (IMP_MG, MOCAT_MG, MetA-
MOS_MG; Fig. 5c).
As noted by the authors of the original study by

Franzosa et al. [28], the cDNA conversion protocol used
to produce the MT data is known to introduce approxi-
mately 1–2% of E. coli genomic DNA into the cDNA as
contamination which is then reflected in the MT data.
According to our analyses, 0.12% of MG reads and

Table 3 Contigs with a likely viral/bacteriophage origin/function reconstructed from the metatranscriptomic data

Sample Contig ID* Contig length Average contig depth
of coverage

Gene product Average gene depth
of coverage

HF1 Contig_34 6468 20927 Virus coat protein (TMV like) 30668

Viral movement protein (MP) 26043

RNA-dependent RNA polymerase 22578

Viral methyltransferase 18817

Contig_13948 2074 46 RNA-dependent RNA polymerase 41

Viral movement protein (MP) 56

WW2 Contig_6405 4062 46 Tombusvirus p33 43

Viral RNA-dependent RNA polymerase 42

Viral coat protein (S domain) 36

Contig_7409 3217 21 Viral RNA-dependent RNA polymerase 18

Viral coat protein (S domain) 21

Contig_7872 2955 77 Hypothetical protein 112

Phage maturation protein 103

*Contigs of ≥1 kb and average depth of coverage ≥20 were selected
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1.95% of MT reads derived from this sample could be
mapped onto the E. coli contigs, which is consistent with
the numbers quoted by Franzosa et al. [28].
Consistent recovery of the E. coli genome was also ob-

served across all other assemblies of the human fecal
microbiome datasets (HF2–5) which included their
respective MT data (Additional file 1: Figure S4;
Additional file 2: Table S12). The integrative analyses of
MG and MT data within IMP enables users to efficiently

highlight notable cases such as this and to further inves-
tigate inconsistencies and/or interesting characteristics
within these multi-omic datasets.

Discussion
The microbiome analysis workflow of IMP is unique in
that it allows the integrated analysis of MG and MT
data. To the best of our knowledge, IMP represents the
only pipeline that spans the preprocessing of NGS reads

a

b

c

Fig. 5 Metagenomic and metatranscriptomic data integration of a human fecal microbiome. a Augmented VizBin map highlighting contig
subsets with sequences that are most similar to Escherichia coli P12b and Collinsella intestinalis DSM 13280 genomes. b Beanplots representing
the densities of metagenomic (MG) and metatranscriptomic (MT) average contig-level depth of coverage for the entire microbial community and
two subsets (population-level genomes) of interest. The dotted lines represent the mean. c Recovered portion of genomes of the aforementioned
taxa based on different single-omic assemblies and multi-omic co-assemblies (Additional file 2: Table S5)
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to the binning of the assembled contigs, in addition to
being the first automated pipeline for reproducible
reference-independent metagenomic and metatranscrip-
tomic data analysis. Although existing pipelines such as
MetAMOS or MOCAT may be applied to perform co-
assemblies of MG and MT data [44], these tools do not
include specific steps for the two data types in their pre-
and post-assembly procedures, which is important given
the disparate nature of these datasets. The use of Docker
promotes reproducibility and sharing, thereby allowing re-
searchers to precisely replicate the IMP workflow with
relative ease and with minimal impact on overall perform-
ance of the employed bioinformatic tools [29, 46–48]. Fur-
thermore, static websites will be created and associated
with every new version of IMP (Docker image), such that
users will be able to download and launch specific ver-
sions of the pipeline to reproduce the work of others.
Thereby, IMP enables standardized comparative studies
between datasets from different labs, studies, and environ-
ments. The open source nature of IMP encourages a
community-driven effort to contribute to and further im-
prove the pipeline. Snakemake allows the seamless inte-
gration of Python code and shell (bash) commands and
the use of make scripting style, which are arguably some
of the most widely used bioinformatic scripting languages.
Snakemake also supports parallel processing and the abil-
ity to interoperate with various tools and/or web services
[49, 51]. Thus, users will be able to customize and en-
hance the features of the IMP according to their analysis
requirements with minimal training/learning.
Quality control of NGS data prior to de novo assem-

blies has been shown to increase the quality of down-
stream assembly and analyses (predicted genes) [63]. In
addition to standard preprocessing procedures (i.e., re-
moval of low quality reads, trimming of adapter se-
quences and removal), IMP incorporates additional
tailored and customizable filtering procedures which ac-
count for the different sample and/or omic data types.
For instance, the removal of host-derived sequences in
the context of human microbiomes is required for pro-
tecting the privacy of study subjects. The MT-specific in
silico rRNA removal procedure yielded varying fractions
of rRNA reads between the different MT datasets des-
pite the previous depletion of rRNA (section “Tailored
preprocessing and filtering of MG and MT data”), indi-
cating that improvements in wet-lab protocols are ne-
cessary. Given that rRNA sequences are known to be
highly similar, they are removed in IMP in order to miti-
gate any possible misassemblies resulting from such
reads and/or regions [65, 66]. In summary, IMP is de-
signed to perform stringent and standardized prepro-
cessing of MG and MT data in a data-specific way,
thereby enabling efficient data usage and resulting in
high-quality output.

It is common practice that MG and MT reads are
mapped against a reference (e.g., genes, genomes, and/or
MG assemblies) [28, 29, 40] prior to subsequent data in-
terpretation. However, these standard practices lead to
suboptimal usage of the original data. IMP enhances
overall data usage through its specifically tailored itera-
tive co-assembly procedure, which involves four mea-
sures to achieve better data usage and yield overall
larger volumes of output (i.e., a larger number of contigs
≥1 kb and predicted unique and complete genes).
First, the iterative assembly procedure leads to in-

creases in data usage and output volume in each add-
itional iterative assembly step (section “Data usage:
iterative assembly”). The exclusion of mappable reads
in each iteration of the assembly serves as a means of
partitioning the data, thereby reducing the complexity
of the data and overall, resulting in a higher cumula-
tive volume of output [60, 63, 67].
Second, the initial assembly of MT-based contigs en-

hances the overall assembly, as transcribed regions are
covered much more deeply and evenly in MT data,
resulting in better assemblies for these regions [43]. The
MT-based contigs represent high-quality scaffolds for
the subsequent co-assembly with MG data.
Third, the co-assembly of MG and MT data allows the

integration of these two data types while resulting in a
larger number of contigs and predicted complete genes
against which, in turn, a substantially higher fraction of
reads can be mapped (section “Data usage: multi-omic
iterative co-assembly”). Furthermore, the analyses of the
human fecal microbiome datasets (HF1–5) demonstrate
that the numbers of MG reads mapping to the IMP-
based iterative co-assemblies for each sample are
comparable to the numbers of reads mapping to the
comprehensive IGC reference database (Table 2). Previ-
ously, only fractions of 74–81% of metagenomic reads
mapping to the IGC have been reported [35]. However,
such numbers have yet to be reported for MT data, in
which case we observe lower mapping rates to the IGC
reference database (35.5–70.5%) compared to IMP-based
assemblies (Additional file 2: Table S3). This may be at-
tributed to the fact that the IGC reference database was
generated from MG-based assemblies only, thus creating
a bias [35]. Moreover, an excess of 90% of MG and MT
reads from the human fecal datasets (HF1–5) are
mappable to either the IGC reference database and/or
IMP-based iterative co-assemblies, emphasizing that a
combined reference-based and IMP-based integrated-
omics approach vastly improves data usage (Table 2).
Although large fractions of MG and/or MT reads can be
mapped to the IGC, a significant advantage of using a de
novo reference-independent approach lies within the fact
that reads can be linked to genes within their respective
genomic context and microbial populations of origin.
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Exploiting the maximal amount of information is espe-
cially relevant for microbial communities with small
sample sizes and which lack comprehensive references
such as the IGC reference database.
Fourth, the assembly refinement step via a contig-level

assembly with cap3 improves the quality of the assemblies
by reducing redundancy and increasing contiguity by col-
lapsing and merging contigs (section “Assembly quality:
multi-omic iterative co-assembly”). Consequently, our re-
sults support the described notion that the sequential use
of multi-kmer-based de Bruijn graph assemblers, such as
IDBA-UD and MEGAHIT, with overlap-layout-consensus
assemblers, such as cap3, result in improved MG assem-
blies [38, 62] but importantly also extend this to MG and
MTco-assemblies.
When compared to commonly used assembly strat-

egies, the IMP-based iterative co-assemblies consisted of
a larger output volume while maintaining a relatively
high quality of the generated contigs. High-quality as-
semblies yield higher quality taxonomic information and
gene annotations while longer contigs (≥1 kb) are a pre-
requisite for unsupervised population-level genome re-
construction [14, 19, 56] and subsequent multi-omics
data integration [39, 43, 44]. Throughout all the different
comparative analyses which we performed, IMP per-
formed more consistently across all the different datasets
when compared to existing methods, thereby emphasiz-
ing the overall stability and broad range of applicability
of the method (section “Assembly quality: multi-omic it-
erative co-assembly”).
Integrated analyses of MG and MT data with IMP pro-

vide the opportunity for analyses that are not possible
based on MG data alone, such as the detection of RNA vi-
ruses (section “Identification of RNA viruses”) and the
identification of transcriptionally active populations (sec-
tion “Identification of populations with apparent high
transcriptional activity”). The predicted/annotated genes
may be used for further analyses and integration of add-
itional omic datasets, most notably metaproteomic data
[39, 43, 44]. Furthermore, the higher number of complete
genes improves the downstream functional analysis, be-
cause the read counts per gene will be much more accur-
ate when having full length transcript sequences and will
increase the probability to identify peptides. More specific-
ally, the large number of predicted genes may enhance the
usage of generated metaproteomic data, allowing more
peptides, and thus proteins, to be identified.

Conclusions
IMP represents the first self-contained and standardized
pipeline developed to leverage the advantages associated
with integrating MG and MT data for large-scale ana-
lyses of microbial community structure and function in
situ [4, 6]. IMP performs all the necessary large-scale

bioinformatic analyses, including preprocessing, assembly,
binning (automated), and analyses within an automated,
reproducible, and user-friendly pipeline. In addition, we
demonstrate that IMP vastly enhances data usage to pro-
duce high-volume and high-quality output. Finally, the
combination of open development and reproducibility
should promote the general paradigm of reproducible re-
search within the microbiome research community.

Methods
The details of the IMP workflow, implementation, and
customizability are described in further detail. We also
describe the additional analyses carried out for assess-
ment and benchmarking of IMP.

Details of the IMP implementation and workflow
A Python (v3) wrapper script was implemented for user-
friendly execution of IMP via the command line. The
full list of dependencies, parameters (see below), and
documentation is available on the IMP website (http://
r3lab.uni.lu/web/imp/doc.html). Although IMP was de-
signed specifically for integrated analysis of MG and MT
data, it can also be used for single MG or MT analyses
as an additional functionality.

Reproducibility
IMP is implemented around a Docker container that
runs the Ubuntu 14.04 operating system, with all rele-
vant dependencies. Five mounting points are defined for
the Docker container with the -v option: i) input direc-
tory, ii) output directory, iii) database directory, iv) code
directory, and v) configuration file directory. Environ-
ment variables are defined using the -e parameter, in-
cluding: i) paired MG data, ii) paired MT data, and iii)
configuration file. The latest IMP Docker image will be
downloaded and installed automatically upon launching
the command, but users may also launch specific ver-
sions based on tags or use modified/customized versions
of their local code base (documentation at http://r3lab.
uni.lu/web/imp/doc.html).

Automation and modularity
Automation of the workflow is achieved using Snake-
make 3.4.2 [49, 51], a Python-based make language
implemented specifically for building reproducible bio-
informatic workflows and pipelines. Snakemake is inher-
ently modular and thus allows various features to be
implemented within IMP, including the options of i) exe-
cuting specific/selected steps within the pipeline, ii)
check-pointing, i.e., resuming analysis from a point of
possible interruption/termination, iii) analysis of single-
omic datasets (MG or MT). For more details regarding
the functionalities of IMP, please refer to the documen-
tation of IMP (http://r3lab.uni.lu/web/imp/doc.html).
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Input data
The input to IMP includes MG and/or MT FASTQ paired
files, i.e., pairs-1 and pairs-2 are in individual files. The
required arguments for the IMP wrapper script are metage-
nomic paired-end reads (“-m” options) and/or metatran-
scriptomic paired-end reads (“-t” option) with the specified
output folder (“-o” option). Users may customize the com-
mand with the options and flags described in the documen-
tation (http://r3lab.uni.lu/web/imp/doc.html) and in the
“Customization and further development” section.

Trimming and quality filtering
Trimmomatic 0.32 [52] is used to perform trimming and
quality filtering of MG and MT Illumina paired-end
reads, using the following parameters: ILLUMINACLIP:
TruSeq3-PE.fa:2:30:10; LEADING:20; TRAILING:20;
SLIDINGWINDOW:1:3; MAXINFO:40:0.5; MINLEN:40.
The parameters may be tuned via the command line or
within the IMP config file. The output from this step in-
cludes retained paired-end and single-end reads (mate
discarded), which are all used for downstream processes.
These parameters are configurable in the IMP config file
(section “Customization and further development”)

Ribosomal RNA filtering
SortMeRNA 2.0 [68] is used for filtering rRNA from the
MT data. The process is applied on FASTQ files for both
paired- and single-end reads generated from the trimming
and quality filtering step. Paired-end FASTQ files are in-
terleaved prior to running SortMeRNA. If one of the
mates within the paired-end read is classified as an rRNA
sequence, then the entire pair is filtered out. After running
SortMeRNA, the interleaved paired-end output is split
into two separate paired-end FASTQ files. The filtered se-
quences (without rRNA reads) are used for the down-
stream processes. All available databases provided within
SortMeRNA are used for filtering and the maximum
memory usage parameter is set to 4 GB (option: “-m
4000”), which can be adjusted in the IMP config file (sec-
tion “Customization and further development”).

Read mapping
The read mapping procedure is performed using the
bwa mem aligner [69] with settings: “ -v 1” (verbose output
level), “-M” (Picard compatibility) introducing an auto-
mated samtools header using the “-R” option [69]. Paired-
and single-end reads are mapped separately and the
resulting alignments are merged (using samtools merge
[70]). The output is written as a binary aligment map
(BAM) file. Read mapping is performed at various steps in
the workflow, including: i) screening for host or contamin-
ant sequences (section “Screening host or contaminant
sequences”), ii) recruitment of unmapped reads within the
IMP-based iterative co-assembly (section “Extracting

unmapped reads”), and iii) mapping of preprocessed
MG and MT reads to the final contigs. The memory
usage is configurable in the IMP config file (section
“Customization and further development”).

Extracting unmapped reads
The extraction of unmapped reads (paired- and single-
end) begins by mapping reads to a given reference
sequence (section “Read mapping”). The resulting BAM
file is used as input for the extraction of unmapped
reads. A set of paired-end reads are considered unmap-
pable if both or either one of the mates do not map to
the given reference. The unmapped reads are converted
from BAM to FASTQ format using samtools [70] and
BEDtools 2.17.0—bamToFastq utility [71]. Similarly, un-
mapped single-end reads are also extracted from the
alignment information.

Screening host or contaminant sequences
By default, the host/contaminant sequence screening is
performed by mapping both paired- and single-end reads
(section “Read mapping”) onto the human genome ver-
sion 38 (http://www.ncbi.nlm.nih.gov/projects/genome/
assembly/grc/), followed by extraction of unmapped reads
(section “Extracting unmapped reads”). Within the IMP
command line, users are provided with the option of i) ex-
cluding this procedure with the “--no-filtering” flag, ii)
using other sequence(s) for screening by providing the
FASTA file (or URL) using “--screen” option, or iii) speci-
fying it in the configuration file (section “Customization
and further development”).

Parameters of the IMP-based iterative co-assembly
The IMP-based iterative co-assembly implements MEGA-
HIT 1.0.3 [23] as the MT assembler while IDBA-UD 1.1.1
[22] is used as the default co-assembler (MG and MT),
with MEGAHIT [23] as an alternative option for the co-
assembler (specified by the “-a” option of the IMP com-
mand line). All de novo assemblies are performed on
kmers ranging from 25-mers to 99-mers, with an incre-
mental step of four. Accordingly, the command line
parameters for IDBA-UD are “--mink 25 --maxk 99 --step
4 - -similar 0.98 - -pre-correction” [22]. Similarly, the
command line parameters for MEGAHIT are “--k-min 25
- -k-max 99 - -k-step 4”, except for the MT assemblies
which are performed with an additional “--no-bubble” op-
tion to prevent merging of bubbles within the assembly
graph [23]. Furthermore, contigs generated from the MT
assembly are used as “long read” input within the “-l” flag
of IDBA-UD or “-r” flag of MEGAHIT [22, 23]. Kmer
ranges for the IDBA-UD and MEGAHIT can be adjusted/
specified in the configuration file (section “Customization
and further development”). Cap3 is used to reduce the re-
dundancy and improve contiguity of the assemblies using
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a minimum alignment identity of 98% (“-p 0.98”) with a
minimum overlap of 100 bases (“-o 100”), which are ad-
justable in the configuration file (section “Customization
and further development”). Finally, the extraction of reads
that are unmappable to the initial MT assembly and initial
co-assembly is described in the “Extracting unmapped
reads” section.

Annotation and assembly quality assessment
Prokka 1.11 [55] with the “- -metagenome” setting is used
to perform functional annotation. The default BLAST and
HMM databases of Prokka are used for the functional an-
notation. Custom databases may be provided by the user
(refer to the “Databases” and “Customization and further
development” sections for details).
MetaQUAST 3.1 [54] is used to perform taxonomic an-

notation of contigs with the maximum number of down-
loadable reference genomes set to 20 (“--max-ref-number
20”). In addition, MetaQUAST provides various assembly
statistics. The maximum number of downloadable refer-
ence genomes can be changed in the IMP config file (see
“Customization and further development” for details).

Depth of coverage
Contig- and gene-wise depth of coverage values are calcu-
lated (per base) using BEDtools 2.17.0 [71] and aggregated
(by average) using awk, adapted from the CONCOCT
code [16] (script: map-bowtie2-markduplicates.sh; https://
github.com/BinPro/CONCOCT) and is non-configurable.

Variant calling
The variant calling procedure is performed using Sam-
tools 0.1.19 [70] (mpileup tool) and Platypus 0.8.1 [72],
each using their respective default settings and which
are non-configurable. The input is the merged paired-
and single-end read alignment (BAM) against the final
assembly FASTA file (section “Read mapping”). The out-
put files from both the methods are indexed using tabix
and compressed using gzip. No filtering is applied to the
variant calls, so that users may access all the information
and filter it according to their requirements. The output
from samtools mpileup is used for the augmented
VizBin visualization.

Non-linear dimensionality reduction of genomic signatures
VizBin [56] performs non-linear dimensionality reduction
of genomic signatures onto contigs ≥1 kb, using default
settings, to obtain two-dimensional embeddings. Parame-
ters can be modified in the IMP config file (section
“Customization and further development”).

Automated binning
Automated binning of the assembled contigs is per-
formed using MaxBin 2.0. Default setting are applied

and paired-end reads are provided as input for abun-
dance estimation [20]. The sequence length cutoff is set
to be same as VizBin (section “Non-linear dimensionality
reduction of genomic signatures”) and is customizable
using the config file (section “Customization and further
development”).

Visualization and reporting
IMP compiles the multiple summaries and visualizations
into a HTML report [57]. FASTQC [73] is used to
visualize the quality and quantity of reads before and after
preprocessing. MetaQUAST [54] is used to report assem-
bly quality and taxonomic associations of contigs. A
custom script is used to generate KEGG-based [74] func-
tional Krona plots by running KronaTools [75] (script:
genes.to.kronaTable.py, GitHub URL: https://github.com/
EnvGen/metagenomics-workshop). Additionally, VizBin
output (two-dimensional embeddings) is integrated with
the information derived from the IMP analyses, using a
custom R script for analysis and visualization of the
augmented maps. The R workspace image is saved such
that users are able to access it for further analyses. All
the steps executed within an IMP run, including pa-
rameters and runtimes, are summarized in the form of
a workflow diagram and a log-file. The visualization
script is not configurable.

Output
The output generated by IMP includes a multitude of
large files. Paired- and single-end FASTQ files of prepro-
cessed MG and MT reads are provided such that the
user may employ them for additional downstream ana-
lyses. The output of the IMP-based iterative co-assembly
consists of a FASTA file, while the alignments/mapping
of MG and MT preprocessed reads to the final co-
assembly are also provided as BAM files, such that users
may use these for further processing. Predicted genes
and their respective annotations are provided in the vari-
ous formats produced by Prokka [55]. Assembly quality
statistics and taxonomic annotations of contigs are pro-
vided as per the output of MetaQUAST [54]. Two-
dimensional embeddings from the NLDR-GS are pro-
vided such that they can be exported to and further cu-
rated using VizBin [56]. Additionally, abundance and
expression information is represented by contig- and
gene-level average depth of coverage values. MG and
MT genomic variant information (VCF format), includ-
ing both SNPs and INDELs (insertions and deletions), is
also provided. The results of the automated binning
using MaxBin 2.0 [20] are provided in a folder which
contains the default output from the program (i.e., fasta
files of bins and summary files).
The HTML reports [57], e.g., HTML S1 and S2, com-

pile various summaries and visualizations, including, i)
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augmented VizBin maps, ii) MG- and MT-level func-
tional Krona charts [75], iii) detailed schematics of the
steps carried out within the IMP run, iv) list of parame-
ters and commands, and v) additional reports (FASTQC
report [73], MetaQUAST report [54]). Please refer to the
documentation of IMP for a detailed list and description
of the output (http://r3lab.uni.lu/web/imp/doc.html).

Databases
The IMP database folder (db) contains required data-
bases required for IMP analysis. The folder contains the
following subfolders and files with their specific content:

i. adapters folder — sequencing adapter sequences.
Default version contains all sequences provided
by Trimmomatic version 0.32 [52]

ii. cm, genus, hmm, and kingdom folders — contains
databases provided by Prokka 1.11 [55]. Additional
databases may be added into the corresponding
folders as per the instructions in the Prokka
documentation (https://github.com/tseemann/
prokka#databases)

iii. sortmerna folder — contains all the databases
provided in SortMeRNA 2.0 [68]. Additional
databases may be added into the corresponding
folders as per the instructions in the SortMeRNA
documentation (http://bioinfo.lifl.fr/RNA/sortmerna/
code/SortMeRNA-user-manual-v2.0.pdf)

iv. ec2pathways.txt — enzyme commission (EC) number
mapping of amino acid sequences to pathways

v. pathways2hierarchy.txt — pathway hierarchies used
to generated for KEGG-based functional Krona
plot (section “Visualization and reporting”)

Customization and further development
Additional advanced parameters can be specified via the
IMP command line, including specifying a custom config-
uration file (“-c” option) and/or specifying a custom data-
base folders (“-d” option). Threads (“- -threads”) and
memory allocation (“--memcore” and “- -memtotal”) can be
adjusted via the command line and the configuration file.
The IMP launcher script provides a flag (“- -enter”) to
launch the Docker container interactively and the option to
specify the path to the customized source code folder (“-s”
option). These commands are provided for development
and testing purposes (described on the IMP website and
documentation: http://r3lab.uni.lu/web/imp/doc.html). Fur-
ther customization is possible using a custom configuration
file (JSON format). The customizable options within the
JSON file are specified in individual subsections within the
“Details of the IMP implementation and workflow” section.
Finally, the open source implementation of IMP allows
users to customize the Docker image and source code of
IMP according to their requirements.

Iterative single-omic assemblies
In order to determine the opportune number of itera-
tions within the IMP-based iterative co-assembly strat-
egy an initial assembly was performed using IMP
preprocessed MG reads with IDBA-UD [22]. Cap3 [53]
was used to further collapse the contigs and reduce the
redundancy of the assembly. This initial assembly was
followed by a total of three assembly iterations, whereby
each iteration was made up of four separate steps: i) ex-
traction of reads unmappable to the previous assembly
(using the procedure described in the “Extracting un-
mapped reads” section), ii) assembly of unmapped reads
using IDBA-UD [22], iii) merging/collapsing the contigs
from the previous assembly using cap3 [53], and iv) evalu-
ation of the merged assembly using MetaQUAST [54].
The assembly was evaluated in terms of the per-iteration
increase in mappable reads, assembly length, numbers of
contigs ≥1 kb, and numbers of unique genes.
Similar iterative assemblies were also performed for

MT data using MEGAHIT [23], except CD-HIT-EST
[76] was used to collapse the contigs at ≥95% identity
(“-c 0.95”) while MetaGeneMark [77] was used to pre-
dict genes. The parameters and settings of the other pro-
grams were the same as those defined in the “Details of
the IMP implementation and workflow” section.
The aforementioned procedures were applied to all the

datasets analyzed within this article. The merged contig
sets (non-redundant) from the first iteration of both the
MG and MT iterative assemblies were selected to repre-
sent the IMP single-omics assemblies (IMP_MG and
IMP_MT) and were compared against co-assemblies.

Execution of pipelines
MetAMOS v1.5rc3 was executed using default settings.
MG data were provided as input for single-omic assem-
blies (MetAMOS_MG) while MG and MT data were
provided as input for multi-omic co-assemblies (MetA-
MOS_MGMT). All computations using MetAMOS were
set to use eight computing cores (“-p 8”).
MOCAT v1.3 (MOCAT.pl) was executed using de-

fault settings. Paired-end MG data were provided as in-
put for single-omic assemblies (MOCAT_MG) while
paired-end MG and MT data were provided as input
for multi-omic co-assemblies (MOCAT_MGMT). All
computations using MOCAT were set to use eight
computing cores (“-cpus 8”). Paired-end reads were first
preprocessed using the read_trim_filter step of MOCAT
(“-rtf”). For the human fecal microbiome datasets (HF1–5),
the preprocessed paired- and single-end reads were add-
itionally screened for human genome-derived sequences
(“-s hg19”). The resulting reads were afterwards assembled
with default parameters (“-gp assembly -r hg19”) using
SOAPdenovo.
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IMP v1.4 was executed for each dataset using different
assemblers for the co-assembly step: i) default setting
using IDBA-UD, and ii) MEGAHIT (“-a megahit”). Add-
itionally, the analysis of human fecal microbiome data-
sets (HF1–5) included the preprocessing step of filtering
human genome sequences, which was omitted for the
wastewater sludge datasets (WW1–4) and the biogas
(BG) reactor dataset. Illumina TruSeq2 adapter trimming
was used for wastewater dataset preprocessing since the
information was available. Computation was performed
using eight computing cores (“- -threads 8”), 32 GB
memory per core (“--memcore 32”) and total memory of
256 GB (“- -memtotal 256 GB”). The customized param-
eters were specified in the IMP configuration file (exact
configurations listed in the HTML reports [57]). The
analysis of the CAMI datasets were carried using the
MEGAHIT assembler option (“-a megahit”), while the
other options remained as default settings.
In addition, IMP was also used on a small scale dataset

to evaluate performance of increasing the number of
threads from 1 to 32 and recording the runtime (“time”
command). IMP was launched on the AWS cloud com-
puting platform running the MEGAHIT as the assembler
(“-a megahit”) with 16 threads (“- -threads 16”) and
122 GB of memory (“--memtotal 122”).

Data usage assessment
Preprocessed paired-end and single-end MG and MT
reads from IMP were mapped (section Read mapping)
onto the IMP-based iterative co-assemblies and IMP_MG
assembly. Similarly, preprocessed paired-end and single-
end MG and MT reads from MOCAT were mapped onto
the MOCAT co-assembly (MOCAT_MGMT) and the
MOCAT single-omic MG assembly (MOCAT_MG).
MetAMOS does not retain single-end reads; therefore,
preprocessed MG and MT paired-end reads from MetA-
MOS were mapped onto the MetAMOS co-assembly
(MetAMOS_MGMT) and MetAMOS single-omic MG
assembly (MetAMOS_MG).
Preprocessed MG and MT reads from the human fecal

datasets (HF1–5) were mapped using the same parameters
described in the “Read mapping” section to the IGC refer-
ence database [35] for evaluation of a reference-based ap-
proach. Alignment files of MG and MT reads mapping to
the IMP-based iterative co-assemblies and the aforemen-
tioned alignments to the IGC reference database were
used to report the fractions of properly paired reads
mapping in either IMP-based iterative co-assembly, IGC
reference database, or both. These fractions were then
averaged across all the human fecal datasets (HF1–5).

Assembly assessment and comparison
Assemblies were assessed and compared using Meta-
QUAST by providing contigs (FASTA format) from all

different (single- and multi-omic) assemblies of the same
dataset as input [54]. The gene calling function (“-f”) was
utilized to obtain the number of genes which were
predicted from the various assemblies. An additional par-
ameter within MetaQUAST was used for ground truth
assessment of the simulated mock (SM) community assem-
blies by providing the list of 73 FASTA format reference ge-
nomes (“-R”). The CPM measure was computed based on
the information derived from the results of MetaQUAST
[54]. In order to be consistent with the reported values (i.e.,
N50 length), the CPM measures reported within this article
are based on alignments of 500 bp and above, unlike the
1-kb cutoff used in the original work [62]. Prodigal was
also used for gene prediction to obtain the number of
complete and incomplete genes [61].

Analysis of contigs assembled from MT data
A list of contigs with no MG depth of coverage together
with additional information on these contigs (contig
length, annotation, MT depth of coverage) was retrieved
using the R workspace image, which is provided as part
IMP output (sections “Visualization and reporting” and
“Output”). The sequences of these contigs were ex-
tracted and subjected to a BLAST search on NCBI to de-
termine their potential origin. Furthermore, contigs with
length ≥1 kb, average depth of coverage ≥20 bases, and
containing genes encoding known virus/bacteriophage
functions were extracted.

Analysis of subsets of contigs
Subsets of contigs within the HF1 dataset were identified
by visual inspection of augmented VizBin maps gener-
ated by IMP. Specifically, detailed inspection of contig-
level MT to MG depth of coverage ratios was carried
out using the R workspace provided as part of IMP out-
put (sections “Visualization and reporting” and “Out-
put”). The alignment information of contigs to isolate
genomes provided by MetaQUAST [54] was used to
highlight subsets of contigs aligning to genomes of the
Escherichia coli P12B strain (E. coli) and Collinsella
intestinalis DSM 13280 (C. intestinalis).
An additional reference-based analysis of MetaQUAST

[54] was carried out for all the human fecal microbiome
assemblies (HF1–5) by providing the genomes of E. coli
P12B and C. intestinalis DSM 13280 as reference (flag:
“-R”) to assess the recovery fraction of the aforemen-
tioned genomes within the different assemblies.

Computational platforms
IMP and MetAMOS were executed on a Dell R820 ma-
chine with 32 Intel(R) Xeon(R) CPU E5-4640 @ 2.40GHz
physical computing cores (64 virtual), 1024 TB of DDR3
RAM (32 GB per core) with Debian 7 Wheezy as the op-
erating system. MOCAT, IMP single-omic assemblies, and
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additional analyses were performed on the Gaia cluster of
the University of Luxembourg HPC platform [78].
IMP was executed on the Amazon Web Services

(AWS) cloud computing platform using EC2 R3 type
(memory optimized) model r3.4xlarge instance with 16
compute cores, 122 GB memory, and 320 GB of storage
space running a virtual Amazon Machine Image (AMI)
Ubuntu v16.04 operating system.
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Additional file 1: Supplementary figures and notes. Figures S1–S3 and
Notes S1–S2. Detailed figure legends available within file. (PDF 1047 kb)
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legends available within file. (XLSX 4350 kb)
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M
icroorganisms are ubiquitous and form complex,
heterogeneous and dynamic assemblages1. They
represent essential components of the Earth’s

biogeochemical cycles2, human metabolism3 and
biotechnological processes4. Microbial population sizes and
structures are governed by resource availability and usage5–7,
and mainly develop in response to the breadths of the
fundamental and realized niches of constituent populations8,9

(narrow for specialists; wide for generalists) albeit being
influenced by stochastic neutral processes8,9. Microbial niche
breadths remain poorly described in situ (for an earlier study, see
ref. 10). The application of high-fidelity, high-resolution and
high-throughput molecular analyses to microbial consortia holds
great promise for resolving population-level phenotypes and
defining their corresponding niche breadths in situ11. However,
to obtain community-wide multi-omic data that can be
meaningfully integrated and analysed, systematic measurements
are essential1.

We have recently developed the required laboratory methods
that enable us to isolate representative biomolecular fractions
(DNA, RNA, proteins and small molecules) from single microbial
community samples12,13. Here, we expand this concept by
performing integrated omic analyses of purified biomolecular
fractions from oleaginous mixed microbial communities
(OMMCs) located on the surface of an anoxic biological
wastewater treatment tank to study how microbial lifestyle
strategies relate to ecological success and the associated
community-level phenotypes in this fluctuating but well-
characterized environment. In addition, OMMCs are typically
enriched in lipid-accumulating filamentous bacteria and often
associated with operational difficulties, such as phase separation
and bulking in biological wastewater treatment plants14.
However, the phenotypic traits of OMMCs may allow for the
recovery of lipids from wastewater streams for subsequent
chemical energy recovery through biodiesel synthesis15. As for
other microbial consortia, a detailed understanding of OMMC
ecology is essential for the formulation of strategies to shape
microbial community structure and function (in this case,
enriching for lipid-accumulating bacteria) in the future.
Building on the recently developed methodologies for the
systematic molecular characterization of microbial

consortia12,13, and for resolving and reconstructing population-
level genomic complements from community-wide sequence
data16, here, we integrate multi-omic data sets to resolve
microbial lifestyle strategies in situ, identify finely tuned gene
expression governing resource usage by a dominant bacterial
generalist population and reveal that genetic variation within this
population is constrained likely due to fitness trade-offs.

Results
Coupled metabolomic—taxonomic analyses over space and
time. To obtain a detailed view of OMMC (Supplementary
Fig. 1a) lipid accumulation and bacterial composition, we first
applied coupled metabolomics and 16S rRNA gene sequencing to
samples taken over space and time (see the Methods section). The
initial sample set included four distinct biological replicates
(Supplementary Fig. 1b) from four representative time points
(two in autumn, two in winter; Methods and Supplementary
Fig. 2a,b). Using gas chromatography coupled to tandem mass
spectrometry (GC-MS/MS), absolute quantifications of the 14
major long-chain fatty acids were obtained for OMMC biomass
and wastewater, respectively (Methods). The V3 and V6 hyper-
variable regions of the 16S rRNA gene were amplified from the
DNA fraction of the samples (Methods). The barcoded amplicons
were pyrosequenced on a 454 GS FLX platform, yielding a total of
265,592 reads (n¼ 10,574±3,451 (mean±s.d.) per OMMC
sample after quality control and chimera filtering). Direct taxo-
nomic classification of the obtained sequencing reads demon-
strates that, at the phylum level, the OMMCs of the studied
treatment plant were dominated across the studied seasons by
Proteobacteria and Actinobacteria, which constituted 43%±14%
and 21%±5% (mean±s.d.) of the community, respectively
(Fig. 1a). Similar results were obtained when operational taxo-
nomic unit clustering was applied before classification
(Supplementary Fig. 3a). Among the two most dominating taxa
over time (Fig. 1b; Supplementary Fig. 3b), Candidatus Micro-
thrix spp., a well-known lipid-accumulating genus17,18, correlated
with a more pronounced community-wide lipid accumulation
phenotype (Spearman correlation coefficient rZ0.8 for
Candidatus Microthrix spp. and palmitoleic and oleic acids,
respectively; Fig. 1c). This trend, despite the metabolic versatility
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Figure 1 | Microbial community dynamics and lipid accumulation from wastewater. (a) Fractions of taxa identified across the communities sampled

on four distinct dates (SD1–SD4). Roman numerals refer to the four biological replicates sampled per time point. The blue star indicates the representative

sample from SD3 subjected to the integrated omic analysis. (b) Average genus-level abundances of the two dominant populations. The most abundant

microbial population in winter was identified as Candidatus Microthrix spp., whereas a population tentatively identified (confidence level o0.8) as

Perlucidibaca spp. was dominant in autumn. (c) Long-chain fatty acid intracellular accumulation per sampling date expressed as ratios between quantified

intracellular and extracellular long-chain fatty acid abundances. (d) Genus-level alpha diversity and evenness. (b–d), error bars represent s.d. (n¼4).
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of Candidatus Microthrix spp.17,18 and the statistically significant
lower levels of lipids available compared with other carbon and
energy sources particularly in winter (Wilcoxon rank-sum test,
Po0.001, n¼ 15; Supplementary Fig. 4), suggests optimal foraging
behaviour19,20 by Candidatus Microthrix spp.

High-throughput multi-omic analyses. To obtain an initial
view of the population-level characteristics that determine the
ecological success of Candidatus Microthrix spp. in winter in
comparison with other co-occurring microbial populations, we
first conducted a detailed integrated omic analysis of a single
representative sample obtained on sampling date 3 (SD3;
Methods). This sample was selected on the basis of the relatively
large Candidatus Microthrix spp. population size (Fig. 1b), the
desired community-wide lipid accumulation phenotype (Fig. 1c)
and its even but diverse community composition (Fig. 1d).
Concomitantly isolated DNA, RNA and protein fractions were
processed and subjected to high-throughput metagenomic,
metatranscriptomic and metaproteomic analyses. Massive parallel
sequencing of DNA and cDNA resulted in the generation of
1.47� 107 and 1.65� 107 metagenomic and metatranscriptomic
paired-end reads, respectively. Shotgun proteomic analyses based
on liquid chromatography followed by tandem mass spectro-
metry (LC-MS/MS) resulted in the generation of 271,915 mass
spectra (Methods).

Assembly-free community profiling. To assess the composition
of the winter OMMC, we first carried out an assembly-free
community analysis. For this, the results obtained using two
shotgun sequence data profiling tools, namely MetaPhlAn21 and
MG-RAST22, were compared with the profiles obtained using
the previous 16S rRNA gene sequencing. Given the poor
taxonomic classification of Candidatus Microthrix spp. in the
databases used by these profiling tools, all analyses were limited to
phylum-level classification. At this level, similar community
structures were apparent for the representative sample from SD3
using the three distinct approaches (Supplementary Fig. 3a and
Methods).

Second, to resolve the functions encoded and expressed by the
OMMC from SD3, the proportions of genes and transcripts
belonging to different cluster of orthologous group (COG)
functional categories were compared for both the metagenomic

and metatranscriptomic data sets (Supplementary Fig. 5). Similar
proportions were observed for most of the different functional
categories in both data sets. Nevertheless, major differences were
observed for the categories ‘J—translation, ribosomal structure
and biogenesis’, ‘O—posttranslational modification, protein turn-
over, chaperones’, and ‘C—energy production and conversion’.
Differences in gene copy numbers and transcript abundances may
be expected for these functional genes because of their typical
high levels of constitutive expression. The proportion of gene
copies and transcript numbers were similar for the COG category
‘I—lipid transport and metabolism’ although these genes are
expected to have essential roles in OMMCs and, therefore, overall
high levels of expression may be expected. The previous findings
suggest that key members in the OMMC, that is, Candidatus
Microthrix spp., are involved in lipid transformations. Conse-
quently, key processes related to lipid transport and metabolism,
that is, resource usage, have to be resolved at the population level.
Therefore, to deconvolute the activities of the constituent OMMC
members, a detailed population-resolved analysis was subse-
quently performed.

Population-resolved integrated omic analyses. To resolve the
traits of the dominant populations within the community
obtained on SD3, composite genomes (CGs) were reconstructed
using a newly developed iterative binning and de novo assembly
procedure for the combined metagenomic and metatran-
scriptomic sequence data (Methods). Detailed profiling and
grouping of the assembled contiguous sequence fragments
(contigs) were performed on the basis of centred log-ratio
transformed pentanucleotide signatures and visualization
using the Barnes–Hut Stochastic Neighbour Embedding
(BH-SNE) algorithm16, followed by human-augmented clustering
(Methods). Using this approach, we identified nine CG groups
(Fig. 2a) that displayed homogeneous GþC percentage (Fig. 2b).
The assembled contigs from the nine CG groups were subjected
to gene calling and annotation (Methods), which led to the
identification of 23,317 coding sequences, with 16,841 and 1,533
of these being represented at the transcript and protein levels,
respectively.

The refinement of the CGs by depth of read coverage resulted
in the splitting of CG8 into low (CG8a) and high (CG8b)
coverage populations (Supplementary Fig. 6). The average amino-
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acid sequence identities of CG8b with recently obtained genome
sequences of Candidatus Microthrix parvicella strains Bio17-1
(ref. 17) and RN1 (ref. 18) were 499% (Fig. 2c), an identity level
usually observed among strains of the same bacterial species23. In
contrast, the CG8a identity levels compared with the same
reference sequences were around 78% (Fig. 2c). Consequently,
CG8b represents a Candidatus Microthrix parvicella population
in this OMMC sample from SD3.

The identities of the other CGs were determined using 31
phylogenetic marker genes24 resulting, for example, in the
tentative identification of CG5 as a population belonging to the
Moraxellaceae family of the g-Proteobacteria (Supplementary
Data 1).

Eight of the 10 reconstructed CGs were estimated to be 460%
complete with CG8b, CG4 and CG5 being 97.5, 90 and 85%
complete, respectively (Supplementary Data 1). On the basis of
population sizes inferred from the mapping of the metagenomic
read data onto the CGs (Methods), these three community
members represent the first, the seventh and the fourth most
abundant OMMC populations, respectively. Because CG8b and
CG5 represent the most deeply covered nearly complete genomic
reconstructions, a detailed analysis of the ecophysiology of these
populations based on the generated functional omic data was
performed.

By mapping the metatranscriptomic and metaproteomic data
onto the reconstructed CGs (Methods), all 10 populations were
found to be active albeit exhibiting differing levels of gene
expression (Fig. 3a, Supplementary Figs 7–9, Supplementary
Data 2). Observed patterns of gene expression were not
necessarily consistent at the transcript and protein levels for the
different CGs. Discrepancies between the levels of gene expres-
sion inferred from transcriptomic and proteomic data have been
well described in eukaryotes25 and these have also recently been
observed for microbial communities26. The lack of correlation
may have different reasons including differing molecular half-
lives26 and/or possible posttranscriptional or posttranslational
modifications, which are not detectable using the transcriptomic
and proteomic methodologies used in this study.

Despite its large population size, population CG8b expressed
only a comparatively small fraction (45.8% of possible transcripts
detected) of its genetic complement in situ (Fig. 3b,
Supplementary Data 1, Supplementary Fig. 8) and this at a
moderate level of expression both at the transcript and protein
levels (Supplementary Fig. 9a), suggesting the fine-tuning of gene
expression by CG8b. On the contrary, the other CGs exhibited
expression of the majority of their genetic repertoire (Fig. 3,
Supplementary Data 1, Supplementary Fig. 8). In particular,
92.7% of CG5 genes were detected at the transcript level.

On the basis of its genetic repertoire, Candidatus Microthrix
parvicella appears to be physiologically versatile17,18 which,
combined with its enrichment under fluctuating environmental
conditions, indicates a generalist lifestyle strategy27. The fine-
tuning of gene expression is particularly apparent for genes
involved in lipid transport and metabolism, which show a clear
genomic enrichment within the CG8b population although only a
limited subset, that is, 46%, are expressed (Fig. 3b, Supplementary
Fig. 8). Among these genes, long-chain fatty acid-CoA ligases are
essential for the assimilation and activation of extracellular fatty
acids into their acyl-CoA conjugates28 and are therefore required
for resource usage by Candidatus Microthrix parvicella. CG8b
encodes 29 genes annotated as homologues of this enzyme class,
indicating that a broad spectrum of free fatty acids may be
assimilated by this population. Only 11 and 14 of these genes
were found to be expressed at the RNA and protein levels,
respectively (Fig. 4a). In contrast, the five genes annotated as
long-chain fatty acid-CoA ligase homologues in CG5 were all

expressed (Supplementary Data 2). This observation suggests the
fine-tuned expression of these genes by Candidatus Microthrix
parvicella, likely through the tight regulation of gene expression,
to facilitate preferential resource usage in accordance with
optimal foraging behaviour19,20.

Population-level genetic diversity. To assess the overall fre-
quencies of population-level genetic variation and determine how
these variations may reflect the lifestyle strategy of CG8b, the
number of single-nucleotide polymorphisms (SNPs) identified in
individual CGs were normalized according to reconstructed
CG length and population sizes inferred from the proportion
of metagenomic reads mapped to the reconstructed CGs
(Supplementary Data 1). CG8b displayed a relatively limited level
of genetic variation. For example, it exhibited one order of
magnitude fewer SNPs compared with CG5, the other almost
complete reconstructed CG with enough coverage to confidently
infer SNP densities (Supplementary Data 1). Given the generalist
lifestyle strategy of CG8b, the relatively high within-population
genetic homogeneity may be explained by fitness trade-offs
resulting, for example, from antagonistic pleiotropy29,30. In a
fluctuating environment, most of the beneficial or neutral
mutations under one condition may be deleterious under other
conditions, thereby restricting the evolutionary rate of
generalists29,30. An alternative hypothesis positing that this low
population-level variation may be due to a recent genetic
bottleneck (selective sweep, colonization, and so on.) followed
by population expansion31 may be rejected on the basis of the
high genetic similarity between the reconstructed CG and the two
available Candidatus Microthrix parvicella genome sequences
from strains isolated from distant wastewater treatment plants 7
and 16 years before the present study (Fig. 2c).

Fine-tuned gene expression and limited genetic diversity over
time. To validate the previous snapshot views of the ecophy-
siology and structure of populations CG8b and CG5, identical
multi-omic analyses were carried out on three additional,
rationally selected OMMC samples from the same wastewater
treatment tank (Methods). A first additional sample was collected
on SD7 approximately a year after SD3 when the measured
physico-chemical parameters were very similar to those measured
on SD3 (Supplementary Fig. 2b,c). In addition, samples were
selected from SD5 and SD6 because the physico-chemical para-
meters on these dates were at variance with SD3 and SD7
(Supplementary Fig. 2c). Importantly, the additional samples also
contain populations CG8b and CG5 at sufficient quantities to
obtain the necessary coverages at the genomic and transcriptomic
levels for the subsequent analyses of genetic diversity and gene
expression over time (Table 1). Massive parallel sequencing of
DNA and cDNA resulted in the generation of an additional
5� 107 and 4.45� 107 metagenomic and metatranscriptomic
paired-end reads, respectively. In addition, a total of 326,630
additional mass spectra were generated using LC-MS/MS
(Methods).

To corroborate the fine-tuning of gene expression of the
generalist population CG8b (Candidatus Microthrix parvicella)
deduced from the analysis of the sample from SD3, patterns of
gene expression were assessed for SD5–SD7. Although the CG5
population consistently expressed the vast majority of its genetic
repertoire, only a comparatively small fraction of the genetic
complement of CG8b was expressed at each additional time point
despite its relatively consistent population size (Table 1,
Supplementary Fig. 9b, Supplementary Data 3). These observa-
tions support the previous results obtained on the OMMC from
SD3. In addition, analogous to the patterns observed for SD3, the
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expression of genes involved in lipid transport and processing
encoded by CG8b was highly variable over time (Fig. 4b). In
contrast, the CG5 population consistently expressed the vast
majority of this functional category (Fig. 4b, Supplementary
Fig. 10). These comprehensive additional data reinforce the
notion of finely tuned gene expression for resource usage by the
Candidatus Microthrix parvicella generalist population.

The patterns of low SNP density in the generalist population
CG8b were also consistent over time, with one order of
magnitude fewer SNPs generally apparent in CG8b compared
with CG5 (Table 1, Supplementary Data 4). In contrast to CG5,
the variant counts of CG8b remain relatively constant over
time (Table 1). The observations from the three additional time
points reinforce the previous notion that a generalist lifestyle
under fluctuating environmental conditions constrains the
accumulation of population-level genetic variation.

Discussion
Here, the application of systematic integrated multi-omic
measurements to mixed microbial communities has allowed us
to obtain fundamental insights into the ecology of the constituent

dominant populations. On the basis of its genetic repertoire
and enrichment under temporally changing environmental
conditions, the dominant population within the winter OMMCs,
that is, Candidatus Microthrix parvicella, can be classified as a
generalist species. The low proportion of genes expressed over
time indicates that its ecological success most likely results from
finely tuned gene expression facilitating optimal foraging
behaviour. In addition, the Candidatus Microthrix parvicella
population exhibits low levels of genetic variation that may be
explained by evolutionary constraints resulting from fitness trade-
offs. Elucidating the exact mechanisms driving these trade-offs in
Candidatus Microthrix parvicella, for example, antagonistic
pleiotropy or others, will require additional integrated omic data
sets to be generated from many more samples taken over space
and time, as well as surveys of other wastewater treatment plants.
Overall, our results call for similar studies on other microbial
communities to determine whether fine-tuning of gene expres-
sion is a general feature of generalists and whether lifestyle
strategies provide an explanation for the varying degrees of
within-population genetic heterogeneity so far observed in
metagenomic data sets32.
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Methods
Sample processing. Oleaginous mixed microbial communities (OMMCs) were
sampled at four representative time points from the surface of the anoxic treatment
phase of a biological wastewater treatment plant treating residential effluents
(Schifflange, Esch-sur-Alzette, Luxembourg; 49�30048.290 0N; 6�104.530 0E).
For each sampling date (SD), four distinct ‘islets’ were collected (herein referred to
as biological replicates; Supplementary Fig. 1), transferred into a sterile tube, snap
frozen on site and maintained at � 80 �C until processing. Initial samples were
taken on 4 October 2010 (SD1; anoxic tank wastewater temperature of 20.7 �C),
25 October 2010 (SD2; 18.9 �C), 25 January 2011 (SD3; 14.5 �C) and 23 February

2011 (SD4; 13.9 �C). Since the prevalence of OMMCs is dependent on
wastewater temperature14, these samples were chosen to be representative of
the range of wastewater temperatures at which OMMCs are highly abundant
within the system. Due to heavy precipitation, which leads to dispersion of the
OMMC islets, and due to excess nitrate concentrations (Supplementary Fig. 2a),
no samples from December/early January were included in the present study.
However, given the range of water temperatures encountered in this biological
wastewater treatment plant (Supplementary Fig. 2a), the October as well as January
and February samples are representative of autumn and winter OMMCs,
respectively.
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Table 1 | The characteristics of composite genomes CG5 and CG8b at different sampling time points.

SD3 SD5 SD6 SD7

CG5 C8b CG5 CG8b CG5 CG8b CG5 CG8b

Average composite genome coverage (� ) 9.65 23.36 30.02 45.74 20.54 65.57 35.06 81.81
Proportion of total metagenomic reads
mapped per composite genome (%)

8.10 36.50 16.81 37.48 11.27 51.38 13.71 47.85

Percentage of ORFs expressed at the
RNA level

92.7 45.8 78.9 25.1 85.3 32.0 87.0 36.8

Number of detected variants (based on
the metagenomic data)

5,428 11,702 42,250 11,588 29,431 12,596 37,699 11,517

Number of detected variants (based on
the metatranscriptomic data)

11,481 777 24,353 1,366 26,227 2,923 28,247 3,504

Variant density per CG population 2.34E�04 7.43E�05 8.78E�04 7.17E�05 9.13E�04 5.68E�05 9.61E�04 5.58E�05
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For the integrated omic analyses of a representative sample, a single biological
replicate (SD3-I; Fig. 1a) from the 25 January 2011 samples was selected for
subsequent high-resolution omic analyses. This sample was chosen on the basis of
its pronounced community-wide lipid accumulation phenotype, dominance of
Candidatus Microthrix spp., and because it exhibited the highest bacterial diversity
and evenness. This in turn should allow a comprehensive community-wide
overview and reconstruction of composite genomes (CGs) from the most abundant
populations within the OMMC.

To validate findings from the integrated omic analysis of the sample from SD3,
three additional OMMC samples were rationally selected. On the basis of
hierarchical clustering analysis of physico-chemical parameters (Supplementary
Fig. 2c), a first additional sample was collected on SD7 (11 January 2012)
approximately a year after SD3 when the measured physico-chemical parameters
were very similar to those for SD3 (Supplementary Fig. 2b,c). In addition, samples
were selected from SD5 (5 October 2011) and SD6 (12 October 2011) because the
physico-chemical parameters measured on these dates (especially wastewater
temperature) were at variance with those of SD3 and SD7 (Supplementary
Fig. 2b,c).

Biomolecular isolation. All biomolecular fractions were obtained using a recently
developed methodological framework, which allows recovery of high-quality
biomolecular fractions (DNA, RNA, proteins, polar and non-polar metabolites)
from unique undivided samples12,13. For biomacromolecular purification we used
the AllPrep DNA/RNA/Protein Mini kit (Qiagen). Resulting biomolecular fractions
comprising genomic DNA, RNA, proteins and small molecules were further
processed and analysed as detailed below.

Quantification of biomolecular resources. Intracellular and extracellular non-
polar metabolite fractions of the four biological replicates collected on SD1 to SD4
were obtained using the biomolecular extraction procedure described earlier12,13

(only on three biological replicates for SD3). The non-polar phases were aliquoted
in four vials (analytical replicates) of 100ml each, dried overnight and the resulting
pellets were then preserved at � 80 �C. The intracellular and extracellular dried
extracts were redissolved in 100 and 40 ml of dichloromethane, respectively.
Derivatisation was carried out on 40 ml of solubilized extract with 40 ml of
N,O-bis(trimethylsilyl)trifluoroacetamide:trimethylchlorosilane 99:1 (Sylon BFT,
Supelco) for 1 h at 70 �C. Samples were analysed by gas chromatography coupled to
tandem mass spectrometry (GC-MS/MS) on a Thermo Trace GC and a Thermo
TSQ Quantum XLS triple-quadrupole MS (Thermo Fisher). Samples were injected
in PTV splitless mode onto a Rxi-5Sil MS column (20 m� 0.18 mm� 0.18 mm,
Restek). Helium was used as the carrier gas at a constant flow rate of 1.0 ml min� 1.
Metabolite detection was performed in Multiple Reaction Monitoring mode, with
two Multiple Reaction Monitoring transitions per target compound. Quantification
was carried out by external calibration using standard mixtures of pure hexanoic
acid, octanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, palmitoleic
acid, hexadecanoic acid, linoleic acid, oleic acid, linolenic acid, octadecanoic acid,
eicosanoic acid, docosanoic acid and tetracosanoic acid, respectively (Sigma-
Aldrich).

Total carbohydrate and protein quantities were determined on supernatant of
the same samples comprising 200 mg of OMMC biomass for each sampling date
using a Total Carbohydrate Assay Kit and a Total Protein Assay Kit (Micro Lowry,
Peterson’s Modification; Sigma-Aldrich) according to the manufacturer’s
instructions.

16S rRNA amplicon sequencing and analysis. Amplification. The wet-laboratory
and bioinformatic procedures for analysing the bacterial community composition
based on the V3–V6 region of the bacterial 16S rRNA gene are described in detail
elsewhere33. Briefly, we generated barcoded V3–V6 amplicons using broad-
coverage fusion PCR primers (forward primer: 50-CCATCTCATCCCTGCGT
GTCTCCGACTCAGnnnnnnnnCCTACGGGDGGCWGCA-30 and reverse primer
50- CCTATCCCCTGTGTGCCTTGGCAGTCTCAGCTGACGACRRCCRT
GCA-30 with the underlined portion denoting FLX Lib-L adaptor sequences,
italicized portion denoting the sample-specific 8-nt barcode sequences and bold
portion denoting 16S rRNA gene primer sequences) on 10 ml of DNA extracts in
50ml PCR reactions. The barcoded amplicons were pooled and sequenced on a
Roche/454 Genome Sequencer FLX platform (Roche Applied Sciences). Resulting
pyrosequencing data underwent processing and stringent filtering, which included
chimera-checking, demultiplexing and quality-based trimming.

Direct classification. The processed pyrosequences were classified at each
taxonomic level using a bootstrap confidence level of Z80 and using a re-trained
version of the Ribosomal Database Project (RDP) Naive Bayesian Classifier 2.4
(refs 34,35), which includes the genus Candidatus Microthrix as a separate taxon.
The training set consisted of the RDP 16S rRNA training set #9, with sequences
S001942289, S000724117, S000724133, S001448117, S001448118, S001942070,
S001942206, S002416756, S002416776, S000014283, S000588187, S000588192,
S000010408, S000011228, S000021841, S000267158, S000588182, S000588183,
S000588184, S000588185, S000588186, S000588188, S000588189, S000588190,
S000588191, S000588193, S000724113, S000724122, S000832952, S000935760,
S001294363, S001942173 reclassified as bacteria4Actinobacteria4

Actinobacteria4unclassified4unclassified Candidatus Microthrix, by placing the
full 16S rRNA gene sequence of the recently sequenced strain Bio17-1 (ref. 17) into
the same taxon. Classification results from each sample were used to produce an
abundance matrix for data analysis.

The 16S rRNA gene-based data of the four different biological replicates (islets)
per sampling date were used for calculating Simpson diversity and Pielou evenness
indices with 10 replications of subsampling of 6,359 reads per sample using the R
Vegan package.

Operational taxonomic unit-based classification. In addition to the direct
classification, processed pyrosequences were also analysed by clustering the reads
into operational taxonomic units using Mothur36 v.1.32.1. To allow appropriate
sample-specific classifications, the Candidatus Microthrix parvicella Bio17-1 (ref.
17) 16S rRNA gene sequence was added to the Mothur-formatted version of the
RDP training set v9 and the related taxonomy file. Operational taxonomic units
clustering was performed at a cut-off level of 0.03 before the assignment of
taxonomy. Scripts are available from the authors upon request.

Metagenome and metatranscriptome sequencing and assembly. DNA library
preparation. The purified DNA fractions12,13 from the unique biological replicates I
of SD3 and from SD5 to SD7 suspended in elution buffer (pH 8.0) were used to
prepare a paired-end library with the AMPure XP/Size Select Buffer Protocol as
previously described by Kozarewa et al.37, modified to allow for size selection of
fragments using the double solid phase reversible immobilization procedure
described earlier38. Size selection yielded metagenomic library fragments with a
mean size of 450 bp. All enzymatic steps in the protocol were performed using the
Kapa Library Preparation Kit (Kapa Biosystems) with the addition of 1 M PCR-
grade betaine in the PCR reaction to aid in the amplification of high GþC
percentage content templates.

RNA library preparation. Following RNA purification12,13 from the unique
biological replicates I of SD3 and from SD5 to SD7, RNA fractions were ethanol
precipitated, overlayed with RNAlater solution (Ambion) and stored at � 80 �C.
Before sequencing library preparation, the RNA pellet was rinsed twice in 80%
ethanol and twice in 100% ethanol to remove any excess RNAlater solution. The
pellet was then left on ice to dry. After ethanol evaporation, the RNA pellets were
resuspended in 1 mM sodium citrate buffer at pH 6.4. Ribosomal RNAs were
depleted using the Ribo-Zero Meta-Bacteria rRNA Removal Kit (Epicentre)
according to the manufacturer’s instructions. Transcriptome libraries were
subsequently prepared using the ScriptSeq v2
RNA-Seq Library Preparation Kit (Epicentre) according to the manufacturer’s
instructions. The resulting cDNA was subjected to Illumina sequencing.

Nucleic acid sequencing. Nucleic acid fractions were sequenced on an Illumina
Genome Analyser (GA) IIx sequencer. Massive parallel sequencing of DNA and
cDNA resulted in the generation of 1.47� 107 and 1.65� 107 metagenomic and
metatranscriptomic paired-end reads for SD3, respectively. Similarly, the
sequencing of SD5-derived DNA and cDNA generated 1.57� 107 and 1.47� 107

metagenomic and metatranscriptomic paired-end reads, SD6-derived DNA and
cDNA sequencing generated 1.47� 107 and 1.48� 107 metagenomic and
metatranscriptomic paired-end reads and SD7-derived DNA and cDNA
sequencing generated 1.96� 107 and 1.80� 107 metagenomic and
metatranscriptomic paired-end reads.

Nucleic acid sequence data analysis. MetaPhlAn21 (using default parameters)
was used on 5’ seven base pairs hard-clipped raw paired-end reads, collapsed,
filtered at or above a mean QV of 30 and a minimum length of 60 bp.

Raw metagenomic paired-end reads were submitted to MG-RAST22 using the
‘join fastq-formatted paired-reads’ option retaining the non-overlapping reads,
dynamic trimming and dereplication options. Raw metatranscriptomic reads were
submitted to MG-RAST as described for metagenomic data, except that the
dereplication option was not selected. As MG-RAST also supports the analysis of
eukaryotic sequences, to allow comparison to MetaPhlAn and the 16S rRNA gene
sequencing results, the MG-RAST output was filtered to only include bacterial and
archaeal taxa. MG-RAST complete functional annotations of both the
metagenomic and metatranscriptomic data were used for the assembly-free
analysis of the community function.

Apart from these assembly-free community analyses, any overlapping paired-
end reads from SD3 were joined with PANDASeq39 (with threshold parameter
t¼ 0.9) before the removal of potential PCR duplicates using custom scripts
(available upon request). Read clipping, quality trimming and filtering of sequence
reads was performed with the trim-fastq.pl script from the PoPoolation suite40.
Four base pairs were hard-clipped from the 5’ of all raw reads, and reads were
filtered at or above a mean QV of 30 , and a minimum length of 40 bp. The quality
of the resulting reads and the presence of remaining adaptor sequence
contamination were assessed using FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/).

To reduce the sample complexity and to improve the efficiency of the assembly
process, quality-filtered, combined metagenomic and metatranscriptomic reads
were initially mapped against the draft genome sequence of Candidatus Microthrix
parvicella Bio17-1 (ref. 17). Mapped reads were extracted from the pool of reads
and assembled separately with IDBA-UD41 (v.1.1.10), with the following
parameters: --pre_correction --mink 35 --maxk 75 --step 2 --num_threads 12 --
similar 0.97 --min_count 3. The remaining unmapped reads were binned as pairs
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according to low and high GþC percentage content, with an inclusive cut-off
value of 50% GþC, and assembled as above. This strategy resulted in the
generation of 1,739,837 additional base pairs of assembled sequence data compared
with a direct assembly. Assemblies were merged using minimus and scaffolded
using Bambus2 (AMOS tool suite42).

Assembled contigs longer than 500 bp, representing the first set, were grouped
by a reference-free binning algorithm that has recently been developed by some of
the authors16. The algorithm first computes the pentanucleotide frequency of
each contig, which then allows representation of each contig as a point in a
512-dimensional Euclidean space (512 is the number of unique pentanucleotides
after taking reverse complements into account). After a centred log-ratio
transformation on each point43, the sets of points were used as input for the
Barnes–Hut Stochastic Neighbourhood Embedding (BH-SNE) algorithm44, which
produced a two-dimensional map (embedding) of the original signatures (Fig. 2a).
Binning of points was then carried out using the Expectation–Maximisation (EM)
algorithm on a postulated two-dimensional Gaussian Mixture model45, where the
means of the Gaussian components of interest were initialized by the user and the
covariance matrices were initialized by diagonal matrices with small positive
entries. For the results reported in this work, we initialized EM with one Gaussian
component per expected cluster following visual inspection. Contigs from the
resulting clusters were extracted as contig groups and used as reference sequences
to recruit sequence reads from the original, quality-filtered data set. Non-mapped
paired-end reads were extracted and merged. A second iterative round of assembly
was performed on each set of recruited reads separately and BH-SNE profiling was
conducted as described above (except that this time a minimal contig size of
1,000 bp was used). Contig groups resulting from the second BH-SNE iteration
were used once more for read recruitment. GþC percentage was calculated per
base using in-house scripts (available upon request).

For coverage and gene expression analyses (SD3, SD5, SD6 and SD7),
metagenomic and metatranscriptomic reads were mapped onto reconstructed
genomic fragments from SD3 using Bowtie2 (ref. 46) (using ‘very sensitive-local’
parameters) and BWA47 (using default parameters except for the –M option). Gene
expression levels were determined using Cufflinks48 on the basis of the BWA read
mappings.

Metagenomic FPKM48 (fragments per 1 kb of sequence per 106 mapped reads)
and coverage values corresponding to each predicted gene in each of the CGs were
obtained for the different time points (Supplementary Data 2 and Supplementary
Data 3).

To estimate relative population sizes within the community, we devised a
measure analogous to the RPKM49 (reads per 1 kb of sequence per 106 mapped
reads) measure, widely used for reporting the normalized abundance of, for
example, transcripts and we defined this as follows:

Ni ¼
ci�106

C�li

where Ni is the relative size of the population corresponding to CGi; ci is the
number of reads mapped to CGi; C is the total number of metagenomic reads
mappable to all of the CGs; and li is the length of CGi in bp.

To account for the differences in observed expression levels linked to differing
population sizes and to allow comparative analyses between different CGs as well
as the different time points, genes were only considered to be expressed per CG per
time point, if their metatranscriptomic FPKM values were Z50�Ni

(Supplementary Data 2 and Supplementary Data 3).

Metaproteome processing and analysis. Five microlitres of the protein extract
obtained from SD3, SD5, SD6 and SD7 as previously described12,13 were mixed
with 1.25 ml of XT sample buffer and 0.25ml of XT reducing agent (Bio-Rad). After
10 min of denaturation at 70 �C, 5 ml the sample was subsequently separated by 1D
SDS–PAGE (Criterion precast 1D gel, Bio-Rad). The gel was then stained with
Imperial stain (Coomassie-Blue R250, Thermo Fisher Scientific) and cut into
uniform 2 mm bands50. After in-gel reduction and alkylation, tryptic digestion was
performed. Resulting peptides were separated by liquid chromatography (LC)
using an Easy-nLC column (Proxeon, Thermo Fisher Scientific). Separation was
performed using a 75mm ID fused silica column packed with 20 cm of ReproSil Pur
C18-AQ 3 mm beads (Dr Maisch). Before column separation, the samples were
loaded onto a fritted 100 mm ID fused silica trap packed with 2 cm of the same
material. The peptide mixture was separated using a binary solvent gradient to
elute the peptides. Solvent A was 0.1% formic acid in water. Solvent B was 0.1%
formic acid in acetonitrile. The peptide fractions were pooled in consecutive pairs,
concentrated and resuspended up to 20 ml in solvent A. Eight microlitres of each
pooled sample was injected per LC analysis. The three-step elution programme was
operated at a flow rate of 0.3 ml min� 1 consisting of (1) a gradient from 2 to 35%
solvent B over 60 min, (2) a 10-min wash at 80% solvent B and (3) a 20-min
column re-equilibration step at 2% solvent B.

Mass spectra were acquired on an LTQ-Orbitrap Elite (Thermo Fisher
Scientific). The instrument was operated on an 11-scan cycle consisting of a single
Fourier transformed (FT) precursor scan at 30,000 resolution followed by 10 data-
dependent MS/MS scan events using higher-energy collisional dissociation at
15,000 resolution in the FT Orbitrap. The precursor scans had a mass range of
300–2,000 m/z, and an automatic gain control setting of 106 ions. The MS/MS

scans were performed using a normalized collision energy of 35 and an isolation
width of 2 m/z. The data-dependent settings included monoisotopic precursor
selection and charge state filtering that excluded unassigned and single charge
states. Dynamic exclusion was enabled with a repeat count of 1, a repeat duration
of 10 s, an exclusion list size of 500 and an exclusion duration of 180 s. Exclusion
mass width was ±5 p.p.m. relative to mass.

LC-MS/MS analysis resulted in the generation of 271,915 mass spectra for SD3,
118,386 mass spectra for SD5, 102,916 mass spectra for SD6 and 105,328 mass
spectra for SD7.

Composite genome and expression analyses. Gene calling and annotation. The
assembled CGs were submitted for gene calling and annotation to RAST51 with
default parameters except for Domain (Bacteria), Genetic code (11), Sequencing
method (other), FIGfam version (release 63) and with the Build metabolic model
option selected.

Taxonomic affiliation. The taxonomies of the reconstructed CGs were
determined using the AmphoraNet24 webserver. A taxon name was assigned when
at least 75% of the identified marker genes resulted in a concordant taxonomy, and
a putative taxon name was assigned when at least 50% of the identified markers
resulted in a concordant taxonomy.

Completeness and composition of composite genomes. Genome completeness of
the reconstructed CGs was estimated on the basis of 40 universal single copy
genes52. For this, the functional annotation of the predicted proteins in each CG
was obtained using the WebMGA server53 using the ‘cog’ analysis option.
Functional compositions of the CGs and of their expressed genes were obtained
from COG category counts, which were normalized by the total number of
predicted features per CG.

Comparative analysis of Candidatus Microthrix parvicella-like sequences.
Draft genome sequences for Candidatus Microthrix parvicella strains Bio17-1
(ref. 17) and RN1 (ref. 18) were obtained from the GenBank database (Assembly
ID GCA_000299415.1 and GCA_000455525.1, respectively). Sets of orthologous
genes were built using RAST’s ‘sequence based comparison’ tool.

Variant identification. SNPs were identified by separately mapping
metagenomic and metatranscriptomic reads against the reconstructed CG
assemblies using Bowtie2 and BWA (as described above). SNPs were identified
from each of the mappings using mpileup (SAMtools54), the UnifiedGenotyper
(Genome Analysis Tool Kit55) and Freebayes56. The intersection of identified SNPs
from all the aforementioned methods was obtained using the vcf-isec utility from
the VCFtools suite and was considered for subsequent analyses. SD3 variant
amino-acid sequences were included in the amino-acid sequence databases
generated on the basis of called and annotated genes. This database was used for
subsequent protein identification on the basis of the generated metaproteomic data
(see below). Variant frequencies were separately estimated from mapped
metagenomic and metatranscriptomic reads. Only variants in regions with a
minimum read depth (coverage) of 10 for both metagenomic and
metatranscriptomic data were considered. Variant density per CG population was
calculated by normalizing the SNP density (number of SNPs per kb) by the relative
population size, which in turn was inferred from the fraction of metagenomic
sequencing reads mapped onto the individual genomic reconstructions.

Protein identification. MS/MS spectra were searched against the generated
amino-acid sequence database (containing the predicted proteins including all
variants of the 10 reconstructed CGs and common contaminants) using the
X!Tandem algorithm57. The resulting peptide identifications were validated using
the Trans-Proteomic Pipeline58. The X!Tandem parameters included precursor
and fragment ion mass tolerances of 15 p.p.m., a static modification of
57.021464 Da on cysteine residues and a potential modification mass of
15.994915 Da on methionine residues. The search allowed for semi-tryptic
cleavages up to two missed cleavages. The database search results were validated
and proteins were inferred at B1% false discovery rate using the PeptideProphet,
ProteinProphet and iProphet tools from the Trans-Proteomic Pipeline software
suite58–60.

Protein quantification. Relative protein quantification was performed using the
normalized spectral index (NSI) measure using an in-house software tool called
NSICalc (details available upon request). The tool was adapted from the method by
Griffin et al.61 Briefly, the NSI combines peptide count, spectral count and MS/MS
fragment ion intensity for quantification and normalizes these values by the length
of each protein. This strategy incorporates measurable peptide intensities while
removing some of the biases of using spectral counts when comparing large and
small proteins. NSI values were log2 normalized before comparison across proteins
to obtain relative quantification ratios.

Metaproteomic analyses led to peptide matching against the amino-acid
database of 43,214 spectra, which in turn provided abundance data on a total of
1,815 proteins for SD3.

Analysis of the long-chain fatty acid-CoA ligases of CG8b. Amino-acid sequences
of genes annotated as long-chain-fatty-acid-CoA ligases by RAST from CG8b were
aligned using Expresso62 using default parameters. Sequence similarities were
determined using the SIAS server (http://imed.med.ucm.es/Tools/sias.html).
A dendrogram based on pairwise comparisons of amino-acid sequence similarities
was obtained using the hierarchical clustering function in R. Abundance values
were extracted from the mapped metagenomic, metatranscriptomic and
metaproteomic data.
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ARTICLE OPEN

Comparative integrated omics: identification of key
functionalities in microbial community-wide metabolic
networks
Hugo Roume1,5,6, Anna Heintz-Buschart1,6, Emilie EL Muller1, Patrick May1, Venkata P Satagopam1, Cédric C Laczny1,
Shaman Narayanasamy1, Laura A Lebrun1, Michael R Hoopmann2, James M Schupp3, John D Gillece3, Nathan D Hicks3,
David M Engelthaler3, Thomas Sauter4, Paul S Keim3, Robert L Moritz2 and Paul Wilmes1

BACKGROUND: Mixed microbial communities underpin important biotechnological processes such as biological wastewater
treatment (BWWT). A detailed knowledge of community structure and function relationships is essential for ultimately driving these
systems towards desired outcomes, e.g., the enrichment in organisms capable of accumulating valuable resources during BWWT.
METHODS: A comparative integrated omic analysis including metagenomics, metatranscriptomics and metaproteomics was
carried out to elucidate functional differences between seasonally distinct oleaginous mixed microbial communities (OMMCs)
sampled from an anoxic BWWT tank. A computational framework for the reconstruction of community-wide metabolic networks
from multi-omic data was developed. These provide an overview of the functional capabilities by incorporating gene copy,
transcript and protein abundances. To identify functional genes, which have a disproportionately important role in community
function, we define a high relative gene expression and a high betweenness centrality relative to node degree as gene-centric and
network topological features, respectively.
RESULTS: Genes exhibiting high expression relative to gene copy abundance include genes involved in glycerolipid metabolism,
particularly triacylglycerol lipase, encoded by known lipid accumulating populations, e.g., Candidatus Microthrix parvicella. Genes
with a high relative gene expression and topologically important positions in the network include genes involved in nitrogen
metabolism and fatty acid biosynthesis, encoded by Nitrosomonas spp. and Rhodococcus spp. Such genes may be regarded as
‘keystone genes’ as they are likely to be encoded by keystone species.
CONCLUSION: The linking of key functionalities to community members through integrated omics opens up exciting possibilities
for devising prediction and control strategies for microbial communities in the future.

npj Biofilms and Microbiomes (2015) 1, 15007; doi:10.1038/npjbiofilms.2015.7; published online 17 June 2015

INTRODUCTION
Our ability to study microbial communities in natural settings as
well as in engineered systems, e.g., biological wastewater
treatment (BWWT) plants, has dramatically improved in recent
years owing to rapid advances in high-throughput DNA sequen-
cing technologies and other ‘meta-omic’ analyses which are
driving molecular microbial ecology into the era of Eco-Systems
Biology.1 Although metagenomic data provide gene inventories,
without any proof of their functionality, the analysis of
community-wide transcripts facilitates an assessment of
community-wide functions,2 and community proteomics provide
representation of the actual phenotypic traits of individual
community members.3 Metabolomics, through resolving the final
and intermediate products of cellular metabolism, should
theoretically be the most sensitive indicator of community-wide
phenotypes and allow inference of key metabolic processes.4

However, current metabolomic methodologies are limited in the
number of metabolites that can be measured as well as their
limited identifiability.5

The reconstruction of metabolic networks based on genomic
data presents a compelling alternative to metabolomics for
resolving the metabolic capabilities of organisms.6 So far, the
conventional approach used to progress from single to multi-
species metabolic network reconstructions has involved treating
the metabolic networks of individual species as an input–output
system to build network-based7 or constraint-based8 models of
metabolic interactions. However, these multi-species models,
which are usually limited to only a few species, fail to explain
how variations in gene or species composition affect the overall
metabolic state of ecosystems.9 Given the complexity of microbial
communities, as well as the inability to isolate and sequence
representative single cultures of all organisms within a commu-
nity, such bottom-up approaches may be limited by the inherent
impossibility to extrapolate community-wide networks and
behaviour from individual isolate omic data sets.1 Recently
developed alternative approaches involve the determination of
community-wide metabolic potential10 and the reconstruction
of community-wide metabolic networks based directly on

1Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg; 2Institute for Systems Biology, Seattle, WA, USA; 3The Translational
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metagenomic data,11 thereby ignoring the contribution of
individual species.12 Through this population-independent
approach, Greenblum et al.12 identified enzyme-coding genes,
either enriched or depleted, in stool samples of human individuals
with obesity or inflammatory bowel disease, highlighting the
potential of such approaches for the identification of key
metabolic traits within microbial consortia. Ideally, top-down
and bottom-up approaches should be combined to identify links
between microbial community structure and function, thereby
bridging the gap between population-level metabolic networks
and the larger community-wide networks to ultimately build a
systems-level model of interactions between species.13

Here, we discuss a framework for comparative integrated omic
analyses, which allows integration of systematically generated
multi-omic data within reconstructed community-level metabolic
networks. The resulting networks allow assessment of gene
expression and protein abundances in combination with network
topological features. We propose the use of these networks as an
alternative to identifying keystone species through co-occurrence
networks14 (Figure 1a). Reconstruction of co-occurrence networks
requires large numbers of highly resolved samples and spurious
correlations can affect interpretability of the resulting networks.15

Here, we identify genes encoding key functionalities in recon-
structed community-wide metabolic networks and trace these
back to the community members which encode them. Through
their activity, keystone species are expected to have a dis-
proportionately large effect on their environment, relative to their
abundance.16 Their removal would greatly impact community
structure and function.17 For example, in the human colon,
specialist primary degraders such as Ruminococcus bromii are
considered keystone species because of their ability to initiate the
degradation of recalcitrant substrates.18 Herein, we define key
functionalities as specific functions which have an overall
pronounced effect on ecosystem functioning, because they
exhibit a high relative gene expression and are represented by a

node with a prominent topological position within a community-
wide metabolic network (Figure 1b). The loss of such nodes would
result in a lack of connectivity and this would greatly impact the
overall topology of the community-wide metabolic network. In
addition, the expression of these genes will likely be rate-limiting,
similar to the effect of ‘load points’ on reconstructed single-
organism metabolic networks,19 and thereby will govern the
metabolic outcomes of the entire community. Therefore, by
altering the expression of such genes, the community-wide
phenotype could be influenced. By extension, members of the
microbial community carrying out these functions would likely
also be keystone species.
We apply the developed methodological framework to

oleaginous mixed microbial communities (OMMCs) sampled from
the surface of an anoxic BWWT tank in autumn and winter,
respectively (Figure 2a,b). BWWT plants exhibit well-defined
physical boundaries and represent a convenient and virtually
unlimited source of spatially and temporally resolved samples. The
microbial communities found in BWWT plants represent an ideal
model system for microbial ecology20 because these communities
are comparatively well described and lie between communities of
low diversity, e.g., acid mine drainage biofilms,21 and complex
communities such as those found in the human gastrointestinal
tract22 or soil environments23 while retaining important hallmarks
of both ends of the spectrum. These characteristics include
(i) levels of dominance of individual taxa typically associated with
low diversity communities (up to 30% of the community), most
notably either Candidatus Microthrix parvicella (henceforth
referred to as Microthrix parvicella) or Perlucidibaca spp. depending
on the time of year;24 and (ii) the functional potential to adapt to
rapid environmental changes typically observed in more diverse
communities. Compared with BWWT microbial communities that
are more typically studied, e.g., bulk activated sludge, OMMCs
have additional important attributes which render them ideally
suited as a model for the development and implementation of
eco-systematic approaches. These include (i) limited species
richness, i.e., operational taxonomic unit (OTU) richness of
approximately 600 (Chao25 estimate from previous data24)
compared with more than 1,000 (ref. 26) for activated sludge;
(ii) high reproducibility between samples taken at the same
time point.4,27 Apart from these characteristics, the targeted
enrichment of OMMCs is of biotechnological interest as this would
allow the reclamation of a significant fraction of the chemical
energy contained within wastewater through lipid recovery and
subsequent biodiesel synthesis.28,29 However, for such enrichment
strategies to be successful, a detailed understanding of
community function is necessary.30 For example, identified key
functionalities may ultimately serve as driver nodes31 for
controlling these communities.

MATERIALS AND METHODS
Sampling
OMMCs were sampled from the anoxic tank of the Schifflange (Esch-sur-
Alzette, Luxembourg; 49°30′48.29″N; 6°1′4.53″E) BWWT plant as described
previously.4 Samples were taken on 4 October 2010 (referred to herein as
the autumn OMMC) and 25 January 2011 (referred to herein as the winter
OMMC; physico-chemical characteristics of the wastewater on the
sampling dates are provided in Supplementary Table 1). These dates were
chosen because they are representative of both extremes of OMMC-wide
phenotypes, whereby, during the autumn sampling date, the tank
exhibited only sparse amounts of OMMC biomass (Figure 2a) and, on
the winter sampling date, ample amounts of OMMC biomass were present
(Figure 2b).

Biomolecular extractions
A previously developed biomolecular isolation framework for community-
integrated omics4,27 was used to sequentially extract total RNA, genomic
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Figure 1. Criteria for defining keystone nodes in microbial species
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DNA and proteins from single OMMCs based on the Qiagen AllPrep
DNA/RNA/Protein Mini kit (QA, Qiagen, Venlo, The Netherlands). The
quality and quantity of isolated biomacromolecules were assessed as
described previously4 (Supplementary Table 2, Supplementary Materials
and methods).

High-throughput sequencing
Total genomic DNA and ribosomal RNA-depleted retrotranscribed cDNA
from both samples were sequenced on an Illumina Genome Analyzer IIx
(Supplementary Materials and methods). Raw metagenomic and meta-
transcriptomic sequence data files are accessible in nucleic acid databases
under BioProject PRJNA230567, sample LAO-A01 (SRX612782 and
SRX612783) and LAO-A02 (SRX389533 and SRX389534).

Metagenomic and metatranscriptomic sequence assembly, gene
annotation and determination of gene abundances
Raw 100 nt paired-end sequencing reads from the metagenome and
metatranscriptome libraries from each of the two sampling dates were first
trimmed and quality filtered using the trim-fastq.pl script from the
PoPoolation package32 and overlapping read pairs were assembled using
the PAired-eND Assembler33 (PANDAseq). Non-redundant assembled
PANDAseq read pairs and non-assembled reads from metagenomic and
metatranscriptomic data sets of both sampling dates were then used as a
single input for the MOCAT assembly pipeline.34 The resulting non-
redundant contigs and PANDAseq-assembled read pairs that had not been
used were then combined and filtered with a minimum length threshold
of 150 bp. Protein-coding genes were predicted using the Prodigal gene
finder35 (v2.60, contigs above 500 bp) or FragGeneScan36 (contigs between
150 and 500 bp). The resulting amino acid sequences from both contig
sets were merged and made non-redundant using CD-HIT.37 All predicted
gene sequences are accessible through MG-RAST38 as ID MGM4550606.3.
The Kyoto Encyclopedia of Genes and Genome39 database version 64.0
was used to functionally annotate genes with Kyoto Encyclopedia of Genes
and Genome orthologous groups (KOs) for ensuing metabolic network
reconstruction (Supplementary Materials and methods, Supplementary
Figure 1).
To allow meaningful comparisons between gene copy and transcript

numbers from the two seasons, identical numbers of reads were sampled

from the metagenomic and the metatranscriptomic libraries of both
seasons (Supplementary Materials and methods) using an in-house
developed Perl-script. The resulting reads were then mapped to the
annotated gene sets. Cross-mapping reads were equally weighted
according to the number of genes they mapped to and mapped
reads were counted per gene. Finally, metagenomic and metatranscrip-
tomic counts were normalised by the effective length of the gene
sequence,40 yielding normalised gene copy abundances and normalised
transcript abundances, respectively. KO abundances were inferred
from the sums of normalised gene copy or transcript abundances of all
genes belonging to a given KO (Supplementary Materials and methods).
Relative gene expression values were determined per KO by calculating
the ratio of normalised transcript abundances to normalised gene copy
abundances (Supplementary Materials and methods, Supplementary
Dataset 3).

Metaproteome processing and analysis
Isolated and purified protein fractions were separated using one-
dimensional SDS polyacrylamide gel electrophoresis. The proteins were
reduced, alkylated, and digested with trypsin. The resulting peptides were
then analysed by liquid chromatography coupled to tandem mass
spectrometry. Peptide identification was carried out by database searching
using the X!Tandem software41 with the amino acid sequence database
generated from the genes predicted from the combined metagenomic
and metatranscriptomic assembly. Protein identification was carried out
using peptide-spectrum matches using the Trans-Proteomic Pipeline,42

with a probability of being correctly assigned to each protein determined
by PeptideProphet.43 The protein inferences from each fraction were
determined using ProteinProphet and then combined with iProphet44 to
obtain a master set of identified proteins at a 1% false discovery rate. All
proteomic data have been deposited in the PeptideAtlas mass spectro-
metry raw file repository at http://www.peptideatlas.org/PASS/PASS00512.
Identified proteins were assigned KO numbers using BLAT-based45

alignment against the Kyoto Encyclopedia of Genes and Genome database
v64.0 (Supplementary Materials and methods). Relative protein abun-
dances were obtained using the normalised spectral index, as described
previously24 (Supplementary Materials and methods, Supplementary
Figure 4).

Community-wide metabolic network reconstructions
Community-wide metabolic networks were reconstructed from the KOs
with metabolic functions identified in the predicted gene sets from the
combined metagenomic and metatranscriptomic assembly. The network
reconstructions were rendered season-specific by using only KOs with
mapped metatranscriptomic reads from each of the two sampling dates.
The reconstructed networks reflect a connectivity-centred view of
metabolism whereby enzymes grouped by KOs are represented by
nodes and metabolites are represented by undirected edges, which
represent either substrate or products of reactions catalysed by the
respective KOs.12 Each KO was assigned a pair-set of substrate and product
metabolites according to the RPAIR46 annotation in Kyoto Encyclopedia of
Genes and Genome database version 67.1 (Supplementary Materials and
methods).

Topological network analysis and selection criteria for genes
encoding key functionalities
To carry out a topological analysis of the reconstructed metabolic network,
nodes and edges were rendered non-redundant, by representing multiple
KOs with identical substrate and product metabolites as a single node. A
comparison between the non-redundant network and a redundant version
was also carried out (Supplementary Materials and methods). As most of
the nodes that regroup several KOs represent subunits of the same
enzyme, the small changes incurred on betweenness centrality and load
by making the nodes non-redundant enhance the ability of these
topological measures to identify key enzymes in the reconstructed
community-wide metabolic networks (see also Supplementary Results
and Discussion). Key functionalities were identified on the basis of
topological criteria and relative gene expression. The topological selection
criterion was defined in analogy to ‘load points’ as defined by Rahman and
Schomburg19 in the context of reconstructed single-cell metabolic
networks. Load points have the highest ratio of betweenness centrality
(the number of valid shortest paths passing through them) relative to node
degree (the number of neighbouring nodes; referred to as ‘neighbourhood

Figure 2. OMMC composition in autumn and winter seasons.
Photographs of the OMMCs located at the water surface of the
anoxic tank at the Schifflange BWWT plant in (a) autumn and (b)
winter sampling dates. Abundance of genera of dominant commu-
nity members based on reconstructed 16S rRNA gene sequences
from metagenomic data in (c) autumn and (d) winter. OMMC,
oleaginous mixed microbial community; rRNA, ribosomal RNA.
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connectivity’ by Rahman and Schomburg19). Node degree and between-
ness centrality, among other topological measures, of each node were
computed using the Cytoscape Network-Analyzer plug-in,47 considering the
reconstructed network as undirected. These parameters were used to
calculate load scores as defined in Equation (1).

load scoren ¼
P

s≠n≠ tðσstðnÞ=σstÞ
knP

e

ð1Þ

where s and t are nodes in the network different from n, σst is the number
of shortest paths from s to t, and σst(n) is the number of shortest paths
from s to t that n lies on, kn denotes the node degree of n, and Σe denotes
the total number of edges in the network. Thus, load score describes the
number of reaction paths or conversions between metabolites that utilise a
given enzyme, relative to its connectivity. It therefore serves as a proxy for
an enzyme’s contribution to the metabolic fluxes of the overall community.
We prioritised the nodes with the top 10 per cent of load scores. In

addition to this topological criterion, the relative gene expression of a
node (either from a single KO or nodes regrouping several KOs) was
also taken into account, such that only KOs with a high relative
expression (top 10 per cent) were regarded as genes encoding key
functionalities (Supplementary Materials and methods). Key functionalities
were analysed for their involvement in the metabolism of uniquely
occurring metabolites, i.e., to assess whether they represent ‘choke points’
as defined by Rahman and Schomburg.19 For the calculation of an
alternative load score weighted according to the occurrence of the
metabolites which should restrict ‘load points’ to nodes within pathways46

and a detailed analysis of sensitivity to the chosen cut-offs, see
Supplementary Materials and methods.

Linking genes encoding key functionalities to specific organisms
The presence of the identified genes in genomes of bacterial isolates was
determined by aligning contigs bearing these genes to the contigs from
genome assemblies of these strains using BLAST (Supplementary Materials
and methods).

Isolate strain culture and whole-genome sequencing
OMMC biomass sampled on 12 October 2011 was cultured on different
growth media recommended for the culture of bacteria from water and
wastewater and isolation procedures followed (Supplementary Materials and
methods). In all, 140 pure bacterial cultures were obtained and screened for
lipid inclusions using the Nile Red fluorescent dye.48 Following DNA
extraction using the Power Soil DNA isolation kit (MO BIO, Carlsbad,
CA, USA), the genomes of 85 Nile Red-positive isolates were sequenced
on an Illumina HiSeq Genome Analyzer IIx using the same sequencing
approach as described for the metagenomic samples. The resulting
sequencing reads were assembled using either the Abyss49 or the
SPAdes50 assemblers (Supplementary Materials and methods). Based
on the presence of a gene encoding a key functionality, one isolate
(Isolate LCSB065) was selected for refinement of genome assembly as
well as phylogenetic and genomic analysis (Supplementary Materials and
methods).

Code availability and computational resources
All in-house developed scripts are available from the authors upon request.
In silico analysis results were obtained using the high performance
computing facilities of the University of Luxembourg.51

RESULTS AND DISCUSSION
Identification of functions encoded and expressed in OMMCs in
autumn and winter
High-resolution coupled metagenomic, metatranscriptomic and
metaproteomic data were generated from the OMMCs sampled in
autumn and winter. A total of 16.2 gigabases (Gb) of shotgun
metagenomic paired-end 100 nt read sequence data as well as
38.6 Gb of metatranscriptomic sequence data were obtained.
6.5 million genes were predicted from a 6.7 million contigs of a
combined assembly (1.6 Gb total length) of all metagenomic and
metatranscriptomic reads (Supplementary Table 3). Based on
reconstructed 16S ribosomal RNA gene sequences from the

metagenomic data (Supplementary Materials and methods), the
autumn and winter communities are dominated by Perlucidibaca
spp. and Microthrix spp., respectively (Figure 2c,d, Supplementary
Dataset 1). A total 830,679 predicted genes were annotated with
KOs and regrouped (Materials and methods), yielding a total of
7,270 unique KOs. In the autumn sample, 10,074 protein groups
(identified proteins grouped together because they share
detected peptides) were identified using 19,248 non-redundant
peptides out of a total of 727,155 mass spectra. In the winter
sample, 7,106 protein groups were identified from 15,966 non-
redundant peptides out of a total of 620,488 tandem mass spectra.
A total 4,906 and 5,007 proteins were unambiguously identified in
the autumn and winter samples, respectively.
The congruency between the metagenomic and metatranscript-

omic data was high, as 92% of KOs represented in the
metagenomic data are also present in the metatranscriptomic
data for both autumn and winter data sets (Supplementary
Dataset 2). The coverage of KOs was lower in the proteomic data,
as 1,357 KOs (26% of KOs annotated in the metagenomic data set)
and 1,236 KOs (23%) were identified in autumn and winter
OMMCs, respectively. These proportions were mirrored by KOs
within metabolic pathways (Figure 3a,b). This comparatively low
metaproteomic coverage is due to current limitations in
proteomic technologies for metaproteomic analyses.52

Analysis of highly expressed genes in winter and autumn
communities
Given the limited depth of coverage in the proteomic data, we
mainly focused our subsequent comparative analyses on the
metagenomic and metatranscriptomic data. Metaproteomic
results were, however, used to corroborate and validate inter-
pretations based on the analysis of the metatranscriptomic data.
The comparison of KOs present in the metagenomic and
metatranscriptomic data sets highlighted 757 (12%) and 210
(4%) unique KOs in autumn and winter OMMCs, respectively.
Similar results were found in the comparison of KOs from
metabolic pathways (Figure 3c). This analysis highlights a relatively
limited difference in terms of genetic potential and gene
expression between the two seasonally distinct OMMCs despite
stark differences in community structure (Figure 2c,d).
For each identified KO, we calculated relative gene expression,

which is considered to be more informative than simple transcript
abundance because expression levels are normalised to metage-
nomic gene copy numbers.53 Furthermore, it allows quantitative
insights into the contribution of low abundance members (such
populations may be potential keystone species) to overall
community activity to be obtained.54 KOs with high relative
expression in both seasons (Figure 3d,e, Supplementary Dataset 3)
were further analysed, as these are good candidates for genes
which likely affect the overall community phenotype. Among
these, enrichments were found in KOs linked to nitrogen
metabolism, as well as oxidative phosphorylation and non-
ribosomal peptide synthesis in both seasons (Supplementary
Dataset 3). The highly expressed KOs involved in nitrogen
metabolism represent enzymes for ammonium assimilation and
oxidation, denitrification and nitrification. In particular, they
include genes encoding likely subunits of ammonia mono-
oxygenase (AMO; K10944, K10945 and K10946). AMO has a key
role in the first step of nitrification carried out by aerobic
ammonia-oxidising bacteria, mainly belonging to Nitrosomonas
spp. and Nitrosospira spp.54 AMO was previously found to be
highly expressed in BWWT biomass.55 In addition to the nitrogen
metabolism enzymes expressed at a high level in both seasons, a
nitrite reductase gene (K00363) was highly expressed in the
autumn sample.
In the winter sample, the glycerolipid metabolism was enriched

within highly expressed KOs. In particular, triacylglycerol lipase
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(K01046) exhibited pronounced transcript levels and its expression
was also confirmed at the protein level (Supplementary Dataset 2).
The most highly expressed genes of the 6,222 genes belonging to
this KO could be matched to Acinetobacter spp., which are known
to occur in BWWT plants and accumulate triacylglycerols.56

Furthermore, out of the genes with detectable expression, the

two gene sequences with the highest gene copy numbers (i.e.,
abundance in the metagenomic data) were matched to the
genome sequence of Microthrix parvicella BIO17-1 (ref. 57), which
is enriched in KOs involved in lipid metabolism57 (11.3% of its
annotated genes). The presence of these enzymes was recently
suggested to be essential for lipid accumulation in a metabolic

Figure 3. Integration of metagenomic, metatranscriptomic and metaproteomic data. (a) Venn diagram highlighting subsets of KEGG
orthologous groups (KOs) in metabolic pathways present in the metagenomic (dark brown), metatranscriptomic (orange) and metaproteomic
(pale brown) data from the autumn sample. (b) Subsets of KOs in metabolic pathways present in the metagenomic (dark blue),
metatranscriptomic (cyan) and metaproteomic (pale blue) data from the winter sample. (c) Comparison of occurrence of KOs in metabolic
pathways in metagenomic and metatranscriptomic data sets from autumn and winter. (d) Comparison of KO gene copy abundance (KOGA)
and transcript abundance (KOTA) of KOs in metabolic pathways in the autumn data set. (e) Comparison of KO gene copy abundance (KOGA)
and transcript abundance (KOTA) in metabolic pathways in the winter data set. In d and e, highly expressed KOs are highlighted in red.
(f) Simplified autumn-specific metabolic network reconstruction. (g) Simplified winter-specific metabolic network reconstruction. In f and g,
size of nodes represents KO abundance at metagenomic (blue), metatranscriptomic (green) and metaproteomic (magenta) levels, respectively.
KEGG, Kyoto Encyclopedia of Genes and Genome.
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model reconstruction of Microthrix parvicella,58 but not until now
were they found to be expressed in biological wastewater
treatment communities. The pronounced expression of the
aforementioned KOs involved in ammonium oxidation and the
hydrolysis of triacylglycerols during both seasons emphasises the
capability of the OMMCs to remove two of the main compounds
present in wastewater, i.e., ammonia59 and lipids.60

In the winter sample, KOs from the TCA cycle were also
strongly expressed and the majority could be detected at the
proteome level. Rather surprisingly, in the autumn sample,
photosynthesis KOs were enriched. Expression of photosystem I
in autumn was also confirmed by proteomics suggesting that
phototrophic organisms are part of the floating OMMC during this
season.

Reconstruction of a generalised and season-specific OMMC-wide
metabolic networks
A community-wide metabolic network was reconstructed using
the KOs expressed in the autumn and winter samples (Materials
and methods, Supplementary Figure 5, Supplementary Dataset 4).
The reconstructed network comprised 1,432 KO nodes with 29,988
edges representing non-unique metabolites.
Season-specific networks were reconstructed analogous to the

generalised OMMC-wide network, but by only using the 1,885 KOs
or 1,775 KOs expressed in autumn or winter, respectively
(Figure 3f,g, Supplementary Datasets 5 and 6). This yielded
networks comprising 1,298 nodes with 25,842 edges and 1,375
nodes with 27,370 edges forming a connected network for winter
and autumn, respectively.
Among the KOs specific to the autumn network, functions in

the metabolic pathways for porphyrin and chlorophyll
metabolism, sesquiterpenoid, triterpenoid and carotenoid
biosynthesis pathways (ko00860, ko00909 and ko00906) were
found to be enriched. This reinforces the notion that photosynth-
esis occurs in the OMMC sampled in autumn, while photosyn-
thetic gene appear to be below the detection limit in the winter
sample.

Identification of season-specific metabolic traits
The autumn- and winter-specific community-wide metabolic
network reconstructions exhibit similar structures (Figure 3f,g)
and represent 1,605 common KOs (i.e., 88 or 94% of the KOs
included in the autumn or winter network reconstructions,
respectively). Based on the reconstructed networks, a detailed
network topological analysis was carried out (Supplementary
Dataset 7).
Load scores (Equation 1) were determined in the reconstructed

season-specific community-wide metabolic networks (Materials
and methods). Most of the nodes in both the autumn- and winter-
specific networks, which feature a high degree, represent KOs
involved in amino acid synthesis. The relative small average
shortest path lengths of 3.21 and 3.29 in the autumn and winter
network reconstructions demonstrate that these represent ‘small
world’ networks.61 Among the nodes with the highest between-
ness centrality, i.e., the highest number of shortest paths passing
through a node,62 in both metabolic reconstructions, KOs with
functions in pyruvate metabolism, glycolysis or gluconeogenesis
and glycerolipid metabolism were enriched (false discovery rate-
adjusted P value o0.05). In contrast, relatively higher between-
ness centrality of the nodes representing KOs in fatty acid
metabolism pathway (ko01212) was observed in the network
reconstruction from the winter data set (median fold change of 4;
Wilcoxon signed rank test P value o0.001; enriched with false
discovery rate-adjusted P value o0.00001; Supplementary
Figure 6, Supplementary Dataset 7) suggesting distinct substrate
usage in both seasons. Other functions, in which this subset of
KOs was enriched, included porphyrin and chlorophyll

metabolism, biotin metabolism, polyketide sugar unit biosynth-
esis, lipoic acid metabolism and fluorobenzoate degradation
(ko00860, ko00780, ko00523, ko00785 and ko00364), while only
phosphoinositol metabolism (ko00562) was significantly enriched
among the functions of the nodes with a higher betweenness
centrality in the autumn network.

Identification of genes encoding key functionalities
Keystone species occupy topologically important positions in
species interaction networks63 and are characterized by a high
relative activity.17 Within a community-wide metabolic network
reconstruction, key functionalities contributed by keystone
populations should be encoded by genes which exhibit a high
relative gene expression and these genes should also occupy
important topological positions in relation to the community-wide
metabolic network, i.e., they should represent ‘load points’19

(Figure 1b). Herein, we therefore identify genes having a high load
score (Equation 1) within the season-specific metabolic networks
as well as high relative expression in the respective data sets
(Figure 2b, Figure 4, Materials and methods). Selected genes
are reported and potential ‘choke points’ are indicated in
Supplementary Dataset 7. According to Rahman and Schomburg,
choke points are special cases of load points, which consume
and/or produce unique metabolites. Given that uniqueness of a
metabolite is a strong claim in the context of the reconstructed
community-wide metabolic networks as much of community
metabolism remains unknown (only 13% of the predicted genes
could be confidently annotated with a function), the identification
of key functionalities by using load points was chosen as a more
robust and appropriate measure in the present case. The positions
of the key functionalities within the networks as per our criteria
(Figure 1b) are indicated in Figure 4 and Supplementary Figure 7.
KOs involved in porphyrin and chlorophyll metabolic pathways are
enriched among the selected genes in the autumn community, as
are KOs with a function in degradation of aromatic compounds.
Among the genes encoding key functionalities in the winter
OMMCs, no significant enrichment among KOs from a particular
pathway could be observed. However, one of these genes is
K03921, coding for an acyl-[acyl-carrier-protein] desaturase,
which is part of the biosynthesis pathway for polyunsaturated
fatty acids.
In both the autumn and winter sets of season-specific key

genes, the subunits of ammonia or methane monooxygenase
(AMO or MMO) stand out. As discussed above and given the
sampling from a nitrifying–denitrifying wastewater treatment
plant, this is likely an AMO which catalyses the first essential step
of nitrification by converting ammonia to hydroxylamine.64 In
contrast, MMO is involved in methane oxidation, which is less
likely to be expressed in the sampled environment.

Linking genes encoding key functionalities to community
members
Having selected genes encoding key functionalities within the
sampled OMMCs using the reconstructed community-wide
metabolic networks (Supplementary Dataset 7), we were inter-
ested in revealing which organisms expressed these genes within
the community. As these genes contribute essential functionalities
to the community and are characterized by relatively high
expression, they are likely to be encoded by keystone species.
Contigs containing genes annotated with one of the genes
encoding key functionalities were selected from the combined
metagenomic and metatranscriptomic data sets. These contigs
were aligned to the NCBInr nucleotide database (Supplementary
Dataset 7) to identify organisms encoding genes with similarity to
the expressed genes of interest.
For five such genes (K03921, K01186, K01576, K01709 and

K03335), no significant matches could be identified. On the other
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hand, three of these key genes from the winter-specific network
(K01251, K00789 and K03527) were expressed from a multitude of
contigs, which could be aligned well to over 50 different species.
Half of the matched contigs encoding the five autumn key genes
from the chlorophyll- and porphyrin-synthesis pathway (K03403,
K03404, K03405, K04034, K04035) were most similar to sequences
encoded by the genome of the cyanobacterium Oscillatoria
nigro-viridis PCC 712. The relative expression of these genes
accounted for 85% of the expression of these genes in autumn
(Supplementary Dataset 7). Some Oscillatoria spp. are found in
wastewater, where they have been found to participate in nitrate
removal.65

From the list of genes encoding key functionalities, we further
selected the acyl-[acyl-carrier protein] desaturase (K03921) and the
three subunits of AMO or MMO (K10944, K10945 and K10946)
for further analysis. In all, 922 out of 1,067 contigs belonging to
the AMO or MMO complex matched best to sequences of
Nitrosomonas spp. a well-known genus of nitrifiers. The other

contigs matched sequences from uncultured organisms or, in two
cases, to a MMO from Methylovulum miyakonense. These two
cases only represented 0.1% of the total contig length of the
KOs K10944–K10946. Furthermore, less than 1% of the metatran-
scriptomic reads mapped to these two contigs, suggesting that
the major function of these KOs is in ammonia rather than
methane oxidation. In addition, a refined assembly of contigs
belonging to K10944–K10946 using additional metagenomic data
from a third sampling date (Supplementary Materials and
methods) yielded a new contig containing complete sequences
for amoA (an established phylogenetic marker for nitrifying
microorganisms66), and amoB, both also matching best to
Nitrosomonas spp. A phylogenetic tree was reconstructed using
the predicted amino acid sequence of AmoA from this contig and
the tree clearly places it closest to sequences of Nitrosomonas spp.
(Figure 5a, Supplementary Table 4). To estimate the abundance of
Nitrosomonas spp. in the sampled OMMCs, metagenomic and
metatranscriptomic reads were mapped against the genome

K10944-K10945-K10946 
K10944-K10945-K10946 

K09321 

a b

c d

Figure 4. Topological analysis of the reconstructed season-specific community-wide metabolic networks and assessment of relative gene
expression. (a) Autumn- and (b) winter-specific networks. In (a) and (b) node colours refer to load score and node sizes represent relative gene
expression. KOs encoding key functionalities are encircled and highlighted by arrow heads. (c and d) Results of the topological analysis of KOs
in simplified season-specific networks for (c) autumn and (d) winter. Highly expressed genes are indicated as black dots and KOs encoding key
functionalities are indicated by brown (autumn) or cyan (winter) asterisks. Dotted red lines indicate minimal load score of KOs deemed to
encode key functionalities.
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sequence of Nitrosomonas sp. Is79 (ref. 67), yielding approximately
twice as many metagenomic reads in winter compared with
autumn (Supplementary Table 5). The ratio of metatranscriptomic
to metagenomic coverage was four times higher in winter than
in autumn, indicating a higher general level of activity of
Nitrosomonas spp. in the winter OMMC, although AMO activity
was high in both seasons.
In contrast to the compelling link between the putative AMO

genes and Nitrosomonas spp., linking the acyl-[acyl-carrier protein]
desaturase unambiguously to an organismal group could not be
achieved by simple alignment to reference genomes in public
databases. Of the 14 contigs which harboured genes annotated with
K03921 expressed in the winter sample, 9 did not yield any hits with
a percentage identity 480% and query coverage 450%. The
remaining five contigs yielded hits with 82 to 86% identity

to sequences from Rhodococcus erythropolis, Amycolatopsis mediter-
ranei and Nocardia cyriacigeorgica. As none of these alignments
were of high confidence, we aligned the contigs encoding acyl-[acyl-
carrier protein] desaturases to genomes of an in-house bacterial
isolate collection from the same BWWT plant. Three of the contigs
containing expressed genes matched to the same gene of the
genome of Isolate LCSB065 with 88 to 100% identity over a total of
459 nt of the combined metagenomic contig length of 678 nt.
Isolate LCSB065’s 81 contigs contain an almost complete 7.67Mbp
genome with a GC-content of 62.4% (Figure 5b, Supplementary
Dataset 8). Based on the use of 31 bacterial protein coding marker
genes, this isolate was identified as a Rhodococcus sp.68

(Supplementary Dataset 8). A detailed genomic analysis revealed a
high number of genes involved in lipid metabolism encoded by this
organism (Supplementary Results and Discussion) and non-polar

>90% 
>75% <90% 

>60% <75% 

Branch support value legend: a

b 

Rhodococcus sp. 
LCSB065 

PHB metabolism 
TAG metabolism 
Extracellular lipase 

% Identity  
(tracks A & B) 

100 – 95 

95–90 

90–80 

80–70 

70–60 

60–50 

50–40 

40–30 

30–0 

Figure 5. Linking key functionalities to important community members. (a) Phylogenetic tree based on the AmoA amino acid sequence
derived from a contig extended using combined metagenomic and metatranscriptomic data (K10944_ctg_3). (b) Circos plot of the genome of
Isolate LCSB065, highlighting amino acid similarity of encoded proteins to the Rhodococcus erythropolis PR4 genome and genes involved in
poly-hydroxybutyrate (PHB) and TAG accumulation as well as encoded extracellular lipases. From the outside to the inside track: contigs
(green) arranged by size; A: open reading frames in forward direction; B: open reading frames in reverse direction; colours in tracks A and B
indicate %-similarity to the Rhodococcus erythropolis PR4 genome; C: %G+C in 1,000 bp sliding windows. Highlighted rays indicate the location
of genes involved in PHB metabolism (violet), genes involved in TAG metabolism (blue) and extracellular lipase genes (green). TAG,
triacylglycerol.
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storage granules were also observed microscopically
(Supplementary Figure 8). As Rhodococcus spp. are known to exhibit
lipid accumulation phenotypes,69 it is likely that this organism is a
keystone species within the OMMC. Recruitment of metagenomic
and metatranscriptomic reads to the isolate’s genome
(Supplementary Dataset 8) revealed a low abundance of this
organismal group in both autumn and winter, with a relative high
transcriptional activity only in winter (Figure 5b, Supplementary
Table 5) potentially directly linking its activity to the high
community-wide lipid accumulation phenotype observed in
winter.24 Low abundance combined with an activity with a great
impact on their environment are hallmarks of keystone species and
the Rhodococcus population fulfils these criteria in the context of the
sampled OMMC.

CONCLUSION
Despite stark differences in the appearance and structure of the
sampled autumn and winter OMMCs, the comparative analysis of
integrated metagenomic, metatranscriptomic and metaproteomic
data contextualised in reconstructed community-wide metabolic
networks uncovered surprisingly few global differences in terms of
functional genetic potential and gene expression between the
two communities. This result confirms previous observations that
taxonomic profiles can be very variable whereas global functional
profiles are typically more conserved.70,71 Nonetheless, our
approach highlighted genes coding for essential enzymes
involved in nitrogen metabolism (genes involved in nitrification,
denitrification and ammonium oxidation) as being relatively
highly expressed in both seasons despite exhibiting only low
gene copy numbers. Identified differences between the two
seasons include a marked expression of enzymes involved in
glycerolipid metabolism in winter when OMMC biomass is most
pronounced (Figure 2a,b) and lipid accumulation is higher.24 In
particular, our analyses highlight the importance of triacylglycerol
lipases, which are essential for hydrolysis of lipids into long-chain
fatty acids and their subsequent assimilation and intracellular
storage. The pronounced expression of this particular enzyme
group suggests the possibility to enrich for lipid accumulating
organisms (LAOs) in BWWT plants through lipase supplementation
and environmental biocatalysis. Enhancing the growth of LAOs
through such a strategy would result in the availability of excess
amounts of lipid-rich biomass at the air–water interface of anoxic
tanks and this could, for example, be transesterified to biodiesel,
thereby allowing recovery of a significant fraction of the chemical
energy contained within wastewater.28,29

The topological analysis of the OMMC-wide metabolic networks
confirms the metabolic similarity of both autumn and winter
communities, with a high centrality of central carbon metabolism.
The measure of betweenness centrality demonstrates seasonal
variability in fatty acid metabolism, which is more enriched in the
sampled winter OMMC. The identification of genes encoding key
functionalities involved the detailed analysis of topological
features within the reconstructed community-wide metabolic
networks as well as an assessment of relative gene expression by
enzyme-coding genes. This analysis highlighted genes such as
AMO, expressed by Nitrosomonas spp., and an acyl-[acyl-carrier
protein] desaturase, expressed by Rhodococcus spp., as fulfilling
key functions in OMMCs.
The developed framework allows the integration of structural

and functional measurements through contextualisation in
reconstructed community-wide metabolic networks to result in
the identification of genes encoding key functionalities, which can
in turn be linked to functionally important community members.
These potential ‘keystone genes’ could ultimately serve as driver
nodes31 for controlling such complex microbial ecosystems.
Therefore, the application of our methodological framework to
other microbial communities for the identification of keystone

species may allow community-wide control strategies to be
formulated where other community-wide phenotypic outcomes
may be desirable, e.g., in the human gastrointestinal
tract. In silico analysis results presented in this paper were
obtained using the high performance computing facilities of the
University of Luxembourg51.
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Abstract 45 
Perturbations to the colonization process of the human gastrointestinal tract have been 46 
suggested to result in adverse health effects later in life. Although much research has 47 
been performed on bacterial colonization and succession, much less is known about 48 
the other two domains of life, archaea and eukaryotes. Here we describe the 49 
colonization and succession by bacteria, archaea and microeukaryotes during the first 50 
year of life (samples collected around days 1, 3, 5, 28, 150 and 365) within the 51 
gastrointestinal tract of infants delivered either vaginally or by caesarean section and 52 
using a combination of quantitative real-time PCR as well as 16S and 18S rRNA gene 53 
sequencing. Sequences from organisms belonging to all three domains of life were 54 
detectable in all of the collected meconium samples. The microeukaryotic community 55 
composition fluctuated strongly over time and early diversification was delayed in 56 
infants receiving formula milk. Caesarean section-delivered (CSD) infants 57 
experienced a delay in colonization and succession, which was observed for all three 58 
domains of life. Shifts in prokaryotic succession in CSD infants compared to 59 
vaginally delivered (VD) infants were apparent as early as on days 3 and 5, which 60 
were characterized by increased relative abundances of the genera Streptococcus and 61 
Staphylococcus, and a decrease in relative abundance for the genera Bifidobacterium 62 
and Bacteroides. Generally, a depletion in Bacteroidetes was detected as early as day 63 
5 postpartum in CSD infants, causing a significantly increased 64 
Firmicutes/Bacteroidetes ratio between days 5 and 150 when compared to VD infants. 65 
Although the delivery mode appeared to have the strongest influence on differences 66 
between the infants, other factors such as a younger gestational age or maternal 67 
antibiotics intake likely contributed to the observed patterns as well. Our findings 68 
complement previous observations of a delay in colonization and succession of CSD 69 
infants, which likely affects not only bacteria but also archaea and microeukaryotes. 70 
This further highlights the need for resolving bacterial, archaeal and microeukaryotic 71 
dynamics in future longitudinal studies of microbial colonization and succession 72 
within the neonatal gastrointestinal tract. 73 
 74 
Keywords 75 
fungi 76 
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infant gut microbiome 79 
amplicon sequencing 80 
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1. Introduction 83 
The human microbiome contributes essential functionalities to human physiology and 84 
is thought to play a crucial role in governing human health and disease (Greenhalgh et 85 
al., 2016). A growing body of evidence suggests that chronic diseases such as 86 
allergies (Abrahamsson et al., 2012; Abrahamsson et al., 2014), type 2 diabetes 87 
(Delzenne et al., 2015), obesity (Turnbaugh et al., 2006) and metabolic syndrome 88 
(Vrieze et al., 2012) are associated with a disequilibrium in the microbiome of the 89 
human gastrointestinal tract (GIT). 90 

 91 
The initial microbiome colonization process is crucial for the development and 92 
maturation of the GIT as well as the immune system of the developing infant 93 
(Houghteling et al., 2015; Björkstén, 2004; Caicedo et al., 2005; Rautava and Walker, 94 
2007; Eberl and Lochner, 2009). During vaginal delivery, a subset of the maternal 95 
bacterial community is supposedly transferred to the infant; in contrast, early-stage 96 
microbiome profiles from infants delivered by caesarean section (C-section) are 97 
typically not as reflective of the mothers’ vaginal or gastrointestinal environment 98 
(Dominguez-Bello et al., 2010; Bäckhed et al., 2015; Nayfach et al., 2016). Based on 99 
spatio-temporal studies in humans (Abrahamsson et al., 2014), it has been suggested 100 
that various disturbances in the initial microbiome colonization process as early as 101 
one month after birth may increase chronic disease susceptibilities over the course of 102 
human life (Houghteling et al., 2015; Cox et al., 2014; Arrieta et al., 2014). It has 103 
been previously observed that the delivery mode is the most important factor in 104 
determining the early colonization pattern(s) (Dominguez-Bello et al., 2010; 105 
Jakobsson et al., 2014), although other factors, such as diet (breast milk versus 106 
formula milk; Le Huërou-Luron et al., 2010), gestational age (term delivery versus 107 
preterm delivery; Barrett et al., 2013) or the maternal intake of antibiotics (Sekirov et 108 
al., 2008) have also been observed to have effects on this process. 109 
  110 
Even though the colonization and succession within the GIT have been studied 111 
extensively, the focus has mostly been directed to the bacterial domain. However, 112 
such a constrained view may lead to an underestimation of the contribution of the 113 
archaeal and eukaryotic domains, in particular microeukaryotes, such as unicellular 114 
parasites or yeasts, and could ultimately lead to incomplete conclusions (Horz, 2015).  115 
 116 
Within the archaeal domain, methanogenic archaea (mainly those belonging to the 117 
order Methanobacteriales) have been estimated to comprise between 108 and 1010 118 
cells per gram dry weight of stool (Miller and Wolin, 1986) and are considered almost 119 
ubiquitous inhabitants of the intestinal microbiome with a presence in up to 95.7% of 120 
all adult humans (Dridi et al., 2009). Methanogenic archaea are functionally important 121 
due to their ability to consume molecular hydrogen, which is both an end product and 122 
a concentration-dependent inhibitor of bacterial fermentation (Thauer at el., 2008). 123 
Consequently, methanogens drive the effective degradation of organic substances and 124 
play an important role in interspecies hydrogen transfer through maintaining 125 
syntrophic relationships with bacterial populations (Hansen et al., 2011). 126 
Additionally, gut methanogens have been linked to energy metabolism and adipose 127 
tissue deposition of the human host (Samuel et al., 2007), and the ability of certain 128 
archaea to produce methane may play a role in the pathogenesis of several intestinal 129 
disorders (Roccarina et al., 2010). Despite these observations, the simultaneous 130 
presence of archaea and bacteria has been ignored in the majority of studies on the 131 
gastrointestinal microbiome to date and details about neonatal colonization by archaea 132 
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remain limited. Previous studies have detected archaea transiently and almost 133 
exclusively in the first few weeks of life, and considerably less in samples collected 134 
after the fifth week of life (Palmer et al., 2007). Archaea have been sporadically 135 
detected in the vaginal environment before, although exclusively in women with 136 
bacterial vaginosis (Belay et al., 1990). As archaea are mainly inhabitants of the 137 
human GIT, but also colonize the skin surface (Probst et al., 2013) as well as the oral 138 
cavity (Nguyen-Hieu et al., 2013), a transfer from mother to infant by faecal-oral or 139 
oral-oral route seems thereby most probable. 140 
 141 
Eukaryotes and microeukaryotes, which form part of the human microbiota, have 142 
been shown to exert immunomodulatory effects on the host (Weinstock, 2012; 143 
Rizzetto et al., 2014). Furthermore, infections by parasitic eukaryotes have been 144 
linked to decreased allergic and autoimmune disease prevalence (Weinstock, 2012) 145 
and have been used for therapeutic interventions in that context (McFarland and 146 
Bernasconi, 1993; Williamson et al., 2016). However, the role of microeukaryotes 147 
within the human GIT microbiome and the resulting impact on the human host remain 148 
so far unresolved (Andersen et al., 2013). It has been previously reported that the 149 
overall microeukaryotic diversity of the adult human GIT is low but largely 150 
temporally stable (Scanlan and Marchesi, 2008), whereas other research suggested 151 
that the adult GIT microbiome harbors a complex microeukaryotic community with 152 
the most abundant taxa by far being fungi (Hamad et al., 2012). To date, a single 153 
study followed the initial colonization of the GIT by microeukaryotes using 18S 154 
rRNA gene amplicon sequencing in four newborn infants (Pandey et al., 2012), but 155 
failed to detect any microeukaryotes at the timepoints analyzed. However, this study 156 
might have been substantially limited by its sample collection as well as the applied 157 
sequencing technique. 158 
 159 
In our present work, a longitudinal study was conducted to describe the colonization 160 
and succession of the three domains of life within the GIT of newborns. More 161 
specifically, we investigated the microbiome changes during the first year of life 162 
among eight vaginally delivered (VD) infants and seven infants delivered by C-163 
section (CSD). The latter are statistically at a higher risk of developing metabolic 164 
disease such as obesity (Mueller et al., 2015) and/or related diseases like type 2 165 
diabetes (Nguyen and El-Serag, 2010), as well as allergic diseases such as atopic 166 
eczema (Abrahamsson et al., 2012) and asthma (Abrahamsson et al., 2014) in 167 
childhood and/or adulthood. Fecal samples were collected from all infants (VD and 168 
CSD) at six time points between day 1 and 1 year postpartum and, using quantitative 169 
real-time PCR (qPCR), we determined the sizes of prokaryotic (bacteria and archaea) 170 
and fungal populations, the relative quantities of archaea and validated the amounts of 171 
four selected bacterial genera and two phyla in the collected samples. Additionally, 172 
targeted high-throughput 16S and 18S rRNA gene amplicon sequencing was 173 
conducted on the isolated DNA. After processing and filtering of the resulting data, 174 
we compared the prokaryotic and microeukaryotic community structures in relation to 175 
the delivery mode and a multitude of other recorded maternal/neonatal characteristics. 176 
The resulting data provides a detailed overview of the neonatal colonization and 177 
succession patterns of members of all three domains of life.  178 
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2. Material and methods 179 
2.1 Sample collection, processing and biomolecular extraction 180 
2.1.1 Study context 181 
In the context of the national COSMIC study, pregnant women were recruited in 182 
Luxembourg starting in 2012. The 15 pregnant women included in the presented 183 
study were aged between 24 and 42 years and gave birth in the maternity department 184 
of the Centre Hospitalier de Luxembourg (CHL). This study was carried out in 185 
accordance with the recommendations of good clinical practices established by the 186 
‘International Council for Harmonisation of Technical Requirements for 187 
Pharmaceuticals for Human Use’ with written informed consent from all subjects. All 188 
subjects gave written informed consent in accordance with the Declaration of 189 
Helsinki. The protocol was approved by the Luxembourgish ‘Comité National 190 
d'Ethique de Recherche’ in 2011 (reference number 201110/06). 191 
 192 
2.1.2 Sample and data collection 193 
To mitigate pre-analytical confounders, fecal samples were immediately snap-frozen 194 
in liquid nitrogen or placed on dry ice following collection and were stored at -80 °C 195 
until further processing. Fecal samples were scheduled to be collected at day 1, day 3, 196 
day 5, day 28, day 150 and day 365. The medical histories of both parents and 197 
medication intake of the mother were recorded, as well as weight, date of birth, 198 
gender, mode of delivery and gestational age of the infant. Additional data, which was 199 
collected subsequently for all infants included weight, type of milk fed, medication 200 
intake including antibiotics and time point at which solid food was introduced. If an 201 
infant received formula at a specific point in time, it was considered as receiving 202 
combined feeding for the entire remainder of the study, as even short-term formula-203 
feeding has been shown to cause profound and long lasting shifts to the 204 
gastrointestinal microbiome composition (Guaraldi and Salvatori, 2012). 205 
Hospitalization in the neonatal care unit and administration of antibiotics to infants 206 
immediately postpartum as well as birth prior to 34 weeks of gestation were exclusion 207 
criteria. Additionally, a control fecal sample from a single healthy adult individual 208 
was collected and preserved under the same conditions as described previously. 209 
Samples and associated data were collected and stored at the Integrated BioBank of 210 
Luxembourg (IBBL) following ISO17025:2005 standards and the International 211 
Society for Biological and Environmental Repositories (ISBER) best practices.  212 

 213 
2.1.3. DNA extraction from fecal samples 214 
Pre-processing of all fecal samples (150-200 mg of weighed material) was carried out 215 
according to Shah et al. (2016, in press; subsection 3.2, steps 1-4). After high-speed 216 
centrifugation, DNA was extracted from the resulting interphase pellet using the 217 
PowerSoil® DNA isolation kit (MOBIO Laboratories, Belgium). The method was 218 
optimized for mechanical disruption with bead-beating to ensure a realistic 219 
representation of microbial communities (Walker et al., 2015). DNA quality and 220 
quantity were determined on 1 % agarose gels, by NanoDrop 2000c 221 
spectrophotometer (Thermo Fisher Scientific, USA) and Qubit 2.0 fluorometer 222 
(Thermo Fisher Scientific, USA). The extracted DNA was stored at -80 °C until 223 
qPCR validation and sequencing library construction.  224 

 225 
2.2 DNA analyses and sequencing 226 
2.2.1 Quantitative real-time PCR  227 
Extracted DNA was diluted, when applicable, to a concentration of 5 ng/µl and 228 
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amplified in duplicates, using previously published primers targeting prokaryotes, 229 
archaea or specific fungi as well as specific bacterial genera and phyla (Table 1), 230 
which were ordered and received from Eurogentec (Belgium). The reaction mixture 231 
contained 1 µl template DNA, 5 µl of Mastermix (iQ SYBR Green Supermix; Bio-232 
Rad Laboratories, USA), and 500 nMol of each primer, in a final reaction volume of 233 
10 µl. Genomic DNA isolated from Salmonella Typhimurium LT2 and 234 
Saccharomyces cerevisiae BY4743 was used to prepare standard curves for the 235 
universal prokaryotic and fungal primers, respectively. A sample pool, comprised of 236 
1 µl of undiluted DNA from each of the 65 samples, was used to prepare standard 237 
curves for all assays. All standard curves were prepared with a total of at least five 238 
successive 10-fold dilutions. qPCR was performed on a LightCycler 480 (Roche 239 
Diagnostics, Germany) with an initial denaturation step of 1 min at 95 °C followed by 240 
primer-specific cycling times (Table 1), a single fluorescence acquisition step at the 241 
end of the extension step and a final melting curve. Crossing point (Cp) values were 242 
calculated using the second derivative method within the Roche LightCycler 480 243 
software version 1.5. Absolute copy numbers of prokaryotic 16S and fungal 18S 244 
rRNA genes were calculated using the Cp values and the reaction efficiencies based 245 
on the standard curves obtained from defined DNA samples and extractions yields 246 
were estimated from these numbers. Relative concentrations of specific taxa 247 
compared to all 16S rRNA genes were calculated using Cp values and the standard 248 
curves obtained for the sample pool. Only samples where the target was positively 249 
detected in both duplicate reactions were considered for further analyses. 250 
 251 
2.2.2 16S/18S rRNA gene amplicon sequencing 252 
Specific sets of primers targeting 16S and 18S rRNA genes were chosen for the 253 
amplification and subsequent sequencing to broadly cover bacterial, archaeal and 254 
eukaryotic diversity. The bacterial and archaeal community structures of the 65 255 
samples were resolved by amplifying the V4 region of the 16S rRNA gene using the 256 
universal primers 515F and 805R (515F_GTGBCAGCMGCCGCGGTAA; 257 
805R_GACTACHVGGGTATCTAATCC) (Hugerth et al., 2014; Herlemann et al., 258 
2011). This primer pair covers the bacterial domain, including the phylum 259 
Actinobacteria and additionally resolves the archaeal domain.   260 
 261 
The eukaryotic community structures for 63 samples were analyzed by amplifying the 262 
V4 region of the 18S rRNA gene using primers 574*F and 1132R (574*F_ 263 
CGGTAAYTCCAGCTCYV; 1084r_CCGTCAATTHCTTYAART) (Hugerth et al., 264 
2014). Two samples did not yield sufficient amplicons (CSD infant 7 collected on 265 
days 1 and 3).  266 
 267 
The KAPA HiFi HotStart ReadyMix (Kapa Biosystems, Wilmington, MA, USA) was 268 
used for amplification with 25 cycles and according to the service provider’s 269 
standards. Paired-end sequencing with 2 x 300 nt was performed on an Illumina 270 
MiSeq platform with the V3 MiSeq kit at the Center of Analytical Research and 271 
Technology – Groupe Interdisciplinaire de Génoprotéomique Appliquée (CART-272 
GIGA; Liège, Belgium).  273 

 274 
2.2.3 16S rRNA and 18S rRNA gene sequencing data processing 275 
The raw 16S rRNA gene amplicon sequencing data were processed using the LotuS 276 
software (version 1.35) with default parameters (Hildebrand et al., 2014) and using 277 
the SILVA database (Quast et al., 2013; Yilmaz et al., 2014). After clustering the 278 
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reads into operational taxonomic units (OTUs) at 97% identity level, they were 279 
classified using the Ribosomal Database Project (RDP) classifier (Wang et al. 2007). 280 
OTUs with a confidence level below 0.8 at the domain level were discarded. The 281 
amplicon sequences belonging to the 100 most abundant OTUs were additionally 282 
manually curated for unspecific amplification. As only few archaeal reads were 283 
detected, the overall quality of the archaeal reads were manually assessed using the 284 
FASTQC results1. As the paired-end 18S rRNA gene amplicon reads obtained in this 285 
study did not overlap, a specifically tailored workflow was used to process the raw 286 
18S rRNA gene amplicon sequencing data2. For the classification step and the 287 
taxonomic assignment, the PR2 database (Guillou et al., 2013) was used according to 288 
Hu et al. (2016). 289 
 290 
2.2.4 16S rRNA and 18S rRNA gene sequencing data analysis 291 
For both prokaryotic and eukaryotic datasets, we removed OTUs that were 292 
represented by less than 10 reads in all of the sequenced samples. Samples yielding 293 
less than 5,000 16S rRNA gene amplicon reads necessary for assessing bacterial 294 
diversity (Lundin et al., 2012) were excluded. As the complexity of the 295 
microeukaryotic community structure is largely undetermined and no previous 296 
recommendations exist, no cutoff for the number of 18S rRNA gene amplicon reads 297 
was applied. All statistical analyses and visualisations were performed using the R 298 
statistical software package (version 3.2.0) (R Development Core Team, 2008). Per-299 
sample normalization, calculations of richness, diversity (Shannon’s diversity index), 300 
evenness (Pielou’s evenness index), dissimilarity index (distance to the most mature 301 
sample, calculated using Soerensen’s similarity index of presence/absence of taxa at 302 
each individual time point compared to samples collected at the last individual time 303 
point) and non-parametric estimation of minimum community richness according to 304 
Chao et al. (1984) were performed using the ‘vegan’ package3. For the calculations of 305 
diversity and evenness indices for microeukaryotes, only samples with a total of more 306 
than 10 reads were considered. Differential analysis of relative OTU abundances 307 
based on read count data for the 16S rRNA gene amplicon sequencing dataset was 308 
done using the ‘DESeq2’ package (Love et al., 2014), which allows testing for 309 
differential abundance using negative binomial generalized linear models and 310 
multiple-testing adjustment by controlling the false discovery rate (Benjamini and 311 
Hochberg, 1995). Adobe Illustrator (version 19.1.0) was used for labeling axes and 312 
creating multi-plot graphs. 313 
 314 
Various neonatal characteristics that were previously shown to have an impact on the 315 
microbiome (e.g. delivery mode, fed milk type, gestational age, maternal antibiotic 316 
and probiotic intake, positive screening for Group B Streptococcus (Streptococcus 317 
agalactiae) colonization of the mother) were compared between samples using the 318 
Wilcoxon rank sum test or Kruskal-Wallis test where applicable and comparisons 319 
with P-value <0.05 were considered statistically significant. Principal coordinate 320 
analysis (PCoA) graphs were generated using the Jensen-Shannon distance as 321 
implemented in the R package ‘phyloseq’ (McMurdie and Holmes, 2013) and clusters 322 
were defined using the partitioning around medoids (pam) function contained in the R 323 
package ‘cluster’ (Maechler et al., 2015). 324 
 325 
 326 
 327 
 328 
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3. Results 329 
3.1 Cohort characteristics 330 
65 fecal samples were collected between September 2012 and April 2014 at the CHL 331 
from eight healthy VD and seven healthy CSD infants at six time points (samples 332 
collected around days 1, 3, 5, 28, 150 and 365). The birth weights as well as the 333 
gestational ages of the infants were similar, while the ratios of genders, the maternal 334 
age and the maternal postnatal BMI differed between both groups, with the CSD 335 
group comprising more male infants as well as mothers with a higher average age and 336 
postnatal BMI (Table 2). Three mothers who gave birth vaginally screened positively 337 
for Group B Streptococcus, whereas all mothers giving birth by C-section were 338 
screened negatively. Clinical healthcare guidelines in Luxembourg recommend that 339 
mothers who were screened positively for Group B Streptococcus should be treated 340 
intravenously with antibiotics prior to birth. Although mothers undergoing C-section 341 
were preferentially treated with antibiotics prior to birth, the majorities of both 342 
cohorts received antibiotic treatment (Table 2). Two of the three mothers who did not 343 
receive any antibiotics prior to birth chose to take probiotics during their pregnancies, 344 
whereas none of the other mothers recorded any probiotic supplementation. Out of 345 
eight VD infants, four were fed purely with maternal breast milk, while two others 346 
received formula milk and the remaining two were fed a combination of formula and 347 
breast milk. Out of the seven CSD infants, five were purely fed breast milk and the 348 
remaining two received a combination of breast milk and formula (Supplementary 349 
File 1, Table S1). According to the self-assessment of mothers that were purely 350 
breastfeeding, both the frequency and duration of feeding were not significantly 351 
different between VD and CSD infants. Introduction of solid food occurred in average 352 
around day 150 for all infants. 353 

 354 
3.2 Assessment of bacterial, fungal and archaeal load using real-time PCR 355 
Specific qPCR assays using previously published primers were used to obtain 356 
quantitative information on the individual taxonomic groups of interest (Table1). 357 
Absolute yields of extracted DNA were quantified and prokaryotic and fungal DNA, 358 
as well as the relative quantities of archaea were calculated based on the ratio between 359 
the relative concentrations obtained for the universal prokaryotic primer pair and the 360 
relative concentrations obtained for archaea (Fig 1). As negative controls for the 361 
qPCR quantifications, sample-free ‘DNA mock extracts’ were prepared and subjected 362 
to qPCR analyses. The detection of organisms in the mock extracts reflecting the 363 
three domains of life was negative for the archaea- and fungi-specific primer sets 364 
whereas the universal prokaryotic primer set resulted in the detection of a minimal 365 
amount of DNA close to the qPCR detection limit, (average concentration of 0.002 366 
ng/µl measured for the ‘DNA mock extracts’ as opposed to 0.3 ng/µl measured for 367 
meconium samples, i.e. the earliest fecal material excreted by infants, which had the 368 
lowest observed concentrations amongst all study samples). Therefore, the mock 369 
extracts and subsequent analyses did not indicate the presence of reagent-derived 370 
contaminants. 371 
 372 
The qPCR-based quantification of prokaryotic DNA was successful for 64 out of 65 373 
samples, with yields ranging from 0.2 ± 0.4 ng of DNA per mg of stool (average ± 374 
standard deviation) in the meconium samples of day 1, to 16.6 ± 6.4 on day 365.  375 
Generally, the prokaryotic load of both cohorts increased considerably after the 376 
introduction of food. The DNA yields were dependent on the collection time point, 377 
and the greatest differences were observed between day 1 and all other collection time 378 
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points (Fig.1A; for all significant differences between collection time points, see 379 
Supplementary File 1, Table S2). Moreover, at day 5 significantly lower extraction 380 
yields (P-value = 0.03; Wilcoxon rank sum test) were observed for samples derived 381 
from infants whose mothers received antibiotics prior to birth (Supplementary File 1, 382 
Fig. S1). 383 
 384 
The presence of archaea was detected in 91% of all samples (59 out of 65 samples) 385 
and the relative concentration of archaeal DNA in relation to the mean of all samples 386 
ranged from 5.5 ± 7.8 on day 1 to 0.5 ± 0.4 on day 365. Generally, more samples 387 
were found to be positive in VD (97 % of VD infant samples) than in CSD infants 388 
(86 % of CSD infant samples) and archaeal presence was as well detected in the 389 
samples from the very first time points (Fig. 1B).  390 
 391 
Presence of fungal organisms was detected in 37 % (24 out of 65 samples) of all 392 
samples, ranging from 0.0007 ± 0.0005 ng of fungal DNA per mg of stool on day 3 to 393 
0.002 ± 0.002 ng of fungal DNA per mg of stool on day 365, with generally more 394 
samples being positive for fungi in VD (43 % of VD infant samples) compared to 395 
CSD infants (31 % CSD infant samples). Fungi were detected earliest at day 3 in VD 396 
and at day 5 in CSD infants. The fungal DNA yield tended to increase over time, even 397 
though the magnitude of the increase was smaller compared to prokaryotes (Fig. 1C).  398 
 399 
3.3 Validation of GIT microbiome profiles in low-yield samples  400 
The absolute quantification of prokaryotic 16S rRNA gene copy numbers in all 401 
samples showed that the earliest samples contained significantly less microbial DNA 402 
compared to all other visits (Fig. 1, Supplementary File 1, Table S2). In order to 403 
exclude any biases by low-yield samples (Salter et al., 2014; Jervis-Bardy et al., 404 
2015), we extracted an additional adult stool sample using the same protocol and 405 
created a dilution series ranging from 2 to 0.002 ng/µl. The four DNA dilution 406 
samples were 16S rRNA gene amplicon sequenced using the same primer pair as for 407 
the collected study samples (see the reported results below).  408 
 409 
The undiluted sample, reflecting the concentration of most samples in the study (Fig. 410 
1), and all three dilutions, simulating low-yield samples, showed highly comparable 411 
diversity and evenness indices (Supplementary File 1, Fig. S2A). For richness, the 412 
undiluted sample and both 10-fold and 100-fold diluted samples had highly 413 
comparable results, while the 1,000-fold dilution caused a slight decrease. This loss of 414 
observed richness is also reflected in a slightly increased dissimilarity index for the 415 
1,000-fold diluted sample compared to the undiluted sample. Considering the 416 
observed taxonomic composition with decreasing DNA concentration, all three 417 
dilutions showed high resemblance to the undiluted sample, while the 100-fold and 418 
1,000-fold dilutions showed slightly over-estimated relative abundances for 419 
Roseburia spp. and Collinsella spp. and a slight under-estimation for Bacteroides spp. 420 
(Supplementary File 1, Fig. S2B). However in each case, a similar taxonomic profile 421 
to the one in the undiluted sample was observed and potential reagent contaminants or 422 
sequencing artifacts did not have a significant effect on the taxonomic composition in 423 
the low-yield samples. These data indicated that the chosen approach allowed the 424 
comparison of samples with low extraction yields to those with higher yields.  425 
 426 
 427 
 428 
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3.4 Generated amplicon sequencing data 429 
After the 16S rRNA gene sequencing and following the primary data processing and 430 
filtering, a total of 13,136,451 reads were retained and used for the subsequent 431 
analyses. With 205,000 ± 90,000 reads per sample (average ± standard deviation), a 432 
total of 1,053 unique OTUs were identified. One out of the 65 samples was excluded 433 
from further 16S rRNA gene sequencing analysis due to poor coverage (sample 434 
collected at day 3 for VD infant 8).  435 
 436 
For the processed 18S rRNA gene amplicon sequence data, only OTUs reflecting the 437 
microeukaryotic members of the microbiome were considered. To achieve this, we 438 
manually curated the dataset of initially 3,376,004 reads by removing classified OTUs 439 
that belonged to the following clades containing multicellular organisms: Metazoa 440 
(total of 3,302,231 reads), Chlorophyta (total of 4,611 reads), Streptophyta (total of 441 
7,414 reads) and Agaricomycetes (7,038 reads). After filtering out OTUs that were 442 
represented by less than 10 reads, a total of 60,476 reads (average of 960 ± 1,540 443 
reads per sample) and 152 microeukaryotic OTUs were retained for the subsequent 444 
analyses.  445 

 446 
3.5 Prominent bacterial, archaeal and microeukaryotic taxa 447 
In order to resolve which specific taxa were present during neonatal GIT colonization, 448 
we first identified the most common and abundant OTUs in the 16S rRNA gene 449 
amplicon sequencing data, which belonged to the phyla Proteobacteria, 450 
Actinobacteria, Firmicutes, Bacteroidetes and Verrucomicrobia (Fig. 2A). Bacterial 451 
genera present in all samples (‘core populations’) included Bifidobacterium spp., 452 
Escherichia/Shigella spp., Bacteroides spp., Streptococcus spp. and Enterococcus 453 
spp., with the first three genera also being the bacterial taxa represented by the most 454 
reads out of the total of sequencing reads in all samples (Supplementary File 2).  455 
 456 
Within the 16S rRNA gene sequencing data, two OTUs belonging to the domain 457 
archaea were identified. OTU 1128 was assigned to the genus Methanosphaera and 458 
comprised a total of 25 reads in a single sample (day 1 for a VD5, 0.02 % of reads; 459 
Supplementary File 2). Despite being low in abundance, reads of OTU 1128 460 
(Methanosphaera sp.) were of good quality and allowed us to confidently ascertain 461 
the presence of this organism in this sample (Supplementary File 1, Fig. S3A-B). 462 
Meanwhile, OTU 693, assigned to the genus Methanobrevibacter, was found in four 463 
samples represented by one to 11 reads but showed insufficient sequence quality for a 464 
confident classification (Supplementary File 1, Fig. S3C-D).   465 
 466 
Overall, microeukaryotic taxa were less frequent in the individual samples compared 467 
to bacterial taxa, with fewer OTUs and without specific ‘core’ OTUs, which were 468 
detected in all samples. The most represented fungal phyla in all samples belonged to 469 
the phyla Basidiomycota and Ascomycota (Fig. 2B), with the genus Saccharomyces 470 
and the class Exobasidiomycetes having been detected in more than 40 % of the 471 
samples (Supplementary File 3).  472 
 473 
Interestingly, meconium samples already presented a relatively large diversity of 474 
different prokaryotic and microeukaryotic populations. For prokaryotes, a total of 674 475 
OTUs were detected in the 10 collected meconium samples (miniumum of 109 OTUs, 476 
maximum of 347; Supplementary File 4). OTUs that were detected in all meconium 477 
samples included Escherichia/Shigella spp. and Bifidobacterium spp., which were 478 
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also two of the taxa with the highest read counts over all samples. Enterobacter spp., 479 
Staphylococcus spp., Streptococcus spp., Veillonella spp., Bacteroides spp., 480 
Prevotella spp., Clostridium sensu stricto spp., Delftia spp. and Blautia spp. were also 481 
detected across all meconium samples. For the microeukaryotic community, a total of 482 
45 OTUs were detected in the 9 sequenced meconium samples (Supplementary File 483 
5). The most frequently detected OTU (in 77.8 % of meconium samples) belonged to 484 
Exobasidiomycetes spp., while Saccharomyces spp., represented by the two most 485 
dominant OTUs with the highest relative abundances, were detected in more than half 486 
of the meconium samples.   487 
 488 
3.6 Colonization and succession 489 
As the amount of microbial DNA in the infants’ stool increased with time, we 490 
analyzed whether the increase in microbial biomass was accompanied by a change in 491 
community characteristics such as richness or diversity. Based on the 16S and 18S 492 
rRNA gene amplicon data, we calculated overall richness, diversity, evenness and 493 
dissimilarity indices for the prokaryotic (bacterial and archaeal) (Fig. 3A-D) and 494 
microeukaryotic (Fig. 3E-H) datasets over the entire cohort. Non-parametric 495 
estimation of community richness for the individual time points according to Chao et 496 
al. (1984) for prokaryotes and microeukaryotes showed comparable trends to the 497 
estimation of richness based on the numbers of different OTUs (Supplementary File 498 
1, Fig S4). Given the sparseness and low abundance of archaeal OTUs detected by 499 
16S rRNA gene amplicon sequencing, the observed patterns regarding prokaryotic 500 
diversity were mostly driven by bacterial taxa. 501 
 502 
A significantly higher bacterial richness (number of different OTUs) was observed for 503 
the meconium samples compared to all other collection time points (Fig. 3A, 504 
Supplementary File 1, Table S3). In general, the inter-individual variability in 505 
richness was high on the first two sampling dates. The lowest richness of any sample 506 
was observed on day 3 postpartum and the overall median richness was lowest on day 507 
5. The median richness increased subsequently and stabilized between day 28 and 150 508 
(Fig. 3A). The observed microeukaryotic richness tended towards a lower median 509 
richness at the end of the first year and showed a high level of variability throughout 510 
the first year of life (Fig. 3E; Supplementary File 1, Table S4).  511 
 512 
Shannon diversity and evenness metrics (Fig. 3B and Fig. 3C respectively) showed 513 
comparable trends for prokaryotic OTUs, i.e. a decrease in diversity and evenness 514 
with a concomitant decrease in variation in both diversity and evenness between 515 
individuals until day 5 postpartum. This was followed by a gradual increase for the 516 
subsequent collection time points. The observed microeukaryotic diversity and 517 
evenness (Fig. 3F and Fig. 3G respectively) followed no discernible trends compared 518 
to the bacterial data and exhibited constantly high levels of inter-individual variation. 519 
When linking samples according to the type of milk the infants received per time 520 
point, it became apparent that at day 5 and 28, infants that received combined feeding 521 
and formula-fed infants had a significantly lower microeukaryotic diversity compared 522 
to breast milk-fed infants (P-value = 0.01 at day 5 and P-value = 0.03 at day 28; 523 
Kruskal-Wallis test).  524 
 525 
We calculated the Soerensen distance between the community structure at each time 526 
point and the community structure of the same individual in the most mature sample, 527 
i.e. usually the sample collected at 1 year, and compared the distances as a measure 528 
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for maturity. For the prokaryotic dataset, the distances to the most mature sample 529 
exhibited a decreasing trend over time (Fig. 3D). The observed patterns suggested a 530 
gradual development towards the 1 year samples, with day 150 exhibiting 531 
significantly more similarities to the most mature samples compared to the samples 532 
collected at day 1 (P-value = 0.009; Wilcoxon rank sum test). The same trend was 533 
observed for the Spearman correlation between the different time points 534 
(Supplementary File 1, Fig. S5A), with samples of day 150 being significantly more 535 
correlated to the most mature microbiome than samples of day 1 (P-value = 0.004; 536 
Wilcoxon rank sum test). In contrast, the distances to the most mature microbial 537 
composition for the microeukaryotic microbiota (Fig. 3H) as well as the Spearman 538 
correlation (Supplementary File 1, Fig. S5B) displayed high variability among infants 539 
and between time points, and remained variable over time without reaching a certain 540 
level of maturity in regard to the 1 year samples. 541 

 542 
3.7 Comparison of microbiome community profiles of VD and CSD infants 543 
Absolute quantification of 16S rRNA gene counts by qPCR showed that CSD infants 544 
carried significantly lower bacterial loads and thereby a decreased colonisation 545 
density at day 3 and day 150 (P-value = 0.03 and P-value = 0.04 respectively; Fig. 546 
1A; Wilcoxon rank sum test). At the same time, CSD infants had microbial 547 
community structures with a significantly higher richness compared to VD infants at 548 
day 3 (P-value = 0.02; Wilcoxon rank sum test; Fig. 3A).  549 
 550 
To provide an overview of the development of the microbiome of the eight VD (34 551 
samples) and the seven CSD infants (30 samples), the 16S and 18S rRNA gene 552 
amplicon data were represented by an ordination of their respective Jensen–Shannon 553 
distances (Fig. 4), a method that is commonly used for human microbial community 554 
structure analyses (Koren et al., 2013). Clusters on the PCoA plots were defined by 555 
partitioning around medoids (Maechler et al., 2015). For the prokaryotic community 556 
structure, samples collected at one year clustered together independently of delivery 557 
mode (Cluster I in Fig. 4A and B), whereas most samples collected for CSD infants 558 
around days 3 and 5 postpartum were located in Cluster II (Fig. 4B). In order to 559 
identify cluster-specific taxa, we compared the taxa in both clusters using DESeq2, 560 
resulting in 52 OTUs that were significantly different in their DESeq2-normalized 561 
read numbers between both clusters (Supplementary File 6). Among the top 10 OTUs 562 
with the smallest adjusted P-values ranging from 1.41*10-18 to 3.06*10-04, 6 OTUs 563 
belonged to the genus Streptococcus and always one OTU belonged to the genera 564 
Proteus, Haemophilus and Rothia, which all exhibited increased abundances in 565 
Cluster II; and one OTU classified as Bifidobacterium spp. which was more abundant 566 
in Cluster I. 567 
 568 
Similar to the 16S rRNA gene sequence data, the 18S rRNA data exhibited two 569 
clusters (Fig. 4C and 4D). One cluster (Cluster III) comprised all samples except for 570 
the samples belonging to three VD infants (Cluster IV), while the microeukaryotic 571 
community composition of one VD infant transitioned between both clusters (Fig. 572 
4C). When comparing the taxonomic compositions in samples between both clusters 573 
(III and IV) using the Wilcoxon rank sum test and adjusting for multiple testing, eight 574 
OTUs, with six unclassified OTUs and two OTUs classified as Candida spp., were 575 
detected to be differentially abundant in both clusters with P-values ranging between 576 
5.94*10-10 to 2.63*10-02 (Supplementary File 7). These OTUs were increased in 577 
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abundance in samples belonging to Cluster IV, but were most often missing or 578 
decreased in abundance in samples from Cluster III. 579 
 580 
3.8 Depletion of Bacteroidetes in CSD infants 581 
The most profound difference between CSD and VD infants was observed for the 582 
Firmicutes/Bacteroidetes ratio. While both phyla were approximately equally 583 
abundant in the VD infants (Fig. 5), the corresponding ratio was significantly higher 584 
for CSD infants at days 5 (P-value = 0.006), 28 (P-value = 0.005) and 150 (P-value = 585 
0.01; Wilcoxon rank sum test) while the proportional abundance for the phylum 586 
Bacteroidetes was significantly decreased in samples from CSD infants over most of 587 
the sampling time points (day 5: P-value = 0.006, day 28: P-value = 0.003, day 150: 588 
P-value = 0.01, day 365: P-value = 0.04; Wilcoxon rank sum test; Supplementary File 589 
1, Fig. S6A). At the same time, there was a concomitant increase in Firmicutes at day 590 
5 in CSD infants (P-value = 0.01; Wilcoxon rank sum test). Preceding the drastic 591 
decrease in Bacteroidetes at day 5, there was already a significant difference at day 3 592 
between infants born at different gestational ages, whereby full term (≥39 weeks) 593 
infants showed a higher relative abundance of Bacteroidetes when compared to late 594 
preterm (34-36 weeks) and early term (37-38 weeks) born infants (P-value = 0.05; 595 
Kruskal Wallis test; Supplementary File 1, Fig. S7).  596 
 597 
In addition, we also more specifically analyzed richness, evenness and diversity 598 
within the Bacteroidetes phylum (Fig. 6). We observed a significant decrease in the 599 
Bacteroidetes richness in CSD infants at day 28 compared to VD infants (P-value = 600 
0.01; Wilcoxon rank sum test; Fig. 6A). The relative abundance of the genus 601 
Bacteroides, which made up more than 10 % of the reads in most VD infants at days 602 
28 and 150, exhibited a significant decrease in abundance associated with a delayed 603 
colonization in CSD infants (P-value = 0.04 at day 28 and 0.01 at day 150; Wilcoxon 604 
rank sum test; Supplementary File 1, Fig. S6B). Due to this significant decrease in 605 
relative abundance of Bacteroides spp. compared to earlier and later time points in 606 
CSD infants and the subsequent shift in dominance inside the Bacteroidetes phylum, 607 
the diversity and evenness inside this phylum at day 28 were significantly increased 608 
(P-value = 0.005 for both; Wilcoxon rank sum test; Fig. 6B and Fig. 6C). The 609 
different measures of diversity and evenness within the Firmicutes phylum did not 610 
show any significant differences between both delivery modes.  611 

 612 
3.9 Additional differences in prokaryotic community structure in CSD infants 613 
We further aimed to determine whether other bacterial taxa also showed different 614 
changes in CSD infants compared to VD infants during the first year of life. We 615 
identified taxa that were differentially abundant according to delivery mode and at 616 
each collection time point. After filtering the resulting 88 differentially abundant 617 
OTUs according to a cumulative read count above 10,000, we retrieved 29 OTUs with 618 
a positive fold change in CSD infants compared to VD infants and four OTUs that 619 
exhibited a negative fold change (Supplementary File 8). The same analysis was 620 
performed at the genus level and resulted in three genera with a negative fold change 621 
and 20 with a positive fold change in CSD compared to VD infants (Supplementary 622 
File 9).  623 
 624 
The fecal microbiome of CSD infants was associated with increased proportional 625 
abundances of, amongst others, OTUs assigned to the genera Haemophilus spp., 626 
Streptococcus spp., Enterobacter spp., Propionibacterium spp., Staphylococcus spp. 627 
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and the genus Lactobacillus over the first year of life. Furthermore, the microbiome of 628 
CSD infants contained lower proportions of Bacteroides spp. and Parabacteroides 629 
spp. 630 
In order to validate that CSD infants harboured substantially different relative 631 
abundances of certain prokaryotic populations compared to VD infants at certain time 632 
points, we amplified specific target regions of the genera Staphylococcus spp. and 633 
Streptococcus spp. (at days 3 and 5), Haemophilus spp. and Lactobacillus spp. (at 634 
days 3 and 28) and the two phyla Firmicutes and Bacteroidetes (at days 5 and 28), to 635 
calculate their relative abundances. Validation by qPCR was done on samples that 636 
were collected on days on which the differences in relative abundances between both 637 
delivery modes were most pronounced. All targeted differences between CSD and 638 
VD children obtained in the previous differential analysis could be confirmed by 639 
qPCR analysis for the specific collection time points (Fig. 7).  640 
 641 
4. Discussion  642 
4.1 Detection of prokaryotic and microeukaryotic communities in meconium 643 
A number of recent studies indicate that meconium samples are not sterile but contain 644 
complex bacterial communities (Jiménez et al., 2008; Gosalbes et al., 2013; Ardissone 645 
et al., 2014). In this context, the previously accepted dogma of intrauterine sterility 646 
has been questioned. According to our results based on qPCR analyses as well as 16S 647 
and 18S rRNA gene amplicon sequencing, representatives of all three domains of life 648 
were present in meconium samples. Given that DNA yield out of meconium samples 649 
was limited (Fig. 1), it could be possible that this microbial DNA might not be 650 
derived from the samples but may in fact represent contaminants of the reagents used 651 
for DNA extraction (Salter et al., 2014; Jervis-Bardy et al., 2015). However, 652 
according to simultaneously conducted analyses, even a 1,000-fold dilution of DNA 653 
extracted from an adult stool sample did not considerably change the taxonomic 654 
composition compared to the undiluted and 10- to 100-fold diluted samples 655 
(Supplementary File 1 Fig. S2B). From these results, we deduced that potential 656 
reagent contaminants did not have any significant impact on the overall composition 657 
observed in our study. Moreover, the fact that we observed a significantly increased 658 
prokaryotic richness and diversity in meconium samples (Fig.3A-B) stood in stark 659 
contrast to the results from the dilution series, which revealed a decreased richness 660 
along with a stable diversity in the low-yield samples due to several taxa being diluted 661 
out of the adult stool sample during the 1,000-fold DNA dilution process 662 
(Supplementary File 1 Fig. S2A). Additionally, the sequencing of all ‘DNA mock 663 
extracts’ yielded very low coverage, while the detection of representatives of all three 664 
domains of life by qPCR could be considered negative as well. Taking these results 665 
into account, we suggest that the detection of taxa inside the meconium samples was 666 
not an artifact but had to be considered genuine. Whether the neonatal GIT was 667 
colonized prenatally or whether detected microbial populations were acquired 668 
perinatally could not be assessed in the context of our study. 669 
 670 
The bacterial richness was significantly higher in meconium samples than at later 671 
time points. Samples from the first day were also highly diverse and the taxa were 672 
evenly distributed compared to subsequent collection time points, which suggests that 673 
these samples captured the potential early pioneering microbiota, most of which did 674 
not stably colonize the GIT thereafter. Subsequently, the richness decreased during 675 
the following days as the initial colonizers took hold in the GIT. Some of the taxa 676 
detected in the meconium samples may have been present in later samples but were 677 
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not captured due to the masking by the dominant taxa. At day 1, the most abundant 678 
bacterial taxa in all infants were Escherichia/Shigella spp., Bifidobacterium spp., 679 
Enterobacter spp., Staphylococcus spp., Streptococcus spp., Prevotella spp. and 680 
Veillonella spp., which have all been previously described in meconium samples as 681 
being pioneering genera of the human GIT (Gosalbes et al., 2013; Ardissone et al., 682 
2014; Hansen et al., 2015). The latter four are either present predominantly on skin 683 
(Dominguez-Bello et al., 2010), in colostrum or are typical inhabitants of the oral 684 
cavity (Cabrera-Rubio et al., 2012). Pioneering bacterial colonizers of the microbiome 685 
are usually facultative anaerobes, such as Escherichia spp. (Jiménez et al., 2008), as 686 
also observed in our study. These pioneers shape the gastrointestinal microbiome 687 
environment, promoting the subsequent colonization by strict anaerobes such as 688 
Bacteroides spp., Clostridium spp., and Bifidobacterium spp., which were already 689 
detected in samples collected on day 1 in our study. Overall, the earliest bacterial 690 
colonizers detected in all meconium samples included both facultative and strict 691 
anaerobic taxa suggesting that the GIT rapidly transitions towards an anaerobic 692 
environment after birth. Bifidobacterium spp., which was the taxon with the highest 693 
read counts across all samples, are important for neonatal health and are known to 694 
have beneficial effects for the host through their breakdown of dietary carbohydrates, 695 
the products of which directly feed into host metabolism (Davis et al., 2011). 696 
Bifidobacterium spp. are colonizers of the vaginal microbiome and are supposedly 697 
transferred to the infant during vaginal delivery (Dominguez-Bello et al., 2010). 698 
However, while in line with previous findings (Jakobsson et al., 2014), no significant 699 
difference in Bifidobacterium spp. abundances between VD and CSD infants could be 700 
detected for meconium samples, suggesting that other routes of transmission are also 701 
very likely during neonatal colonization. Additionally, the growth of this specific 702 
taxon is promoted selectively by prebiotic oligosaccharides present in the maternal 703 
colostrum and breast milk (Zivkovic et al., 2011; Yu et al., 2013).  704 
 705 
Results from the quantitative real-time PCR assay suggested that archaea, even if low 706 
in abundance, were amongst the earliest colonizers of the neonatal GIT microbiome. 707 
The only methanogenic archaeon that was identified using the 16S rRNA gene 708 
amplicon sequencing was Methanosphaera spp., which was exclusively detected in 709 
VD infant 5 at day 1. This human archaeal commensal has a highly restricted energy 710 
metabolism (Fricke et al., 2006), which makes it a specialized member of the 711 
gastrointestinal microbiome. Archaea have been shown to be ubiquitous members of 712 
the adult GIT microbiome (Dridi et al., 2009), were sporadically detected in the 713 
vaginal environment (Belay et al., 1990), and were shown to colonize the skin surface 714 
(Probst et al., 2013) and the oral cavity (Nguyen-Hieu et al., 2013). As the presence of 715 
archaea was also apparent in CSD infants and also in samples collected at day 1 in our 716 
study, we can postulate that transmission paths besides vaginal transmission, such as 717 
fecal-oral, oral-oral or by skin contact most probably occur perinatally. 718 
 719 
The earliest microeukaryotic colonizers included Exobasidiomycetes spp. and 2 OTUs 720 
classified as Saccharomyces spp., which were detected in meconium from CSD 721 
infants, whereas Dothideomycetes spp. and Pezizomycotina were detected mostly in 722 
VD infants. A recent study found Saccharomyces spp. and Dothideomycetes spp. to 723 
be present in more than half of the analyzed adult stool samples (Mar Rodríguez et al., 724 
2015), which make them common taxa of the human GIT microbiome. As the vaginal 725 
tract is largely colonized by yeasts such as Saccharomyces spp., vaginal delivery is 726 
supposedly linked to neonatal colonization by yeasts through vertical transmission 727 
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from the mother’s vaginal microbiome or through horizontal transmission from the 728 
environment and hands of family members as well as health care workers (Bliss et al., 729 
2008; Lupetti et al., 2002). 730 
 731 
If pioneering microbiota, including representatives from all three domains of life, 732 
have the potential to colonize the GIT microbiome prenatally (Greenhalgh et al., 733 
2016), according to our results, birth still marked the time point of extensive 734 
microbial colonization, which further defined microbial succession. Clearly, more 735 
work needs to be undertaken on meconium and the crucial first hours of life to 736 
ascertain the different sources of the pioneering microbiota. 737 
 738 
4.2 Colonization and succession within the neonatal GIT microbiome by 739 
prokaryotes and microeukaryotes during the first year of life 740 
The progressive nature of neonatal GIT colonization and succession by prokaryotes 741 
was apparent through an increase in absolute prokaryotic DNA load (Fig. 1), overall 742 
alterations to community compositions (Fig. 2) as well as changes in richness, 743 
diversity and evenness (Fig. 3). A general trend regarding the prokaryotic community 744 
members is that their structure matures over the course of the first year of life. This 745 
maturation was reflected by increases in diversity and evenness over time, which has 746 
already been reported in previous studies (Jakobsson et al., 2014; Yatsunenko et al., 747 
2012). However, in our study, significant differences in diversity and evenness 748 
between subsequently sampled time points were observed as early as between days 5 749 
and 28 (Fig. 3B-C). The prokaryotic richness stabilized between days 28 and 150 750 
(Fig. 3A). Similarly, the dissimilarity index, reflecting the distance of the taxonomic 751 
composition of each sample to the last collected sample per child, showed a 752 
decreasing trend (Fig. 3D), highlighting that the microbiome composition gradually 753 
changed from a neonatal profile towards the most mature composition available by 1 754 
year of age.  755 
 756 
A previous study, focusing on neonatal colonization, has found archaea to be 757 
transiently and almost exclusively present in the first few weeks of life during their 758 
sample collection, which was conducted until around 17 months (Palmer et al., 2007), 759 
whereas archaea are considered core members of the adult GIT microbiome (Dridi et 760 
al., 2009). While archaea could not be identified confidently by amplicon sequencing 761 
in our study after the first day, the more sensitive qPCR assays suggested that they 762 
were indeed present in 90% of all samples, opposing previous results and highlighting 763 
their potential importance in the maintenance of inter-species community networks 764 
(Hansen et al., 2011). Although the 16S rRNA gene amplifying primer used for 765 
sequencing covered both domains bacteria and archaea, the nature of GIT microbiome 766 
profiles, with bacteria making up the large majority of the composition, likely caused 767 
a lack of primer availability for archaea, potentially explaining why this domain was 768 
more extensively detected with qPCR using the archaea-specific primers rather than 769 
using the more generic 16S rRNA gene primers used for the amplicon sequencing. In 770 
the future, dedicated archaeal and bacterial primer sets may be used to allow better 771 
resolution of the archaea. 772 
 773 
When considering the microeukaryotic community, no clear successional patterns 774 
were discernible. In line with previous studies involving culture-independent analyses 775 
of the GIT microbiome, most detected fungal taxa belonged to the phyla Ascomycota 776 
and Basidiomycota (Scanlan and Marchesi, 2008; Ott et al., 2008). In contrast to 777 
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previous reports on adult GIT microbiota (Scanlan and Marchesi, 2008), identities and 778 
abundances of detected microeukaryotic taxa fluctuated strongly throughout the first 779 
year of life. Similarly, richness, diversity and evenness indices did not follow 780 
discernible trends over time (Fig. 3E-G). However, we found a more rapid 781 
microeukaryotic diversification in infants who were fed exclusively breast milk 782 
between days 5 and 28. This suggests a possible link between the infants’ feeding 783 
regimes and early changes to microeukaryotic community development in the human 784 
GIT. When considering the intra-individual dissimilarity index in addition to the 785 
apparent large inter-individual variation, our findings indicated that the 786 
microeukaryotic community members were more dynamic compared to their 787 
prokaryotic counterparts (Fig. 3H). A previous study in the mouse GIT observed 788 
similar results with fungal populations varying substantially, while bacterial 789 
populations remained relatively stable over time (Dollive et al., 2013). Typically, only 790 
a small number of common genera, such as the genus Saccharomyces, and a large 791 
number of spurious taxa that have been barely reported previously have been 792 
described to form part of the human GIT microbiome (Suhr et al., 2015). The specific 793 
characteristics of these rare taxa suggest that they do not persist inside the GIT 794 
microbiome but are likely more transient in nature when compared to bacteria (Suhr 795 
et al., 2015). Also, fewer microeukaryotic species and individual microeukaryotes are 796 
found in the human GIT than bacteria, potentially explaining why the 797 
microeukaryotic community may be less robust in comparison to bacteria (Underhill 798 
and Iliev, 2014). Furthermore, according to our results, the general lack in 799 
successional patterns with regards to the microeukaryotes suggested that either the 800 
neonatal GIT would not allow any durable colonization by microeukaryotes, 801 
including known common microbiome members such as Blastocystis spp. or 802 
Dientamoeba fragilis (Scanlan et al., 2014), that the required ecological niches did not 803 
exist in the GIT during the first year of life or that those microeukaryotes never 804 
actually stably colonize the GIT as suggested before by Suhr et al. (2015). 805 
 806 
4.3 Prokaryotic differences in colonization and succession between CSD and VD 807 
infants 808 
Diversity and evenness measures were not significantly different between CSD and 809 
VD infants (Fig. 3B-C), in contrast to the results from another recent study 810 
(Jakobsson et al., 2014). However, a difference between VD and CSD infants was 811 
observed early on in terms of the prokaryotic richness, which was significantly 812 
increased in CSD infants (Fig. 3A). This finding could reflect the different pioneering 813 
taxa between both delivery groups. Furthermore, we found that generally lower 814 
amounts of DNA were extracted from stool of CSD infants compared to VD infants 815 
using the same extraction protocol, suggesting a delay in the acquisition of 816 
prokaryotic biomass in the GIT of CSD infants. While the DNA yields quickly 817 
increased over time for VD infants, CSD infants showed a slower acquisition of a 818 
similar colonization density, which could be explained by either a delay in exposure 819 
to bacteria or the inoculation by fundamentally different microbial taxa, which could 820 
be less adapted to the human GIT and therefore exhibited lower growth rates.  821 
 822 
In addition to differences in microbial loads during the first days after birth (Fig. 1A), 823 
we identified apparent differences in early prokaryotic succession. For instance, 824 
several samples taken from CSD infants during days 3 and 5 were found to share 825 
similarities in community structure (Cluster II) that were not typically observed in 826 
samples from VD children (Fig. 4A-B). These similarities included increased relative 827 
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abundances of Streptococcus spp. and Staphylococcus spp (Supplementary File 6). 828 
These taxa are typically found in the oral cavity and on the skin surface and are 829 
supposedly transferred from mother to infant through skin contact in CSD infants 830 
(Dominguez-Bello et al., 2010). Furthermore, these samples showed significantly 831 
decreased relative abundances of Bacteroides spp. and Bifidobacterium spp., whose 832 
colonization has been shown to be delayed in CSD infants (Adlerberth et al., 2006; 833 
Penders et al., 2006; Sufang et al., 2007; Dominguez-Bello et al., 2010). Interestingly, 834 
allergic diseases have been previously associated with a low prevalence of 835 
Bacteroides spp. and Bifidobacterium spp. (Björkstén et al., 1999; Watanabe et al., 836 
2003), and low levels of Bifidobacterium spp. together with significantly increased 837 
levels of Staphylococcus spp. have been associated with childhood obesity 838 
(Kalliomäki et al., 2008). Generally, the genus Bifidobacterium is associated with an 839 
enhanced epithelial barrier function (Cani et al., 2009). These findings are in line with 840 
the statistically higher risks of CSD infants of developing obesity (Mueller et al., 841 
2015) or allergic diseases (Abrahamsson et al., 2012; Abrahamsson et al., 2014). 842 
Although the differences observed in our study were compelling, whether the 843 
observed microbiome signatures in CSD infants are directly causally linked to disease 844 
development later in life has yet to be established in larger infant cohorts with longer-845 
term follow-up. After day 150, the observed differences between CSD and VD infants 846 
became less pronounced. This observed trend could have been driven by weaning the 847 
infants from an exclusive milk diet and/or the introduction of solid food around the 848 
same time. Previous studies showed that through the introduction of new and diverse 849 
nutrients, the microbiome quickly changes towards a more adult-like profile, thereby 850 
decreasing early differences in profiles caused by delivery mode or other maternal 851 
and neonatal characteristics (Koenig et al., 2011; Fallani et al., 2011).  852 
 853 
Although the delivery mode appeared to have the strongest influence on differences 854 
between the infants, other factors may also contribute to the observed patterns. Most 855 
notably, reduced gestational age, higher maternal age, a higher maternal BMI and 856 
specific maternal antibiotic treatments are commonly observed in the context of CSD 857 
(van Schalkwyk et al., 2010; Al-Kubaisy et al., 2014; Euro-Peristat Preterm Group et 858 
al., 2014; Klemetti et al., 2016). For example, gestational age may have been an 859 
additional factor driving the early Bacteroidetes depletion. Already at day 3, 860 
Bacteroidetes were significantly decreased in five infants that were born late preterm 861 
(34-36 weeks) or early term (37-38 weeks) compared to four full term infants (≥39 862 
weeks) (Supplementary File 1 Fig. S7). Known effects of preterm delivery on 863 
neonatal microbiome colonization include reduced levels of strict anaerobes such as 864 
Bifidobacterium spp. and Bacteroides spp. (Arboleya et al., 2012; Arboleya et al., 865 
2016) and a slower microbial succession (La Rosa et al., 2014), all of which were 866 
observed in our study for samples collected from CSD infants. Another factor may 867 
have been maternal perinatal antibiotics intake which was associated with 868 
significantly lower amount of prokayotic DNA at day 5 (and a similar trend at days 1 869 
and 28; Supplementary File 1 Fig. S1). Importantly, the antibiotic intake of the 870 
mother may have effects on the GIT microbiome of the infant, either directly, e.g. 871 
transfer from maternal blood via the blood-placental barrier prior to birth (Pacifici, 872 
2006), or indirectly, e.g. transfer of antibiotics via breast milk postpartum (Zhang et 873 
al., 1997). As antibiotic administration is recommended in case of delivery by C-874 
section, this could be yet another factor that had a negative influence on the observed 875 
delay in colonization and succession in CSD infants while even potentially inhibiting 876 
the succession rate in VD infants to a certain extent.  877 
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Besides shifts in the early successional patterns and factors that could enhance the 878 
observed delay in colonization, we also observed fundamental differences in the 879 
taxonomic composition of CSD infants compared to VD infants and over all time 880 
points, such as a significantly decreased relative abundance of Bacteroidetes 881 
(Supplementary File 1, Fig. S6A), which remained prominent even at 1 year. The 882 
most drastic difference in microbiome composition was an elevated 883 
Firmicutes/Bacteroidetes ratio observed in CSD infants between days 5 and 150 (Fig. 884 
5). An elevated Firmicutes/Bacteroidetes ratio has been previously linked to an 885 
increased energy harvesting capacity by the host and its potential contribution to the 886 
development of metabolic disorders such as diabetes, obesity or metabolic syndrome 887 
in adulthood (Turnbaugh et al., 2006), although more recent findings seem to suggest 888 
that evidence for the implication of the Firmicutes/Bacteroidetes ratio in human health 889 
may be weaker than previously assumed (Sze and Schloss, 2016). The differential 890 
analysis detected statistically significant alterations of additional bacterial taxa in 891 
CSD infants over all time points, of which several were also validated by qPCR (Fig. 892 
7, Supplementary Files 8 and 9). As already highlighted previously, CSD infants 893 
harbored lower proportions of Bacteroides spp. and Parabacteroides spp., which 894 
again point out that CSD infants were subject to a delayed rate of colonization for the 895 
phylum Bacteroidetes and more specifically the genera Bacteroides and 896 
Parabacteroides. Taxa commonly derived from skin, the oral cavity and the 897 
environment exhibited an enrichment in CSD infants. These taxa included 898 
Haemophilus spp., Streptococcus spp., Enterobacter spp., Propionibacterium spp. and 899 
Staphylococcus spp., which have been previously found to be enriched in CSD 900 
infants, supposedly through skin microbiome transfer from mother to the newborn 901 
after birth (Dominguez-Bello et al., 2010; Bäckhed et al., 2015). Interestingly, CSD 902 
infants in our study were also enriched in the genus Lactobacillus. As Lactobacillus 903 
spp. are usually dominant in the vaginal microbiome, they are supposedly transferred 904 
from mother to infant during vaginal delivery, thereby being deficient and delayed in 905 
CSD infants (Grönlund et al., 1999; Adlerberth et al., 2006; Dominguez-Bello et al., 906 
2010). Other routes of colonization however also include the administration of breast 907 
milk (Bäckhed et al., 2015). 908 
 909 
4.4 General delay in colonization rates in CSD infants  910 
Overall, archaea and fungi were more often detected by qPCR in VD infants 911 
compared to CSD infants, and the yield of fungal DNA was lower in CSD infants 912 
compared to VD infants, except at 1 year and after introduction of solid food in all 913 
infants. These findings indicate that the previously described delay in colonization 914 
and succession observed for bacteria in CSD infants may actually affect all three 915 
domains of life, adding valuable information to our current knowledge regarding 916 
neonatal colonization of the GIT microbiome.  917 
 918 
The initial microbiome colonization process is especially crucial for the early 919 
stimulation and maturation of the immune system (Rizzetto et al., 2014; Houghteling 920 
and Walker, 2015; Mueller et al., 2015), such that the observed delay of all three 921 
domains of life in CSD infants may result in an altered immunostimulatory effect, 922 
which in turn may potentially have long-lasting effects in relation to human health. 923 
Whether the early disturbance and delay of the colonization and succession processes 924 
in CSD infants could potentially exacerbate or contribute to the higher risk of CSD 925 
infants to develop certain diseases, therefore requires additional immunological data. 926 
However, what has been observed so far is that due to the close contact between the 927 
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developing GIT, the underlying immune system and the colonizing bacteria, the early 928 
microbiome acts as an important interface in the neonatal development of the immune 929 
system (Björkstén, 2004; Caicedo et al., 2005; Rautava et al. 2007, Eberl and 930 
Lochner, 2009). Substantial shifts of neonatal taxonomic compositions or disruptions 931 
of natural colonization and succession processes may thereby lead to changes in the 932 
long-term developmental processes and subsequent altering of immune development. 933 
Additionally, the timing of colonization plays an important role in neonatal immune 934 
programming. Previous studies on mouse models observed that a delayed microbial 935 
GIT colonization of germ-free mice caused long-term changes in the immune system 936 
(Sudo et al., 1997; Rautava et al. 2007, Eberl and Lochner, 2009; Hansen et al., 2012; 937 
Olszak et al., 2012).  938 
 939 
These findings demonstrate that the composition and timing of early neonatal 940 
colonization in CSD infants are important factors influencing the microbial education 941 
of the developing immune system, which could result in long-term persistent 942 
alterations in systemic gene expression and increased disease predispositions. 943 

 944 
5. Conclusions  945 
Here, we describe for the first time the colonization of the neonatal human GIT 946 
resolved to all three domains of life. We demonstrate that bacteria but also archaea 947 
and microeukaryotes, predominantly fungi, were detectable in meconium samples and 948 
are thereby among the earliest colonizers of the neonatal GIT microbiome. 949 
 950 
In contrast to the patterns observed for prokaryotes, microeukaryotic abundances 951 
fluctuated strongly over time, suggesting that the microeukaryotic community did not 952 
reach a stable colonization state during the first year of life. Based on our results, the 953 
milk-feeding regime appeared to impact the early microeukaryotic colonization and 954 
diversification process. An important question in this context is whether a diverse 955 
microeukaryotic microbiome is more resilient to disturbances and beneficial for the 956 
host as it has been proposed in respect for bacterial constituents of the GIT 957 
microbiome. 958 
 959 
As for the differences in colonization and succession between VD and CSD infants 960 
during the first year of life, our findings highlight that CSD infants experience a delay 961 
in colonization and succession affecting all three domains of life, generally 962 
complementing and further extending previous observations. Substantial shifts in the 963 
community compositions started as early as day 5 and were potentially caused by 964 
differences in time of incidental exposure of bacteria from the environment in CSD 965 
infants. We further suggest a potential link to earlier gestational age and maternal 966 
antibiotics intake. Given that the early microbiome supposedly shapes the immune 967 
system, our observations that CSD infants exhibited a different succession pattern 968 
early on raises the hypothesis that disturbances to the microbiome in the early stages 969 
of neonatal development might have long-lasting health effects. Although major 970 
differences between VD and CSD infants were less apparent at 1 year of age, the 971 
question whether differences in the early stimulation of the immune system by either 972 
the VD or the CSD microbiomes may change the infants' response to later 973 
perturbations, such as during the introduction of solid food, will require further in-974 
depth studies. In order to answer these questions, high-frequency sampling of GIT 975 
microbiota along with resolving crucial immune characteristics over longer periods of 976 
time should be undertaken. 977 
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Further additional work is required to determine at which stage of infant development 978 
the GIT microbiome acquires a mature archaeal community structure, as well as when 979 
the transition between the highly dynamic early microeukaryotic microbiota and the 980 
stable adult microeukaryotic community is occurring. Open questions in this context 981 
revolve around which role these two domains play with respect to neonatal host 982 
metabolism, how they influence the host’s immune system and how they influence the 983 
GIT microbiome through providing specific metabolic functions. 984 
Our findings provide an important account of the neonatal colonization and 985 
succession within the human GIT microbiome by bacteria, archaea and 986 
microeukayotes. In particular, our findings highlight the need for studying all three 987 
domains of life in future longitudinal studies of microbial colonization and succession 988 
within the human GIT to finally understand how the individual taxa affect host 989 
physiology and how differences in colonization and succession of all three domains 990 
may contribute to the development of diseases later in life. 991 
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14. Figure legends 1489 
Figure 1. Detection of prokaryotes, fungi and archaea in infant stool during the 1490 
first year of life. (A) Absolute quantification of for prokaryotic and (B) fungal DNA 1491 
(ng DNA per mg of stool) and (C) relative quantification of archaeal read counts by 1492 
quantitative real-time PCR and over the course of the first year of life. The numbers 1493 
of samples per collection time point are provided at the top of the graph. For the 1494 
purpose of clarity, only significant differences between subsequent time points are 1495 
shown in the figure; for all significant differences between collection time points, see 1496 
Supplementary File 1, Tables S3 and S4. Significant differences obtained by 1497 
Wilcoxon rank sum test between consecutive time points are represented by asterisks 1498 
(* when < 0.05; ** when <0.01). CSD: C-section delivery, VD: vaginal delivery. 1499 
Fecal samples originating from VD infants are represented on the left side of each 1500 
barplot and by green points, samples from CSD infants are represented on the right 1501 
side of each barplot and by blue points.  1502 
 1503 
Figure 2. Prokaryotic and microeukaryotic microbiome compositions in infants 1504 
over the first year of life. Barplots of relative abundances of the 49 most abundant 1505 
taxa per sample for (A) prokaryotes and (B) microeukaryotes for both delivery modes. 1506 
All OTUs with the same taxonomy were regroupedd into the same taxa, whereas taxa 1507 
that did not belong to the 49 most abundant were regrouped under ‘Others’. 1508 
Sequences were classified to the highest taxonomic level that could be confidently 1509 
assigned. Aggregated OTUs are color-coded according to the phylum they belong to. 1510 
Numbers below the barplots are representative of the different infants in the study. 1511 
CSD: C-section delivery, VD: vaginal delivery. * Twins. 1512 
 1513 
Figure 3. Colonization of prokaryotes and microeukaryotes. Depiction of (A,E) 1514 
richness (number of OTUs), (B,F) diversity (Shannon’s diversity index), (C,G) 1515 
evenness (Pielou’s evenness index) and (D,H) dissimilarity index reflecting the 1516 
distance to the most mature sample (Soerensen’s similarity index of presence/absence 1517 
of taxa at each individual time point compared to the most mature microbial 1518 
community structures represented by samples collected at the last individual time 1519 
point) for prokaryotes and microeukaryotes, respectively. The numbers of samples per 1520 
collection time point are provided at the top of the graph. For the purpose of clarity, 1521 
only significant differences as assessed by Wilcoxon rank sum test between 1522 
subsequent time points are shown in the figure; for all significant differences between 1523 
collection time points, see Supplementary File 1, Table S3 for the prokaryotic and 1524 
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Table S4 for the microeukaryotic datasets. Significant differences between 1525 
consecutive time points are represented by asterisks (* when P-value < 0.05; ** when 1526 
P-value < 0.01). CSD: C-section delivery, VD: vaginal delivery. Fecal samples 1527 
originating from VD infants are represented on the left side of each barplot and by 1528 
green points, samples from CSD infants are represented on the right side of each 1529 
barplot and by blue points.  1530 
 1531 
Figure 4. Principal coordinate analyses of Jensen–Shannon distances for 1532 
prokaryotic and microeukaryotic rRNA gene amplicon sequencing data. 1533 
Depiction of (A,C) data from VD infants in green and (B,D) CSD infants in blue for 1534 
prokaryotes and microeukaryotes, respectively. Sampling time points are represented 1535 
by shadings, with lighter colors depicting an earlier sampling time point. Lines 1536 
connect samples which originated from the same infant according the order of 1537 
sampling. Samples that are the focus of the corresponding other sub-panel are shaded 1538 
in grey. Cluster delineations were added manually after computing the cluster 1539 
membership of each sample using the partitioning around medoids (pam) function 1540 
contained in the R package ‘cluster’ (Maechler et al., 2015). 1541 
 1542 
Figure 5. Firmicutes/Bacteroidetes ratio over time. The numbers of samples per 1543 
collection time point are given at the top of the graph. Significant differences obtained 1544 
by Wilcoxon rank sum test and according to delivery mode are represented by 1545 
asterisks (* when P-value < 0.05; ** when P-value < 0.01). CSD: C-section delivery, 1546 
VD: vaginal delivery. Fecal samples originating from VD infants are represented on 1547 
the left side of each barplot and by green points, samples from CSD infants are 1548 
represented on the right side of each barplot and by blue points. 1549 
 1550 
Figure 6. Colonization by Bacteroidetes phylum. Per collection time point 1551 
depiction of (A) richness (number of OTUs), (B) diversity (Shannon’s diversity 1552 
index) and (C) evenness (Pielou’s evenness index) of the phylum Bacteroidetes. The 1553 
numbers of samples per collection time point are provided at the top of the graph. 1554 
Significant differences as assessed by Wilcoxon rank sum test and according to 1555 
delivery mode are represented by asterisks (* when P-value < 0.05; ** when P-value 1556 
< 0.01). CSD: C-section delivery, VD: vaginal delivery. Fecal samples originating 1557 
from VD infants are represented on the left side of each barplot and by green points, 1558 
samples from CSD infants are represented on the right side of each barplot and by 1559 
blue points. 1560 
 1561 
Figure 7. qPCR validation of 16S rRNA gene sequencing data based differences 1562 
according to delivery mode. Comparison of the DESeq2-normalized 16S rRNA read 1563 
numbers and relative abundances (given on log scale) measured by qPCR for two 1564 
phyla and four genera that were found to be significantly different between birth 1565 
modes. For each comparison the Spearman correlation coefficient (ρ) was calculated 1566 
and figures next to the taxa. The numbers of samples per collection time point are 1567 
given at the top of each barplot. Significant differences according to a Wilcoxon rank 1568 
sum test for delivery mode are represented by asterisks (* when P-value < 0.05; ** 1569 
when P-value < 0.01). CSD: C-section delivery, VD: vaginal delivery. Fecal samples 1570 
originating from CSD infants are represented on the left side of each barplot and by 1571 
blue points, samples from VD infants are on the right side of each barplot and by 1572 
green points. 1573 
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15. Tables 1568 
Table 1. Primer pairs and conditions of quantitative real-time PCR.  1569 

Main target 
(target gene) Designation Oligonucleotide  

sequence (5' -> 3') 

Annealing  
temperature 

(°C)  
Cycling Reference 

Fungi             
(18S rRNA) 

Fungi2F F: ATT GGA GGG CAA GTC TGG TG 
55  

60 cycles:  
15 sec at 95°C, 
10 sec at 55°C,  
25 sec at 72°C 

Einsele et al., 1997 
Fungi2R R: CCG ATC CCT AGT CGG CAT AG 

Staphylococcus 
(tuf) 

TStaG422-F F: GGC-CGT-GTT-GAA-CGT-GGT-CAA-ATC-A 
55 45 cycles:  

20 sec at 95°C,  
30 sec at 55°C,  
1 min at 72°C 

Martineau et al., 2001 
TStag765-R R: TAT-HAC-CAT-TTC-AGT-ACC-TTC-TGG-TAA 

Haemophilus  
(P6) 

HI-IV F: ACT-TTT-GGC-GGT-TAC-TCT-GT 
55 van Ketel et al., 1990 

HI-V R: TGT-GCC-TAA-TTT-ACC-AGC-AT 

Universal archaea       
(16S rRNA) 

ARC787F F: ATT-AGA-TAC-CCS-BGT-AGT-CC 
60 

45 cycles:  
15 sec at 95°C,  
30 sec at 60°C,  
1 min at 72°C 

Yu et al., 2005 
ARC1059R R: GCC-ATG-CAC-CWC-CTC-T 

Lactobacillus  
(16S rRNA) 

Lac774F F: GCG-GTG-AAA-TTC-CAA-ACG 
60  Hermann-Bank et al., 2013 

Lac989R R: GGG-ACC-TTA-ACT-GGT-GAT 

Streptococcus 
(16S rRNA) 

Strep488F F: CTW-ACC-AGA-AAG-GGA-CGG-CT 
60 Hermann-Bank  et al., 2013 

Strep824R R: AAG-GRY-CYA-ACA-CCT-AGC 

Firmicutes     
(16S rRNA) 

Lgc353 F: GCA-GTA-GGG-AAT-CTT-CCG 
60 Fierer et al, 2005 

Eub518 R: ATT-ACC-GCG-GCT-GCT-GG 

Bacteroidetes 
(16S rRNA) 

798cfbF F: CRA-ACA-GGA-TTA-GAT-ACC-CT 
61  45 cycles:  

15 sec at 95°C,  
20 sec at 61°C,  
30 sec at 72°C 

Bacchetti De Gregoris et al., 2011 
cfb967R R: GGT-AAG-GTT-CCT-CGC-GTA-T 

Universal 
prokaryotes (16S 

rRNA) 

926F F: AAA-CTC-AAA-KGA-ATT-GAC-GG 
61 Bacchetti De Gregoris et al., 2011 

1062R R: CTC-ACR-RCA-CGA-GCT-GAC 
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Table 2. Neonatal and maternal characteristics (n=15). Study groups are defined 1570 
according to delivery mode (VD: n=8; CSD: n=7). CSD: C-section delivery, VD: 1571 
vaginal delivery. 1572 
 1573 

  

 
Total cohort 

n=15 
VD 
n=8 

CSD 
n=71 

  
   Infant characteristics 
   Female gender 7 (46.7%) 5 (62.5%) 2 (28.6%) 

Gestational age at delivery (weeks) 38.7 ± 1.8 39 ± 1.5 38.3 ± 2.1 

Birth weight (g) 3273 ± 416 3311 ± 543 3230 ± 236 

  
   Maternal characteristics 
   Positive group B Streptococcus screening  3 (21.4%) 3 (37.5%) 0 

Age 33.6 ± 4.6 32.5 ± 4.4 35 ± 4.8 

Postnatal body mass index 24 ± 4.3 21.8 ± 2.7 26.8 ± 4.6 

Ethnicity 
         Caucasian 12 (85.7%) 7 (87.5%) 5 (83.3 %) 

      African 2 (14.3%) 1 (12.5%) 1 (16.7%) 

Perinatal antibiotic intake2  11 (78.6%) 6 (75%) 5 (83.3 %) 

       Penicillin3 6 (42.9%) 6 (75%) 0 

      Cephalosporin 4 (28.6%) 0 4 (66.7%) 

      Clindamycin 1 (7.1%) 0 1 (16.7%) 

Probiotic use during pregnancy 2 (14.3%) 1 (12.5%) 1 (16.7%) 

        
1. 2 C-section infants are twins. 1574 
2. Considering all antibiotics administered to the mother 12 hours prior and after the delivery. 1575 
3. As ampicillin belongs to the penicillin group, ampicillin and penicillin intake were both categorized 1576 
as ‘penicillin’.  1577 
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Abstract: Background
In patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT),
treatment-induced changes to the gastrointestinal tract (GIT) microbiome have been
linked to adverse treatment outcomes, most notably graft-versus-host disease (GvHD).
However, it is not known whether this relationship is directly causal. Here, we
performed an integrated meta-omic analysis to gain deeper insight into GIT
microbiome changes during allo-HSCT and accompanying treatments.
Methods
We used 16S and 18S rRNA gene amplicon sequencing to resolve archaea, bacteria
and eukaryotes in the GIT microbiomes of 16 patients undergoing allo-HSCT for
treatment of hematologic malignancies. To obtain a more detailed assessment of
microbiome changes and their potential relation to acute GvHD (aGvHD), an integrated
analysis of metagenomic and metatranscriptomic data was performed on samples
collected from one patient before and after treatment for acute myeloid leukemia. This
patient developed severe aGvHD, which led to death nine months after the
transplantation.
Results
This study reveals a major shift in the GIT microbiome after allo-HSCT, including a
marked reduction in bacterial diversity but limited changes among eukaryotes and
archaea following the appropriate treatment protocols and accompanying interventions.
Data from pre- and post-treatment samples of the patient who developed severe
aGvHD revealed a drastically decreased bacterial diversity. Furthermore, the post-
treatment sample showed a higher overall number and higher expression levels for
antibiotic resistance genes (ARGs), discovered as a long-term effect of the treatment
on the microbial community. An organism causing a paravertebral abscess was shown
to be linked to the GIT dysbiosis, suggesting loss of intestinal barrier integrity.
Conclusions
The apparent selection for bacteria expressing ARGs suggests that prophylactic
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antibiotic administration may adversely affect overall treatment outcome. Detailed
analyses including information about the selection of pathogenic bacteria expressing
ARGs may help to support clinicians in tailoring the procedural therapy protocols in a
personalized fashion to improve overall outcome in the future.
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Abstract  34 

Background 35 

In patients undergoing allogeneic hematopoietic stem cell transplantation 36 

(allo-HSCT), treatment-induced changes to the gastrointestinal tract (GIT) 37 

microbiome have been linked to adverse treatment outcomes, most notably 38 

graft-versus-host disease (GvHD). However, it is not known whether this 39 

relationship is directly causal. Here, we performed an integrated meta-omic 40 

analysis to gain deeper insight into GIT microbiome changes during allo-41 

HSCT and accompanying treatments. 42 

Methods 43 

We used 16S and 18S rRNA gene amplicon sequencing to resolve archaea, 44 

bacteria and eukaryotes in the GIT microbiomes of 16 patients undergoing 45 

allo-HSCT for treatment of hematologic malignancies. To obtain a more 46 

detailed assessment of microbiome changes and their potential relation to 47 

acute GvHD (aGvHD), an integrated analysis of metagenomic and 48 

metatranscriptomic data was performed on samples collected from one 49 

patient before and after treatment for acute myeloid leukemia. This patient 50 

developed severe aGvHD, which led to death nine months after the 51 

transplantation. 52 

Results 53 

This study reveals a major shift in the GIT microbiome after allo-HSCT, 54 

including a marked reduction in bacterial diversity but limited changes among 55 

eukaryotes and archaea following the appropriate treatment protocols and 56 

accompanying interventions. Data from pre- and post-treatment samples of 57 
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bacterial diversity. Furthermore, the post-treatment sample showed a higher 59 

overall number and higher expression levels for antibiotic resistance genes 60 

(ARGs), discovered as a long-term effect of the treatment on the microbial 61 

community. An organism causing a paravertebral abscess was shown to be 62 

linked to the GIT dysbiosis, suggesting loss of intestinal barrier integrity. 63 

Conclusions 64 

The apparent selection for bacteria expressing ARGs suggests that 65 

prophylactic antibiotic administration may adversely affect overall treatment 66 

outcome. Detailed analyses including information about the selection of 67 

pathogenic bacteria expressing ARGs may help to support clinicians in 68 

tailoring the procedural therapy protocols in a personalized fashion to improve 69 

overall outcome in the future. 70 
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Background 77 

Humans live in a close relationship with microorganisms that are referred to 78 

as the “microbiome”, comprising bacteria, archaea and eukaryotes. The most 79 

densely populated human body habitat is the gastrointestinal tract (GIT), 80 

which is estimated to contain 500 – 1000 different microbial species [1]. The 81 

GIT microbiome plays a myriad of important roles in human physiology, 82 

including for example in the digestion of food, the synthesis of vitamins, the 83 
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 4 

production of short-chain fatty acids and the prevention of colonization by 84 

pathogens through exclusion [2]. It is generally accepted that, within a healthy 85 

human GIT, a homeostatic state exists among the different microorganisms 86 

which is tightly regulated by the host's immune system [3–5]. However, 87 

perturbations, such as the intake of antibiotics, infections or 88 

immunosuppression, can lead to a disruption of this balanced state, typically 89 

referred to as "dysbiosis" [3, 6]. In a dysbiotic state, pathogens can overgrow 90 

the community [6]. Furthermore, reduced intestinal barrier function can 91 

facilitate translocation of microorganisms and microbial products from the GIT 92 

lumen to mesenteric lymph nodes and/or the bloodstream [7], putting the host 93 

at risk for local infections and sepsis [6, 8].  94 

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) represents an 95 

effective treatment for several hematologic malignancies. It is preceded by an 96 

intense conditioning regime, consisting of either total body immune ablative 97 

irradiation or high doses of chemotherapy, to facilitate engraftment of 98 

transplanted stem cells. Allo-HSCT is known to greatly impact stability and 99 

integrity of the GIT microbiome [9]. A substantial loss in bacterial diversity and 100 

the dominance of single bacterial taxa have been observed in patients 101 

undergoing allo-HSCT [9].  102 

Supportive care of patients receiving allo-HSCT includes prophylactic broad-103 

spectrum antibiotic treatment [10], an intervention that also influences the GIT 104 

microbiome by selection for potential pathogens carrying antibiotic resistance 105 

genes (ARGs) [11] as well as driving transfer of ARGs among commensal 106 

bacteria, including many opportunistic pathogens [12]. In addition, loss of the 107 

normal bacterial GIT community following antibiotic treatment can facilitate 108 
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 5 

expansion of yeasts including invasive Candida albicans infections with 109 

potentially fatal consequences [13, 14].  110 

The intensive conditioning treatment for allo-HSCT may lead to mucositis 111 

along the GIT, which culminates in the formation of painful ulcers, dysphagia 112 

and diarrhea [15]. The most significant complication of allo-HSCT is acute 113 

graft-versus-host disease (aGvHD) which affects 35 % - 50 % of patients and 114 

is a major cause of mortality [16]. GvHD, a systemic, inflammatory disease, is 115 

provoked by a complex anti-allogeneic immune response, which primarily 116 

affects the skin, liver and GIT [17]. Glucksberg et al. [18] divided each organ 117 

involvement into four stages from mild to severe. These are integrated into an 118 

overall grade of GvHD, where I-II are considered as mild and III-IV are 119 

considered as severe. Usually, intestinal GvHD dominates the clinical picture 120 

in severe aGvHD, which typically occurs within 100 days after allo-HSCT and 121 

is initiated by alloreactive donor T cells that recognize antigens on host cells 122 

[19].  123 

It has been suggested that the GIT microbiome might be implicated in the 124 

development or exaggeration of aGvHD, as the damaged GIT epithelial 125 

barrier in patients undergoing allo-HSCT allows translocation of 126 

microorganisms or pathogen-associated-molecular patterns (PAMPs) [20]. 127 

These PAMPs can activate antigen-presenting cells and thereby lead to 128 

alloactivation and proliferation of donor T cells which trigger aGvHD [20]. 129 

Antibiotic treatment has been shown to have ambiguous effects on treatment 130 

outcome. On the one hand, a low bacterial diversity at engraftment, possibly 131 

caused by a preceding combination of chemotherapy, total body irradiation 132 

and broad spectrum antibiotics has been linked to a worse outcome [21]. On 133 
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the other hand, GIT decontamination using antimicrobials has been observed 134 

to lower the rate of aGvHD [22, 23]. 135 

Previous studies have investigated changes in the bacterial community 136 

structures of the GIT microbiome directly after allo-HSCT or conditioning 137 

treatment [21, 24–26]. However, it is not yet known how GIT microbial 138 

communities including archaea and eukaryotes evolve over longer periods of 139 

time and what effects the disruption of the microbiome, for example through 140 

the administration of antibiotic regimens, has on the human host with respect 141 

to aGvHD and overall treatment outcome.  142 

Recent advances in high-throughput next-generation sequencing allow for a 143 

detailed analysis of the GIT microbiome in the context of allo-HSCT and 144 

treatment outcome. Here, a meta-omic approach was used to provide an 145 

exhaustive view of the changes which occur in the GIT microbial community 146 

of patients with hematologic malignancies undergoing allo-HSCT treatment. 147 

We expand upon previous studies by analyzing changes not only in the 148 

bacterial populations, but also among archaea and eukaryotes, thereby 149 

covering all three domains of life. Additionally, we present a detailed analysis 150 

of metagenomic (MG) and metatranscriptomic (MT) data from one patient with 151 

a fatal treatment outcome, including identification of ARGs, corresponding 152 

expression levels and genetic variation in dominant bacterial populations. This 153 

study serves as a proof of concept for future meta-omic studies of the GIT 154 

microbiome in the context of allo-HSCT treatment and other intensive medical 155 

treatments.  156 

 157 

Methods 158 
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Study participants and fecal sample collection 159 

After provision of written informed consent, 16 patients undergoing allo-HSCT 160 

were enrolled in the study.  161 

For microbial diversity and richness analyses, patients were included only if 162 

fecal samples were obtained from at least two of the following time points: i) 163 

up to eight days before allo-HSCT (designated time point 1 (TP) 1), ii) directly 164 

after allo-HSCT (up to four days after allo-HSCT, designated TP2) and/or iii) 165 

around the time of engraftment between day 20 and day 33 after allo-HSCT 166 

(designated TP3). One additional patient was selected for a detailed analysis 167 

of the effects of the treatment over an extended period of time. From this 168 

patient, samples were collected 13 days before allo-HSCT, as well as 75 and 169 

119 days after allo-HSCT. Fecal samples were immediately flash-frozen on-170 

site and preserved at -80 °C to ensure integrity of the biomolecules of interest. 171 

 172 

Extraction of biomolecules from fecal samples 173 

DNA and RNA were extracted from unthawed subsamples of 150 mg, after 174 

pre-treatment of the weighed subsamples with 1.5 ml RNAlater-ICE 175 

(LifeTechnologies) overnight at -20 °C. The biomolecules were extracted from 176 

the mixture as described previously, using the AllPrep DNA/RNA/Protein kit 177 

(Qiagen) [27, 28]. To increase the overall yield, DNA fractions were 178 

supplemented with DNA extracted from 200 mg subsamples using the 179 

PowerSoil DNA isolation kit (MO BIO).  180 

The quality and quantity of the DNA extracts were verified using 1 % agarose 181 

gel electrophoresis and NanoDrop 2000c spectrophotometer (Thermo Fisher 182 

Scientific), while RNA extracts were verified using Agilent 2100 Bioanalyzer 183 
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 8 

(Agilent Technologies). Only fractions with RNA integrity number (RIN, Agilent 184 

Technologies) > 7 were sequenced. Extracted biomolecules were stored at -185 

80 °C until sequencing. 186 

 187 

16S and 18S rRNA gene amplicon sequencing 188 

Amplification and paired-end sequencing of extracted and purified DNA was 189 

performed on an Illumina MiSeq platform at the Groupe Interdisciplinaire de 190 

Génoprotéomique Appliquée (GIGA, Belgium). The V4 region of the 16S 191 

rRNA gene, which allows resolution of bacteria and archaea, was amplified 192 

and sequenced using the primers 515F_GTGBCAGCMGCCGCGGTAA and 193 

805R_GACTACHVGGGTATCTAATCC [29, 30] with paired-end reads of 300 194 

nt each. The V4 region of the 18S rRNA gene was amplified and sequenced 195 

using the primers 574*F and 1132R (574*F_CGGTAAYTCCAGCTCYV 196 

1132r_CCGTCAATTHCTTYAART; [31]) to resolve the eukaryotic community 197 

structure. 198 

 199 

16S and 18S rRNA gene amplicon sequencing and data analysis 200 

16S rRNA gene sequencing reads were processed using the LotuS pipeline 201 

(version 1.34) [32] with default parameters. Processed reads were clustered 202 

into operational taxonomic units (OTUs), designating taxa with similar 203 

amplicon sequences at 97 % identity level. To process the 18S rRNA gene 204 

sequencing reads, a workflow specifically designed to process reads that are 205 

not overlapping was used [33].  206 

Statistical analyses and plots were generated in R (version 3.2.1) [34]. 207 

Microbial alpha-diversity and richness were determined at the OTU level, by 208 
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 9 

calculating the Shannon diversity index and the Chao1 index after rarefaction, 209 

using the vegan package [35]. Plots were generated using the R base 210 

graphics or the ggplot2 package [36].  211 

Differential analysis of taxa based on 16S rRNA gene sequencing data was 212 

performed using the DESeq2 package [37] and significant differences on 213 

taxonomic levels were determined using the Wald test, after multiple-testing 214 

adjustment. 215 

Further information on processing and analyses of rRNA gene amplicon 216 

sequencing data can be found in Additional file 1.  217 

 218 

Metagenomic and metatranscriptomic sequencing, processing and 219 

assembly 220 

MG and MT sequencing of the extracted DNA and RNA fractions was 221 

conducted by GATC Biotech AG, Konstanz, Germany. Ribosomal RNA 222 

(rRNA) was depleted from the RNA fractions using the Ribo-Zero Gold rRNA 223 

Removal kit (Epidemiology, Illumina) and a strand-specific cDNA library was 224 

prepared according to standard protocols, optimized by GATC. Libraries 225 

representing both nucleic acid fractions were sequenced using a 100 bp 226 

paired-end approach on an Illumina HiSeq 2500 using HiSeq V3 reagents.  227 

MG and MT datasets were processed using a newly in-house developed 228 

workflow, the Integrated Meta-omics Pipeline (IMP) version 1.1 [38]. This 229 

pipeline includes a co-assembly of MG and MT reads. Further information on 230 

this pipeline and on calculations used in this work can be found in Additional 231 

file 1.  232 

 233 
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Population-level binning of contigs from the co-assembly 234 

To analyze and compare the population-level structure of the microbial 235 

communities based on the assembled genomic information, contiguous 236 

sequences (contigs) were binned into (partial) population-level genomes. 237 

Using VizBin [39, 40], 2D embeddings based on BH-SNE of the contigs of at 238 

least 1,000 nt were produced, as part of IMP. In these embeddings, contigs 239 

with similar genomic signatures are closer together, hence, individual clusters 240 

of contigs represent individual microbial populations [41]. Population-level 241 

clusters were selected following the method described in [42]. Resulting bins 242 

are referred to as “population-level genomes” in the following. Details on the 243 

inference of population sizes can be found in Additional file 1. 244 

 245 

Taxonomic affiliation of reconstructed population-level genomes 246 

Taxonomic affiliation of population-level genomes was determined using 247 

complementary methods. Contigs forming the population-level genomes were 248 

first aligned to the NCBI nucleotide collection (nr/nt) database using the 249 

BLAST webservice [43]. Parameters were left at default (using program 250 

megablast), and the output was analyzed using the MEtaGenome ANalyzer 251 

(MEGAN version 5.10.5) [44]. Whenever the rpoB gene could be recovered 252 

within a population-level genome, the closest neighbour (in terms of sequence 253 

identity) was determined in the nucleotide collection (nr/nt) database using the 254 

MOLE-BLAST webservice [45]. Additionally, AMPHORA2 [46] was used to 255 

identify the taxonomic affiliation of up to 31 bacterial or 104 archaeal 256 

phylogenetic marker genes. 257 

 258 
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Reassembly 259 

Population-level genomes were reassembled using all MG and MT reads 260 

mapping to the contigs of the population-level genomes with the same 261 

taxonomic assignment. Reassembly of all recruited reads was carried out 262 

using SPAdes [47] (version 3.5.0) using standard parameters. MG and MT 263 

reads were subsequently mapped to the contigs forming this reassembly to 264 

determine expression levels and.  265 

 266 

Sequence comparison of population-level genomes 267 

The average nucleotide identity (ANI) calculator [48] was used with standard 268 

settings to compare the reassembly from population-level genomes to publicly 269 

available reference genomes. A gene-wise protein sequence comparison of 270 

different population-level genomes was performed using the RAST server [49] 271 

using standard parameters. 272 

 273 

Detection of antibiotic resistance genes 274 

Antibiotic resistance genes (ARGs) within a community or population were 275 

searched against Resfams version 1.2 [50] using HMMer version 3.1b2 [51]. 276 

We used the core version of the Resfams database, which includes 119 277 

protein families. In accordance with the HMMer user manual, only identified 278 

genes with a bitscore higher than the binary logarithm of the total number of 279 

genes (of the community or population) were retained. 280 

 281 

Variant identification  282 

Variants were identified in population-level reassembled genomes using 283 
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SAMtools mpileup [52] with default settings, which include the calling of single 284 

nucleotide variants (SNVs) as well as the identification of small 285 

insertions/deletions (indels). The output of SAMtools mpileup was filtered 286 

using a conservative heuristic established in [53], which takes into account the 287 

ratio of the frequencies of both bases and the depth of coverage at the 288 

corresponding nucleotide position, in order to reduce the effect of sequencing 289 

errors. 290 

 291 

Extraction, sequencing and analysis of bacterial DNA from a blood 292 

culture 293 

DNA was extracted from a blood culture of an organism identified as a 294 

multidrug-resistant E. coli and sequenced on an Illumina MiSeq, 300 bp 295 

paired-end at GIGA. The genome was assembled with SPAdes [47]. Using 296 

PanPhlAn [54] and the provided database including 118 E. coli reference 297 

strains, their relation was assessed based on their gene set. While the 298 

PanPhlAn database includes 31734 genes, only genes present in 10 or more 299 

genomes were considered, resulting in 7845 genes for comparison. 300 

 301 

Results  302 

Patient characteristics and treatment 303 

Anthropometric and clinical information of the ten female and six male 304 

patients included in the study are provided in Table 1. They were between 30 305 

and 67 years old (median 55). Five patients with relapsed or refractory 306 

lymphoma received FluBuCy (fludarabine, busulfan, cyclophosphamide) as 307 

conditioning treatment, six acute myeloid leukemia (AML) patients received 308 
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BuCy (busulfan, cyclophosphamide), one myeloma and one comorbid AML 309 

patient received Treo/Flu (treosulfan, fludarabine), one comorbid AML patient 310 

received FluBu (fludarabine, busulfan) and two refractory AML patients 311 

received FLAMSA-Bu (fludarabine, amsacrine, busulfan) conditioning 312 

treatment. Grafts from eight full match unrelated, three mismatch unrelated 313 

and five sibling donors were used. 1.5 years after allo-HSCT, ten patients 314 

were still alive, while six patients had deceased. Twelve patients developed 315 

aGvHD and were treated with steroids (0.5 – 2 mg/kg/day). Three of them 316 

progressed to at least grade III aGvHD.  317 

As a prophylactic treatment, patients received a fluoroquinolone antibiotic 318 

during leukopenia. At occurrence of fever, patients were treated with 319 

piperacillin-tazobactam, followed by meropenem and subsequently 320 

vancomycin, if necessary. In case of suspected fungal infection, patients also 321 

received antifungal treatment with liposomal amphotericin B or caspofungin 322 

(Table 1).  323 

 324 

 325 
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Table 1 Anthropometric and clinical information of the study cohort 326 

Patient Sex Age Underlying 
diseasea 

Donor relationship 
and HLAb 

Conditioning 
regimenc 

Antimicrobialsd GvHDe, f Outcome 1.5 years after 
allo-HSCT 

A01 m 43 lymphoma MRD FluBuCy F, M, P-T, V Skin I° alive  

A03 m 56 lymphoma MRD FluBuCy AF, F, M, P-T, other - deceased d66, relapse 

A04 f 43 AML MUD BuCy AF, F, M, V Skin I° alive  

A05 m 49 lymphoma MMUD FluBuCy AF, F, M, P-T, V Skin II° deceased d275, pneumonia 

A06 m 52 AML MRD BuCy AF, F, M, P-T, V, other - alive  

A07 f 63 AML MMUD FLAMSA-Bu AF, F, M, P-T, V, other Skin II°, GIT III° deceased d268, GvHD 

A08 f 50 AML MUD BuCy AF, F, M, P-T, V  Skin I° alive  

A09 m 30 lymphoma MUD FluBuCy F, M, P-T - deceased d212, pneumonia 

A10 m 54 AML MRD BuCy F, M, P-T Skin I°, GIT II° alive  

A12 m 57 lymphoma MUD FluBuCy F, M, P-T, V, other Skin III° alive  

A13 m 57 AML MRD BuCy AF, F, M, V Skin I°, lung II° alive  

A17 m 66 AML MUD BuCy F, M, V Skin II° alive  

A18 f 67 AML MUD FluBu F, M, P-T, V, other Skin III°, GIT III° deceased d184, GvHD 

A19 f 58 myeloma MUD Treo/Flu F, M, P-T - deceased d39, relapse 

A20 m 51 AML MMUD FLAMSA-Bu AF, F, M, P-T, V, other Skin II°, GIT II° alive  

A21 f 64 AML MUD Treo/Flu AF, M, P-T, V, other Skin II° alive  
a: AML: acute myeloid leukemia 327 

b: MRD: matched related, MUD: matched unrelated, MMUD: mismatched unrelated 328 

c: Bu: busulfan, Cy: cyclophosphamide, Flu: fludarabine, FLAMSA: fludarabine, amsacrine, Treo: treosulfan 329 

d: AF: antifungal, F: fluoroquinolone, M: meropenem; P-T: piperacillin-tazobactam, V: vancomycin 330 

e: Organ involvement, stages according to [18] 331 

f: Bold: aGvHD with summed stages ≥ 4 considered as severe aGvHD332 
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Changes within the GIT microbiome of patients undergoing allo-HSCT 333 

We assessed the diversity and richness in the microbial community separately 334 

for the prokaryotic (bacteria and archaea; 16S rRNA gene sequencing) and 335 

eukaryotic (18S rRNA gene sequencing) community structures. The 336 

prokaryotic communities showed a drastic and statistically significant 337 

decrease in diversity from TP1 to TP3 (Fig. 1A). Similar to the observed 338 

changes in terms of diversity, prokaryotic richness (Fig. 1B) decreased over 339 

the course of the study, with a significant decrease between TP1 and TP3 340 

over all samples. Differences in average relative abundance on different 341 

taxonomic levels were tested. On the genus level, average decreases of 119-, 342 

47- and 44-fold in the relative abundances of the genera Roseburia, 343 

Bifidobacterium and Blautia (Fig. 1C) were observed from TP1 to TP3. On the 344 

order level, a decrease in Bacteroidales relative abundance was observed in 345 

parallel with an increase in Bacillales (Fig. 1D). Only one OTU belonging to 346 

the domain archaea could be identified, the methanogen Methanobrevibacter 347 

smithii [55]. It was detected in 13 out of the total 35 samples (and 10 out of 15 348 

patients) with a total of 914 reads. A complete list of prokaryotic OTUs and the 349 

number of reads in each sample are listed in Additional file 2: Table S1. 350 

The analysis of the eukaryotic community did not reveal statistically significant 351 

differences for Shannon diversity (Fig. 1E) or Chao1 richness (Fig. 1F) 352 

between the different TPs. Both indices stayed relatively constant from TP1 to 353 

TP2 and even increased slightly at TP3 with no apparent statistically 354 

significant difference being observed for the 8 patients who underwent 355 

antifungal treatments. Overall, per sample, around 99 % of classified 356 

eukaryotic OTUs belonged to the fungal domain with the majority representing 357 
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the genera Saccharomyces, Candida and Kluyveromyces. Only few different 358 

and lowly abundant protists could be identified, including a Vorticella sp., 359 

Prorodon teres, and a Phytophthora sp. A complete list of eukaryotic OTUs 360 

and the number of reads in each sample are listed in Additional file 2: Table 361 

S2. We observed a lower prokaryotic diversity at TP of engraftment in patients 362 

who deceased (within 1.5 years after allo-HSCT), than in those who survived 363 

(Fig. 1G). 364 

In summary, we found a general decrease in bacterial diversity after allo-365 

HSCT while the eukaryotic community stayed relatively stable throughout the 366 

treatment.  367 

To further explore the effects of treatment on the structure and function of the 368 

GIT microbiome, we applied a detailed meta-omic approach on one patient. 369 

 370 

Patient A07 - description of treatment and status of the patient 371 

We chose to focus on patient A07, a patient who displayed a marked 372 

reduction in bacterial diversity with high relative abundances of opportunistic 373 

pathogens (Fig. 2A and 2B) and a fatal treatment outcome. This 63 year old 374 

patient had acute myeloid leukemia with deletion 7q. The patient was 375 

refractory to conventional induction (3+7) and salvage chemotherapy with 376 

high-dose cytarabine and mitoxantrone and therefore needed further 377 

treatment. FLAMSA-Bu [56], a modified sequential conditioning regime for 378 

refractory acute myeloid leukemia was used (Fludarabine 30 mg/m² day -11 to 379 

-8, Cytarabine 2000 mg/m² day -11 to -8, Amsacrine 100 mg/m² day -11 to -8 380 

and Busulfan 3,2 mg/kg day -7 to -4) for remission induction and 381 

transplantation. She received peripheral blood stem cells from a single HLA-C 382 
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antigen mismatched unrelated donor. After engraftment on day 26, bone 383 

marrow was hypocellular, but free of leukemia. Planned immunosuppression 384 

consisted of antithymocyte globulin (ATG) on day -4 to -2, mycophenolate 385 

mofetil until day 28 and cyclosporine until day 100.  386 

A high level of C-reactive protein (CRP) before and around allo-HSCT was 387 

observed which decreased slightly but stayed considerably high throughout 388 

the entire observation period (Fig. 2C and Additional file 2: Table S3). After 389 

leukocyte depletion around allo-HSCT, the count increased to around 3600/μl 390 

20 days after allo-HSCT and further increased to a normal value around 80 391 

days after-HSCT. However, high fluctuations and later a decrease in the 392 

leukocyte count were observed (Fig. 2C and Additional file 2: Table S3). 393 

Further information such as different blood counts and creatinine levels over 394 

the course of treatment are provided in Additional file 2: Table S3. 395 

As the patient had prolonged neutropenia due to refractory leukemia and 396 

intensive chemotherapy, various antibiotics and antifungals were used to treat 397 

infectious complications before and during transplantation. More specifically 398 

beginning from day -17 she received piperacillin/tazobactam for neutropenic 399 

fever and this was changed to meropenem on day -14 for refractory fever. On 400 

day -11, vancomycin was added and on day -4, meropenem was exchanged 401 

for tigecycline. Additionally, the patient was treated with a fluoroquinolone 402 

(levofloxacin), ceftazidime and liposomal amphotericin B (Fig. 2D).  403 

74 days after allo-HSCT, the patient developed aGvHD overall grade III, skin 404 

stage II and GIT stage III. As the patient did not respond to 2 mg/kg 405 

prednisolone and deteriorated rapidly, ATG (5 mg/kg body weight) was 406 

administered for four days as second line GvHD treatment. A partial remission 407 
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of intestinal GvHD was noted with reduction of diarrhea from > 20 stools per 408 

day to 4-5 per day. She was bedridden with general fatigue and malaise. With 409 

continuous signs of infection and lower back pain an MRI scan of the spine 410 

showed a paravertebral abscess which was removed surgically on day 126.  411 

A multidrug-resistant Escherichia coli was isolated both from the abscess and 412 

from a blood culture, and was analysed further. After surgery the patient's 413 

health status improved, was able to walk again and could be discharged from 414 

hospital at day 209. She was readmitted on day 260 with suspected sepsis. 415 

The patient deceased at day 268 due to GvHD and systemic inflammatory 416 

response syndrome suspected to be bacterial sepsis. However, no pathogen 417 

could be recovered from blood cultures. 418 

In order to explore the treatment-induced effects on the GIT microbiome in 419 

more detail and relate them to the detrimental treatment outcome, we used a 420 

meta-omic approach including MG and MT analyses in addition to rRNA gene 421 

amplicon sequencing. For this patient, samples at later time points were 422 

available, i.e. four months after allo-HSCT, which allowed investigation of the 423 

GIT microbiome over an extended period of time.  424 

 425 

Patient A07 - changes in the microbial community structure during the 426 

treatment 427 

Fecal samples were taken, as indicated in Fig. 2D, at days -13 (sample A07-428 

1), day 75 (sample A07-2) and day 119 (sample A07-3). The prokaryotic 429 

diversity decreased markedly after allo-HSCT (Fig. 2B). Similarly, in sample 430 

A07-1 177 different OTUs were detected, while A07-2 and A07-3 only 431 

contained 62 and 79 OTUs, respectively.  432 
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Dominant OTUs of sample A07-1 reappeared in A07-3, more precisely 433 

several OTUs representing Bacteroides spp., Escherichia/Shigella sp. and 434 

Enterococcus sp. (Fig. 2A). However, many of the less abundant OTUs, 435 

belonging to 25 different genera, disappeared entirely, including for example 436 

Anaerostipes and Clostridium IV cluster (complete list of OTUs and their 437 

relative number of reads in each sample in Additional file 2: Table S4). OTUs 438 

with decreased abundance in sample A07-3 (compared to sample A07-1) 439 

represented 50 genera, for example Alistipes, Barnesiella, Blautia, Clostridium 440 

cluster XIVa and cluster XI, Prevotella, Roseburia and Ruminococcus. In 441 

addition, OTUs belonging to the genus Lactobacillus exhibited a 10-fold 442 

increase in relative abundance. Furthermore, different OTUs belonging to the 443 

genus Bacteroides increased in relative abundance resulting in a total relative 444 

abundance of Bacteroides spp. in A07-3 of 63 % compared to a total relative 445 

abundance of 27 % in A07-1 (Fig. 2A). This difference was mainly due to the 446 

increase in relative abundance of two Bacteroides OTUs, with an increase 447 

from 2.2 % to 23.5 % and from 0.9 % to 11.1 %, respectively. In total, 19 448 

different OTUs belonging to the genus Bacteroides were detected in the first 449 

sample, 23 different OTUs in the last sample, and only 5 different Bacteroides 450 

OTUs were identified at TP2 which accounted for 0.07 % overall. One OTU 451 

belonging to the domain archaea could be identified, Methanobrevibacter 452 

smithii, which accounted for 3.4 % total relative abundance in A07-1. Similar 453 

to the short-term developments observed in the whole cohort and described 454 

above, the eukaryotic microbial community did not exhibit pronounced 455 

changes over time (Fig. 2B). Taken together, a drastic decrease in prokaryotic 456 

diversity, with relative expansion of few bacteria, including potential 457 
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pathogens, was observed.  458 

 459 

Metagenomic and metatranscriptomic data generation 460 

Coupled MG and MT datasets of samples A07-1 (pre-treatment) and A07-3 461 

(post-treatment) were generated and analyzed in order to inspect the changes 462 

in the GIT microbiome and the effects of allo-HSCT and concurrent antibiotics 463 

use after an extended period of time. As a comparison, samples from four 464 

healthy individuals (referred to as "reference healthy microbiomes" or 465 

"RHMs") were analyzed in the same way.  466 

Statistics such as the number of genes, the number of raw read pairs, number 467 

of reads after preprocessing, number of contigs, maximum length, average 468 

length and total length of the contigs are provided in Additional file 2: Table S5 469 

and Table S6.  470 

 471 

Population-level structure of the pre- and post-treatment microbial 472 

communities  473 

To gain a comprehensive overview of the populations present in either 474 

sample, a method for automated binning of the contigs based on the BH-SNE 475 

embedding was employed. This binning method allowed the identification of 476 

134 and 14 individual population-level genomic complements, representing 477 

individual populations, in the pre-treatment and post-treatment samples, 478 

respectively (Fig. 3A and 3B). The visual impressions of the two embeddings 479 

reflect the drastic change in the GIT microbiome, in particular the decrease in 480 

diversity with the representation of the post-treatment sample A07-3 being 481 

exceptionally sparse (Fig. 3B). The most abundant populations were identified 482 
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as Escherichia coli, Enterococcus faecium, Lactobacillus reuteri, Lactobacillus 483 

rhamnosus and several species assigned to the genus Bacteroides, which is 484 

in agreement with the 16S rRNA gene sequencing-based results (Fig. 2A).  485 

Representation of both samples within a single plot allows visual 486 

discrimination of clusters that are specific to one sample, or present in both 487 

samples (Fig. 3C). In accordance with the results from 16S rRNA gene 488 

sequencing (Fig. 2A), the majority of the clusters were only found in the pre-489 

treatment sample, while other clusters comprised contigs from both samples 490 

and two clusters in the post-treatment sample were identified as Lactobacillus 491 

reuteri and Lactobacillus rhamnosus, which were either not present, or lowly 492 

abundant in sample A07-1 (Fig. 3C).  493 

Given the potential role of opportunistic pathogens in aGvHD [20], we were 494 

specifically interested in two opportunistic pathogens that were found in both 495 

samples and whose genomes could be recovered with high completeness. 496 

We identified populations of Escherichia coli and Enterococcus faecium, 497 

which were inspected further. The population-level genomes from both 498 

samples were reassembled to allow direct comparison of identified variants as 499 

well as of the complement of antibiotic resistance genes (ARGs) encoded by 500 

them and detected in each sample.  501 

 502 

Evidence for selective pressure at the strain-level  503 

To uncover evidence of possible selective sweeps in the populations of 504 

interest (the opportunistic pathogens Escherichia coli and Enterococcus 505 

faecium), caused by administration of antibiotics, we performed a gene-wise 506 

protein sequence comparison of the different population-level genomes. This 507 
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analysis revealed that 97.4 % of the genes found in the different population-508 

level genomes of E. coli, reconstructed from samples A07-1 and A07-3, were 509 

100 % identical and only 1.1 % of the genes were less than 95 % identical. In 510 

E. faecium, only 76 % of the genes were completely identical and 13.2 % of 511 

the genes showed less than 95 % identity.  512 

The average MG depths of coverage (Additional file 3: Fig. S1A and S1B) 513 

indicated that the population size of E. coli was smaller after allo-HSCT (Fig. 514 

4A), while the population size of E. faecium remained rather constant (Fig. 515 

4B). In E. coli, a similarly high number of variants was identified in both the 516 

pre- and post-treatment samples, with an important overlap of variants 517 

identified in both populations (Fig. 4C), whereas only a few variants were 518 

present in E. faecium of both samples (Fig. 4D). A similar pattern of variant 519 

distributions in both samples was observed for E. coli (Additional file 3: Fig. 520 

S1A and S1C), while the variant pattern in E. faecium (Additional file 3: Fig. 521 

S1B and S1D) changed between both samples. Observed nucleotide variant 522 

frequencies and patterns of variant distributions indicated that the E. coli 523 

populations were composed of different strains in both samples, which 524 

persisted over the course of the treatment. In contrast, E. faecium was mainly 525 

represented by a single strain in each sample, and the strain of the first 526 

sample was replaced by a different strain in the second sample.  527 

 528 

Coupled metagenomic and metatranscriptomic analysis of antibiotic 529 

resistance genes in pre- and post-treatment samples from patient A07 530 

The relative abundance of detected ARGs (percentage of ARGs relative to the 531 

total number of genes, Fig. 5A) in the post-treatment sample (0.39 %) was 532 
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significantly higher than the relative abundance of ARGs in the pre-treatment 533 

sample (0.28 % ARGs, P value 6.9 *10-4, Fisher's exact test) while the relative 534 

abundances of ARGs of both the pre- and post-treatment sample were higher 535 

than the average relative abundance in the RHMs (0.20 % ± 0.01 %, P value 536 

5.601 * 10-7 and 3.278 * 10-10, Additional file 2: Table S5). Moreover, the 537 

expression of ARGs was higher in both samples from patient A07 when 538 

compared to the RHMs (Fig. 5B).  539 

 540 

Identification of antibiotic resistance genes in population-level genomes 541 

of opportunistic pathogens 542 

Given the higher number and expression of ARGs in the post-treatment 543 

sample of patient A07, we were interested whether this could also be detected 544 

in the specific populations E. coli and E. faecium. Within the population-level 545 

genome of E. coli, 31 ARGs were identified in both samples and 2 additional 546 

genes were detected in the post-treatment sample only. In E. faecium, 25 547 

ARGs were identified in both samples of which 21 genes were identical in 548 

both samples (a complete list of identified genes is provided in Additional file 549 

2: Table S7, summaries of the ARGs identified in each population-level 550 

genome are listed in Table 2 and Table 3). In E. coli, 20 of the 31 ARGs that 551 

were found in both samples, exhibited higher levels of expression in the post-552 

treatment sample while in E. faecium, 18 out of 21 ARGs showed higher 553 

expression post-HSCT (Fig. 5C, Additional file 2: Table S7). Although patient 554 

A07 was only treated with antibiotics until day 18 (Fig. 2D), expression of the 555 

ARGs was in general higher in the post-treatment sample, both in the whole 556 

sample (Fig. 5B), as well as in the specific populations (Fig. 5C).  557 
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Table 2: Antibiotic resistance genes identified in population-level genomes of 558 

GIT E. coli from patient A07 559 

Resfams_ID 
Number 
of Genes Resfam Family Name Mechanism 

RF0005 1 AAC6-Ib 
Aminoglycoside 
Modifying Enzyme 

RF0007 3 ABCAntibioticEffluxPump ABC Transporter 

RF0027 1 ANT3 
Aminoglycoside 
Modifying Enzyme 

RF0035 1 baeR 
Gene Modulating 
Resistance 

RF0053 1 ClassA Beta-Lactamase 

RF0055 1 ClassC-AmpC Beta-Lactamase 

RF0056 1 ClassD Beta-Lactamase 

RF0065 1 emrB MFS Transporter 

RF0088 1 macA ABC Transporter 

RF0089 1 macB ABC Transporter 

RF0091 1 marA 
Gene Modulating 
Resistance 

RF0098 1 MexE RND Antibiotic Efflux 

RF0101 1 MexX RND Antibiotic Efflux 

RF0112 1 phoQ 
Gene Modulating 
Resistance 

RF0115 6 RNDAntibioticEffluxPump RND Antibiotic Efflux 

RF0121 1 soxR 
Gene Modulating 
Resistance 

RF0147 1 tolC ABC Transporter 

RF0168 6 TE_Inactivator Antibiotic Inactivation 

RF0172 1 APH3'' Phosphotransferase 

RF0173 1 APH3' Phosphotransferase 

RF0174 1 ArmA_Rmt rRNA 
Methyltransferase 

 560 

Table 3: Antibiotic resistance genes identified in population-level genomes of 561 

GIT E. faecium from patient A07 562 

Resfams_ID 
Number 
of Genes Resfam Family Name Mechanism 

RF0004 1 AAC6-I 
Aminoglycoside 
Modifying Enzyme 

RF0007 9 ABCAntibioticEffluxPump ABC Transporter 

RF0033 1 APH3 
Aminoglycoside 
Modifying Enzyme 

RF0066 1 emrE Other Efflux 

RF0067 1 Erm23SRibosomalRNAM rRNA 
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ethyltransferase Methyltransferase 

RF0104 1 MFSAntibioticEffluxPump MFS Transporter 

RF0134 1 
Tetracycline_Resistance_
MFS_Efflux_Pump 

Tetracycline MFS 
Efflux 

RF0154 1 vanR 
Gylcopeptide 
Resistance 

RF0155 2 vanS 
Gylcopeptide 
Resistance 

RF0168 1 TE_Inactivator Antibiotic Inactivation 

RF0172 2 APH3'' 
Aminoglycoside 
Modifying Enzyme 

RF0173 2 APH3' 
Aminoglycoside 
Modifying Enzyme 

RF0174 6 ArmA_Rmt 
Aminoglycoside 
Resistance 

 563 

Genomic characterization of a blood culture Escherichia coli isolate and 564 

comparison to GIT populations  565 

The genomes of a blood culture isolate and GIT population-level genomes of 566 

E. coli from patient A07 exhibited an average nucleotide identity of 100 %. A 567 

heatmap and corresponding dendrogram based on the E. coli pangenomes 568 

indicated that the genomes of the E. coli isolated from patient A07 and 569 

genomes from the GIT MG data were closer related to each other than to any 570 

other reference E. coli (Additional file 4: Fig. S2). In the genome of the E. coli 571 

isolate, the same ARGs as in the pre- and post-treatment GIT E. coli could be 572 

identified, with 4 additional ARGs compared to the post-treatment GIT E. coli.  573 

 574 

Discussion 575 

Short-term structural changes in the gastrointestinal microbiome 576 

following an allogeneic stem cell transplantation 577 

We observed a strong impact of allo-HSCT and accompanying treatment 578 

including antibiotic use on the GIT microbiome, with a marked decrease in 579 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 26 

bacterial diversity. The observed diversity indices are in agreement with 580 

values found in an earlier study [9]. The observed trend of a reduced bacterial 581 

diversity at engraftment in patients who did not survive (Fig. 1G), is in 582 

accordance with a study focussing on this link [21]. A significant decrease in 583 

important short-chain-fatty-acid (SCFA) producers [57–59] (the three bacterial 584 

genera Roseburia, Bifidobacterium and Blautia, Fig. 1E) was observed. 585 

SCFAs, especially the histone deacetylase inhibitor butyrate, are the main 586 

energy source for colonocytes [57], as well as anti-inflammatory agents which 587 

regulate NF-κB activation in colonic epithelial cells [57]. Additionally, butyrate 588 

enhances the intestinal barrier function by regulating assembly of epithelial 589 

tight junctions [60] and a recent study showed that local administration of 590 

exogenous butyrate mitigated GvHD in mice [61]. Depletion of these important 591 

bacteria has been highlighted to pose an additional risk for developing GvHD 592 

or infections after allo-HSCT [26, 62]. Therefore, in addition to damage in 593 

epithelial cells due to chemotherapy, loss in SCFA-producing bacteria could 594 

further compromise intestinal barrier integrity and facilitate translocation of 595 

bacteria and PAMPs.  596 

We found that fungi were the most prominent eukaryotes and that the 597 

eukaryotic diversity was stable during the treatment and thus not affected by 598 

antibiotic treatment and ensuing changes in bacterial community structure. 599 

However, antibiotic treatment might indirectly increase the risk for invasive 600 

fungal infections, by opening niches to these organisms, which were 601 

previously occupied by commensal bacteria. Although we did not observe any 602 

clear treatment-induced effects on the eukaryotic communities in the patient 603 

samples analyzed, it is nonetheless important to also account for the 604 
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eukaryotes in future studies as overgrowth thereof has previously been linked 605 

to adverse treatment outcomes [14].  606 

 607 

Long-term effect of allogeneic stem cell transplantation on the 608 

gastrointestinal microbiome 609 

Employing detailed integrated meta-omic analyses of the samples from one 610 

patient, we demonstrate the effects of allo-HSCT and accompanying 611 

treatment on the GIT microbiome and consequently on the patient over an 612 

extended period of time. Only one study so far has followed the GIT 613 

microbiome trajectory up to three months after allo-HSCT [63]. Contrary to 614 

this study, which observed that the richness and metabolic capacity of the 615 

microbial community recovered after two months [63], our study found that the 616 

GIT microbial community in patient A07 did not regain its initial composition 617 

even four months after allo-HSCT, which is likely linked to the detrimental 618 

treatment outcome. Diversity was still decreased and many bacterial taxa 619 

remained absent or at drastically decreased relative levels. Taxa with 620 

decreased relative abundance were mainly bacteria whose presence in the 621 

human GIT is associated with health-promoting properties (such as butyrate 622 

production) and whose absence has been linked to negative consequences 623 

(such as inflammation) [64–66]. The genus Blautia for instance, has been 624 

linked to reduced aGvHD-associated death and improved overall survival [26] 625 

and Barnesiella with resistance to intestinal domination with vancomycin-626 

resistant enterococci in allo-HSCT patients [67]. On the other hand, potential 627 

pathogens like Fusobacterium sp. and Proteus sp. appeared in the post-628 

treatment sample, which were not detected in the first sample. Consecutive 629 
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loss in intestinal barrier integrity could have allowed a GIT-borne E. coli to 630 

cause a paravertebral abscess. 631 

Coinciding with the development of severe aGvHD (expressed by severe 632 

diarrhea) 75 days after allo-HSCT, 16S rRNA gene amplicon sequencing 633 

revealed a GIT microbiome in a notably dysbiotic state with a low diversity 634 

and dominance of two opportunistic pathogens, E. coli and E. faecium. The 635 

dominance of E. faecium has been observed to be quite common in allo-636 

HSCT recipients and has been linked to higher occurrence of bacteremia 637 

and/or GIT GvHD [9, 24]. A high relative abundance of E. faecium is also 638 

observed in sample A07-2. Broad-spectrum antibiotic therapy, which has 639 

been associated with higher GvHD-related mortality [68], can reduce mucosal 640 

innate immune defences through elimination of commensal microbes, thereby 641 

allowing the expansion of specific bacterial taxa, such as E. faecium, which 642 

carry multiple antibiotic resistance mechanisms [69, 70]. Our findings suggest 643 

that this specific population expanded in response to antibiotic treatment.  644 

Bacteroides spp. are normal commensals of the human GIT microbiome, they 645 

usually make up around 25 % of the community, as it is the case in sample 646 

A07-1 (Fig. 2A). However, they can also cause infections with associated 647 

mortality [71]. Bacteroides spp. might be able to penetrate the colonic mucus 648 

and persevere within crypt channels. These reservoirs might persist even 649 

during antibiotic treatment [72]. Different species of the genus Bacteroides 650 

produce bacteriocins [73–75], a trait that might have made it possible for 651 

these bacteria to repopulate the GIT and expand after the dysbiosis in A07-2, 652 

occupying specific niches, resulting in a relative abundance of 63 % in A07-3 653 

(day 119).  654 
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Facultative anaerobes such as members of the orders Lactobacillales and 655 

Enterobacteriales are often observed to increase in relative abundance after 656 

treatment while obligate anaerobes such as members of the order 657 

Clostridiales often decrease in abundance [76]. Lactobacillus rhamnosus and 658 

Lactobacillus reuteri (which were detected in sample A07-3) are both often 659 

combined in probiotic formulations and are commonly considered safe and 660 

even beneficial through inhibition of potential pathogen (such as E. coli and E. 661 

faecium) expansion [77–79]. Even in patients undergoing allo-HSCT, 662 

Lactobacillus plantarum administration has not been found to result in higher 663 

incidence of bacteremia or aGvHD [80]. However, bacteria found in probiotic 664 

formulations, especially Lactobacillus species have occasionally also caused 665 

bloodstream infections [81]. Our data suggest that probiotics should be 666 

administered with great caution and should be subject to further investigations 667 

to clearly ensure safety of their usage. 668 

 669 

Identification of antibiotic resistance genes in population-level genomes 670 

of opportunistic pathogens and evidence for selective pressure at the 671 

strain-level 672 

A higher ratio of ARGs within the microbial community was observed post-673 

treatment, even a few months after the antibiotic treatment was concluded 674 

(Fig. 5A). Importantly, the observed expression of ARGs was higher in the 675 

post-treatment sample (Fig. 5B) when compared to the pre-treatment sample. 676 

Strains that carry mutations which lead to higher expression of ARGs might 677 

have been selected for by the antibiotic treatment [82].  678 

In E. coli, three different genes conferring resistance against β-lactams were 679 
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identified, one of which was only detected in the post-treatment sample, which 680 

might have been acquired due to selective pressure given the administration 681 

of three different β-lactam antibiotics during the treatment.  682 

Observed nucleotide variant frequencies and patterns of variant distributions 683 

indicated that the treatment may have constituted a genetic bottleneck for E. 684 

faecium, culminating in the observed lower genetic diversity. This also 685 

suggests that two different mechanisms influenced the respective 686 

compositions of E. coli and E. faecium populations. While the E. coli 687 

population remained relatively unaffected, the E. faecium population 688 

underwent a selective sweep in response to the antibiotic treatment with 689 

selection of a specific genotype expressing ARGs. Overall, our observations 690 

indicate that antibiotic pressure and associated selection of bacteria encoding 691 

ARGs are likely essential factors in governing the observed expansion in 692 

opportunistic pathogens. 693 

Interestingly, the multidrug-resistant E. coli that was isolated from a blood 694 

culture, was closely related to the GIT-borne E. coli population. The overlap of 695 

ARGs identified in each genome further indicates their association. These 696 

findings are a proof for the potential fatal effects of dysbiosis associated 697 

pathogen dominance in the GIT and subsequent systemic infections on 698 

patient survival. 699 

Based on our observation, one strategy to avoid a treatment-induced 700 

intestinal domination by pathogens could consist in the tailored administration 701 

of several, not single probiotic strains, composed in dependence of the 702 

individual GIT microbiome changes during therapy. A different approach could 703 

consist in fecal microbiome transplantation, either as "autologous" 704 
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(transplanting the pre-transplant microbiome) or "allogeneic" graft (from the 705 

donor of the stem cells). Preservation of a diverse microbiome, able to inhibit 706 

expansion of potential pathogens, might be a new approach to avoid 707 

treatment related side effects. 708 

 709 

Conclusions 710 

We observed drastic changes in the prokaryotic composition of the 711 

gastrointestinal microbiome of patients after allo-HSCT and supportive care, 712 

with a decrease in bacterial diversity. Pronounced changes in community 713 

structure can persevere and present as extensive dysbiosis with potential fatal 714 

effects on patient outcome. We observed increases in the number and 715 

expression levels of ARGs and the different ways in which bacterial 716 

populations respond to antibiotic stress  717 

An individually tailored treatment, either by i) limiting the usage of broad-718 

spectrum antibiotics, ii) via fecal microbiome transplantation and/or iii) via 719 

administration of specific probiotics could help to modulate the microbiome to 720 

increase tolerance or improve the overall efficacy of the therapy. 721 
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 1062 

Figures  1063 

Figure 1 Changes of gastrointestinal microbial community structure in 1064 

patients receiving allo-HSCT. Boxplots depicting (A, E) diversity (Shannon 1065 

diversity index) and (B, F) richness (Chao1 richness estimator) per collection 1066 

time point (TP), for (A, B) prokaryotes (determined by 16S rRNA gene 1067 

amplicon sequencing) and (E, F) eukaryotes (determined by 18S rRNA gene 1068 

amplicon sequencing), respectively. The number of samples per collection TP 1069 

is indicated above each box. Diversity and richness were determined after 1070 

rarefaction of the dataset. Statistically significant decrease in prokaryotic 1071 

diversity between TP1 and TP3 (P value 0.014 in Kruskal-Wallis rank sum 1072 

test) and in prokaryotic richness between TP1 and TP3 (P value 0.026, 1073 

Wilcoxon rank sum test) was observed. (C) Changes in relative abundance of 1074 

three bacterial genera between TP1 and TP3. Genera with at least 1.5-fold 1075 

decrease, adjusted P value < 0.05 and a relative abundance of at least 5 % in 1076 

one sample are included (adjusted P value 0.0025, 0.026 and 3.68 * 10-5, 1077 

Wald test). (D) Changes in relative abundance of two bacterial orders 1078 

between TP1 and TP3 (adjusted P value 0.0054 and 0.009, Wald test). (G) 1079 
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 46 

Prokaryotic diversity at TP1 and TP3 in relation to outcome 1.5 years after 1080 

allo-HSCT. Samples from five patients who survived (S) and three patients 1081 

who deceased (M) are represented. (C, D and G) Data from all eight patients 1082 

who had samples collected at TP1 and TP3 are displayed. Collection TP1 1083 

includes samples that were taken (up to eight days) before allo-HSCT. TP2 1084 

includes samples that were taken up to four days after the transplantation. 1085 

TP3 includes samples that were taken between day 20 and day 33 after the 1086 

transplantation. Significant differences between TPs are indicated by asterisks 1087 

(* P value < 0.05, ** P value < 0.01). 1088 

 1089 

Figure 2 Variation of the microbial community structure over the course 1090 

of the allo-HSCT treatment in patient A07. (A) Relative proportions of the 1091 

10 most abundant operational taxonomic units (OTUs) based on 16S rRNA 1092 

gene sequencing. The remaining OTUs are summarised as "others". Similar 1093 

shades of the colors represent genera belonging to the same phylum. (B) 1094 

Prokaryotic (triangle) and eukaryotic (circle) diversity represented by Shannon 1095 

diversity index at sampling TPs throughout the treatment. (C) C-reactive 1096 

protein (CRP) blood levels (green line) and leukocyte blood count (blue line). 1097 

(D) Drugs (antibiotics, antifungals and antithymocyte globulin) administered 1098 

throughout the treatment. Along the x-axis, days relative to the day of 1099 

transplantation are indicated. Abbreviations: Vancom=vancomycin; 1100 

Tigecycl=tigecycline; Fluoroq=fluoroquinolone; Antif=antifungal; 1101 

ATG=antithymocyte-globulin. 1102 
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 47 

Figure 3 BH-SNE-based visualization of genomic fragment signatures of 1104 

microbial communities present in samples of patient A07. 1105 

Points represent contigs ≥ 1000 nt. Clusters are formed by contigs with similar 1106 

genomic signatures. (A) Visualization of pre-treatment sample contigs. (B) 1107 

Visualization of post-treatment sample contigs. (A and B) Points within 1108 

clusters are colored according to the reconstructed genomes' completeness, 1109 

based on the number of unique essential genes. Lines within the colored bar 1110 

indicate the number of clusters at each percentage of completeness. (C) 1111 

Combined visualization of contigs derived from pre-treatment sample (A07-1, 1112 

blue squares) and post-treatment (A07-3, red crosses) samples. The inset 1113 

displays a magnification of a section of the plot representing two populations 1114 

(Lactobacillus reuteri and Lactobacillus rhamnosus), which are only present in 1115 

the post-treatment sample. In each representation, clusters representing 1116 

Escherichia coli and Enterococcus faecium are indicated. 1117 

 1118 

Figure 4 Number and distribution of variants in Escherichia coli and 1119 

Enterococcus faecium. (A and B) Violin plots representing distribution of 1120 

depth of coverage of the contigs contained in each population-level genome. 1121 

(C and D) Venn diagrams indicating the number of variant positions exclusive 1122 

to each sample respectively the number of variant positions found in both 1123 

samples. Panels on the left represent results for E. coli, panels on the right 1124 

represent results for E. faecium. Blue figure elements refer to the pre-1125 

treatment sample (A07-1), red figure elements refer to the post-treatment 1126 

sample (A07-3). 1127 
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 48 

Figure 5 Expression levels and relative abundances of antibiotic 1129 

resistance genes (ARGs). (A) Percentage of identified ARGs (in relation to 1130 

total number of genes) in the pre-treatment (A07-1) and post-treatment (A07-1131 

3) sample and in the GIT microbiome of four healthy untreated individuals 1132 

(RHMs; ** P value < 0.01, Fisher's exact test). (B) Histogram of the ratios of 1133 

metatranscriptomic (MT) to metagenomic (MG) depths of coverage of ARGs 1134 

in the pre-treatment and post-treatment sample and in the RHMs. (C) 1135 

Histograms of the ratios of MT to MG depths of coverage of ARGs in 1136 

population-level genomes of Escherichia coli and of Enterococcus faecium in 1137 

the pre- and post-treatment samples. Bars representing the number of ARGs 1138 

at a specific expression rate in the pre-treatment sample are blue, bars 1139 

representing the genes in the post-treatment sample are red and bars 1140 

representing the genes in the RHMs are green. For the RHMs, the average of 1141 

four datasets is represented with standard deviation as error bar.  1142 
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Abstract (Heading 1) 20 

The Gram-negative beta-proteobacteria Zoogloea schifflangensis LCSB751 was originally isolated from 21 

foaming activated sludge. Here, we describe its draft genome and annotation together with a general 22 

physiological and genomic analysis, as the first sequenced representative of the Zoogloea genus. Moreover, 23 

Zoogloea gene expression in its environment is described using metatranscriptomic data obtained from the 24 

same treatment plant. The presented genomics and transcriptomics information demonstrate the pronounced 25 

capacity of this genus to synthesis PHA in wastewater.  26 

 27 

Keywords: (Heading 1) 28 

Genome assembly ; Genomic features ; Metatranscriptomics ; Poly-hydroxyalkanoate ; Wastewater 29 

treatement plant ; Zoogloea schifflangensis. 30 

 31 

Abbreviations: (optional) (Heading 1) 32 

Poly-β-hydroxyalkanoate (PHA)33 



Introduction (Heading 1) 34 

Zoogloea spp. are chemoorganotrophic bacteria often found in organically enriched aquatic environments 35 

and known to be able to accumulate intracellular granules of poly-β-hydroxyalkanoate (PHA) [1]. The 36 

combination of these two characteristics render this genus particulary interesting from the perspective of 37 

leveraging chemical energy present in wastewater in order to produce high-value resources [2,3]. In 38 

particular, PHA may be used to synthesize biodegradable bioplastics or be chemically transformed into the 39 

biofuel hydroxybutyrate methyl ester [2]. 40 

The genus name Zoogloea is derived from the Greek meaning ‘animal glue’, refering to a phenotypic trait 41 

that was previously used to differentiate between Zoogloea species and other metabolically similar bacteria 42 

[1]. The polysaccharides composing this zoogloeal matrix was also proposed to be used as a polymer for 43 

heavy metals adsorption [4]. 44 

To date, no genome were sequenced for any of the representative strains of one of the five recognised 45 

species of Zoogloea and thus, very few information about Zoogloea genomic potential is available. In the 46 

context of a larger study designed to identify major bacterial populations naturally occuring in wastewater 47 

activated sludge that possess interesting features for biodiesel and bioplastic production, we sequenced the 48 

genome of a newly isolated representative of the Zoogloea genus, representing the first strain of a new 49 

species: Zoogloea schifflangensis. 50 



Organism Information (Heading 1) 51 

Classification and features (Heading 2) 52 

Zoogloea schifflangensis LCSB751 was isolated from an activated sludge sample collected at the surface 53 

of the anoxic tank at Schifflange, Esch-sur-Alzette, Luxembourg (49°30′48.29′′N; 6°1′4.53′′E) on 12 54 

October 2011. After dilution by a factor 104 with sterile physiological water of the activated sludge 55 

sample, the biomass was first cultivated on solid MSV peptone medium [5] at 20°C and in a glovebox 56 

with anoxic condition (less than 100 ppm oxygen). Single colonies were re-plated iteratively until 57 

obtaining a pure culture that was cryopreserved (aerobically) in 10% glycerol at -80°C.  58 

As a facultative aerobe, Zoogloea schifflangensis LCSB751 can grow aerobically at 25°C in the liquid 59 

growth media R2A [6], MSV A+B [5] or Slijkhuis A [7] with 70 rpm agitation in which it forms cell 60 

clumps. More cell clumps were observed in MSV A+B than in R2A medium. When grown on R2A agar 61 

or on MSV peptone agar at 25°C under aerobe conditions, Zoogloea schifflangensis LCSB751 colonies 62 

were initially punctiform and after three days, they were white, circular, raised and with entire edges. The 63 

morphology of cells derived from these growth conditions are short rod-shaped bacteria (Figure 1A), 64 

Gram-negative in accordance with already described isolates species of Zoogloea spp. [8,9] (Table 1).  65 

Phylogenetic analysis based on 16S rRNA gene sequences confirms that strain LCB751 belong to the 66 

Zoogloea genus of the beta-proteobacterial class (Table 1). However, this strain formed a distinct phyletic 67 

linage from the five recognized species of Zoogloea, that are represented by the type strains Z. caeni 68 

EMB43T [10], Z. oleivorans BucT [8], Z. oryzea A-7T [11], Z. ramigera ATCC 19544T [12] and Z. 69 

resiniphila DhA-35T [13,14] (Figure 2). 70 

 71 

Extended feature descriptions (optional Heading 3) 72 

The capacity of Zoogloea schifflangensis LCSB751 to accumulate intracellular granules of lipids was tested 73 

using the dye Nile Red as described by Roume, Heintz-Buschart and collaborators [15]. Figure 1B shows 74 

the Nile Red positive phenotype of the described strain. 75 



Additionally, the growth characteristics of the strain Zoogloea schifflangensis LCSB751 were determined 76 

aerobically and at 25°C with 700 rpm in 3 different liquid media. Its generation time was the longest in 77 

Slijkhuis A with the highest biomass production. MSV A+B allowed a generation time of 4 hours 30 78 

minutes but lead to a poor biomass production as demonstrated by the low maximal optical density at 600 79 

nm (OD600) of 0.21. The tested liquid medium which allowed the most rapid growth for Zoogloea 80 

schifflangensis LCSB751 was R2A while the biomass production was close to the one observed for 81 

Slijkhuis A (Table 2).  82 

  83 



Genome sequencing information (Heading 1) 84 

Genome project history (Heading 2) 85 

Overall, 140 pure bacterial cultures were obtained and screened for lipid inclusions using the Nile Red 86 

fluorescent dye and the genomes of 85 Nile Red-positive isolates were sequenced, of which isolate 87 

LCSB065 has already been published [15]. In particular, the genome of Zoogloea schifflangensis LCSB751 88 

was sequenced to obtain information about the functional potential of this genus, which has no sequenced 89 

representative genome publically available, but also based on its particular phylogenetic position and to 90 

acquire knowledge on the genes related to lipid accumulation. The permanent draft genome sequence of 91 

this strain is available on NCBI with the accession number XXX. Table 3 summarizes the project 92 

information according to the MIGS compliance [16]. 93 

 94 

Growth conditions and genomic DNA preparation (Heading 2) 95 

Zoogloea schifflangensis LCSB751 was grown on MSV peptone agar medium [5] at 20°C in anoxic 96 

condition. Half of the biomass was scrapped in order to cryopreserve the strain, while the second half was 97 

used for DNA extraction using the Power Soil DNA isolation kit (MO BIO, Carlsbad, CA, USA). This 98 

cryostock was used to distribute the strain to microorganism collection center (LMG 29444). 99 

 100 

Genome sequencing and assembly (Heading 2) 101 

The purified DNA was sequenced on an Illumina HiSeq Genome Analyzer IIx as described before for an 102 

other isolate of the same project [15]. Briefly, a paired-end sequencing library with a theoretical insert size 103 

of 300 bp was prepared with the AMPure XP/Size Select Buffer Protocol as previously described by 104 

Kozarewa & Turner [17], modified to allow for size-selection of fragments using the double solid phase 105 

reversible immobilisation procedure described earlier [18] and sequenced on an Illumina HiSeq with a read 106 

length of 100 bp at TGen North (AZ, USA). The leading end sequence of the resulting raw 2,638,115 107 



paired-end reads was trimmed of N bases and filtered for a minimal quality score of 3, retaining 2,508,729 108 

(~95%) of paired reads, 129,378 of forward read singletons and 8 (0.00%) of reverse read singletons. All 109 

reads retained after the pre-processing underwent a de novo assembly using SPAdes [19]. 110 

The total number of contigs (776), the mean contig length (7,497 bp) and the N50 value (180,423 bp) of 111 

the draft assembly of Zoogloea schifflangensis LCSB751 (Table 3) indicate quite a fragmented assembly 112 

despite the reasonable sequencing depth estimated at 150x fold coverage, 100x based on the counting 21-113 

mer sequences, using KMC2 [20] and evaluated at approximately 120x average depth of coverage upon 114 

mapping reads back onto the contigs generated from the assembly [21–23]. 115 

 116 

Genome annotation (Heading 2) 117 

As a part of RAST pipeline [24], ORFs encoding protein, tRNA and rRNA were predicted using 118 

GLIMMER2 [25], tRNAscan-SE [26] and "search_for_rnas" respectively, and were then annotated using 119 

the subsystems approach. The proteins predicted from RAST were submitted to WebMGA server [27], to 120 

SignalP server v.4.1 [28] and to TMHMM server v.2.0 [29] for COG functional annotation, signal peptides 121 

prediction and transmembrane helices prediction, respectively. 4202 of the predicted amino acid sequences 122 

were annotated with 13,030 Pfam IDs. Additionally, CRISPR loci were detected using metaCRT [30,31]. 123 

 124 

Genome Properties (Heading 1) 125 

The draft genome assembly of Zoogloea schifflangensis LCSB751 consists of 5,817,831 bp with a G+C 126 

content of 64.2%, distributed among 776 contigs with an N50 value of 180,423 bp. Detailed statistics are 127 

provided in Table 4. The raw reads are available via GenBank nucleotide database under the accession 128 

number XXXX, while the assembly and the annotation (IDs 6666666.102999) can be access through the 129 

RAST guest account at http://rast.nmpdr.org. 130 

Of the 5202 predicted genes, 77 are annotated as RNAs. The rRNA operon region is predicted to be 131 

occurring in multiple copies, because all reads from this region were assembled into a single contig with a 132 



higher depth of coverage (~1200x) compared to the rest of the genome.  tRNAs anticodons covered all the 133 

20 regular amino-acids. Less than 30% (1464) of the CDS were annotated as encoding hypothetical proteins 134 

or proteins of unknown function. The COG functional categories distribution is in Table 5. Additional 135 

functional classification based on subsystem is available via RAST. 136 

 137 

Insights from the genome sequence (optional) (Heading l) 138 

Central metabolism inferences from genomic information (Heading 2) 139 

Regarding carbon central cycles, Zoogloea schifflangensis LCSB751 is predicted to have gene for a 140 

complete TCA cycle, but is missing some or the complete set of genes for the EMP pathway, the pentose 141 

phosphate pathway and Entner-Doudoroff pathway.  142 

A periplasmic nitrate reductase as well as a nitrite reductase are found, suggesting the possible complete 143 

reduction of nitrate in ammonia by Zoogloea schifflangensis LCSB751. Furthermore, a complete set of nif 144 

genes involved in nitrogen fixation is present in this genome. 145 

Genes for a complete electron transport chain are found as well as for the alternative RNF complex [32]. 146 

The genome of Zoogloea schifflangensis LCSB751 also encodes numerous genes for flagella synthesis and 147 

assembly, suggesting the motility of this strain. The strain is also predicted to be prototroph for all amino 148 

acids, nucleotides and vitamins B2, B6, B9, H, and is missing a single gene for the synthesis of B12. 149 

Additionally, the catechol 2,3-dioxygenase that has been studied in Z. oleivorans, is also found in Zoogloea 150 

schifflangensis LCSB751. 151 

Finally, three CRISPR loci were detected, accompanied by eight CRISPR-associated proteins. Two of these 152 

direct repeats are 37bp in length (sequence: GTTTCAATCCACGTCCGTTATTGCTAACGGACGAATC; 153 

GTGGCACTCGCTCCGAAGGGAGCGACTTCGTTGAAGC) while one of them is 32bp (sequence: 154 

CACTCGCTCCGGAGGGAGCGACTTCGTTGAAG). These CRISPRs contain 175, 51 and 11 spacers, 155 

respectively ranging from lengths of 33 to 46 bp. A total of 77 matches were found when blasting the 156 

spacers against the ACLAME phage/viral/plasmid gene database, NCBI phage and NCBI virus databases. 157 



51 of the spacers match to phages, 6 to viruses, 11 to genes within plasmids and six to genes within 158 

phages/prophages.  159 

 160 

Lipid metabolism (Heading 2) 161 

In order to better understand the lipid accumulation phenotype of Zoogloea spp., the genome of Zoogloea 162 

schifflangensis LCSB751 was further analysed with special focus on genes related to lipid metabolism. 163 

With 202 genes annotated with a COG functional category I “Lipid transport and metabolism “, more that 164 

3.8% of the genome of Zoogloea schifflangensis LCSB751 is devoted to lipid metabolism (Table 5). Using 165 

the SEED subsystem feature, similar results were obtained with 194 genes (3.8%) classified in the “Fatty 166 

acids, lipids and Isoprenoids” subsystem (details in Table 6).  167 

In details, a complete set of genes necessary for the synthesis, polymerisation and depolymerisation of PHA 168 

[2] was found as well as the gene of the MEP/DOXP pathway for terpenoid synthesis. The gene necessary 169 

to convert diacylglycerol in triacylglycerol or fatty alcohol in wax ester has not been found, suggesting that 170 

the only lipid bodies that are accumulated in Zoogloea schifflangensis LCSB751 are PHA granules. 171 

 172 

In situ gene expression (Heading 2) 173 

While genomics data provides information about the genetic potential of Zoogloea schifflangensis 174 

LCSB751, it is possible to study expressed functions of the natural population of Zoogloea in the biological 175 

treatment plant it has been isolated from using metatranscriptomic data. Here, such analyses has been done 176 

on four temporally resolved samples, collected on the 25 January 2011, 11 January 2012, 5 October 2011, 177 

and 12 October 2011, as studied by Muller and collaborators [33]. Genes with an average depth of coverage 178 

equal or higher than 0.3, were considered as expressed by mapping the rRNA-depleted transcripts on the 179 

genome of Zoogloea schifflangensis LCSB751. 259, 312, 269 and 330 genes, respectively, were detected 180 

as expressed, with 160 of them being always expressed. For the vast majority, (4732 genes), no transcripts 181 

were detected, which can be explained by Zoogloea sp. low population size in situ. Indeed, by phylogenetic 182 



marker gene (16S rRNA) amplicon sequencing on the sample collected the 25 January 2011 (data from 183 

[33]), Zoogloea sp. population size was estimated at 0.1%. 184 

Interestingly, at least one copy of the acetoacetyl-CoA reductase and of the polyhydroxyalkanoic acid 185 

synthase are found expressed at each time point, suggesting an important PHA accumulation in the 186 

population of Zoogloea sp. in this environment.  187 

 188 



Conclusions (Heading 1) 189 

We provide here the first draft genome of a strain belonging to the genus Zoogloea. The genetic inventory 190 

of Zoogloea schifflangensis LCSB751 makes it of particular interest for future wastewater treatment 191 

strategies based around the comprehensive reclamation of nutrients and chemical energy-rich biomolecules 192 

around the concept of a “wastewater biorefinery column” [3] as well as for industrial biotechnological 193 

application. Future comparative genomics studies would allow the scientific community to identify if this 194 

genomic repertoire is typical of this genus. Using metatranscriptomic data, we show that Zoogloea sp. 195 

population is active in the studied wastewater treatment plant despite its small size, and in particular that 196 

PHA accumulation occurs in situ. 197 



Taxonomic and nomenclatural proposals (optional) (Heading 1).  198 

Based on the phylogenetic analysis, we formally suggest the creation of Zoogloea schifflangensis sp. nov. 199 

with strain LCSB751 being the type strain.  200 

 201 

Zoogloea Schifflangensis (Schif.flan.gen.sis gen. nov. Schifflangensis, based on the name of the city the 202 

strain has been isolated from). This type strain LCSB751 (=LMG 29444) has been obtained from foaming 203 

activated sludge of the municipal treatment plant of the city Schifflange. Growth was observed both 204 

aerobically and anaerobically in rich medium. Colonies are white, circular, raised and with entire edges. 205 

Cells are gram-negative, rod-shaped and accumulated lipid granules. 206 

The G+C content of the genome is 64.2%. The genome sequence was deposited in GenBank under 207 

accession number XXX, and its annotation is available via RAST (IDs 6666666.102999) through the RAST 208 

guest account at http://rast.nmpdr.org, using ‘guest’ as login as well as password. 209 

 210 
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Tables and figures 318 

Table 1. Classification and general features of Zoogloea schifflangensis strain LCSB751 319 

according to the MIGS recommendation [16] 320 

MIGS ID Property Term 

Evidence 

codea 

 Classification Domain Bacteria  TAS [34] 

  Phylum Proteobacterium TAS [35] 

  Class Betaproteobacterium TAS [36] 

  Order Rhodocyclales TAS [10] 

  Family Rhodocyclaceae TAS [10] 

  Genus Zoogloea IDA 

  Species schifflengensis IDA 

  Strain: LCSB0751  

 Gram stain Negative TAS [1] 

 Cell shape Rod TAS [1] 

 Motility Motile TAS [1] 

 Sporulation Not reported NAS 

 Temperature range 5-40°C TAS [8,10,11] 

 Optimum temperature 25-30°C TAS [8,10] 

 pH range; Optimum 6.0–9.0; 6.5-7.5 TAS [8,10] 

MIGS-6 Habitat Activated sludge IDA 

MIGS-6.3 Salinity Inhibited at 0.5% NaCl (w/v) TAS [11] 

MIGS-22 Oxygen requirement facultative anaerobe IDA 

MIGS-15 Biotic relationship free-living IDA 

MIGS-14 Pathogenicity non-pathogen NAS 

MIGS-4 Geographic location Luxembourg IDA 

MIGS-5 Sample collection 2011 IDA 

MIGS-4.1 Latitude 49°30′48.29′′N;  IDA 

MIGS-4.2 Longitude 6°1′4.53′′E IDA 

MIGS-4.4 Altitude 275 m IDA 

a Evidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in 321 

the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but 322 

based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the 323 

Gene Ontology project [37]. 324 



 325 

Table 2. Generation time, growth rate and maximal growth of Zoogloea schifflangensis LCSB751 326 

under different aerobic culture conditions. 327 

Medium Generation time 

± standard deviationa 

Growth rate  

(min-1) 

Maximal OD600
b 

R2A 1h54min ± 3min 0.0058 0.46 

MSV A+B 4h30min ± 53min 0.0026 0.21 

Slijkhuis A 10h42min ± 1h51min 0.0011 0.73 

a the values are an average of independent triplicate experiments 328 

b OD600 stands for optical density measured at 600 nm with the spectrometer “Biochrom WPA CO 8000 Cell Density 329 

Meter” using BRAND disposable semi-micro UV cuvettes of 12.5 x 12.5 x 45 mm.  330 



Table 3. Project information. 331 

MIGS ID Property Term 

MIGS 31 Finishing quality Draft 

MIGS-28 Libraries used Illumina paired-end reads (insert size 30 bp) 

MIGS 29 Sequencing platforms Illumina HiSeq 

MIGS 31.2 Fold coverage 150x 

MIGS 30 Assemblers SPAdes (version 3.1.1) 

MIGS 32 Gene calling method RAST 

 Locus Tag fig|6666666.102999 

 Genbank ID  

 GenBank Date of Release  

 GOLD ID  

 BIOPROJECT  

MIGS 13 Source Material Identifier LMG 29444 

 Project relevance Environmental, biodiversity, biotechnological 

 332 

  333 



Table 4. Genome statistics of Zoogloea schifflengensis LCSB751. 334 

 335 

 336 

 337 

 338 

 339 

 340 

 341 

 342 

 343 

 344 

 345 

a The total is based on either the size of the genome in base pairs, total number of scaffolds or the 346 

total number of genes in the annotated genome. 347 

b The cumulative length of genes, without considering overlaps.  348 

Attribute Value % of Totala 

Genome size (bp) 5,817,831 100.00 

DNA coding (bp)
b

   4,966,077 85.36 

DNA G+C (bp) 3,733,728 64.18 

DNA scaffolds 773 100.00 

Total genes 5,202 100.00 

Protein coding genes 5,125 98.52 

RNA genes 77 1.48 

Pseudo genes unknown unknown 

Genes in internal clusters unknown unknown 

Genes with function prediction 3,661 70.38 

Genes assigned to COGs 4,191 80.56 

Genes with Pfam domains 4,202 80.78 

Genes with signal peptides 505 9.71 

Genes with transmembrane helices 1157 22.24 

CRISPR repeats 2 2.85 



Table 5. Number of genes associated with general COG functional categories. 349 

Code Value %age Description 

J 182 3.50 Translation, ribosomal structure and biogenesis 

A 3 0.06 RNA processing and modification 

K 342 6.57 Transcription 

L 204 3.92 Replication, recombination and repair 

B 3 0.06 Chromatin structure and dynamics 

D 52 1.00 Cell cycle control, Cell division, chromosome partitioning 

V 69 1.33 Defense mechanisms 

T 564 10.84 Signal transduction mechanisms 

M 252 4.84 Cell wall/membrane biogenesis 

N 177 3.40 Cell motility 

U 142 2.73 Intracellular trafficking and secretion 

O 189 3.63 Posttranslational modification, protein turnover, chaperones 

C 362 6.96 Energy production and conversion 

G 130 2.50 Carbohydrate transport and metabolism 

E 305 5.86 Amino acid transport and metabolism 

F 85 1.63 Nucleotide transport and metabolism 

H 185 3.56 Coenzyme transport and metabolism 

I 202 3.88 Lipid transport and metabolism 

P 283 5.44 Inorganic ion transport and metabolism 

Q 126 2.42 Secondary metabolites biosynthesis, transport and catabolism 

R 520 10.00 General function prediction only 

S 351 6.75 Function unknown 

- 1,011 19.43 Not in COGs 

The total is based on the total number of protein coding genes in the genome. 350 

  351 



Table 6. Gene abundance and frequency related to the lipid metabolism of  352 

Zoogloea schifflengensis LCSB751. The different categories (in bold) and subcategories of the 353 

subsystem “Fatty acids, lipids and isoprenoid” are represented 354 

 355 

Subsystem  Subsystem feature 

count 

Subsystem 

feature (%) 

Fatty acids, lipids and isoprenoids 194 100 

   Phospholipids  30 15.46 

  Cardiolipin synthesis  2 6.67 

  Glycerolipid and glycerophospholipid metabolism in 

bacteria  

28 93.33 

 Triacylglycerols 3 1.55 

  Triacylglycerol metabolism  3 100 

 Fatty acids 71 36.60 

  Fatty acid biosynthesis FASII  30 42.25 

  Fatty acid metabolism cluster  41 57.75 

 Fatty acids, lipids and isoprenoids - no subcategory 56 28.87 

  Polyhydroxybutyrate metabolism  56 100 

 Isoprenoids  34 17.53 

  Isoprenoids for quinones  5 14.71 

  Isoprenoid biosynthesis  18 52.94 

  Polyprenyl diphosphate biosynthesis  4 11.76 

  Nonmevalonate branch of isoprenoid Biosynthesis 7 20.59 

  356 



Figure legends 357 

 358 

Figure 1: Photomicrograph of Zoogloea schifflangensis strain LCSB751. The cells were grown 359 

anaerobically at 20°C on plate with MSV Peptone medium and Nile Red stained after heat fixation. The 360 

image was taken using an inverted microscope (Nikon Ti) equipped with a 60× oil immersion Nikon 361 

Apo-Plan lambda objective (1.4N.A) and an intermediate magnification of 1.5x. The scale represents 10 362 

μm. All imaging data were collected and analysed using the OptoMorph (Cairn Research, Kent, UK) and 363 

ImageJ. A: breigh field; B: same field observed in epifluorescence using an excitation light from a Xenon 364 

arc lamp. The beam was passed through an Optoscan monochromator (Cairn Research, Kent, UK) with 365 

550/20nm selected band pass. Emitted light was reflected through a 620/60nm bandpass filter with a  366 

565 dichroic connected to a cooled CCD camera (QImaging, Exi Blue).  367 

 368 



 369 

Figure 2: Phylogenetic tree based on 16S rRNA gene sequences. The type species strains of every species 370 

of the Rhodocyclaceae family were used as well as all the type strains of the genus Zoogloea, according to 371 

the List of prokaryotic names with sanding in nomenclature (LPSN; http://www.bacterio.net). The 16S 372 

sequences were aligned using CustalW, the alignment was curated using Gblocks conserving 81% of the 373 

initial positions and the phylogeny was computed with BioNJ using 100 bootstraps and the default (K2P) 374 

substitution model, using the pipeline Phylogeny.fr [38]. GenBank IDs of used whole genome sequences 375 

in order from top to bottom: xxx, xxx, xxx 376 
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Figure B.1: Microscopy photo of bacterial strain LCSB005. The red dye stains lipids
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Appendix C.1

Table C.2: Summary statistics of LAMP community CRISPR elements based different time points

Date Sample ID Repeats Spacers Flanks Protospacers Protospacer containing contigs

04 October 2010 A01 825 8,846 328 63,650 14,903
25 January 2011 A02 578 3,287 159 62,425 14,130
21 March 2011 D37 1,528 7,379 247 167,096 28,208
29 March 2011 D02 1,517 7,060 282 62,192 23,734
05 April 2011 D39 1,792 8,500 297 97,101 29,725
14 April 2011 D24 1,892 10,078 371 122,766 31,312
21 April 2011 D25 1,664 5,818 186 59,043 18,270
29 April 2011 D35 1,620 6,738 221 64,890 22,072
06 May 2011 D46 1,779 7,237 232 86,692 24,698
13 May 2011 D13 1,641 7,621 282 65,239 25,653
20 May 2011 D40 1,101 5,193 211 54,957 19,215
27 May 2011 D33 1,327 7,236 256 67,537 22,515
03 June 2011 D06 1,240 7,249 248 64,487 21,428
09 June 2011 D27 1,467 7,502 258 63,327 22,142
17 June 2011 D42 1,586 7,954 325 89,132 26,333
24 June 2011 D03 1,734 10,889 372 83,559 29,843
01 July 2011 D47 1,856 12,119 370 110,021 31,075
08 July 2011 D18 1,598 8,667 261 88,639 23,323
05 August 2011 D45 2,039 11,501 403 110,526 31,695
11 August 2011 D51 2,049 10,338 384 144,888 35,844
19 August 2011 D43 1,620 7,664 379 84,975 25,036
29 August 2011 D34 1,539 8,902 315 93,107 25,778
05 September 2011 D30 1,844 10,409 445 359,352 35,261
12 September 2011 D04 1,882 11,479 421 81,870 28,812
19 September 2011 D31 1,650 10,015 382 112,779 28,742
28 September 2011 D29 2,031 15,387 470 508,357 39,549
05 October 2011 D49 1,733 10,015 344 102,073 29,044
12 October 2011 D32 2,144 11,556 346 102,564 31,175
02 November 2011 D23 1,661 9,149 262 183,658 27,171
07 November 2011 D44 1,914 13,443 373 124,125 26,507
16 November 2011 D20 2,153 21,430 563 102,499 27,069
23 November 2011 D15 1,730 18,745 401 90,195 21,686
29 November 2011 D05 1,632 15,662 375 94,697 22,039
21 December 2011 D28 1,832 15,446 378 110,959 29,162
28 December 2011 D09 1,829 13,765 316 99,623 26,758
03 January 2012 D38 1,359 10,852 267 95,808 24,657
11 January 2012 D36 2,128 13,083 377 384,385 40,682
19 January 2012 D12 1,951 11,138 296 83,323 25,643
25 January 2012 D10 1,931 11,098 328 77,970 24,866
01 February 2012 D14 1,983 9,340 249 67,645 21,188
08 February 2012 D08 2,684 12,742 390 85,554 28,888
14 February 2012 D26 1,531 8,470 310 76,139 24,191
23 February 2012 D21 1,542 7,305 268 61,864 21,261
29 February 2012 D19 1,729 9,003 300 73,013 25,415
08 March 2012 D17 1,490 7,180 233 55,877 18,707
14 March 2012 D41 1,546 7,801 270 73,315 23,718
22 March 2012 D11 1,627 7,921 274 87,678 23,207
28 March 2012 D16 1,512 7,965 276 68,028 21,155
04 April 2012 D07 1,219 5,047 182 51,559 15,112
10 April 2012 D22 1,696 9,806 323 250,766 32,752
17 April 2012 D01 1,768 11,037 352 73,249 25,511
25 April 2012 D50 1,568 10,082 281 117,110 26,872
03 May 2012 D48 1,516 9,727 291 97,198 25,569

Total 88,807 523,876 16,730 5,859,481 1,369,301
Average 1,676 9,884 316 110,556 25,836

Standard deviation 333.140842 3332.121838 76.968261 84833.45653 5483.53806
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Appendix C.1

Table C.3: Summary statistics of Candidatus Microthrix parivicella Bio17-1 population CRISPR elements based different time points

Date Sample ID Repeats Spacers Flanks Protospacers Protospacer containing contigs

04 October 2010 A01 0 0 0 100 16
25 January 2011 A02 6 31 1 496 115
21 March 2011 D37 68 724 29 1634 519
29 March 2011 D02 54 542 29 1312 453
05 April 2011 D39 72 859 24 1382 450
14 April 2011 D24 61 726 30 1486 471
21 April 2011 D25 43 426 21 626 206
29 April 2011 D35 61 589 26 690 289
06 May 2011 D46 48 701 29 699 252
13 May 2011 D13 59 783 27 1257 428
20 May 2011 D40 56 582 12 632 230
27 May 2011 D33 53 760 20 718 297
03 June 2011 D06 62 730 20 767 274
09 June 2011 D27 52 594 14 804 265
17 June 2011 D42 61 600 14 795 339
24 June 2011 D03 51 728 20 1288 413
01 July 2011 D47 39 419 14 955 391
08 July 2011 D18 46 483 16 1001 323
05 August 2011 D45 34 379 16 931 429
11 August 2011 D51 50 487 16 977 420
19 August 2011 D43 55 645 23 975 424
29 August 2011 D34 73 731 23 880 361
05 September 2011 D30 54 615 19 1112 470
12 September 2011 D04 53 659 22 1513 505
19 September 2011 D31 70 762 25 1145 447
28 September 2011 D29 52 732 24 1497 616
05 October 2011 D49 38 431 13 1062 457
12 October 2011 D32 53 623 16 1298 519
02 November 2011 D23 48 516 26 703 217
07 November 2011 D44 48 455 20 946 323
16 November 2011 D20 32 273 7 877 292
23 November 2011 D15 8 54 3 459 174
29 November 2011 D05 3 57 2 466 183
21 December 2011 D28 47 614 19 1235 536
28 December 2011 D09 50 514 31 1157 394
03 January 2012 D38 54 584 15 1127 393
11 January 2012 D36 75 695 25 2089 614
19 January 2012 D12 57 657 22 2135 534
25 January 2012 D10 78 944 38 1372 483
01 February 2012 D14 82 776 33 1347 410
08 February 2012 D08 66 847 38 1478 552
14 February 2012 D26 70 626 13 1202 516
23 February 2012 D21 68 783 26 1131 457
29 February 2012 D19 80 949 45 1199 480
08 March 2012 D17 61 884 27 1417 434
14 March 2012 D41 82 891 32 1047 477
22 March 2012 D11 60 955 29 1481 491
28 March 2012 D16 52 850 22 1119 410
04 April 2012 D07 51 385 10 660 160
10 April 2012 D22 61 692 23 1447 457
17 April 2012 D01 59 821 36 1319 484
25 April 2012 D50 59 753 20 922 375
03 May 2012 D48 66 804 25 1034 407

Total 2,841 32,720 1,130 57,401 20,632
Average 54 617 21 1,083 389

Standard deviation 18.2254 229.6875 9.458 386.03 128.423934
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Appendix C.1

Table C.4: Summary statistics of LCSB005 population CRISPR elements based different time points

Date Sample ID Repeats Spacers Flanks Protospacers Protospacer containing contigs

04 October 2010 A01 0 0 0 0 0
25 January 2011 A02 0 0 0 3 3
17 April 2012 D01 0 0 0 9 9
29 March 2011 D02 0 0 0 10 10
24 June 2011 D03 0 0 0 15 11
12 September 2011 D04 0 0 0 10 10
29 November 2011 D05 1 37 0 7 7
03 June 2011 D06 0 0 0 9 9
04 April 2012 D07 0 0 0 5 5
08 February 2012 D08 1 7 0 11 11
28 December 2011 D09 0 0 0 5 5
25 January 2012 D10 0 0 0 6 6
22 March 2012 D11 0 0 0 8 8
19 January 2012 D12 0 0 0 8 8
13 May 2011 D13 0 0 0 11 10
01 February 2012 D14 0 0 0 5 5
23 November 2011 D15 2 34 5 8 7
28 March 2012 D16 0 0 0 16 10
08 March 2012 D17 0 0 0 5 5
08 July 2011 D18 0 0 0 11 6
29 February 2012 D19 0 0 0 13 12
16 November 2011 D20 1 25 6 10 9
23 February 2012 D21 0 0 0 14 9
10 April 2012 D22 0 0 0 9 7
02 November 2011 D23 0 0 0 9 9
14 April 2011 D24 0 0 0 19 15
21 April 2011 D25 0 0 0 12 10
14 February 2012 D26 1 8 0 17 13
09 June 2011 D27 0 0 0 12 8
21 December 2011 D28 0 0 0 8 8
28 September 2011 D29 0 0 0 9 9
05 September 2011 D30 1 11 0 11 11
19 September 2011 D31 0 0 0 7 4
12 October 2011 D32 0 0 0 15 11
27 May 2011 D33 0 0 0 11 11
29 August 2011 D34 0 0 0 16 11
29 April 2011 D35 0 0 0 18 12
11 January 2012 D36 0 0 0 7 7
21 March 2011 D37 0 0 0 11 11
03 January 2012 D38 0 0 0 9 9
05 April 2011 D39 0 0 0 10 10
20 May 2011 D40 0 0 0 9 9
14 March 2012 D41 0 0 0 16 11
17 June 2011 D42 0 0 0 16 11
19 August 2011 D43 0 0 0 12 9
07 November 2011 D44 0 0 0 6 6
05 August 2011 D45 0 0 0 16 11
06 May 2011 D46 0 0 0 3 3
01 July 2011 D47 0 0 0 7 7
03 May 2012 D48 0 0 0 16 11
05 October 2011 D49 0 0 0 1 1
25 April 2012 D50 0 0 0 17 13
11 August 2011 D51 0 0 0 22 17

Total 7 122 11 550 460
Average 0 2 0 10 9

Standard deviation 0.39408 7.725 1.063 4.719951169 3.256789269
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APPENDIX D

ADDITIONAL FILES

D.1 Additional file 2.1: Supplementary IMP HTML reports

HTML S1 and S2 are reports produced by IMP for the analysis of the human fecal microbial community and
wastewater sludge microbial community datasets. HTML reports for the analyses of other datasets are also
included. The file is available via the original publication [Appendix A.2] and Zenodo.

D.2 Additional file 2.2: Supplementary figures and notes

Supplementary figures and notes. Figures S1-S3 and Notes S1-S2. Detailed figure legends available within
file. The file is available via the original publication [Appendix A.2].

D.3 Additional file 2.3: Supplementary tables

Tables S1 to S12 and their detailed table legends are available within file. The file is available via the original
publication [Appendix A.2].
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